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Preface

This report is the final deliverable of my research project, conducted as part
of the Master Project Business Analytics at the Vrije Universiteit Amsterdam.
The purpose of this study is to explore how clustering algorithms can be applied
to XBRL-based financial data to group companies according to their financial
characteristics. By analyzing different clustering techniques, this research aims
to provide insight into the handling of data inconsistencies and the detection of
financial patterns.

This research was conducted in collaboration with SBR Nexus, specifically
within the ”Bedrijfsdata” department. SBR Nexus plays a key role in the pub-
lication and management of financial data standards in the Netherlands and
is responsible for the efficient exchange of business data between government,
businesses, and financial institutions.

I would like to express my sincere gratitude to my university supervisor, Prof.
Andrade Serra, P.J. de. I really appreciate our insightful meetings and his con-
tinuous guidance and valuable feedback throughout this project.

I also extend my thanks to my supervisors at SBR Nexus, René van der Meij
and Ralph Verhelst, for their support and practical expertise. I am grateful for
the opportunity to conduct this research at SBR Nexus.



Summary

This research investigates the use of clustering algorithms to analyze XBRL-
based financial data and group companies based on financial similarities. The
main objective is to explore how different clustering techniques handle the chal-
lenges of financial data inconsistencies in large datasets. By comparing Hierar-
chical Clustering, Kmedoids, and Random Forest clustering, this study evaluates
how well these methods capture financial patterns and industry trends.

Research Structure & Approach The central research question guiding
this study is: How can clustering algorithms be used to group companies with
similar financial profiles using XBRL data, and what insights can we gain about
data consistency and industry trends across these clusters? A key challenge in
financial data clustering is the presence of missing values and inconsistencies
across different company reports. To address this, custom distance functions
and imputation techniques are implemented to ensure meaningful similarity
calculations between companies.

Next, three clustering methods are applied. Hierarchical clustering is tested
for its ability to create well-separated groups, while Kmedoids is evaluated for
its stability and interpretability. Additionally, Random Forest clustering is ex-
plored as a scalable alternative that avoids explicit distance calculations. The
results of each method are analyzed using Silhouette scores and visualizations,
offering insights into how well financial patterns are captured.

Beyond technical analysis, broader implications of financial clustering are dis-
cussed, considering its potential applications in banking, risk assessment, and
financial regulation. Finally, challenges such as scalability and data quality
issues are addressed, with recommendations for future improvements.

Key Findings One of the most significant findings of this research is the
impact of data inconsistencies on clustering outcomes. Many companies fail
to report specific financial facts, leading to gaps in datasets that must be han-
dled carefully. A custom distance function was introduced to calculate distances
based on only shared features between companies. Without this approach, miss-
ing data would have distorted clustering results.

Regarding algorithm performance, Hierarchical Clustering produced well-separated
clusters, but can be computationally expensive for large datasets. Kmedoids
proved to be interpretable but sensitive to initial medoid selection and outliers,
leading to potential variations in outcomes. Random Forest clustering, on the
other hand, handled large datasets efficiently but required complete financial
data, making it less effective when dealing with missing values.



Another crucial insight is that sector-based classifications alone do not necessar-
ily reflect financial similarity. While companies within the same industry share
certain financial structures, their financial ratios and business models can vary
widely. This suggests that clustering models should incorporate more nuanced
financial indicators beyond simple industry classifications.

Conclusions & Recommendations Clustering techniques offer a power-
ful way to extract insights from financial data, but their effectiveness depends
on data quality and pre-processing strategies. Inconsistencies in XBRL filings
remain a major challenge, and improving automated data validation and cor-
rection methods would enhance clustering accuracy. Financial institutions and
regulators could benefit from refining XBRL standards to reduce variability in
reporting.

In practical terms, banks and financial analysts could leverage clustering for
risk assessment, fraud detection, and financial benchmarking. However, for
real-world applications, future research should explore more strategies to mini-
mize the impact of missing data.

Ultimately, while clustering provides valuable insights into financial patterns,
its full potential will only be realized if data reliability challenges are addressed.
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1 Introduction

The evolution of financial reporting has been significantly shaped by advance-
ments in data standardization, particularly with the adoption of the eXtensible
Business Reporting Language (XBRL). XBRL is designed to simplify the ex-
change of financial information by providing a standardized format for reporting,
which improves both transparency and efficiency. Research by [7] has already
highlighted the potential of XBRL to improve financial reporting processes,
emphasizing its importance in the 21st century. Therefore, governments, busi-
nesses, and financial institutions around the world increasingly rely on XBRL
to ensure the accurate and timely exchange of financial data. Despite its grow-
ing adoption, there are still concerns regarding the quality, consistency, and
accuracy of the data being reported. Inconsistent tagging practices, errors in
financial metrics, and variations in how companies implement XBRL standards
present significant challenges to regulators, analysts, and organizations, striving
to ensure accurate and efficient exchange of business data.

1.1 Host Organization: SBR Nexus

The host organization for this research is SBR Nexus, an entity that plays a
key role in the publication and management of financial data standards in the
Netherlands. SBR Nexus is responsible for the efficient exchange of business
data between government, businesses, and financial institutions. They work
closely with key Dutch banks such as ING, Rabobank, and ABN AMRO to en-
sure that financial reporting standards are adhered to and that data exchanges
are reliable, secure and in compliance with regulatory requirements.

Given SBR Nexus’s role as a key player in data standardization, the goal of
this research will be to contribute to improving the quality of financial data
reporting. By focusing on the consistency of the XBRL data, the findings of
this study could lead to more reliable financial reporting processes and help
SBR Nexus refine the standards. Furthermore, by exploring the use of big data
frameworks for efficient data handling, this research could provide SBR Nexus
with the technical capabilities to process larger datasets as more companies
adopt XBRL.

1.2 Motivation for study

SBR Nexus, a key player in the Dutch financial reporting ecosystem, publishes
various data standards to streamline the sharing of business data across sectors.
In collaboration with the government and major financial institutions such as
ING, Rabobank and ABN AMRO, SBR Nexus provides data products for an-
nual reports, appraisals, and rental lists, with the goal of ensuring safe, efficient
and accurate data exchange. However, ensuring that all companies consistently
adhere to XBRL standards is a persistent challenge. The accuracy and relia-
bility of XBRL data directly affect how well stakeholders can assess financial
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performance, manage risks, and maintain compliance with regulatory require-
ments.

Despite the technical benefits of XBRL, one possible challenge is the potential
for inconsistencies in how companies report financial data. Even small discrep-
ancies in tagging or data formatting can result in inaccurate financial analyses,
making it difficult to draw meaningful comparisons between companies or sec-
tors. Identifying common inaccuracies and inconsistencies in XBRL data, as
well as strategies to mitigate these issues, is crucial for the improvement of fi-
nancial reporting. Furthermore, as the volume of financial data increases, there
is a growing need for efficient and scalable methods to process, analyze, and
derive insights from these large datasets, but the application of big data tech-
nology in the field of XBRL financial reporting also has a strong necessity and
feasibility [23].

Given the importance of data quality and consistency in financial reporting,
this research seeks to explore how clustering algorithms and big data processing
frameworks can be applied to handle inconsistencies in XBRL data and group
companies based on their financial profiles. This will not only help improve
the reliability of financial reporting, but will also provide insights into broader
industry trends, enabling better decision-making for financial institutions and
regulators.

1.3 Research Questions

The core research question that guides this study is: How can clustering algo-
rithms be used to group companies with similar financial profiles using XBRL
data, and what insights can we gain about data consistency and industry trends
across these clusters? This question can be broken down into the following sub-
questions:

1. To what extent are there inconsistencies or inaccuracies in XBRL data
across different companies?

• This sub-question aims to identify specific areas where errors or dis-
crepancies occur in financial reporting, such as not reporting certain
facts or improper use of XBRL tags.

2. How can big data processing frameworks be leveraged to handle large
volumes of XBRL data efficiently and effectively?

• The focus here is on identifying scalable technologies that can man-
age and analyze increasing datasets as more companies adopt XBRL
reporting, ensuring that the analysis remains efficient and actionable.

3. What patterns or trends can be identified by applying clustering algo-
rithms to the financial data of companies using XBRL?
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• This will involve analyzing how clustering methods can group com-
panies with similar financial metrics and exploring the insights these
groupings provide about industry performance, risk, and reporting
behavior.

1.4 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 provides a
context description, outlining the background and relevance of the study. This
chapter situates the research within the broader landscape of financial report-
ing and data analytics, highlighting key challenges associated with XBRL data.
Chapter 3 presents a review of relevant literature, focusing on XBRL data qual-
ity, inconsistencies in financial reporting, and the use of machine learning tech-
niques in financial analysis. This chapter establishes the technical and theoret-
ical foundation for the approaches utilized in this research. Chapter 4 delves
into data analysis, describing the process of collecting and preprocessing XBRL
data. It outlines the application of big data frameworks to enable scalable
and efficient data processing, essential for handling the complexity of XBRL
datasets. Chapter 5 explains the methodology and statistical techniques used
to implement the clustering algorithms. This chapter lays out the methodolog-
ical framework that underpins the study. Chapter 6 presents the results of the
analysis. It includes findings on the consistency and reliability of XBRL data,
insights from clustering analyses, and a closer examination of specific clusters.
Chapter 7 offers a discussion of the results, interpreting the key findings in re-
lation to the research questions. It also explores the business conclusions for
SBR Nexus and the broader financial reporting ecosystem. Finally, Chapter 8
concludes the thesis by presenting implications associated with the consistency
and processing of XBRL data. It also outlines the potential for future research.
Through this structure, the thesis aims to systematically address the challenges
associated with XBRL data and propose practical solutions that can be applied
in the future.
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2 Context Description

This section provides an overview of the broader context of XBRL and how it
is situated in this research.

The adoption of XBRL has brought a transformative shift to the landscape of
financial reporting. XBRL provides a standardized, machine-readable format
for reporting financial data, enhancing transparency, accuracy, and comparabil-
ity across companies and industries. This digital evolution enables stakeholders
such as investors, analysts, regulators, and the public to access granular financial
data more efficiently [9] [10] [26]. Since the 1990s, the internet revolutionized
financial reporting by allowing companies to transition from traditional paper-
based reports to online financial disclosures, including XBRL-formatted reports
[16]. However, despite the enhanced availability of financial disclosures, chal-
lenges remain in seamlessly integrating this information into analytical tools [2].

Initially, XML (eXtensible Markup Language) was proposed as a method for
tagging financial data to automate information retrieval. However, the lack of
standardization in XML labels limited the benefits of automated web retrieval
systems. Companies could create their own tags, making it difficult to compare
data across businesses [7]. XBRL, a more specialized markup language, resolves
this issue by introducing standardized tags for business reporting, enabling a
consistent structure that facilitates automated data extraction and analysis.

Nevertheless, XBRL adoption is not without its challenges. While it facilitates
machine-readability and data standardization, the success of XBRL in deliver-
ing consistent data depends on how strictly companies adhere to the standard.
Variations in tagging practices can still lead to inconsistencies, data inaccuracies
and costs, particularly in markets where public information is less robust [10].
Which all undermine the comparability of financial reports. Tohang et al., 2020
[20] highlights another significant challenge: the asymmetry in the transferabil-
ity of online financial disclosures. This complicates the task of aggregating data
from different sources.

The advantages of XBRL extend beyond financial markets. As a language that
enables businesses to encode and decode their financial data in a standardized
format, XBRL ensures that financial reports are easily accessible and compre-
hensible by machines, which reduces the risk of human error. This automation
can be streamlined in a reporting process, lowering administrative costs and
improving the efficiency of data handling in corporate environments [21]. Fur-
thermore, XBRL promotes financial transparency by democratizing access to
financial data, allowing a wide range of stakeholders to interpret and use this
information for decision-making [13].
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3 Literature Review

This section explores the literature regarding: Random Forests (RFs), cluster-
ing techniques, and imputation methods to handle missing data and improve
financial analysis.

As mentioned earlier, the adoption of XBRL has revolutionized financial data
analysis by providing a standardized, machine-readable format for reporting.
However, leveraging this structured data to derive actionable insights requires
advanced analytical techniques. Integrating machine learning methods, such as
Random Forests (RFs) and clustering models, introduces new possibilities for
processing and interpreting complex financial datasets.

Random Forests (RFs) are ensemble learning methods that combine multiple
decision trees to enhance predictive performance. They are widely recognized
as robust tools in pattern recognition, particularly excelling in classification and
regression tasks due to their ability to reduce overfitting and improve general-
izability [5]. RFs work by aggregating the outputs of individual decision trees,
each trained on a bootstrapped subset of the data, and by considering a ran-
dom subset of features at each split, ensuring diversity among the trees [5]. This
characteristic makes RFs particularly robust for analyzing structured datasets
like those formatted in XBRL.

Like classification, cluster analysis groups similar data objects into clusters [18].
Clustering analysis is a useful starting point for purposes such as data sum-
marization. A cluster of data objects can be considered as a form of data
compression [6].

Despite both their prominences in supervised learning contexts, the application
of RFs in unsupervised tasks such as clustering has been less explored. Distance-
based RF clustering methods address this gap by deriving meaningful similarity
measures between data points from RF proximity metrics [17, 19]. Proximity
scores are calculated based on how often data points end up in the same leaf
node across all trees in the forest, providing a measure of similarity.

Once a proximity matrix is constructed, it can serve as input for conventional
clustering algorithms, such as:

• Hierarchical Clustering, a method that groups data points based on nested
relationships, enabling the discovery of multi-level structures within datasets
[14].

• Spectral Clustering, A graph-based technique that partitions data using
eigenvectors of the similarity matrix, which has been shown to be effective
in high-dimensional datasets [15, 12].
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Such methods have been useful for analyzing structured financial data and
demonstrated how RF proximity metrics can cluster financial reports, uncover-
ing trends and anomalies across industries.

Innovations in Unsupervised RF Techniques Building on the foundational work
of Breiman, researchers have developed methods to expand the unsupervised
capabilities of RFs.

Notable innovations include:

• Extremely Randomized Trees (ExtraTrees): Geurts et al. (2006) intro-
duced ExtraTrees, which increase the randomness of splits by selecting
thresholds randomly instead of optimizing them based on the data. This
approach has been shown to enhance computational efficiency and robust-
ness in clustering applications [8].

• Isolation Forests: Liu et al. (2008) proposed Isolation Forests as an
anomaly detection method that isolates outliers by recursively partition-
ing the data. Anomalies, being few and different, require fewer splits to
isolate, making this technique ideal for detecting irregularities. [11].

When applied to XBRL, RF-based clustering provides valuable insights into fi-
nancial behaviors and reporting patterns. These methods can group companies
with similar financial characteristics, facilitating cross-sectional analyses and
trend identification. By automating these processes, RF clustering enhances ef-
ficiency, reduces manual oversight, and ensures consistency across datasets while
advancing the goals of transparency and comparability inherent in XBRL.

One main problem of the RF-based clustering model is that it needs a com-
plete dataset to function properly. And missing data is a common problem in
financial data analysis. The absence of crucial financial data points can lead to
biased insights [22].

There are various approaches to handle missing data, and the most appropriate
method depends on the specific circumstances. Common techniques include:

• Imputation: Replacing missing values with estimates, such as mean, re-
gression, or multiple imputation.

• Deletion: Removing incomplete cases, effective when missing data is min-
imal and does not bias results.

• Modeling: Using statistical models to address missing data, suitable for
larger amounts or non-random patterns.

According to the findings of Strike et al. (2001) and Raymond and Roberts
(1987), when datasets have a low proportion of missing data, typically less than
10% to 15% of the entire dataset, it is generally acceptable to simply remove the
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incomplete entries. Such removal is unlikely to have a significant impact on the
overall analytical results. However, when the missing data rate exceeds 15%,
a more cautious approach is required to address the issue effectively (Acuna &
Rodriguez, 2004; Lin and Tsai, 2021).

Another commonly used method is the mean-mode method. This method as-
signs numerical missing values with the attribute’s mean and replaces a categor-
ical missing value with the most frequently occurring value [4]. This method is
the most common method used in research [3]. However, researchers claim that
the mean-mode method is the worst possible option, regardless of the amount
missing, because it artificially minimizes the dataset’s standard deviation [1].

When working with multivariate data, more advanced imputation methods,
such as iterative imputation, have shown the potential to yield better results
compared to simpler techniques. These methods leverage the relationships be-
tween features in the dataset, using the available information in other variables
to estimate missing values more accurately.

While iterative imputation methods such as Multiple Imputation by Chained
Equations (MICE) have been widely discussed and implemented in various
fields[24, 25], there remains a small research gap in their application to spe-
cific contexts like financial reporting or other highly structured datasets, such
as XBRL.

Overall, XBRL has been instrumental in transforming financial reporting into a
digital, transparent, and efficient process, yet significant work remains to stan-
dardize its application and ensure that its full potential is realized. This research
seeks to further explore these issues by examining the consistency and reliabil-
ity of XBRL data in the context of data integration and clustering algorithms,
which will offer insights into how these tools can help organizations and stake-
holders with challenges posed by inconsistent financial reporting.
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4 Data Analysis

The data analysis section details the methodology employed for processing and
analyzing the dataset. It begins with extraction in Section 4.1. Next, it dis-
cusses structuring, cleaning, and imputation, and financial metric calculations
in Section 4.2. Finally, data exploration employs visualizations in Section 4.3.

4.1 JSON Data Collection and Extraction

This subsection explains how data was collected and parsed from JSON files,
ensuring accessibility and consistency for subsequent processing.

One of the main challenges encountered during this project was the lack of a
clean, pre-structured database for financial data. Instead of working with an
existing dataset, data gathering was required from publicly available sources.
The raw data was scattered across various JSON files on filings.xbrl.org. Man-
ual collection would have been inefficient and prone to errors. This led to the
development of an automated process to both gather and clean the data, ensur-
ing it could be used effectively for financial analysis.

This section contains the outline of a process that involves the two main phases:
(1) gathering financial data from a website using web scraping techniques, and
(2) extracting key financial information from the collected data stored in JSON
format. The workflow described here automates both the data collection and
processing steps, making it highly efficient for large datasets.

Phase 1: Gathering JSON Files from the website. The first phase of this pro-
cess involves collecting JSON files from a financial reporting website, called fil-
ings.xbrl.org. These files are publicly available, but manual downloading while
maintaining a usable structure for numerous companies would be very inef-
ficient. To address this, the script leverages a package called Selenium, a web
automation tool, which navigates the website and download the necessary JSON
files for each company listed.

Setting up Selenium allows it to simulate a browser and interact with the web-
site just as a human user would. Selenium automates the process of loading
the website, navigating to the specific country (in this case, the Netherlands),
and applying filters to display relevant companies. Once the script reaches a
company’s detailed page, it downloads the relevant files and saves it locally.

Phase 2: Extracting and Processing Financial Data from JSON Files. Once the
JSON files are downloaded, the second phase of the script focuses on extracting
the financial data from each file. The goal is to retrieve the financial figures
(e.g., revenue, net income) and store them in a structured format for further
analysis. The script iterates through each file in the directory and converts
the raw JSON data into Python-readable structures, which makes it easier to
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manipulate and process. The JSON files also contain a lot of fields which are
not usable for this research, therefore the script only extracts the value fields,
which contains the actual numerical data of interest.

After processing the JSON files, the script generates a dataset containing the
extracted financial data. However, the dataset remains unclean, unstructured,
and not yet ready for immediate use. Significant cleaning, organization, and
analysis are required before proceeding to the modeling phase.

4.2 Structuring, cleaning and imputation

Here, the focus is on preparing the dataset by addressing inconsistencies, filling
missing values, and organizing the data for analysis.

The first step in the methodology will be the use of a Random Forest model.
They work best when features are provided as distinct columns. Pivoting en-
sures that each financial entry becomes a separate feature (column), making the
data more structured for the model. By pivoting, a dataset is created where
each column corresponds to a specific financial entry. This makes it easier to in-
terpret feature importance scores generated by the Random Forest model. The
resulting pivot table now makes it also easier for cleaning, imputing, and feature
engineering, ensuring better pre-processing for the model.

Cleaning was particularly necessary to address instances of duplicate stored
values. Annual reports typically include data for both the current and the pre-
vious year. However, when a company has multiple annual reports stored in
the database, duplicate values may appear. These duplicates must either be ag-
gregated or removed, depending on whether they provide additional or updated
information compared to one another.

To ensure the data’s usability, specific adjustments were needed to handle non-
reported entries of critical financial columns. Because, certain financial met-
rics were often incomplete or absent. For instance, values like ”Current As-
sets” and ”Current Liabilities” were reconstructed using related attributes when
missing, ensuring that these foundational elements were accurately represented.
Similarly, other financial metrics were imputed through a hierarchy of related
columns to capture its most accurate representation or imputed based on logi-
cal relationships between related data points. This iterative imputation ensured
that even when primary values were missing, alternative sources provided a re-
liable fallback, preserving the integrity of the dataset for subsequent analysis.

For consistency in the dataset, it was necessary to standardize the representation
of time periods. Annual reports typically report time in one of two formats: as a
single timestamp or as a time range. This distinction exists to indicate whether
a financial value represents a specific point in time (e.g., equity at the beginning
of the year) or spans an entire year (e.g., revenue). To facilitate further analysis,
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I chose to align these formats by imputing their values to one another.

For example, I paired the revenue reported for the period 01-01-2023 to 01-01-
2024 with the equity reported for 01-01-2024. This pairing reflects the logical
relationship where the equity at the start of 2024 represents the year-end result
of 2023. This approach was applied consistently across all years, ensuring a
unified and comprehensive database.

Once the imputation was completed, The dataset’s completeness was assessed.
Columns with insufficient data, such as custom financial tags created by com-
panies that had very few entries, were removed including other low populated
columns. Similarly, some rows were excluded when pairing information was not
possible, particularly for entries lacking data from prior years. These rows of-
fered little analytical value and were thus omitted.

After these adjustments, I opted to retain only the time range periods while
removing single-timestamp entries. Since both formats now contained identical
information due to the imputation process, keeping only one ensured simplicity
and consistency in the dataset moving forward. This streamlined approach cre-
ated a cleaner, more uniform database for subsequent analysis.

To enhance the dataset’s analytical depth, several key financial metrics were
calculated and used to support financial modeling. A notable addition was
the computation of the Altman Z-score, a well-established indicator of finan-
cial health and bankruptcy risk. This metric integrates various financial ratios,
leveraging relationships between liquidity (working capital), profitability (re-
tained earnings, EBIT), leverage (Equity to total liabilities), and operational
efficiency (Revenue to total assets). By calculating the Z-score, the dataset
gained a robust tool for assessing the financial stability of entities, enabling
insights into their risk profiles and overall economic viability.

Z-score = 1.2× Working Capital

Total Assets
+ 1.4× Retained Earnings

Total Assets
+

3.3× EBIT

Total Assets
+ 0.6× Equity

Total Liabilities
+ 1.0× Revenue

Total Assets
,

(1)

where:
Working Capital = Current Assets− Current Liabilities, (2)

EBIT = Profit or Loss Before Tax. (3)

In addition to these metrics, essential financial ratios were introduced to fur-
ther enrich the dataset. These ratios offer valuable perspectives on profitability,
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efficiency, and financial stability, forming the foundation for deeper financial
analysis.

Metrics such as Return on Equity (ROE) and Return on Assets (ROA) were
derived to measure the company’s profitability relative to its equity and total
assets. Similarly, Profit Margin was calculated to evaluate the efficiency of
converting revenue into profit. To assess financial leverage, the Debt-to-Equity
ratio was computed, capturing the relationship between a company’s liabilities
and equity. Additionally, the Current Ratio was included to evaluate liquidity
by comparing current assets to current liabilities, providing insight into the
company’s ability to meet short-term obligations.

ROE =
Profit or Loss

Equity
× 100, (4)

ROA =
Profit or Loss

Assets
× 100, (5)

Profit Margin =
Profit or Loss

Revenue
× 100, (6)

Debt-to-Equity =
Liabilities

Equity
, (7)

Current Ratio =
Current Assets

Current Liabilities
. (8)

These ratios were designed with safeguards to address scenarios where denomi-
nators were missing or zero, ensuring the integrity of the results. By integrating
these financial metrics, the dataset gained a robust analytical layer, enhancing
its capacity to inform strategic decision-making and financial evaluations.

Despite extensive restructuring, cleaning, and imputation, achieving a fully com-
plete dataset was not possible. This limitation stems from the variability in how
companies report their financial data and the specific elements they choose to
disclose. This outcome directly addresses the first sub-question: ”To what ex-
tent are there inconsistencies or inaccuracies in XBRL data across different
companies?” This sub-question is aimed at identifying specific areas where dis-
crepancies or errors occur in financial reporting. The significant effort required
for structuring and cleaning highlighted these inconsistencies in reporting across
companies. Even after implementing imputation and feature engineering to fill
gaps and standardize the data where possible, these inconsistencies remained
evident, highlighting the challenges posed by the diverse approaches companies
take in reporting.
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4.3 Data exploration

In this section, we dive deeper into the dataset to explore key financial rela-
tionships and trends through data visualizations. Various graphical techniques
are employed to uncover patterns, highlight anomalies, and provide a clearer
understanding of the financial structures of the companies in the dataset. Visu-
alizations enable the drawing of meaningful conclusions that might be difficult
to identify through raw data alone. The focus is primarily on visualizing the
relationships between assets, liabilities, and equity, as well as the calculated
financial metrics and ratios, offering insights into company size, financial sta-
bility, and the potential risks or strengths in their financial positions. Through
these visual analyses, a deeper understanding of the data is achieved, facilitating
more informed interpretations and decision-making.

Figure 1 below visualizes the relationship between assets, liabilities, and equity
across the companies in the dataset, providing insights into their financial struc-
tures. On the x-axis, the chart plots total assets, which represent the resources
available to each company. The y-axis represents total liabilities, reflecting the
financial obligations. The size of each bubble corresponds to the company’s
equity, which indicates its net worth or the value of ownership after subtracting
liabilities from assets.

Figure 1: Bubble chart visualizing the relationship between Assets and
Liabilities, sized by Equity across the companies in the dataset
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By examining Figure 1, patterns and trends in the data emerge. For example,
companies with larger assets tend to have higher liabilities, which is expected,
but variations from this trend can also be seen. These are outliers, where compa-
nies either have disproportionately high liabilities relative to assets or unusually
high assets relative to their liabilities. The size of the bubbles offers additional
insight into the financial health of each company, with larger bubbles indicating
higher equity levels, which suggest a stronger financial position and a more ro-
bust net worth. In contrast, smaller bubbles point to companies with narrower
equity margins, potentially signaling higher financial risk.

What can be seen in the radar charts below, is that it provides a comparative
visualization of the financial performance across multiple companies or entries
between companies using key financial ratios and the Altman Z-score. Each
axis represents a distinct financial metric: Return on Equity (ROE), Return
on Assets (ROA), Profit Margin, Debt-to-Equity Ratio, Current Ratio, and the
Altman Z-score. The plotted areas for each entry allow for an intuitive compar-
ison of these metrics, highlighting variations in financial stability, profitability,
and risk.

Larger areas in the radar chart generally signify stronger financial performance.
For example, a higher ROE or ROA indicates efficient use of equity or assets to
generate profits. Similarly, the Altman Z-score reflects the company’s financial
health and bankruptcy risk, with higher scores implying lower risk. The Profit
Margin axis reveals how effectively revenue is translated into profit, while the
Debt-to-Equity Ratio axis evaluates leverage, where lower values are often fa-
vorable. Finally, the Current Ratio assesses liquidity, indicating the company’s
ability to meet short-term obligations.

Figure 2 shows notable differences among the entries(years), suggesting varia-
tions in financial conditions over time. For instance, some entries have higher
profitability or overall financial health while others metrics like leverage (Debt-
to-Equity) or liquidity (Current Ratio) stayed relatively the same. This radar
chart serves as a summary of financial performance, offering a clear, visual com-
parison of key metrics across multiple periods.
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Figure 2: Radar chart of Heineken NV visualizing the financial performance
between years using key financial ratios and the Altman Z-score

Figure 3: Radar chart of Van Lanschot Kempen NV visualizing the financial
performance between years using key financial ratios and the Altman Z-score
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Figure 3 visualizes the financial ratios and Altman Z-score for Van Lanschot
Kempen NV across four entries. However, a key observation is the missing
Altman Z-score and Current Ratio for all entries, which leaves two critical met-
rics unrepresented in the comparison. Upon further inspection, the inability
to calculate the Altman Z-score stems from missing working capital data. The
working capital, a vital component of the Z-score formula, could not be derived
due to the absence of specific details in the dataset. While total assets and total
liabilities were reported, the lack of separation between current and noncur-
rent components prevented the calculation of working capital. The same holds
for the Current Ratio where Current Assets and Current Liabilities were both
needed for the calculation.

The chart still offers valuable insights into the other financial ratios. A notable
trend is the consistently high Profit Margin, suggesting effective cost control
and profitability. However, ROA shows negligible values, indicating possible in-
efficiencies in asset utilization. The Debt-to-Equity remains moderate, implying
balanced leverage.

This data exploration again highlights that there are inconsistencies in report-
ing across companies, which can lead to incomplete financial analyses. Which
directly addresses the first sub-question again: ”To what extent are there in-
consistencies or inaccuracies in XBRL data across different companies?” The
missing Altman Z-score underscores how reporting discrepancies, such as a lack
of detailed breakdowns in financial data, can hinder the ability to calculate crit-
ical metrics and conduct comprehensive analyses. This emphasizes the need for
standardized reporting practices to enhance data usability and comparability
across entities.
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5 Methodology

This section outlines the approaches taken to cluster and analyze the dataset.
The methodology describes three distinct versions of clustering, each utilizing
different pre-processing techniques to handle missing values and generate mean-
ingful groupings. Section 5.1 focuses on hierarchical clustering, where we employ
a custom pairwise distance function to handle missing data effectively, preserv-
ing the integrity of the dataset. In Section 5.2, we explore KMedoids clustering,
which leverages the same custom distance function but uses actual data points
as cluster centers, making it more robust to outliers. Section 5.3 introduces a
machine learning-based approach, combining Random Forest imputation with
Agglomerative Clustering to uncover latent relationships in the data, providing
a powerful alternative for handling missing values and complex structures. Each
method is evaluated based on its strengths, limitations, and the way it handles
missing data, ultimately offering a comprehensive approach to clustering.

5.1 Hierarchical Clustering

The first approach applies hierarchical clustering to a dataset containing miss-
ing values. Hierarchical clustering builds a hierarchy of clusters by iteratively
merging or splitting groups based on a distance metric. This method is particu-
larly valuable due to its flexibility in defining cluster granularity and its ability
to produce a visual representation of relationships via dendrograms.

A key challenge in clustering is handling missing values, as they can distort
distance calculations and affect the validity of results. Instead of discarding
incomplete data or imputing missing values, this approach employs a custom
pairwise distance function to compute distances while ignoring dimensions with
missing values. This ensures that data points are compared only across shared
attributes, preserving as much information as possible while minimizing bias.

5.1.1 Handling Missing Values

The choice to use a custom distance function is motivated by the need to min-
imize assumptions about the data. By restricting distance calculations to non-
missing dimensions, the analysis avoids introducing biases that could arise from
imputation or complete-case analysis. However, ignoring missing values alto-
gether is not without drawbacks, as more sophisticated imputation techniques
exist in the literature that could potentially yield more robust results. This
limitation is discussed further in Section 5.1.4.

The distance function is defined as follows:

d(x,y) =

{√∑
i∈S(xi−yi)2

|S| , if S ̸= ∅
∞, if S = ∅

(9)
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where:

• S = {i | ¬isna(xi) ∧ ¬isna(yi)},

• xi, yi are the values of x and y in dimension i,

• isna(xi) checks if xi is missing,

• |S| is the number of shared dimensions, ensuring normalization by common
fields.

This formulation ensures that only shared dimensions are considered when cal-
culating the Euclidean distance metric. This is used to measure dissimilarity
between data points. The metric is well-suited for numerical data and ensures
consistency with the chosen clustering method. If no shared dimensions exist
(S = ∅), the distance is set to infinity, effectively disqualifying the pair from be-
ing grouped together in a cluster. This approach minimizes assumptions about
the data while maximizing the amount of information retained. However, a
potential downside is that data points with fewer shared attributes may appear
artificially closer simply due to fewer dimensions being considered. By normaliz-
ing the distance by the number of shared fields, this issue is mitigated, ensuring
a fairer comparison between data points.

5.1.2 Preprocessing and Scaling

Before computing the distance matrix, the data is standardized to ensure com-
parability across features. Standardization rescales the data so that each feature
has a mean of 0 and a standard deviation of 1:

z =
x− µ

σ
(10)

where:

• z is the standardized value,

• x is the original feature value,

• µ and σ are the mean and standard deviation of the feature, respectively.

This step is crucial for distance-based methods, ensuring that all features con-
tribute equally to the distance calculation, regardless of their original scale.

5.1.3 Clustering Approach

The hierarchical clustering algorithm is applied to the distance matrix derived
from the custom distance function. The clustering process consists of the fol-
lowing steps:
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1. Distance Matrix Calculation: The pairwise distances between all data
points are computed using Equation (9). This results in a condensed
distance matrix, a one-dimensional array containing the upper triangular
portion of the full pairwise distance matrix.

2. Linkage Calculation: A linkage method determines how clusters are
merged based on the distances. In this approach, Ward’s linkage is used,
which minimizes the variance of the clusters being merged. This ensures
that the resulting clusters are compact and relatively homogeneous, which
is particularly beneficial when working with numerical datasets. Mathe-
matically, for two clusters A and B, Ward’s linkage updates the total
within-cluster variance as:

∆E =
|A||B|

|A|+ |B|
∥x̄A − x̄B∥2 (11)

where x̄A and x̄B are the centroids of clusters A and B, and ∥·∥2 represents
squared Euclidean distance.

3. Dendrogram Construction: The hierarchical structure is visualized
using a dendrogram. The dendrogram provides a visual summary of the
clustering process, including the order in which data points are merged and
the distances at which clusters are formed. Each node represents a cluster,
and the height of a node corresponds to the distance (or dissimilarity) at
which clusters were merged.

5.1.4 Advantages and Limitations

This approach is well suited for data sets with missing values, offering a balance
between simplicity and robustness. The method’s strengths lie in its ability
to handle missing values naturally without discarding information. It’s inter-
pretability using a dendrogram, providing a clear visual representation of the
clustering process, making it easier to understand the relationships between
data points and clusters. Furthermore, it needs no pre-specification of Clusters.

However, hierarchical clustering also has a few limitations that need to be con-
sidered. One of the main challenges is its computational complexity. For large
datasets, hierarchical clustering can become computationally expensive, primar-
ily due to the O(n2) complexity associated with calculating pairwise distances
between data points. This can lead to significant processing time, especially as
the dataset grows in size. Another limitation is its sensitivity to the linkage
choice. The outcome of hierarchical clustering is heavily influenced by the link-
age method used, whether it’s single, complete, or average linkage. Selecting the
appropriate linkage method is crucial and requires careful consideration of the
specific characteristics of the dataset, as different methods can lead to varying
results.
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5.2 KMedoids Clustering

The second approach applies the KMedoids clustering algorithm, which is well-
suited for datasets with missing values when combined with a custom dis-
tance matrix. KMedoids differs from k-means by selecting actual data points
(medoids) as cluster centers instead of centroids, making it more robust to out-
liers. A medoid is a data point that minimizes the sum of distances to all other
points within its cluster.

5.2.1 Handling Missing Values and Scaling

Given its dependence on pairwise distances, this method naturally integrates the
custom distance function introduced in Section 5.1, ensuring that missing values
are handled consistently across clustering approaches. This allows the clustering
to be based solely on shared attributes, reducing bias from imputation. The
data is standardized before distance calculation to ensure comparability across
features, as in Equation (10).

5.2.2 KMedoids Clustering Approach

Unlike hierarchical clustering, which iteratively merges clusters, KMedoids par-
titions the data into k clusters by minimizing intra-cluster dissimilarity. The
clustering process consists of the following steps:

1. Distance Matrix Calculation: The pairwise distances between all data
points are computed using the custom function from Section ??, ensuring
compatibility with the handling of missing values.

2. Initialization: The algorithm begins by randomly selecting k data points
as initial medoids. These medoids serve as the starting representatives for
the clusters.

3. Assignment: Each data point is assigned to the cluster of its nearest
medoid based on the precomputed distance matrix.

4. Medoid Update: Within each cluster, the algorithm searches for a new
medoid that minimizes the total dissimilarity to all other points in the
cluster. The point that achieves this becomes the new medoid.

5. Iteration: Steps 3 and 4 are repeated until medoids stabilize or a prede-
fined number of iterations is reached.
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The objective function minimizes the total within-cluster dissimilarity:

k∑
j=1

∑
i∈Cj

d(xi,mj) (12)

where:

• Cj is the set of points in cluster j,

• mj is the medoid of cluster j,

• d(xi,mj) is the pairwise distance.

Unlike hierarchical clustering, where linkage choice affects results, KMedoids
relies directly on the custom distance function for cluster formation.

5.2.3 Advantages and Limitations

KMedoids clustering offers several advantages that make it a compelling choice
for certain data analysis tasks. One of its primary strengths is its robustness to
outliers. Unlike centroid-based methods such as k-means, which can be highly
sensitive to outliers, KMedoids uses actual data points as medoids. This ap-
proach significantly reduces the impact of outliers, leading to more reliable clus-
tering results in the presence of noisy data. Additionally, KMedoids utilizes
the same distance function as hierarchical clustering, avoiding potential biases
that may arise from imputing missing values. Another key benefit is its inter-
pretability. Since medoids are representative data points, they provide a clear
and intuitive way to interpret the clusters, aiding in understanding the structure
of the data.

However, KMedoids does come with its limitations. One notable challenge is its
computational complexity. Similar to hierarchical clustering, constructing the
distance matrix in KMedoids can be computationally expensive, especially when
dealing with large datasets, as the time complexity scales with O(n2). Further-
more, KMedoids requires the predefinition of k, the number of clusters, which
may necessitate additional exploratory analysis or domain expertise to deter-
mine the optimal number of clusters. Lastly, KMedoids suffers from random
initialization, as the final clustering result can depend on the initial selection of
medoids. To ensure stable and reliable results, multiple runs are often necessary.
Despite these trade-offs, KMedoids provides a strong alternative to hierarchical
clustering, particularly when a predefined number of clusters is desired and
robustness to outliers is important.
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5.3 Random Forest Clustering with Imputed Dataset

The third approach involves clustering a dataset where missing values have been
imputed using a robust iterative imputation method. The clustering process is
guided by a proximity matrix derived from a Random Forest Classifier, cap-
turing relationships between companies. This method combines the power of
machine learning-based imputation with the interpretability of proximity-based
clustering.

5.3.1 Handling Missing Values

In this version, missing values are addressed through an iterative imputation
model. The dataset is imputed using an IterativeImputer with a RandomFore-
stRegressor as the estimator. The imputation process works iteratively, estimat-
ing missing values based on features with a correlation above a certain threshold
(e.g. |r| > 0.7). For a given target column x, the algorithm identifies features
that are highly correlated with x, and uses them to predict missing values using
a Random Forest model. The imputer iteratively updates missing values until
convergence. By using highly correlated features to estimate missing values, it
retains more of the dataset’s structure compared to simpler methods like mean
or median imputation.

5.3.2 Clustering Approach

The clustering process begins with the construction of a proximity matrix, a ma-
trix that represents the similarities between different companies in the dataset,
derived from a RandomForestClassifier. This step serves as the foundation for
the subsequent clustering analysis, leveraging the Random Forest’s ability to
capture intricate relationships in the data. The overall process can be broken
down into the following steps:

Step 1: Training the Random Forest After imputation to handle missing
values, a RandomForestClassifier is trained on the complete numerical dataset.
Random Forest is an ensemble learning method that operates by creating a
collection of decision trees, each trained on a random subset of the dataset and
features. This randomness introduces diversity among the trees, which enhances
the model’s ability to capture complex, non-linear relationships. Importantly,
the Random Forest algorithm assigns each company to a terminal node, or leaf,
in every tree.

Step 2: Constructing the Proximity Matrix To quantify the similarity
between companies, the Random Forest’s structure is leveraged to construct a
proximity matrix. This process involves two key steps:

1. Leaf Index Extraction: As each company is passed through every tree in
the forest, the index of the leaf node where the company lands is recorded.
If two companies land in the same leaf of a tree, they are considered similar
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with respect to that tree. This step effectively uses the Random Forest as
a mechanism for grouping companies based on their feature similarities.

2. Proximity Calculation: For each pair of companies i and j, the number
of trees where both companies share a leaf is counted. This count is then
normalized by the total number of trees T in the forest, resulting in a
proximity value:

Proximity(i, j) =
Number of shared leaves(i, j)

T
. (13)

A higher proximity value indicates greater similarity between the two com-
panies.

The proximity matrix is a n×n matrix, where n is the total number of compa-
nies, and it provides a robust, non-parametric representation of the relationships
in the data.

Step 3: Converting to a Distance Matrix To enable clustering, the prox-
imity matrix is transformed into a distance matrix, where the distance between
two companies is defined as:

Distance(i, j) = 1− Proximity(i, j). (14)

This conversion ensures that higher proximities correspond to shorter distances,
aligning with the requirements of clustering algorithms.

Step 4: Agglomerative Clustering With the distance matrix in place,
Agglomerative Clustering is applied to group the companies into clusters. Ag-
glomerative clustering is a hierarchical clustering method that starts with each
company as an individual cluster and iteratively merges the two closest clusters
until a predefined number of clusters is reached. Here the same linkage criterion
is used as in the Hierarchical clustering approach, namely the Ward linkage,
which minimizes the variance within clusters during each merge. This results
in compact, cohesive clusters.

The resulting clusters represent groups of companies with internal similarity
as determined by the Random Forest’s decision trees. This approach com-
bines machine learning with hierarchical clustering, creating a pipeline where
the Random Forest acts as the first step to uncover latent relationships, and
agglomerative clustering builds upon these relationships to form interpretable
groupings.
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5.3.3 Advantages and Limitations

This methodology offers several notable strengths that contribute to its effec-
tiveness in various data analysis tasks. One of the key advantages is its ability to
handle non-linear relationships. The Random Forest algorithm excels in captur-
ing complex, non-linear interactions between features, which are then reflected
in the proximity matrix. This makes it particularly useful for datasets where
relationships between variables cannot be captured by simpler linear models.
Additionally, the model demonstrates robustness to outliers. Due to its ensem-
ble nature, where multiple decision trees are used, the impact of outliers is min-
imized. Each individual tree can handle irregularities independently, preventing
any one outlier from disproportionately affecting the overall model performance.
Another strength is the seamless integration with clustering. The proximity
matrix, which is generated by Random Forest, serves as a natural input for
agglomerative clustering. This allows for a smooth transition from machine
learning to clustering, enabling a cohesive and efficient analysis pipeline.

However, there are some limitations to consider. One major drawback is the de-
pendence on imputation quality. The Random Forest model requires a complete
dataset, so any missing values must be imputed beforehand. If the imputation
step is done poorly, errors can propagate through the entire process, ultimately
affecting the quality of the clustering results. Additionally, the performance of
both the Random Forest and the clustering process is highly sensitive to the
choice of hyperparameters. With numerous parameters that need fine-tuning,
optimizing this model can be challenging, and achieving the best performance
requires careful attention to detail.

5.4 Summary of methods

• Hierarchical Clustering: Uses a custom distance function directly on a
datasets with missing values. The custom pairwise distance function com-
putes distances only on shared dimensions between data points, avoiding
bias from imputation or data exclusion. The Ward linkage method was
used to create interpretable clusters visualized through a dendrogram.

• Kmedoids: This approach applies the same custom distance function as
in Hierarchical Clustering. Medoids are iteratively updated to minimize
intra-cluster distances until the medoids stabilize or the algorithm reaches
the maximum number of iterations. This method is robust to outliers.

• Random Forest Clustering: This method handles missing values with
an imputation method. A Random Forest model generates a proximity
matrix by measuring how often companies share leaf nodes across trees.
This matrix is converted to a distance matrix and clustered using Agglom-
erative Clustering with Ward linkage, capturing non-linear relationships
in the data.
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6 Results

This section presents the results obtained from the three different clustering
approaches: Hierarchical clustering with a custom distance function (Section
6.1), KMedoids clustering with a custom distance function (Section 6.2), and
Random Forest clustering (Section 6.3).

A key challenge in validating the clustering results was the absence of a prede-
fined ground truth or validation set. Unlike supervised learning, where model
performance can be evaluated against labeled data, clustering is mostly an un-
supervised technique that does not inherently provide a measure of correctness.
This makes it difficult to determine whether the identified clusters truly repre-
sent meaningful groupings in the underlying data. To address this challenge,
cluster quality was assessed using a combination of visualizations and validation
metrics, including cluster cohesion and separation.

Each clustering approach uses the same companies and features as input. The
features used are the following:

Financial Metrics From Annual Report
Assets NoncurrentAssets
BasicEarningsLossPerShare NoncurrentLiabilities
CashAndCashEquivalents ProfitLoss
CashFlowsFromFinancingActivities ProfitLossBeforeTax
CashFlowsFromInvestingActivities PropertyPlantAndEquipment
CashFlowsFromOperatingActivities RetainedEarnings
ComprehensiveIncome Revenue
CurrentAssets SharePremium
CurrentLiabilities Inventories
CurrentTaxLiabilities IssuedCapital
DeferredTaxAssets Liabilities
DeferredTaxLiabilities Equity
DilutedEarningsLossPerShare EquityAndLiabilities
IncomeTaxExpense

Manually Created Financial Metrics
Altman Z Score Profit Margin
Current Ratio Return on Assets (ROA)
Debt-to-Equity Return on Equity (ROE)
Working Capital

Table 1: List of Financial Metrics used for the models

Number of Clusters choice: In this study, the number of clusters was set
at 15 for all clustering methods to facilitate a fair comparison between them.
This number was chosen because it strikes a balance between achieving suffi-
cient separation between clusters and retaining the ability to derive meaningful
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insights within each group. Although increasing the number of clusters could
improve the Silhouette score and capture more subtle variations in the data,
it could also fragment natural financial groupings, making it more difficult to
extract actionable insights. Financial patterns across industries typically follow
broader trends, and excessive clustering could artificially divide companies, ob-
scuring genuine structural differences, making the results harder to interpret.

By choosing 15 clusters, the analysis ensures that companies with similar finan-
cial characteristics are grouped together, preserving both the robustness of the
clustering process and the interpretability of the results.

6.1 Hierarchical Clustering

In this section we discuss the results of Hierarchical clustering. Hierarchical
clustering was applied using a pairwise distance function that accommodates
missing values. The resulting dendrogram (Figure 4) visualizes how the clusters
merged at different distance thresholds.

Figure 4: Dendrogram of hierarchical clustering. The colored branches
represent distinct clusters identified in the hierarchical clustering process.

Each color corresponds to a different group
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A dendrogram shows the height at which branches merge, indicating the simi-
larity between clusters:

• X-axis: Represents individual companies or clusters.

• Y-axis: Represents the distance between clusters. The height at which
two clusters merge is proportional to their similarity, where a higher dis-
tance means that they are less similar.

From Figure 4, it can be observed that companies on the left side (orange) merge
at a shorter distance, suggesting higher similarity, whereas those on the right
side (green and red) merge at larger distances, indicating greater dissimilarity.
Tracking company-specific splits in the dendrogram provides insights into how
financial characteristics drive cluster formation.

6.1.1 Cluster Assignments

To analyze the clustering structure, the dataset was partitioned first into 10
clusters based on a distance threshold of t = 3. Table 2 summarizes the cluster
assignments.

In the introduction of this section it was mentioned that the number of clusters
was set at 15 for all clustering methods to facilitate a fair comparison. However,
when applying hierarchical clustering, a direct approach with 15 clusters resulted
in a very dominant cluster. Therefore another approach was taken, which will
be explained in more detail later in this section. This method led to a more
balanced distribution while preserving meaningful financial groupings.

Cluster 1 2 3 4 5 6 7 8 9 10

# Companies 56 15 350 6 4 20 12 10 5 10

Table 2: The number of companies per cluster using Hierarchical clustering

As mentioned, one of the key challenges was the validation of the clustering re-
sults without the absence of a predefined ground truth or validation set. There-
fore, a three-dimensional visualization (Figure 5) was generated based on As-
sets, Equity, and Liabilities, offering a simplified view of how companies are
distributed across clusters.
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Figure 5: 3D scatter plot of hierarchical clustering results based on Assets,
Equity and Liabilities

Although this representation is useful for visualizing cluster separability in a
limited feature space, it does not capture the full 34-dimensional structure of
the data. In addition, the hierarchical clustering model revealed a significant
challenge: the presence of a large dominant cluster containing approximately
75% of the companies. As shown in Table 2, this dominant cluster (3) con-
tained 350 companies, while the remaining companies were distributed among
much smaller clusters.

This imbalance suggests two things:

• The majority of the companies are highly similar

• The clustering algorithm struggles to distinguish meaningful subgroups
due to high-dimensionality effects or outliers.

The first case is highly unlikely because this dataset consists of listed companies
which are very different from each other, so to further investigate the second
case, there are two possible approaches. The first approach to address this
challenge is dimensionality reduction, such as Principal Component Analysis
(PCA). PCA could help by transforming the original 34 features into a smaller
set of orthogonal components that capture the most significant variance in the
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data. However, PCA requires complete data, and the presence of missing values
prevents its direct application.

Another solution is a sub-clustering approach. This was applied exclusively
to the largest cluster (Cluster 3). The goal was to identify potential hidden
structures within this large grouping that the initial clustering step failed to
capture. Reapplying the same clustering techniques to this subset of companies.
Resulted in the following dendrogram shown in Figure 6.

Figure 6: Dendrogram of hierarchical sub-clustering. The colored branches
represent distinct sub-clusters identified in the hierarchical sub-clustering

process. Each color corresponds to a different group

The assignment of clusters was divided into 6 clusters based on a distance thresh-
old of t = 0.5. Which could be seen in Table 3

Cluster 1 2 3 4 5 6

# Companies 36 51 14 11 233 5

Table 3: The number of companies per sub-cluster using Hierarchical
clustering
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The results of the sub-clustering indicate that the initial large cluster (cluster
3) was not truly homogeneous; rather, the high-dimensional nature of the data
likely caused the clustering algorithm to group dissimilar companies together.
Further validation was performed using 3D visualizations based on key financial
metrics. These visualizations (Figures 7 and 8) illustrate how the sub-clusters
separate more clearly now.

Figure 7: 3D scatter plot of hierarchical sub-clustering results based on Assets,
Equity and Liabilities

Figure 7 shows the sub-cluster distribution based on Assets, Equity, and Lia-
bilities. Initially, the clustering may seem unexpected, with a company such as
PostNL appearing in cluster 6 despite being very different in these attributes
from the other companies in cluster 6.
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Figure 8: 3D scatter plot of sub-cluster results results based on Assets,
ProfitLoss, ProfitLossBeforeTax

However, when visualizing the same sub-clusters with Assets, ProfitLoss, and
ProfitLossBeforeTax (Figure 8), it becomes evident why certain companies such
as PostNL could be assigned to cluster 6. Companies that seemed different
based on one set of financial metrics could exhibit strong similarities in terms
of other measures.

This demonstrates that the hierarchical clustering model effectively captured
meaningful structures in the dataset, even when they were not immediately ap-
parent in the first 3D visualization.

6.1.2 Silhouette score and Cluster Cohesion

In order to quantitatively assess the quality of the clustering results, the Silhou-
ette score was calculated. This score provides a measure of how well-separated
the clusters are and how cohesive the individual clusters are. It combines two
main components:

• Intra-cluster cohesion: This measures how close the points within a single
cluster are to each other. A higher value indicates that the points within
the cluster are more similar to each other.
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• Inter-cluster separation: This measures how distinct the clusters are from
one another. A higher value indicates that the clusters are well-separated
from one another.

The Silhouette score is calculated for each data point, with values ranging from
-1 to 1:
- A score close to 1 indicates that the data points are well-clustered, meaning
they are both close to each other within their own cluster and far from other
clusters.
- A score close to 0 suggests that the data points are on the border between two
clusters, indicating overlap or ambiguity in the cluster assignment.
- A score close to -1 implies that the data points may have been assigned to the
wrong clusters, as they are closer to other clusters than their own.

For the initial hierarchical clustering, the calculated Silhouette score was S =
0.662. This score indicates that the clusters are reasonably well-separated,
though some overlap still exists. This is not unexpected in high-dimensional
financial datasets, where companies can share multiple characteristics, making
cluster boundaries less distinct. The score suggests that the initial clustering
captured meaningful structures within the data while leaving room for refine-
ment.

To refine the clustering results, a sub-clustering approach was applied to fur-
ther segment the largest cluster. The Silhouette score for sub-clustering was
S = 0.587, indicating that while the refined clusters maintain structure, the
increased granularity led to closer proximity between certain sub-groups. This
result suggests that sub-clustering was effective in capturing additional varia-
tions within the dominant cluster, allowing for a more detailed segmentation of
companies with similar financial profiles.

When combining the results of the original clustering and sub-clustering, the
overall Silhouette score for the entire dataset was S = 0.474. While lower than
the individual clustering scores, this is expected as finer sub-clusters naturally
reduce the global silhouette measure. However, this does not directly imply a
decline in clustering quality; rather, it reflects the introduction of more precise
groupings that better capture the underlying financial structures. The results
demonstrate that the sub-clustering step helped refine the initial segmentation,
ensuring that companies with similar financial characteristics are grouped in a
more meaningful way. Furthermore, this level of separability would not have
been achievable if the initial clustering step had been restricted to a fixed number
of 15 clusters. The sub-clustering approach allowed for more nuanced groupings
within the broader structure, revealing additional patterns that a predefined
cluster count might have overlooked.
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In conclusion, the Silhouette Scores for both the initial hierarchical clustering
(S = 0.662) and the sub-clustering (S = 0.587), as well as the combined score (S
= 0.474), indicate that the clustering process successfully identified underlying
patterns within the dataset. While the overall silhouette measure decreased, this
reflects an increase in cluster granularity rather than a loss of structure. The
sub-clustering approach ultimately enhanced the interpretability of the clusters,
allowing for a more detailed analysis of financial groupings. The final cluster
assignments can be seen in Table 4.

Cluster 1 2 3 1 3 2 3 3 3 4 3 5 3 6 4 5 6 7 8 9 10

# Companies 56 15 36 51 14 11 233 5 6 4 20 12 10 5 10

Table 4: The number of companies per cluster after sub-clustering using
Hierarchical clustering

6.1.3 Summary of Findings

Hierarchical clustering successfully grouped companies based on financial met-
rics, but challenges such as high dimensionality and a large dominant cluster
complicated the analysis. The use of sub-clustering provided additional insights,
revealing meaningful subgroup structures. The key findings are:

• The dendrograms reveal distinct merging patterns, highlighting companies
with similar financial structures.

• The 3D visualizations provide an intuitive understanding of cluster sepa-
ration, but do not capture all 34 features, meaning that clusters appearing
mixed in this view might actually be well separated in a higher-dimensional
space.

• More balanced cluster distribution: Instead of a single dominant cluster,
the companies were now divided into five sub-clusters of varying sizes, with
the largest sub-cluster containing 233 companies a significant reduction
from the previous 350 companies.

• The final Silhouette score (0.474) suggests average clustering effectiveness,
with still room for improvement.

Overall, this approach offers an interpretable method for clustering companies
but may struggle with even higher-dimensional feature interactions, potentially
benefiting from alternative clustering techniques.
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6.2 KMedoids Clustering

In this section we discuss the results of Kmedoids clustering. Kmedoids clus-
tering was applied as a second method to group companies based on financial
characteristics. The clustering process resulted in 15 clusters, as summarized in
Table 5.

Cluster 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

# Companies 18 35 44 33 8 45 33 31 33 82 26 30 26 30 28

Table 5: The number of companies per cluster using Kmedoids clustering

The Kmedoids clustering resulted in a more balanced distribution of companies
across clusters. The largest cluster (9) contained 82 companies, which is signif-
icantly smaller compared to hierarchical clustering’s largest group. Due to the
more balanced distribution, no sub-clustering was applied for this approach.

6.2.1 3D Visualization of Cluster Distribution

To develop an intuitive understanding of the clustering structure, 3D scatter
plots were generated using the same feature sets as in the hierarchical cluster-
ing analysis. These visualizations provide insight into how well the clusters are
separated and whether certain financial dimensions contribute more effectively
to distinguishing between groups.

The first 3D scatter plot (Figure 9) illustrates the clustering results of Kmedoids
based on assets, equity, and liabilities. Here, clusters 11 (orange) and 7 (lime
green) dominate the graph with their large values and show a small degree
of overlap. This suggests that these financial dimensions alone may not fully
differentiate company groups.
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Figure 9: 3D scatter plot of Kmedoids clustering results based on Assets,
Equity, and Liabilities

The second scatter plot (Figure 10) presents the same clustering results but
based on Assets, ProfitLoss, and ProfitLossBeforeTax. This alternative view
highlights more structure that was less apparent in the first visualization. No-
tably, clusters 11 (orange) and 7 (lime green) are now more distinct from each
other, suggesting that profitability metrics contribute more effectively to sepa-
rating these groups compared to the previous features.
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Figure 10: 3D scatter plot of Kmedoids clustering results based on Assets,
ProfitLoss, and ProfitLossBeforeTax

A key observation from these figures, particularly in comparison to Figure 5
(which visualized hierarchical clustering results), is that Kmedoids struggles
more with clustering outlier companies. In Figures 9 and 10, companies in
cluster 7 (lime green) appear highly dispersed across the feature space. This
suggests that while these firms were assigned to the same cluster, their financial
profiles are not as similar as one might expect, reducing intra-cluster cohesion.

In contrast, hierarchical clustering provided better separation for these outlier
companies, placing them in more distinct clusters rather than forcing them into
broad, heterogeneous groups. This suggests that hierarchical clustering may
have been more effective in identifying meaningful financial structures, at least
in terms of handling edge cases.

Additionally, the presence of extreme-value companies makes it difficult to assess
the separation of other clusters in the visualizations. The dominant influence
of these high-value outliers can obscure finer distinctions at a more granular
level. To address this, the next set of plots zooms in on the lower-value clusters
while hiding those with extreme values, allowing for a clearer examination of
the clustering performance within the main distribution.
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6.2.2 Zoomed-In Views for Better Interpretability

To better assess cluster separability, the following figures present the same
Kmedoids clustering results with high-value clusters removed. This adjustment
makes it easier to observe how well-separated the remaining clusters are in each
feature space.

Figure 11: Zoomed-in 3D scatter plot of Kmedoids clustering results based on
Assets, Equity, and Liabilities, with extreme-value clusters removed

36



Figure 12: Zoomed-in 3D scatter plot of Kmedoids clustering results based on
Assets, ProfitLoss, and ProfitLossBeforeTax, with extreme-value clusters

removed

After zooming in, a few key insights emerge: In the Assets, ProfitLoss and
ProfitLossBeforeTax space, cluster separation is much clearer, with minimal
overlap between clusters. While in the Assets, Equity and Liabilities space,
separation is less pronounced, suggesting that the model still struggles with
good separation for clustering. Showing that some degree of overlap remains
between clusters, particularly for companies with similar capital structures.

6.2.3 Silhouette score and Cluster Cohesion

To quantitatively assess the clustering quality, the Silhouette score was com-
puted. The score measures both intra-cluster cohesion (how similar companies
within the same cluster are) and inter-cluster separation (how distinct each
cluster is from the others).
For Kmedoids clustering, the computed Silhouette score was S = 0.135. This
is significantly lower than the hierarchical clustering score (0.465), indicating
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that the Kmedoids clusters are less well separated. The lower score suggests the
presence of substantial overlap between clusters, making it harder to draw clear
distinctions between groups.
Possible reasons for this lower score include:

• The high dimensionality of the dataset, making it difficult to form well-
separated clusters.

• The nature of Kmedoids, which relies on medoid selection rather than
distance-based hierarchical merging, leading to potential misclassifications
in high-dimensional space.

• The random nature of Kmedoids, which relies on random/manual initial
medoid selection rather than placing each company in their own cluster.

Despite the relatively low Silhouette Score, Kmedoids clustering still provides
useful insights by forming more balanced cluster distributions and reducing the
dominance of a single large group.

6.2.4 Summary of Findings

The Kmedoids clustering approach provided an alternative partitioning method,
producing a more evenly distributed set of groups compared to hierarchical
clustering. However, several key observations highlight both its strengths and
limitations:

• Kmedoids avoided the dominance of a single large cluster, leading to a
more balanced distribution of companies across groups and no need for
sub-clustering.

• The 3D visualizations revealed that while some clusters are well-separated,
others exhibit overlap, indicating that the interactions between financial
features are complex and not fully captured in low-dimensional space.

• The relatively low Silhouette score (0.135) suggests that while Kmedoids
identified meaningful groupings, cluster separation remains weak, likely
due to the high dimensionality of the dataset and the challenges of partitioning-
based clustering in financial data.

• The approach struggled particularly with outlier companies and cluster
cohesion. Companies in certain clusters (e.g., Cluster 7) were highly dis-
persed across the feature space, reducing intra-cluster similarity. Where
hierarchical clustering appeared to provide a better separation of extreme-
value companies, suggesting that it may be more effective for datasets with
highly variable financial structures.

Overall, while Kmedoids clustering provides a useful comparative approach, but
its effectiveness is limited by the dataset’s complexity.
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6.3 Random Forest Clustering

This last section discusses the result of the Random Forest model. Unlike tra-
ditional clustering algorithms that rely on predefined distance metrics, this ap-
proach leverages the Random Forest’s ability to measure data similarity based
on how frequently observations appear in the same leaf nodes across multiple
decision trees. The resulting similarity matrix was then used for clustering,
yielding 15 distinct clusters.

The distribution of companies across clusters is summarized in Table 6. Un-
like hierarchical and Kmedoids clustering, this method did not require handling
missing values separately, as the dataset was fully imputed before model train-
ing.

Cluster 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

# Companies 12 35 34 46 28 30 40 65 62 17 55 30 31 9 8

Table 6: The number of companies per cluster using Random Forest clustering

Here the clusters also appear more evenly distributed compared to hierarchical
clustering but still exhibit some variation in size. The largest cluster (7) contains
65 companies, while the smallest (14) contains only 8. Because there was no
real dominant cluster for this model, no sub-clustering was performed.

6.3.1 3D Visualization of Cluster Distribution

To gain deeper insight into the clustering structure, 3D scatter plots were gener-
ated using key financial features. These visualizations help assess the degree of
cluster separation and evaluate how clustering assignments change under vary-
ing financial perspectives.

The first 3D scatter plot (Figure 13) illustrates the Random Forest clustering
results based on Assets, Equity, and Liabilities. Compared to the Kmedoids
clustering in the previous section, there are notable differences in how companies
are assigned to clusters. Specifically, several companies that were previously
part of Cluster 8 (lime green) are now grouped into Cluster 11 (orange). This
reassignment primarily affects companies positioned higher along the asset and
liabilities dimensions. While the overall cluster structure has changed, a slight
degree of overlap between Clusters 8 and 11 remains.
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Figure 13: 3D scatter plot of Random Forest clustering results based on
Assets, Equity, and Liabilities

The second scatter plot (Figure 14) visualizes the clustering results based on
Assets, Profit/Loss, and Profit/Loss Before Tax. This perspective helps explain
why certain companies were reassigned between clusters. Cluster 8 primar-
ily consists of companies with lower asset values but higher profitability, while
Cluster 11 contains companies with high asset values but lower profitability,
including some that are operating at a loss. This suggests that the revised
clustering structure provides a more intuitive separation compared to the Kme-
doids approach for these specific features. However, compared to hierarchical
clustering, both Clusters 8 and 11 appear to be elongated rather than distinctly
separated into different groups. This does not necessarily indicate a flaw in
the clustering process, as the assignments are influenced by multiple financial
features beyond those visualized here, but it is good to keep this in mind.
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Figure 14: 3D scatter plot of Random Forest clustering results based on
Assets, ProfitLoss, and ProfitLossBeforeTax

While these 3D visualizations are valuable in assessing cluster distribution, they
are inherently limited by the fact that they only display a subset of the finan-
cial features used for clustering. Additionally, the presence of companies with
extremely high financial values dominates the scale, making it difficult to inter-
pret the structure of clusters with smaller values. To address this limitation, an
alternative visualization technique is explored in the next section.

6.3.2 3D Visualization Using t-SNE

Unlike the other clustering methods, Random Forest clustering enables the use
of t-Distributed Stochastic Neighbor Embedding (t-SNE) for visualizing high-
dimensional data in a lower-dimensional space, this is because the dataset for
this model contains imputed data to handle the missing data. t-SNE is a non-
linear dimensionality reduction technique that preserves local structure, making
it particularly useful for assessing cluster cohesion and separation in complex
datasets.
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Figure 15: 2D t-SNE visualization of Random Forest clustering results

Figure 16: 3D t-SNE visualization of Random Forest clustering results.

As shown in Figures 15 and 16, the t-SNE projections reveal the underlying
structure of the Random Forest clusters. While certain clusters form clearly
distinct groupings, others exhibit partial overlap, suggesting that some financial
feature interactions remain challenging to separate even after dimensionality
reduction. Nevertheless, t-SNE provides a more holistic view of the clustering
landscape by incorporating the entire feature set rather than just three selected
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financial metrics. This makes it a powerful tool for evaluating the effectiveness
of clustering approaches in high-dimensional financial data.

6.3.3 Silhouette score and Cluster Cohesion

To evaluate clustering quality, the Silhouette score was calculated using the
proximity-based similarity matrix derived from the Random Forest model. This
approach measures intra-cluster cohesion and inter-cluster separation in a way
that reflects the underlying tree-based distance metric.
For this clustering approach, the computed Silhouette score was S = 0.065,
which is lower than both hierarchical clustering (S = 0.465) and Kmedoids
(S = 0.135). This suggests that while the clusters provide meaningful groupings,
there is substantial overlap, indicating that the clustering structure may not be
as well-defined as in the previous methods.
Potential reasons for the lower Silhouette score include:

• The complex nature of financial data, where company characteristics do
not always form clearly distinct groups.

• The high dimensionality of the dataset, which can introduce noise and
make it harder for clustering algorithms to form well-separated groups.

• Clustering could be influenced if the imputation of the missing data was
not that good.

• The reliance on the proximity matrix, which, while powerful, may not
always reflect the best clustering boundaries for this dataset.

6.3.4 Summary of Findings

Despite the relatively low Silhouette Score, the Random Forest clustering method
provides an alternative perspective on company segmentation by capturing non-
linear interactions between features, which traditional distance-based methods
may overlook. The key observations from this method include:

• The clustering structure resulted in relatively well-balanced groups, though
some clusters were notably larger or smaller than others.

• The use of t-SNE allowed for an alternative visualization of cluster sepa-
rability, highlighting areas of both distinct grouping and overlap.

• The Silhouette score (0.065) suggests that the clusters, while meaningful,
exhibit significant proximity-based overlap.

• Unlike hierarchical and Kmedoids clustering, this approach does not rely
on traditional distance metrics, making it more robust to nonlinear rela-
tionships.

Overall, Random Forest clustering provides a valuable comparison by incorpo-
rating tree-based proximity measures, though its lower Silhouette score indicates
room for improvement in cluster separation.
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7 Conclusion

The primary objective of this study was to explore how clustering algorithms
can be applied to XBRL-based financial data to group companies with similar
financial profiles. Using three distinct clustering approaches, hierarchical clus-
tering, Kmedoids, and Random Forest clustering has this research demonstrated
how different methodologies capture patterns in financial reporting and revealed
the importance of complete XBRL data.

7.1 Key Findings

7.1.1 Inconsistencies and Challenges in XBRL Data

One of the major challenges encountered during this study was the presence of
missing or inconsistent data within XBRL filings. Hierarchical and Kmedoids
clustering therefore required a custom distance function to handle missing val-
ues, whereas the Random Forest approach leveraged an imputation model to
accommodate missing data.

These inconsistencies highlight potential inaccuracies in financial reporting, in-
cluding:

• Companies failing to report specific financial facts, leading to gaps in
datasets. Like the features CurrentAssets and NoncurrentAssets. This
limited the possibility of calculating new ratios and features for certain
companies.

• Variability in the application of XBRL taxonomies, where similar financial
metrics were tagged differently by different companies.

• Structural differences in reports that complicated direct comparisons be-
tween entities.

These findings suggest that while XBRL aims to standardize financial disclo-
sures, real-world implementation inconsistencies persist, necessitating careful
preprocessing before large-scale analysis. If these complications can be removed
or reduced, than the preprocessing becomes less heavy of a job.

7.1.2 Scalability and Big Data Processing

Efficiently processing the large volume of XBRL financial data necessitates the
use of scalable data processing frameworks. While the current data gathering
process is not the most efficient, this issue can be resolved once a database
is available with preprocessed data ready for use. Additionally, this study
found that although clustering methods effectively identified distinct groupings,
they can become computationally demanding as dataset size increases, partic-
ularly since hierarchical clustering and Kmedoids clustering scale with O(n2).
This scalability challenge makes these approaches less practical for really large
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datasets. In contrast, Random Forest clustering proved to be more efficient,
as it constructs similarity matrices without relying on explicit distance calcula-
tions, thereby mitigating the scaling issue during the modeling phase.

These findings indicate that:

• Methods like hierarchical clustering and Kmedoids, while insightful, may
not be practical for very large datasets due to their computational com-
plexity.

• Random Forest clustering methods provide an alternative for handling
high-dimensional financial data, but at the cost of needing complete data.

7.1.3 Financial Clusters

The application of clustering algorithms to XBRL financial data revealed mean-
ingful patterns that correspond to industry trends and financial performance
characteristics:

• Hierarchical clustering produced well-separated clusters with a mod-
erate Silhouette score (0.465), suggesting that companies exhibit distinct
financial structures that this method can effectively capture. The results
indicate that hierarchical clustering is well-suited for identifying clear-cut
financial groupings, reinforcing the notion that structural differences exist
within corporate financial profiles.

• Kmedoids clustering created stable and interpretable financial group-
ings, albeit with a lower Silhouette score (0.135). While the separation
between clusters was not as strong, the method still highlighted meaning-
ful financial similarities among companies, making it a viable approach
for industry segmentation. One drawback of this method in this research
is its inherent randomness in selecting initial medoids, which can lead to
variations in clustering outcomes. While this unpredictability is not ideal,
it can be advantageous when one wants to designate specific companies
as starting points for clustering, allowing for a more controlled analysis of
financial segmentation.

• Random Forest clustering uncovered more nuanced and complex rela-
tionships between companies, reflected in its lower Silhouette score (0.065).
While the weaker cluster separation suggests that financial profiles may
not always form distinct boundaries, this method excels at capturing non-
linear financial similarities. The t-SNE visualization further demonstrated
how companies distribute across financial dimensions, providing an intu-
itive way to explore these intricate relationships.

Despite varying levels of cluster separation, each method provided a unique lens
through which to analyze financial patterns, contributing to a more comprehen-
sive understanding of how companies align based on their financial data.
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7.2 Business conclusions

The results of this study offer several practical applications for financial in-
stitutions, particularly banks, in leveraging clustering techniques for improved
financial decision-making.

Banks can integrate these clustering techniques into AI-driven credit assessment
models to enhance fairness in evaluating companies. This approach is partic-
ularly beneficial for small and medium-sized enterprises (SMEs) that lack an
extensive credit history. By placing companies in clusters based on financial
similarities rather than relying solely on historical credit data, financial institu-
tions can perform more accurate and context-aware risk assessments.

Clustering methods can also be used to determine how far each company devi-
ates from the central point of its respective cluster. Companies that fall signifi-
cantly further from the center may be experiencing financial distress or structure
their reports differently compared to their peers. This anomaly detection capa-
bility can serve as an early warning system for financial instability.

From a banking perspective, identifying outlier companies is critical for risk
management. Banks can closely monitor these firms, as they may represent
higher credit risks. Additionally, the centroids of clusters can serve as bench-
marks for assessing financial norms within specific industries or company types.
By comparing a company’s financial profile to the cluster it belongs to, banks
can refine their credit scoring methodologies and gain deeper insights into sector-
specific financial behaviors.

SBR Nexus can use these insights to enhance standardization, for example, by
incorporating improved validation rules in consultation with software providers.
By ensuring more consistent and structured XBRL filings, financial clustering
techniques can become more reliable, ultimately benefiting banks, regulators,
and businesses that rely on high-quality financial data.

In conclusion, this research demonstrates that clustering algorithms offer a pow-
erful tool for analyzing financial data from XBRL filings, enabling the identifi-
cation of meaningful company groupings and industry trends. However, chal-
lenges related to data quality, scalability, and interpretability must be addressed
to fully realize the potential of XBRL-driven financial analytics.
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8 Discussion

This section outlines the limitations of the study and suggests directions for
further research.

One of the main difficulties stems from the substantial diversity in company
financials, with large discrepancies in assets and equity levels. Some companies
report extremely high financial figures, while others operate on a much smaller
scale. This variation complicates the clustering process, as traditional distance-
based methods may struggle to balance such differences, potentially leading to
bias toward larger firms.

Furthermore, although clustering is an unsupervised learning approach, a val-
idation set could have been useful for assessing the reliability of results. Since
no ground truth labels exist, external validation techniques such as comparing
clusters to known financial categories or benchmarking them against established
classification systems could help evaluate model performance. Initially, the SBI
codes (which classify companies by sector) seemed like a logical benchmark for
validation. However, their effectiveness was limited for two reasons: (1) the
dataset lacked sufficient sectoral diversity, and (2) companies within the same
industry can have vastly different financial structures due to differences in size,
business model, or strategic focus. Instead of using sector classification as a
validation metric, incorporating it as a feature in the clustering model could
improve the segmentation process by providing additional financial context.

Another key consideration is the choice of distance metric used for clustering.
While the selected methods provided meaningful groupings, different distance
measures such as Mahalanobis distance (which accounts for correlations between
financial variables) or cosine similarity (which emphasizes relative proportions
rather than absolute values) could influence the cluster formation in another
way. Although different distance metrics have been explored. The current cus-
tom metric seemed the most appropriate for this problem.

A notable limitation of this research is the potential biases introduced by im-
putation. While imputation improved dataset completeness, it may have dis-
torted financial patterns. The chosen imputation strategy, based on correlating
features, aimed to create realistic estimates, but the true values are likely to dif-
fer. Additionally, financial data can exhibit significant year-to-year fluctuations,
where companies report substantial changes in key metrics. The imputation ap-
proach may not always capture external shocks, such as the financial impact of
COVID-19, unless explicitly trained to account for such events. Therefore, po-
tential biases remain in this study.

Additionally, the research was conducted using the IFRS taxonomy, whereas
companies in the Netherlands primarily report under a different taxonomy (NT
and FT). While this does not prevent reproducibility, adapting the methodology
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to the Dutch taxonomy would require modifications to ensure compatibility. A
notable advantage of the Dutch taxonomy is that certain fields are mandatory
for banks, ensuring that financial institutions systematically report specific data
points. If clustering were applied exclusively to these key fields, it could improve
both the completeness and reliability of the dataset, reducing the influence of
missing values and enhancing consistency in financial clustering.

For future research, several avenues could be explored:

• Improving Data Consistency: XBRL reporting inconsistencies remain
a major challenge. Future research could explore automated methods
for detecting and correcting tagging errors, missing values, and reporting
discrepancies to improve data quality.

• Feature Importance in Clustering: Rather than treating all financial
variables equally, integrating feature importance methods (such as using a
Random Forest model to rank the most relevant financial features) could
refine clustering results by giving more weight to key financial indicators.

• Alternative Clustering Methods: This study focused on hierarchi-
cal clustering, Kmedoids, and Random Forest clustering. Future research
could explore deep clustering approaches, such as autoencoder-based clus-
tering or self-organizing maps, which might better capture non-linear fi-
nancial relationships. Additionally, density-based methods like DBSCAN
could be tested to identify financial outliers and irregular patterns in cor-
porate reporting.

• Semi-Supervised Approaches: While this study was purely unsuper-
vised, future work could investigate semi-supervised learning techniques
where partial labels (e.g., known company classifications, financial risk rat-
ings, or regulatory categories) are incorporated into the clustering process.
This could improve model interpretability and provide a more structured
approach to financial segmentation.

• Enhanced Imputation Strategies: While imputation was necessary to
handle missing data, alternative imputation techniques could be tested
to evaluate their impact on clustering results. If missing data remains
an issue in future datasets, more advanced strategies such as domain-
specific imputations or generative models could further refine clustering
performance.

By addressing these challenges and refining clustering methodologies, future
research can improve the accuracy, interpretability, and real-world applicability
of financial clustering models.
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