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Abstract

In this research, Deep Reinforcement Learning is used to determine heating and cooling setpoints. In
conventional control methods, setpoints are based only on business hours and business days. In this
study, environmental factors are also considered in determining the setpoints. The algorithm checks
these factors every 15 minutes and then determines what action to take. The deep reinforcement
learning algorithms used are Deep Q-Network (DQN) and Proximal Policy Optimization (PPO).
The algorithms are tested in two different environments, a simple building and a more complex
office building. This research shows promising results for the simple environment. 10.7% energy can
be saved while the comfort range is violated only 8.97% of the time. The results for the complex
environment are less promising. It can be concluded that it is not possible to outperform the
conventional control method with the available computational power. Further research is needed to
use DRL in complex environments.
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Table of notation

Table 1: Table of notation

Sets:
S set of states (s ∈ {1, ..., S})
A set of actions (a ∈ {1, ..., A})
T set of transitions (t ∈ {1, ..., T})
R set of rewards (r ∈ {1, ..., R})
H set of hours (h ∈ 0, ..., 23)
Parameters:
st state at timestep t
at action at timestep t
Renergy total energy reward
λe constant to scale energy usage
Eusage energy usage in kWh for each timestep t
Rcomfort total comfort reward
Pc comfort penalty per thermal zone
λc constant to scale comfort violation
Rtotal total reward
W weight for energy/comfort component
Whourly hourly weight for energy/comfort component
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1 Introduction

Energy consumption accounts for a significant portion of global greenhouse gas emissions [19]. En-
ergy conservation can help reduce greenhouse gas emissions, slow climate change, and mitigate its
effects. It is important to protect the environment and ensure a sustainable future for our planet.

Another reason to reduce energy consumption is the high energy prices due to the current energy
crisis. The energy crisis began in 2021, after the COVID crisis ended. The world economy started
to recover slowly. This led to an increase in energy demand that could not be met quickly enough.
In conjunction with Russia’s invasion of Ukraine, energy prices have risen to record levels over the
past two years. Energy bills have nearly doubled for most European households, and energy has
become one of the largest expenses for building owners.

The real estate sector is one of the largest energy-consuming sectors, accounting for around 40%
of the total energy consumption [11]. This number is even expected to grow in the coming years.
Within commercial real estate the biggest energy consumer is the Heating, Ventilation and Air Con-
ditioning (HVAC) system. It accounts for 50% of the energy used within the real estate sector.

An HVAC system is used to control temperature, humidity and air quality in a building. It is used
to maintain a comfortable and healthy indoor environment. Since this system accounts for a large
portion of energy consumption in a building, many studies have been conducted to reduce energy
consumption. The biggest challenge in achieving this goal is maintaining an ideal climate for the
building occupants.

The most commonly used control system is simple rule-based control (RBC). RBC-based control is
usually static and determined by the experience of engineers and facility managers. It is not a con-
tinuous control system and can lead to energy waste[10]. In the RBC method, heating and cooling
setpoints are determined in advance. In this traditional HVAC control approach, a fixed setpoint
schedule is established for temperatures in a building based on expected occupancy patterns and
environmental conditions. The HVAC system then operates to maintain these setpoints regardless
of actual occupancy and ambient conditions. This approach has several limitations. As mentioned
earlier, the traditional approach does not account for changes in occupancy patterns or ambient con-
ditions, resulting in inefficient energy use. This type of control also provides limited control options.
The traditional approach does not provide granular control options for HVAC systems, such as con-
trolling the operation of individual HVAC components. This lack of control options can limit the
effectiveness of the HVAC system in maintaining a comfortable and healthy indoor environment. In
addition, the traditional approach does not provide feedback on HVAC system performance, making
it difficult to identify and address inefficiencies [14].

One of the main advantages of RL is that it can adapt to changing conditions in real time, mak-
ing it well suited for dynamic environments such as commercial real estate. This allows building
managers to respond quickly to changes in occupancy, weather, and other factors that affect energy
consumption. In addition, RL algorithms can be updated over time to incorporate new information
and further improve performance.
This research investigates whether the HVAC system can be controlled to be more energy efficient
using RL. The goal is to reduce the CO2 footprint of commercial buildings. Since the HVAC system
is responsible for the majority of energy consumption, the focus will be on investigating new methods
of controlling the HVAC system to optimise energy consumption and maintain indoor conditions at
the highest possible comfort level. An answer will be provided to the research question: Can Deep
Reinforcement Learning optimise temperature setpoint control?
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1.1 EDGE Next

The internship took place at EDGE next, a subsidiary of EDGE technologies. EDGE technologies is
an international real estate developer that specialises in a new generation of high-tech buildings that
put the health and well-being of tenants and the planet first and foremost. Each EDGE building
guarantees an innovative, healthy, and sustainable modern workplace for its tenants.

EDGE Next helps achieve this goal. The company combines its real estate expertise with smart tech-
nology and Big Data. The platform, EDGE Next, provides a solution to optimise the performance of
any office building, making it smarter, healthier and more sustainable. The platform uses multiple
sensors and sources to not only collect data, but also provide valuable and actionable insights.

One of the company’s biggest challenges is to improve building performance. This is done by fo-
cusing on four main pillars: Employee well-being, space utilisation, sustainable performance, and
operational efficiency. In this research, the focus is on sustainable performance, taking into account
employee well-being. The goal is to achieve a high level of comfort in the office while reducing the
CO2 footprint by minimising energy use.

The internship took place at the EDGE Olympic building. This is the headquarters of EDGE
technologies and EDGE Next, located at the Fred Roeskestraat 115, Amsterdam. This building is
also used in this research for simulation and testing the RL models.

Figure 1: EDGE Olympic.

1.2 Problem statement

To better understand the problem, we must first understand how HVAC energy is used in the
EDGE Olympic building. As mentioned earlier, most building management systems (BMS) control
the temperature in their building in a conventional manner. In the EDGE Olympic building, the
ideal temperature range during business hours is between 20 and 24 degrees Celcius. On the EDGE
Next platform, this range is classified as category A. So this range is the ideal temperature in
the building. Also by guidelines of the WVOI (werkgeversvereniging onderzoekinstellingen) the
temperature ranges in offices in the Netherlands have to be within that range [21].

8



Maintaining a comfortable indoor temperature is important for the health and well-being of em-
ployees. A temperature that is too low or too high can cause discomfort, leading to decreased
productivity and an increased risk of health problems. The comfort range is formulated to improve
the indoor environment to increase health and productivity.

As discussed, the building used is the EDGE Olympic building. At the moment, the HVAC system
is controlled by RBC methods. These methods are based on a set of predefined rules to control the
system. They use upper and lower set points to control the temperature within certain boundaries.
In the case of EDGE Olympic the following rules are set, on business days the system is ’on’ from
08:00 until 19:00. The lower boundary is 20◦C and the upper boundary is 24◦C. On the weekends
and non-working hours, the system is on ’standby’ mode and the boundaries are set at 18◦C and
25◦C.

This static way of controlling the temperature does not take any of the environmental factors into
account while these factors show a high correlation with the indoor temperature. This study will
investigate if energy could be saved if environmental factors are taken into account while determining
to heat and cooling setpoints.

1.3 Thesis outline

The next section of this paper discusses some relevant studies related to this research. The first
studies on the optimization of the HVAC system and the first studies on the use of DRL for this
problem are briefly discussed. This is followed by a general explanation of DRL and why this type of
machine learning is useful for this particular problem. The Markov decision process is then explained.
This includes all the special features for this DRL problem. For example, the reward function, the
action space, and the observation space. In section 5, all algorithms are explained in detail, along
with RBC, which is used as a benchmark in this research. Now that all the methods and all the
specifics of the problem are known, the simulations can be performed. How the simulations are
performed and which programs are used for them are explained in section 6. After that, the results
of the simulations are analyzed. After the conclusion, future work is discussed and it is mentioned
what needs to be done before this research can be implemented in the real world.

9



2 Literature research

The modern era of HVAC control began in the 1970s with the introduction of digital control systems
[18]. These systems are among the most widely used control technologies in the building automation
industry. Digital control systems are computer-based systems that use digital signals and processors
to monitor and control various building systems such as HVAC. These were the first systems that
could control HVAC systems based on data collected from sensors. The most commonly used con-
trol system is feedback control. Feedback control is a technique used in HVAC systems to maintain
desired temperatures and air quality in a building. The control system uses sensors to measure the
actual temperature in a building and compare it to set points established by the building operator.
If there is a difference between the actual and desired values, the control system adjusts the HVAC
system to bring the building conditions back to the desired temperature.

One of approaches to optimize the HVAC systems is with Model Predictive Control (MPC) control.
MPC is a sophisticated control strategy that can be used in HVAC systems. MPC involves using
a mathematical model of the system to predict its behavior over a certain time horizon, and then
using this prediction to optimize the control inputs [1]. Privera et al. (2014) presented a predictive
controller uses both weather forecast and thermal model of a building to inside temperature control
[17]. The model was tested in a real university building and achieved savings around 20%. The
main difficulty in applying MPC is that it is labor intensive and requires specialized knowledge.
It remains a challenge to generalize a common building energy model for numerous buildings be-
cause each building and its energy systems are different. For this reason, MPC has not yet gained
widespread acceptance in the building sector, despite its positive results [24].

One of the first attempts to apply RL to HVAC control dates back to 1977. In their research,
Anderson et al. (1977) described a simulated heating coil system that used a combination of RL
and neural networks [2]. This system was compared with a proportional-integral controller (PI).
Both systems attempted to control the temperature of the coil. The purpose of both methods was
to maintain a specific temperature while minimizing energy consumption. The RL algorithm used
in this study was Q-learning, which will be discussed in more detail later. The results of the study
showed that the RL system outperformed the PI controller in terms of energy efficiency. The authors
noted that RL enabled the system to adapt to changes in the environment, such as variations in
outdoor temperature while maintaining optimal performance.

The main objective of these studies is to explore the use of RL for HVAC control. Specifically, the
studies aim to investigate how RL can be used to optimize the energy efficiency and performance of
HVAC systems in different settings, such as commercial and residential homes. Each approach to
achieve this objective is slightly different. Barret et al. (2015) proposes an RL algorithm that uses
a model-based approach to learn a control policy for an HVAC system in a commercial building [4].
Specifically, the algorithm uses a Q-learning approach to learn an optimal control policy that max-
imizes energy efficiency while maintaining occupant comfort levels. The algorithm is tested using a
simulation model of a commercial building, and the performance of the RL approach is compared
to that of a traditional RBC strategy.

Later, DRL was also used. In their study, Wei et al. (2017) use a DRL algorithm that employs
a neural network to learn a control policy for an HVAC system in a building [25]. The algorithm
uses a combination of a deep-Q network (DQN) and a dueling network architecture to learn an
optimal control strategy that maximizes energy efficiency and minimizes energy consumption while
maintaining indoor comfort. The algorithm is tested using a simulation model of a building, and
the performance of the DRL approach is compared to that of a conventional RBC strategy.

Azuatalam et al. (2020) used proximal policy optimization (PPO) to control temperature setpoints
[3]. The study uses a virtual testbed to demonstrate the effectiveness of RL use in HVAC control.
This method is most commonly used in previous research and allows setpoints to be adjusted in real
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time. The work shows that PPO is a promising algorithm for the goal of optimizing HVAC systems.
The authors were able to achieve significant energy reduction while taking comfort into account.

Overall, the results of previous research indicate that DRL-based HVAC control approaches can
achieve better energy efficiency and lower energy consumption compared to conventional control-
based control strategies, while maintaining indoor comfort for building occupants. In addition,
multi-agent DRL approaches can be particularly effective for HVAC control in larger, more complex
buildings. The aforementioned algorithms performed particularly well and are therefore tested in
this research.

3 (Deep) Reinforcement learning

With reinforcement learning (RL) systems can learn to predict the consequences of decisions and op-
timize their behaviour in environments [7]. In these environments actions leads them from one state
to the next one while gathering rewards or punishment for their actions. In Figure 2 an overview of
reinforcement learning is given.

Figure 2: Reinforcement learning outline.

In RL, any action the agent takes leads to two consequences, receiving a immediate reward, and ar-
riving at a new state [24]. The agent could not just simply select the action with the highest reward,
it needs to consider the delayed future rewards corresponding to the new state. For instance, the
action of pre-heating will lead to higher immediate energy consumption. However, in the long term,
the new state might save energy cost. RL can optimize this trade-off between these short and long
term benefits. This makes RL a really good fit for this particular research. In most buildings it is
ready to use. The behaviour of the environment is unknown to the controller which RL can handle
perfectly. The agent can find out the optimal policy without modeling the environment.

For this reason, only Model-free RL algorithms are used. Model-free RL algorithms learn the opti-
mal policy without the need of explicitly modeling the environment. A model-free approach learns
to directly map states to actions based on trail-and-error experience [16]. This approach is generally
faster and less computationally expensive than model-based RL.

Within model-free algorithms there are two different types of algorithms, value-based and policy-
based algorithms. The differences are in how they update the behavior of the agent. Value-based
algorithms focus on estimating the optimal value function. The value function is used to determine
the optimal policy, which is the action that maximizes the expected reward for a given state. Policy-
based algorithms focus on learning a policy that directly maps states to actions without explicitly
estimating the value function. The policy is represented by a neural network that takes the current
state and outputs an action. The agent learns to adjust the parameters of this function to maximize
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its expected reward. An overview on how all the different types relate to each other is shown in
Figure 3.

Figure 3: Reinforcement learning types.

Next to these types of RL algorithms, Each type can be on- or off-policy [9]. The on-policy approach
updates the policy based on the actions that the current policy generates. That is, they learn from
the experience of following the current policy, which is also used to generate new experience. On the
other hand, the off-policy approach updates the policy based on the actions generated by a different
policy. This allows the agent to learn from a larger variety of experiences, including those generated
by other policies. The action space of the used models and wheter they are on- or off-policy can be
seen in Table 2.

Algorithm Action space Type

PPO Discrete / Continuous On-Policy
DQN Discrete Off-Policy
A2C Continuous On-Policy

Table 2: Deep reinforcement algorithms.

Although RL seems well suited for this research, there are still some complications. The environment
is quite complicated. Many variables need to be considered to make good predictions based on real-
life circumstances of the environment. Therefore, deep reinforcement learning (DRL) is used. DRL
uses deep neural networks as function approximators to handle high-dimensional state spaces and
complex decision-making tasks [12]. All the algorithms used in this research will be explained in
detail in section 5.
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4 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical framework for modeling decision-making in
situations where an agent interacts with an environment over a sequence of time steps.

A MDP is defined as a tuple (S,A, T,R) with the following components:

• States: The states St ∈ S represent each state possible in the environment at each time step
t t ∈ {0, 1, 2, ...}.

• Actions: The actions At ∈ A represent the different possible choices that the agent can make
at each time step t

• Transitions: The transitions define the probability of moving from one state to another as a
result of taking an action [23]. The transition function T is defined as T : S ×A× S → [0, 1].
This defines the conditional probability distribution of the next state st+1, given the current
state st, and action at. This can be expressed as:

T (st, at, st+1) = P(st+1|st, at) (4.1)

• Reward: The reward function takes the current state st, the action taken at, and the next
state st+1 as input. It returns the immediate reward obtained by the agent for this transition.
The reward can be denoted as:

R(st, a, st+1) (4.2)

• Policy: The policy π is a mapping from states to actions that specifies what action the agent
should take in each state. It can be expressed as:

π(a|s) = P(a|s) (4.3)

The goal of an MDP is to find an optimal policy that maximizes the expected cumulative reward
over time. This is typically achieved using RL algorithms that iteratively update the policy based
on the agent’s experience with the environment. In this section, we specify the reward function,
action space, and observation space for this specific problem.

4.1 Reward function

The reward function is a crucial component that defines the objective of the agent. The reward
function serves as a feedback signal to the agent, guiding it towards good decisions and shaping its
behaviour.

In this research there are different rewards functions created and tested. The reward function
consist of two components; the energy usage and the thermal comfort of the building occupants.
The objective of this research is to minimize the energy use while while giving the users of the
building an high thermal comfort.
The power component is calculated as follows:

Renergy = λe ∗ Eusage (4.4)

Where λe is a constant to scale the power variable. In the simple environment, this variable is set
to 1.0 as default. In the complex environment, this variable is set to 0.5 as default. The reason is
that in the complex office more energy is used per timestep. So to make the energy penalty in the
same range as the comfort penalty λe is adjusted. Otherwise the energy penalty becomes too large
and the algorithms will focus on energy savings completely.
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The comfort component can be calculated in multiple ways. The first way is linear. This is calculated
as follows:

Pc =


Tindoor − Tmin, if Tindoor < Tmin

Tmax − Tindoor, if Tindoor > Tmax

0, otherwise

(4.5)

In words, the linear comfort penalty how much the indoor temperature is outside the comfort range.
The second way of calculating the comfort penalty is the exponential way. This is calculated in the
same way but the exponential is taken as shown in Equation 4.6.

Pc =


eTindoor−Tmin , if Tindoor < Tmin

eTmax−Tindoor , if Tindoor > Tmax

0, otherwise

(4.6)

Where Tmin is the lower bound of the comfort range and Tmax is the upper bound of the comfort
range. The comfort penalty is calculated for each floor separately. The total comfort penalty is the
sum of all the comfort penalties of each floor:

Rcomfort = λc ∗
5∑

i=1

Pci (4.7)

Now that the two components of the reward function are know, the total reward function is:

Rtotal = −W ∗Renergy − (1−W ) ∗Rcomfort (4.8)

Where W ∈ (0, 1) is a weight that can be adjusted. This weight determines how much you want to
focus either on energy saving or thermal comfort. The default setting of W is 0.5. This means that
there is a 50% focus on saving energy, and 50% focus on thermal comfort. λc is an constant to scale
the comfort penalty. The default setting is 1.

Next to these options an hourly weighted reward is created. This means that weight can be set by
the hour. With this setting we can create an option to focus more on energy saving in non-working
hours and more on thermal comfort in working hours. This hourly weight is determined in the
following way:

Whourly =

{
Wbusiness, if h ∈ H

1, if h ̸∈ H
(4.9)

Where h ∈ 0, 1, 2, ..., 23 is the hour of the day, and H are working hours. As will be explained in
Section 5.1, working hours are from 08:00 until 19:00. Wworking is a variable that can be changed
to preference. This is the weight of Renergy during working hours. By making the weights time
dependent we can learn the algorithm to focus on energy savings completely during the non-working
hours and focus more on comfort during working hours.
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4.2 Action space

The action space refers to the set of all possible actions that an agent can take in a given environment.
It is the range of all available choices an agent can make at any given state. The action space can
be discrete, where a finite number of actions are available, or continuous, where an infinite number
of actions can be taken. As can be seen in Table 2, both discrete and continuous action space are
used in this research. The goal of the agent is to learn the optimal policy, which is a mapping from
states to actions that maximizes the expected cumulative reward over time.

Action Heating setpoint Cooling setpoint

0 15 30
1 16 29
2 17 28
3 18 27
4 19 26
5 19 24
6 20 23
7 20 24
8 21 24
9 21 25
10 22 24
11 22 25

Table 3: Discrete action space.

As can be seen in Table 3, there are 12 different discrete actions that can be taken (Discrete(12)).
These setpoints are set for different reasons. The first two setpoint ranges are large, so the system
can set the setpoints low for heating and high for cooling to save energy at night or on weekends.
For the last actions, the ranges are smaller to make it easier to stay in the comfort zone. In the
simple environment there are only two setpoints to set. In the complex environment there are 5
thermal zones. Thus 5 heating and cooling setpoints need to be determined. For the discrete action
space, the selected actions are the same for each thermal zone. So if the action 0 is executed, the
heating setpoint for each thermal zone is 15.

Action Variable name Min Max

0 Heating setpoint 15.0 22.5
1 Cooling setpoint 22.5 30.0

Table 4: Continuous action space.

Table 4 shows the continuous action space. With a continuous action space the algorithm is free to
choose a heating setpoint in between 15.0◦C and 22.5◦C and a cooling setpoint in between 22.5◦C
and 30.0◦C. In the continuous action space the setpoints can differ for each thermal zone. In the
complex environment, the setpoints are therefore determined separately for each floor.

4.3 Observation space

The observation space is the set of all possible states that an agent can perceive in a given environ-
ment. It defines the range of all observable information available to the agent at any given point in
time. The observation space can also be continuous or discrete and is defined by the characteristics
of the environment and in this case, the sensor data available in the building. Because sensor data
is used the observations are continuous in this research.
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The agent uses the observations to determine its current state and to make decisions on what actions
to take. The observation space, together with the action space and the reward function, are the key
components of a RL problem.

The more observations you add to the environment, the more information must be processed by the
agent. This may lead to the fact that it takes longer to learn the relevant features and relationships
between the observations and actions. As the observation space becomes more complex, it may
become more difficult to find an appropriate representation for the observations, which can affect
the efficiency and accuracy of the learning process. Moreover, a larger observation space can also
increase the difficulty of the exploration problem, which refers to the challenge of exploring differ-
ent parts of the environment to learn the optimal policy. With more observations, the agent must
explore a larger space of possible states to discover the most rewarding actions, which can require
more exploration and, in some cases, more time to converge to the optimal policy.

For this reason, observation variables must be chosen carefully. For this research, a simulation is
made with an empty action space. So no setpoints are set, all the possible observation variables
are included and the one that shows the most correlation with inside temperature and energy use
is taken into account. For this purpose, a simulation is run with an empty actions space. So no
actions are taken during the simulation. The observation variables that show the most correlation
with the inside temperature and energy usage are taken into account in this study.

Variables Zone Air Temperature kWh

Outdoor temperature 0.543 -0.423
Outdoor Humidity -0.468 0.063
Wind speed 0.077 -0.030
Wind direction 0.079 -0.100
Solar radiation rate 0.655 -0.154

Table 5: Correlation matrix of the observation variables.

In Table 5, the factors are shown that have the most correlation with the indoor temperatures. The
outdoor temperature and the solar radiation rate show the most positive correlation and are taken
into account for this reason. Table 6 shows all the observation variables that are taken into account
during simulation. Next to the variables that show a high correlation with indoor temperatures the
current date and time are also taken into account. The total energy used by the HVAC system is
also included to be able to determine the energy usage during the simulation.

Observation variables

Current month
Current day
Current hour
Outdoor Air Temperature
Solar Radiation Rate per Area
Facility Total HVAC Energy use (kWh)

Table 6: Observation variables.

After the observation variables are chosen, they are scaled to a common range or zero-mean and
unit variance. This can be important because RL can be sensitive to the scale of the input variables.
Scaling can help improve the stability and convergence of the learning process, the learned policy can
be more robust to changes in the environment and better adapt to new situations. If the observation
variables have significantly different ranges, the algorithm may focus more on variables with larger
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values, which can cause sub-optimal performance.

In this research, the min max method is used for scaling the observation variables. It is a technique
to scale numerical variables to a fixed range, which is in this case between 0 and 1. The simple
formula used for scaling the observations is:

xscaled =
x− xmin

xmax − xmin
(4.10)
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5 Methodology

This section explains which algorithms are used in detail. First, the RBC model is explained. This
method is used as a benchmark. Then, the Deep Q-Network and Proximal Policy Optimization is
explained.

5.1 Rule-based control

The most common building control system is the RBC method. As explained in section 2, this
method relies on some predetermined rules for selecting temperature setpoints. These rules are
usually in the form of ”if-then” statements that dictate what action to take depending on certain
conditions. These rules are programmed into a controller that continuously monitors the tempera-
ture and takes action based on the predefined rules. The goal of rule-based temperature control is
to maintain a specific temperature range in a specific environment.

The biggest advantage of this method is that it can keep the comfort of the occupants at a high
level. The indoor temperature is very likely to be between the limits. The exact schedule is shown
in Table 7.

Day Time Heating setpoint Cooling setpoint

2*Business day 08:00 - 19:00 20 24
Else 18 26

Weekend - 18 26

Table 7: Rule-based schedule

5.2 Deep Q-learning Network

Deep Q-Learning Network (DQN) uses a deep neural network to approximate the Q-value function.
It is an extension of the regular Q-learning algorithm. Q-learning is a model-free RL algorithm that
uses traditional tabular methods to store the Q-value function. The Q-value for a state-action pair
(s,a) is the expected sum of discounted future rewards. This is done using the Bellman equation:

Q(s, a) = r + γmax
at+1

Q(st+1, at+1) (5.1)

Where r is the reward obtained by performing action a in state s, s′ is the next state after performing
action a, at+1 is the action that maximizes the Q-value in state st+1, γ is the discount factor that
determines the importance of future rewards, and maxat+1

Q(st+1, at+1) is the maximum Q-value
for the next state st+1.

DQN is preferred to Q-learning in this study. The reason is that it can handle larger and more com-
plex state spaces. Q-learning requires a Q-table to store the Q-values for each possible state-action
pair. In this case, there is a relatively large observation space, as explained in Section 4.3. Moreover,
the observations are mostly continuous, since they are observed by sensors, e.g., temperature. DQN
can handle large and complex state spaces. The Q-value function is replaced with a neural network
to approximate the Q-values. Such that Q(st, at) ≈ Q(st, at, θ) [13]. The goal of the is to minimize
the loss in Q-values:

L(θ) = (Qtarget −Qpredicted)
2 (5.2)

where Qtarget is the target Q-value obtained from the Bellman equation 5.1. Qpredicted is the
predicted Q-value from the neural network. This will give the formula:
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L(θ) = (r + γmax
at+1

Q(st+1, at+1)−Q(st, at, θ)
2 (5.3)

5.3 Policy Gradient Methods

Policy gradient methods are a class of RL algorithms that directly optimize a policy function, which
maps states to actions, in order to maximize the expected cumulative reward. Unlike value-based
methods that estimate the value of each state-action pair, such as DQN, policy gradient methods
learn a parametric representation of the policy function and update the parameters using gradient
descent [22].

The general goal of policy optimization in RL is to optimize the policy parameters θin so that the
expected return J(θ) is:

J(θ) = E
{ H∑
k=0

γkrk

}
(5.4)

where γk is the discount factor and rk is the reward received at each time-step t [15]. The methods
update the policy parametererization according to the gradient update rule:

θh+1 = θh + αh∇θJ(θt)
∣∣
θ=θt

(5.5)

Policy gradient loss:

LPG(θ) = Êt

[
logπθ(αt|st)Ât

]
(5.6)

πθ is the policy. It is a neural networks that takes the observed states from the environment as an
input and suggests actions to take as an output. Ât is an estimator of the advantage function at step
t [20]. Ât determines how much better the action taken was than expected. This function makes
sure that only the actions that are better than average receive a positive nudge. If the advantage
estimate is positive, meaning that the actions that the agent took resulted in better than average
return will increase the probability that the actions will be selected again in the future when in the
same state. The opposite holds for negative values of the advantage estimate.

5.3.1 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is one of the policy gradient methods. It is designed to learn
policies for decision-making tasks that involve sequential decision-making. PPO is a model-free,
on-policy algorithm, meaning that it learns directly from experience and only uses data from the
current policy.

The main idea behind PPO is to limit the amount that the policy can change between updates. This
is achieved by introducing a constraint on the policy update step, which is based on a clipped surro-
gate objective function. The clipped surrogate objective function takes the minimum of two terms,
one term that measures the probability ratio between the new policy and the old policy, and an-
other term that is a clipped version of the probability ratio. This constraint helps to prevent the new
policy from deviating too far from the old policy, which can lead to instability and poor performance.

PPO also incorporates a value function into the policy learning process, which helps to reduce vari-
ance and speed up convergence. The value function is used to estimate the expected return for a
given state, and is learned alongside the policy. The value function is used to calculate the advan-
tage, which is the difference between the expected return for a given state and the value of that
state under the current policy.
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PPO typically uses a neural network to represent the policy and value function, and employs a
stochastic gradient descent (SGD) optimization algorithm to update the parameters of the network
based on the clipped surrogate objective function. PPO is known for its stability and ability to
handle a wide range of environments, and has been successfully used to learn policies for a variety
of challenging tasks, such as playing games and controlling robots.

The objective function in PPO is:

LCLIP (θ) = Ēt[min(rt(θ)Āt, clip(rt(θ), 1− ϵ, 1 + ϵ)Āt] (5.7)

θ is the policy parameter. Ē denotes the empirical expectation over time steps rt denotes the ratio
of the probability under the new and old policies, respectively Āt is the estimated advantage at time
t. ϵ is a hyperparameter, usually 0.2.
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6 Simulations

To test the various methods, simulations must be performed while the algorithms determine the
heating and cooling setpoints. To do this, a connection must be made with a controller within
the simulation and the algorithms must communicate with each other. Sinergym is used for this
connection. In this section, all aspects of the simulations are discussed. The time step in the
simulations is 4, which means that the setpoints are determined every 15 minutes.

6.1 Sinergym

Sinergym is used to create a link between the simulation program and various algorithms. Sinergym
is an open source framework for simulation and control of energy buildings to perform HVAC control
with DRL. It contains all the imports needed to perform building simulations when training an RL
agent. The framework of Sinergym is shown in figure 4.

Figure 4: Sinergym.

As shown in Figure 4, sinergym creates the environment for running the simulations. The most
important part is the Building Controls Virtual Test Bed (BCVTB). This is software that allows the
user to connect different simulators to a control system. BCVTB enables the exchange of real-time
data during simulations. This ensures that the agents have all the information in each state and
time step of the simulation. The control system is an energy management system (EMS), which is
a computer that can be programmed to control building-related energy systems [8].

The BCVTB must be connected to a simulator. EnergyPlus is used in this study, and this simulation
program is discussed in more detail in the next section. OpenAI gym is used to create the algorithms
described in section 5. OpenAI gym is a toolkit for RL research [5].

6.2 EnergyPlus

All simulations in this study were performed using EnergyPlus. EnergyPlus is a whole-building
energy simulation program that uses advanced physical algorithms to model the performance of
buildings and their associated HVAC, lighting, and other systems. It is a powerful and adaptable
building simulation software that can be used for a variety of purposes, including energy modeling,
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analysis, and optimization. Therefore, it is perfectly suited for the objective of this research work.

EnergyPlus was developed by the United States Department of Energy (DOE) in 1996 [6]. En-
ergyPlus is primarily a simulation program without an interface. To visualize the building being
simulated, we use Openstudio. This is an open software platform to support energy modeling with
EnergyPlus.

To run the simulations, several files need to be uploaded. The building and a weather file to get
the climate conditions at each time step. The buildings are stored in an intermediate file (IDF).
This file contains all the important information about the building, the geometry, the materials, the
location, and of course the HVAC system.

6.3 The environments

In order to perform simulations, a IDF flle is needed. This will be the environment of the DLR
algorithms. In this study two environments are tested.

6.3.1 Simple building

The first building that is tested is a simple digital building that is publicly available by EnergyPlus.
The simple building is shown in Figure 5. In this building only one thermal zone is actively managed.

Figure 5: Simple building.

6.3.2 EDGE Olympic

The other building included in this research is the office of EDGE Next. This building is called
EDGE Olympic and it is located at the Fred. Roeskestraat 115 in Amsterdam. A digital version of
this building is needed before simulations can be performed. All the features of the EDGE Olympic
building need to be translated into a IDF file. The energy model of the building is displayed in
figure 6. This is a simplified version of the building for energy simulation purposes only.
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Figure 6: EDGE Olympic model.

The model is simplified to keep the RL problem simple. Which is perfectly fine for the goal of this
research. EDGE Olympic is a 5-floor building and each floor is a thermal zone. This means that
each floor has its space condition requirements like heating and cooling setpoints, which can be
controlled separately.

6.4 Weather file

To perform a good simulation at the right location a weather file has to be included. As mentioned,
the office is located in Amsterdam. Therefore an EnergyPlus weather file (EWP) of Amsterdam is
added. This includes all the data variables of the weather conditions in Amsterdam, such as temper-
ature, solar radiation rate, humidity, wind speed, wind direction, etc. EWP files can be downloaded
from the EnergyPlus website.

6.4.1 Weather variability

When training the model on the same dataset over and over again the probability of over fitting
arises. To prevent overfitting from happening, weather variability will be introduced. This will be
implemented with the Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck process can be used to
model stochastic processes, such as the weather. This process will introduce noise to the weather
data which makes the data slightly different over time.
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Figure 7: Weather variability for January.

The weather variability in Figure 7 is only an example of what the variability looks like. This
example is only for the month of January and only for the temperature factor. The process is done
for each weather component that is taken into account in the simulations. As mentioned, due to this
weather variability the weather conditions slightly differ in each episode while training the model.
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7 Results

In this section, the results will be discussed. The models are trained for 200 episodes. After training,
the best model is selected. The best model is based on the average reward generated by the model.
This model is then validated 10 times. The results shown are the averages of the 10 validation
episodes. The reward function used for the final simulations is explained first. As explained in Sec-
tion 6.3, two buildings are included in this research. Therefore, these results are presented separately.

7.1 Reward

The reward used in the final simulations is the hourly linear reward. This reward function is described
in detail in section 4.1. This means that the weight W changes from business hours to non-business
hours. The following choices are made for the variables in the final simulations.

Variable Value

Business hours 08:00-19:00
Wbusiness 0.3
Wnon−business 1
Comfort range (Business hours) (20,24)

Table 8: Variables for simulation.

For the algorithms there is no comfort range in non-working hours.

7.2 The base case

As explained, the method that the algorithms will be bench-marked against is the RBC method.
The simulations are done for the year 2022 with the weather conditions of Amsterdam. In Section
5.1, it is explained how RBC is performed. For both the simple environment and the EDGE Olympic
building, the RBC method is performed with the same parameters.

7.3 The simple environment

First, the results of the simple environment are discussed. To be able to determine if the algorithms
are learning the mean reward of both algorithms is plotted for every episode.

Figure 8: Learning curve PPO. Figure 9: Learning curve DQN.

In Figure 8 it can be seen that PPO seems to converge steadily to a value around 6.7. This is reward
is reached after almost 75 episodes. The DQN algorithm in Figure 9 seems to learn less steadily then
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PPO. There is a small drop in performance after 25 episodes. After it drops it seems to converge
around 6.7 as well.

That both algorithms converge is a good sign but what are the results in terms of energy usage and
comfort? To visualize the energy consumption the amount of kilowatt-hour (kWh) is plotted for
each month.

Figure 10: Energy use per month in simple environment.

It can be seen that the algorithms outperform the RBC approach in most of the months. Energy is
especially saved during winter months. In the summer the RBC is a little more energy efficient.

As explained, the indoor temperature needs to be between 20◦C and 24◦C during business hours.
During weekends or non-business hours, the indoor temperature does not matter. Therefore, the
following violations only hold for business hours.
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Figure 11: Comfort violation in simple environment.

The comfort violation in the simple environment is minor. In the winter the comfort violation of the
PPO is somewhat larger than in the summer. However, it is still within an acceptable range. When
investigating the reason why this occurs, it can be concluded that most of the violations are in the
first business hour. So the most violations are in between 08:00 and 09:00. Violations occur more in
winter than in summer. This can easily be explained due to the fact that the outdoor temperatures
are lower and hence it takes more time for the building to reach the desired temperature. Violations
in summer are negligible since it is only around 1%. The DQN algorithm seems to show the opposite
results in terms of comfort violation. In the summer the comfort range is violated more often, but in
the winter this number is lower relative to PPO. Note that the comfort violations are not displayed
in Figure 11. The reason is that the indoor temperatures are almost always in between the comfort
range due to the static setpoints. Therefore, the comfort violations are negligible.

PPO Variable

Energy saved (%) 10.70
std dev 0.01
Comfort violation (%) 8.97
std dev 0.01
Mean comfort violation 0.72

Table 9: Result summary PPO.

Table 9 shows a summary of the results of the PPO algorithm. As explained, are these results the
averages for 10 validation episodes. The performance is valuable since the algorithm shows that it
was able to save 10.7% annually while only violating the comfort range 8.97% of the time on average.
If the comfort range is violated, it is by 0.72◦C on average. The standard deviation of both the
energy saved and comfort range is low. This means that the model can produce steady results over
time.

27



DQN Variable

Energy saved (%) -1.89
std dev 0.86
Comfort violation (%) 2.68
std dev 0.06
Mean comfort violation 0.58

Table 10: Result summary DQN.

The DQN algorithm shows less positive results. On average, the model is less energy efficient than
RBC. However, the standard deviation is higher than for the PPO algorithm. This means that the
performance of the model is less constant and the results of the model fluctuate more. In some
episodes, the model performs better than the RBC method and in others, it performs worse. If
the average of 10 validation episodes is taken, the model performs 1.89% worse than RBC. The
comfort violation is better than PPO, as it violated the comfort range only 2.68% of the time. The
standard deviation of comfort violation is low, which means that the model performs stable in terms
of comfort violation. The average violation was 0.58◦C.

It is interesting to look at the behaviour of the agent in non-business hours. In the RBC method,
the choice is made to set the setpoints to 18◦C and 26◦C for the heating and cooling setpoints
respectively. These choices are made so that the building could be on temperature fast as soon
as people enter the building in the morning. It would also be more energy efficient to keep the
temperature at a certain level during the night.

Figure 12: Indoor temperatures in non-business hours.

In Figure 12 can be seen that both algorithms made a choice to keep the indoor temperature at
a certain level during the night. Even during winter, the indoor temperatures do not go below
17.5◦C. This indicates that it is indeed more energy efficient to not let the indoor temperature drop
completely during nights and weekends.

7.4 Results of EDGE Olympic

Unfortunately, the results of the EDGE Olympic building are not as favorable as the results in the
simple environment. The environment in this case is much more complex as there are 5 thermal
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zones. This makes the observation space much larger. There are 5 indoor temperatures that must
be within a certain range. This also makes the action space larger. For the discrete action space,
all setpoints are the same for each thermal zone. For the continuous action space, the setpoints can
be different. This leads to the fact that 10 different setpoints have to be determined in each time
step. Together with the large observation space, this results in a very complex problem for the DRL
algorithms. In the time available for this study and with the available computational power, it was
not possible to create a model in the complex environment that would save energy while taking into
account tenant comfort. An additional algorithm was included in the complex environment, the
Actor-Critic (A2C) algorithm. The results obtained in the EDGE Olympic building are presented
in this section.

The the mean rewards of every algorithm used is shown in the plots below. This indicates how well
the agent can learn in this environment with the specific algorithm.

Figure 13: Mean rewards per episodes in the complex environment.

The PPO algorithm seems to be learning smoothly and converges a little above 5.1. The algorithm
seems to be improving steadily and is at its peak around 225 episodes. The mean reward of the
DQN algorithm seems to converge slowly to a value of around 5.4. There is a lot of divergence in the
learning curve of the algorithm. In a good functioning DRL you would like to see a more constant
improvement of the mean reward. The A2C algorithm is performing the worst. The algorithm does
not converge. What is even worse, is that the mean reward gets lower over time. This indicates that
the algorithm is not improving and even get worse over time.

The progress of the mean rewards of DQN and especially PPO seems promising. To check if they
perform good results, the energy consumption and comfort violation are checked.
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Figure 14: Energy usage per month in EDGE Olympic.

In Figure 14 the energy use per month of all the algorithms is shown. It becomes clear that DQN
and PPO consume more energy every month of the year. The only algorithm that performs better
than RBC in terms of energy usage is A2C. However, it was already concluded that this model did
not converge and became worse over time. To investigate if the agent still performs better than
RBC it will be checked if the comfort violation is also better.
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Figure 15: Comfort range violation per month in EDGE Olympic.

From Figure 15, it is clear why A2C achieved such good energy results. The comfort violation is
very high almost every month. This means that the indoor temperature is not maintained at 31.5%
on average, with outliers of 45% per month. This is not a desirable indoor climate and therefore not
a good result. For the DQN algorithm, the comfort violation is even worse. The PPO algorithm
performs very well in terms of comfort. However, as explained in Figure 14, the energy consumption
with this algorithm is enormous, so this is not a desirable result either.

This problem seems to be too complex to solve for now. Due to a limitation in computational power,
the training of the agent takes way too long in such a complex environment. Runs take up to 40
hours to complete which makes parameter tuning a time-consuming task.

31



8 Conclusion

It can be concluded that Deep Reinforcement Learning is a very promising method for controlling
HVAC systems. This research shows that DRL can save a significant amount of energy in a simple
environment while considering tenant comfort. The PPO outperformed the traditional RBC by
10.7% in energy savings. The algorithm was also able to maintain the comfort range 91.03% of the
time.

Thus, DRL can optimize temperature setpoint control. This answers the research question: can
deep reinforcement learning optimize temperature setpoint control? In this research, it is shown that
DRL can learn to apply the settings of a comfort range within a certain time window. To take ad-
vantage of the specifics of the environment along with the current weather conditions, DRL was able
to create an agent that adjusts the heating and cooling setpoints to achieve significant energy savings.

In more complicated environments, however, there is still much to improve. Due to a lack of
computing power, the benefits of using DRL in complex environments have not been fully explored.
More research is needed to achieve the same results as in simple environments. At the moment, the
algorithms used are not capable of achieving the same results in a complex environment.
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9 Discussion

There is still much to improve in the field of this research. As mentioned earlier, the results in the
complex environment are far from ideal. Therefore, the use of DRL in complex environments needs
to be further explored. In addition to the environment, other observational variables should also be
included. Heating systems are not the only sources of heat in buildings. Lighting, electrical equip-
ment, and people themselves also generate heat. For simplicity, these variables are not included in
this research. However, it would be very interesting to see how this would affect temperatures in
the building. Occupancy in particular would be a big improvement. Firstly, because they generate
heat, and secondly, because a room does not need to be heated/cooled if it is known that this room
will not be used that day.

It would also be interesting to focus on more variables than just thermostat setpoints. Ventilation
systems are also a large part of HVAC systems and could also be controlled by DRL. Due to lack of
time and computing power, the decision is made to focus only on heating and cooling setpoints.

Other DRL algorithms could also be tested. In this research the focus was mainly on DQN and
PPO. The reason was that these algorithms performed best in previous studies. However, other
algorithms could also be well suited for this problem and need to be tested as well.
Also, more parameter tuning could be done. The DRL algorithm consists of a large number of
parameters, each of which individually affects the result. Also, due to lack of computational power,
it was difficult to do extensive parameter tuning. Now, only a simple grid search is performed, but
more parameters could be tested, which might lead to a better result.

It can be concluded that even better results can be obtained if more computational power is avail-
able. Due to the computational complexity of the problem, not all of the above could be considered.
It would be very interesting to see how much savings could be achieved if these variables can be
included.

9.1 Real world implementation

As explained in section 6.3.2, the building is divided into five thermal zones. Each floor has its
thermal zone and is therefore treated as one large room. In real life, of course, this is not the case,
and there are several separate rooms on each floor with their own thermostats. Even in the EDGE
Olympic building each room can regulate its own indoor climate. In this research, the simplified
office building was already too complex to handle. To use DRL in real life, many improvements are
still needed, as real buildings are much more complex.

If you want to implement a trained agent to control the temperature setpoint in real buildings. The
environment must be closer to the real building. An actual digital twin must be made of the building
with all the aspects of the HVAC system and the building materials. Otherwise, the trained agent
will perform very poorly when implementing. The agent needs to be trained for multiple episodes
before good results can be achieved.
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Appendix

In this section all the used parameter are shown. Parameter tuning is done with simple grid search.
However, it was very difficult to perform this search due to the long running time. As mentioned,
simulations in the simple environment took up to 10 hours and the complex even over 40 hours.

Parameter Value

Hourly weight 0.3
Number of episodes 200
Learning rate 0.0001
Gamma 0.98
Batch size 8192

Table 11: Parameters tested

These parameters are tested in multiple combinations. The values mentioned in Table 11 are the
best performing parameters and therefore used in this research.

36


	Introduction
	EDGE Next
	Problem statement
	Thesis outline

	Literature research
	(Deep) Reinforcement learning
	Markov Decision Process
	Reward function
	Action space
	Observation space

	Methodology
	Rule-based control
	Deep Q-learning Network
	Policy Gradient Methods
	Proximal Policy Optimization (PPO)


	Simulations
	Sinergym
	EnergyPlus
	The environments
	Simple building
	EDGE Olympic

	Weather file
	Weather variability


	Results
	Reward
	The base case
	The simple environment
	Results of EDGE Olympic

	Conclusion
	Discussion
	Real world implementation


