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Summary

The Reo coordination language is designed to model synchronization between
different parts of complex systems. Originally, Reo was designed without a notion
of time. Later, additional models made it possible to make Reo stochastic by
defining delays on channels and arrival rates on the boundary nodes of the system.
With this approach it is possible to model such systems as continuous time Markov
chains to perform quality of service analysis. However, this conversion is only
possible if the Markov property has been met, which is only the case when using
exponential distributions to model the arrival rates and delays.

When using other general distributions, the Markov property is not satisfied, so
the Markov chains could not be used any more for QoS analysis. Analytically,
it is also very hard to solve complex systems with synchronization and various
general distributions for the delays and arrival rates. For this reason, we created
a simulation tool to do quality of service analysis on systems modelled in Reo.

This simulation model has been implemented within the Eclipse Coordination
Tools framework, which already includes the graphical user interface and other
plug-ins for Reo. The simulator uses discrete event simulation, and will keep
track of all sorts of quality of service statistics which might be of interest for the
systems the user wants to model in Reo.

For the simulation, we used the colouring semantics as driver, which indicates
which parts of a connector can have data flow in a given configuration of the
system. Because this semantics respect the synchronization principle of Reo, we
needed some workarounds to evaluate asynchronous systems. Although we were
able to model all systems with these workarounds, this still had some disadvan-
tages regarding memory usage and simulation speed. In the future, we could
probably use other drivers for the simulator, which makes the workarounds un-
necessary.

We validated the simulator using continuous time Markov chains on some systems.
We also modelled some queueing models, and validated the simulation results
with the results known in queuing theory. The results were also verified using
two other simulators. Finally, we used the simulator to evaluate systems with
general stochastic distributions which could not be evaluated before.

So with this simulator in Reo we are able to perform quality of service analysis
on almost any system modelled in Reo with general stochastic distributions on
the delays of the channels and the arrival rate on the boundary nodes.
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Chapter 1

Introduction

In this chapter we will give a general introduction about CWI in section 1.1. In
section 1.2 we will introduce the research topic and define our research objective
and questions. Finally, section 1.3 gives an overview of the structure of the thesis.

1.1 About CWI

Founded in 1946, CWI is the national research center for mathematics and com-
puter science in the Netherlands. More than 170 full professors have come from
CWI, of whom 120 still are active. CWI’s strength is the discovery and devel-
opment of new ideas, and the transfer of knowledge to academia and to Dutch
and European industry. This results in importance for our economy, from pay-
ment systems and cryptography to telecommunication and the stock market, from
public transport and internet to water management and meteorology.

An international network
With its 55 permanent research staff, 40 postdocs and 65 PhD students, CWI
lies at the heart of European research in mathematics and computer science.
Researchers at CWI are able to fully concentrate their efforts on their scientific
work, and to build an international network of peers. More than half of the
permanent research staff maintains close contact with universities as part-time
professors. The personal and institutional research networks strengthen CWI’s
positions and serve as a magnet for attracting talent. The CWI researchers come
from more than 25 countries world-wide.

A source of pride
CWI was a birthplace of the world-wide internet. Cwi.nl was the first national
domain name ever issued anywhere. CWI helped develop the wing of the Fokker
Friendship - chosen the most beautiful Dutch design of the 20th century. The
popular language Python was invented at CWI, the language in which Google
was developed. CWI applied combinatorial algorithms to the scheduling of the
Dutch railway system. XML-databases were build to the needs of the Netherlands
Forensic Institute and 3D visualization techniques to better detect cancer tumors.

1



1.2. RESEARCH QUESTIONS 2

1.2 Research questions

Within CWI, a model has been developed (Reo Coordination Language [5]) to
model complex systems like software, communication systems or websites such as
holiday reservation sites and PayPal. New to this approach is to model synchro-
nization between different parts of the system. The real-time end-to-end delay
for the customer is a big factor for these systems. The response times should
not be too large, else customers will leave the system. A system should also
not be blocked because parts of the system will wait on each other. It will be-
come difficult when different parts of the system are dependent of each other and
synchronization should take place inside the system.

Reo has been developed to evaluate systems with synchronization, among other
things. Reo has a graphical user interface in Eclipse, called Eclipse Coordination
Tools (ECT) which is a set of plug-ins for the Eclipse platform. At the beginning
Reo was designed without a notion of time, so all transitions happens instantly.
Later, new models were invented to add delays and arrival rates to the system.
These models can be transformed into continuous time Markov chains when mod-
elling systems with exponential delays and arrival rates. These Markov chains can
be used to get the steady state behaviour of the system and with some work also
to get blocking probabilities, end-to-end delay and other quality of service (QoS)
metrics.

When we want to use other probability distributions, we can not use the Markov
chains any more causing that we can not derive statistics about the Reo models.
For example, when we want to model systems with discrete arrivals or arrivals
based on a trace file. It is still possible to detect if the system will be blocked
or to see if certain chains of events can occur, but giving QoS statistics is not
possible.

Analytically, synchronization is very difficult when combining all kinds of distri-
butions in complex systems. With Reo, we are able to build almost any system we
want. In this system we should be able to define various continuous and discrete
distributions. Analytically, it is very difficult or maybe impossible to get quality
of service information for these systems. For this reason we need a simulation
model to evaluate systems with general probability distributions. With this sim-
ulation model we should be able to get all quality of service statistics which might
be interesting for a system modelled in Reo. With a simulator it is also important
to know if the system is stable, because if the system is not stable, the results
are not reliable. For this reason we should be able to show the behaviour of the
model over time.

For this research we define the following research objective:

• Build a simulation tool for Reo integrated in ECT to perform
quality of service analysis on Reo models.

For this objective we define the following research questions:

1. What are the current limitations of Reo?
2. Which output statistics are relevant for the systems we want to model?
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3. Does the Reo simulator produce the same results as other simulators?
4. What kind of systems can we model with Reo?
5. What are the limitations of the simulator or the approach used for the

simulator?

1.3 Thesis structure

This thesis addresses the simulation approach in Reo to perform QoS. Chapter 2
introduces Reo and the connector colouring semantics used as the driver for the
simulator. It will also introduce CA models as a formalism to capture the opera-
tional semantics of Reo, QIA is an extension to CA which implements stochastic
Reo to produce models which can be converted to continuous time Markov chains.

Chapter 3 introduces the simulation model as an extension to Reo for general
distributions. It will describe all output statistics which will be displayed after
the simulation. The chapter will also give a general description of the set-up
and the limitations and workarounds which are the results of choices made in the
set-up.

Chapter 4 describes the details of the implementation of the simulator in Reo.

Chapter 5 will validate the simulator by comparing the simulation results with
results produced by QIA, queueing theory and other simulators.

Chapter 6 will discuss Reo systems which could not be evaluated before by using
general stochastic distributions.

Finally, chapter 7 discusses possible future work on the simulator.



Chapter 2

Background & Motivation

This chapter gives an introduction to the research topic. Section 2.1 introduces
Reo as a coordination language to model complex systems with synchronization.
Section 2.2 introduces the colouring semantics to distinguish parts of the system
with and without data flow. This colouring semantics will be used as the driver
for the simulation which will be explained in chapter 3. Section 2.3 introduces CA
models to as a formalism to capture the operational semantics of Reo, QIA is an
extension to CA which implements stochastic Reo to produce models which can
be converted to continuous time Markov chains. Finally, section 2.4 summarizes
the first sections and states why we would need a simulation model. This section
answers the research question: What are the current limitations of Reo?

2.1 Reo

Within CWI, a model has been developed (Reo Coordination Language [5]) to
model complex systems like software, communication systems or websites such
as holiday reservation sites and PayPal. New to this approach is to model this
synchronization between different parts of the system. In this section we present
an overview of Reo, and is an adapted version of chapter 2 in [14]. For a full
account of Reo, see [8, 9].

The emphasis in Reo is on connectors (a system modelled in Reo) which act as
exogenous coordinators to orchestrate the components that they interconnect in a
composed system. Channels constitute the only primitive connectors in Reo, each
of which is a point-to-point communication medium with two distinct primitive
ends. Reo uses a generalized notion of channels. In addition to the common
channel types of synchronous and asynchronous, with bounded or unbounded
buffers, and with FIFO and other ordering schemes, Reo allows an open-ended
set of channels, each with its own, sometimes exotic, behaviour. For instance,
a channel in Reo does not need to have both an source end which accepts data
into the channel, and an sink end which dispenses data out of the channel; it can
instead have two source or sink ends.

More complex connectors can be constructed out of simpler ones through con-

4
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nector composition. In Reo, channels are composed by conjoining their ends to
form nodes. A node may contain any number of channel ends.We classify nodes
into three different types depending on the types of their coincident ends: a input
(source) node contains only source ends; a output (sink) node contains only sink
ends; and a mixed node contains both kinds of channel ends.

Components interact with a Reo connector using a simple interface. A component
will have access to a number of input and output nodes. Components perform
I/O operations on input and output nodes only. The only way a component may
interact with a connector is by issuing I/O operations (write and take) on these
ends. A connector can perform a write with some data on an input end or a
take on an output end. The write/take will succeed when the connector either
accepts the data of the write or produces data for the take. It is by delaying these
operations that coordination is achieved. We refer to an I/O operation that is
being delayed as a pending operation. In addition, there are various operations
for constructing and reconfiguring Reo connectors, but these are irrelevant for
this paper.

Figure 2.1: Some basic channel types in Reo

Figure 2.1 shows some example channels. Sync denotes a synchronous channel.
Data flows through this channel if and only if it is possible to simultaneously
accept data on one end and pass it out the other end. SyncDrain denotes a syn-
chronous drain. Data flows into both ends of this channel only if it possible to
simultaneously accept the data on both ends. SyncSpout denotes a synchronous
spout. Data flows out of both ends of this channel only if it possible to simul-
taneously take the data from both ends. LossySync denotes a lossy synchronous
channel. If a take is pending on the output end of this channel and a write is
issued on the input end, then the channel behaves as a synchronous channel.
However, if no take is pending, the write can succeed, but the data is lost.

Observe that this channel has context dependent behaviour, as it behaves differ-
ently depending upon the context. If it were context independent, the data could
be lost even if a take was present. AsyncDrain denotes an asynchronous drain.
Data can flow into only one end of this channel at the exclusion of data flow at
the other end. AsyncSpout denotes an asynchronous spout. Data can flow out
of only one end of this channel at the exclusion of data flow at the other end.
FIFO1 denotes an empty FIFO buffer. Data can flow into the input end of this
buffer, but no flow is possible at the output end. After data flows into the buffer,
it becomes a full FIFO buffer. FIFO1(x) denotes a full FIFO buffer. Data can
flow out of the output end of this buffer, but no flow is possible at the input end.
After data flows out of the buffer, it becomes an empty FIFO buffer.

A write operation to a source node succeeds only if all source ends coincident on
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the node accept the data item, in which case the data item is written to every
source end coincident on the node. An input node thus acts as a replicator. A take
operation on an sink node succeeds only if at least one of the sink ends coincident
on the node offers a data item; if more than one coincident channel end offers
data, one is selected non-deterministically, at the exclusion of all others. A sink
node, thus, acts as a merger. A mixed node combines the behaviour of a source
(merger) and a sink node (replicator).

Although Reo connector may look like electrical circuits and the synchronous
channels may lead the reader to think of Reo connectors as synchronous systems,
it would be wrong to equate Reo with either model. Although the precise imple-
mentation details are more involved, a Reo connector is executed essentially in
two steps: (1) based on pending write/take, solve the synchronisation/exclusion
constraints imposed by the channels of a connector to determine where data can
flow; and (2) send data in accordance with the solution in step (1). The second
step may not occur if no data flow is possible. In between steps (2) and (1),
new write/take operations may be performed on the channel ends, or existing
ones may be retracted. Not all of the connector needs to be involved in step
(1) at the same time: FIFO buffers, for example, serve to divide connectors into
synchronous regions which operate more or less independently.

2.2 Connector colouring

In the following section we will provide an overview of the connector colouring
semantics as a way to mark which parts of the connector has data flow. This
section uses the relevant parts of the connector colouring paper [14], for a full
description about connector colouring, see [14].

The semantics of a Reo connector is defined as a composition of the semantics
of its constituent channels and nodes. We illustrate Reo’s semantics through an
example, in part to give an understanding of how Reo works, but also to motivate
the upcoming notion of connector colouring.

Figure 2.2: Exclusive router connector

The connector in figure 2.2 is an exclusive router (XOR) built by composing
five Syncs, two LossySyncs and one SyncDrain. The intuitive behaviour of this
connector is that data obtained through its input node A is delivered to exactly
one of its output nodes F or G. If both F and G are willing to accept data, then
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the node E non-deterministically selects which side of the connector will succeed
in passing data. The SyncDrain and the two Syncs in the node E conspire to
ensure that data flows at precisely one of C and D, and hence F and G, whenever
data flows at B. An informal, graphical way of depicting the possible data flow
through the exclusive router is by colouring where data flows, as illustrated in
figure 2.3, where the thick solid line marks the parts of the connector where data
flows and unmarked parts correspond to the parts where no data flows. This idea
of colouring underlies our model. Note that we abstract away from the direction
of data flow, as the channels themselves determine this.

Figure 2.3: Possible colourings for XOR connector

2.2.1 2-Colouring

The colouring model is based on the idea of marking data flow and its absence
by colours. Each colouring of a connector is a solution to the synchronisation
constraints imposed by its channels and nodes. Let Colour denote the set of
colours. A reasonable minimal set of colours is Colour = {—, r}, where the
colour ’—’ marks places in the connector where data flows, and the colour ’r’
marks the absence of data flow.

Reo semantics dictates that data is never stored or lost at nodes [8]. Thus, the
data flow at one end attached to a node must be the same as at the other end
attached to the node. Either data will flow out of one end, through the node,
and into the other end, or there will be no flow at all. Hence, the two ends
plugged together will be given the same colour, and thus we just colour the node.
Colouring nodes determines the colouring of their attached ends, which in turn
determines the colouring of the connector, and thus the data flow through the
entire connector. Colouring all the nodes of a connector, in a manner consistent
with the colourings of its constituents, produces a valid description of data flow
through the connector. Channels and other primitive connectors then determine
the actual data flow based on the colouring of their ends.

The following definition formalizes the notion of a colouring. Let Node be a
denumerable set of node names.

Definition 2.1. Colouring
A colouring c: N → Colour for N ⊆ Node is a function that assigns a colour to
every node of a connector.
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Let us consider a FIFO1 with input end n1 and output end n2. One of its possible
colourings is the function c1 : {n1 7→ —, n2 7→ r}, which describes the situation
where data flows through the input end n1 and no data flows through the output
end n2.

Channels, nodes, and connectors typically have multiple possible colourings to
model the alternative ways that they can behave in the different contexts in
which they can be used. The collection of possible colourings of a connector is
represented by its colouring table.

Definition 2.2. Colouring table
A colouring table T , over nodes N ⊆ Node is a set of colourings with domain N .

A colouring table for a Reo connector describes the possible behaviour in a par-
ticular configuration (or snapshot) of the connector, which includes the states of
channels, plus the presence or absence of I/O requests. A colouring corresponds
to a possible next step based on that configuration.

I/O operations need to be modelled in colouring tables so that we can determine
the context dependent behaviour of a connector. It is the presence and absence
of I/O operations on the boundary of a connector which gives the context.

When we refer back to the exclusive router connector, we have one colouring table
with three possible colourings. The two colourings given in figure 2.3 and the no
flow colouring when either the source node A has no I/O operation or both F and
G have no I/O operation.

2.2.2 3-Colouring

In this section we address the issue of context dependent behaviour. We demon-
strate that the 2-colouring scheme of the previous section applied to a connector
involving a LossySync fails to give the expected data flow behaviour. We argue
that this occurs because context information is not propagated to enable chan-
nels to choose their own correct context dependent behaviour. Previous semantic
models of Reo connectors [13, 12] remain at a coarser level of abstraction and fail
to address this issue.

A LossySync has the following context dependent behaviour, if both a write is
pending on its input end and a take is pending on its output end, then it behaves as
a Sync, the write and take simultaneously succeed, and the data flows through the
channel. If, on the other hand, no pending take is present, then the write succeeds
but the data is lost. Problems with the 2-colouring scheme reveal themselves when
we compose a LossySync, an empty FIFO1, and an I/O request on the input end
of the LossySync, as follows:

This connector has the following two alternative 2-colourings:

The first colouring indicates that the I/O operation succeeds, the data flows
through a and that the LossySync acts as a Sync sending the data through b into
the FIFO1. This is the expected behaviour in this configuration.
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The second colouring indicates that data flows through node a, but not at node
b, indicating that it is lost in the LossySync. An empty FIFO1 is, however, input
enabled, meaning that it should always be able to accept data. Another way of
seeing this is that an empty FIFO1 always issues a take to whatever channels it is
connect to. Indeed, the only reason that it should not succeed in receiving data
is if the connector gives it a reason not to, such as by not sending it any data.
One can therefore interpret the situation as a violation of the intended semantics
of the LossySync channel, because the information that the data can be accepted
on its output end is not appropriately propagated to it. The LossySync cannot
detect the presence of the pending take issued by the input-enabled, empty FIFO1

buffer. Similar situations arise when dealing with a LossySync in isolation or in
the context of any connector.

The behaviour of a context dependent primitive depends upon the presence or
absence of I/O requests on its ends. For mixed nodes, however, no I/O request
information is present, so it is not obvious what the context is. The key to resolv-
ing this is to determine what context information can be consistently propagated
while addressing synchronisation constraints. Rather than propagating the pres-
ence of an I/O request, the approach focuses on propagating their absence, or
more generally, on any reason to delay data flow, such as unsatisfiable synchro-
nisation constraints or due to choices made by a merger.

To address the problem just described, we modify our set of colours. Since we wish
to trace the reason to delay, we replace the no-data-flow colour by two colours
which both use a dashed line marked with an arrow. This colouring scheme is
referred to as 3-colouring. The arrow indicates the direction that a reason to
delay comes from, that is, it points away from the reason in the direction that
the reason propagates. Thus we now work with colours, Colour={—, -/-, -.-}.
In fact, the colours depend upon how the arrow lies in relation to the channel end
being coloured. A no-flow colouring with the arrow pointing towards the end,
-.-•, means give a reason to delay, and a colouring with the arrow pointing the
opposite way, -/-•, means require a reason to delay.

We can compose two colourings at a given node if at least one of the colours
involved gives a reason to justify no flow. Of the four possible combinations of
end colourings at a node, three can be composed, as given in figure 2.4. The last
case is not permitted as it joins two colouring which require a reason to delay,
without actually giving a reason.

Figure 2.4: Composition of 3 colourings at mixed node
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Note that after composition has been performed, the direction of the arrow on
mixed nodes no longer matters: the colouring simply represents no data flow.
(This fact is used to reduce table sizes.)

When looking back at the example of the LossySync followed by a FIFO1. We will
see in figure 2.5 that the wrong context dependent colouring given by 2-colouring
is rejected by the 3-colouring because the colours at mixed node b do not match.

Figure 2.5: LossySync-FIFO1 connector with 3-colouring

2.3 CA, Stochastic Reo and QIA

This section introduces Constraint Automata (CA), Stochastic and Quantitative
Intentional Automata (QIA). This section contains a selection of the most impor-
tant parts of the QIA paper [11].

CA [13] were introduced to express the operational semantics of Reo. Indeed, CA
provide a unified model to capture the semantics of components and services, as
well as Reo connectors and their composition. Quantitative Reo and Quantitative
Constraint Automata (QCA) [10] extend Reo and CA with the means to describe
and combine the QoS aspects of composed systems. The QCA model integrates
the QoS aspects of components/services and connectors that comprise an appli-
cation to yield the QoS properties of that application, ignoring the impact of the
environment on its performance such as throughput and delays. While QCA pro-
vide a useful model for service selection and composition [16], the performance
of a system can crucially depend not only on its internal details, but also on how
it is used in an environment, as determined, for instance, by the frequencies and
distributions of the arrivals of I/O requests which belong to stochastic aspects.
However, such stochastic aspects are not investigated in [16]. Intentional Au-
tomata (IA) [15] take into account the influence of the environment as well as
internal details of a system by describing the pending status of I/O operators
interacting with the environment. A particular class of IA models, called the
Reo Automata class, is defined in [15], which provides precise characterization of
context-dependent connectors [13].

QIA is introduced as an extension of IA that allows for incorporating the influ-
ence of a system’s environment on its performance. The QIA model extends the
semantics of Reo by admitting annotations on its channel ends and the channels
to represent the stochastic properties of request arrivals at those ends, dataflows,
and data processing and transportation delays through those channels. The re-
sulting Stochastic Reo model retains its compositional semantics through QIA:
the QIA of a composed system is the product (composition) of the QIA of the
individual channels and components/services used in its construction.
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2.3.1 Constraint Automata

Constraint Automata (CA) were introduced [13] as a formalism to capture the
operational semantics of Reo, based on timed data streams, which also constitute
the foundation of the coalgebraic semantics of Reo [12].

We assume a finite set N of nodes, and denote by Data a fixed, non-empty set
of data that can be sent and received through these nodes via channels. CA
use a symbolic representation of data assignments by data constraints, which are
propositional formulas built from the atoms ’dA ∈ P ’, ’dA = dB ’ and ’dA = d’
using standard Boolean operators. Here, A,B ∈ N , dA is a symbol for the
observed data item at node A and d ∈ Data. DC(N) denotes the set of data
constraints that at most refer to the observed data items dA at node A ∈ N .
Logical implication induces a partial order ≤ on DC: g ≤ g′ iff g ⇒ g′.

A CA over the data domain Data is a tuple A = (S, S0,N ,→) where S is a set
of states, also called configurations, S0 ⊆ S is the set of its initial states, N is a
finite set of nodes, → is a finite subset of S × {N} ×DC(N)× S with N ∈ 2N ,
called the transition relation. A transition fires if it observes data items in its
respective ports/nodes of the component that satisfy the data constraint of the
transition, and this firing may consequently change the state of the automaton.

Figure 2.6: Constraint Automata for basic Reo channels

Figure 2.6 shows the CA for some primitive Reo channels. In this figure, for
simplicity, we assume the data constraints of all transitions are true (which simply
imposes no constraints on the contents of the data-flows) and omit them to avoid
clutter. For proper full treatment of data constraints in CA, see [13].

2.3.2 Stochastic Reo

Stochastic Reo is an extension of Reo annotated with stochastic properties, such
as processing delays on channels and arrival rates of data/requests at the channel
ends, allowing general distributions. Figure 2.7 shows some primitive channels
of Stochastic Reo. In this figure and the remainder of this paper, for simplicity,
we delete node names, but these names can be inferred from the names of their
respective arrival processes: for instance, ’dA’ means an arrival process at node
’A’.

Figure 2.7: Basic Stochastic Reo channels
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The labels annotating Stochastic Reo channels can be separated into the following
two categories:

• Channel delays: To model the stochastic behaviour of Reo channels, we
assume every Reo channel has one or more associated delays represented
by their corresponding random variables. Such a delay represents how long
it takes for a channel to deliver or throw away its data. For instance, a
LossySync has two associated variables ’dAB’ and ’dALost’ for stochastic
delays of, respectively, successful dataflow through the nodes ’A’ and ’B’
and losing data at node ’A’ when a read request is absent at node ’B’.
In a FIFO1 ’dAF’ means the delay for data-flow from its source ’A’ into
the buffer, and ’dFB’ for sending the data from the buffer to the sink ’B’.
Similarly, the random variable of a Sync (and a SyncDrain) indicates the
delay for data-flow from its source node ’A’ to its sink node ’B’ (and losing
data at both ends, respectively).

• Arrivals at nodes: I/O operations are performed on the source and sink
nodes of a Reo circuit through which it interacts with its environment. We
assume the time between consecutive arrivals of read and write requests at
the sink and source nodes of Reo connectors depends on their associated
stochastic processes. For instance, ’dA’ and ’dB’ in Figure 6 represent the
associated arrival processes at nodes ’A’ and ’B’. Furthermore, at most one
request at each boundary node can wait for acceptance. If a boundary node
is occupied by a pending request, then the node is blocked and consequently
all further arrivals at that node are lost.

Stochastic Reo supports the same compositional framework of joining nodes as
Reo. Most of the technical details of this join operation are identical to that of
Reo. The nodes in Stochastic Reo have certain QoS information on them, hence
joining nodes must accommodate their composition.

Nodes are categorized into mixed, source, and sink nodes. Boundary nodes receive
data/requests from the environment, after that mixed nodes are synchronized for
data-flow and then merely pump data in the circuit, i.e., mixed nodes do not
interact with the environment. This account shows the causality of the events
happening in the circuit, such as arrivals of data/requests at its boundary nodes,
synchronizing its mixed nodes, and occurrences of data-flow, sequentially. Be-
sides, we assume that pumping data by mixed nodes is an immediate action and
therefore mixed nodes have no associated stochastic variables1.

In order to describe stochastic delays of a channel explicitly, we name the delay
by the combination of a pair of (source, sink) nodes and the buffer of the channel.
For example, the stochastic property dAF of FIFO1 in Figure 2.7 stands for the
data-flow from the source end ’A’ into the buffer of the FIFO1. However, in
cases where, for instance, a source node (as a replicator) A is connected to two
different FIFO1 buffers, then the corresponding stochastic processes have the same
name, e.g., dAF. To avoid such an ambiguous situation, we rename the stochastic
processes by adding a number after its node name like dA1F and dA2F when

1This assumption is not a real restriction. A mixed node with delay can be modelled by
replacing this mixed node with a Sync channel with the delay. Moreover, according to the
required level of specification detail, each input and output of the mixed node can be modelled
by adding corresponding Sync channels with their stochastic values.
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the node has more than one outgoing channel or one incoming channel. As an
example of composed Stochastic Reo, figure 2.8 shows the ordering circuit with
the annotation of its stochastic variables.

Figure 2.8: Ordering circuit in Stochastic Reo

2.3.3 Quantitative Intentional Automata

In this section we introduce the notion of Quantitative Intentional Automata
(QIA) which is an extension of CA and provides operational semantics for Stochas-
tic Reo. Whereas CA transitions describe system configuration changes, QIA
transitions describe the changes of not only the system configuration but also the
status of its pending I/O operations.

In CA, configurations are shown as states, and processes causing state changes are
shown in transition labels as a set of nodes where data are observed. Similarly, in
QIA, system configurations and the status of pending I/O operations are shown
as states. Data-flow or firing through nodes causes changes in the system config-
uration, and arrivals of data/requests at the nodes or synchronization of nodes
changes the status of pending data/requests. These two different types of changes
are shown in the transition labels by two different sets of nodes. Moreover, QIA
transitions carry their relevant stochastic properties in their labels. We use such
QIA as an intermediate model for translation Stochastic Reo into a homogeneous
continuous time Markov Chain (CTMC).

Definition 2.3. QIA
A Quantitative Intentional Automaton is a tuple A =(S, S0,N ,→) where

• S ⊆ L× 2N is a finite set of states.

– L is a set of system configurations.
– R ∈ 2N is a set of pending nodes, that describes the pending status in

the current state.

• S0 ⊆ S is a set of initial states.
• N is a finite set of nodes.
• →⊆

⋃
M,N⊆N

S×{M}×{N}×DC(N)× 2DI ×S is the transition relation.

– DI ⊆ 2N × 2N × R+.
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A transition in a QIA is represented as 〈l, R〉
M,N,g,D
−−−−−−−→ 〈l′ , R′〉, where M is

the set of nodes that exchange data or synchronize for data-flow through the
transition, N is the set of nodes to be released by the firing of the transition,
and D ⊆ DI is the set of delay information tuples (I,O, r) where I and O are
sets of, respectively, source and sink nodes, and r indicates the stochastic delay
rate for the data-flow from I to O or the arrival rate of data/request from the
environment at nodes in I ∪ O. Furthermore, let D = {(Ij , Oj , rj)|1 ≤ j ≤ n},
then

⋃
1≤j≤n

(Ij ∪Oj) = N ∪M .

2.4 Current limitations of Reo

This section will give an answer to our first research question: What are the
current limitations of Reo?

QIA was introduced as an extension of CA and provides operational semantics
for Stochastic Reo. Stochastic Reo enables us to annotate stochastic properties
in Reo including processing delays on channels and arrival rates of data/requests
at channel ends, allowing general distributions. Although Stochastic Reo allows
general distributions, when converting this to a Continuous Time Markov Chain
(CTMC) using QIA we can only use exponential distributions because these have
the property that they are memoryless. This memoryless property means that
if a random variable T is exponentially distributed, then the following property
holds:

P (T > s+ t|T > s) = P (T > t) for all s, t ≥ 0. (2.1)

This says that the conditional probability that we need to wait, for example, more
than another 10 seconds before the first arrival, given that the first arrival has
not yet happened after 30 seconds, is equal to the initial probability that we need
to wait more than 10 seconds for the first arrival.

In a Markov Chain, the current state of the system should be completely indepen-
dent of the past state and transitions, this is referred to as the Markov property.
In a CTMC, this property can only hold if the distributions are memoryless. If
we would have distributions without the memoryless property, this is not met any
more so there will be dependency.

With the generated CTMC we can do steady state analysis, but the states in
the CTMC are just numbered. For this reason, it is not obvious what every
state represents. For example, one state represents the presence of a request at
boundary node A and another represents the presence of a request at node A
and B, but this can not be seen at first. Normally we also have to sum up a
lot of different states to get the right statistic. For example, in the relative easy
ordering connector of figure 2.8 discussed in the QIA paper, we need to sum up
8 different states to get the blocking probability at boundary node A.

When dealing with larger connectors, the number of states increases rapidly, which
will make it much harder to derive the right statistics. With these Markov chains
it is possible to derive all kind of statistics, but some of them are very hard to
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derive. For example, calculating the end-to-end delay will be very difficult for
large connectors.

If we want to use non-exponential distributions, we can also not use the CTMC
any more and we can not do any quality of service (QoS) analysis. With the
provided automata model it is still possible to do some analysis like detecting
deadlocks or checking if certain paths through the model are possible, but QoS
analysis is not possible. Analytically it is also very hard to solve complex systems
with synchronization and many different general stochastic distributions.

For this reason we need a new approach by simulating the Reo connector and
deriving all sorts of results. In this simulator we are able to use the colour-
ing algorithm described in section 2.2 as the driver of the simulator. With this
simulator we will always use the 3-colouring algorithm and not the 2-colouring
algorithm because, as we discussed in section 2.2.2 that colouring algorithm did
not have the right context dependent behaviour. The simulation approach will
be discussed in detail in chapter 3.



Chapter 3

Simulation

In the previous chapter we stated that we needed a simulator in Reo to perform
quality of service analysis on Reo systems with general stochastic distributions.
For this, we will use discrete event simulation. In discrete event simulation, the
operation of a system is represented as a chronological sequence of events. Each
event occurs at an instant in time and marks a change of state in the system.
In addition to the representation of system state variables and the logic of what
happens when system events occur, discrete-event simulations normally includes
the following components:

• Clock: The simulation must keep track of the current simulation time, in
whatever measurement units are suitable for the system being modelled. In
discrete-event simulations, as opposed to real time simulations, time hops
because events are instantaneous the clock skips to the next event start
time as the simulation proceeds.

• Event list: The simulation maintains at least one list of simulation events.
This is sometimes called the pending event set because it lists events that
are pending as a result of previously simulated event but have yet to be
simulated themselves. An event is described by the time at which it occurs
and a type, indicating the code that will be used to simulate that event. It
is common for the event code to be parameterised, in which case, the event
description also contains parameters to the event code.

• Random-number generators: The simulation needs to generate random
variables of various kinds, depending on the system model. This is ac-
complished by one or more Pseudorandom number generators. The use of
pseudorandom numbers as opposed to true random numbers is a benefit
because rerunning a simulation produces exactly the same behaviour.

• Statistics: The simulation typically keeps track of the system’s statistics,
which quantify the aspects of interest.

• Ending condition: Because events are bootstrapped, theoretically a dis-
crete event simulation could run forever. So the simulation designer must
decide when the simulation will end. Typical choices are ’at time t’ or ’after

16
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processing n number of events’ or, more generally, ’when statistical measure
X reaches the value x’.

In this chapter we describe the simulator of Reo. Section 3.1 gives an answer
to our research question: Which output statistics are relevant for the systems
we want to model? These statistics will be outputted after the simulation has
been finished. Section 3.2 describes the general set-up and explain the choices
we made for the simulation. Section 3.3 gives an answer to another research
question: What are the limitations of the simulator or the approach used for
the simulator? It describes the limitations we experienced because of the choices
made in section 3.2, and it will explain how to work around these limitations and
when the workarounds are needed.

3.1 Output of the simulation

In this section we will give an answer to our research question: Which output
statistics are relevant for the systems we want to model?. Because Reo can model
all kind of systems it is not always clear what the output should be. For all
output statistics1 we give an average, a standard deviation (by using the batch-
means method for the simulation), a coefficient of variation and the number of
observations of the statistic. We will also give a confidence interval for the mean
of the statistic. For this confidence interval, we assume that the results of the
different batches in the simulation are normally distributed. To see if this is the
case, we added a histogram of the batch results, if this histogram does not look
like the ’bell curve’ shape of the normal distribution, the confidence interval will
be wrong.

One statistic might be based on thousands of observations while others are based
on only one observation, so the meaning of the statistic can be very different. So
if the user observes that one statistic is based on only one observation, he knows
that it is because of a very rare event.

With the simulation one may expect that the results and the number of obser-
vation in every batch is approximately the same, but if this is not the case this
gives an indication that something might be wrong. For example, a deadlock will
have highly different results for the time before the deadlock and the time after
the deadlock. Also, if the results in the first batch are very different from the
rest, you might have to use a longer warm-up period.

3.1.1 Long-term simulation

Long-term simulation can be used to get a lot of results. Long-term simulation has
the advantage that only one warm-up period have to be used. The disadvantage
of long-term simulation is that batches are dependent of each other. Because the
state of the system will not be reset after every batch, the current batch will be
dependent of the previous batch. This is especially noticeable when using a short

1An overview of the results of all statistics will be provided after the simulation in the folder
’Results’ of the workspace directory in Eclipse.
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simulation period, when using a long enough simulation period the batches will
be approximately independent.

System state

One thing we have as output is a system state for steady state analysis, so if you
observe the system at a random moment in time, what is the probability that
you observe a certain state. This will not mean that the system is actually stable
after a certain amount of time, but more like a long-term average. For this output
measure we have to know how a ’state’ is defined.

We use the following definition for the system state:

Definition 3.1. System state
The system state is the conjunction of the state of the boundary nodes followed
by the state of the FIFO buffers, where all individual parts will be ordered in an
alphabetical order.

The boundary nodes can be empty meaning that there is no waiting request,
waiting meaning that there is a request waiting at the boundary node (port) or
busy meaning it is busy sending data. The FIFO buffers can have only two states,
full or empty. Because the system state will have the states of the individual
parts in an alphabetical order, it is important to give names to the nodes in the
connector. For example, if we have a connector with nodes A, B and C and 2
buffer the state can be ’ewbfe’, where port A is empty, port B waiting, port C
busy, buffer 1 full and buffer 2 empty.

When we have M ports and F FIFO buffers, this means we can have a total of
3M × 2F possible states. This number can increase pretty fast when evaluating
large system. However, normally not all states are possible, because a lot of states
do not correspond to a colouring. For this reason we will only output the observed
states.

This system state is also used for two extra options in the simulation. The first
one is defining a system state to stop the simulation. In this specification it is
possible to add the wild-card ’?’ to the state to indicate that certain parts of the
state can be any value. For example, if you specify the value ’ww?’ the simulation
will stop if the simulation will reach the state ’wwe’, ’www’ or ’wwb’. Multiple
states can be defined by separating them with a comma sign. Then the simulation
will stop if it reaches any of the specified states.

The same specification can also be used to define a ’special state’. This ’special
state’ can be used to get statistics of multiple states together, so this will output
the ratio of time the system is in one of the specified states. The mean of this
statistic should be the same as the sum of the means of the individual states,
but the standard deviation can not be calculated out of the individual statistics
because these are dependent of each other.

Channel utilization

We can also give the utilization of all channels, which will be defined as follows:
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Definition 3.2. Channel utilization
The channel utilization is the time a channel is busy handling requests divided
by the total simulation time. For the FIFO, Lossy, AsyncDrain and AsyncSpout,
this channel utilization will be split into two parts with one utilization for every
end.

We also have to mention how to define the time a channel is busy. For example,
if we take the connector of figure 3.1, we have three channels in series. When a
request is available at A and at D, all three channels will be locked at the same
time. If every channel takes 10 seconds to process, it will take a total time of 30
seconds for the item to go from A to D, so every channel is locked for 30 seconds.
However, the separate channels are only busy for 10 seconds. For the channel
utilization defined before we use the 10 seconds of the channel, for the 30 seconds
we introduce another output statistic.

Definition 3.3. Channel locked
The channel locked utilization is the total time a channel is locked divided by the
total simulation time. A channel is locked when a colouring is active involving
the channel.

The channel locked utilization uses the colourings to know when a channel is
locked, for this reason we also need an output statistic which indicates the uti-
lization of a certain colouring.

Definition 3.4. Colouring
The colouring statistic is the the total time colouring c is active divided by the
total simulation time.

Figure 3.1: Channels in series

Arriving requests

The next statistic we can give is about the arriving requests at an I/O operator
(Read/Write). When we have an arbitrary request at a boundary node there are
three possibilities:

1. The boundary node is in the state ’empty’
2. The boundary node is in the state ’waiting’
3. The boundary node is in the state ’busy’
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In the first case, the request will be accepted at the boundary node and will be
processed immediately if all other ends are available or it will wait if it has to wait
for a sync at one of the other ends. If a request observes the boundary node in
the state ’waiting’ or ’busy’, the request will be blocked. We can have two types
of statistics based on the arriving requests which will be defined as follows:

Definition 3.5. Request observations
The request observations is the ratio of requests observing state j at boundary
node i divided by the total number of arrived requests at boundary node i.

Definition 3.6. Node state
The node state is the total time a boundary node i is in state j divided by the total
simulation time.

The node state indicates the probability that a request arriving at a random mo-
ment in time will observe one of the three states, while the request observations
indicates the actual observations of requests. When the arrival process has an ex-
ponential distribution, both statistics should be equal because of the memoryless
property.

When a request will be delayed until all sync ends are available, we also want to
know the average waiting time. For this reason we have two extra definitions.

Definition 3.7. Average waiting time
The average waiting time is the total waiting time of all requests at boundary
node i divided by the total number of requests.

Definition 3.8. Average conditional waiting time
The average conditional waiting time is the total waiting time of all requests at
boundary node i divided by the total number of non-blocked requests.

FIFO buffer full

The previous statistics are statistics you can have for any simulation program,
but we can also have some statistics which are specific for the Reo simulation. An
example of such a statistic is the FIFO buffer utilization which will be defined as
follows.

Definition 3.9. FIFO buffer utilization
The FIFO buffer utilization is the total time a FIFO buffer is full divided by the
total simulation time.

Loss ratio at lossy sync

The next Reo specific statistic is the behaviour of a lossy sync. The lossy sync
can have two types of behaviour, it either behaves as a normal sync channel when
there is no reason for delay, or it will lose its data when there is a reason for delay
at the sink end. We will have the following output statistic for the lossy sync
channel.

Definition 3.10. Actual loss ratio
The actual loss ratio is the number of requests lost in a lossy sync channel divided
by the total number of requests arriving at the lossy sync channel.
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Merger

Another relevant measure to look at, are the mergers. We can look at the ratio
of times the data arrives from one of the directions. This measure can not be
derived from the steady state analysis, because the steady state analysis indicates
the percentage of time the system is in a certain state. For example, if we have
the system as in figure 3.2 (where the numbers at the readers/writers means the
number of non-blocked requests), you can see that the probability that an arriving
item at C is from A is 99%. But when you look at the percentage of time A is
busy sending to C this is only 10%. So we can define the statistic for the merger
as follows:

Definition 3.11. Merger direction
The merger direction is the number of requests arriving at node N from sink end e
divided by the total number of requests arriving at node N .

Figure 3.2: Merger

End-to-end delay

Another very important measure in every system is the end-to-end delay and
inter-arrival times, which we define as follows:

Definition 3.12. End-to-end delay
The end-to-end delay is the average delay from starting point s to ending point e.

Definition 3.13. Inter-arrival times
The inter-arrival times are the average time between two arrivals at ending point e,
coming from starting point s.

With this definition we also have to know what the possible starting and ending
points could be. This is not always obvious when we have a system where every
data item will be duplicated and arrive at the same endpoint. In figure 3.3 with
the delay times displayed near the channels, you will see an example of such a
system. When an item is duplicated, we can take the duplicator node as the
starting point, or the original writer. We will choose the original writer, to be
able to distinguish between different origins before the duplicator node. But a
writer is not the only way the data could start, we can also start the system with
a full FIFO buffer or the data can begin at a spout channel.
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Definition 3.14. Starting point
A starting point for the end-to-end delay or the inter-arrival times is either a
boundary node, full FIFO buffer or a spout channel.

The data can also leave the system on other places than the readers; in lossy sync
channels and in drains. The item can also become stuck in a FIFO channel, but
then it will never get an ending time.

Definition 3.15. Ending point
An ending point for the end-to-end delay or the inter-arrival times is either a
boundary node, LossySync, SyncDrain or AsyncDrain.

If we evaluate the system of figure 3.3 we will see that one item arrives after six
time units, while the other item arrives after eight time units. So in this case the
average end-to-end delay for items from A to E will be seven, while the average
inter-arrival time will be four.

Figure 3.3: Duplicator connector

When a full FIFO buffer is the starting point of a token, the end-to-end delay is
not relevant any more for that token. For example, when we look at the connector
of figure 3.4. The token which starts in the FIFO will be replicated every time
and will arrive at the reader after for example 1, 3, 5, .. time units. Because the
starting time of the token will stay at zero the end-to-end delay will go to infinity
when using a long simulation period. However, we have to keep it as a starting
position because it can be relevant for the inter-arrival times.

Figure 3.4: Replicating FIFO loop
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3.1.2 Short-term simulation

By using short-term simulation we can also do some relevant analysis. The ad-
vantage of this type of simulation is that you can do transient analysis, deadlock
and livelock analysis. The disadvantage of short-term simulation compared to
long-term simulation is that you will have a warm up period in every batch.

Transient analysis

With short-term simulation we are able to do transient analysis. We can run
the simulation to time X multiple times to see what the probability is that the
system is in state Y after time X. With short term simulation it is still possible
to define a warm up period, but if you create a particular starting situation you
should probably set the warm up period to zero, because you will lose the starting
position otherwise.

Deadlocks

Some systems might end up in a deadlock, meaning that the system is stuck and
all flow is blocked. An example of such a system can be seen in figure 3.5, when
both FIFO buffers are full the system is locked. This can happen after 3, 5, 7,
9, ... steps, or it can also be that it will never happen. So by using short-time
simulation you can give some figures about (possible) deadlocks. For example,
you can simulate over and over again until a deadlock occurs, then we can give
the average time (or number of steps) it will take before the deadlock occurs.
However, the problem with this approach is that a deadlock might be very rare
and it could take an infinite time before the deadlock occurs. This will ruin the
results generated by the simulation.

Figure 3.5: Connector with possible deadlock

This can be solved by using a maximum time (or steps) for the simulation, this
can give you the probability that a deadlock will occur within X time units. This
way you can also give an average time to the deadlock by using only the simulation
runs where a deadlock actually occurs.

We also have to know when we are in a deadlock, but this is easy to detect. When
we end up in a deadlock, the current colouring table will be empty. Normally
you would still have a no-flow colouring, but these are filtered out before the
simulation. One might think that a deadlock can also be detected by an empty
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event list, but that is not the case, because there are still requests coming in. So
a deadlock is defined as follows:

Definition 3.16. Deadlock
A deadlock indicates that a system is stuck and all flow is blocked, a deadlock can
be detected by a colouring table with only no flow colourings.

We can also define another kind of deadlock, when we have an internal loop
where the flow circles around but all requests at the ports collides, this is called
a livelock. An example of such a system is in figure 3.6. This connector will have
a constant change of colouring, but every time the data will be lost in the lossy
sync because the data in the other loop is in the other buffer. For this reason the
data will never reach the readers.

Figure 3.6: Connector with livelock

We will define a livelock as follows:

Definition 3.17. Livelock
A livelock is a special kind of deadlock, where there is internal flow in the connector
without any action at the boundary nodes.

In general, it is hard to say when we actually have a livelock, it might happen that
we do not have any action on a boundary node for a long time, but once a request
arrives at a boundary node with a large inter-arrival time the boundary nodes
will have action again. So the way we will detect a livelock is by counting the
number of colourings chosen without any involved boundary nodes. Whenever
we choose a colouring with an involved boundary node, this counter will be reset
again. Another restriction is that we start counting when all boundary nodes
have a waiting request.

3.2 Simulation set-up

This section describes the general set-up of the simulator in Reo. Figure 3.7 shows
the flow of the long-term discrete event simulation, and figure 3.8 shows the flow
from the short-term simulation. In the next paragraphs parts of these flow charts
will be explained in more detail.
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Figure 3.7: Flow chart for the long-term simulation
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Figure 3.8: Flow chart for the short-term simulation
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3.2.1 Input

The input of the simulation can be split into two parts, one part is setting up the
Reo model and the other part is setting the parameters for the simulation.

Reo model

The first type of input is the Reo model itself, the user has to build the Reo
model he wants to simulate. Next to the usual Reo model, the user will also have
to specify some stochastic properties in the model. The delay of all the channels
could be set, but if the user does not specify a specific distribution the simulation
model will use a delay of zero. Four of the channels will also have two separate
delays, for the FIFO channel we have the delay into the buffer and out of the
buffer. For the lossy sync channel we have the delay when it behaves as a sync
channel and the delay when it loses its data. The AsyncDrain and AsyncSpout
both have two delays, one delay for every end of the channel.

Another thing the user has to specify is the distribution of the inter-arrival times
of requests at the boundary nodes. It is also possible to specify if the boundary
node should start with a request. This ability gives the user the possibility to
create any starting situation. This should not have a (large) impact on any long-
term simulation because of the warm-up period, but for short-term simulation
this could be very handy. Setting this starting state of the ports can be done by
specifying a boolean value.

Settings

Before the user starts the simulation the user has to set up his simulation run.
The following parameters have to be set:

• Type of simulation: long- or short-term simulation
• Base simulation end on: events or time
• Warm-up period: time or number of events till the simulation starts gath-

ering statistics
• Simulation length: time or events till the simulation stops
• Number of batches: the simulation length will be split into multiple batches

to be able to give a confidence interval for the statistics. The number of
batches is normally chosen between 25 and 50 [17]
• Confidence interval: how accurate the confidence interval should be
• Detect deadlock: if enabled, the simulation will stop whenever we are in a

deadlock. If disabled, the simulation will go on so the user can see what
happens with the statistics after the deadlock.
• Detect livelock: ability to specify if a livelock should be detected
• Internal colourings for livelock: specify how many colourings in a row with-

out any involved boundary nodes should be chosen to indicate a livelock.
Also see section 3.1.2
• State to stop simulation (optional): possibility to define a certain system

state in which the simulation should stop. Also see section 4.5



3.2. SIMULATION SET-UP 28

• Special state (optional): possibility to define a system state to get statistics
from. Also see section 3.1.1
• Seed: define a seed if you want to produce the same results in every con-

secutive simulation with the same parameters
• Max chart points: maximum number of chart points for the charts. Also

see section 4.6.1.

Choosing an appropriate warm-up period and simulation length might be very
hard to do. When a certain simulation time has been chosen it is very hard to
predict the number of events that will happen in the time period because the kind
of systems used can vary a lot. For this reason it might be better to use events.

3.2.2 Statistics

During the simulation we have to keep track of all kind of statistics to be able to
derive all output defined in section 3.1. The variables and their description can
be found in table 3.1, with these primary statistics we are able to derive all other
statistics. In this table, we can replace run r by a batch number if we are using
long-term simulation. Every statistic will also have a count with the number of
observations in every batch or run.

Variable Description

Bf (r) Total time FIFO buffer f is full in run r
Cc(r) Total time channel c is busy with transferring data in run r
Aa(r) Total time colouring a is used in run r
Dse(r) Total end-to-end delay from starting point s to ending

point e in run r
Sij(r) Total time port i is in state j in run r
Sysj(r) Total time the system is in state j in run r

Table 3.1: Variables

Note that for some channels (FIFO, lossy sync and Async channels) the variable
Cc(r) will be split into two parts. For the FIFO buffer we have the flow from the
sink end to the buffer and from the buffer to the source end. In the lossy sync we
have the time it behaves as a normal sync channel and the time it loses its data.

3.2.3 Initialization

During the initialization step we have to initialize all the variables and schedule
the first events. Because the user can define if there is a waiting request at a port
at the start of the simulation we have two possibilities. If the user has defined
that there is a request waiting at a port, we will schedule the arrival of the request
at time zero. If the port is empty at the start of the simulation we will schedule
the first arrival at a time which will be sampled from the arrival distribution of
the port.
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Note that the initialization will not include the warm-up period, because during
the warm-up period we have to use the normal flow as defined in the flow chart.
However, during the warm-up period the statistics will not be updated yet.

For the short-term simulation we will arrive in the initialization process after
every run. After every run the state of the system might be different from the
specified state in the Reo model, so this state has to be reset first. Another thing
we have to do is empty the event list, because after every run you will have to
start with an empty eventlist again. A flow chart of the initialization process is
given in figure 3.9.
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Figure 3.9: Flow chart for the initialization step

3.2.4 Events

As we can see in the flow chart of figures 3.7 and 3.8, there are two possible events
in the event list. We can have the arrival of a request or we can have a finished
colouring. Because we are using discrete event simulation, the state of the system
might only change when one of these kind of events happens. We should keep
track of a chronological list of events to find the next event to simulate. After
every event we have to check if we want to end the simulation.

When we have multiple events at the same time, these events have to be processed
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in a specific way. First of all, the finishing of a colouring should be the first event
to handle. This can be explained by taking a simple connector with a sync channel
from A to B. If the flow from A to B finishes at the same time as an arrival at
A or B, the behaviour of the system will be different depending of which event
will be processed first. If the request will be processed first, this request will be
blocked because the colouring has not ended yet. If the end of the colouring has
priority over the request arrival, the channel will be idle first and the arriving
request will be accepted and the corresponding port will go to waiting.

Before choosing a new colouring, all events of the same time should be processed.
This will be a maximum of M + 1 events, where M is the number of ports and
1 from an end of colouring event. When a colouring would be selected before
all ports are updated by the various events, we could get the wrong results. For
example, if we have the connector of figure 3.10 and the requests at all ports will
arrive at the same time. If we handle this requests one at a time and try to choose
a colouring after every request, we will never choose the colouring we want (with
flow from A to C and from B to the buffer).

Figure 3.10: Connector with multiple flows in one colouring

The two types of request will be explained in more detail below.

Request arrival

The first type of event is the arrival of a request at one of the ports. Recall that
this request can observe the port in one of three states: empty meaning that there
is no waiting request, waiting meaning that there is a request waiting at the port
or the port can be busy meaning it is busy sending data. If the port is empty we
can update the port availability to waiting. If the port is in the state ’waiting’ or
’busy’, the request will collide and will be lost.

After we have updated the port availability, we will also have to schedule when
the next request will arrive at this port. This will be done by sampling from the
arrival distribution at the port.

The last thing we have to do before we want to choose a new colouring is checking
if there is already an active colouring with flow. Because we only use one colouring
at a time and we will wait till this colouring is finished, we can only choose a new
colouring if there is no active colouring at the moment.
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Finished colouring

Another kind of event is the finishing of a colouring, when we have this event we
have to update the availability of all the busy ports to empty. When the colouring
includes a flow from or to a FIFO buffer, the buffer should also be updated. When
we have flow into the FIFO buffer we will assume that the buffer is empty until
the flow is finished. The conversely around, we will assume that the buffer will
stay full until the flow is finished.

3.2.5 Next colouring

The most important part of the simulation is choosing the colourings. We will
choose a new colouring when the last colouring is finished or when the state of the
system changes because of an arriving request. But once a colouring is started,
we will never choose another colouring before the current colouring is finished
completely.

For example in the previous connector in figure 3.10 we have requests at A and
C, which causes that we activate a colouring with flow from A to C. During this
colouring a request at B arrives such that a flow from B to the buffer could also
start together with the flow from A to C. But because we use only one colouring
at a time until it is finished, we will not activate the flow from B to the buffer
yet.

We have chosen to stick with this restriction because this is how Reo is designed
and also how the colouring tables and colourings should be used. In every state
of the Reo model, all nodes will come to a consensus about what happens next.
Then this transition will happen and you are in a new state. Then we will decide
what the next step should be and then this transition will be taken.

The colouring tables and colourings are also based on this principle. Every state of
the system corresponds to a certain colouring table. This colouring table contains
one or more possible next colourings which corresponds to a transition to a next
state of the Reo system. The colouring contains a reference to the next colouring
table which corresponds to the state of the system after the colouring is finished.

Based on the current colouring table we can choose the next colouring based on
the availability of requests at the boundary nodes. All colourings in the current
colouring table will be evaluated and can be rejected for two reasons:

1. The colouring has flow at a boundary node, and the boundary node has no
waiting request

2. The colouring indicates that a boundary node gives a reason for delay, and
there is a waiting request

If one or more of the colourings are accepted, one of these colourings will be
chosen at random. After the colouring has been finished we will be at the next
colouring table, which is specified with the chosen colouring.

As we can see in section 3.3, the restriction to stick to one colouring at a time
until it is finished has some big drawbacks. But we could not drop this restriction,
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because then the colourings and colouring tables could not be used any more.
When dropping the restriction, a whole new automata model should be invented
with much more states which should be used as the driver for the simulation.
More about this will be discussed in section 7.1. With some workarounds we are
still able to model most of the systems we wanted to model, also with the current
restriction.

3.2.6 Batches

When moving from one batch to the next batch we have to think about what
belongs to which statistic. Counters based on instantaneous events are easy to
handle, because the event is always in one of the batches. However, other statistics
can begin in batch i and finish in batch i+1, so we have to think about what we
should do with these statistics. The different types of batch behaviour for the
statistics will be discussed here.

Instantaneous statistics

As mentioned before, for the instantaneous counters it is easy to place the event
into the right event. This group includes the conditional probabilities (request
arrivals and loss ratio). This group will also include the end-to-end delay and the
inter-arrival times at a port, because for this statistic we can use the arrival time
of the token.

Another statistic we have in this category is the merger directions, for this statistic
we will determine the right batch based on the starting time of the flow (while
the real arrival time at the merger might be in the next batch).

The actual channel utilization will also be in this category. If we look back at the
connector in series of figure 3.1, we might have that the flow from A to D start
in batch 1 and arrives in batch 2. So, if the batch change happens when the flow
is going from B to C; we might want the channel utilization of A to B into batch
1, the flow from B to C separated over batch 1 and 2, and the flow from C to D
into batch 2.

The problem with this is that we do not have separate events for the completion
of flow in a channel. For this reason we will put all observations into the batch
of the starting time of the flow. Because the goal of the simulation is to give an
expected behaviour in the long-term, it should not make a big difference if we do
it all in one batch or separated over multiple batches.

Split intervals

Other statistics might be based on intervals, so an observation might begin in
batch i and finish in batch i+1. An example of such a statistic is the probability
that an arbitrary incoming request will be in one of the three groups. The port
we look at might begin in the empty state before the end of a batch until after the
beginning of the next batch. If this is the case you have to think about what to do
with this observation. One solution could be to leave out the entire observation,
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so once an observation start and ends in different batches you will leave out the
observation.

Another possibility is to just put the observation in either batch i or in batch
i+1, then you will not lose any data, but this can lead to a utilization over 100%.
The last possibility is to split the observation, so the part which belongs to batch
i will count in that batch and the part which belongs to batch i+1 will count in
that batch.

We have chosen the last option because this does not lose data and it will also
never exceeds 100%. If we would have chosen one of the other options, the
results should not differ much because the results will only differ by at most one
observation. If the results differ, the simulation period was not long enough. This
can be seen by looking at the number of observations. If this number is not high
enough, the method for choosing a batch for the intervals can make a difference.

End of run and last batch

When a run in short-term simulation or the last batch in long-term simulation
is finished, the system might not be empty. So there could be active flows and
waiting request, meaning we also have to decide what to do with these figures.
For example, for the waiting time of a request we had specified that the time will
be in the run or batch in which the request arrived. But because we want to stop
the simulation after the last batch this request will never be processed.

So if you want to be strict with the runs and batches, you should simulate further
until all waiting requests are gone and the active flows are finished. But maybe
this can take a lot of extra simulation time. For this reason we will just throw
away this partial waiting time, because it should not influence the final result. If
it does influence the results the simulation period was not long enough.

3.3 Limitations and workarounds

In section 3.2.5 we have chosen that only one colouring will be active at a time
until it is finished completely. Although this is the way Reo is designed, this
approach gives problems when handling models with other assumptions. So in
this section we will answer the research question: What are the limitations of the
simulator or the approach used for the simulator?

For example, if we want to handle some basic queueing models, the Reo connector
can not be build as expected. Most of the times some workarounds have to be
used to make sure that the connector behaves as we would like it to behave.
When there are alternative ways to choose colourings, these workarounds might
not be needed any more, but until this time, the connectors can not be build in
a different way. In this section we will explain what kind of limitations there are
with the current approach and how to work around these limitations.
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3.3.1 Exponential service duration

Figure 3.11 shows three FIFO buffers in series, this connector can be used to
model a queueing model with four waiting places2 and one server.

Figure 3.11: FIFO channels in series

An obvious idea would be to define the arrival rate on boundary node A and the
service duration on the second part of the FIFO buffer from C to D. The rest
of the channel delays should be set to zero and the arrival rate on the boundary
node D should be set to ’IfNeeded’ or ’Always’. Please refer to section 4.1 for a
description of ’IfNeeded’ and ’Always’.

But setting the service delay on this channel would not produce the right results.
The reason for this is that once a colouring is accepted, it will not choose the next
colouring before the current colouring is finished completely. So if the connector
has started with processing its data from the last buffer to D, it is not able to
process data from A to a buffer until the colouring is finished. So even if the
buffers are empty a request at A will not move into a buffer until the ’service’ has
been finished. If, in the meantime another request arrives at A, it will be blocked
while this was not needed because there was place in the queue.

To work around the restriction of the simulator, all channel delays should be set
to zero and the service rate can be defined on the boundary nodes D. Now the
availability of these boundary nodes indicate if the server is busy. When the state
of the node is ’waiting’ the server is idle and waiting for a request to process.
When the state of the node is ’empty’ it means that the server is actually busy
processing a request. This might be counter intuitive, but at this moment there
is no other alternative.

An important thing to note with this approach is that the end-to-end delay does
not include the service duration. But the expected service duration can be added
to the outputted end-to-end delay to get the actual end-to-end delay including
service.

3.3.2 Non-exponential service duration

The approach suggested in the previous paragraph will work fine when dealing
with an exponential service rate because of the memoryless property which is
explained in section 2.4.

Because of this memoryless property, we do not care about the time the boundary
2the boundary node also has a place for the queue
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node went from ’waiting’ to ’empty’. The time until another request arrives is
independent of this. When using another distribution, the memoryless property
does not hold any more which causes that the previous approach fails to produce
the right results.

Normally the arrivals of requests at a boundary node is a continuous process, so
when a request arrives, the next request will be scheduled. For example, we want
to model a single server without a queue3 with a service duration of 4 using the
workaround of the previous section. Then we have an arrival of a request every 4
seconds. We start with a request, which is reasonable because a waiting request
indicates that the server is idle. So at time zero we will have the first arrival and
we schedule the next arrival which will be at time 4. At time 4 we will schedule
the next arrival which will be at time 8, and so on.

Now we also add an arrival rate of 1 request every 3 seconds. So a request will
arrive at time 3, 6 and so on. The first arrival at time 3 will find the server
in a waiting state so this request will be processed. Now the server is empty
again until time 4 when the server will have its next request. At time 6 the next
request arrives which also finds the server in a waiting state so this request will
be processed immediately also.

This behaviour is not what we would like to have, the service should start once
it starts processing an item. So when a request will be processed at time 3, we
expect that the server is available for another request at time 7 because we had a
service duration of 4. So the server should not be available at time 4 already as
explained above. When the server was available at time 7 instead of time 4, the
request at time 6 will be lost in the LossySync channel. Figure 3.12 illustrates
the different types of behaviours, where figure 3.12(a) indicates the behaviour
when we use a regular deterministic distribution with inter arrival times of 4.
Figure 3.12(b) indicates the behaviour we would like to have.

To solve this problem, we created an extra option to add a boolean value to the
arrival rate to indicate that a new request should be sampled when a boundary
node changes to empty. This indicates that a sample is made when the previous
request is completely processed instead of when the previous request arrived. The
request arrival behaviour can be changed by adding a ’true’ value to the arrival
rate distribution. For example by setting the arrival rate to Constant(4, true), if
the boolean is omitted the regular Constant(4) distribution will be used.

3.3.3 Waiting time after service

When we want to model systems where the server is not the end station of the
request, so the request will not leave the system immediately after the processing
has been finished, we can not use the previous approach any more. This is the case
when a job will be handled by multiple servers or when a job will be processed by
one server, and that it has to wait in a FIFO buffer until another request arrives
at one of the boundary nodes after the processing in the server. In the previous
approach, we modelled the system such that a job left the system when starting
service, while the server itself will be blocked until the service is finished. This
time was not in the end-to-end delay of the job itself any more, so this time should

3A server without a queue should be modelled using a LossySync channel
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(a) Behaviour when service duration has been set to 4

(b) Behaviour when service duration starts when server is activated

Figure 3.12: Timeline for server with requests every 3 seconds

be added.

When a job has to wait after the processing at the server, this approach does not
work any more because the waiting time and the service duration overlaps. For
example, we can model a server with a constant service duration of 3 followed
by a buffer. If we assume that a request arrives at time 0 to be processed in the
server, and another arriving request at time 2 to read the request from the buffer.
If we would model this system with an extra reader as specified in the previous
section, the request will be in the buffer following the server after time 0, and the
buffer will be blocked till time 3. After time 2 a request arrives to read from the
buffer, so the request would get an end-to-end delay of 2. If we would add the
service duration of 3, we would get an end-to-end delay of 5, which is obviously
not the right result.

Another example of a system which would not give the right results when we
would model it with just an extra reader is described in section 6.1 where a job
will be processed by multiple servers and merged when all servers are finished. In
this case a job will also have to wait after it has been processed by the servers.

To fix this problem we have to make a construction which will include the service
duration(s) in the end-to-end delay. This can be achieved by using the construc-
tion as shown in figure 3.13. This example shows how you can model a service
time duration between A and B, this is needed when the distribution of B is dif-
ferent than ’IfNeeded’ or ’Always’ because in that case, the request will have to
wait after service. When the request is in the buffer it means that it is in service
and once it left the buffer the service duration is finished.
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Figure 3.13: Construction for server

To make sure that this construction does what it should do, we needed another
option for specifying the arrival rate of the boundary node S. We want that a
request will flow into the server instantly once the server is free, and once the
request is in the buffer we want to specify the service time distribution. To
ensure this, we added another boolean value to the distribution to indicate that
a distribution should iterate between zero and a sample of the distribution.

When the buffer is empty, the service is idle and should be waiting for an arriving
request. So when the buffer is empty there should be a waiting request at the
boundary node S. When a request arrives to flow into the buffer it will take the
request from the boundary node S and will flow into the buffer. Then the request
has to wait inside the buffer until another request is available at the boundary
node S, the time till this request arrives will be sampled from the distribution of
the boundary node. When this request is available at node S, the request in the
buffer will leave and the server is idle again. Because the server is idle again we
have to make sure that a request is available at node S. Because we have specified
an alternating distribution at the boundary node, the next sample will be zero
which indicates that the server is waiting again right after the last item left.

Although we restricted us to alternate between zero and a distribution, you might
want to alternate between two different distributions in other examples. This
can be achieved by having two different alternating distributions. For example,
imagine that we want to alternate the distribution at boundary node A between
an exponential(1) distribution and a uniform(0, 2) distribution. We can add sync
channels from node A to nodes B and C and specify an alternating exponential(1)
distribution4 on node B and an alternating uniform(0, 2) distribution on node C.

Both distributions should not alternate in the same way, when one of the distri-
butions gives a zero, the other distribution should sample. This can be achieved
by specifying that one of the node starts with a request at its boundary node.

The construction of figure 3.13 can be used to model all delays in a connector,
which makes the connector completely asynchronous. But this kind of construc-
tion also comes with a big disadvantage. Because you make the connector com-

4An alternating exponential(1) distribution alternates between 0 and a sample from the
exponential distribution and should be specified as exp(1, true, true)
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pletely asynchronous, the number of colourings and colouring tables will increase
rapidly, which slows down the simulator. When the number of buffers increases
too much, there will also be problems with the memory usage which will be ex-
plained in section 6.1.

3.3.4 Mergers

Although we suggested that the method in the previous section could be used for
all delays, the results can differ with the results with the delays on the channels.
When looking at the merger given in figure 3.14(a) with a constant delay of zero
on all channels except the channels D-H and G-H. In this case we assume that
these two channels both have a delay of 1. Then the average end-to-end delay
will be 1.5, because the request will flow instantly into both buffers. Then only
one buffer is able to send to the reader which takes 1 time unit. Then the other
buffer will fire, which added another time unit so this delay will be 2.

When we replace the delays with its counterparts as explained in the previous
section, we got a system as in figure 3.14(b). Here all delays are zero and the
arrival rate on the nodes C and F will be constant(1, true, true). In this case
the average end-to-end delay will not be 1.5, but 1. The request will flow into
both buffers which causes the boundary nodes to be empty. After 1 time unit
both boundary nodes will have a request again and the flow to H can start again.
Because the delays are set to zero, the end-to-end delay will also be one.

(a) Normal merger (b) Merger with separate delays

Figure 3.14: Different ways to model mergers

3.3.5 SyncDrains

Another connector which does not work as expected is given in figure 3.15. This
time the error has nothing to do with the restriction that only one colouring is
accepted at a time, because this connector has only one colouring. This time the
problem is the way the connector will be traversed to get the end-to-end delays.
We can evaluate this connector with arrival rates set to ’Always’ and deterministic
delays, where A→ B = 1, A→ C = 2, B → C = 0 and B → D = 0.

The end-to-end delay to node D will be 1 while you might expect it to be 2, because
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Figure 3.15: Connector with SyncDrain

an arriving request will be duplicated to two different Sync channels. One of them
takes 1 time unit while the other one takes 2. Then it will be drained after 2 time
units, so you might expect that this will also be the end-to-end delay to node D.

The reason why we get an end-to-end delay of 1 is that the flow from B to D starts
before the flow from B to the drain starts. So whenever a request reaches B, it will
be duplicated and one of the tokens will flow directly to D. The other token will
wait until C is also available, because that is how the SyncDrain channel works.
The request from B to D could not wait until C is available also, because this
would not work in some cases. For example, if we change the Sync of A-B into
a SyncDrain and the SyncDrain of B-C into a Sync from C to B. Now a request
will never arrive at the other end of the SyncDrain if the request will not be sent
whenever the other end is not available.

If you do want to have an end-to-end delay of 2, this can be solved in two ways.
The first way is by changing the Sync channel from B to D into a FIFO channel.
Then a request will wait in the buffer until the colouring has been finished. Be-
cause the colouring is finished after the drain is finished, the delay from A to D
will also be this time. The second way to solve this is by changing the two Sync
channels from A to B and A to C into a FIFO channel with two Sync channels
to a reader as suggested in section 3.3.3.



Chapter 4

Implementation

In this chapter we discuss how we implemented the Reo simulator within the
Eclipse Coordination Tools. Figure 4.1 gives a high level overview of the simula-
tor in relation to the ECT and colouring semantics. The simulator is integrated in
the Reo perspective in Eclipse and it uses the colouring semantics as the driver for
the simulation. The simulator itself consists of three important parts, the spec-
ified distributions, the statistics gathering and the delay calculation algorithm.
Furthermore, a simplified version of the data model can be found in appendix A
and the source code of the simulator can be found in [6].

ECT Reo 
Editor

Colouring 
Semantics

Reo 
Simulator

Random 
generator

Statistic 
gathering

Delay 
calculation 
algorithm

Distributions

Figure 4.1: High level overview of simulator

In section 4.1 we introduce the distributions which can be used for the simulation,
it will also explain some special cases created to model the systems as we wanted.
Section 4.2 explains how we will choose a colouring given a certain state of the

40
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system. Section 4.3 explains how we will sample from the specified distributions,
because for every colouring we want to sample every channel end only once. In
section 4.4 we explain how we calculate the ending time of a colouring. This is one
of the most important parts of the simulation model and it is possible to extend
this in the future. Section 4.5 explains all the possible ways a simulation run can
end. Finally, section 4.6 discusses how the different statistics will be saved. Some
of the statistics are updated every time during the simulation, while others will
be calculated at the end of the simulation.

4.1 Distributions

Within the simulator, the user is able to specify various distributions, some of
them are general stochastic distributions, while some others are special cases cre-
ated to create certain situations in the simulation. To sample from the regular
distributions the open source JSci package [4] has been used. All types of distribu-
tions and their parameters are listed in table 4.1. The value after the parameters
between the brackets indicates the type of the parameter, where b = boolean,
d = double, i = integer and s = String.

Distribution Par 1 Par 2 Par 3 Short Remark

Beta α (d) β (d)
Binomial n (i) p (d) Bino
Chi2 k (i)
Constant value (d) Con
Exponential λ (d) Exp
F d1 (d) d2 (d)
Gamma k (d) Gam Uses θ = 1
Lognormal µ (d) θ (d) Logn
Poisson λ (d) Poiss
Triangular low (d) high (d) avg (d) Tri
Uniform low (d) high (d) Unif
Weibull k (d) Wbl Uses λ = 1

IfNeeded
Always
File path (s) loop (b) loop is optional

Table 4.1: Distributions

All distributions can also be provided with one or two extra boolean parameters.
The first one indicates that a new sample is made whenever a boundary node is
empty again, so when the previous request has been processed. This is different
from the normal behaviour, when a new request is scheduled when the the current
request arrives. The last boolean parameter is a parameter to let a distribution
alternate between a sample from the distribution and zero. So the first sample
will be zero, and the next sample will be a sample from the specified probability
distribution. When these booleans are omitted, both values will be false. The
reason for these extra parameters is explained in sections 3.3.2 and 3.3.3.

The special cases needs some extra explanation. The ’IfNeeded’ and ’Always’
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are made for the arrival distributions on the boundary nodes, they could also be
used for the delay distributions, but then they will just return zero all the time.
The ’IfNeeded’ indicates that a boundary node will always be empty or busy
and never waiting. The node will never have a waiting request, and whenever a
request is needed, it provides a request and the node will go to the state busy. The
’Always’ indicates that the node is never empty, whenever the node is finished
with the colouring, it will go to the waiting state immediately. This process is
illustrated by table 4.2. This table illustrates the events for a Sync Channel with
a deterministic delay of 2 and ’IfNeeded’ arrivals on A and ’Always’ arrivals on
B. The table illustrates that port A is never in the state waiting because of the
specified ’IfNeeded’. The ’Always’ on B causes that after the colouring is finished
on time 2, the port will go to waiting immediately.

Time Event Result State A State B

0 Initial state empty waiting
0 Start flow busy busy
2 End colouring ports empty empty empty
2 Always distribution B waiting empty waiting
2 Start flow busy busy
4 End colouring ports empty empty empty

Table 4.2: Events for Sync channel with IfNeeded on A and Always on B

The file distribution is introduced to be able to define any sequence of values the
user wants. A trace file with data can be used for example. The values in the
file should be inter-arrival times and not the arrival times of incoming request.
The file distribution has a loop option, which indicates if the sequence of values
will be repeated after the file has ended. This value will always be true for delay
distributions (so setting it to false has no use), because the simulation should
always be possible to sample from the delays. For the arrival distribution the
default value is false (if the parameter is omitted), meaning that after the trace
has ended, there will be no more arrivals.

Because the distributions are used for the inter-arrival times of requests at a
boundary node and the delay of a channel, some distributions like the normal
distribution have been left out because they can give values below zero. Negative
values in this simulation would lead to very strange behaviour of the simulation.
Some of the used distributions, like constant, uniform and triangular, can still be
set to produce values smaller than zero. But by providing parameters larger than
zero, they will always provide positive numbers.

4.2 Choosing a colouring

Because we have decided to use only one colouring at a time until it is completely
finished we can use the colouring semantics. The reason for this choice is explained
in section 3.2.5. Every possible colouring in a colouring table has a reference to
the next colouring table which can be used after the colouring is finished. The
algorithm to generate the colouring tables was already implemented and will be
one of the inputs for the simulation. Every state of the system corresponds to
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a colouring table with all possible colourings which can be used next. In this
case, the state corresponds to the availability of all FIFO buffers, so a connector
contains up to 2F tables where F is the number of FIFO buffers. The number
of tables might be less than this value, because of synchronization, which makes
some of the states impossible to reach. Note that this state is not the same as
the ’System state’ used in the simulation, because that state also contains the
availability of the boundary nodes. Every system state corresponds to exactly
one colouring table, while every colouring table represents zero or more system
states.

During the simulation we know for all boundary nodes if they have a waiting
request. Using this information and all possible colourings, we can build a list of
all possible colourings which can be chosen. If this list contains multiple options,
one of the colourings has to be chosen at random.

To build up the list of all compatible colourings, we have to loop over all possible
colourings. For every colouring, all boundary primitive ends have to be checked.
The boundary primitive ends are the ends connected directly to a boundary node,
so a source end for a source node and a sink end for a sink node. The colouring
will be rejected if for any boundary primitive end one of these conditions holds:

• The end has flow and the request has no waiting request
• The end gives a reason for delay and there is a waiting request

If none of the boundary primitive ends is rejected, it will be added to the compat-
ible colourings list. After choosing one of the compatible colourings at random,
the colouring will be activated, which will be explained in section 4.4.

4.3 Sampling from distributions

For every primitive it is possible to define one or two delay distributions. In-
ternally these distributions are stored inside the primitive ends of the primitive.
Every supported primitive has exactly two primitive ends, however not every
primitive uses the same types of primitive ends. An overview of the supported
primitives, how many distributions the user can specify on the primitive and how
they are stored in the primitive ends can be found in Table 4.3.

Primitive #Dist Source1 Source2 Sink1 Sink2

Sync 1 Dist 1 - Constant(0) -
LossySync 2 Dist 2 - Dist 1 -
FIFO 2 Dist 1 - Dist 2 -
SyncDrain 1 Dist 1 Dist 1 - -
SyncSpout 1 - - Dist 1 Dist 1
AsyncDrain 2 Dist 1 Dist 2 - -
AsyncSpout 2 - - Dist 1 Dist 2

Table 4.3: Delay distributions
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For the Sync channel, one of the ends has been set to Constant(0), because the
user specifies a distribution for the complete channel. So by setting the delay for
one end of the channel to zero, we get the total delay for the channel as specified.
For the LossySync channel the first distribution is for the lossy when it behaves as
a Sync while the second distribution is for the lossy when it loses its data. When
the lossy loses its data, it will only use its source end. For this reason, the second
delay is set to the source end of the primitive. For the SyncDrain and SyncSpout
the distribution is set to both ends, when sampling from these and the LossySync
channel we have to be careful which will be explained next.

For most primitive ends we can just sample from the specified delay distribution
on that end. However, as mentioned before, we have to be careful when sampling
from the SyncDrain, SyncSpout and LossySync channel. When sampling from the
SyncDrain and SyncSpout, we have to make sure that both ends use the same
delay. So when we are at the first end of the channel we can sample from the
distribution and remember the sampled value to be used for the second end of
the channel. For the LossySync we have to know if the colouring uses the Lossy
as a Sync or not. We know that the lossy loses its data when the source end has
flow while the sink end has no flow. So, if we want a sample for the source end,
check if the sink end has flow also. If not, use a sample from distribution 2, else
use a delay of zero for the source end and use a sample from delay 1 for the sink
end of the channel.

When activating a colouring, it is possible that the same primitive (end) will
be traversed multiple times. For this reason, before traversing the connector, a
sample is made from every delay distribution to make sure that every step in the
traversal takes the same sample on every end. So for every primitive end with
flow in the concerned colouring a sample is made from the distribution specified
on that end.

4.4 Activating a colouring

After the colouring has been chosen, the colouring has to be activated meaning
that the involved boundary nodes will be set to busy and an event is scheduled to
mark the end of the colouring. Because there may be different ways to calculate
the colourings ending, the colouring event is created in a separate class. At this
moment, only one class to calculate the ending time of the colouring has been
implemented. Because this calculating is implemented in a separate class it should
be easy to implement alternatives, some possible alternatives will be explained in
section 7.1.

Depth first traversal

The implemented way to calculate the duration of the colouring is by using a
depth first traversal through the channels and nodes with flow in the connector.
Based on the colouring, the longest path from any starting point to an ending
point will be determined which will mark the ending time of the colouring.

The first thing to do when doing the depth first traversal is generating the samples
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for all involved channels. This process is explained in section 4.3. Next the
starting points of the traversal have to be determined, such a starting point can
either be a boundary node or a channel, where a channel can only have initial
flow if the channel is a FIFO, SyncSpout or AsyncSpout channel.

After the starting points have been determined, it is time to do the actual traver-
sal. This will be done by looping over the starting points and taking the longest
path that has been taken by any of the starting points.

Definition 4.1. Path
A path is a part of the connector with flow, where every colouring with flow will
have one or more paths. A path indicates the starting point s and ending point e,
excluding the intermediate points.

A starting point itself can also have multiple paths, so for all these paths, it will
save the end-to-end delay, but only the longest path counts for the ending of
the colouring. For all starting points, the recursive function getDuration will be
called, which will return the maximum time of any of the paths from the given
starting point. This function will also update the end-to-end delay statistics for
all paths taken. An overview of this function is given in figure 4.2. We will
explain the diagram first, followed by an example of a traversal through a simple
connector. In appendix A a data diagram is given which indicates the relationship
between the different objects.

Before explaining the function we first introduce the notion of a token.

Definition 4.2. Token
A token will be used to traverse the connector, it contains a starting time, starting
location, ending time, ending location and current location. Once a token receives
its ending location the end-to-end delay corresponding to the path taken by the
token will be updated.

The function getDuration has three relevant parameters, a connectable, time
and token. The connectable indicates the current location of the traversal, a
connectable can either be a Node or a Primitive (a channel). The time indicates
the point in time, when this connectable has been reached. The token is the
actual item which will be traversed over the connector.

When traversing the connector we will always be at a Node or in a Primitive. If
we are at a sink node, we will also end the recursion because a sink node will
always be the end of the path. When the node is a source or mixed node, the
next step will be to traverse over all source ends with flow connected to the Node.
If there are multiple source ends with flow, we will transfer the original token to
the primitive of the first source end (which causes an update of the location of
the token). In the other ends, we know that we have to make a copy of the token
because the original token has another location than the current. This copy will
only contain the starting point and starting time from the copied token, so not
the current location and ending location and time.

When the connectable is a primitive, this indicates that the current location of
the traversal is after the source end(s) and before the sink end(s) of the primitive.
When we are in a primitive, we have to check if this primitive has sink ends,
which indicates that we are dealing with a drain channel. If this drain channel is
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Figure 4.2: Flow chart for getDuration function used in Depth first traversal
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a AsyncDrain we can just end the recursion because this will be the end of the
path. If the primitive is a SyncDrain we have to make sure it will wait for the
token to arrive at the other end of the drain until it will flow to get the right
end-to-end delay. So the first token to arrive at the drain will be added to a list,
and when the next token arrives, both tokens will be finished using the same end
time. If the tokens into the SyncDrain have the same starting point (for example
in a XOR), only one of them will be used for the end-to-end delay.

Another option to end the recursion in a primitive is if we end up in a FIFO
buffer. If a token has flown into the buffer, it will not flow out of this buffer in the
same colouring. For this reason, we end the recursion and add the current token
to an activeTokenList. When the next colouring starts, it can use this token again
to get the right end-to-end delay.

If the primitive is not a drain or a FIFO channel, we can loop over all sink ends
with flow and traverse to the node(s) connected to these end(s). A SyncSpout
channel is the only channel with multiple sink ends.

To summarize this part: we are always in either a node or in a primitive. When
we are in a node, we will traverse over all source ends with flow. And when we
are in a primitive we will traverse to the node the primitive is connected to. But
there are three exceptions to this which will all end the recursion:

1. We end up in a sink node
2. There are no sink ends in the primitive (for example in a SyncDrain)
3. The sink end has no flow (for example in a FIFO or LossySync)

To make sure this part is clear we will also discuss an example with a simple
connector shown in figure 4.3. In this example we use deterministic delays which
are displayed on the channels.

Figure 4.3: Example connector for depth first traversal

Call 1: getDuration(A, 0, T1)
We assume that both A and D have a waiting request at time zero, so the colouring
can start with flow from A to D and from A to the buffer. The first call to
getDuration will be from the only starting point of the traversal at node A at
time 0. Because the flow does not start at a FIFO buffer we have created a Token
T1 with starting time 0 and starting location A before calling getDuration for the
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first time. Now we are at a node with two source ends with flow. We will first
traverse to the primitive FIFO(A-B), this step will cost 2 time units as specified
on the source end of the channel. The token T1 is still at location A so this token
can be used in calling getDuration.

Call 2: getDuration(FIFO(A-B), 2, T1)
Now we are in the primitive FIFO(A-B). The first thing to do is updating the
location of token token T1 to FIFO(A-B). Because we have ended up in a FIFO
buffer, we will save token T1 to the activeTokenList and we return 2.

Call 1: getDuration(A, 0, T1)
Because call 2 to getDuration returned a result of 2 we will be back at call 1
again. This temporary result of 2 is longer than the current result of 0 so this
duration will be saved as the current longest path. Because node A has more than
one source end, we can go on with the next primitive which is Sync(A-C). The
duration of this channel has been set to 1, so we also end up in the sync channel
after time 1. Now we can not use token T1 any more, because the location of
this token (FIFO(A-B)) is not the same as the current location (A) any more.
For this reason we have to make a copy T2 with the same starting time (0) and
location (A) as T1. With this new token we can call getDuration again.

Call 3: getDuration(Sync(A-C), 1, T2)
Now we are in Sync(A-C), from now on the location of T2 will be updated with
every call to getDuration, but we do not mention this because the token will not
be copied any more. The Sync channel is a channel with one sink end with flow
(which will always be zero for sync channels), so we can call getDuration again.

Call 4: getDuration(C, 1, T2)
Now we are in node C which has one source end. We add the duration of 3 of the
source end of Sync(C-D) to call getDuration again with a total time of 4.

Call 5: getDuration(Sync(C-D), 4, T2)
We arrive at a sync channel again, which will have a sink end with a delay of zero
again. So we can traverse further to node D.

Call 6: getDuration(D, 4, T2)
Finally we arrive at the sink node D, so we can stop the recursion. Because the
path of token T2 has actually ended, we can update the statistic of the delay from
A to D with a delay of 4. Now the token T2 can be removed, because the path
has finished. The result of 4 will be returned by this call to getDuration.

Call 1: getDuration(A, 0, T1)
The result from call 6 will be propagated to call 1 again. This result of 4 is
longer than the previously saved result of 2, so the final result of the first call to
getDuration will also be 4.

Next colouring
When a new request arrives at boundary node D, for example after time 6, the
token T1 will be used again, which will finish after time 11. Now this token is
finished also, so this token can be removed from the activeTokenList.
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4.5 Stopping criteria

The simulation has multiple ways to stop a simulation run, the various possibilities
will be described below. After the simulation has been finished for every run (in
case of short-term simulation) the simulated time, the number of events and the
reason for stopping will be given. Next to that, also an overview is given with for
every observed stop reason the count, percentage, mean, standard deviation and
a confidence interval. Note that the confidence interval might be very bad if the
count is very low.

Max simulation time or events

The first obvious reason for stopping a run is when the maximum simulation time
or number of events has been reached. The maximum simulation time or events
can be set in the settings of the simulation and is required. The run will stop
whenever an event is chosen with a time larger than or equal to the maximum
simulation time.

Cancelled

During the simulation, a progress bar is shown which gives an indication how
far the simulation is. It will also display an estimation of the time left for the
simulation. This indication will only be updated at the start of a new batch or
run, but this indication is not very accurate at the beginning of the simulation.
The progress bar will have a cancel button to cancel the simulation which will
cancel all runs which are not completed yet.

Deadlock

The simulation can end up in a deadlock, which will freeze the system. A deadlock
is easy to detect, because when we are in a deadlock the colouring table is empty
(because the only colouring in the table would be a no flow colouring, but these
are removed because they are not relevant for the simulation). In the options
there is a button to enable or disable the deadlock detection. If enabled the
simulation run will stop after ending up in the deadlock. The deadlock detection
is optional because you might want to see what happens to the statistics after the
system has ended up in a deadlock.

Livelock

Another option to end the simulation is by a livelock. Remember that we have a
livelock when there are still actions inside the connector, but not at the boundary
nodes. The simulation will detect the livelock by counting the number of consec-
utive chosen colourings without any involved boundary nodes, while all boundary
nodes have a waiting request. If this count is above a maximum value which
have to be specified in the options, the connector is assumed to be in a livelock.
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Whenever a colouring is chosen with involved boundary nodes the count will be
reset.

Empty eventlist

In normal circumstances an empty eventlist will not happen, but there is a possi-
bility to get this type of ending. If deadlock detection is disabled and you speci-
fied a special distribution like ’IfNeeded’ or ’Always’ on every boundary node the
eventlist will be empty when we end up in a deadlock.

Observed state

The last possibility to end the simulation is by specifying a state to stop the
simulation. The state has to be specified in the same way as the system state,
which consists of the state of the boundary nodes (sorted in an alphabetical
order) and the state of the FIFO buffers. It is also possible to add the wild-card
’?’ to the specified state to indicate that certain parts of the state can be any
value. For example, if you specify the value ’ww?’ the simulation will stop if the
simulation will reach the state ’wwe’, ’www’ or ’wwb’. Multiple states can be
defined by separating them with a comma (,) sign. Then the simulation will stop
if it reaches any of the specified states.

4.6 Statistics

This section covers the statistics which will be outputted after the simulation.
All these statistics can be turned on or off before running the simulation to be
able to reduce the number of outputs. These statistics can be separated into two
groups, the primitive statistics which will be updated during the simulation, and
the calculated statistics which will be derived from the primitive statistics. What
every statistic represent can be found in section 3.1.

4.6.1 Primitive statistics

The primitive statistics are updated constantly during the simulation. How these
statistics are updated during the simulation will be described in this section. The
primitive statistics includes the following categories:

• Buffer utilization
• Channel utilization
• Colourings
• End-to-end delay
• Node state
• System state
• Special state
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Statistic updating

All the primitive statistics except the end-to-end delay are handled in the same
way. Every category has one or more ’StateStatistics’ objects, for example the
node state have such an object for every node, while the system state has only one
’StateStatistic’ object. This object remembers the current state and the moment
it has reached this state. Please refer to the data diagram in appendix A for a
representation of the different objects and their relations.

When the state of the ’StateStatistic’ changes, we know the duration the object
has been in the previous state. If this is the first observation of this state, a
new ’Statistic’ object will be created which will be updated from now on. This
’Statistic’ object contains the count and the total duration in all batches. It will
also handle the chart for this statistic, which will be explained in the next section.

The end-to-end delay is a little different from all other primitive statistics because
it does not use a ’StateStatistic’ object. In contrast with the other primitive
statistics, the end-to-end delay is not only at one state at a time. When we have
a colouring with multiple paths, we also have multiple end-to-end delays with the
same starting time. For this reason, we only have a ’Statistic’ object for every
observed end-to-end delay.

Charts

For all primitive statistics it is also possible to show a chart after the simulation
has been finished. This chart will show for all batches how the average statistic
value evolves over time. To plot these results the open source package JFreeChart
[3] has been used. By looking at this chart, you can see if the statistic value
converges to a certain value. If it does not converge, the batch size can be too
small. The charts can be zoomed in and out, so when checking the convergence
it is important to look at the y-axis to see the deviation in the results.

Every state change of a statistic will produce two chart points, one to indicate
the start of a state change and one to indicate the end. During the simulation
there will be a lot of state changes which produces a lot of chart points. This will
slow down the simulation and the output a lot, especially producing and viewing
the chart is very slow with a lot of chart points. If the number of chart points
would become very large, it can also produce out of memory errors.

For this reason, there is an option for the simulation called ’Max chart points’ to
reduce the number of points for every chart. The way this works is as follows,
when we assume the user specifies a max chart points value of 5000 and 50 batches.
Then every batch will have a maximum of 100 points which will be connected by a
line. At first all points will be saved to a list to produce the line later. Whenever
we want to insert the 101st point, we will first remove every second point from
the list to reduce the list to half the points.

From this moment we will not save every point any more, but only every second
point, because the first part also contains every second point. After we have
reached the 101st point again (which would be the 201st point if we would have
kept all chart points) we will remove every second point from the list again and
save every fourth point from this moment on. By doing it this way, every batch
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line will always contain between 51 (if this number has been reached) and 100
chart points.

An example of such a chart is given in figure 4.4. In this chart the maximum
number of chart points is set to 20.000 and the number of batches is 25. In the
chart you can see that all batches have converged to approximately the same
value in the end. However the difference between the smallest and largest value is
around 0.03, which might be too large in some cases. If this is the case, a larger
simulation time can be used.

Figure 4.4: Chart example

4.6.2 Derived statistics

The derived statistics are derived from the primitive statistics and will be calcu-
lated after the simulation is finished. For this reason, these statistics will also not
have a chart. The derived statistics includes the following statistics, how they are
calculated from the primitive statistics will be explained next.

• Actual loss ratio
• Average conditional waiting time
• Average waiting time
• Channel locked
• Inter-arrival times
• Merger directions
• Request observations

Actual loss ratio

To calculate the actual loss ratio we need the colouring statistics. This statistic
contains the number of times every colouring has been used, and the colouring
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itself contains information about the usage of a LossySync channel. To calculate
the actual loss ratio of a LossySync channel we have to loop over all colourings
and count the number of times the source and sink ends of the channel have flow.
If the source end has flow, the colouring uses the LossySync and if the sink end
has flow it means the channel has been used as a Sync channel. The loss ratio
will be 1− Sink end count

Source end count .

Waiting times and request observations

During the simulation we have an object which counts the observations of the
request at the boundary nodes. So every node have three counters, one for every
possible state. With this information we can easily calculate the percentage of
times a request observes a certain state by dividing the count of the particular
state with the total number of requests at this boundary node.

For the waiting times we need the request observations and the node state statistic
which indicates that the node is in the state ’waiting’. This statistic contains the
number of requests which have to wait, and the total time the node is in the
state ’waiting’. When we divide the total time a boundary node is in the state
’waiting’ by the total number of request at the boundary node we get the normal
average waiting time. When we divide the total waiting time by the number of
non-blocked requests, we get the average conditional waiting time.

Channel locked

For the ratio of time a channel is locked because a colouring is active we have to
use the colouring statistics. This statistic is a bit different based on the type of
channel. For the Sync, SyncDrain and SyncSpout channel the value is given for
the whole channel, because, when one end of the channel is used, the other end
will also be used. For the LossySync, FIFO, AsyncDrain and AsyncSpout the
value is given for an end of the channel, because the end can operate separately
for these channels.

The values can be calculated by summing up all usage percentages of all colourings
with flow for the primitive end. For the first group of channels the first end will
be used, while for the other group both ends will be evaluated.

Inter-arrival times

The inter-arrival times are easy to calculate, all we need is the end-to-end delay
statistics. This statistic contains the number of flows from a certain starting to
ending point. By dividing the length of a batch or run by the count, we obtain
the inter-arrival times.

Merger directions

This statistic is given for every non-source node with more than one sink end and
it can also be calculated from the colouring statistics. For all sink ends of such a
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node we can sum up the counts of all colourings which has flow on the sink end.
Then the direction can be calculated by dividing the total count of one end by
the total count of all ends.



Chapter 5

Validation

In this chapter we will validate if the Reo simulator produces the right output and
we will answer the research question: Does the Reo simulator produce the same
results as other simulators? At the same time it will answer another research
question: What kind of systems can we model with Reo?.

This validation will be done by comparing the results of the Reo simulator with
results from QIA, queueing theory and other simulators. In section 5.1 we will use
an ordering connector to compare the results of the Reo simulator with the results
produced by the CTMC of QIA. In this section we will also check if all different
simulation methods will produce the same results. In section 5.2 we validate
another model using the CTMC of the system, this time we validate if the steady
state results are the same. In this section we will also check if the Reo simulation
results converges to the same value as the CTMC when the simulation length
increases. In section 5.3 we discuss a connector using a lossy sync because this
channel will not produce the same results as the CTMC. In section 5.4 we compare
the results of the Reo simulator by building a queueing model and comparing the
results with the results known in queueing theory. Finally, section 5.5 compares
the results of the Reo simulator with the results of a simulator build by the
University of Malta. In section 6.1 of chapter 6 we also we also validated the
end-to-end delay with the results of a model build in ExtendSim, but because
this was only part of that analysis, this validation is not in this chapter.

5.1 Ordering connector

The ordering connector is one of the standard examples of Reo which can be
seen in figure 5.1. This connector ensures that the starting location of every
token arriving at C, is alternated between A and B. This connector has also
been covered in the paper about QIA [11], however this automata model has the
restriction that every distribution should be exponential. But if we keep this
restriction within the simulation model, the result from that paper should be
reproducible using the simulator for Reo.

When converting the ordering connector of figure 5.1 into a QIA model first, and
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Figure 5.1: Ordering connector

then into a continuous time Markov chain (CTMC). This CTMC can be analysed
using PRISM to get the steady state probabilities. This CTMC has five delays:
dA, dB, dC, dY0 and dZ0. In the simulator dA, dB and dC should be defined on
the arrival distributions of the boundary nodes. The delays dY0 and dZ0 should
be defined in the delay distribution of the FIFO channel. In the simulator, we also
have to define the delay distributions of the Sync channels and the SyncDrain.
Because these are not specified in the CTMC, these will be set to be zero.

Due to some bugs which are fixed in the latest version of the QIA converter, the
results of the experiments by PRISM for this connectors are a little different from
the results of figure 12 in the QIA paper. The results of the new version can be
seen in figure 5.2.

Figure 5.2: Blocking probabilities found by PRISM

Currently, it is not possible to define a range of parameters to do multiple sim-
ulations in a row in the Reo simulator, so we cannot easily create a chart as
generated by PRISM. For this reason we have compared the values by setting dA
to 0.1, 1.0 and 2.5. We used different kind of simulation types here, to see if there
are any differences, for every type of simulation approximately 20,000 events in
every batch have been used, this number of events corresponds to about 5,000
time units in every batch. The results of the simulation can be found in table 5.1.

When looking at the results, we can see that the results are reasonably close
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(a) dA = 0.1

Type A blocked B blocked C blocked FIFO Full

Short - Events 13.52% 91.32% 82.40% 17.59%
Short - Time 13.64% 91.19% 82.92% 17.19%
Long - Events 13.31% 91.31% 82.69% 17.22%
Long - Time 13.33% 91.31% 82.41% 17.47%

PRISM 13.34% 91.33% 82.69% 17.33%

(b) dA = 1.0

Type A blocked B blocked C blocked FIFO Full

Short - Events 76.40% 76.38% 52.73% 47.31%
Short - Time 76.35% 76.44% 52.82% 47.16%
Long - Events 76.01% 76.40% 52.70% 47.19%
Long - Time 76.02% 76.38% 52.63% 47.19%

PRISM 76.37% 76.37% 52.74% 47.26%

(c) dA = 2.5

Type A blocked B blocked C blocked FIFO Full

Short - Events 90.37% 75.92% 51.68% 48.29%
Short - Time 90.30% 75.50% 51.66% 48.15%
Long - Events 90.42% 75.49% 51.69% 48.50%
Long - Time 90.42% 75.50% 51.64% 48.45%

PRISM 90.32% 75.79% 51.58% 48.41%

Table 5.1: Results for ordering connector with different simulation methods
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to the results found by PRISM. The differences in the results of the simulation
and the results of PRISM can most probably be declared by the length of the
simulation. To test this hypothesis, we have evaluated some of the results again
to see if the results are better. The results we have checked again, are some of
the results with a large difference with the results of PRISM. For the short term
simulation with time and dA = 2.5 the difference in blocking probability of port
B went from 0.39 to 0.01 when using a simulation period ten times longer. The
buffer utilization decreased from 0.26 to 0.02. For the long term simulation with
events and dA = 1.0 the difference in blocking probability of port A went from
0.36 to 0.01 when using a simulation period ten times longer.

5.2 Barrier Synchronizer

Another standard Reo example is the barrier synchronizer as shown in figure 5.3.
This connector ensures that there can only be flow from A to E if there is also
flow from B to F. In this example, we will not look to the blocking percentages of
the boundary nodes, but to all steady states. Every steady state in the CTMC
corresponds to one or more ’system states’ given by the simulation. Each state in
the CTMC corresponds to the availability of the boundary nodes, so for example
{A,F} indicates that boundary nodes A and F are available. This state in the
CTMC corresponds to the system state ’weew’ where boundary nodes A and F
are waiting, because available in the CTMC state corresponds to a waiting request
in the simulation. An exact description about the system state can be found in
section 3.1.1.

Figure 5.3: Barrier Synchronizer

In this case we will not only check if the steady states of the CTMC equals the
values of the system states. We will also check if the deviation in results will
become smaller if the simulation period is longer. The results of this validation
can be found in table 5.2.

In this table the state is the state of the CTMC as explained above, the system
state is the corresponding state from the simulation. The results shown are the
results of the steady states of the CTMC and the results of the simulation using
different number of events. The number of events listed in the table are the
number of events in every batch excluding 1000 events warm-up period. In this
example the following exponential rates have been used: dA = 6, dB = 3, dE = 5,
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dF = 4 and dCD = 100000.

State Sys St PRISM 500 5000 50000 500000

{} eeee 0.1085 0.1197 0.1086 0.1091 0.1087
{B} ewee 0.0217 0.0185 0.0227 0.0219 0.0216
{F} eeew 0.0310 0.0324 0.0311 0.0310 0.0310
{E} eewe 0.0417 0.0411 0.0418 0.0415 0.0417
{A} weee 0.0543 0.0547 0.0525 0.0541 0.0543
{A,B} wwee 0.0326 0.0336 0.0327 0.0330 0.0324
{A,F} weew 0.0504 0.0630 0.0525 0.0504 0.0507
{A,E} wewe 0.0746 0.0722 0.0752 0.0746 0.0749
{A,B,E} wwwe 0.1317 0.1262 0.1265 0.1317 0.1314
{A,E,F} weww 0.2550 0.2319 0.2579 0.2540 0.2550
{A,B,E,F} wwww 0.0000 0.0000 0.0000 0.0000 0.0000
{A,B,F} wwew 0.0759 0.0916 0.0748 0.0756 0.0761
{B,E} ewwe 0.0234 0.0227 0.0231 0.0236 0.0234
{E,F} eeww 0.0358 0.0320 0.0374 0.0355 0.0356
{B,E,F} ewww 0.0471 0.0451 0.0458 0.0476 0.0469
{B,F} ewew 0.0164 0.0153 0.0174 0.0164 0.0163

Avg deviation 0.0053 0.0012 0.0003 0.0001
Max deviation 0.0231 0.0052 0.0010 0.0003

Table 5.2: Results Synchronizer with different number of events

We would like to know if the values converges to the steady states from the CTMC.
For this, we should not look at the individual values because by coincident a result
with a smaller number of events could be better than the same result with more
events. The important values we should look at are the average and maximum
deviation displayed at the bottom of the table, which indeed converges to 0 when
the simulation length increases.

5.3 Lossy Sync channel

When evaluating a lossy sync channel with the Reo simulator, this will not work
in the same way as the CTMC provided by QIA. In the simulator the lossy sync
will always lose its data when the source end is available before the sink end. In
the CTMC however, the lossy sync will not lose its data when the sink end is
available before the data is lost.

The CTMC provided by QIA can be found in figure 5.4(a). This is a simplified
version of the automata given in figure 8 of the QIA paper. One important thing
to mention when looking at this CTMC is the presence of an arrow from {A} to
{A,B}. So whenever A is available and B is not available, there is still a chance
that the request at A will not be lost when a request at B arrives before the
request at A is lost.

In the simulation this is different, whenever A is available before B is available,
it will lose its data, also if B is available before the data is lost. If B is available
before the data is lost, B will have a waiting request when the losing of the data
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is finished. The Markov chain which represents the working of the simulator is
given in figure 5.4(b). In this figure another state {A,B,l} has been added where
A and B are available, but the request of A will still be lost. The state {A,B}
in the middle has been renamed to {A,B,s} indicating that both A and B are
available and the channel will behave as a sync channel.

The blocking probabilities given by both Markov chains and the Reo simulator
are given in table 5.3. In this example dA and dB are set to 2, dAB is set to 3 and
dALost is 4. As expected, the results of the two Markov chains produces different
results, while simulating the connector in Reo indeed gave the same results as
the CTMC of figure 5.4(b). Using this example it is also easy to validate if the
channel utilization and the colouring results are correct. In this case these can be
derived from the system state statistics as shown in table 5.4. The values given in
the table derived from the state statistics are exactly the same as the values given
for the colourings and the channel utilization which proves that these results are
correct.

(a) QIA (b) Simulation

Figure 5.4: Markov chains for the Lossy Sync channel

Method A blocked B blocked

CTMC of figure 5.4(a) 36.84% 52.63%
CTMC of figure 5.4(b) 37.31% 64.17%
Reo Simulator 37.31% 64.17%

Table 5.3: Blocking probabilities for Lossy Sync

System state Percentage Sync Loss No flow

bb 23.95% X
be 8.91% X
bw 4.43% X
ee 26.84% X
ew 35.85% X

Total 13.43% 23.95% 62.69%

Table 5.4: Colouring and channel utilization validation
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5.4 M/G/s/c queueing model

In this section we will validate the simulator by comparing the results from the
simulator by the theoretic values known in queueing theory. In principal, Reo is
only suitable for queueing models with a finite queue. But the number of buffers
can be chosen such that the probability that a request is blocked is very small. If
this probability is small enough we can approximate the result of the model with
an infinite buffer.

A queueing model which is very well suited to validate with the simulator in Reo
is the M/G/s/c model, also known as the Erlang X model. This model can be
used in call center, where a limited number of servers are available. Whenever all
servers are busy, the next customers will be queued. When the queue is full, the
call will be blocked. A call center may use a limited queue to make sure that a
caller will not wait for a very long time, instead he may call back later when it is
not busy. This model has the following properties:

• Exponential arrival distribution
• General service time distribution
• s servers
• c capacity of the system (including the servers)

Every arriving customers observing that the full capacity is used will be blocked
and the customer will also not attempt again. The Erlang X model also has the
ability to specify an average time to abandonment, but this is not used because
the simulator is not able to model this. As an example we will model a M/G/2/5
queue and check if the results of the simulator are similar to the results of the
Erlang X model.

In Reo, this queueing model has been modelled as in figure 5.5. Two impor-
tant notions have to mentioned when looking at the connector. First of all, the
connector contains only two FIFO buffers while the model have three queueing
places. The reason for this, is that a request can wait at port A also. The second
important part to notice is that the merger node Y has an x on it, meaning it
behaves as a router node and it will send its data to exactly one sink end. The
same behaviour could be achieved by using an XOR connector.

Because there is always a possibility for a request to wait at port A, an extra
channel has to be added when using a model without a queue (for example the
Erlang B model). Such a model can be made by adding an extra LossySync
channel after the boundary node.

After modelling the connector, we have to define the arrival rates and the delay on
the channels. The arrival rate can be defined on port A and should be exponential.
An obvious thought would be to define the service time distribution on the last
two Sync channels (Y-B and Y-C). But this choice would not work as expected
in the current simulator as explained in section 3.3.1. Instead, all delays on every
channel is set to zero while the service rate is defined on the boundary nodes B
and C.



5.4. M/G/S/C QUEUEING MODEL 62

Figure 5.5: M/G/2/5 model

Results

To compare the results of the Erlang X model and the simulator, an Erlang X
calculator [1] has been used to get the blocking probabilities and average waiting
time. In the simulator, the blocking probability is outputted directly while the
waiting time should be derived from other results.

When simulating the model with λ = 5 and µ = 1, we will find a blocking
probability of 60.48% with an interval of [60.27%, 60.68%]. This probability can
be found by looking to the state of node A, whenever this state is ’waiting’ or
’busy’, all incoming requests will be blocked. Because the delays of all channels
are zero, node A will never be in the state ’busy’ for more than zero seconds.

The blocking probability given by the Erlang X calculator is 60.43%, which is
close to the found value and also within the confidence interval.

The average waiting time of 1.21 minutes given by the Erlang X calculator can
be derived from the results of the simulation in two ways. The easiest way is by
adding the average conditional waiting at port A to the end-to-end delay of A-B
or A-C. This conditional waiting time indicates the time a request have to wait at
A before it will go into the queue. The end-to-end delay in this case represents the
total time from A to B, without the waiting time at A and also without service
time. Adding the conditional waiting time of 0.31 to the end-to-end delay of 0.90
produces the waiting time of 1.21.

For an alternative way to calculate the waiting time we need the blocking proba-
bility and the buffer utilizations. When we have this information, we can calculate
the average queue length, and apply Little’s Law [17] to get the average waiting
time.

Little’s law gives a very important relation between the long-term average number
of customers in a system, the time a customer spends in the system and the arrival
rate. Little’s law is only valid when the system is stable, meaning the number of
customers in the system does not grow to infinity. Because we are dealing with
a bounded buffer, this will not happen and we can apply Little’s law: L = λW ,
where L is the average number of customers in the queue, λ the effective arrival
rate and W the average waiting time.

So, all we need to calculate the average waiting time is the average number of
customers in the queue. The values to calculate the average queue length are:
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• Blocking probability: 60.48%
• Buffer utilization (A-X): 84.74%
• Buffer utilization (X-Y): 94.39%

How to calculate the probability that there are x customers waiting for service
can be found in table 5.5.

Prob Calculation Value

P (X = 3) Blocking probability 60.48%
P (X = 2) Buffer util. (A-X) - Blocking probability 24.27%
P (X = 1) Buffer util. (X-Y) - Buffer util. (A-X) 9.65%
P (X = 0) 1 - Buffer util. (X-Y) 5.61%

Table 5.5: Queue length probabilities

Now we can calculate the average queue length L with equation 5.1.

L =
3∑

i=0

iP (X = i) = 2.40 (5.1)

When the average queue length has been calculated, the average waiting time can
be calculated by applying Little’s law. The arrival rate to use in this formula is the
non-blocked arrival rate, so in this case the arrival will be (1−0.6048)×5 = 1.98.
The average waiting time given by the simulation is 2.40/1.98 = 1.21 which is
exactly the same value as given by the Erlang X calculator.

5.5 G/G/s/c queue

In the previous examples, we have only used exponential distributions, which have
the advantage that they are memoryless. This property1 is very important for all
calculations, and these models can not be used any more if we will use different
distributions.

In the CTMC, every state might have multiple transitions to a next state, and
when we are in that next state we do not have to know what has happened before
this state. So we can just sample again to know which state to go to next. If
we want to use different distributions, this CTMC will not work any more and
we have to use simulations. To validate the results of the Reo simulator with
non-exponential distributions we have used a simulator made by the University
of Malta [7].

In this simulator we have made a model with four servers and four waiting places
in the queue. For the arrival rate we have used the uniform(0,1) distribution and
for the service rate of all servers we have used the uniform(0,3) distribution.

In Reo this can be modelled in the same way as in the previous example with the
M/G/s/c model. For the arrival rate we can just specify the uniform distribution

1The memoryless property has been explained in section 2.4
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on boundary node A. For the service rate however, we can not just specify the
uniform(0,3) distribution. Instead, we have to specify uniform(0,3,true). The
value ’true’ indicates that a sample is made whenever a boundary node changes
from the state ’busy’ to ’empty’, so in this case none of the arriving read request
will be blocked. The reason to model it like this is explained in section 3.3.2.

Results

One of the results generated by the simulator of the University of Malta (UM)
is the average waiting time and average queue length, which are related to each
other by Little’s law as explained in the previous section. In the Reo simulator,
we can find the average waiting time by adding the waiting time at port A to the
end-to-end delay. This produces a result of 0.174 against the 0.176 of the UM
simulator. The average queue length can be found by applying Little’s law with
an effective arrival rate of 1.99, which gives us a result of 0.346 against 0.350.

Another figure produced by the UM simulator is the blocked customers rate of
0.601%. The Reo simulator generates this rate directly also. In the previous
examples it did not matter if we took the ’Node state’ or the ’Req observations’.
This was due to the PASTA (Poisson Arrivals See Time Averages) property which
only holds if we have Poisson arrivals. In this case we do not have Poisson
arrivals so there is an actual difference between these values. The ’Node state’
indicates that port A is in a blocking state in 0.910% of the time, while the ’Req
observations’ gives us the actual blocking rate of 0.585%.

The last values we can compare are the average number of busy servers and
the server utilization. The average number of busy servers can be found by
summing up the occupancy rate of the separate servers. In the Reo simulator,
this occupancy rate can be found by taking the percentage of time a sink node
is in the state ’empty’. This produces a average number of busy servers of 2.976
by Reo compared to 2.983. The server utilization is 0.744 by Reo compared to
0.746.

The results are summarized in table 5.6. All values are reasonably close to each
other, but by increasing the simulation time for both simulators will decrease the
difference between the simulators even more.

Result Reo UM

Average waiting time 0.174 0.176
Average queue length 0.348 0.350
Blocked customer rate 0.585 0.601
Average number of busy servers 2.976 2.983
Server utilization 0.744 0.746

Table 5.6: Comparison of simulator of Reo and University of Malta (UM)

This kind of system could also be modelled in a different way. In this alternative
way, all servers also have a space for an item in service as explained in section 3.3.3.
This type of system is shown in figure 5.6. Because all requests are only handled
by one server, this alternative type of modelling the system does not matter
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for the results in table 5.6. Only the end to end delay given by the simulator
will be different, because in this alternative method this delay also includes the
service time duration. But by adding the expected service time duration to the
end-to-end delay given by the first model, the results are the same.

The expected service time could be known based on the service time distribution,
but we can also calculate the average service time if the expected service time is
unknown, for example if we are using a file to generate the service times.

This average service duration can be calculated with equation 5.2, where s =
average service duration, iavg is the average inter-arrival times, ic the count of
the inter-arrival times, et the ratio of time the boundary node of the server is in
the state ’empty’ and ec the number of observations for the server being in the
state ’empty’. We use the time and count the boundary node of the server is in
the state ’empty’ because this actually indicates that the server is busy with a
request.

s =
iavg × ic × et

ec
(5.2)

But this alternative way to model the G/G/s/c queue comes with a serious disad-
vantage. Because we have added four extra FIFO buffers and four extra readers
the number of colouring tables and colourings have increased a lot. While the
first model only had 8 tables with a total of 372 colourings, the alternative model
has a total of 127 tables with 70.491 colourings. First of all, it is much slower
to calculate these colouring tables. Secondly, the simulation itself is also much
slower because choosing the next state will also be more time consuming, instead
of an average of 42 colourings in every table, now there are 555 colourings in every
table. Also the amount of virtual memory needed to store the tables is very large,
but we will return to this point in section 6.1.

So however both types of ways to model the G/G/s/c queue produces the same
results, you should not use the alternative approach because of the big disadvan-
tages.

5.6 Conclusions

In this chapter we showed that the results of the Reo simulation are the same as
the results with different methods. We validated the different output measures
of the simulation by the results using CTMC of QIA, Erlang-X calculator and a
simulator by the University of Malta for simulating queuing models with general
distributions. Only the lossy sync channel produces different results than the
CTMC, but we explained what causes this difference.

We also shown that the results of the different simulation methods (short or long
with events or time) produced the same results in section 5.1. In section 5.2 we
showed that the results also converges to the same values as the CTMC. When
simulating different systems in Reo, it is important to use a decent simulation
period. If the simulation period is not long enough, the confidence interval can
be large indicating that the mean value is not very accurate. We can see if
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Figure 5.6: Alternative for G/G/4/8 model

the simulation period is long enough by looking at the charts generated for the
statistics and check if the results of the different batches converged to the same
value.



Chapter 6

Results

In this chapter we will discuss some models with non-exponential delays which
can not be evaluated without the Reo simulator. So this chapter will give an
answer to the research question: What kind of systems can we model with Reo?
In section 6.1 we will discuss a system where a job will be processed by multiple
servers and merged after that. In this section we will also experience a problem
when handling systems with too many buffers. Section 6.2 shows how to model
more complex systems, by modelling a system with a variable number of servers.
Finally, section 6.3 models and analyses a manufacturing process.

6.1 Synchronizing servers

In this section we will look at a system with multiple parallel queues and syn-
chronization. The idea is that a job will be duplicated to multiple servers and
when all servers have processed the job, the job is finished. In this example, syn-
chronization is very important, when a server has finished a request, the request
will wait until all servers are finished. A practical example of such a system is a
holiday reservation system, where both a flight and an accommodation should be
available. So whenever a customer wants to book the holiday, the job will be send
to both systems, and when both of them have approved, the job is finished. In this
system we will investigate what happens to the blocking probability, end-to-end
delay and the average queue length when the number of servers increases.

Every server has its own queue of items to be processed and a queue with processed
items. Because of the queue with processed items, the server does not have to
wait till all servers have processed a certain job. So whenever the server has
processed an item, it can continue with the next job. Whenever a job has been
processed by all the servers, it will be removed from all processed items queues.
A diagram of this kind of process is given in figure 6.1.

When looking at this kind of system, you might want to use infinite buffers for all
queues, but as explained before this is not possible in Reo. To keep the problem
relatively small, we have restricted the buffers to four per server. One before the
server, one for an item in service and two for finished requests. In this way, every

67
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Figure 6.1: Diagram of synchronizing servers

server is able to be two jobs ahead of the slowest server. When one of the servers
have processed two requests before one of the other servers have processed the
first request, the faster server will wait. There can be a waiting request at the
boundary node, but this will not flow into the server yet because it is not possible
to flow into all queues before the servers.

The Reo connector which models this kind of system with 3 servers is given in
figure 6.2. In this figure we have indicated what the current state of the connector
could be. So server 1 has processed request A and B already, server 2 is still
processing request A and server 3 has processed A and is busy with request B.
Request C is waiting at the boundary node, because the request can not flow into
all queues yet.

The service duration of all servers has been modelled by a queue, and two sync
channels to a boundary node K. This boundary node has an alternating arrival
rate between its distribution and zero. The reason to model it like this is explained
in section 3.3.3.

Figure 6.2: Reo connector of synchronizing servers

To model the system in Reo, every server has a limited number of four buffers,
but this still gives problems when evaluating systems with multiple servers. The
problem is that every FIFO buffer adds another synchronized region which might
multiply the number of colouring tables by two. The readers itself increases the
number of colourings in every table, because every reader can give or require a
reason for delay. So this approach does increases the number of colourings and
colouring tables, but at this moment there is no other way to model this service
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duration.

Table 6.1 gives an indication of the number of colourings and colouring tables
compared to the number of synchronized servers. Every time a server is added
the number of buffers increase by 4, while the number of tables multiply by around
4. The number of colourings multiply by about 9 after adding another server.

Servers Tables Colourings

1 16 97
2 58 783
3 238 6925
4 1030 62607

Table 6.1: Servers vs number of colourings

We would have liked to continue with adding more and more servers, but comput-
ing and storing the colouring tables with four servers was already very hard and
caused problems with the virtual memory. Storing all colourings and colouring
tables costs about 4 GB of the virtual memory, which caused out of memory errors
in Eclipse. By increasing the maximum memory space of Eclipse from the default
of 256M to 4096M solved the problem for the case with 4 servers, but adding
another server would increase the memory so much that it was not possible any
more.

The calculation and storing of the colouring tables is done before the actual
simulation starts, and was also already implemented before building the simulator.
It is also outside the scope of this research to change or improve the algorithm to
calculate the colouring tables. But this observation shows that Reo is not very
well suited for queueing theory. Queueing models always needs at least a few
FIFO channels, but these channels creates asynchronous regions, which rapidly
increases the number of colouring tables and colourings. Reo was designed to
model systems with synchronization and without a time constraint. A lot of
FIFO channels will make the whole system asynchronous, and this makes Reo
not the right tool to model this at this moment.

In section 7.3 we suggested to add a channel to model a FIFOk channel. With this
kind of channel, only the number of requests in the buffer is important instead of
the number and the position in the queue. With this approach we only need one
buffer for every queue, which can drastically decrease the number of colourings.

Results

We will investigate what happens to the blocking probability, end-to-end delay
and the average queue length when the number of servers increases. We will keep
the arrival rate and the service rate of every individual server the same for all
experiments. For the arrival rate we will use a uniform distribution between 0
and 1, while we use a uniform distribution between 0 and 0.9 for all servers. The
arrival rate for the boundary node Z has been set to ’IfNeeded’, because that
node only has to wait till a request has been processed by all servers. It does not
have a service rate on its own.
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As explained above we would have liked to add more servers, but this was not
possible. So, in this section we will look at the results of one to four synchronous
servers, and we try to give an indication of what would happen if we add more
servers.

We have also validated the end-to-end delay results by building the model in
Extend [2]. The model we have build in Extend can be found in appendix B. The
results of the Reo model and the Extend model were the same.

Blocking probability

The first statistic we will look at is the blocking probability, a request will be
blocked if one of the buffers between Bi and Ci is occupied and a request is
waiting at boundary node A also. Because the average service duration is 0.45
and the average inter-arrival time is 0.50, the blocking rate is not very high. A
blocked request will also not return, which reduces the load on the servers.

When looking at the results in figure 6.3, we will see that the blocking probability
will increase with the number of servers. This is reasonable, because when the
number of servers increase, the probability that one of the servers takes a long
time will increase also. Because of this, every request takes a longer time to
leave the system, so more request will be blocked. We can also see that the
blocking probability increases with a decreasing rate, so the blocking probability
will converge to a certain point. Because we could not evaluate more than four
servers, this point is unknown for us.

Note that the graph is based on just 4 points, and is not very accurate for this
reason. But because you can still see a trend in the results, the results are still
shown in a graph. Also note that it is not possible to have a fractional amount
of servers, in the graph the dots are connected to each other, but in practice this
is not possible.

Figure 6.3: Blocking probabilities for Sync Servers
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End-to-end delay

The end-to-end delay for a request is an important measure for the system.
When the number of servers increase, the end-to-end delay will also increase.
The end-to-end delay is the total time from the arrival of a non blocked request
at node A until it leaves the system at node Z. The end to end delay given by the
Reo simulator does not include the waiting time at the boundary node so this has
to be added to get the real end-to-end delay. The waiting time at the boundary
node is given as the conditional waiting time at the boundary node.

The results of this delay can be found in figure 6.4. As we can see this end-to-end
delay has a similar behaviour as the blocking probability. It increases with a
decreasing rate. Eventually, it will also converge to a certain value, but based on
the 4 chart points it is not clear to see where it converges to.

Figure 6.4: End-to-end delay for Sync Servers

Queue length

The synchronizing servers have three different places where a request can wait:
at the boundary node, before or in the server and after the server waiting for
the other servers to finish a request. Because the service rate is the same for all
servers, we will average the queue lengths over all servers. The calculation of the
queue lengths can be done in a similar way as in section 5.4.

The results of this analysis can be found in figure 6.5. In this figure you can see
that the queue before or in the server decreases with the number of servers, while
the average queue length after the server increases. This is what we expected,
because the number of jobs in the system is always limited to a maximum of two.
Increasing the number of servers in the system also increases the probability that
a request has to wait for other servers to finish a job, and therefore increasing the
queue length after the servers. The queue length before the server decreases for
the same reason.

The queue length at the boundary node increases from 0.1416 to 0.2381, but this
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is not visible very well in the figure. As with the other measures, all lengths will
converge to a certain value, but more servers should be added to indicate what
these values should be.

Figure 6.5: Queue lengths for Sync Servers

6.2 Variable number of servers

To illustrate the abilities of Reo, we will also describe a more difficult example.
The example we will discuss is a queueing model with a variable number of servers.
In this model we assume that the system has a limited amount of M parallel
servers, where only r (r < M) are permanently on duty. The remaining M - r
servers can be activated when there are too many waiting customers (requests).

Figure 6.6 shows such a model with 3 permanent servers and 2 extra available
servers. In this system every incoming job will only be handled by one of the
servers. An incoming job will go the first queue, and if there is space in the next
queue or in one of the permanent servers, it will go there instantly. Once a job
arrives when the queue for the permanent servers is full, it will be routed to one
of the extra servers which do not have a queue of its own.

In practice, this kind of models can be used in call centers. Whenever it is too
busy to handle all incoming calls with the current number of employees, another
employee can help until it is quiet again.

We will model this system with Reo using 1 permanent server and 1 additional
server whenever there are 3 customers in the queue. Whenever a request is as-
signed to the queue, it will wait until it has been serviced by server 1, so it will
never go to server 2. The arrival rate and the service rate of the additional server
will be kept the same over all experiments, while we vary the service rate of the
base server to see what happens to the queue length, end-to-end delay, blocking
probability and the ratio of requests handled by the second server.

The way to model this kind of system is shown in figure 6.7. Because this con-
nector does not look very trivial, we will explain the ideas behind this connector.
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Figure 6.6: Diagram of variable number of servers

First, we have a normal queue with 3 waiting places between A and S1 traversing
over B1 till B4, this is the normal waiting line for the permanent server. Because
we want to use an alternative server when all 3 places are taken, we make an
additional path from A to S2. Note that A is a router node, such that a job will
be sent to one server only.

Only the paths from A to S1 and S2 would not be enough, because we have to
make sure that S2 is only used if the buffer is full. If we would leave out the
rest of the connector, the servers 1 and 2 will be chosen at random if server 2 is
available and server one has space in the buffers. To be able to block requests
flowing to S2 when the buffer is not full we introduced a shadow queue which is
exactly the opposite of the normal queue. This shadow queue is build between
C1 and C6, and the channels from the normal queue makes sure that every buffer
in the shadow queue is empty when the normal buffer is full and vice versa. For
this reason the shadow queue will start as full buffers because the normal queue
is empty.

With this shadow queue we are able to activate S2 only when all spaces in the
normal queue are occupied. Sync channels from E1 to all buffers in the shadow
queue ensures that the channel from E1 to S2 is only used if all buffers in the
shadow queue are empty. When these are empty, the normal queue is full, so in
this case we need to use the second server. When one of the shadow buffers is
occupied, the normal queue is not full and S2 can not be taken.

The last part of the connector we have not explained yet is the buffer from E1 to
E2 and the drains following E2. The reason for this is the fact that taking the
direction to E1 will fill up all buffers. But because the normal queue is still full,
the shadow queue have to be emptied again. Having the extra buffer between E1
and E2 allows us to empty the shadow again after server 2 has been used.
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Figure 6.7: Reo connector for variable number of servers

Results

Now we will evaluate the system and look what happens to the queue length,
end-to-end delay, blocking probability and the ratio of requests handled by the
second server. For the arrival rate we have chosen a Weibull distribution with
k = 1.5. The second server has a log-normal distribution with µ = 0 and σ = 1.
The distribution of the first server will also be a log-normal distribution. We will
keep the σ = 1 and vary the µ to see the results on the performance indicators.

Average queue length

The average queue length of the queue before the permanent server is shown in
figure 6.8. The average inter-arrival times at boundary node A is around 0.9, so
when the average server duration of the base server exceeds this time, the server
is not capable of handling all request. Because of this, the queue will fill up and
the second server will be used to help the first server.

When the average service duration is around 0.9, the average queue length in-
creases rapidly, until it converges to the maximum queue size. When the service
time becomes large enough, almost all of the requests will be redirected to server 2
or blocked if server 2 is also not available.

Ratio of requests handled by the second server

The ratio of requests handled by the second server is outputted directly by the
simulator. This ratio can be found by the statistic ’Merger direction’ at node
C2, C4 and C6. The ratio displayed there is the number of requests handled by
server 2 compared to the total number of non-blocked requests.

This ratio can be seen in figure 6.9, and you can see a similar behaviour as with
the average queue length. After the average service duration of the first server
has exceeded the arrival rate, more and more requests will be send to server 2, but
because the base server is still able to process jobs by itself, it will not converge as
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Figure 6.8: Average queue length for variable number of servers

fast as the queue length. Note that this chart has a larger x-axis than figure 6.8
because it did not converge as fast as the queue length. Eventually the ratio will
be almost one when the service rate of the base server is so slow that almost all
requests will be blocked or handled by server 2.

Figure 6.9: Ratio of requests to S2 for variable number of servers

Blocking probability

When the queue of server 1 is full and server 2 is not ready yet, the request
will wait at the boundary node. When another request arrives before one of the
servers is available it will be blocked. The chart of this blocking probability is
given in figure 6.10, this chart looks a lot like the figure in the ratio of requests
by server 2.

Because the service rate of the second server is the same during all experiments,
the blocking probability will converge to a certain value. Given the specified
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arrival rate and service distributions, the arrival process generates around 1.11
requests per time unit, while server 2 is able to handle about 0.61 requests per
time unit, meaning server 2 is able to handle 55% of the arriving requests. As
a result of this, if the service duration for server 1 is so long that it can hardly
process any requests, the blocking probability would be at least 45%. Simulating
this type of system with a very large service duration for server 1 gave a blocking
probability of 51%, which is a bit larger than than the given 45% because of the
randomness in the system.

Figure 6.10: Blocking probability for variable number of servers

End-to-end delay

The end-to-end delay of the second server is not relevant because this server has
no queue, so the average end-to-end delay to this server is always the same. The
end-to-end delay to the permanent server however is dependent on the waiting
time in the queue. This end-to-end delay can be calculated in two ways, one is
by adding some of the outputted statistics, the other is by applying Little’s law.
We already calculated the average queue length, so we can use that here.

In this case the easiest way is to get the end-to-end delay from the outputted
statistics. This delay does not include the service time of the server and the
waiting time at the boundary node A, so these values have to be added.

The other way to calculate the end-to-end delay is by applying Little’s law. Be-
cause we already have the average queue length, the blocking probability and the
ratio to server 2 we can calculate the delay. The end-to-end delay can be calcu-
lated with equation 6.1, where W is the average queue length, λ the arrival rate,
b the blocked requests ratio and r the ratio of requests to server 2.

W

λ(1− b)(1− r)
(6.1)

Both methods produced the same results, which are shown in figure 6.11. In
this figure we can see that the end-to-end delay is approximately linear over the
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average service duration. This is reasonable, because once the server is not able
to handle all requests any more, the server will use its full capacity almost all
the time, and when that is the case, the end-to-end delay will just be a function
of the average service duration of the server. At the beginning the delay is not
linear yet, because the server is not working at its full capacity, so it also has to
wait sometimes before a new request arrives.

Figure 6.11: End-to-end delay for variable number of servers

6.3 Manufacturing Process

Another process which can be modelled with Reo is a manufacturing process. A
job arrives in the system, then it will distributed over multiple machines, then
some parts might need to be fitted together until the final product is finished.

The process we will model is given in figure 6.12. An arriving job will be dupli-
cated twice to get 3 separate jobs to each of the servers 1, 2 and 3. When servers 1
and 2 are finished both, the products will be merged by server 4, but this merging
fails with probability p. When a merge at server 4 succeeds and server 3 is also
finished the products of server 3 and server 4 will be merged by server 5. After
server 5 is finished, the request will leave the system. During the processing of a
job, no other jobs will be allowed into the system. So there will always be only
one job in the system, once this job leaves the system, a new job can flow into
the system.

If we did not have the feedback loop in the system, the system can easily be
modelled in Reo without the use of any FIFO buffer. However, because we have
this loop we still need some extra constructions in the system. Figure 6.13 shows
how we have modelled the process in Reo.

The first construction we used is making server 3 independent of server 1 and 2.
If the merging of server 1 and 2 has failed, we do not want that it has to wait until
server 3 is finished with its job before server 1 and 2 starts again. This can be
achieved by adding a buffer and two sync channels to a reader with an alternating
distribution for server 3. The reason for this kind of construction is explained in
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Figure 6.12: Manufacturing process

section 3.3.3. Once a request is in the buffer from K to M it is finished at server 3
and it has to wait until server 1 and 2 are finished.

Note that we only used the construction with an extra reader for server 3 and not
for server 1, 2 and 4 also. The reason for this is that server 3 is only used once,
while servers 1 and 2 might be used multiple times. If server 3 takes longer than
server 1, 2 and 4, than the request from server 4 will just wait in the buffer from
L to X. If server 1, 2 and 4 are slower, the request in server 3 might stay longer in
the buffer from C to K than necessary. A request might be available at G already,
but it has to wait until a colouring involving server 1, 2 and 4 has been finished
until it can use that request, but this does not change the end-to-end delay.

The second construction we need is adding a FIFO buffer from A to R, the reason
for this is to ensure that only one request at a time is present in the system. Once
this request has left the system, the buffer from A to R is empty again and another
request can enter the system.

The next part is adding two extra buffers, one from B to D, and one from I to
B. In Reo it is not possible to have a direct loop without buffers, so extra buffers
have to be added to make the loop possible. A direct loop is not possible because
a node accepts only one of its sink ends, so you can not have multiple ends firing
to a node in one colouring.

The last construction we need is the router node to model the failure rate. Nor-
mally a router node will choose one of its outputs at random, which gives a failure
rate of 50%. But by adding more sync channels to one of the connected nodes
will influence this failure rate. So in the given example there are 9 channels from
J to I which gives a 90% probability to take one of the 9 channels to I. Because
the failure rate should be independent of the state of server 3, another buffer is
added from L to X.

Results

When you look at the process in figure 6.12, you will see five servers. In the Reo
model we have set these as shown in table 6.2. All other channel delays have
been set to zero, while the delays on the boundary nodes A and Z have been set
to ’Always’ because we are only interested in what happens inside the connector.
In this kind of system we are interested in the end-to-end delay and the buffer



6.3. MANUFACTURING PROCESS 79

Figure 6.13: Manufacturing process in Reo

utilizations.

Server Distribution Reo object

1 Beta(1, 1) Sync(D-E)
2 Beta(1, 3) Sync(D-F)
3 Chi2(3, true, true) Node G
4 Tri(0, 0.5, 0.2) Sync(F-J)
5 Exp(1) Sync(X-Y)

Table 6.2: Delays for manufacturing process

End-to-end delay

First we will look at the end to delay compared to the failure rate. Figure 6.14
shows this comparison in two ways, figure 6.14(a) gives the failure rate against the
end-to-end delay while figure 6.14(b) transformed the x-axis. The transformation
to 1/(1 − p) can be interpreted as the average number of attempts before the
merging succeeds.

In figure 6.14(a) we can see that the end-to-end delay barely changes until the
failure rate is over 0.5. After that, the failure probability is higher than the
probability of success so the expected number of failures increases. The delay
still does not increase very fast because the expected duration of the third server
is greater than the expected duration of one iteration in the upper part of the
connector (server 1, 2 and 4). However, when the expected number of iterations
increases with the larger failure probability, the probability that the third server
has to wait on the other part also increases. The delay will go to infinity when
the failure probability goes to 1, which is what we have expected.
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(a) Failure rate vs delay

(b) 1 / (1 - failure rate) vs delay

Figure 6.14: Failure probability vs end-to-end delay for manufacturing process
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In figure 6.14(b) the axis is transformed, which indicates approximately a straight
line after an expected number of around 4 attempts before a successful merge.
The expected duration of the upper part is a function of the number of attempts,
and after a certain expected number of attempts, this expectation will be much
higher than the expectation of the last part.

When we have no failure at all, you might expect an end-to-end delay of 4 which is
the sum of the expectation of server 3 and server 5, which are respectively 3 and 1.
But the delay given by the simulator is 4.0373 (with an 95% confidence interval
of [4.0248, 4.0513]). The reason for this is that server 3 is not always slower
than server 1, 2 and 4, so sometimes an item has to wait in buffer K-M. We can
confirm this by looking at the buffer utilization for buffer K-M and comparing
this with the utilization for Sync channel X-Y. If none of the items have to wait
in this buffer these two utilization should be the same. The difference of 0.00003
confirms that some of the requests have waited indeed.

Buffer and channel utilization

In this type of process we can also look at the utilization of the buffers and the
utilization of server 5. Server 5 will be used after server 1 till 4 are finished and
successful, so the utilization of 5 can be seen as the influence of the fifth server on
the total end-to-end delay. The results of these utilizations is shown in figure 6.15.
The buffers A-R and I-B are left out of this figure because these utilizations are
respectively 1 and 0 over all experiments.

When we look at this figure we can see that the utilization of buffer B-D and L-X
are mirrored in the line y = 0.5. This is logical because an item is always in buffer
B-D when it is in service by server 1, 2 and 4 or in buffer L-X when it is finished
with servers 1, 2 and 4. When it is in buffer L-X it is either busy with server 5
or waiting for server 3 to finish. The difference between these two options can be
seen by looking at the utilization of X-Y, which is the utilization of server 5. The
difference between the utilization of L-X and the utilization of X-Y indicates that
an item has to wait for server 3.

The utilizations of C-K and K-M are also mirrored, where C-K indicates that
an item is in service by server 3 and K-M indicates that an item is finished by
server 3 and it is in service by server 5 or that it has to wait on server 1, 2 and 4.

When there is no failure at all, we can see that the utilization of L-X and X-Y are
almost equal, meaning that server 1, 2 and 4 are almost always finished later than
server 3. This is also what we expected because the expected service duration of
server 3 (3) is much greater than the combined service duration of server 1, 2 and
4 (about 0.6).

When the failure rate is close to one, server 3 is hardly used any more so the
utilization of C-K will go to zero, while the utilization of K-M will go to one.
Also the utilization of L-X will go to zero because the items will never leave the
loop, which causes that the utilization of B-D will go to one. Because server 5 is
also not used any more when the failure rate goes to one, this utilization will also
go to zero.
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Figure 6.15: Buffer and channel utilization for manufacturing process

6.4 Conclusions

In this chapter we showed the abilities of the Reo simulator with different gen-
eral stochastic distributions. Especially the system in section 6.1 is typical for
Reo, because in this case synchronization is very important. Although it is very
hard or even impossible to evaluate this system analytically, the Reo model also
gave problems. When the number of servers increases, the number of colourings
increased very fast too. This caused memory problems when we used too many
servers. Four servers was already very hard and costs 4GB of the virtual mem-
ory. Adding another server was already not possible any more. For this reason
we could not continue with our analysis of this type of system, causing we had
only four observations for every statistic, which made it impossible to predict the
behaviour with an infinite number of servers.

In section 6.2, we showed that it is also possible to model more difficult systems.
Although we restricted us to one permanent server with a queue of three places,
and one additional server when the queue is full we could still get some nice
results. In principle it is possible to extend the number of servers, but this would
cost a lot of extra channels.

Finally, in section 6.3, we modelled a manufacturing process where a job is pro-
cessed by multiple servers. One of the servers could fail with a probability p, after
which the job will be processed again by some servers. Normally, the failure rate
will be 50% because a Reo node will choose one of its source ends at random. By
adding the number of channels to one of the connected nodes, the failure could
be adjusted. In this system we evaluated what happened to the end-to-end delay
and buffer utilizations when the failure rate increases.



Chapter 7

Future work

In this chapter we will discuss the future work which can be performed on the
Reo simulator. During the implementation, we have made certain choices which
influenced the behaviour of the simulator. With some workarounds, we were still
able to analyse the systems we want, but with some improvements the simulator
will be even more powerful. In section 7.1 we discuss the possibility to have
other drivers for the simulator, for example to make the system asynchronous.
In section 7.2 we suggest to add a possibility to do multiple simulations in a
row, to do parameter variation. Section 7.3 discusses the possibility to add a
channel which changes the current FIFO1 into a FIFOk buffer to save colourings.
Section 7.4 discusses the possibility to have a variable instead of a fixed number
of batches in the simulation. Section 7.5 suggests to produce a chart with the
distribution of the individual results instead of using aggregated results instantly.
In the simulation we only support the channels which are most frequently used, in
section 7.6 we stated that the other less frequently used channels should also be
supported in the future. Finally, section 7.7 indicates that the simulator should
be able to detect and inform the user about (possible) wrong input.

7.1 Different drivers

The most important part of the simulator is determining the states and the du-
ration of states. At this moment we use the colouring algorithm to determine
the possible next steps, and based on the availability of the boundary nodes we
choose one of the possible colourings at random. When we have chosen one of
these colourings we will activate this colouring for a certain amount of time until
it is completely finished before choosing the next colouring.

This approach can be changed in two ways in the future, first of all the calculation
of the end time of the colouring can be changed. At this moment the calcula-
tion will be done using a depth first traversal through the connector, where the
longest path will count as the ending time of the colouring. This calculation is
implemented in a separate class to ensure that this method can be changed easily.

For example, the calculation of the ending time of the colouring can be changed

83
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by traversing through the animation steps, which also involves the used channels.
In each step we can take the maximum of the samples from the involved channels
in that step, then we can sum up these separate values. This approach would
give ending times which are equal to or greater than the current approach based
on the depth first traversal.

Another more important change to the current simulator would be to change
states before a colouring has been finished. The restriction to activate only one
colouring until it has been finished completely, is a reasonable restriction when we
look at the way Reo is designed. Reo is designed as a synchronization language
where all nodes will come to a consensus about what happens next. Then this
transition will happen and you are in a new state. But at the same time, this
restriction gave some limitations to the systems we wanted to model as explained
in section 3.3. With some workarounds it was still possible to model almost
everything we wanted, but it always created a lot of colourings and colouring
tables.

The models we tried to model always needed asynchronization, where every asyn-
chronous region should be independent of the other regions. So whenever a certain
region is busy, we would like to be able to activate another region also. Multi-
ple regions can be activated within one colouring, but once a colouring has been
started, another region can not be added until the colouring is finished.

In the future it would be very handy to have a driver which handles every region
independent of the others. For this we might need a new automata model which
should be used as the driver for the simulator. But, inventing, proving and using
this automata model will take a lot more time which could not be done within this
internship. This would also require some more changing to the simulator than
just the calculation of the end time of the colouring. But when this change has
been implemented, the workarounds discussed in section 3.3 will not be needed
any more.

7.2 Multiple simulations

A very handy addition to the simulator can be to add a possibility to do multiple
simulations in a row. In section 5.1 we used PRISM to get steady state behaviour
of continuous time Markov chains. In PRISM it is possible to vary one or more of
the parameters to see what happens to the steady state behaviour of the system.
In this section we varied the arrival rate of a boundary node from 0.1 to 2.5 to
produce a graph with the blocking probabilities at every boundary node.

In the Reo simulator however, it is not possible to vary one parameter of the
simulation. So for every choice of the arrival rate, another simulation have to
be started. For this reason we have chosen to simulate only a limited number of
arrival rates at the boundary node.

In the future it would be a good addition to make it possible to vary one of the
parameters over multiple simulations in a row. With this extra option it would
also be nice to change the result tabs generated by the simulator. At this moment
it generates the averages over all batches in one simulation. When we are able
to do multiple simulations in a row, the batch results of all simulations should
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be displayed. Another graph can be added also to show the average behaviour of
the statistic over all simulation runs.

7.3 Buffers

In all queueing models we investigated with Reo we had the problem that the
FIFO buffer of Reo has only one waiting place. When investigating some of the
models, we would have liked to have infinite or a large enough finite number of
buffers. Adding a lot of buffers to a Reo circuit will make the calculation of the
colourings and the simulator itself slow. After enough buffers have been added
we also got problems with the memory usage, which is explained in section 6.1.

A possible solution to this problem is to have another Reo channel where you can
specify the number of places, then you do not need a lot of buffers in series, which
will decrease the number of colourings drastically. When this channel has been
added, the semantics for the colouring of this channel also have to be defined. We
also have to adjust the buffer statistics outputted by the simulator, now it will
only output the percentage of time the buffer is full. But when we have a buffer
with multiple waiting spaces we also want to know the average queue length.

The delays for the buffer can stay the same as defined for the FIFO channel with
one place, one delay for flowing into the buffer and one delay for flowing out of
the buffer. When connecting multiple buffers in series we also set every delay to
zero to indicate that a request will flow into the last empty buffer instantly. So
the restriction that we only have two delays with a buffer with multiple places
will not make a difference.

7.4 Variable number of batches

In the current simulator, it is only possible to specify a fixed number of batches.
In the future this can be extended to allow a variable number of batches. Instead
of specifying the number of batches, the user have to specify how accurate the
confidence interval should be. For example, the user should be able to specify
that the 95% confidence interval should have a maximum length of 0.01.

It is probably not enough to specify that a confidence interval should have a
maximum width because the simulator have many statistics. Until all of these
statistics have reached an interval smaller than the specified value could take a
very long time. For this reason it might be needed to specify which of the statistic
or statistic category should have a confidence interval smaller than the specified
value.

Once this value has been specified we can simulate as usual, with the difference
that we check the confidence interval after each batch. If the interval is not small
enough, the simulation continues with the next batch until the interval is small
enough. The simulation can stop whenever all specified statistics have an interval
smaller than the specified value.
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7.5 Distribution of results

The simulator produces only the averages of the statistics, but it might also
be nice to add the possibility to add charts which displays the distribution of
the individual observations. A disadvantage of this could be that every single
observation has to be saved individually instead of aggregated. Plotting all these
points could become a problem, as experienced with the current charts with the
averages over time.

The package used to create the charts had the problem that it is was really slow
with a lot of chart points. For this reason we created an option in the simulation
to specify the maximum number of chart points in the graph. To create graphs
with the distribution of the result, possibly another package should be used.

Some statistics should also be changed to enable the possibility to display the
distribution of the results. For example, with the buffer utilization we display
the ratio of time the buffer is full. So we could save the points where the buffer
changes from empty to full, but this will not give any relevant results. If we
change the statistic to the time the buffer has been empty or full, it is possible to
give a distribution of the results.

7.6 More Reo channels

At this moment we have restricted the simulator to work with the basic Reo chan-
nels (Sync, LossySync, FIFO, SyncDrain, SyncSpout, AsyncDrain and Async-
Spout). But there are some more channels which are not supported by the sim-
ulator, these are the Filter, Transform and Timer channels. In the future these
channels can also be supported, together with any possible future channels added
to Reo.

Another possibility could be to include support for components. At this moment
the simulation is done on a connector level, which do not contain components.
By converting a connector into a component, all channels will be hidden which
saves a lot of colourings. But it is not clear how the delays should be specified on
such components. This possibility should be investigated further before it can be
used.

7.7 Warnings and errors

Before the simulation starts, the simulator only checks if the simulation options
are of the right format. So for example if the number of batches is an integer and
if the confidence interval is a double. If any of these parameters is of the wrong
type, an error will be shown that the options are not correct. An addition to this
would be to highlight the values which are not correct.

Next to that it would be nice to check the other input values also. When a
distribution field is left blank, the constant(0) distribution will be used. If the
user fills in a distribution with an incorrect syntax, the constant(0) distribution
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will also be used. Instead, a warning or error should be produced to indicate to
the user that the entered value is not correct. The parameters of the distributions
will also not be checked, the parameters should be chosen such that it can not
produce negative results. For example, if we declare a uniform(-1, 1) distribution,
there should be an error to indicate that this kind of distribution can have negative
values.

When the distribution of one of the boundary nodes have been left blank, we
end up with an infinite simulation when we base the simulation end on time.
Because every request arrives at this boundary node will arrive at time zero, we
will never simulate further than time zero and the simulation will never stop. If
events are used for the end of the simulation, we do not have problems with an
infinite simulation, but we still do not get any relevant results. It is also possible
to have an infinite simulation when the distribution of the boundary nodes have
been set to ’IfNeeded’ or ’Always’ and all delays are zero.

Another possibility can be to give an indication of the number of events in every
batch. When the simulation end is based on time, it is hardly possible for the
user to know how many events will happen in the simulation. If an estimation
will be given, the user knows if the simulation period is too long or too short.
The estimation can be given based on the number of arrivals at every boundary
node, which can be calculated easily. The number of colouring events is harder
to estimate, but an indication based on the average duration of every colouring
should be possible.



Chapter 8

Conclusion

The Reo coordination language was designed to model synchronization between
different parts of complex systems. Originally, Reo was designed without a notion
of time. Later, additional models made it possible to make Reo stochastic by
defining delays on channels and arrival rates on the boundary nodes of the system.
With this approach it is possible to model such systems as continuous time Markov
chains to perform quality of service analysis. However, this conversion is only
possible if the Markov property has been met, which is only the case when using
exponential distributions to model the arrival rates and delays.

When using other general distributions, we can not generate Markov chains any
more to get quality of service measures. Analytically, it is also very hard to solve
complex systems with synchronization and various general distributions on the
channels and boundary nodes. For this reason, the goal of this research was to
develop a simulation model to evaluate complex systems modelled in Reo.

This simulation model has been implemented within the Eclipse Coordination
Tools framework, which includes the graphical user interface and other plug-ins
for Reo. The simulator uses discrete event simulation to simulate a Reo system.
For this discrete event simulation, it will use the colouring semantics as a driver
for the simulator. This colouring semantics indicates which parts of a connector
should have data flow given a configuration of the system. With this semantics
we are able to determine all possible next steps in the discrete event simulation.

An important part of the simulator is choosing and executing the colouring. In
our approach, we limited us to choose a colouring and execute this colouring until
it is finished completely because this is how Reo is designed, and how the colouring
semantics should be used. When we have chosen a colouring, we should decide
when this colouring should end. This is implemented in a separated module of the
simulator to make it possible to add different ways to calculate the ending time
of the colouring later. At this moment, only one option to calculate the ending
time of a colouring has been implemented using a depth first traversal through
the connector.

Because we have chosen to execute a colouring until it is finished completely,
the system is handled completely synchronous as Reo is designed. When mod-
elling systems where parts of the system should be asynchronous, this gave some
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complications. For example, when modelling queueing models in Reo, we need
asynchronization which can be achieved by using some workarounds. With these
workarounds we were able to model and simulate any system we wanted, but in
the future these workaround might not be needed any more when a new engine
for the simulator has been designed.

With the simulator, we aimed to detect all types of ’strange’ behaviour of the
system, for example when the system will not converge to a steady state. For
this purpose, we have the option to detect deadlocks and livelocks explained in
section 3.1.2. When a deadlock occurs, the system will got stuck, which will ruin
the results of the simulation. Another option we created to detect if a statistic
has converged to a certain value, is a chart for every statistic with the average
statistic value plotted over time for every batch. In this chart, we can see if the
statistic converges to a certain value, and also if all batches converges to the same
value.

When using the simulator, we also discovered a problem with the colouring se-
mantics when evaluating large systems. If we model systems with a lot of FIFO
buffers, we created asynchonization in the Reo system causing a lot of extra
colourings. When we have too many colourings, it will cost a lot of virtual mem-
ory causing memory problems. The calculation of the colourings is not the scope
of this research, but it is something which needs attention.

We validated the simulator by comparing the results of the simulator with results
of CTMC, Erlang-X calculator and other simulators. The results of the Reo
simulator were the same as with the other methods when the simulation period
was long enough. After this validation we used the simulator to analyse systems
which could not be analysed before.

So with this simulator in Reo we are able to perform quality of service analysis
on almost any system modelled in Reo with general stochastic distributions on
the delays of the channels and the arrival rate on the boundary nodes.
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Appendix A: Data diagram

Figure 8.1 gives a representation of the most important objects, attributes and
functions. This representation does not give a full overview of all elements, but
it does give an indication.

+runSimulation()
+initialize()
+resetShortTermSimulation()
+resetState()
+handleEvents()
-handleEvent()
+changeColouring()
+activateColouring()
+outputResults()

-time
-event
-batch
-eventList
-statisticCategories
-stateStatistics
-statistics
-connector
-colouringTable
-activeTokenList

ReoSimulator

+getAllStatistics()

-stateStatMap
-statisticMap
-canUseChart
-useChart
-useResult

StatisticCategory

+getStatisticValue()
+addTime()

-useChart
-chart
-duration
-count
-type

Statistic

+changeState()

-stateMap
-lastState
-lastChange
-useChart

StateStatistics

-distribution
-drawWhenEmpty
-alternate
-curAlternation

ReoDistribution

-time

ReoEvent

-colouring
-ports
-filledBuffers
-emptiedBuffers

RequestEvent

-port

ColouringEvent

+getColouringEvent()
+getDuration()
+handlePrimitiveNoSinkEnds()
+finishToken()
+getDraws()

DepthFirst

-startingPoint
-endingPoint
-location
-beginTime
-endTime

Token

1..*

«uses»

0..*

0..*

0..*

*

* *

*

1

*

1

0..*

Figure 8.1: Data diagram of the simulator
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Appendix B: Extend model

To check the end-to-end delay in the synchronizing server model of section 6.1,
we also modelled the system using ExtendSim [2]. Figure 8.2 shows how we have
modelled that system.

Figure 8.2: ExtendSim model for synchronizing servers
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Appendix C: Quick start guide

This appendix is meant as a quick start guide for using the Reo simulator. For a
description how to use Reo, see [5]. After installing Reo, you might have to add
the simulation view to the Reo perspective via ’window’ - ’show view’ - ’other’. In
this appendix we will discuss which distributions can be used and where these have
to be defined. This appendix will also give a short description of the simulation
options and the output it will generate.

Distributions

We can define the distributions on the channels by clicking on a channel and going
to the ’Delay’ tab in the properties view in Eclipse. Depending on the channel,
you can specify one or two distributions. All possible distributions are displayed
in table 8.1. The inter-arrival rate on the boundary node can be specified by
clicking on a boundary node and going to the ’Arrivals’ tab in the properties
view. Here you can specify the same distributions as with the channels, and you
specify if you start with a request by setting ’Start with request’ to ’true’.

Distribution Par 1 Par 2 Par 3 Short Remark

Beta α (d) β (d)
Binomial n (i) p (d) Bino
Chi2 k (i)
Constant value (d) Con
Exponential λ (d) Exp
F d1 (d) d2 (d)
Gamma k (d) Gam Uses θ = 1
Lognormal µ (d) θ (d) Logn
Poisson λ (d) Poiss
Triangular low (d) high (d) avg (d) Tri
Uniform low (d) high (d) Unif
Weibull k (d) Wbl Uses λ = 1

IfNeeded
Always
File path (s) loop (b) loop is optional

Table 8.1: Distributions

For a description of the special cases ’IfNeeded’ and ’Always’, please refer to
section 4.1. For the arrival rate at a boundary node it is also possible to add one
or two extra booleans, the first is to indicate that a request should be sampled
when the boundary node is empty again. The second parameter is to indicate
that the boundary node should iterate between samples of the distribution and
0. When you will need these options is explained in sections 3.3.2 and 3.3.3.
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Options

The following list indicates the options to use the simulation. For some of the
options the type of the option is displayed between brackets.

• Type of simulation: long- or short-term simulation
• Base simulation end on: events or time
• Warm-up period (double): time or number of events till the simulation

starts gathering statistics
• Simulation length (double): time or events till the simulation stops
• Number of batches (integer): the simulation length will be split into multiple

batches to be able to give a confidence interval for the statistics. The number
of batches is normally chosen between 25 and 50 [17]
• Confidence interval (double between 0 and 1): how accurate the confidence

interval should be
• Detect deadlock: if enabled, the simulation will stop whenever we are in a

deadlock. If disabled, the simulation will go on so the user can see what
happens with the statistics after the deadlock.
• Detect livelock: ability to specify if a livelock should be detected
• Internal colourings for livelock (integer): specify how many colourings in a

row without any involved boundary nodes should be chosen to indicate a
livelock. Also see section 3.1.2
• State to stop simulation (optional): possibility to define a certain system

state in which the simulation should stop. Also see section 4.5
• Special state (optional): possibility to define a system state to get statistics

from. Also see section 3.1.1
• Seed (integer): define a seed if you want to produce the same results in

every consecutive simulation with the same parameters
• Max chart points (integer): maximum number of chart points for the charts.

Also see section 4.6.1.

Output

The following list indicates the possible outputs for the simulation. The tab
’results options’ in the simulation view allows the user to disable certain output
statistics. It is recommended to disable the ’System state’ and ’Colourings’ when
using large connectors, because the number of colourings and states can become
very large. For a more extensive description of the different outputs, please refer
to section 3.1.

• Actual loss ratio: ratio of requests lost in LossySync channel, compare to
the total number of requests into the channel
• Average conditional waiting time: average waiting time of all requests which

will not be blocked
• Average waiting time: average waiting time over all requests
• Buffer utilization: ratio of time the FIFO buffer is full
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• Channel locked: ratio of time a channel is locked because a colouring in-
volving this channel is active
• Channel utilization: ratio of time a channel is actually in use
• Colourings: ratio of time a colouring is active
• End-to-end delay: average total delay between two points
• Inter-arrival times: average time between two arrivals at an ending point

from a certain starting point
• Merger directions: ratio of requests from a certain sink end of a node com-

pared to the total number of requests into the node
• Node state: the ratio of time a node is in a certain state
• Request observations: the ratio of requests which observes the node in a

certain state compared to the total number of requests arriving at the node
• System state: ratio of time the system is in a certain state
• Special state: ratio of time the system is in the specified special state
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