
Master Thesis

Dynamically scaling Azure resources
using Machine Learning

Thijs Klumpenaar

a thesis submitted in partial fulfilment of the
requirements for the degree of

Master Business Analytics
(Optimization of Business Processes)

Vrije Universiteit Amsterdam

Faculty of Science

Dr. Rianne de Heide, Emiel Stoelinga (Info Support)Supervised by:
2nd Dr. Joost Berkhoutreader:

Submitted: July 29, 2024

Abstract

This research addresses the challenge of efficiently scaling cloud resources in real-time
to minimize cost and energy consumption. We used Recurrent Neural Networks and
Long Short-Term Memory models to forecast the computational load of cloud resources,
which proved to be quite successful. We developed a scaling model that maps the com-
putational load forecasts to a capacity level, or service tier, for the cloud resource. The
proposed solution yielded significant improvements in resource utilization and achieved
cost savings of up to 80% compared to current static approaches. Although the model
effectively predicted computational load and scaled resources efficiently, it suffered from
excessive scaling, which may significantly affect resource usability in practice. Further
research is required to refine the proposed solution and mitigate this issue.

Preface

This thesis is written during a six-month internship at Info Support. This thesis is my
final document created for the master’s degree of Business Analytics at the Vrije Uni-
versiteit. While I have greatly enjoyed the journey and challenges of this curriculum,
all good things must come to an end.

I would like to express my gratitude towards my supervisors Emiel Stoelinga and Dr.
Rianne de Heide for guiding me throughout my research and being available for consult
whenever necessary.

Furthermore, I would like to thank all other members of Info Support for all the in-
sightful and enjoyable discussions, which greatly contributed to the development of this
research.

Lastly, I would like to thank my friends, family and Bram for their constant support
and positive distractions throughout the process.

List of Figures

2.1 Input, scaling and prediction window for the Web Apps 10

2.2 Full overview of dynamic scaling mechanism 12

2.3 Dataset splitting for Last-block evaluation [3] 13

3.1 Azure SQL database: Histogram of the used DTU and vCPU for all
databases . 19

3.2 Web App: Correlation Matrix of target features with non-target features 20

3.3 Web App: Histogram of the CPU Time and RAM usage for all Web apps 21

3.4 Web App: Histogram for the CPU time and used memory per Web app 21

3.5 Web App: Histogram for the number of requests for all Web apps combined 22

3.6 Web App: Line Plot of CPU Time for All Web Apps (1 Day) 23

3.7 Web App: Line plot of the number of requests for Web app 7 over a
period of three weeks . 23

3.8 Web App: Moving average of CPU time per day for Web app 7 24

3.9 Production Web apps: Correlations between the target and input features 25

3.10 Production Web apps: Histograms of target variables for production
Web apps . 25

4.1 RNN: Line plots of the training and validation MSE and MAE per train-
ing epoch . 31

4.2 LSTM: Line plots of the training and validation MSE and MAE per
training epoch . 32

4.3 RNN: Bar plot of the training and validation MSE and MAE per Web app 32

4.4 LSTM: Bar plot of the training and validation MSE and MAE per Web
app . 33

4.5 LSTM: True and predicted CPU time and RAM usage for Web app 7 . 34

4.6 LSTM: Validation Loss per Optuna trial 34

4.7 Predicted and true values of the CPU time and RAM usage of the pro-
duction set . 36

4.8 Test loss of the generalizing model and specialist models per Production
Web app . 37

4.9 Test loss of the generalizing model and specialist models per Non-Production
Web app . 38

4.10 Histogram of scaled CPU Time with the corresponding service tiers . . . 40

4.11 Histogram of scaled RAM usage with the corresponding service tiers . . 41

4.12 App Service Plan 2: Predicted and True CPU time, together with the
available resources . 42

4.13 App Service Plan 2: Predicted and True CPU time, together with the
available resources . 43

v

4.14 App Service Plan 2: Predicted and True CPU time, together with the
available resources, with scaling multiplier 0.7 44

4.15 App Service Plan 2: Percentage of time underprovisioned and resource
utilization against the capacity scaling multiplier 46

7.1 Architecture of scaling mechanism in Azure 58

A.1 Histogram of mapped service tiers for App Service Plan 1 62
A.2 Histogram of mapped service tiers for App Service Plan 2 62
A.3 Histogram of mapped service tiers for the Production App Service Plan 63

Contents

Abstract i

Preface iii

List of Figures vi

1 Introduction 1

2 Background 3
2.1 Cloud computing in Azure . 3
2.2 Cloud resources . 3

2.2.1 Virtual Machines . 4
2.2.2 Azure Web Apps . 4
2.2.3 Azure SQL Databases . 4
2.2.4 Costs . 4

2.3 Scaling . 5
2.3.1 Virtual Machines . 5
2.3.2 Web App . 5
2.3.3 Azure SQL Databases . 6
2.3.4 Current autoscaling methods . 6

2.4 Forecasting models . 7
2.4.1 ARMA and ARIMA . 7
2.4.2 Recurrent Neural Networks . 7
2.4.3 Long Short-Term Memory . 9
2.4.4 Prediction window . 9

2.5 Scaling model . 10
2.5.1 Rule-based . 10
2.5.2 Tier based . 11
2.5.3 Scaling performance measures . 11
2.5.4 Full mechanism overview . 12

2.6 Dataset splitting . 12
2.7 Conclusion . 14

3 Data preparation 15
3.1 Data availability . 15

3.1.1 Web App . 15
3.1.2 Azure SQL Database (DTU based) 16
3.1.3 Azure SQL Database (vCore based) 16
3.1.4 Logging duration . 16

vii

3.1.5 Target features . 17

3.2 Data preprocessing . 17

3.2.1 Outlier detection . 18

3.2.2 Missing feature values . 18

3.2.3 Feature engineering . 18

3.2.4 Normalization . 19

3.3 Exploratory Data Analysis . 19

3.3.1 Azure SQL databases . 19

3.3.2 Web App . 20

3.4 Production data . 24

3.5 Input and output data . 25

3.5.1 Input and output features . 25

3.5.2 Output length . 26

3.5.3 Input length . 26

3.6 Conclusion . 26

4 Modelling and Results 27

4.1 Hyperparameter tuning . 27

4.1.1 Recurrent Neural Network . 27

4.1.2 Long Short-Term Memory . 28

4.1.3 Hyperparameter ranges . 28

4.2 Model training . 29

4.2.1 Early Stopping . 29

4.2.2 Training time . 29

4.2.3 Final hyperparameters . 29

4.2.4 Training performance . 30

4.2.5 Production performance . 33

4.2.6 Conclusion . 38

4.3 Scaling model . 39

4.3.1 Suitable service tiers . 39

4.3.2 Static service tiers . 40

4.3.3 Results . 41

4.3.4 Capacity scaling multiplier . 42

4.3.5 Performance measures . 43

4.3.6 Multiplier tuning . 46

4.3.7 Service Level Agreements . 46

4.3.8 Conclusion . 47

5 Evaluation 49

5.1 Performance comparison . 49

5.1.1 Literature . 49

5.1.2 Static service tier . 49

5.2 Applications . 51

5.3 Model interpretability . 51

5.4 Generalizability . 52

5.5 Cost and energy usage . 52

6 Conclusion 53

7 Discussion 55
7.1 Limitations . 55

7.1.1 Exceeding available capacity . 55
7.1.2 App Service Plan overhead . 55
7.1.3 Service levels . 56
7.1.4 Excessive scaling . 56
7.1.5 Scaling costs . 56

7.2 Future work . 56
7.2.1 Interpretable forecasting models 56
7.2.2 Intelligent scaling agent . 57
7.2.3 Downscaling multiplier . 57
7.2.4 History duration . 57

7.3 Proof of concept . 58
7.4 Specialist or Generalist . 59
7.5 Recommendations . 60

A Service tier histograms 61

Chapter 1

Introduction

The global cloud computing market has seen rapid growth, with its size estimated at
approximately 630 billion dollars in 2023. The market is expected to expand further,
reaching approximately 3 trillion dollars by 2033 [1]. As demand for cloud computing
continues to increase, this expansion also drives a significant rise in the industry’s
carbon footprint. Nowadays, the carbon footprint of cloud computing exceeds that of
the airline industry [31].

Customers can leverage cloud computing services through cloud providers like Azure,
Amazon Web Services and Google cloud. Users can use all sorts of services and com-
putational power, such as virtual machines, databases, micro-services and networking
technologies, for which they are charged based on how much they reserve or use. In
practice, the customer’s focus is usually on ensuring there is enough capacity reserved
to meet the demand, while overcapacity and its associated costs are often overlooked.
This leads to higher energy consumption and costs than necessary, which is financially
inefficient and environmentally damaging.

This study is significant because it addresses the issue of excessive energy use and
financial waste due to over-reservation of computational resources in cloud environ-
ments. By optimizing the reservation of cloud resources, we can achieve substantial
cost savings and reduce energy consumption.

The research question that was formulated for this research, is:

“To what extent can advanced analytics, such as Machine Learning, be used
to predict cloud computation load in real-time and dynamically scale cloud
resources to minimize cost and energy usage?”

This research will focus specifically on Azure Web Apps, DTU-based Azure SQL
Databases, and vCore-based Azure SQL Databases, as for these resources data was
available. The findings and conclusions of this research aim to improve the efficiency of
resource reservation in cloud environments and provide valuable insights for industry
practices.

In Chapter 2, we provide a background of relevant information for this research. In
Chapter 3, we examine the available data and analyze the different features that are
present in this data. In Chapter 4, we outline the choices made during the modelling
phase of this research and present the modelling results. In Chapter 5, we interpret
the results from the modelling Chapter and assess the implications of these results. In
Chapter 6, we summarize the findings of this research and answer the research question.

1

2 CHAPTER 1. INTRODUCTION

In Chapter 7, we explore limitations and future work, and offer our recommendations
to Info Support based on this study.

Chapter 2

Background

In this chapter, a background of relevant information for this research is given. In
Sections 2.1 and 2.2 we introduce Cloud computing in Azure and the Azure resources
that will be focussed on in this research. In Section 2.3 we explain the different ways
of scaling the computational power of the resources. In Section 2.4 and 2.5 we discuss
different types of models that can be used to forecast time series and methods to scale
resources based on these forecasts. In Section 2.6 we consider different ways of splitting
the available data into train, validation and test sets.

2.1 Cloud computing in Azure

Cloud computing is the delivery of computing services that are not hosted on-premise,
such as databases, servers, web applications, networking and Artificial Intelligence.
Cloud computing offers many benefits opposed to on-premise resources, such as cost
efficiency, flexibility (easy up- and downscaling of resources), scalability and security
[5, 34]

The three most prominent players in global cloud computing are Amazon Webser-
vices, Microsoft Azure and Google Cloud, having a global market share of 34%, 21%
and 11% respectively, totalling to a 66% combined market share [15]. The global cloud
infrastructure spending was approximately 57 billion dollars in 2022.

The cloud resources that will be focussed on in this research are hosted in Azure,
which is Microsoft’s public cloud platform. In the next section, the different types of
the available Azure resources will be discussed.

2.2 Cloud resources

In this research, we consider data from three different types of cloud resources, namely
Azure Web Apps, DTU-based Azure SQL Databases and vCore-based Azure SQL
Databases. As Azure Web Apps have an underlying Virtual Machine that they run
on, we address Virtual Machines as well. The computational units, which are measures
of processing power such as the number of CPU cores, are explained per resource type.
The up- and downscaling of the resources by adding or removing computational units
is discussed in the next section.

3

4 CHAPTER 2. BACKGROUND

2.2.1 Virtual Machines

An Azure Virtual Machine (VM) is a computer-like machine that is hosted in Azure
[19]. Just like a normal computer, a VM has RAM, a CPU, storage and can also
connect to the internet if required. An important difference between VMs and normal
computers, is that normal computers are made up from hardware, such as RAM sticks
or a physical CPU, while VMs exist only as code, as software-defined computers within
physical servers. The main computational units that make up a Virtual Machine in
Azure, are virtual centralized processing units (vCPUs) and random access memory
(RAM).

2.2.2 Azure Web Apps

Azure Web Apps are web-based applications that are hosted in the Azure App Service
(AAS), which is a fully-managed platform as a service (PaaS) for building applications
in Azure [26]. AAS supports a wide range of programming languages, such as .Net,
Java, PHP and Python. Furthermore, users pay only for the computational resources
they use, which are determined by the App Service Plan in which the app is run.

The App Service Plan can be seen as one or more underlying Virtual Machines that
run the Web Apps. Therefore, to change the computational resources that is available
to the Web Apps, is to change the computational resources or count of the Virtual
Machines underlying to the App Service Plan. Therefore, the computational units that
are relevant for Azure Web Apps, are also vCPUs and RAM.

2.2.3 Azure SQL Databases

SQL Databases are computational systems that store and organize structures sets
of data in collections of tables, that use SQL Server [20]. Naturally, an Azure SQL
Database is a SQL Database that is hosted in Azure, providing many benefits, such
as automatic patching, maintenance, and scalability. All SQL Databases communicate
using structured query language (SQL).

There are two different cost models for Azure SQL Databases, namely DTU-based
and vCore-based models [21]. A Database Transaction Unit (DTU) is a computational
unit that encapsulates a combination of CPU power, memory and data I/O resources.
Increasing the number of DTUs increases the capacity to handle concurrent users and
process query workloads. DTUs are designed to simplify the process of selecting an
adequate performance level for the database, which is convenient for this research. The
vCore based model is similar to the model that VMs use, as a vCore is practically a
part of a vCPU. The amount of RAM that is available per vCore is set at 5.1GB.

2.2.4 Costs

In Cloud environments, users pay for the amount of computational resources or services
they use. This means that when a user for example needs a more powerful database,
the corresponding costs of reserving this will be higher. However, a resource instance
should be able to successfully execute its task using the reserved computational power.
Thus, selecting an adequate computational tier is a trade-off between the resource
instance’s ability to perform its task and corresponding costs. If a database experiences
fluctuating computational demand the service tier can be changed, which is called either
upscaling or downscaling, depending on whether the computational power is increased

2.3. SCALING 5

or decreased respectively. The different types of scaling are discussed in more depth in
the next section.

2.3 Scaling

In Azure, there are typically two types of scaling a resource, namely horizontal and ver-
tical scaling [22]. Horizontal scaling means adding or removing instances of resources
used by a workload. An example of this is extending the number of VMs that run an
application from two to three VMs. In contrast to horizontal scaling, vertical scaling
keeps the number of resource instances constant, but changes the number of computa-
tional resources that is available to the resource instance, such as CPU power or RAM.
An example of this is changing the amount of RAM for a VM from 8GB to 16 GB. Per
resource type, there are predefined service tiers, which correspond to a fixed number
of available computational resources, such as the amount of RAM, CPU power and
storage.

Both horizontal and vertical scaling have distinct benefits which can make one op-
tion more suitable over the other, depending on the tasks of the resource. Horizontal
scaling offers a higher fault tolerance, as other compute instances can potentially take
over the tasks of a failing instance. However, increasing the number of compute in-
stances also increases the number of for example Windows or Linux systems that are
running, causing computational overhead. Scaling vertically does not have this issue,
as the number of separate instances that are running remains the same.

2.3.1 Virtual Machines

Virtual Machines can generally be scaled vertically, and in some cases also horizon-
tally. A standalone Virtual Machine can be scaled vertically by changing the number
of vCPUs and amount of RAM that is available to the VM. There are multiple special-
isations among Virtual Machines, such as ’Compute optimized’, ’Memory optimized’
and ’General Purpose’ [24]. The type of VM that is best suited will depend on task for
which the VM was created.

VMs can also be part of a ’Virtual Machine Scale Set’ (VMSS), which is a collection
of VM instances. Horizontal scaling can be done by increasing or decreasing the number
of instances that run an application. By adding or removing VM instances from the
scale set, the total computational capacity of the VMSS can be increased or decreased
respectively [23].

2.3.2 Web App

The resources available to the Web App can be scaled up by increasing the computa-
tional resources of the App Service Plan of which the Web App is part of [27]. The
App Service Plan can be scaled either horizontally or vertically. Horizontal scaling
can be performed by scaling the number of Virtual Machines that run the Web App.
The maximum number of Virtual Machines that can run the Web App is 30. Vertical
scaling is performed by changing the number of vCPUs and amount of RAM.

For Web Apps, three different types of computational plans are available, namely
Basic, Premium and Isolated. The Basic Service Plan has 3 tiers, ranging from $0.018
to $0.07 per hour. When higher reliability, horizontal scaling and better performance is
important, the Premium Plan can be used. The 9 tiers of the Premium Plan range from

6 CHAPTER 2. BACKGROUND

$0.210 to $5.824 per hour. Thus, running the highest Premium tier on full capacity costs
approximately $140 per day. The most expensive plan is the Isolated Plan, ranging
from $0.562 to $17.984 per hour. This plan offers very high scalability in an isolated
and dedicated environment, which can be necessary in specific scenarios.

The type of plan for which applying the scaling model will be most relevant, is
the Premium Plan. The costs corresponding to the higher tiers in this plan make
it potentially profitable to invest time and effort into dynamically scaling the Plan.
Furthermore, the Premium Plan is generally used significantly more than the Isolated
Plan, as in many cases the benefits of the Isolated Plan that lead to higher cost are
excessive. However, all methods described in this research are also applicable to other
scaling plans.

2.3.3 Azure SQL Databases

As discussed earlier, two different computational models are available for Azure SQL
Databases, namely DTU-based and vCore-bases databases. For vCore-based databases,
the number of virtual cores, amount of memory, amount of storage and storage speed
can be adjusted. DTU-based databases can be scaled by changing the number of DTUs
and changing the amount of storage that is available to the database.

2.3.4 Current autoscaling methods

For Virtual Machines, Azure has an inbuilt horizontal autoscaling option. This au-
toscaling can be performed either rule-based or schedule based. Rule-based scaling
occurs based on user-defined thresholds for selected computational metrics. Users can
for example create a rule that scales the number of Virtual Machines in the scale set
when the average CPU utilization is above 70% for more than 10 minutes. Schedule-
based scaling is scaling that occurs on a user-defined schedule, such as every day at
7:00. There are however drawbacks to both available autoscaling methods.

According to Microsoft [25], performance-based rules may impact application per-
formance before the autoscale rules trigger and new Virtual Machine instances are
provisioned. Furthermore, when sudden high load occurs, the Virtual Machine must
first be potentially underprovisioned for the threshold duration of the scaling rule,
whereafter the Virtual Machine pool must scale, potentially further impacting per-
formance. The schedule-based autoscaling is a less flexible method that is based on
static assumptions of future load metrics, not taking into account the current and fu-
ture computational metrics. This potentially causes the scale set to scale too early, or
during high computational load. Dynamically predicting and anticipating on compu-
tational load can potentially increase the likelihood that the Virtual Machines are not
underprovisioned, and scaling at appropriate moments.

Predicting Autoscaling is a currently available feature for Virtual Machine scale
sets and App Service Plans, which can dynamically predict the overall CPU load and
horizontally scale the scale set, anticipating on predicted demand. However, the CPU
load is the only variable that is used for the forecasts, both as predicting and predicted
variable. This means that other computational load metrics that are relevant for Virtual
Machines, such as RAM usage, are not considered. Furthermore, this feature can only
be used to horizontally scale a VM scale set, making it a feature only to be used in one
specific scenario for VMs.

2.4. FORECASTING MODELS 7

2.4 Forecasting models

This sections discusses models than can potentially be used to predict the computa-
tional load of cloud resources and applications of these models in literature.

2.4.1 ARMA and ARIMA

Autoregressive Moving Average (ARMA) models are regressive models that model a
time series based on the idea that the current value of a time series can be explained by
past values of the same time series [36]. An extension of this model, the Autoregressive
Integrated Moving Average (ARIMA), first differences the relevant time series a number
of times before fitting an ARMA model on the differenced time series. In both cases,
the time series is modelled by only its own values and corresponding errors.

Calheiros et al. [4] used an Autoregressive Integrated Moving Average (ARIMA)
model to predict computational loads of a collection of Virtual Machines in a cloud en-
vironment. The Mean Absolute Percentage Error (MAPE) was equal to 9%. However,
the forecasted metric showed strong cyclic behaviour, together with more inaccurate
predictions whenever the metric deviated slightly from the cycles. This means that the
obtained results are less generalizable than the results of other papers.

Roy et al. [32] obtained very accurate results predicting the number of clients in a
cloud environment over a period of 500 hours using an Autoregressive Moving Average
(ARMA) model. In this case, there was also a clear cyclic pattern present in the
forecasted values. However, deviations from this cyclic pattern were fitted correctly.
Furthermore, a cost model was used to allocate numbers of virtual machines over time,
based on the predicted number of clients. In this model, costs were associated with
violating Quality-of-Service (QoS) measures.

The limitation of ARMA and ARIMAmodels is that they predict a single time series
only based on patterns in the time series itself, such as moving averages of historical
values. When there are meaningful feature values that are believed to have predictive
power, such as the time of day, other models can be used. Relevant examples of those
models are discussed in the next section.

2.4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a neural network architecture mainly used for
detecting patterns in sequential data [33]. The difference between Feedforward Neu-
ral Networks and Recurrent Neural Networks is how information is passed through
the network. While Neural Networks have different layers that pass through numeric
information, a RNN transmits the output of a layer back into itself, hence the term ”re-
current”. This allows the model to detect and learn patterns over multiple observations
in a sequence.

The following hyperparameters are relevant for RNNs:

• Number of layers

• Number of units per layer

• Dropout rate

• Learning rate

• Activation functions

• Optimizer

8 CHAPTER 2. BACKGROUND

The number of layers refers to the number of LSTM layers that are stacked on
top of eachother, while the number of units per layer indicates how many nodes are
present in a single RNN layer. Increasing the number of layers or units per layer allows
the model to learn more complex patterns present in the data, but also increases the
computational cost and the risk of overfitting.

Dropout is a regularisation technique to improve the generalization of neural net-
works [6, 17], aiming to avoid overfitting in neural networks. Dropout refers to the
act of randomly multiplying the output of nodes with 0, or ”dropping” the output of
these nodes. Implementing this for the training process causes the model to learn the
output based on a dynamic selection of inputs instead of all inputs, providing a more
generalizable predictive model.

The step size in which the model updates its weights and biases during training is
given by the learning rate. Choosing a learning rate too low can result in slow training
and convergence to local optima. Choosing a learning rate too high can cause the
learning process to not converge, or jump over well performing optima in the highly-
dimensional loss space.

The activation function is the function that is used to transform the weighted inputs
of a node, which can be chosen per RNN layer. Widely used activation functions are
the Hyperbolic tangent (tanh), sigmoid function and the Rectified Linear Unit (ReLU)
[13]. The goal of activation functions is to introduce non-linear behaviour in the output
of the RNN layers.

The algorithm that adjusts the parameters (weights and biases) of neural networks
is called the optimizer. Simpler optimizers, such as stochastic gradient descent, uses
the gradient of the loss function to adjust the weights in a way that the value of the loss
function should improve. More advanced optimizers, such as Adapative Momement Es-
timation (Adam) or Nesterov Adam (Nadam), smartly use for example moving averages
of gradients to determine adaptive learning rates to improve the learning process.

Zhang et al. [41] used an RNN to predict the computational workload in a Google
cloud cluster, by using the CPU and RAM metrics over time. They showed that the
RNN based method was suitable for forecasting the load, yielding accurate results and
consistently outperforming an ARIMAmodel. The lowest Mean Squared Error that was
obtained for the standardised CPU and RAM were equal to 2.76 ∗ 10−5 and 1.51 ∗ 10−5

respectively. The proposed future work for this research was trying more complex
recurrent models, such as the Long Short-Term Memory, which will be discussed in the
next section.

Duggan et al. [8] predicted host CPU utilization in a cloud environment using RNNs
with relatively high accuracy results when predicting 15 minutes into the future. The
forecasting error and error variability increased linearly when increasing the length of
the forecasting window, which is to be expected.

An important issue that can arise when training RNNs, is the vanishing or exploding
gradient problem Hochreiter [11]. The vanishing or exploding gradient problem occurs
when consecutive gradients are propogated throughout many layers of the network.
As the gradients in the network are multiplied during the backpropogation, the final
gradients can exponentially decline towards zero (vanishing) or grow to a very large
number (exploding). A vanished gradient causes the eventual weights to be updated
only marginally, strongly influencing the rate of convergence and eventual model per-
formance. An exploding gradient causes the eventual weights to be updated excessively,
leading to unstable training and potentially resulting in diverging model parameters.

2.4. FORECASTING MODELS 9

To properly handle these potential problems, specialized RNN architectures were em-
ployed, such as the Long Short-Term Memory.

2.4.3 Long Short-Term Memory

Long Short-Term Memory (LSTM) models are a widely used extension of the Recur-
rent Neural Network, designed to properly handle the vanishing or exploding gradient
problem [10, 35]. Another important improvement is the introduction of ”gates”, which
control the information flow for example by determining which internal signal to am-
plify or weaken, or to determine what signals output gets sent to the next unit. Also,
the memory mechanism of the LSTM is more sophisticated. Furthermore, the model
is able to handle noise over time as well [12]. All mentioned improvements allow the
model to learn long-term dependencies more effectively, generally translating to better
performance in practice compared to that of RNNs. As the architectural changes did
not introduce any new hyperparameters, the RNN hyperparameters apply to the LSTM
as well.

Yadav et al. [40] predicted the hourly average load of a distributed server in a cloud
environment for an interval of 24 hours using LSTM models. The models were quite
performant, obtaining a mean absolute error of 0.043 for the normalized load.

Nguyen et al. [30] used an LSTM with an encoder-decoder model to forecast the
Google cluster workload traces with satisfying results. The dataset was very diverse,
containing over 25 million tasks across more than 12.000 hosts over May 2011. The
time interval between records was five minutes. The proposed method yielded consis-
tently better results over a conventional LSTM model, especially for longer prediction
windows. An important thing to note is that the results were only marginally better
for prediction windows between approximately 40 and 160 minutes, or 8 and 32 obser-
vations respectively. The forecasting window in this research will be smaller than the
lower bound, as will be discussed in Section 3.5.2.

Zhong et al. [42] implemented LSTM models to forecast the number of requests
that arrived at a VM. The forecasted number of requests was then used as input
for a Q-Learning agent, that determined whether to scale or not to scale the VM.
The proposed approach decreased SLA violations by up to 20% to 30%, indicating a
sufficiently performant forecast.

2.4.4 Prediction window

The time interval for which the computational load should be predicted, or the predic-
tion window, is dependent on the time it takes for the resource instance to scale. The
prediction window should start after the time it takes to scale the resource instance, or
the scaling window, as is is not useful to forecast the computational load for moments
for which we cannot scale the resource instance early enough. For example, predicting
the computational load for the next 5 minutes, while the resource instance takes 10
minutes to scale is not useful, as we cannot scale the resource early enough to match
the predicted demand. Thus, in this case, the prediction window should start after 10
minutes from the current moment. Next, we will determine the length of the scaling
window per resource type.

10 CHAPTER 2. BACKGROUND

Figure 2.1: Input, scaling and prediction window for the Web Apps

Startup times Virtual Machines

Because a new VM compute instance must be created when a VM is scaled either
horizontally or vertically, the average startup time will be considered as the scaling
time for a Virtual Machine. Furthermore, because the App Service Plan for a Web App
has an underlying Virtual Machine, we also consider the startup times for a Virtual
Machine as the scaling time for an App Service Plan.

Mao and Humphrey [18] found that the average startup time for Azure VMs was
approximately between six and seven minutes. Because the frequency in which the
available data is present is one minute, the forecasting window must be at least seven
for the Virtual Machines and Web Apps.

Azure SQL Database

For Azure SQL Databases, scaling from one computational tier to another generally
takes under five minutes per database, or under one minute per GB of space used,
depending on the current and objective computational tiers [28].

Having determined the length of the scaling window, we can now investigate the
length of the prediction window. The load values predicted in the prediction window
are the values on which the scaling decision will be based. To prevent the scaling model
from directly up- and downscaling when a single predicted load value is high or low, we
can base the scaling decision on the average value over multiple observations instead.
This way, the scaling mechanism is more robust, as volatility in the forecasts has a
less direct and drastic impact on the scaling decisions. The length of the prediction
window would then be a measure of the sensitivity of the scaling model. When it is
vital that the predicted computational load is satisfied, a short prediction window is
necessary. Thus, it can also be thought of as how important it is that the forecasted
computational load is satisfied.

Figure 2.1 gives a visual representation of the input window, scaling window and
prediction window for the Web Apps. The specific lengths of the input and output
windows will be discussed in sections 3.5.2 and 3.5.3.

2.5 Scaling model

2.5.1 Rule-based

A rule-based scaling model indicates whether a resource should be scaled based on
thresholds for computational metrics. Lower and upper thresholds are defined for

2.5. SCALING MODEL 11

which the resource should scale up or down if the computational load exceeds or drops
down the threshold respectively. Choosing the correct threshold values for both the
lower and upper bound is important, as these values can directly influence if or when
an upscaling or downscaling action is triggered, thus affecting performance and cost
objectives [38]. Using a high upper bound can reduce total cost, while potentially also
decreasing performance, and vice versa.

Mohan Murthy et al. [29] defined such thresholds, namely that the VMs in question
should be downscaled when the vCPU or RAM utilization dropped down 25%, or
upscaled if it exceeded 80%. Suleiman and Venugopal [38] formulated two thresholds
for scaling a web server based on the CPU load. Both lower bounds were equal to 30%.
The upper bound was chosen to be either 75% or 80%. However, these methods only
account for scaling up or down a single step in the service tier hierarchy, per scaling
decision.

2.5.2 Tier based

Another method is to determine what future service tier would be most appropriate for
the resource based on the predicted computational load, and then scale to that specific
tier. This way, we can span multiple tiers in a single scaling decision, without needing
to incrementally scale up or down.

When scaling decisions are based on multiple computational load metrics, we can
select the cheapest suitable tier that satisfies the predicted computational load per
metric and union them. We can then take the highest tier of this union, to make sure
that we satisfy all future computational load metrics. For example, when the forecasts
of three computational load metrics are used for the scaling decision, we take the three
cheapest service tiers that satisfy each individual metric and union them. We then take
the highest service tier within this union as our final tier that satisfies the computational
load for all metrics. The assumption here is that the amount of computational resources
is non-decreasing when choosing a higher, more expensive service tier, which is the case
for all service tiers in this research. In this study, we will consider a tier-based scaling
model.

2.5.3 Scaling performance measures

To evaluate the performance of the scaling model, we formulate multiple numerical
performance measures. These performance measures can be used to evaluate the ef-
fectiveness of the scaling mechanism and compare the obtained performance to the
current situation. The performance measures and their pseudo-definition are given in
Table 2.1. When applicable, these performance measures will be calculated for each
target feature.

The utilization of the resources can be seen as the efficiency of the total cost. Since
the necessary amount of computational power is fixed, a higher resource utilization
indicates a lower average capacity, leading to greater cost savings. The lacking capacity
percentage when the resource was underprovisioned represents how much capacity was
missing on average for all observations for which the available capacity was insufficient.
The importance of this performance metric is application dependent.

12 CHAPTER 2. BACKGROUND

Pseudo-definitionMeasure

% of time underprovisioned Time underprovisioned
Total time

MAPE for all observations% lacking when underprovisioned
where lacking

% utilization of resources Capacity used
min(Total capacity, Capacity used)

% of time spent scaling Time spent scaling
Total time

Figure 2.2: Full overview of dynamic scaling mechanism

2.5.4 Full mechanism overview

The decision to up- or downscale is made each minute in real time. Each minute,
when another observation of all computational metrics is available, we use the most
recent observations as input for the forecasting model. This model then forecasts the
target features during the forecasting window, as shown in Figure 2.1. The scaling
model will then map the average computational load over the forecasting window to
the corresponding service tier, as described in the previous section. When the expected
suitable service tier differs from the current service tier, we scale to the target service
tier. When the decision to scale is made, we will wait until the resource is scaled,
until we continue the process. Figure 2.2 gives an overview of the full dynamic scaling
mechanism.

In Section 7.3, we will further delve into possible architectures for the scaling mech-
anism, using available Azure services.

2.6 Dataset splitting

While modelling data using Machine or Deep Learning techniques, it is important to
preprocess and split the data so that the investigated models can be trained, validated
and tested correctly. It is important that the data that is used to finally estimate the
models true performance, also known as the test set, is kept aside during the model

Table 2.1: Pseudo-definitions of scaling performance measures

2.6. DATASET SPLITTING 13

Figure 2.3: Dataset splitting for Last-block evaluation [3]

building and selection procedure. This prevents pollution of the final evaluation results,
as the models should be evaluated on new data, meaning data that the model has not
seen yet.

A common way of splitting time series data into train, validation and test sets
is last-block evaluation [3]. Last-block evaluation splits the time-series dataset into
training, validation and test sets in a chronological order. This way, the model will
be evaluated or tested on data that comes after the data the model was trained on.
Figure 2.3 gives a visual representation of a time-series, split into the different sets
using last-block evaluation.

Evaluating the model during training based on how well it predicts future values
is logical, as this precisely is its task in production. During training, the model is
evaluated based on its performance to predict the next values, namely the validation
set. When model architectures are selected using the training and validation set, the
final performance is estimated based on unseen future values, the test set. The final
results should therefore be representative for the eventual performance in production.

Furthermore, splitting the data in this manner prevents individual observations to
be used in more than one of the mentioned sets. Using observations in multiple sets
causes the model to be evaluated on observations it has already seen, polluting the
reliability of the performance metrics. In between the sets in Figure 2.3, a small gap of
unlabeled observations can be seen. This is done so that the observations of the time
series per set are non-overlapping.

Snijders [37] experimented with the use of blocked cross-validation, which is a more
advanced version of last-block evaluation. In his study, there were no clear result
improvements over the last-block evaluation. As the last-block evaluation is a less
complex and more straightforward approach, this was the recommended technique for
validating time series models during the model selection procedure.

In this research, we will be using the last-block evaluation method as shown in the
figure. The training, validation and test set sizes will be 60%, 20% and 20% of the
total dataset respectively, as these are widely used proportions.

14 CHAPTER 2. BACKGROUND

2.7 Conclusion

This research will focus on dynamically predicting computational load for Azure Web
Apps and Azure SQL Servers, and scaling the resources based on these predictions.
The forecasting models that will be considered during this research, are the Recurrent
Neural Network and Long Short-Term Memory models, as these models are consistently
performant and popular in similar research that is present in literature. Scaling the
cloud resource instances will be done using a tier-based scaling model, based on forecasts
of the relevant computational load metrics.

The research discussed in this thesis differentiates itself from similar work described
in this chapter by the level in which the forecasting and scaling models are applied and
the type of scaling model. The described research generally uses Machine Learning to
predict a single time series that represents the total computational load in a cluster of
resources in a cloud environment. Furthermore, similar research utilised a rule-based
scaling model. This research will focus on predicting the computational load of multiple
individual cloud resource instances using ML models and a tier-based scaling model.

Chapter 3

Data preparation

In this chapter, we explore the the available data per resource type. In Section 3.1 we
list all features present per resource type. In Section 3.2 we outline the steps taken to
prepare the data for the modelling part of this research. In Section 3.3 we visualise
important variables and relations between variables. In Section 3.4 we explore other
datasets originating from Web Apps hosted in a production environment. In Section
3.5 we discuss the form of the input and output data.

3.1 Data availability

3.1.1 Web App

The variables that were logged for the Web App are as follows:

• Timestamp on which the record was logged

• Average response time of the Web App

• Total CPU time that the Web App used

• Total Data used as Input for the Web App

• Total Data used as Output for the Web App

• Average handle Count of the Web App 1

• Total Bytes that the Web App read during runtime

• Total Bytes that the Web App wrote during runtime

• Average amount of memory the Web App occupied

• Total number of requests that the Web App processed

In the previous chapter we discussed that the App Service Plan’s scalable computa-
tional resources were the number of vCPUs and the amount of RAM. These computa-
tional resources directly correspond to the ’total CPU time’ and the ’Average memory
working set’ variables that are present in the data.

The first six Web apps run in the same App Service Plan. This App service plan
is hosted in the same cloud environment as all of Azure SQL databases. Web app 7 is
hosted in a separate App Service Plan, in another cloud environment.

1Handles are a concept in operating systems, which generally represents a reference to an operating
system resource, such as files, memory objects, network connections and database connections. Poorly
optimized code or infrastructure design can introduce a large amount of simultaneous handles, causing
potential latency. However, nowadays this generally does not cause problems anymore, due to the large
handle capacities of storage devices, and better optimized code and infrastructure.

15

16 CHAPTER 3. DATA PREPARATION

3.1.2 Azure SQL Database (DTU based)

The following variables were logged for the DTU-based Azure SQL databases:

• Time at which the metrics were recorded.
• CPU utilization percentage
• Percentage of DTUs used
• Number of DTUs used
• Percentage of log write operations
• Count of active sessions or connections
• CPU utilization percentage for the SQL Server instance
• Memory utilization percentage for the SQL Server instance
• Percentage of CPU core utilization by the SQL Server process
• Percentage of system memory utilized by the SQL Server process
• Size of the temporary database’s data files
• Size of the temporary database’s transaction log files

For the DTU-based databases, the feature that directly correspond to the database
performance is the Number of DTUs used.

3.1.3 Azure SQL Database (vCore based)

For the vCore-based Azure SQL databases, the following variables were present:

• Current CPU usage
• CPU usage percentage
• Maximum allowed CPU usage
• Billed CPU usage by application
• Application CPU usage percentage
• Application memory usage percentage
• Data storage space
• Storage usage percentage
• Reserved data storage space
• Percentage of time spent writing logs
• Storage usage percentage for Extreme Transaction Processing
• Percentage of time spent reading physical data
• Percentage of utilized workers
• Number of active sessions
• Percentage of used sessions
• Indication of successful connection
• Size of log backups in bytes
• Size of full backups in bytes
• Size of differential backups in bytes

The variables that directly correspond to the amount of consumed computational
units are the CPU usage and the memory usage percentage.

3.1.4 Logging duration

The moment from which the data was present, differed per resource. Table 3.1 shows
per resource the number of consecutive days for which data was present. The end of
the logging duration was the first of April for all resource instances.

3.2. DATA PREPROCESSING 17

Resource Number of days

Web app 1 20
Web app 2 20
Web app 3 34
Web app 4 34
Web app 5 34
Web app 6 34
Web app 7 60
AzureSQL DTU 1 20
AzureSQL DTU 2 20
AzureSQL DTU 3 34
AzureSQL vCore 1 20
AzureSQL vCore 2 20

Table 3.1: Number of consecutive days for which data was present per resource

3.1.5 Target features

The target features that will be predicted during this research, are the features that
directly correspond to the usage of the computational units.

Table 3.2 gives these target variables per resource type.

Resource type Predicted variables

Web Apps CPU time & RAM usage
AzureSQL database (vCore) vCPU time & RAM usage
AzureSQL database (DTU) DTUs used

Table 3.2: Predicted variables per resource type

Section 3.3 will focus on exploring these predicted variables and their relation to
the input features.

3.2 Data preprocessing

Kotsiantis et al. [14] identified the following six steps of data preprocessing for super-
vised machine learning tasks:

• Outlier detection

• Missing feature values

• Discretization 2

• Feature selection 3

• Feature engineering

• Normalization

2As we did not find any valuable applications for discretization for this data, we leave this part out.
3As all available data could potentially possess predictive power and the number of available features

was not high, we did not drop any features.

18 CHAPTER 3. DATA PREPARATION

As it became apparent that the data regarding the Azure SQL databases was not usable
for this research, we focus on the Web app data in this section. We will further discuss
the Azure SQL database data in Section 3.3.

3.2.1 Outlier detection

Outliers that were present in the data were not removed, as they can contain valuable
information about the computational load for the resources. As we will see in Section
3.3, there are relatively very high values present in for example the CPU time of the
Web apps. These values should however not be removed, as it is important that high
values of the predicted variables are modelled correctly.

3.2.2 Missing feature values

A small number of observations around the start of the logging period that contained
missing feature values were removed. For many resource instances, the first hour con-
tained some ranges of missing values. To combat this, the first observations that con-
tained a relatively high amount of missing feature values were removed. This was de-
termined by manually investigating the first observations per resource instance. When
there were first observations to be dropped, the logging period that was dropped was
between one and two hours long.

For Azure Web Apps, there were three features that contained a higher amount
of missing values than other features, namely ”Data In”, ”Data Out” and ”Number
of requests”. When investigating the data, it was observed that the variables only
contained missing feature values when the other features implied inactive behaviour.
During periods where for example many requests were arriving to the Web App, all
feature values were consistently and correctly registered. Because of this behaviour,
the missing feature values were regarded as inactive behaviour. Thus, for a missing
value the value that corresponded to inactive behaviour was imputed. For example,
the number 0 was imputed for missing values of the number of requests. Apart from at
the start of the logging period, no longer periods of missing values were found. However,
some individual missing values were found that were linearly interpolated, so that the
missing values would be imputed with realistic values.

The reason that we impute the missing values instead of dropping them, is that
all time series elements need to be consecutively logged values. When dropping obser-
vations, the formed time series do not consist of directly consecutive values anymore,
potentially causing the eventual forecasting model to learn patterns that in reality are
not there.

3.2.3 Feature engineering

As Section 3.3 shows that there is a profound difference between the computational
load for the Web apps during the weekend and weekdays, we expand the input features
with information about the day of the week and time of day on which an observation
was logged. The five features that were added, were the hour of the day, together
with four boolean features that indicated whether the observation was logged during
the morning, afternoon, evening or night. Furthermore, all features that were logged
in bytes, such as Data In/Out, were transformed to either Kilobytes or Megabytes,
dividing them by 1024 or 10242 respectively.

3.3. EXPLORATORY DATA ANALYSIS 19

Figure 3.1: Azure SQL database: Histogram of the used DTU and vCPU for all
databases

3.2.4 Normalization

To scale the different datasets to a range that is more suitable for the forecasting models,
the features of all datasets were normalized using the mean and standard deviation of
the training set. The data was normalized by first subtracting the mean and then
dividing by the standard deviation. This way, there is no data leakage between the
training, validation and test datasets, which is the usage of information during the
training process which would not be available at the moment of prediction. Using
either validation or test data for scaling the training data would be similar to using
data from the future for scaling the data in production, which is impossible.

3.3 Exploratory Data Analysis

In this section, we explore the data by visualising the available features and relations
between them. We aim to uncover potential patterns and important relations, which
can provide substantiation for the choices made in the later chapters. Furthermore,
gaining insight into the data used for training the models can help us interpret the
results more effectively.

3.3.1 Azure SQL databases

When inspecting the target variables for the Azure SQL database types, we do not see
any active behaviour in the computational usage. Figure 3.1 shows a histogram of the
DTU and vCore usage of the Azure SQL databases. An important thing to note in this
figure is the logarithmic y-scale.

The lack of activity in the computational metrics of the Azure SQL Databases is an
indication that the databases are not utilized as much as the Web Apps. Needless to
say, the only valuable comment that can be made regarding the Azure SQL databases,
is that they should most likely be scaled to the lowest computational tier possible. The
Web apps do however exhibit activity, which will be investigated further in the next sec-
tion. In some cases, methods like oversampling can be used to combat feature balance

20 CHAPTER 3. DATA PREPARATION

Figure 3.2: Web App: Correlation Matrix of target features with non-target features

present in datasets. However, the feature imbalance for the Azure SQL Databases is too
severe to be able to obtain meaningful results when using the oversampled observations
in both the training and validation sets.

Due to the exceptionally strong feature imbalance in both the input and target
features, the available data from the Azure SQL database cannot be used to obtain
valuable results. A forecasting model can only be reliably used for making predictions
using data that is similar to the data that was used to train the model. Thus, a
model trained on data from an inactive cloud environment cannot be used to fulfill
the goal of this research, namely dynamically scaling the resource based on fluctuating
computational demand. This is why we will not further use the data from the Azure
SQL databases.

3.3.2 Web App

Figure 3.2 shows the correlations between the target and input features with an absolute
value larger than 0.2. With this plot we aim to identify which features have a mean-
ingful relationship with the target variable, which can be beneficial for the eventual
performance of the forecasting model.

The two strongest correlations are between the CPU time and both the amount of
ingested data and number of requests. The correlation between the number of requests
and CPU time seems to be logical, as the number of requests determines how many
times the Web app is used, thus influencing the CPU time. Also, the amount of data
that is ingested also influences the total CPU time, as the ingested data must be
processed and can also be used in further calculations. One would perhaps also expect
a correlation to exist between the exported data and the CPU time, but this depends
on the purpose of the Web app. For example, if no data is exported, it is most likely
that no correlation will be present.

It is also logical that the handle count, which is the number of for example database
connections or memory storage references, has a positive correlation with the RAM
usage. As retrieved data must be stored in memory, having a higher amount of database
connections likely increases the RAM usage.

Seeing no strong linear correlations between the predicted features and input fea-
tures is not necessarily problematic, as there can be many other complex and non-linear
relations in and between the different features. As discussed in the previous chapter,
the modelling techniques used in this research are capable of capturing similar patterns.

Figure 3.3 visualises the distribution of the CPU time and RAM usage for all Web

3.3. EXPLORATORY DATA ANALYSIS 21

Figure 3.3: Web App: Histogram of the CPU Time and RAM usage for all Web apps

Figure 3.4: Web App: Histogram for the CPU time and used memory per Web app

apps combined. This helps us understand the overall scale of the distributions and
identify any potential outliers.

The CPU time of the combination of all Web Apps resembles a decaying distribution
with some high outliers. Despite the high number of observations with a relatively low
CPU time, only 299 observations had a CPU time equal to 0.

Figure 3.4 shows the distributions of the CPU time and memory usage for all Web
apps. Understanding the differences between the distributions per Web App can help
explain potential differences in the forecasting results.

As can be seen in Figure 3.4, the Web apps roughly resemble the same decaying
distribution for the CPU time, meaning that all Web apps generally have low CPU
activity, while some higher values are present in increasingly lower quantity. Web app
7 deviates the most from this pattern, having a distribution that contains more mid-
valued observations, relative to the other Web apps.

For the RAM usage some Web apps, like Web app 1, 3 and 6 approximately follow
an exponentially decaying distribution, since it is decreasing linearly on an logarithmic
scale. Other Web apps, like Web app 2 and 4 seem to be a distributed like a tailless
normal distribution. No Web apps have values around 0 MB RAM usage, as a Web

22 CHAPTER 3. DATA PREPARATION

Figure 3.5: Web App: Histogram for the number of requests for all Web apps combined

app requires a certain minimal non-zero amount of RAM to be able to run.

To make sure that the activity in the target variables is not caused by for example
periodic garbage collection or keep-awake processes, we also investigate the number of
requests that arrive at the Web apps. Figure 3.5 shows a histogram of the number of
requests for all Web apps combined.

We can see that while the highest frequency occurs at the lowest values, there are
still plenty of observations with a higher number of requests. The distribution of the
number of requests resembles a quite steadily decreasing distribution. The number of
observations with a number of requests equal to 0 was approximately 176.000, while
there were approximately 167.000 observations with a non-zero number of requests.
This means that the activity that was visible in Figure 3.4 is most likely not only
caused by other processes, but also by executions of the Web apps.

To gain insight into potential temporal patterns that are present in the compu-
tational behaviour of the Web Apps, we plot the CPU time over time. Figure 3.6
visualises the CPU usage per Web app over the period of an arbitrary weekday.

While some Web apps, like Web app 1 and 2, do not show any clear patterns in the
CPU activity over time, there seem to be some patterns visible for the other Web apps.
For example, Web app 3, 4 and 6 show increased activity starting from approximately
08:00, which would be the start of the working day. Web app 4 does not show this same
increase, but does have some peaks starting from 08:00 until approximately 16:00. The
most clear patterns can be seen in Web app 7 that shows no significant activity before
08:00, has non-zero CPU time over the entire working day, after which the CPU time
drops to very low values again.

To further investigate potential temporal patterns for Web App 7, we visualise the
usage of the Web App over time. Figure 3.7 shows the number of incoming requests for
Web app 7 in the period of April 4th to April 25th. We chose to visualise this period
as the relevant patterns were clearly visible over this period.

In this figure, we can see that there is a distinct difference between the behaviour
of the number of requests during the weekdays and during weekends. This behaviour
is logical, as Web app 7 is a Web app that is utilized by users throughout the working

3.3. EXPLORATORY DATA ANALYSIS 23

Figure 3.6: Web App: Line Plot of CPU Time for All Web Apps (1 Day)

Figure 3.7: Web App: Line plot of the number of requests for Web app 7 over a period
of three weeks

24 CHAPTER 3. DATA PREPARATION

Figure 3.8: Web App: Moving average of CPU time per day for Web app 7

day. To further delve into these daily patterns, we visualise the CPU time per day on
all weekdays for Web app 7 in Figure 3.8. The width of the moving average window is
20 minutes, as this clearly showed the relevant pattern while not smoothing over the
volatile behaviour as much.

We can see that the pattern that was visible earlier in Figure 3.6 is a pattern that
is quite apparent in all weekdays. Therefore, we expect that adding the input features
regarding the time of day and day of the week will add to the predictive power of the
model for Web app 7 in any case.

3.4 Production data

Later in this research, we estimate the performance of the models on data that the
models were not trained on. We do this by evaluating the forecasting models on four
Web apps from a production environment. We obtained data from four Web apps
that are hosted in a completely separate Azure environment. For all four Production
Web apps, a full month of data was available. For consistency, the full dataset was
scaled using the same values as the original datasets, namely the means and standard
deviations from the training set. This means that the mean and standard deviation of
the data here are not necessarily approximately 0 and 1 respectively.

In order to possibly explain future results, we visually explore the production data
as well. Figure 3.9 shows the correlations between the target and input features for
both the production and non-production datasets. Correlations that did not have a
value over 0.3 for either the production or non-production dataset are hidden.

As we can see, there are some strong correlations present in the production data that
were not present in the data for the other Web apps. For the production data, the CPU
time is highly correlated with both the IO Read and IO Write speeds, while there exists
no correlation between these features for the Non-production Web apps. In contrast,
there exists a correlation between the CPU time and the number of requests for only
the non-production Web apps. The relatively weak correlation between CPU time and
the amount of ingested data exists for both groups of Web apps.

Figure 3.10 gives the histogram of the CPU time and memory usage for the Pro-

3.5. INPUT AND OUTPUT DATA 25

Figure 3.9: Production Web apps: Correlations between the target and input features

Figure 3.10: Production Web apps: Histograms of target variables for production Web
apps

duction Web apps.

The plots shows similar patterns for the production Web Apps, compared to the non-
production plots as seen in Figure 3.4. However, some differences in scale and shape
are present between the two groups. For instance, production Web App 4 shows higher
memory usage than all other Web Apps in the non-production group. Additionally,
production Web App 2 shows significantly higher CPU time than most others.

3.5 Input and output data

In this section, we discuss different aspects of the input and output data for the fore-
casting models.

3.5.1 Input and output features

If we recall, the features that will be predicted are the features that are directly related
to the computational units of the cloud resource. For the Web app, the predicted
features were the CPU time and RAM usage. The input features are all the logged
variables, together with the extra features discussed in Section 3.2.3. All of the present
feature values, including the predicted variables, can be used as input features. As we
are forecasting future values based on historical values, the predicted variables can be

26 CHAPTER 3. DATA PREPARATION

used for forecasting future values of the predicted variables, potentially possessing high
predictive power.

3.5.2 Output length

As discussed in section 2.4.4, the length of the prediction window can be seen as how
important it is that the predicted computational load is met. This strongly depends on
the nature of the tasks which the Web Apps of the App Service Plan are performing. As
this information is not readily available for the Web Apps in this research, we arbitrarily
chose the output length to be equal to three minutes.

3.5.3 Input length

Choosing the length of the input for the forecasting model is a trade-off between the
amount of information that is available to the model and computational complexity,
due to the increased number of computations that the model needs to perform. We
expect that the few latest observations will be the most valuable for the model to base
the predictions on. As a baseline, the input and output length were chosen to be of the
same size. Experimenting with the training duration of multiple input sizes, resulted in
choosing an input size of 12 observations or minutes. This way, there should be enough
information available to the model, while still having acceptable total training times.

3.6 Conclusion

To summarize, there are many relevant computational metrics available about the usage
of the different resource types. After inspecting the data, we cleaned and preprocessed
the data accordingly. The cleaned data was explored using many different types of
visualisations, revealing interesting patterns and relations with other variables. The
variables that will be predicted by the forecasting models, are the variables that directly
correspond to the usage of the computational units. As the predicted features for the
Azure SQL databases suffered from an extreme feature imbalance likely due to inactivity
in the cloud environment, the modelling chapter will focus on just the Web apps. The
models that will be trained, will be evaluated on both a test set and a dataset from
a production environment, which showed different patterns than the original datasets.
The next chapter will discuss the modelling using the cleaned and preprocessed data.

Chapter 4

Modelling and Results

In this chapter, we discuss the choices that are made during the modelling part of
this research and the first results that follow these choices. In Section 4.1 we describe
the hyperparameter optimization of the Machine Learning models. In Section 4.2 we
discuss relevant aspects of the training of the forecasting models and the prediction
performances. In Section 4.3 we explore the different aspects, choices and results for
the scaling model.

4.1 Hyperparameter tuning

As we recall from Chapter 2, both the RNN and LSTM have the same hyperparameters,
which are the following:

• Number of layers
• Number of units per layer
• Dropout rate
• Learning rate
• Activation functions
• Optimizer

As the hyperparameter search space grows exponentially in the number of hyperparam-
eters, choices need to be made regarding what hyperparameters will be searched over
during the hyperparameter optimization. As the activation function and optimizers
are less problem dependent than the other hyperparameters, they will not be included
in the hyperparameter search, but rather be chosen beforehand based on related work.
As the RNN is the baseline model, more effort will be put into selecting the activation
function and optimizer for the LSTM, in comparison to the RNN.

For each run of the hyperparameter optimization, the relevant model must be initi-
ated with the corresponding hyperparameters and trained on the training data, while
being validated using the validation data. As a single training run does not take as
much time, the total training time is mainly determined by the extensiveness of the
hyperparameter search.

4.1.1 Recurrent Neural Network

With the philosophy in mind that over-tuning or over-optimizing a baseline model
would defeat the purpose of a baseline model, a simple grid search over a wide range

27

28 CHAPTER 4. MODELLING AND RESULTS

of hyperparameters was performed. Using trial and error, the range of the hyperpa-
rameters were adjusted so that the optimal values were not consistently at the borders
of the parameter ranges, indicating that the models were either underfitting or overfit-
ting on the training data. The lower bound for the learning rate was however slightly
restricted, as further decreasing the learning rate significantly increased training time.

The activation function that is used for the baseline model, is the ReLU function,
as this is a widely used function capable of constructing complex, non-linear output
functions. The Adam optimizer is used, as this optimizer is also widely used and well
performing. More effort will be put into selecting the hyperparameters for the LSTM
model, as the goal is to obtain the best performing model, and hyperparameter values
play an important role in model performance.

4.1.2 Long Short-Term Memory

The activation function that will be used for all layers of the LSTM model is the
hyperbolic tangent (tanh) function, as K. and K. [13] showed that LSTM models with
this function generally outperform LSTM models with other widely used activation
functions, such as Rectified Linear Unit (ReLU) and sigmoid.

The optimizer that will be used for the LSTM, is the Nesterov Adam optimizer
(Nadam). Le et al. [16] investigated the performance of different optimizers for an
LSTM model, and found that Nadam outperformed all other investigated optimizers
in detecting network intrusion.

Using the hyperparameter optimization framework Optuna [2], an advanced search
will be conducted over the remaining hyperparameters. This framework allows us to
define suitable ranges per hyperparameter that Optuna will navigate through, searching
for optimal combinations. This is done using complex algorithms that use historical
run performances to find promising hyperparameter combinations. The extensiveness
of the search is determined by the number of trials, or the number of models that are
trained during the hyperparameter search. Choosing the number of trials is a trade-
off between the degree of exploration of the hyperparameter space, and computational
complexity. The hyperparameters that will be searched over using Optuna, are the four
numerical hyperparameters, namely the learning rate, dropout rate, number of units
per layer and the number of hidden layers of the model.

The last layer of both the RNN and the LSTM model consists of a flattened dense
layer of size n∗m, where n is the number of observations in the output time series, and
m is the number of output features, which is 3 ∗ 2 in the case of the Web apps. This
way, the output of the LSTM model can be mapped to the correct prediction format.

4.1.3 Hyperparameter ranges

For the RNN, the following hyperparameter ranges for the grid-search were determined
using trial-and-error.

• Number of hidden layers: {1, 2}
• Number of units per layer: {16, 32, 64}
• Dropout rate: {0.1, 0.2, 0.3}
• Learning rate: {0.0003, 0.001, 0.003}

While the hyperparameter ranges for the LSTM were also determined using trial-
and-error, Optuna was used to navigate over the hyperparameter space instead of

4.2. MODEL TRAINING 29

using a simple grid-search. As Optuna does not necessarily try all combinations of the
hyperparameters like grid-search, bur rather intelligently nagivates through the search
space, we can define broader ranges per hyperparameter. The following hyperparameter
ranges were defined for the LSTM:

• Number of hidden layers: {1, 2, 3}
• Number of units per layer: {16, 32, 64}
• Dropout rate: Continuous value between 0 and 0.3

• Learning rate: Continuous value between 10−5 and 10−2 in logarithmic scale

4.2 Model training

Before the model is trained, the model weights are initialized using He normal initial-
ization, which is a popular initialization technique used for initializing model weights
in neural networks [7]. Furthermore, TensorFlow’s implementation of this initialization
technique can be made reproducible, which is an important part of creating reproducible
models and results.

4.2.1 Early Stopping

During the training of both models, an early-stopping mechanism is used to halt the
training process when there are no more significant improvements being observed. The
training patience is set to 20, meaning that the training will halt when the validation
loss has not increased in 20 epochs. As there is no limit set in the number of training
epochs, the model will continue training until the training patience will run out. After
the training epochs of a single model, the weights of the model that performed best
on the validation set are restored, so that the best performing version of that model is
obtained. This model is then stored on the machine that is training the models. This
way, we can easily retrieve the model that performed best during the training phase.

4.2.2 Training time

The total training times it took for the RNN and the lSTM were approximately 21 hours
and 10 minutes, and 42 hours and 1 minute respectively on a consumer-grade laptop.
With a total of 54 evaluated RNN hyperparameter combinations, the average training
run took approximately 25 minutes. For the LSTM, a total of 50 trials or training
runs were performed, resulting in an average training run duration of approximately
50 minutes. The training of the LSTM was however limitedly parallelized, due to
kernel errors when using a high parallelization grade in Optuna. During the training of
both models, CPU parallelization was used, as this is implemented in the TensorFlow
package. Implementing GPU parallelization can potentially decrease training time, but
this was not tried during this research.

4.2.3 Final hyperparameters

Table 4.1 gives the hyperparameters of the RNN and LSTM model that performed
best on the validation set during the training process. The model that had the best
performance on the validation set will from here on be referred to as the best model.

30 CHAPTER 4. MODELLING AND RESULTS

Hyperparameter RNN LSTM

Number of layers 2 2
Units per layer 64 16
Dropout rate 0.1 0.108
Learning rate 0.0003 1.66 * 10−5

Table 4.1: Hyperparameter values for the models that performed best on the validation
set during the training process

As we can see, the number of layers and dropout rates for both models are equal
and very close respectively. The units per layer for the RNN is 4 times higher than
the LSTM. However, a single LSTM unit is more complex than a single RNN unit.
Choosing a higher number of units per RNN layer could be seen as compensating for
the decreased complexity per unit. The learning rate is also substantially lower for the
LSTM than for the RNN.

4.2.4 Training performance

The forecasting performance metrics used in this research are the mean squared error
(MSE) and mean absolute error (MAE). We use the MSE because it weighs larger
errors more heavily than smaller ones, making it more sensitive to outliers and higher
values. This metric is used as the loss-function during the training process. Next, we
also evaluate the MAE due to the higher interpretability. Furthermore, comparing the
value of both metric values can give us insight into the distribution of the errors.

Table 4.2 gives the training and validation loss values for the best RNN and LSTM
models.

Loss value RNN LSTM

Training 0.3787 0.3553
Validation 0.1849 0.1572

Table 4.2: Training and validation loss values for both the RNN and LSTM models

As we can see, the LSTM outperforms the RNN on both the training and validation
set by approximately 6% and 15% respectively. This is to be expected, as the LSTM is
the more advanced model, for which more effort was put into obtaining the best hyper-
parameters. For both the RNN and LSTM model, the validiation loss is significantly
lower than the training loss. A possible explanation for this is that the time series
in the validation set are easier to forecast for the models. However, the training and
validation loss values cannot be used to fully determine over- or underfitting, as they
do not encapsulate the full training process.

To further investigate potential over- and underfitting, we plot the training and
validation loss curves for both models. Figure 4.1 visualises the training and validation
Loss and MAE per training epoch for the best RNN model.
The first figure shows a steadily decaying training loss, which is an indication that the
model is learning the patterns that are present in the data. However, the validation
loss curve lies significantly lower than the training loss curve, and is only decreasing
during the first few epochs. The best validation performance is obtained at epoch 5,

4.2. MODEL TRAINING 31

Figure 4.1: RNN: Line plots of the training and validation MSE and MAE per training
epoch

after which the validation performance increases slightly over the remaining 20 epochs.
The validation MAE shows the same behaviour, decreasing for the first few epochs,
after which it slowly increases. Even though the training loss is steadily decreasing, the
training MAE only decreases marginally after epoch 5. A logical explanation for this
is that the forecasting performance on relatively high values or outliers in the training
set is increasing. This is because decreasing the error for extreme values has a stronger
influence on the MSE than on the MAE, as the MSE scales quadratically with errors,
while the MAE scales linearly.

Figure 4.2 shows the training and validation Loss and MAE per training epoch for
the best LSTM model.

As we can see, all the curves for the LSTM are substantially smoother than the curves
for the RNN. This might be due to the lower learning rate for the LSTM, as we saw in
Section 4.2.3. A higher learning rate can cause the loss values to be more volatile, as
weights are adjusted more significantly. Again, the validation loss curve lies significantly
lower than the training loss curve, while the MAE curves are very similar. The best
performing model was obtained at approximately epoch 240, meaning that the model
was trained for a far longer period than the RNN.

Next, we investigate the validation performance per Web app. Figure 4.3 gives
barplots showing the training and validation MSE and MAE of the RNN model per
Web app. The y-scales have been adjusted so that they are equal in both plots.

Both the training and validation MSE show a significantly more variability between
the Web apps than the MAE values. While for example Web app 1, 2, 5 and 6 have
a lower MSE than their corresponding MAE, the contrary is true for Web app 4 and
7. This is an indication that there are different levels of skewedness in the errors per
Web app. This can be caused by for example different patterns per Web app or the
presence of outliers for some Web apps.

Figure 4.3 gives barplots showing the training and validation MSE and MAE of the
LSTM model per Web app. The y-scales are equal in both plots, as well as equal to
the y-axes in the previous plot.

There seem to be only small differences between the performance of the RNN and the

32 CHAPTER 4. MODELLING AND RESULTS

Figure 4.2: LSTM: Line plots of the training and validation MSE and MAE per training
epoch

Figure 4.3: RNN: Bar plot of the training and validation MSE and MAE per Web app

4.2. MODEL TRAINING 33

Figure 4.4: LSTM: Bar plot of the training and validation MSE and MAE per Web
app

LSTM. For example, both the validation MSE and MAE for Web apps 1 and 4 seems
to be slightly lower for the LSTM than for the RNN. Furthermore, the validation MAE
is slightly lower for the LSTM than for the RNN.

Figure 4.5 shows the true and predicted CPU time and RAM usage for the validation
set over an arbitrary period of approximately 40 hours for Web app 7. The predictions
were made by the LSTM model.

As we can see, the predicted curves closely match the true curves for both the CPU
time and RAM usage. The variability in the CPU time is however not fully accounted
for in the predictions. There also seems to be a slight delay between the predicted and
true curves. This is to be expected, as there is a window between the input observations
and forecasting window, as discussed in Section 2.1.

To investigate the influence of using the Optuna hyperparameter optimization
framework, we visualise the validation loss values over the number of trials in Fig-
ure 4.6. The grey lines indicate an improvement in the lowest loss so far.

As we can see, there are quite some improvements made over the different trials.
While the later improvements are only marginal, it is still an indication that Optuna
is successful in improving the validation loss. We can compare this with simpler meth-
ods, such as grid-search or random-search. As these methods do not account for any
historical loss values or hyperparameter configurations, we can model this as randomly
sampling from an arbitrary distribution. The probability of obtaining a smaller value
than the minimum of n i.i.d. samples when drawing from a continuous distribution, is
equal to 1

n+1 . Thus, for the simpler methods, we expect to obtain a better loss value

with probability 1
n+1 at trial n. When investigating Figure 4.6, we can see that we

obtain a better loss value significantly more often using Optuna.

4.2.5 Production performance

To get an impression of the forecasting performance when the models would be de-
ployed to a production environment, we evaluate the model on both the test set and

34 CHAPTER 4. MODELLING AND RESULTS

Figure 4.5: LSTM: True and predicted CPU time and RAM usage for Web app 7

Figure 4.6: LSTM: Validation Loss per Optuna trial

4.2. MODEL TRAINING 35

datasets from an unseen production environment. The performance on the test set
gives us an indication of how the model would perform in production for the Web apps
on which the model was trained. Evaluating on the production dataset gives us an in-
dication of how the model would perform in production when being used for Web apps
that the model has not seen yet. Providing insight into the differences between these
performances is very important, as these differences are an indication of how suitable
a generalizing model, trained on data from a selection of Web apps, is for forecasting
the computational load for other Web apps. A substantial difference between the per-
formance on the test set and production set is an indication that the models perform
significantly better on Web apps from which data was used to train the models. In this
case, we could investigate training a model for each Web app, so that each model is
trained on the data from the Web app for which it will eventually be used. The models
that are trained for a single Web app, will be referred to as Specialist models.

First, we investigate the performance of the models on the test set. Table 4.3 gives
the validation and test loss values for the RNN model.

Metric value RNN

Validation loss 0.1849
Test loss 0.3579
Validation MAE 0.2272
Test MAE 0.2323

Table 4.3: Training and validation loss values for the RNN model

As we can see, the test loss is almost twice as high as the validation loss. A possible
explanation for this would be that there can be different patterns present in the test
set than there are in the validation set. However, as the test and validation MAE are
very close, this is likely due to some high values or outliers in the test set that strongly
influence the MSE, but modestly influence the MAE, as the MSE scales quadratic with
the errors, while the MAE scales linear.

Next, we look at the performances of the LSTM model on the validation and test
set, which are shown in Table 4.4.

Metric value LSTM

Validation loss 0.1572
Test loss 0.3237
Validation MAE 0.1938
Test MAE 0.1991

Table 4.4: Training and validation loss values for the LSTM model

In this case, the test loss is more than twice as high as the validation loss, while the
MAE values are still very close, indicating a potentially skewed error distribution. The
test loss and MAE for the LSTM are approximately 10% and 15% lower than for the
RNN, meaning that the LSTM will likely outperform the RNN when being deployed
into production.

Next, we evaluate only the LSTM model on the production datasets, as it out-
performed the RNN model on all performance metrics. In the following section, we

36 CHAPTER 4. MODELLING AND RESULTS

Figure 4.7: Predicted and true values of the CPU time and RAM usage of the produc-
tion set

will build specialist models to investigate potential performance improvements. For
training the specialist models, we split the production dataset into three sets: training,
validation, and test. To compare the results of the generalist and specialist models, we
use the same evaluation dataset, namely the test set of the production dataset.

Table 4.5 gives the production loss and MAE for the LSTM model on the production
dataset.

Metric value LSTM

Production loss 124.8940
Production MAE 1.7124

Table 4.5: Production loss values for the LSTM model

The production loss and MAE are approximately 400 and 9 times higher than
the earlier obtained test loss and MAE respectively. While these difference can be
considered extreme, they do not necessarily mean that the model is performing poorly
on this dataset. As discussed in Section 3.4, the mean and scale of the production
dataset can differ from the mean and scale of the original training dataset. This can
cause the errors to have a different scale as well, while still performing relatively well.

Figure 4.7 shows the predicted and true values both the averaged CPU time and
RAM usage for Production Web App 2, which showed the most clear patterns over
time. Three consecutive weekdays are arbitrarily chosen as the visualisation window.

As we can see in the figure, the predicted values differ strongly from the true values
for both the CPU time and RAM usage. For the CPU time, there is no clear pattern
in the predicted CPU values. Furthermore, there seems to be a consistent offset or bias
between the predicted and true RAM usage values.

The LSTM model, while outperforming the RNN on the datasets on which the
models were trained, seems to perform poorly on the production datasets. This is an

4.2. MODEL TRAINING 37

Figure 4.8: Test loss of the generalizing model and specialist models per Production
Web app

indication that a model will perform better on resources from which data was used to
train the model. This is logical, as the model will most likely be trained on similar
patterns that will be forecasted in production.

One could argue that we could have retrained the generalizing model using training
and validation set of the production data before we evaluated the model on the test
set of the production data. This approach however raises complications when being
deployed for an increasing number of Web apps. When the dynamic scaling mechanism
is to be deployed for new Web Apps, the generalizing model must be retrained, also
impacting the performance of the already present Web Apps. Furthermore, the model
capacity must be suitable for the amount of data the model is trained on. When more
new Web Apps are introduced, the initial model capacity can prove to be insufficient.
We investigate another method of creating a scalable forecasting solution in the next
section, namely specialist models.

So far in this research, we have only discussed the training process for two generalist
models, meaning that a single model predicts the computational load for many different
Web apps. As we discussed, these models performed poorly on data from Web apps
on which they were not trained. Therefore, we expect that we can obtain performance
increases for the Production Web apps when we train a single model, or Specialist
model, on each individual Web app.

For the training process of the Specialist models, a configuration very similar to
the configuration for the Generalist models is used. That is to say that the same hy-
perparameter ranges, batch size, improvement patience and number of training epochs
were used. The only difference is that, to limit the computation time, we use only 20
Optuna trials for each specialist model.

Figure 4.8 visualises the test MSE per production Web app for both the generalist
and specialist models.

The Specialist models outperform the Generalist model for all production Web apps.
For the first two production Web apps, the decrease in loss values are approximately
9% and 32% respectively. For Web app 3 and 4, the loss values are approximately 56
and 13 times lower for the Specialist models than for the Generalist model. This is

38 CHAPTER 4. MODELLING AND RESULTS

Figure 4.9: Test loss of the generalizing model and specialist models per Non-
Production Web app

however to be expected, as the Specialist models forecast time series from Web apps
on which they were trained, while the Generalist model does not.

Next, we visualise the performance differences between the Generalist and Special-
ist models for the non-production Web apps. This way, we can investigate whether
performance increases are obtained when using a model per individual Web app, com-
pared to a single model for the combination of these same Web apps. Figure 4.9 gives
the test MSE per Web app for both the Generalist and Specialist models.

For Web app 5 and 7, the Specialist performance is slightly better than the General-
ist performance. For Web app 7, this is to be expected, as the data from this Web app
contained the most clear patterns out of all of the Web apps. When training a model
on only these patterns, we expect the performance to be higher than when training the
model on extra data that does not contain these patterns. For Web apps 3 and 4, the
Specialist performance seems to be very slightly lower than the Generalist performance.
A possible explanation is that both the Generalist and Specialist models managed to
learn the patterns present in the data, and that the difference in performance is due to
randomness during the training process.

An important thing to note is that we do not propose the Specialist models as the
better option, compared to the Generalist model. We do however recommend using a
model that was trained on all the Web apps for which it will be used to predict the
load. While the forecasting performance of the Specialist models is generally similar or
better, implementing and maintaining the Specialist models can be significantly more
complicated and time-intensive, compared to a Generalist model. Choosing which type
of model will be more suitable is dependant on many factors, such as the scale of
implementation and the available work-hours to put into realising the implementation.
This will ultimately be left to Info support. Advantages and disadvantages of both
options are presented in Section 7.4.

4.2.6 Conclusion

To summarize, the Generalist LSTM outperformed the Generalist RNN on all perfor-
mance metrics, with metric decreases ranging from 6% to 20%. The validation errors
for both the RNN and LSTM were significantly lower than the MSE for the train and
test set. This indicated that there were less high values or outliers present in the
validation set. The LSTM seemed to correctly learn the patterns in the data of the
non-production Web apps, being able to quite accurately forecast the computational

4.3. SCALING MODEL 39

load. To investigate potential performance increases, we investigated the training of
Specialist models. The Specialist models vastly outperformed the Generalist LSTM
model for the production Web apps. For the non-production Web apps, the perfor-
mance differences were very subtle, and most likely due to randomness. In the next
section, we discuss the scaling model. This model takes as input the predicted CPU
time and RAM usage, and decides whether the corresponding App Service should be
scaled.

4.3 Scaling model

4.3.1 Suitable service tiers

To determine whether the App Service Plan underlying to the Web app should be
scaled, we must first determine what computational tier we expect to be suitable for
the resource. To achieve this, we must map the combination of the predicted metrics to
a computational tier that satisfies both the CPU time and RAM usage. As discussed
in Section 2.5.2, we can, for each metric, select the cheapest computational tier that
satisfies the metric. When we union these tiers and take the highest tier of this set, we
obtain the cheapest tier that satisfies all metrics. The scaling model will then use this
tier as the target service tier. However, for the App Service Plans in this research, the
lowest available service tier is almost always sufficient.

To be able to develop and test a realistic scaling model, the CPU time and memory
usage will be multiplied by a fixed value. The App Service Plans that are considered in
this research are all over-provisioned in terms of computational capacity, while having
the lowest computational tier possible. Thus, investigating and implementing the scal-
ing mechanism on actual computational tiers is not reasonable. For the current App
Service Plans, they do not have to be upscaled and cannot be downscaled.

The lack of computational activity for all the Web Apps in this research might
be representative of Web Apps in general. In conversation with field professionals, we
found that the Web Apps that Info Support develops are mainly used for line-of-business
applications, which are used within an organization. Consequently, these applications
are generally not used as intensively as for example public websites accessed by users
worldwide.

To make sure that we can still use the computational tiers used in practice while
the patterns in the data are preserved, we multiply the CPU time and memory usage
by a fixed value. This fixed value is chosen such that the scaled metrics span a large
portion of the service tiers. After experimenting, we scaled the CPU time and RAM
usage by multiplying them by 200 and 50 respectively. We first discuss the different
service tiers, after which we will visualise the scaled metrics with the corresponding
service tiers.

We assume that the available CPU time scales linearly with the number of CPU
cores that are present in the relevant computational service tiers. That is to say, we
assume that we for example have 60 and 240 CPU seconds available per minute when
using a service tier with 1 and 4 CPU cores respectively. A hidden assumption when
using the CPU seconds as a measure of computational capacity is that the CPU always
runs on full capacity when CPU time is used. The different Premium service tiers and
their corresponding number of cores, available RAM and cost are shown in Table 4.6.
The number of assumed CPU seconds is added in the column for the number of CPU

40 CHAPTER 4. MODELLING AND RESULTS

Figure 4.10: Histogram of scaled CPU Time with the corresponding service tiers

cores.

Service tier Number of CPU cores GB of RAM Price per hour

P0 1 (60 s) 4 $0.210
P1 2 (120 s) 8 $0.330
P1m 2 (120 s) 16 $0.364
P2 4 (240 s) 16 $0.660
P2m 4 (240 s) 32 $0.728
P3 8 (480 s) 32 $1.320
P3m 8 (480 s) 64 $1.456
P4m 16 (960 s) 128 $2.912
P5m 32 (1920 s) 256 $5.824

Table 4.6: Amount of computational units and cost per service tier

As P5m is the highest service tier, all predictions higher than the available amount for
P5m, will also be mapped to P5m.

Figure 4.10 visualises the scaled CPU time with the corresponding service tiers. For
clarity, we omit the observations with a higher CPU time than the upper bound, which
were 49 out of approximately 340.000 observations.
Due to the distribution of the CPU time, the majority of the observations fall into the
first 3 tiers, namely P0, P1 and P1m.

Figure 4.11 visualises the scaled RAM usage with the corresponding service tiers.
After experimenting with multiple scaling factors, we scaled the RAM usage such that
the majority of the observations fall into the lower tiers. When scaling the features to
also include the higher tiers, the RAM usage dominated the scaling decisions. This was
caused by the distribution of the CPU time, which is significantly more skewed than the
distribution for the RAM usage. For the RAM usage, substantially more observations
would fall in the higher tiers relative to the CPU time.

4.3.2 Static service tiers

In Section 5.1.2 we will compare the test performance of the dynamic scaling mechanism
to using a static service tier for the test set. To determine the most suitable static

4.3. SCALING MODEL 41

Figure 4.11: Histogram of scaled RAM usage with the corresponding service tiers

service tier for App Service Plan 1 and 2, we mapped the true CPU time and RAM
usage to the corresponding service tier and inspected the corresponding histogram for
the service tiers. These histograms are shown in Appendix A. In conversation with field
professionals, we determined that the most suitable static tier for App Service Plan 1
and 2 were P1 and P4m respectively. The service tier that the Production App Service
Plan is currently hosted in, is P2.

4.3.3 Results

In this section, we simulate and visualise the scaling mechanism over time, as described
in Section 2.5.4. The model that will be used to make the predictions, is the Generalist
LSTM model, as the predictive results of the Generalist model and Specialist models
matched very closely. Figure 4.12 gives the averaged predicted and true CPU values
from the test set, together with the upper bound of the CPU time over an arbitrary
period of 10 hours for App Service Plan 2, in which Web App 7 is hosted.

In this figure, each grey line indicates a scaling decision. As we can see, the resource
is being scaled quite often. While the amount of available CPU seconds is almost always
above the predicted CPU time, it also matches the true CPU Time quite nicely. The
scaling does seem to occur a little too late to meet the true demand when the CPU time
periodically rises. This is logical, as there is also a gap, or scaling window, between the
input data and the prediction window, as described in Section 2.4.4.

While the scaling decision is directly based on the predicted CPU values, not all of
the predicted values are below the upper limit of the CPU time. During the scaling of
a resource, it is possible that the forecasting model predicts a CPU time that is higher
than the available resources for the tier that is being scaled to. The scaling model
can however not cancel the current scaling operation in process and scale to the higher
tier. Thus, in some cases, the predicted CPU values are higher than the available CPU
resources.

Near the start of the period, we also see that the resource is scaling quite often,
while the available CPU time remains the same. This is caused by the RAM usage
around the 8GB level, as we will see in the next figure. The scaling occurs between the
P1 and P1m service tier, which have different amounts of RAM, while having the same
amount of available CPU time.

The true CPU time seems to be significantly more volatile than the predicted CPU

42 CHAPTER 4. MODELLING AND RESULTS

Figure 4.12: App Service Plan 2: Predicted and True CPU time, together with the
available resources

time. While the predicted and true CPU time seems to match reasonably well, this
volatility causes the true CPU time to exceed the available CPU time. In the next
section, we will discuss a method to partly account for this volatility.

Figure 4.13 gives the predicted and true RAM usage, together with the available
amount of RAM over the same period for App Service Plan 2.

Near the start of the period, we see that a lot of scaling occurs, as the predicted
RAM seems to move around the border of 8GB. When surpassing he 8GB, the resource
is scaled to the P1m service tier, which has 16GB of RAM. When going below 8GB, the
resource is scaled back to the P1 service tier, with only 8GB of ram. As both service
tiers have the same amount of CPU cores, the available CPU time remains constant,
which we saw in the previous figure.

4.3.4 Capacity scaling multiplier

An issue that the current scaling model suffers from is that a service tier is selected
when the forecasted load metric is even marginally lower than the upper limit of this
service tier. For example when considering just the CPU time, when the forecasted
CPU time is 950 s, the service tier P4m (960 s) is selected as the appropriate tier,
even though the prediction indicates we use approximately 99% of the capacity. As we
have seen in the previous section, the computational load forecasts are not perfectly
accurate, potentially resulting in the true CPU time exceeding the threshold of the
chosen tier.

We can make the scaling model more robust by multiplying the capacity per service

4.3. SCALING MODEL 43

Figure 4.13: App Service Plan 2: Predicted and True CPU time, together with the
available resources

tier by a fraction between 0 and 1. This capacity scaling factor indicates what fraction
of the capacity we could at most use, based on the predicted load. Having a lower
value for this factor causes the scaling model to scale to a higher tier earlier. This
factoring constant can also be seen as a measure of how important it is that the future
computational load is satisfied.

First, we investigate the influence and effectiveness of the capacity scaling multiplier
by repeating the earlier steps using a scaling multiplier of 0.7. Table 4.7 shows the scaled
capacities per service tier.

When using these adjusted service tier bounds, we expect that performance measures,
such as the the fraction of time on which the resource is undersupplied, should improve.
Figure 4.14 visualises the predicted and true CPU time with the available resources,
using a scaling multiplier of 0.7.

While the resource is still being scaled a little too late, the amount of available
resources seems to be able to handle the true CPU time better than without the scaling
multiplier. Using this mechanism, we can account for a part of the combination of the
volatile CPU time and prediction error.

4.3.5 Performance measures

As discussed in Section 2.5.3, we formulated multiple performance measures, to indicate
how effective the scaling mechanism is. Table 4.8 gives the performance measures for
both target features per App Service Plan. The scaling multiplier that was used is
equal to 1.

44 CHAPTER 4. MODELLING AND RESULTS

Service tier Number of CPU cores GB of RAM

P0 1 (42 s) 2.8
P1 2 (84 s) 5.6
P1m 2 (84 s) 11.2
P2 4 (168 s) 11.2
P2m 4 (168 s) 22.4
P3 8 (336 s) 22.4
P3m 8 (336 s) 44.8
P4m 16 (672 s) 89.6
P5m 32 (1344 s) 179.2

Table 4.7: Amount of computational units per service tier, with a capacity scaling
factor of 0.7

Figure 4.14: App Service Plan 2: Predicted and True CPU time, together with the
available resources, with scaling multiplier 0.7

4.3. SCALING MODEL 45

Metric App Service
Plan 1

App Service
Plan 2

% of time underprovisioned CPU 15.9% 7.0%
% of time underprovisioned RAM 2.4% 5.6%
% lacking when underprovisioned CPU 13.0% 25.5%
% lacking when underprovisioned RAM 15.0% 6.2%
% utilization of resources CPU 71.3% 33.3%
% utilization of resources RAM 49.1% 79.7%
% of time spent scaling 13.6% 13.9%

Table 4.8: Performance metrics for both App Service Plans

For both App Service Plans, the percentage of time the RAM is underprovisioned, is
lower than the percentage of time the CPU is underprovisioned. This is logical, as the
RAM usage is significantly less volatile compared to the CPU time. Less volatility leads
to smaller amounts of relatively high values or outliers, which inflate these metrics. The
utilization of the CPU and RAM differs quite significantly per App Service Plan. This
is most likely due to the different distributions of the target features, causing different
scaling behaviour. The percentage of time the App Service Plans spent scaling are very
similar.

Table 4.9 compares the performance measures of App Service Plan 2 for both mul-
tiplier 0.7 and 1.

Metric No multiplier Multiplier 0.7

% of time underprovisioned CPU 7.0% 3.4%
% of time underprovisioned RAM 5.6% 0%
% lacking when underprovisioned CPU 25.5% 27.3%
% lacking when underprovisioned RAM 6.2% -
% utilization of resources CPU 33.3% 28.1%
% utilization of resources RAM 79.7% 47.8%
% of time spent scaling 13.9% 13.8%

Table 4.9: Amount of computational units per service tier, with a capacity scaling
factor of 0.7

When using the scaling capacity multiplier, the percentage of time the resource was
underprovisioned decreased for both features. This is to be expected, as the resource is
upscaled earlier and downscaled later than when no multiplier is used. The percentage
that was lacking when the resource did not have enough CPU time was however higher
when using the multiplier. When using a multiplier of 1, many observations are slightly
underprovisioned due to the volatility of the true CPU time. When using a multiplier
of 0.7, we partly account for these observations, while the outliers remain. Thus,
when using a lower multiplier, the outliers form a larger portion of observations in
which the App Service Plan is underprovisioned, causing the percentage lacking when
underprovisioned to inflate. As expected, the utilization of both the CPU and RAM is
substantially lower for multiplier 0.7. The percentage of time the resource spent scaling
are very similar.

46 CHAPTER 4. MODELLING AND RESULTS

Figure 4.15: App Service Plan 2: Percentage of time underprovisioned and resource
utilization against the capacity scaling multiplier

4.3.6 Multiplier tuning

Choosing the right capacity multiplier is a trade off between resource utilization and
the percentage of time that the resource is underprovisioned. Choosing a lower capacity
multiplier causes the resource to be scaled up earlier, resulting in a lower percentage
of time that the resource is underprovisioned, while decreasing the average resource
utilization. To numerically investigate this relation, we plot the percentage of time
the resource was underprovisioned and the resource utilization against the capacity
multiplier for App Service Plan 2 in Figure 4.15.

As expected, we see that there is a clear correlation between the capacity scaling mul-
tiplier and both the service level and the resource utilization. For the CPU time, the
service level and resource utilization steadily decrease and increase respectively when
increasing the capacity scaling multiplier. For the RAM usage, only relatively high scal-
ing multipliers resulted in underprovisioning of the resource, which can be attributed
to the low degree of volatility for this feature. Also, further increasing the scaling
multiplier above 0.85 resulted in significantly better resource utilization. This is most
likely caused by the distribution of the RAM usage. In this research, all relevant ca-
pacity scaling multipliers will be above 0.5. Next, we can define specific service level
agreements and use the capacity scaling multiplier to achieve them.

4.3.7 Service Level Agreements

Service level agreements (SLAs) are generally established through conversations with
the relevant customer and depend on various factors such as the tasks of the Web App,
budget and customer requirements. Generally, Info Support uses one of three SLAs:
98%, 99.5%, or 99.8%. We can choose the suitable service level based on how critical
it is for the RAM and CPU to be sufficiently provisioned.

We define the service level as follows:

Service Level = 1− (% underprovisioned)

4.3. SCALING MODEL 47

As insufficient RAM can cause the Web App to crash, ensuring there is sufficient
RAM is crucial for the stability of the Web Apps. Therefore, we maintain an SLA of
99.8% for RAM. In contrast, having sufficient CPU power at all times is less critical
for the Web Apps’ tasks, as discussed with the responsible parties. Based on these
discussions, an SLA of 98% was used for CPU power.

Table 4.10 presents the capacity scaling multipliers that achieve these SLAs for each
App Service Plan.

App Service Plan Scaling Multiplier

ASP 1 0.67
ASP 2 0.56
ASP Production 1.00

Table 4.10: Capacity scaling multipliers to achieve the defined SLAs per App Service
Plan

Due to the lack of activity for the production App Service Plan, the service levels
were achieved without using a capacity scaling multiplier, i.e. a multiplier equal to
1. For the RAM usage, a 100% service level was achieved for all App Service Plans
when the shown scaling multipliers were used. In the next chapter, we compare the
performance metrics when using the mentioned service levels, to Info Support’s current
approach.

4.3.8 Conclusion

At first, the scaling decisions seemed to be made slightly too late, resulting in numer-
ous instances for which there was insufficient CPU time or RAM. The capacity scaling
multiplier can be used to address this issue by limiting the expected percentage of used
computational capacity, leading to earlier scaling to a higher service tier. Choosing a
lower capacity scaling multiplier resulted in a significantly higher service level. Subse-
quently, we determined suitable service levels for both computational load features and
their corresponding capacity scaling multipliers. Next, we will evaluate the results and
compare the results to literature and current standards.

48 CHAPTER 4. MODELLING AND RESULTS

Chapter 5

Evaluation

In this chapter we compare and interpret the results from the modelling chapter. In
Section 5.1 we compare the performance of the proposed methods to earlier research
and the current approach in practice. Next, we explore the potential applications and
interpretability of our methods in Sections 5.2 and 5.3 respectively. In Section 5.4, we
assess the generalizability of the scaling solution. Finally, in Section 5.5 we examine
the effectiveness of our approach in reducing total costs and energy usage.

5.1 Performance comparison

5.1.1 Literature

Similar studies that were found in literature had better numerical performance, which
is most likely caused by a lesser degree of volatility in the target metrics. Zhang et al.
[41] used an RNN to predict the computational workload in a Google cloud cluster, by
using the CPU and RAM metrics over time. The lowest Mean Squared Error that was
obtained for the standardised CPU and RAM were equal to 2.76 ∗ 10−5 and 1.51 ∗ 10−5

respectively.
In our study, the lowest MSE value was obtained for Production Web App 3, and

was approximately equal to 3.4∗10−3, which was significantly lower than the other MSE
values in this research. Thus, the performance of this research was significantly lower
than the mentioned study. However, in this research we predicted the computational
load for individual resources, which is generally significantly more volatile than the
computational load over a cluster of cloud resources.

Yadav et al. [40] predicted the hourly average load of a single distributed server
in a cloud environment for an interval of 24 hours using LSTM models. The MAE
that was obtained for the normalized load was equal to 0.043. For our research, the
MAE was equal to 0.1991 for the normalized test set. However, we forecasted the
minutely average load, which is a significantly more volatile metric compared to the
hourly average load. Though, Yadav et al. [40] forecasted the computational load for
a higher number of observations, making the comparison not fully representative.

5.1.2 Static service tier

In this section, we compare the dynamic scaling approach to using a single static service
tier, which is Info Support’s current approach for the App Service Plans in this research.
For the dynamic scaling approach, we use the service levels discussed in Section 4.3.7.

49

50 CHAPTER 5. EVALUATION

The dynamic scaling mechanism yields significant performance utilization increases over
the static service tier, while only slightly decreasing the Service Level.

First, we compare the performances of the static service tier and the dynamic scaling
mechanism for App Service Plan 2. As discussed in Section 4.3.2, P4m would be the
most suitable static service tier for this App Service Plan. Table 5.1 gives the relevant
metrics for both scenarios.

Metric Dynamic scaling P4m

% of time underprovisioned CPU 1.9% 0.3%
% of time underprovisioned RAM 0% 0%
% lacking when underprovisioned CPU 30.4% 15.9%
% lacking when underprovisioned RAM - -
% utilization of resources CPU 24.4% 6.1%
% utilization of resources RAM 43.7% 6.2%
% of time spent scaling 11.2% -

Table 5.1: App Service Plan 2: Amount of computational units per service tier, with a
capacity scaling factor of 0.7

Dynamically scaling App Service Plan 2 resulted in a higher underprovisioning for
the CPU, while significantly improving the resource utilization for both the CPU and
RAM. The utilization of the CPU and RAM improved by a factor of approximately
300% and 605% respectively. The percentage of CPU time was lacking when the re-
source was underprovisioned was higher for the static service tier, which most likely
again caused by outliers in the true CPU time. When dynamically scaling, the resource
did spend quite some time scaling.

Next, we compare the dynamic scaling mechanism for the production Web apps to
the current situation. The production Web apps are currently hosted in the P2 service
tier. Table 5.2 gives the relevant performance metrics for both scenarios.

Metric Dynamic scaling P2

% of time underprovisioned CPU 0.8% 0%
% of time underprovisioned RAM 0% 0%
% lacking when underprovisioned CPU 33.1% -
% lacking when underprovisioned RAM - -
% utilization of resources CPU 2.0% .7%
% utilization of resources RAM 16.6% 4.2%
% of time spent scaling 0.6% -

Table 5.2: Production Web Apps: Comparing performance metrics

As we can see, the underprovisioning for the CPU was minimal for the dynamic
scaling mechanism, while there was no underprovisioning for the static service tier.

The utilization of the CPU and RAM resources increased by 185% and 295% re-
spectively, compared to the static service tier. The utilization is still very low, as there
is little computational activity present for the production Web Apps. As we can see
in Appendix A, service tier P0 is the most prevalent service tier. As P0 is the lowest
available tier, resource utilization cannot be significantly improved any further.

5.2. APPLICATIONS 51

Next, we investigate the financial effectivity of the dynamic scaling solution. Here,
we assume that billing is calculated per minute and only for the current service tier of
the App Service Plan. This implies that scaling decisions do not incur any additional
costs. The costs considered here are over the period of the test set, as shown in Table
5.3.

App Service Plan Static
tier
costs

Dynamic
scaling
cost

Decrease
in cost

Decrease
%

Decrease
per day

ASP 1 €32.06 €30,23 €1,83 5.7% €0.45
ASP 2 €823.80 €159,26 €664,54 80.7% €56,38
ASP Production €94.84 €30.52 €64,32 67.8% €10,74

Table 5.3:

For all App Service Plans, cost decreases were observed, ranging from 5.7% to 80.7%.
For App Service Plans 2 and Production, the largest decreases were obtained, in both
percentage and absolute cost. This is logical, as the potential cost savings during
inactivity are larger for higher service tiers. In periods of computational inactivity, a
relatively great decrease can be obtained by choosing the smallest service tier, compared
to the high static service tier.

The percentage of saved energy is most likely strongly correlated with the percentage
of cost saved. This is because the computational power costs are part of the costs that
user pay when consuming computational power. Investigating the exact energy savings
is outside of the scope of this research.

5.2 Applications

As the model generally scaled too late when the load suddenly increased, the proposed
scaling solution may not be suitable for any type of application hosted using Web Apps.
In the previous section, we saw that the model is incapable of predicting rises in the
load beforehand, and rather responds to fluctuations in the load. This means that
when the load suddenly rises, the computational demand is not met for at least a short
period of time. Thus, the model is not suitable for applications for which it is vital
that computational demand is always met, such as specific Healthcare applications.
However, when it is vital that computational demand is always met, decreasing cost is
generally a less relevant aspect.

Cloud resources that experience a quite consistent computational load are also not
suitable targets for the dynamic scaling mechanism. First, the mechanism might not
scale the resource enough to financially compensate the effort that was put into imple-
menting the scaling mechanism. Furthermore, there is a risk that the load will oscillate
around the border of two service tiers, causing the resource to be scaled excessively,
potentially impacting availability.

5.3 Model interpretability

For both the RNN and the LSTM models, there is very little to no possibility to
investigate the reasoning behind a certain prediction. The RNN and LSTM models

52 CHAPTER 5. EVALUATION

are special types of Neural Networks, which are based on complex numerical relations
between the input features over time. Therefore, it is very challenging or impossible
to gain insights into the reasoning of the model. The scaling model is however very
transparent, as each mapping and decision can be fully explained.

One way to gain a limited insight in the behaviour of the forecasting models, is
by investigating the outputs for given inputs. When slightly changing the inputs, the
sensitivity of the model predictions can be assessed by investigating the response in the
model outputs. Furthermore, the response of the model to for example sudden peaks
or increases in computational load can be studied this way.

5.4 Generalizability

The performance of the scaling solution can most likely be generalized to other cloud
resources, such as Virtual Machines and Azure SQL Servers. In this research, we
predicted two computational load metrics, based on historical load metrics. As we
have seen in Section 2.2.3, similar metrics are present for both DTU-based and vCore-
based Azure SQL Servers. We expect that we can use the same methods, we can obtain
similar performance for these resources, compared to the App Service Plans.

However, for some resources the excessive scaling can pose an issue in practice.
When scaling a resource, a new compute unit is created and switched to once it is
ready. For some resources, this process can terminate existing connections with for
example users or background processes. Closing a connection can for example remove
temporarily stored files and thus undo work, as well as requiring the user or process
to reconnect to the resource. This would mean that the excessive scaling of a resource
can have a significant impact on the usability of a resource.

5.5 Cost and energy usage

When deciding whether the solution can be used to successfully decrease cost and energy
usage, the training, calling and maintaining of the models must be considered as well.
As we saw in Section 4.2.2, obtaining the final Generalist or Specialist models can take
a long time, and therefore use a lot of computational resources. From the moment the
scaling solution is deployed, the solution will be called, or inferenced, each minute for
each resource for which a scaling decision is to be made. Inferencing is significantly less
computationally extensive compared to training the model, due to the reduced number
of calculations that need to be performed. However, when the solution is deployed for
a longer period of time for a large number of resources, the total inferencing cost may
become significant in the cost and energy calculation.

The amount of consumption that is saved by dynamically scaling a resource is also
dependent on the most prevalent service tiers for the resource. As we saw earlier in this
chapter, the largest consumption decrease can be obtained by deploying the dynamic
scaling mechanism for resources which are hosted using a high static service tier. For
resources in a lower service tier, the training and inferencing of the models might limit
the cost and energy consumption decrease, potentially causing it to only be effective in
the long run, or even not effective at all.

Finally, choosing whether to implement a single Generalist model, or multiple Spe-
cialist models can also influence the cost and energy consumption. We will discuss this
further in Section 7.4.

Chapter 6

Conclusion

In this research, we investigate dynamically scaling Azure Web Apps based on computa-
tional load forecasts using Machine Learning algorithms. Currently, the chosen service
tier of Azure resources is based on the upper bound of the computational load. Fur-
thermore, in practice, there is always a focus on ensuring there is enough capacity for
a resource, rather than preventing overcapacity. Dynamically scaling Azure resources
has the potential to significantly reduce both costs and energy consumption. For this
research, the following research question was formulated:

“To what extent can advanced analytics, such as Machine Learning, be used
to predict cloud computation load in real-time and dynamically scale cloud
resources to minimize cost and energy usage?”

Previous research in computational load forecasting has mainly focused on predict-
ing the load for clusters of resources, or the averaged load for a single resource. For
the scaling mechanism, previous research consisted of rule-based scaling mechanisms,
which only allowed iterative up- or downscaling. This study differentiates itself by fore-
casting the computational load for individual resources, while using a tier-based scaling
model. This scaling model maps the predicted computational load to a suitable target
tier, after which it scales to that tier.

This research focused on Azure Web Apps hosted in App Service Plans (ASP), for
which many computational load metrics were present, such as CPU time, RAM usage
and latency. The data was logged per minute and during periods of 20 to 60 days,
depending on the Web app. One of the ASP was hosted in a production environment,
while the other two ASPs were not. All load metrics that were available were used
as input for the forecasting model, while only the CPU time and RAM usage were
forecasted for a period of three minutes. For one of the non-production ASPs, there was
a clear difference between the patterns during weekdays and weekends. Furthermore,
there was a clear pattern in the CPU time and number of requests through the day.
For the other ASPs, we mainly observed subtle activity, with some random peaks.

We implemented two models: a Recurrent Neural Network (RNN) and a baseline
model, and a Long Short-Term Memory (LSTM) model. More effort was put into ob-
taining the best LSTM model, compared to the RNN, and it consistently outperformed
the RNN across all performance metrics. We also deleveloped Specialist LSTM models,
meaning that each model was trained on data from a single Web App. We compared
their performance to the Generalist LSTM model, which was trained on multiple non-
production Web apps. The performance of the Specialist and Generalist models did

53

54 CHAPTER 6. CONCLUSION

not strongly differ on Web apps on which both the models were trained. However, the
Specialist models significantly outperformed the Generalist models for Web Apps on
which the Generalist model was not trained. This indicates that predictions are more
accurate when the models are trained on the specific data of the corresponding Web
App. Despite this, we do not propose the Specialist models as the better models in this
case, due to the higher implementation complexity compared to the Generalist models.

To evaluate the final effectiveness of our solution, we compared the dynamic scaling
mechanism using service levels, to the current situation, which is using a static service
tier. Our solution resulted in significantly higher resource utilization, while the per-
centage of time the resource was underprovisioned increased slightly. The cost savings
that were obtained ranged from €0.45 to €56.38 per day per App Service Plan.

The solution did however suffer from excessive scaling. The amount of saved energy
and cost will be dependent on the behaviour of the resource and the most prevalent
service tiers. Furthermore, the proposed dynamic scaling solution will be suitable for
resources that meet specific criteria. Examples of these criteria is that it is not vital
that computational demand is met and that the demand is not extremely volatile.

To conclude, our dynamic scaling solution effectively predicted the computational
load of cloud resources and scaled them accordingly, significantly outperforming current
static approaches. However, the issue of excessive scaling remains a concern and could
be detrimental when utilizing the solution in practice. Addressing this issue will require
further research, as outlined in the next chapter.

Chapter 7

Discussion

In this chapter we reflect on the most important aspects and outcomes of our research.
In Section 7.1 we discuss the limitations of this research. In Section 7.2 we outline
potential areas for improvements and future work. In Section 7.3 we describe a possible
architecture for deploying the dynamic scaling mechanism using Azure resources. In
Section 7.4 we discuss the advantages and disadvantages of the Specialist and Generalist
models. In Section 7.5 we provide recommendations for Info Support based on the
concluded findings of this research.

7.1 Limitations

7.1.1 Exceeding available capacity

In the results, we saw that the consumed computational resources exceeded the available
capacity of an App Service Plan, which in reality is not possible. In this research, we
compared the CPU time and RAM usage with the upper bound of the service tier. We
saw in the results that both features could exceed the available capacity at that time,
which is impossible in practice. Thus, the actual CPU time and RAM usage would
differ from the CPU time and RAM usage that was used in this research. In practice,
the underprovisioning of the resource would potentially change the behaviour of the
Web app, and introduce for example latency that cannot be easily adjusted for.

Thus, it is important that the training datasets of a Web app are gathered when the
resource was overprovisioned. When the resource is underprovisioned during periods
from which the training, validation or test sets are gathered, the true necessary CPU
time for example will not be available, as it is upper bounded by the available capacity,
rather than the necessary computational power. However, in practice, all resources are
generally overprovisioned.

7.1.2 App Service Plan overhead

Due to operating system overhead, the amount of available resources the App Service
Plan has available for the Web Apps is most likely lower than the assumed capacity [39].
The Virtual Machine underlying to the App Service Plan must run either Windows
or Linux, which uses computational resources. This results in less CPU time and
RAM available for the Web Apps. However, the amount of computational resources
the operating system uses does not scale linearly with the computational capacity.

55

56 CHAPTER 7. DISCUSSION

Thus, the overhead percentage is most likely smaller for App Service Plans with larger
capacities.

7.1.3 Service levels

The presented service levels for the RAM and CPU of the App Service Plans are
dependent on the time of day and the computational behaviour of the Web Apps. As
we have seen in the results, service level violations generally occur due to sudden rises
or peaks in computational load. When the computational behaviour of the Web Apps
is more volatile and contains more rises or peaks, more service violations will occur as
a result. Furthermore, the service level violations generally occur during periods for
which the Web App is used relatively intensively. Thus, the service levels are likely
higher during the moments for which it is important the service levels are not violated,
namely the moments with higher activity.

7.1.4 Excessive scaling

The dynamic scaling solution led to excessive scaling of the target resource, which
might be problematic in practice. Scaling decisions tend to occur during periods of
high activity, further increasing their impact. For Web Apps, this can be particularly
problematic, as processes or user sessions can be hosted in the memory available to the
Web App. Scaling the resource causes the App Service Plan to switch to new memory,
resulting in the sessions being dropped and users being disconnected. Approximately
14% of the time the resource spent scaling. If the resource undergoes frequent scaling
throughout workloads, it is likely to significantly impact the usability of the resource.
Other Azure resources, such as Azure SQL Servers and Virtual Machines suffer from
this same issue.

7.1.5 Scaling costs

In this research, we assumed that scaling decisions did not incur any additional costs.
However, if this assumption does not hold, the total cost could be significantly higher
than presented. Investigations into the potential additional cost did not yield any valu-
able results. It is possible that there are extra costs associated with scaling decisions,
such as paying for both the current resource instance, and the resource instance being
created as a result of the scaling decision. The percentage of time that the resource is
scaling would then be the percentage of time billed for both resource instances. Con-
sequently, the total cost would then potentially be strongly influenced by the number
of scaling decisions.

7.2 Future work

7.2.1 Interpretable forecasting models

For the models used in this study, there is no straightforward interpretation of the
models decision-making processes. RNNs and LSTMs are known as black-box models,
meaning that the forecasts result from complex numerical computations that cannot
easily be interpreted. Using interpretable time series models, such as ARIMA models,
can increase the trust in model predictions and allow for better debugging of results.

7.2. FUTURE WORK 57

However, as these models are significantly less advanced, this would be a trade-off
between interpretability and forecasting performance.

7.2.2 Intelligent scaling agent

The performance of the dynamic scaling mechanism can potentially be drastically in-
creased by using a more advanced scaling model. The current scaling model is not
really a decision-making model, but rather a simple computational load mapping. Us-
ing for example a Reinforcement Learning (RL) agent as a scaling model can greatly
increase the flexibility and quality of the scaling decisions. Such an agent can choose
to cancel a scaling in progress. This can be valuable when there are short peaks in
the computational load. The prediction model can then inaccurately forecast the load,
causing a suboptimal scaling decision. When it becomes evident that the scaling de-
cision was suboptimal, the scaling agent can cancel the operation. Furthermore, the
number of scaling operations that are initiated can also be reduced. We could do this
by introducing a penalty for each scaling decision the RL agent makes. This way, the
agent would be motivated to minimize unnecessary scaling actions, resulting in more
robust scaling decisions, reduced cost and increased resource stability. Zhong et al.
[42] implemented a Q-learning agent that determined whether to scale or not to scale
a Virtual Machine, resulting in decreased SLA violations by up to 20% to 30%.

However, introducing an additional AI-based model into the scaling solution can
pose difficulty for guaranteeing service levels. The performance metrics of the scaling
solution are then also dependent on the behaviour of the scaling agent, which can be
difficult to understand and explain [9]. Reinforcement learning agents can also respond
unpredictably when the agent is to decide on unseen patterns. Thus, the service levels
based on available datasets will be presented with greater uncertainty.

7.2.3 Downscaling multiplier

Another approach to limit the frequency of scaling decisions is by implementing an
additional margin for downscaling. Currently, the same threshold are used for both
up- and downscaling, which can result in excessive scaling when computational load
forecasts oscillate around a specific threshold. For example, consider a scenario where
a scaling multiplier of 0.8 is used, while the current service tier is P1. The resource
is upscaled to P2 if the predicted usage exceeds 80% of P1’s capacity, or 40% of P2’s
capacity. We can then introduce a condition that prevents the scaling model from
downscaling back to P1 until the usage drops below for example 30% of P2’s capacity,
which would be 60% of P1’s capacity. We can consider this as using an upscaling
multiplier of 0.8 and a downscaling multiplier of 0.6. This way, we can partially tackle
the problem of the oscillating computational load.

7.2.4 History duration

Understanding the amount of historical training data necessary for accurate computa-
tional load predictions helps determine when the dynamic scaling mechanism can be
effectively applied for a specific resource. The amount of historical training data is also
related to the degree of computational complexity, or size, of the model. Larger models
will likely overfit earlier on smaller datasets, while they will be able to more effectively
learn the patterns present in larger datasets. Furthermore, using smaller datasets and

58 CHAPTER 7. DISCUSSION

Figure 7.1: Architecture of scaling mechanism in Azure

thus models can have a positive impact on the performance of the models when they
are retrained. When data shift occurs and the models are retrained, the models can
more quickly adapt to new patterns in the data, due to the smaller model size.

For reference, Microsoft uses either one or two weeks of historical data for predic-
tive autoscaling for Virtual Machine sets. In this research, the duration ranged from
approximately 20 days to 60 days. Relating the model performance to the duration for
which data was available was out of scope for this research. To investigate the impact
of the duration on model performance, models can be compared by training them with
different amounts of historical data.

7.3 Proof of concept

In discussion with field professionals, we designed a possible architecture for the dy-
namic scaling solution using Azure services. The Log Analytics Workspace (LAW)
serves as both a metric-storage and a trigger for the dynamic scaling process. An
Azure Function acts as the process orchestrator by handling the communication be-
tween the various services. All data and preparation and Machine Learning related
tasks are managed within an Azure Machine Learning (AML) pipeline. Figure 7.1
gives an overview of the full mechanism and the used Azure services. The numbered
arrows give the order and direction of communication.

The LAW collects and stores metrics per resource per minute. Each minute, a new
record becomes available for each resource that is attached to the LAW. Whenever a
new record becomes available for a resource, the orchestrator function is triggered.

7.4. SPECIALIST OR GENERALIST 59

When triggered, the orchestrator queries the LAW for the most recent observations
for that resource. The orchestrator then registers relevant metrics, such as the name of
the resource and the starting time. The query result is then sent to the Azure Machine
Learning pipeline, in which the data preparation, forecasting model and scaling model
are hosted.

When the input metrics are received by the Azure Machine Learning pipeline, they
are first cleaned and preprocessed, as described in Section 3.2. The preprocessed ob-
servations are then used as input for the prediction model. The averaged prediction
is then used as input for the scaling model. After the scaling model gives a service
tier as output, relevant metrics such as forecasting duration and target service tier are
communicated back to the orchestrator.

The orchestrator then sends the scaling command to the relevant resource, which
will scale the resource. When the scaling command has been processed, the orchestrator
can gather all relevant logs and save them to a database or storage account. The final
scaling duration will then however not be present in the saved logs. This duration can
be obtained later by using other Azure services, such as Azure Monitor Logs.

The dynamic scaling solution would most likely be hosted in the customer’s Azure
Subscription. This way, they are directly in control of the Azure resources without
any dependency on other subscriptions. This means that the full mechanism should be
deployed and maintained in the subscription of each customer for which the solution is
to be used.

7.4 Specialist or Generalist

For inferencing, there is no significant challenge introduced when using Specialist mod-
els compared to Generalist models. For Generalist models, a single model must be
inferenced to obtain the prediction using the input metrics. With Specialist models,
the appropriate model must first be selected based on the resource for which a scaling
decision is required. As this information can be made readily available, this poses no
issue.

The resources required for inferencing and training a Generalist model are likely to
be greater than those for the Specialist models. The Generalist model must be able
to capture a wider variety of patterns, compared to the individual Specialist models.
Therefore, the Generalist must be larger than the Specialist models in terms of com-
putational complexity. However, training or inferencing a larger model requires for
computational power per observation, as more calculations need to be performed, and
more weights must be adjusted. Furthermore, Specialist models can be trained in par-
allel. As the Specialist are trained on separate datasets, training the models in parallel
is trivial. Though, monitoring the training process for Specialist models can be more
challenging than monitoring the training process for a single Generalist model.

However, versioning and maintenance could become problematic with Specialist
models. For a Generalist model, only one model needs to be versioned. For Special-
ist models, each model would require individual versioning and updates. When the
solution is deployed in customers’ cloud environments, there would be multiple cloud
locations, hosting multiple models, each with different versions. This complexity can
make maintenance and management challenging.

As there are advantages and disadvantages to both Generalist and Specialist models,
the final choice of the most suitable approach is left to Info Support.

60 CHAPTER 7. DISCUSSION

7.5 Recommendations

Our first recommendation is to periodically investigate not only underprovisioning but
also potential overprovisioning of resources. Currently, Info Support checks whether the
requirements for resource capacities are determined and satisfied during project intake
and annual check-ups. Expanding these checks to include overprovisioning assessments
is likely the simplest method to reduce unnecessary costs and energy usage.

Our second recommendation is to investigate whether existing autoscaling methods
already available in Azure can be utilized. Vertical scaling can introduce issues that
affect the usability of a resource instance, so it is crucial to assess whether automatic
vertical scaling is suitable for this task. Multiple horizontal scaling mechanisms are
already available in Azure, which might be more suitable than the solution proposed
in this study.

Our third recommendation is to investigate using a Reinforcement Learning-based
agent as the scaling model in the proposed mechanism. An RL-agent can be used to
tackle the most critical shortcomings of the proposed dynamic scaling solution, which
was the excessive scaling of the resource instances that occurred.

Appendix A

Service tier histograms

In the figures below we show the histograms of the mapped service tiers for App Service
Plan 1 and 2, and the production App Service Plan.

In conversation with field professionals, we determined that the most suitable static
tier for App Service Plan 1 and 2 were P1 and P4m respectively. The service tier that
the Production App Service Plan is currently hosted in, is P2.

61

62 APPENDIX A. SERVICE TIER HISTOGRAMS

Figure A.1: Histogram of mapped service tiers for App Service Plan 1

Figure A.2: Histogram of mapped service tiers for App Service Plan 2

63

Figure A.3: Histogram of mapped service tiers for the Production App Service Plan

64 APPENDIX A. SERVICE TIER HISTOGRAMS

Bibliography

[1] Cloud Computing Market Size, Share | CAGR of 16.8%. URL https://market.

us/report/cloud-computing-market/.

[2] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, 2019.

[3] C. Bergmeir and J. M. Beńıtez. On the use of cross-validation for time series predic-
tor evaluation. Information Sciences, 191:192–213, May 2012. ISSN 00200255. doi:
10.1016/j.ins.2011.12.028. URL https://linkinghub.elsevier.com/retrieve/

pii/S0020025511006773.

[4] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya. Workload Prediction
Using ARIMA Model and Its Impact on Cloud Applications’ QoS. IEEE Transac-
tions on Cloud Computing, 3(4):449–458, Oct. 2015. ISSN 2168-7161. doi: 10.1109/
TCC.2014.2350475. URL http://ieeexplore.ieee.org/document/6881647/.

[5] M. Carroll, A. Van Der Merwe, and P. Kotze. Secure cloud computing:
Benefits, risks and controls. In 2011 Information Security for South Africa,
pages 1–9, Johannesburg, South Africa, Aug. 2011. IEEE. ISBN 978-1-4577-
1481-8. doi: 10.1109/ISSA.2011.6027519. URL http://ieeexplore.ieee.org/

document/6027519/.

[6] G. Cheng, V. Peddinti, D. Povey, V. Manohar, S. Khudanpur, and Y. Yan.
An Exploration of Dropout with LSTMs. In Interspeech 2017, pages 1586–
1590. ISCA, Aug. 2017. doi: 10.21437/Interspeech.2017-129. URL https:

//www.isca-archive.org/interspeech_2017/cheng17_interspeech.html.

[7] L. Datta. A Survey on Activation Functions and their relation with Xavier and
He Normal Initialization, Mar. 2020. URL http://arxiv.org/abs/2004.06632.
arXiv:2004.06632 [cs].

[8] M. Duggan, K. Mason, J. Duggan, E. Howley, and E. Barrett. Predicting Host
CPU Utilization in Cloud Computing using Recurrent Neural Networks. Nov. 2017.
doi: 10.23919/ICITST.2017.8356348.

[9] C. Glanois, P. Weng, M. Zimmer, D. Li, T. Yang, J. Hao, and W. Liu. A Survey
on Interpretable Reinforcement Learning, Feb. 2022. URL http://arxiv.org/

abs/2112.13112. arXiv:2112.13112 [cs].

65

https://market.us/report/cloud-computing-market/
https://market.us/report/cloud-computing-market/
https://linkinghub.elsevier.com/retrieve/pii/S0020025511006773
https://linkinghub.elsevier.com/retrieve/pii/S0020025511006773
http://ieeexplore.ieee.org/document/6881647/
http://ieeexplore.ieee.org/document/6027519/
http://ieeexplore.ieee.org/document/6027519/
https://www.isca-archive.org/interspeech_2017/cheng17_interspeech.html
https://www.isca-archive.org/interspeech_2017/cheng17_interspeech.html
http://arxiv.org/abs/2004.06632
http://arxiv.org/abs/2112.13112
http://arxiv.org/abs/2112.13112

66 BIBLIOGRAPHY

[10] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[11] S. Hochreiter. The Vanishing Gradient Problem During Learning Recurrent Neural
Nets and Problem Solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 06(02):107–116, Apr. 1998. ISSN 0218-4885, 1793-
6411. doi: 10.1142/S0218488598000094. URL https://www.worldscientific.

com/doi/abs/10.1142/S0218488598000094.

[12] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computa-
tion, 9(8):1735–1780, Nov. 1997. ISSN 0899-7667, 1530-888X. doi: 10.1162/neco.
1997.9.8.1735. URL https://direct.mit.edu/neco/article/9/8/1735-1780/

6109.

[13] V. K. and S. K. Towards activation function search for long short-term model net-
work: A differential evolution based approach. Journal of King Saud University -
Computer and Information Sciences, 34(6):2637–2650, June 2022. ISSN 13191578.
doi: 10.1016/j.jksuci.2020.04.015. URL https://linkinghub.elsevier.com/

retrieve/pii/S1319157820303505.

[14] S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas. Data Preprocessing for
Supervised Leaning. 1(1), 2006.

[15] M. Law. Top 10 biggest cloud providers in the world in
2023, Feb. 2023. URL https://technologymagazine.com/top10/

top-10-biggest-cloud-providers-in-the-world-in-2023.

[16] T.-T.-H. Le, J. Kim, and H. Kim. An Effective Intrusion Detection Classifier
Using Long Short-Term Memory with Gradient Descent Optimization. Feb. 2017.
doi: 10.1109/PlatCon.2017.7883684. Pages: 6.

[17] Z. Li, B. Gong, and T. Yang. Improved Dropout for Shallow and Deep Learning.
In Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/hash/

7bb060764a818184ebb1cc0d43d382aa-Abstract.html.

[18] M. Mao and M. Humphrey. A Performance Study on the VM Startup Time in
the Cloud. In 2012 IEEE Fifth International Conference on Cloud Computing,
pages 423–430, Honolulu, HI, USA, June 2012. IEEE. ISBN 978-1-4673-2892-0
978-0-7695-4755-8. doi: 10.1109/CLOUD.2012.103. URL http://ieeexplore.

ieee.org/document/6253534/.

[19] Microsoft. What Is a Virtual Machine and How Does It Work | Mi-
crosoft Azure, . URL https://azure.microsoft.com/en-us/resources/

cloud-computing-dictionary/what-is-a-virtual-machine.

[20] Microsoft. What is a SQL Database? | Microsoft Azure, . URL https:

//azure.microsoft.com/en-us/resources/cloud-computing-dictionary/

what-is-sql-database.

[21] Microsoft. Scale resources - Azure SQL Database & Azure SQL Managed Instance,
June 2023. URL https://learn.microsoft.com/en-us/azure/azure-sql/

database/scale-resources?view=azuresql.

http://www.deeplearningbook.org
https://www.worldscientific.com/doi/abs/10.1142/S0218488598000094
https://www.worldscientific.com/doi/abs/10.1142/S0218488598000094
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://linkinghub.elsevier.com/retrieve/pii/S1319157820303505
https://linkinghub.elsevier.com/retrieve/pii/S1319157820303505
https://technologymagazine.com/top10/top-10-biggest-cloud-providers-in-the-world-in-2023
https://technologymagazine.com/top10/top-10-biggest-cloud-providers-in-the-world-in-2023
https://proceedings.neurips.cc/paper/2016/hash/7bb060764a818184ebb1cc0d43d382aa-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/7bb060764a818184ebb1cc0d43d382aa-Abstract.html
http://ieeexplore.ieee.org/document/6253534/
http://ieeexplore.ieee.org/document/6253534/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-a-virtual-machine
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-a-virtual-machine
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-sql-database
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-sql-database
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-sql-database
https://learn.microsoft.com/en-us/azure/azure-sql/database/scale-resources?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/scale-resources?view=azuresql

BIBLIOGRAPHY 67

[22] Microsoft. Autoscale in Azure Monitor - Azure Monitor, Mar. 2023. URL
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/

autoscale-overview.

[23] Microsoft. Azure Virtual Machine Scale Sets overview - Azure Virtual Ma-
chine Scale Sets, Apr. 2023. URL https://learn.microsoft.com/en-us/azure/

virtual-machine-scale-sets/overview.

[24] Microsoft. VM sizes - Azure Virtual Machines, June 2023. URL https://learn.

microsoft.com/en-us/azure/virtual-machines/sizes.

[25] Microsoft. Overview of autoscale with Azure Virtual Machine Scale
Sets - Azure Virtual Machine Scale Sets, May 2023. URL https:

//learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/

virtual-machine-scale-sets-autoscale-overview.

[26] Microsoft. Overview - Azure App Service, Aug. 2023. URL https://learn.

microsoft.com/en-us/azure/app-service/overview.

[27] Microsoft. Scale up features and capacities - Azure App Service,
May 2023. URL https://learn.microsoft.com/en-us/azure/app-service/

manage-scale-up.

[28] Microsoft. Scale single database resources - Azure SQL Database,
Jan. 2024. URL https://learn.microsoft.com/en-us/azure/azure-sql/

database/single-database-scale?view=azuresql.

[29] M. K. Mohan Murthy, H. A. Sanjay, and J. Anand. Threshold Based Auto Scal-
ing of Virtual Machines in Cloud Environment. In D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, C. Salinesi, M. C. Norrie, and O. Pastor, editors, Advanced Infor-
mation Systems Engineering, volume 7908, pages 247–256. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2014. ISBN 978-3-642-38708-1 978-3-642-38709-8.
doi: 10.1007/978-3-662-44917-2 21. URL http://link.springer.com/10.1007/

978-3-662-44917-2_21. Series Title: Lecture Notes in Computer Science.

[30] H. M. Nguyen, G. Kalra, and D. Kim. Host load prediction in cloud com-
puting using Long Short-Term Memory Encoder–Decoder. The Journal of
Supercomputing, 75(11):7592–7605, Nov. 2019. ISSN 0920-8542, 1573-0484.
doi: 10.1007/s11227-019-02967-7. URL http://link.springer.com/10.1007/

s11227-019-02967-7.

[31] T. M. P. Reader. The Staggering Ecological Impacts of Computation
and the Cloud, Feb. 2022. URL https://thereader.mitpress.mit.edu/

the-staggering-ecological-impacts-of-computation-and-the-cloud/.

[32] N. Roy, A. Dubey, and A. Gokhale. Efficient Autoscaling in the Cloud Using
Predictive Models for Workload Forecasting. In 2011 IEEE 4th International
Conference on Cloud Computing, pages 500–507, Washington, DC, USA, July
2011. IEEE. ISBN 978-1-4577-0836-7. doi: 10.1109/CLOUD.2011.42. URL
http://ieeexplore.ieee.org/document/6008748/.

https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/overview
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/overview
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-autoscale-overview
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-autoscale-overview
https://learn.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-autoscale-overview
https://learn.microsoft.com/en-us/azure/app-service/overview
https://learn.microsoft.com/en-us/azure/app-service/overview
https://learn.microsoft.com/en-us/azure/app-service/manage-scale-up
https://learn.microsoft.com/en-us/azure/app-service/manage-scale-up
https://learn.microsoft.com/en-us/azure/azure-sql/database/single-database-scale?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/single-database-scale?view=azuresql
http://link.springer.com/10.1007/978-3-662-44917-2_21
http://link.springer.com/10.1007/978-3-662-44917-2_21
http://link.springer.com/10.1007/s11227-019-02967-7
http://link.springer.com/10.1007/s11227-019-02967-7
https://thereader.mitpress.mit.edu/the-staggering-ecological-impacts-of-computation-and-the-cloud/
https://thereader.mitpress.mit.edu/the-staggering-ecological-impacts-of-computation-and-the-cloud/
http://ieeexplore.ieee.org/document/6008748/

68 BIBLIOGRAPHY

[33] R. M. Schmidt. Recurrent Neural Networks (RNNs): A gentle Introduc-
tion and Overview, Nov. 2019. URL http://arxiv.org/abs/1912.05911.
arXiv:1912.05911 [cs, stat].

[34] J. Shayan, A. Azarnik, S. Chuprat, S. Karamizadeh, and M. Alizadeh. Identifying
Benefits and Risks Associated with Utilizing Cloud Computing. 3(3), 2013.

[35] A. Sherstinsky. Fundamentals of Recurrent Neural Network (RNN) and Long
Short-Term Memory (LSTM) Network. Physica D: Nonlinear Phenomena, 404:
132306, Mar. 2020. ISSN 01672789. doi: 10.1016/j.physd.2019.132306. URL
http://arxiv.org/abs/1808.03314. arXiv:1808.03314 [cs, stat].

[36] R. H. Shumway and D. S. Stoffer. ARIMA Models. In Time Series Analysis and
Its Applications, pages 75–163. Springer International Publishing, Cham, 2017.
ISBN 978-3-319-52451-1 978-3-319-52452-8. doi: 10.1007/978-3-319-52452-8 3.
URL http://link.springer.com/10.1007/978-3-319-52452-8_3. Series Title:
Springer Texts in Statistics.

[37] T. A. B. Snijders. On Cross-Validation for Predictor Evaluation in Time Se-
ries. In M. Beckmann, W. Krelle, and T. K. Dijkstra, editors, On Model Uncer-
tainty and its Statistical Implications, volume 307, pages 56–69. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1988. ISBN 978-3-540-19367-8 978-3-642-61564-1.
doi: 10.1007/978-3-642-61564-1 4. URL http://link.springer.com/10.1007/

978-3-642-61564-1_4. Series Title: Lecture Notes in Economics and Mathemat-
ical Systems.

[38] B. Suleiman and S. Venugopal. Modeling Performance of Elasticity Rules for
Cloud-Based Applications. In 2013 17th IEEE International Enterprise Distributed
Object Computing Conference, pages 201–206, Vancouver, BC, Canada, Sept. 2013.
IEEE. ISBN 978-0-7695-5081-7. doi: 10.1109/EDOC.2013.31. URL http://

ieeexplore.ieee.org/document/6658280/.

[39] G. Tong, H. Jin, X. Xie, W. Cao, and P. Yuan. Measuring and Analyzing CPU
Overhead of Virtualization System. In 2011 IEEE Asia-Pacific Services Computing
Conference, pages 243–250, Jeju, Korea (South), Dec. 2011. IEEE. ISBN 978-
1-4673-0206-7 978-0-7695-4624-7. doi: 10.1109/APSCC.2011.40. URL http://

ieeexplore.ieee.org/document/6127969/.

[40] M. P. Yadav, N. Pal, and D. K. Yadav. Workload prediction over cloud server
using time series data. In 2021 11th international conference on cloud computing,
data science & engineering (confluence), pages 267–272. IEEE, 2021.

[41] W. Zhang, B. Li, D. Zhao, F. Gong, and Q. Lu. Workload Prediction for Cloud
Cluster Using a Recurrent Neural Network. In 2016 International Conference on
Identification, Information and Knowledge in the Internet of Things (IIKI), pages
104–109, Beijing, Oct. 2016. IEEE. ISBN 978-1-5090-5952-2. doi: 10.1109/IIKI.
2016.39. URL http://ieeexplore.ieee.org/document/8281183/.

[42] J. Zhong, S. Duan, and Q. Li. Auto-Scaling Cloud Resources using LSTM
and Reinforcement Learning to Guarantee Service-Level Agreements and Reduce
Resource Costs. Journal of Physics: Conference Series, 1237(2):022033, June
2019. ISSN 1742-6588, 1742-6596. doi: 10.1088/1742-6596/1237/2/022033. URL
https://iopscience.iop.org/article/10.1088/1742-6596/1237/2/022033.

http://arxiv.org/abs/1912.05911
http://arxiv.org/abs/1808.03314
http://link.springer.com/10.1007/978-3-319-52452-8_3
http://link.springer.com/10.1007/978-3-642-61564-1_4
http://link.springer.com/10.1007/978-3-642-61564-1_4
http://ieeexplore.ieee.org/document/6658280/
http://ieeexplore.ieee.org/document/6658280/
http://ieeexplore.ieee.org/document/6127969/
http://ieeexplore.ieee.org/document/6127969/
http://ieeexplore.ieee.org/document/8281183/
https://iopscience.iop.org/article/10.1088/1742-6596/1237/2/022033

	Abstract
	Preface
	List of Figures
	Introduction
	Background
	Cloud computing in Azure
	Cloud resources
	Virtual Machines
	Azure Web Apps
	Azure SQL Databases
	Costs

	Scaling
	Virtual Machines
	Web App
	Azure SQL Databases
	Current autoscaling methods

	Forecasting models
	ARMA and ARIMA
	Recurrent Neural Networks
	Long Short-Term Memory
	Prediction window

	Scaling model
	Rule-based
	Tier based
	Scaling performance measures
	Full mechanism overview

	Dataset splitting
	Conclusion

	Data preparation
	Data availability
	Web App
	Azure SQL Database (DTU based)
	Azure SQL Database (vCore based)
	Logging duration
	Target features

	Data preprocessing
	Outlier detection
	Missing feature values
	Feature engineering
	Normalization

	Exploratory Data Analysis
	Azure SQL databases
	Web App

	Production data
	Input and output data
	Input and output features
	Output length
	Input length

	Conclusion

	Modelling and Results
	Hyperparameter tuning
	Recurrent Neural Network
	Long Short-Term Memory
	Hyperparameter ranges

	Model training
	Early Stopping
	Training time
	Final hyperparameters
	Training performance
	Production performance
	Conclusion

	Scaling model
	Suitable service tiers
	Static service tiers
	Results
	Capacity scaling multiplier
	Performance measures
	Multiplier tuning
	Service Level Agreements
	Conclusion

	Evaluation
	Performance comparison
	Literature
	Static service tier

	Applications
	Model interpretability
	Generalizability
	Cost and energy usage

	Conclusion
	Discussion
	Limitations
	Exceeding available capacity
	App Service Plan overhead
	Service levels
	Excessive scaling
	Scaling costs

	Future work
	Interpretable forecasting models
	Intelligent scaling agent
	Downscaling multiplier
	History duration

	Proof of concept
	Specialist or Generalist
	Recommendations

	Service tier histograms

