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Abstract

Choosingbetween different diagnostic test strategies is hard and commonly demonstrates only
very small differences in costs and benefits. Furthermore, each strategy contains uncertainty (e.g.
the real sensitivity and specificity of the test). Because of this uncertainty, there is a chance of
not choosing the optimal strategy. This raises the question if more research is needed. With more
research the uncertainty can be decreased and so can the chance of choosing the wrong strategy.
But, on the other hand more research would cost a lot of money and is time consuming. The
decision whether new diagnostic research studies are necessary therefore depends on a trade-off
between the expected benefit and the costs of research.

In the internship the focus is on the benefits of doing more research with the objective to de-
velop a general stochastic decision model for diagnostic tests. Through this model the “value of
information” can be determined.

A model is built to model the whole process of testing, treatment and follow up. With the
model the expected benefit (in QALYs) and costs (in euros) can be calculated for each set of
model parameter values and for each diagnostic test strategy. The model parameters contain all
uncertainties. They are not fixed but have an underlying distribution.

With more research the uncertainty of these model parameters can be decreased. The value of
information (of this research) is the incremental benefit of the optimal strategy with additional
information versus the optimal strategy without additional information. The expected benefit of
eliminating all parameter uncertainties is called the expected value of prefect information (EVPI).
The expected benefit of eliminating all parameter uncertainties for a set of model parameters is
called the expected value of partial prefect information (EVPPI). The EVPI and EVPPI can be
estimated by Monte Carlo simulation.

An Excel sheet is constructed to determine all strategies with their model parameters (including
their distributions) and can perform the EVPI and EVPPI estimations.

The EVPI and EVPPI gives just an upper bound of the expected benefit of doing more research,
because the elimination of all parameter uncertainty is impossible. Therefore the next step is
to calculate the expected value of partial sampling information (EVPSI(n)). The EVPSI is the
expected benefit of doing a research study with a sample size ofn.
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1 Introduction

1.1 Erasmus Medical Center, Department of Epidemiology & Biostatistics

The Erasmus Medical Center is the largest university medical center in the Netherlands, with
over 10,000 employees. The core activities of Erasmus MC are patient care, education and
research. Every medical department has an educational purpose and also conducts scientific
research. Erasmus MC’s research covers the entire spectrum from fundamental non-clinical
research to patient related research.

The Department of Epidemiology & Biostatistics offers research consultancy facilities for clini-
cians of the Erasmus Medical Center, Rotterdam in clinical epidemiology and biostatistics. The
research activities of the department are organized in three clusters; Epidemiology of Diseases,
Basic Epidemiology, Clinical Epidemiology.

The Assessment of Radiological Technology (ART program) is a joint effort of the division
of Clinical Epidemiology and the department of Radiology. The ART program comprises a net-
work of researchers who focus on the assessment of medical imaging technology, both diagnostic
imaging and image-guided therapies, especially related to cardiovascular disease. The research
performed is based on methods from clinical epidemiology, decision sciences, and medical tech-
nology assessment. Methodological research focuses on developing the methods and study de-
sign for evaluating diagnostic and therapeutic imaging procedures.

1.2 Problem description

Evaluating and comparing diagnostic test strategies entails a long process of clinical studies, data
collection and decision modeling. At the end of this complex process the evaluation commonly
demonstrates only very small benefits from replacing one diagnostic strategy with another, lead-
ing to the typical conclusion “more research is needed”. But is more research really necessary,
and are the associated research costs justified? If a new clinical study is undertaken to assess
patient outcomes and costs related to diagnostic testing strategies, it will need to be extremely
large to demonstrate a difference. Furthermore, by the time a complete assessment of the new
diagnostic technology has been performed, the results are frequently a moot point: with the rapid
advances in technology, either the new test has been implemented or it has been discarded in lieu
of an even newer technique, which applies in particular to imaging tests.

These considerations call into question whether elaborate large diagnostic research studies are
always necessary. More research is expected to have a benefit, since it usually decreases decision
uncertainty and therefore the probability and harm of choosing the wrong diagnostic strategy.
At the same time, research also has a financial cost and may result in harm because of forgone
benefits from delaying adoption of beneficial interventions. The decision whether new diagnostic
research studies are necessary therefore depends on a trade-off between the expected benefit and
the costs of research. In this subproject the focus is on the expected benefit of doing more
research.
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1.3 Objectives

The focus is on the value of information (VOI) gained from the evaluation of diagnostic test
strategies. VOI is a quantitative measure of the value of knowing the outcome of uncertain
variables prior to making a decision. Each diagnostic test strategy has such uncertain variables.
Short-term variables that will be included are:

• sensitivity and specificity of the test

• probability of uninterpretable test results

• impact on clinical practice

• health care cost of the test

• patient burden, time costs, friction costs, and other non-health care costs associated with
undergoing the test

Long-term variables that will be included are quality adjusted life years (QALYs) and costs
(health care and non-health care) associated with the test and treatment following:

• true positive test results

• false positive test results

• true negative test results

• false negative test results

The main objective is to develop a general stochastic decision model for diagnostic tests, with
which the value of information can be determined, and that can be analyzed for various scenarios.

1.4 Further content

In section 2 a model will be given to evaluate and compare different diagnostic test strategies.
With the model we can calculate the expected benefit and costs. Section 3 describes the methods
andalgorithms for the value of information analysis. In section 4 we show how the value of
informationanalysis is implemented and give a VOI example for two types of tests for patients
with suspected coronary artery disease.
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Figure 1: a) Coronary artery disease b) stent c) CABG

2 Model

2.1 General

To compare different diagnostic test-treatment strategies, we first model the whole process of
testing, treatment and follow up. After deriving this model we can compare different test-
treatment strategies. All strategies follow a similar process. Patients with the suspected disease,
will get one or more tests. After surviving the test(s) (there is generally a negligible risk of dy-
ing from the test) the patients will be split in a positive and a negative group, depending on the
result(s) of the test(s). The positive group gets a treatmentP and the negative group gets an other
treatmentN. After surviving their treatment, patients are monitored for a fixed amount of time.
We call this the follow-up period of a patient.

For example, for patients with suspected coronary artery disease (CAD), there can be chosen
between two types of diagnostic tests, a coronary angiography or a computed tomography an-
giography (CTA). Coronary artery disease (CAD) occurs when the arteries that supply blood to
the heart muscle (the coronary arteries) become hardened and narrowed due to plaque on their
inner walls. Because of CAD the blood flow to the heart muscle is reduced and the heart muscle
is not able to receive the amount of oxygen it needs. See figure 1a for a graphically illustration.

CAD is treated with a stent or a coronary artery bypass graft (CABG). With stenting, a balloon
catheter with a stent is inserted into a blood vessel in the patients groin. When the tip of the
catheter reaches the right location in the coronary artery, the balloon is slightly inflated to expand
the stent and the artery. The stent stays permanently. See figure 1b for a graphically illustration.
With a CABG a segment of a healthy blood vessel from another part of the body is used to make a
detour around the blocked part of the coronary artery. See figure 1c for a graphically illustration.
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Figure 2: Coronary angiography

Figure 3: computed tomography angiography (CTA)

We distinguish two types of tests for diagnosing CAD. First coronary angiography which is the
referencestandard test, with an assumed reliability of 100%. With a coronary angiography a very
small catheter is inserted into a blood vessel in the patients groin. The tip of the catheter will be
positioned in the heart and will inject special contrast fluid. The fluid is visible by x-ray. See
figure 2 for an illustration. Because a coronary angiography is expensive and invasive, it might
bebetter to perform a cheaper and less invasive test (but is less reliable): computed tomography
angiography (CTA). With a CTA first contrast fluid is injected in the patients arm. Then a CT
scan is used to take x-rays. See figure 3 for an illustration.

Generalwe distinguish the reference strategy, which is to perform the reference standard test,
and other strategies with another test. In the reference strategy the reference standard test, with
an assumed sensitivity and specificity of 1, is always performed (a coronary angiography in our
example). The advantage of this strategy is that after the test all patients are categorized correctly
and get the optimal treatment. There are not any false positive (FP) and false negative (FN) test
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Disease (TP)
Follow-up

Survive

Mortality
Dead

Treatment PResult positive

No Disease (TN)
Follow-up

Survive

Mortality
Dead

Treatment NResult negative

Survive

Mortality
Dead

Reference test

Figure 4: Reference test strategy

results, which could cause harm.1 The disadvantages of this strategy is, that the reference test is
generallymore invasive, so it has a higher probability of morbidity (such as an allergic reaction)
and mortality. Another disadvantage is that the reference test is often very expensive. A graphical
illustration of the tree structure of this model is given in figure 14. Each patient will follow one
pathfrom the root to an end node.

Because of the disadvantages of the reference strategy, it may be prudent to perform a different
test-treatment strategy, with a test which is less invasive and has lower costs. In this strategy a
non-invasive test will be performed first (e.g. a CTA in our example). The test can be interpretable
or uninterpretable. If the test is uninterpretable then the reference test still has to be performed.
After the reference test the patient will get the optimal treatment.

If the test is interpretable, then it can give a positive or a negative result. If the test result is
positive then we have to decide to treat with treatmentP (e.g. a stent or CABG in our example),
with the risk of harm to patients with a false positive (FP) test result or do the reference test to
categorize patients correctly and give them the optimal treatment, but this again involves risks
and costs of the reference test.

If the test result is negative then the patient automatically undergoes treatmentN (e.g. medicines
in our example). This time it is not advantageous to consider the reference test again before
giving the treatment, because this would negate the advantages of performing the non-invasive
test first and would only add extra costs and risks to the procedure. A graphically illustration of
the tree structure of this model is given in figure 5.

2.2 Outcome measures

To compare the different test-treatment strategies, we need some quantitative outcome measures
as outcomes of our models. These outcomes represents the total benefit and the total costs of the

1With a false positive test result, an healthy patient is categorized as having the disease and with a false negative
test result, an ill patient is categorized as not having the disease.
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Figure 5: Test strategy

health care non-health care morbidity
test # # #

treatment # # #

Table 1: Short-term costs

procedure. The total benefit will be in quality-adjusted life years (QALYs)2 and the total costs
will be in euros.

The outcome measures consists of two parts; the short-term and the long-term outcomes. The
short-term outcome measures are derived from the tests and treatment and the long-term outcome
measures are derived from the follow-up. First we will discuss the short-term outcomes.

Short-term costs are divided in health care, non-health care and morbidity costs. The health care
costs represent the costs related to providing care within the health care system and include for
example hospital admission, diagnostic tests, procedures, outpatient care, and medication. The
non-health care costs are the costs unrelated to the health care system and include for example
travel costs, time costs, and production losses. Morbidity costs are unexpected costs which are
made when the patient for example has a complication as a result of the test or the treatment. See
table 1 for an overview.

Thebenefit in the short-term is in case of mortality of a test or treatment zero. In case of mor-
bidity a one-time disutility, expressed in units of QALYs, is subtracted from the overall QALY

2A measure of health outcome which assigns to each period of time a weight, usually ranging from 0 to 1,
corresponding to the health-related quality of life during that period, where a weight of 1 corresponds to optimal
health, and a weight of 0 corresponds to a health state judged equivalent to dead; these are then aggregated across
time periods.
- Gold M.R., Siegel J.E., Russel L.B., Weinstein M. (eds). Cost-effectiveness in health and medicine. New York:
Oxford University Press, 1996.
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Well Minor-Event

DeadMajor-Event

Figure 6: Follow up state-transition diagram

estimate.

To compute the outcome measures for the long-term we will first model the follow up period.
We will model this as a Markov process. A patient can be in one of several health states and then
can pass from one state to another during each time period, according to probabilities (transition
probabilities). In our model we distinguish four different health states in the follow up. The well,
minor-event, major-event and the dead state. At the beginning of the follow-up period, a patient
starts in one of these health states. From the well state the patient can remain well, but can also
have a minor-event, major-event or die. From the minor-event state the patient remains in the
minor-event state or can have a major-event or die. In the major-event state a patient cannot
recover anymore and will stay in the major-event state or die. Once in the dead state, the patient
remains in the dead state. In figure 6 a state-transition diagram is shown.

We merge this state-transition diagram with the decision trees (figures 14 and 5) by adding a
recurrenttree to the end nodes of the decision trees. This recurrent tree is given in figure 7 and
processesthe same properties as the state-transition diagram.

The dead state is an absorbing state, so there the tree ends immediately. At the other states we
distinguish first two possibilities; to die or survive from other causes than the disease (e.g. age
related, traffic accident, etc. . . ). In case of death an individual goes to the dead state. In the well
and minor-event state an event can occur or not. If no event occurs a patient remains in the well
state or minor-event state respectively. Otherwise a minor or a major event occur. These events
may cause immediate death or not. In case of death the patient goes to the dead state, otherwise
(s)he goes respectively to the minor-event or major-event state. In the major-event state, the
patient cannot recover anymore and will have an extra probability to die from the major event.

With this tree, we can now calculate the benefits of the follow-up (which are the long-term
benefits). To do this calculation patients start their follow up in one of the health states and pass
through some cycles (or periods) of the tree until the patient ends in the dead state. For each cycle
in the tree the patient gets an added benefit and cost depending on the state of the patient. The
added benefit is the utility of a patient multiplied by the period length, which is in QALYs. The
utility in the well state, generally one, is higher than the utility of the minor-event state, which is
higher than that of the major-event state. In the dead state the utility is zero.
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Figure 7: Follow up cycling tree

The added costs for each cycle in the tree are the costs for physician visits, diagnostic consults,
etc.. . . The magnitude of these costs depends on the health state of the patient. In the dead state
the added costs are zero.

2.3 Model parameters

After developing the model structure, parameter values need to be determined. At each chance
node (the circles) in the tree, there is a probability to go to the upper branch or go to the
lower branch. So for example for the reference test strategy (figure 14), we need for the first
nodethe probability of mortality associated with the reference test. We refer to this param-
eter aspMortRe f Test. The probability of surviving the reference test is then equal to 1−
pMortRe f Test, because the probabilities must sum to one. For all the branches we need the
same type of probability parameters.

In our model we want to calculate all the costs and benefits of a patient during the monitored
time. Therefore we need to keep track of the total costs and total benefits. These values are
gained by adding (or subtracting) values at each of the nodes of the tree to the total amount of
costs/benefits. In our model we introduce the variablesTotal cost andTotal bene f it, which
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starts at zero and sums all the costs and benefits, respectively, during the whole process. These
variables will provide us with the information we need.

At each node where a test or treatment is performed, like the reference test node in figure 14,
a value must be added to the total costs. These costs are divided in health care and non-health
care costs as mentioned before. We can call these parameters in our examplecHC Re f Testand
cNHC Re f Test. The addition of these values is done in the following way:

Total cost= Total cost+cHC Re f Test+cNHC Re f Test

After the test or treatment, there is a chance of morbidity which can add costs and subtract
disutility to the two totals. We call this chance in our examplepMorbRe f Test. Because we are
mostly interested in averages, we multiply the morbidity costs (cMorbRe f Test) with this chance
to obtain the average costs per patient. We do this at the survive node in our decision tree in the
following way:

Total cost= Total cost+cMorbRe f Test∗ pMorbRe f Test

Because the morbidity also affects the total benefit of the patient and therefore the total amount
of benefit will have to be adjusted too. We introducedisutilMorbRe f Testas the disutility caused
by the morbidity of the reference test and can calculate the new amount of total benefit with the
following formula:

Total bene f it= Total bene f it−disutilMorbRe f Test∗ pMorbRe f Test

Finally there are benefits and costs accrued during the follow-up period. Each cycle in the
Markov subtree gives an added benefit and cost, depending on which health state the patient
is in (as mentioned earlier). This is done until all patients are in the death state, or the number of
cycles has passed a given amount (yearsFU). Because years further away in the future are less
important than the early years, these added benefit and costs will be discounted (discountrate)
to net present value.

A complete list of all used parameters is given in appendix A and the complete model, including
all parameters, is given in appendix G.

2.4 Simplified example

In this subsection we will show, after deriving a model, how to calculate the outcome measures.
We do this by a simplified example of the reference test strategy, given in the upper tree of
figure 8.

Theprobability, cost and benefit parameters are defined just before the first root. Ad each node
costs or disutilities will be added/subtracted when needed.
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We don’t use a Markov tree for the follow up, but add just a fixed cost and benefit to the
Total costandTotal bene f itvariables, for illustrative reasons.

First, for all end nodes the expected benefit and expected costs will be calculated. Look at the
first end node (Disease (TP)) in the lower tree of figure 8, for the expected benefit and costs you
canfollow the root node till this end node, and add or subtract all benefits and costs. So the
benefit will be:

−disutilMorbRe f Test∗ pMorbRe f Test

−disutilMorbTreatmP∗ pMorbTreatmP+uFollow up TP

= −0.01∗0.05−0.01∗0.04+12

= 11.999QALY

and the costs will be:

cRe f Test+cMorbRe f Test∗ pMorbRe f Test+cTreatmP

+cMorbTreatmP∗ pMorbTreatmP+cFollow up TP

= 1000+300∗0.05+3000+300∗0.04+5000

= e9027.00

For all other end nodes there will be similar formulas, only after immediate death of the test or
treatment, the total benefit is set to zero. The other expected values can be calculated beginning
at the end nodes and folding back until the root node is reached. If we consider the “Treatment P”
node for example, the probability of survival is 0.995 and the probability of mortality is 0.005.
Therefore the expected benefit and costs are 0.995 times the expected benefit and costs of the end
node “Disease (TP)” plus 0.005 times the expected benefit and costs of the end node “Mortality”
(the top one). This gives an expected benefit of 0.995∗11.999+0.005∗0 = 111.939QALY and
an expected cost of 0.995∗9027.00+0.005∗4015.00=e9001.94.

All other nodes can be calculated with this method until the expected benefit and costs of the
root node is known. In this case the expected benefit and costs for a patient who will undergo the
reference test strategy is resp. 12.840 QALY ande7351.50.

The same can be done for the test strategies. After defining a willingness to pay (WTP), the
best strategy can be indicated. The WTP is the quantity of money you are willing to pay for
one QALY. By this WTP we can transform the expected benefit from QALYs to euros. For
each strategy the net monetary benefit (NMB) can then be calculated. NMB (euros) = expected
benefit (QALYs) * WTP (euro/QALY) - expected costs (euros). Because of this transformation,
it is possible to compare the different strategies on a one-to-one scale.

In this simplified example we added fixed benefits and costs instead of using a Markov tree
as follow up. With the Markov tree the expected benefit and costs can be calculated (and in
our whole model, we use these expected values instead of the fixed values as in the simplified
example).
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In our calculation we use the four different health states of our follow-up model. Initially, a
patientstarts there follow-up in one of these states and passes trough states several times until
the patient arrives in the dead state. We can also calculate expected values, to do this we divide
the patients in proportions over the different states. One cycle later these proportions change,
depending on the transition probabilities, and so on. For each cycle we add discounted expected
benefit and discounted expected costs till the proportion in the dead state is one or the total
number of cycles exceeds the follow up period (e.g. 5 years). These added discounted benefit
and costs are calculated as follows:

bene f it= pWell∗ uWell
(1+ r)t + pMinor ∗ uMinor

(1+ r)t + pMa jor ∗ uMa jor
(1+ r)t

cost= pWell∗ cWell
(1+ r)t + pMinor ∗ cMinor

(1+ r)t + pMa jor ∗ cMa jor
(1+ r)t

With pWell= proportion in well state,pMinor = proportion in minor event state,pMa jor =
proportion in major event state,uWell= utility in well state,uMinor = utility in minor event
state,uMa jor = utility in major event state,cWell = costs in well state,cMinor = costs in
minor event state,cMa jor = costs in major event state,r = discount rate andt = cycle number.
Sum these benefit and costs over all cycles and we derive the expected benefit and cost for the
follow-up.

2.5 Parameter distributions

In the simplified example all parameters were represented by fixed numbers. But in real life
these parameters should be estimated by data collected from literature or from a study. In the
simplified example the probability of mortality of the reference test is 0.001. This number could
for example be derived by study data of 1000 patients in which one of these 1000 patients did not
survive the reference test. But this one patient out of thousand patients could be just coincidence;
in another trial this number could be zero, two, three or whatever. So this probability of 0.001 is
not certain, it could be less or it could be more.

Therefore each parameter should not be represented by a fixed number, but by an underlying
distribution. This raises the question on which distribution to use for which parameters. We use
proposed distributions by Briggs et al. [2]. However other kinds of distributions are possible.

2.5.1 Probability parameters

Probabilities are mostly based on the observed proportion of the event of interest (e.g.,a suc-
cesses out a trial ofn). Therefore you should think of a binomial distribution. However, because
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this is a discrete distribution and we have a continuous parameter environment, we use a Beta
distribution:

X ∼ Beta(α,β)

µ =
α

α+β

σ =

√
αβ

(α+β+1)(α+β)2 ,

with µ the mean andσ the standard deviation.

The probability of mortality of the reference test in our simplified example therefore gets a
Beta(α = 1,β = 999)distribution (withα the number of deaths andβ the number of survivors).

If literature is used for estimating the parameter, often only a mean value and a standard deviation
(or confidence interval) is given. The parametersα andβ can then be approximated from the
mean and standard deviation:

α =
µ2∗ (1−µ)

σ2

β =
µ∗ (1−µ)

σ2 −α

2.5.2 Cost parameters

For the cost parameters a log-normal distribution is chosen:

X ∼ LogNormal(µ,σ)
µ = ln(median)

σ =
√

ln
( mean

median

)
∗2,

with µ the mean of logs andσ the standard deviation of logs. The parametersµ andσ can be
approximated as above if the mean and median (<mean) is known.

The main reason that the log-normal distribution is chosen, is that the log-normal distribution as
well as the costs can not get negative values. But also a normal (with or without bounds), an
uniform or a triangle distribution are commonly used.

2.5.3 Benefit parameters

The benefits are less tangible. It is very hard to value the utilities (the health-related quality of
life) for each health state. If the patient is well, then the utility is usually one. But the utility of
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a patient with e.g. a stroke is less self-evident. Utilities can be obtained using preference-based
methods,among patients or society, such as the standard gamble rating scale or time-trade-
off. Sometimes expert opinions are used if the utilities of specific health states have not been
reported in the literature. Because the utilities are less tangible, a simple distribution is chosen
for the benefit parameters; a triangle distribution (with the parameters minimum, likeliest and
maximum).

2.5.4 Relative risk parameters

Some parameters in the model are hard to define and are not documented. Also a lot of these
parameter are dependent of other parameters. In our model, parameters of patients with a true
positive test result depend on patients with a false negative test result. They both have the disease,
but patients with a false negative test result may be harmed because they do not receive their
optimal treatment. Therefore we assume that the probability of occurring and dieing from a
minor or major event is equal or larger for a patient with a false negative test result than for a
patient with a true positive test result. Also we assume that the utility in the well state is equal or
lower for a patient with a false negative test result compared with a patient with a true positive
test result.

To model these properties we introduce relative risk parameters. All probabilities and utilities
for a patient with a false negative test result are equal to the probabilities and utilities of a patient
with a true positive test result multiplied by a relative risk (≥1 for the probabilities and≤ 1
for the utility in the well state). The same yields for a patient with a true negative test result
versus a patient with a false positive test result and the utility for the major-event state versus the
minor-event state. All relative risk parameters are also given in appendix A.

For the relative risk parameters a normal distribution (with parametersµ andσ) is chosen.

2.5.5 Life-table

In the follow-up cycling tree (figure 7), a probability parameterpDieOther is used. This is the
probability per year to die of other causes then the disease. This probability will be higher as
the patient become older. Therefore an age dependent life-table will be used, which shows a
population (male, female, European, etc...) mortality rate as a function of age. This table is
collected from a statistical organization (e.g. Centraal Bureau voor de Statistiek (CBS) in the
Netherlands). The probability parameterpDieOtherchangs over time depending on the cycle
stage and starting age as defined in the life-table.
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3 Value of information analysis

After defining our model, we can perform the value of information analysis. Currently, un-
certainty surrounds all model parameters (they are not exactly known and have an underlying
distribution). By obtaining more information about the real parameter values (by doing more re-
search), the uncertainty of these parameter values can be reduced. By lowering the uncertainty of
these parameters, we will improve the accuracy of our model, which will lead to better strategic
decisions.

The value of information is the incremental benefit of the optimal strategy with additional in-
formation versus the optimal strategy without additional information. Is the optimal strategy the
same after obtaining more information, then the additional information was useless (the VOI is
then equal to zero). But if the optimal strategies differs, then the additional information was
useful (so with the additional information we could make a better decision). The VOI is then the
difference in net monetary benefit (NMB) or net health benefit between these optimal strategies.
We will express the VOI as the NMB.

Before obtaining additional information, it is not known what the VOI shall be. But the ex-
pected value of information can be estimated, for different kinds of information, as shown in the
following sections.

3.1 Expected value of perfect information

First we will discuss the expected value of perfect information (EVPI). With perfect information
we mean that all parameter values will be exactly known. The EVPI is the difference between
the expected net monetary benefit (NMB) of optimal strategy with perfect information and the
expected NMB of optimal strategy without perfect information. Without perfect information
over the real parameter values, the decision maker should choose the strategy with the greatest
expected NMB.

We use the same notations as in Groot Koerkamp at al. [3]. Defineθ as the vector with all
model parameters anda ∈ {reference test,test A, . . .} as all different strategies.B(a,θ) is the
net monetary benefit of strategya if the parameters take the valueθ.3 Because the ‘real’θ is
unknown we should integrate over the joint distribution ofθ to derive the expected NMB of
strategya; EθB(a,θ). We maximize over all strategies to derive the expected NMB of optimal
strategy with current information:

max
a

EθB(a,θ).

If θ was the vector with the ‘real’ parameter values, then the NMB of the optimal strategy is

3B(a,θ) will be calculated as in the simplified example (section 2.4).
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maxaB(a,θ). But because the ‘real’ parameter values are unknown we should average this ex-
pression over the joint distribution ofθ and we get

Eθ max
a

B(a,θ)

asthe expected NMB of the optimal strategy with perfect information.

The EVPI is the difference between these two expressions:

EVPI = Eθ max
a

B(a,θ)−max
a

EθB(a,θ). (1)

BecauseB(a,θ) is a very complex function, it is not possible (so far) to calculate equation 1
analytically. Therefore we use Monte Carlo simulation. First we will rewrite equation 1 in terms
of opportunity loss. Opportunity loss is the difference between the NMB of the strategy that is
optimal given the ‘real’ parameter valuesθ and the NMB of the strategya∗ that was optimal at
baseline.

EVPI = Eθ max
a

B(a,θ)−max
a

EθB(a,θ)

= Eθ max
a

B(a,θ)−EθB(a∗,θ)

= Eθ[max
a

B(a,θ)−B(a∗,θ)]

= Eθ[opportunity loss]

With Monte Carlo simulation we can estimate the expected opportunity loss. For each ran-
domly drawn ofθ we can imagine it is the ‘real’ parameter values. The opportunity loss of the
drawn value is the difference between the NMB of the optimal strategy given this value ofθ
and the NMB of strategya∗ that was optimal at baseline. The expected opportunity loss (and
so the EVPI) is estimated as the average over many random draws. The algorithm is given in
appendix B.

If the EVPI is low, then we expect that only a very low benefit will be gained with further research
(obtaining more information).4 So we will then choose the strategy with the greatest expected net
monetarybenefit. But if the EVPI is high we should consider whether to perform more research.

3.2 Expected value of partial perfect information

Next we should consider which parameters gives the most information. This can be done by
calculating the expected value of partial perfect information (EVPPI). Suppose we have now
perfect information of a subset of all parameters:θI ⊃ θ. And θC is the complement ofθI . Now
with perfect information of this subsetθI the expected NMB of the optimum decision is given

4Whento categorize the EVPI as to low will depending on the prevalence of disease and the population to benefit.
How bigger the population, how bigger the benefit to be gained.
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by maxaEθC|θI
B(a,θ). But because the real parameters forθI are unknown we should average

this expression over the joint distribution ofθI and we getEθI maxaEθC|θI
B(a,θ) as the expected

NMB of the optimal strategy with partial perfect information. So we derive the following formula
for the EVPPI:

EVPPI(θI ) = EθI max
a

EθC|θI
B(a,θ)−max

a
EθB(a,θ) (2)

We first rewrite equation 2 in terms of opportunity loss, to be able to do a two-level Monte Carlo
simulationfor estimating the EVPPI.

EVPPI(θI ) = EθI max
a

EθC|θI
B(a,θ)−max

a
EθB(a,θ)

= EθI max
a

EθC|θI
B(a,θ)−EθB(a∗,θ)

= EθI [max
a

EθC|θI
B(a,θ)−EθC|θI

B(a∗,θ)]

= EθI [max
a

EθC|θI
[B(a,θ)−B(a∗,θ)]]

= EθI [opportunity loss of not knowingθI ]

For each randomly drawn ofθI we can imagine it is the ‘real’ parameter value. For eachθI we
will draw multiple times aθC to calculate the expected NMB of all strategies. The opportunity
loss of not knowing the drawnθI is the difference of the expected NMB of optimal strategy and
the expected NMB of the baseline strategya∗. By averaging the opportunity loss over many ran-
dom draws ofθI ’s, we estimate the expected opportunity loss (and so the EVPPI). The algorithm
is given in appendix C.

By varying θI and calculating the EVPPIs we obtain information about which parameter (set)
provides the highest value when more research is performed.

3.3 Expected value of partial sampling information

It is impossible to eliminate all parameter uncertainty (of the subsetθI ), because this will require
a study with infinite sample size. The EVPI and EVPPIs therefore give an upper bound of the
expected benefit of doing further research. The larger the sample size, the closer the expected
benefit will reach the upper bounds. In fact, the larger the sample size, the larger the reduction
of the kurtosis (degree of peakedness) of the underlying parameter distributions (so reducing
uncertainty).

After defining the most valuable parameters, new data (D) could be obtained for this set of
parameters by doing more research. With this new data we can update the underlying parameter
distributions.

If the data are known in advance the expected NMB of the optimal strategy will be given by
maxaEθC,(θI |D)B(a,θ). However, because the data are not known, we should average this ex-
pression over the joint distribution of obtaining data and we getED maxaEθC,(θI |D)B(a,θ) as the



22 3 VALUE OF INFORMATION ANALYSIS

expected NMB of the optimal strategy with partial sampling information (EVPSI). So we derive
thefollowing formula for the EVPSI:

EVPSI(θI ,n)= ED max
a

EθC,(θI |D)B(a,θ)−max
a

EθB(a,θ), (3)

with n thesample size.

Again we can rewrite this equation first in terms of opportunity loss:

EVPSI(θI ,n) = ED max
a

EθC,(θI |D)B(a,θ)−max
a

EθB(a,θ)

= ED max
a

EθC,(θI |D)B(a,θ)−EθB(a∗,θ)

= ED[max
a

EθC,θI |DB(a,θ)−EθC,θI |DB(a∗,θ)]

= ED[max
a

EθC,θI |D[B(a,θ)−B(a∗,θ)]]

= ED[opportunity loss of not knowing the new dataD]

It is difficult to estimate this equation 3, because the joint distribution of the new dataD is
unknown. We will show how to derive the EVPSI in the case of just one Beta distributed model
parameter of interest.

To generate a randomD, first theθI should be drawn from its distribution (and imagine it is
the ‘real’ parameter value). The new drawnD then has a Beta distribution, with parameters
αD = n · θI andβD = n(1− θI ). With these dataD we can update the distribution ofθI |D by
simply adding up theα’s andβ’s. Soαnew= αold +αD andβnew= βold +βD.

For eachD we will draw multiple times aθC and aθI (from the distribution ofθI |D) to calculate
the expected NMB of all strategies. The opportunity loss of not knowing the new dataD is
the difference of the expected NMB of optimal strategy and the expected NMB of the baseline
strategya∗. By averaging the opportunity loss over many random draws ofD, we estimate the
expected opportunity loss (and so the EVPSI). The algorithm is given in appendixD and can also
beused for sets of parameters.

In the case of another (then the Beta) distributed parameter of interest, the new drawnD will also
have another distribution. And updating the distributionθI |D will be different. We refer to the
paper of Ades et al. [1] for the methods.

3.4 Comments

For the ART-group, the software package ‘Treeage Pro’ is generally used for model building and
cost-effectiveness studies. Treeage Pro contains also Monte Carlo simulations with which we are
able to estimate the EVPI and EVPPI. It is not possible to derive the EVPSI with this software
yet. Therefore we will focus on the EVPI and EVPPI only.
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Figure 9: Screen shot of Treeage pro

4 Implementation

For the implementation of the model and value of information analysis the software package
‘Treeage Pro’ was used. Treeage Pro is specifically developed for making and evaluating decision
trees. A screen shot of Treeage Pro has been given in figure 9. Using this software the model (as
shown in section 2) is able to be created and the EVPI and EVPPI can be estimated by Monte
Carlosimulations.

The disadvantages of using Treeage pro are the changes in variables and distributions and the
adjustment of which parameters to include in the EVPPI analysis, which is very time consuming
and user unfriendly. The user has to do multiple actions over again for each change or adjustment.
Because of this disadvantage we made a user friendly Microsoft Excel sheet. In Excel, visual
basic macro’s can be used to communicate with Treeage Pro. With these macro’s the user does
not have to do multiple actions over again but can change or adjust everything at once.

The Excel sheet we made, consists of three parts: A view tree; a modify tree and an analyze tree.
By clicking on the ‘View Tree’ button, the model will be shown (figure 10 for a screen shot).

By clicking on the ‘Modify Tree’ button, the modify sheet will be shown (figure 11 for a screen
shot).All the inputs that can be changed are in white boxes. At the top of the sheet, the user can
give names to the reference test, the other test, treatment P, treatment N, minor event and major
event. At the bottom of the sheet a table with all the parameters is given; divided into multiple
columns. In the column labeled ‘Parameter name’ the parameter name is given. In the column
labeled ‘Description’ the description of that parameter is given, with the names the user gave to
the reference test, other test, etc. . . . If a parameter is of interest for the EVPPI calculation it can
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Figure 10: Screen shot of Excel ‘View Tree’ sheet

Figure 11: Screen shot of Excel ‘Modify Tree’ sheet
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Figure 12: Screen shot of Excel ‘Analyze Tree’ sheet

be included by clicking the check box in the column labeled ‘Included’. In the column labeled
‘Distribution’ the user can choose between different distributions (the beta, log-normal, normal,
triangular or uniform distribution) or simply choose a fixed number by selecting from the combo
box. In the column labeled ‘Distribution-parameters’ the right distribution-parameters or a fixed
number can be filled in. If only the mean and standard deviation for the beta distribution or only
the mean and standard deviation/median for the log-normal distribution is available, then the user
can convert these numbers to the right distribution-parameters at the top of the sheet. Finally, in
the column labeled ‘Mean’, the mean value of that parameter will be shown. If all parameters
are changed correctly, the user should click on the ‘Submit’ button (at the bottom of the sheet) to
submit all changes to Treeage Pro at once.

By clicking on the ‘Analyze Tree’ button, the analyze sheet will be shown (figure 12 for a screen
shot). In this sheet the willingness to pay, number of samples5, and number of samples in 2nd

orderloop6 can be set determined by the user.

The EVPI and the EVPPI calculations can be performed by clicking on ‘EVPI Monte Carlo
Simulation’ and ‘EVPPI Monte Carlo Simulation’, respectively. The user will be shown the
output automatically. The output consist of an histogram at the top of the sheet and some statistics
at the bottom. The histogram shows the expected NMB of the strategy which was optimal at
baseline versus the EVPI or EVPPI (also in NMB). The statistics contains the mean, standard

5numberof samples= N in the algorithms for EVPI and EVPPI calculation (Appendix B and C)
6numberof samples in 2nd order loop= M in the algorithm for EVPPI calculation (Appendix C)
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Figure 13: Screen shot of Excel ‘Output’ sheet

deviation and the quantiles of the costs, benefits and NMB of all strategies (See figure 13 for a
screenshot of the outputs).

4.1 Example Coronary Artery Disease

We now continue our example of patients with suspected coronary artery disease (in section 2.1).
Therewere two diagnostic tests available, coronary angiography and computed tomographic
angiography (CTA). The data for most parameter distributions was collected from other members
of the ART research group. The missing parameters were estimated. Because all parameter
distributions should be based on evidence, this example is only for illustrative reasons. All used
input data can be found in appendix E.

An EVPI estimation with a Monte Carlo simulation with 10,000 samples was performed. We
used a willingness to pay of 50,000 euro. The optimal strategy at baseline is to perform the CTA
test, which has an expected NMB of 28,137 euro. The reference strategy, coronary angiography,
has an expected NMB of 28,078 euro. The statistics of the two test strategies are given in table 2.

The EVPI is 113 euro, which means that if all parameter uncertainty is eliminated, we expect
an increase of 113 euro in the total NMB. This 113 euro increase is per individual patient. The
next step is to apply this increase in NMB to the total population to benefit. The population
size depends on the countries in which the the new study is applicable and on the number of
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Statistic Costs(CTA) Benefit(CTA) NMB(CTA)
Mean 16132.58 0.885395253 28137.18
Std Dev 2134.67 0.01405 2271.31
Minimum 9670.13 0.844264901 17128.81
2.50% 12347.05 0.858396943 23291.45
10% 13532.37 0.866775007 25187.05
Median 15991.65 0.885397808 28268.99
90% 18923.49 0.904415001 30933.44
97.50% 20681.92 0.911855809 32190.41
Maximum 26012.88 0.922944611 35060.52

Statistic Costs(CABG) Benefits(CABG) NMB(CABG)
Mean 16207.72 0.885715958 28078.08
Std Dev 2263.36 0.014167534 2391.69
Minimum 9195.79 0.84403295 16302.81
2.50% 12229.92 0.858481606 22926.69
10% 13458.67 0.8669226 24992.10
Median 16055.34 0.885726548 28205.66
90% 19137.02 0.9048167 31011.38
97.50% 21092.37 0.912551759 32352.20
Maximum 27315.1 0.922910131 35585.82

Table 2: CAD model outputs

years the study is of relevance. Because of the rapid advances in technology we expect a newer
andbetter technique to be found. DefineQy as the number of patients to benefit in yeary, with
y = 1,2, . . . ,H (H the effective lifetime for the technology (CTA, CABG)) the population EVPI
is then:

PopulationEVPI = EVPI∗
H

∑
y=1

Qy

(1+ r)y

with r thediscount rate.

If one supposes the total population size is 10,000 patients and a relevance of only one year, then
the Population EVPI is 130·10,000= 1,300,000. This Population EVPI is an upper bound of
the expected benefit of doing more research. If a new study has a cost of more than 1,300,000
euro, then the study is not justified. If the study costs are lower, the EVPPI should be calculated
for the group of parameters the study is applicable, to check if the new study is justified.

4.2 Conclusions

We are able to do EVPI and EVPPI calculations to determine whether a new diagnostic study
provides sufficient information to justify research funding. However the EVPI and EVPPI gives
only an upper bound of the expected benefit of the new study. Therefore the next step is to
calculate the expected value of partial sampling information (EVPSI(n)). This is the expected
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benefit of doing a research study with a sample size ofn. The EVPSI is not an upper bound
and will give the ‘real’ expected benefit of the new study. Using EVPI and EVPPI, priorities
can be given to guide future diagnostic research should the need arise to chose between multiple
diagnostic studies.
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A Parameter variables

Variable name Description
cHC Re f Test Health-carecosts for reference test
cNHC Re f Test Nonhealth-care costs for reference test
pMorbRe f Test Probabilityof morbidity reference test
cMorbRe f Test Costsfor morbidity reference test
disutilMorbRe f Test Disutility for morbidity reference test
pMortRe f Test Probabilityof mortality reference test
cHC Test A Health-carecosts for new test
cNHC Test A Nonhealth-care costs for new test
pMorbTestA Probabilityof morbidity new test
cMorbTestA Costsfor morbidity new test
disutilMorbTestA Disutility for morbidity new test
pMortTestA Probabilityof mortality new test
pUninTestA Probabilityof uninterpretable test results of new test
sensitivityA Sensitivity of new test (P(D+—T+))
speci f icityA Specificityof new test (P(D-—T-))
cHC TreatmP Health-carecosts for treatment P
cNHC TreatmP Nonhealth-care costs for treatment P
pMorbTreatmP Probabilityof morbidity treatment P
cMorbTreatmP Costsfor morbidity treatment P
disutilMorbTreatmP Disutility for morbidity treatment P
pMortTreatmP Probabilityof mortality treatment P
pTreatmPMinor TP Probabilityof starting follow up in minor event for a patient with disease and

treatment P
pTreatmPMinor FP Probabilityof starting follow up in minor event for a patient without disease and

treatment P
pTreatmPMa jor TP Probabilityof starting follow up in major event for a patient with disease and

treatment P
pTreatmPMa jor FP Probabilityof starting follow up in major event for a patient without disease and

treatment P
cHC TreatmN Health-carecosts for treatment N
cNHC TreatmN Nonhealth-care costs for treatment N
pMorbTreatmN Probabilityof morbidity treatment N
cMorbTreatmN Costsfor morbidity treatment N
disutilMorbTreatmN Disutility for morbidity treatment N
pMortTreatmN Probabilityof mortality treatment N
pTreatmNMinor TN Probabilityof starting follow up in minor event for a patient without disease and

treatment N
pTreatmNMinor FN Probabilityof starting follow up in minor event for a patient with disease and

treatment N
pTreatmNMa jor TN Probabilityof starting follow up in major event for a patient without disease and

treatment N
pTreatmNMa jor FN Probabilityof starting follow up in major event for a patient with disease and

treatment N
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Variable name Description
pDisease Priorprobability of disease
discountrate Discountrate per year for costs and utilities for future years
dt Cyclelength in follow up period
yearsFU Total years of modeling follow up
pDoRe f TestA f ter A The proportion of doing the reference test after a positive test result of the new

test
c TP Costsper year in well state for a patient with disease and treatment P
c FN Costsper year in well state for a patient with disease and treatment N
c TN Costsper year in well state for a patient without disease and treatment N
c FP Costsper year in well state for a patient without disease and treatment P
u TP Utility per year in well state for a patient with disease and treatment P
u FN Utility per year in well state for a patient with disease and treatment N
RRu FN Relative risk uFN vs. uTP (≤1)
u TN Utility per year in well state for a patient without disease and treatment N
u FP Utility per year in well state for a patient without disease and treatment P
RRu FP Relative risk uFP vs. uTN (≤ 1)
cMinorEvent Costsper year in minor event state
pMinorEventTP Probability per year of occurring a minor event for a patient with disease and

treatment P
pMinorEventFN Probability per year of occurring a minor event for a patient with disease and

treatment N
RR pMinorEventFN Relative risk pMinorEventFN vs. pMinorEventTP (≥1)
pMinorEventTN Probabilityper year of occurring a minor event for a patient without disease and

treatment N
pMinorEventFP Probabilityper year of occurring a minor event for a patient without disease and

treatment P
RR pMinorEventFP Relative risk pMinorEventFP vs. pMinorEventTN (≥ 1)
pDieMinorEventTP Probabilityof dying of occurring a minor event state for a patient with disease

and treatment P
pDieMinorEventFN Probabilityof dying of occurring a minor event state for a patient with disease

and treatment N
RR pDieMinorEventFN Relative risk pDieMinorEventFN vs. pDieMinorEventTP (≥1)
pDieMinorEventTN Probabilityof dying of occurring a minor event state for a patient without disease

and treatment N
pDieMinorEventFP Probabilityof dying of occurring a minor event state for a patient without disease

and treatment P
RR pDieMinorEventFP Relative risk pDieMinorEventFP vs. pDieMinorEventTN (≥ 1)
uMinorEvent Utility per year in the minor event state
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Variable name Description
cMa jorEvent Costsper year in major event state
pMa jorEventTP Probability per year of occurring a major event for a patient with disease and

treatment P
pMa jorEventFN Probability per year of occurring a major event for a patient with disease and

treatment N
RR pMa jorEventFN Relative risk pMajorEventFN vs. pMajorEventTP (≥1)
pMa jorEventTN Probabilityper year of occurring a major event for a patient without disease and

treatment N
pMa jorEventFP Probabilityper year of occurring a major event for a patient without disease and

treatment P
RR pMa jorEventFP Relative risk pMajorEventFP vs. pMajorEventTN (≥ 1)
pDieMa jorEventTP Probabilityof dying of occurring a major event state for a patient with disease

and treatment P
pDieMa jorEventFN Probabilityof dying of occurring a major event state for a patient with disease

and treatment N
RR pDieMa jorEventFN Relative risk pDieMajorEventFN vs. pDieMajorEventTP (≥1)
pDieMa jorEventTN Probabilityof dying of occurring a major event state for a patient without disease

and treatment N
pDieMa jorEventFP Probabilityof dying of occurring a major event state for a patient without disease

and treatment P
RR pDieMa jorEventFP Relative risk pDieMajorEventFP vs. pDieMajorEventTN (≥ 1)
pDieMa jor TP Probabilityper year of dying from the major event state for a patient with disease

and treatment P
pDieMa jor FN Probabilityper year of dying from the major event state for a patient with disease

and treatment N
RR pDieMa jor FN Relative risk pDieMajorFN vs. pDieMajorTP (≥1)
pDieMa jor TN Probability per year of dying from the major event state for a patient without

disease and treatment N
pDieMa jor FP Probability per year of dying from the major event state for a patient without

disease and treatment P
RR pDieMa jor FP Relative risk pDieMajorFP vs. pDieMajorTN (≥ 1)
uMa jorEvent Utility per year in the major event state
RRuMa jorEvent Relative risk uMajorEvent vs. uMinorEvent (≤1)
pDieOther Probabilityper year to die of other causes (life-table used)
startAge Themean age of examined patients
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B Algorithm for EVPI calculation

1. Fori = 1,2,. . . ,N simulations

(a) Draw a value forθ
(b) Calculate the expected net monetary benefit (NMB) of all strategies using thisθ
(c) Find the strategy which expected NMB is highest (this is the optimal strategy for this

θ)

(d) Subtract the expected NMB of baseline strategya∗ from the expected NMB of opti-
mal strategy and record this number

2. Average these numbers over allN simulations

In formula form:

EVPI = Eθ[max
a

B(a,θ)−B(a∗,θ)]
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C Algorithm for EVPPI calculation

1. Fori = 1,2,. . . ,N simulations

(a) Draw a value forθI

(b) For j = 1,2,. . . ,M inner simulations

i. Draw a value forθC

ii. Calculate the expected net monetary benefit (NMB) of all strategies using thisθI

andθC andrecord these numbers

(c) Average these numbers for all different strategies over allM inner simulations to
derive the expected NMB for all strategies givenθI

(d) Find the strategy which expected NMB is highest (this is the optimal strategy for
this θI )

(e) Subtract the expected NMB of baseline strategya∗ from the expected NMB of opti-
mal strategy and record this number

2. Average these numbers over allN simulations

In formula form:

EVPPI(θI ) = EθI [max
a

EθC|θI
[B(a,θ)−B(a∗,θ)]]
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D Algorithm for EVPSI calculation

1. Fori = 1,2,. . . ,N simulations

(a) Draw a value forD

(b) For j = 1,2,. . . ,M inner simulations

i. Draw a value forθC andθI (outof the distribution ofθI |D)

ii. Calculate the expected net monetary benefit (NMB) of all strategies using this
θC andθI andrecord these numbers

(c) Average these numbers for all different strategies over allM inner simulations to
derive the expected NMB for all strategies givenθI

(d) Find the strategy which expected NMB is highest (this is the optimal strategy for
thisD)

(e) Subtract the expected NMB of baseline strategya∗ from the expected NMB of opti-
mal strategy and record this number

2. Average these numbers over allN simulations

In formula form:

EVPSI(θI ,n)= ED[max
a

EθC,θI |D[B(a,θ)−B(a∗,θ)]]
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E Model input Coronary Artery Disease

Parameter name Distribution Distribution-Parameters Mean
cHC RefTest Log Normal logmean 8.006 logsdev 0.346 3186
cNHC RefTest Fixed Number 0 0
pMorbRefTest Beta alpha 145.112 beta 222408 0.001
cMorbRefTest Log Normal logmean 8.808 logsdev 0.17 6787
disutilMorbRefTest Triangular min 0.022 likeliest 0.027 max 0.033 0.027
pMortRefTest Beta alpha 204.438 beta 222349 0.001

cHC TestA Log Normal logmean 6.558 logsdev 0.18 716.5
cNHC TestA Fixed Number 0 0
pMorbTestA Beta alpha 1 beta 1999 0.001
cMorbTestA Log Normal logmean 8.808 logsdev 0.17 6787
disutilMorbTestA Triangular min 0.022 likeliest 0.027 max 0.033 0.027
pMortTestA Fixed Number 0 0
pUninTestA Beta alpha 1 beta 58 0.017
sensitivityA Beta alpha 25 beta 0.3 0.988
specificityA Beta alpha 7 beta 1 0.875

cHC TreatmP Log Normal logmean 9.644 logsdev 0.16 15631
cNHC TreatmP Fixed Number 0 0
pMorbTreatmP Beta alpha 99.818 beta 1821.2 0.052
cMorbTreatmP Log Normal logmean 8.808 logsdev 0.17 6787
disutilMorbTreatmP Triangular min 0.022 likeliest 0.027 max 0.033 0.027
pMortTreatmP Beta alpha 21.325 beta 1725.5 0.012
pTreatmPMinor TP Fixed Number 0 0
pTreatmPMinor FP Fixed Number 0 0
pTreatmPMajor TP Fixed Number 0 0
pTreatmPMajor FP Fixed Number 0 0

cHC TreatmN Fixed Number 0 0
cNHC TreatmN Fixed Number 0 0
pMorbTreatmN Fixed Number 0 0
cMorbTreatmN Fixed Number 0 0
disutilMorbTreatmN Fixed Number 0 0
pMortTreatmN Fixed Number 0 0
pTreatmNMinor TN Fixed Number 0 0
pTreatmNMinor FN Fixed Number 1 1
pTreatmNMajor TN Fixed Number 0 0
pTreatmNMajor FN Fixed Number 0 0

pDisease Beta alpha 653 beta 267 0.71
discountrate 2
dt 1
yearsFU 15
pDoRefTestAfter A 1
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Parameter name Distribution Distribution-Parameters Mean
c TP Log Normal logmean 7.09 logsdev 0.649 1481
c FN Log Normal logmean 7.09 logsdev 0.649 1481
c TN Log Normal logmean 7.09 logsdev 0.649 1481
c FP Log Normal logmean 7.09 logsdev 0.649 1481
u TP Triangular min 0.82 likeliest 0.87 max 0.92 0.87
u FN u TP*RR u FN 0.696
RR u FN Normal mean 0.8 sdev 0.1 0.8
u TN Fixed Number 1 1
u FP u TN*RR u FP 0
RR u FP Fixed Number 0 0

cMinorEvent Log Normal logmean 9.903 logsdev 0.4263 21902
pMinorEventTP Beta alpha 2 beta 98 0.02
pMinorEventFN pMinorEventTP*RR pMinorEventFN 0.05
RR pMinorEventFN Normal mean 2.5 sdev 0.3 2.5
pMinorEventTN Beta alpha 1 beta 1000 0.001
pMinorEventFP pMinorEventTN*RR pMinorEventFP 0
RR pMinorEventFP Fixed Number 0 0
pDieMinorEventTP Beta alpha 5.5 beta 100 0.052
pDieMinorEventFN pDieMinorEventTP*RR pDieMinorEventFN 0.052
RR pDieMinorEventFN Normal mean 1 sdev 0.1 1
pDieMinorEventTN Beta alpha 6 beta 100 0.057
pDieMinorEventFP pDieMinorEventTN*RR pDieMinorEventFP 0
RR pDieMinorEventFP Fixed Number 0 0
uMinorEvent Triangular min 0.742 likeliest 0.792 max 0.842 0.792

cMajorEvent Log Normal logmean 10.309 logsdev 0.402 32526
pMajorEventTP Beta alpha 50 beta 50000 0.001
pMajorEventFN pMajorEventTP*RR pMajorEventFN 0.002
RR pMajorEventFN Normal mean 2.5 sdev 0.3 2.5
pMajorEventTN Beta alpha 20 beta 50000 0
pMajorEventFP pMajorEventTN*RR pMajorEventFP 0
RR pMajorEventFP Fixed Number 0 0
pDieMajorEventTP Beta alpha 6 beta 90 0.063
pDieMajorEventFN pDieMajorEventTP*RR pDieMajorEventFN 0.063
RR pDieMajorEventFN Normal mean 1 sdev 0.1 1
pDieMajorEventTN Beta alpha 6 beta 90 0.063
pDieMajorEventFP pDieMajorEventTN*RR pDieMajorEventFP 0
RR pDieMajorEventFP Fixed Number 0 0
pDieMajor TP Beta alpha 42 beta 586 0.067
pDieMajor FN pDieMajor TP*RR pDieMajor FN 0.167
RR pDieMajor FN Normal mean 2.5 sdev 0.3 2.5
pDieMajor TN Beta alpha 42 beta 586 0.067
pDieMajor FP pDieMajor TN*RR pDieMajor FP 0
RR pDieMajor FP Fixed Number 0 0
uMajorEvent uMinorEvent*RRuMajorEvent 0.531
RR uMajorEvent Normal mean 0.67 sdev 0.05 0.67

pDieOther
startAge 62
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outcomes attributes
1 2 3 . . . n

weights w1 w2 w3 . . . wn

st
ra

te
gi

es

1 u1,1 u1,2 u1,3 . . . u1,n

2 u2,1 u2,2 u2,3 . . . u2,n

3 u3,1 u3,2 u3,3 . . . u3,n
...

...
...

...
...

...
m um,1 um,2 um,3 . . . um,n

Table 3: Balance sheet

F Balance sheet example

Considerthe following problem. There arem different strategies to be chosen from, and each
strategy has got multiple (let sayn) outcome attributes. Like effectiveness, safety, etc. . . . Each
outcome is not a fixed number, but has an underlying distribution of the real parameter. The
multiple outcomes also have got weights of importance. In the balance sheet (Table 3) you can
seea tabular illustration.ua, j is the outcome of thejth attribute of strategya. Each outcome is a
distribution, so for exampleua, j ∼ Beta(αa, j ,βa, j) if this outcome has a beta distribution.

The problem is which strategy to choose. Or should we conclude that more research is needed,
to make the right decision? And if more research is necessary, which outcome parameters have
the highest value of information? In other words, which outcome attribute(s) should be further
investigated?

Define θ = {θ1, . . . ,θm} as the set of all outcome parameters, withθa = {ua,1,ua,2, . . . ,ua,n}.
And defineω as the set of all weights (ω= {w1, . . . ,wn}). The benefit of each strategy can then
be written as a function ofθ andω

B(a,θa,ω) = ωT ·θa =
n

∑
j=1

w j ·ua, j

To derive the optimum decision we first calculate the expected value of perfect information (EVPI).
The EVPI is the expected benefit if all parameter uncertainty will be eliminated. Such that all
outcome attributes are exactly known, without an underlying distribution. It can be seen as the
difference between the expected benefit of the optimum decision with perfect information minus
the expected benefit of the optimum decision with current information. A strategya without
more information has an expected benefit ofEθaB(a,θa,ω). So the expected benefit of the op-
timum decision with current information is maxaEθaB(a,θa,ω). If the true parameters where
known then the benefit of the optimum decision is maxaB(a,θa,ω). But because the true param-
eters are unknown we should average this expression over the joint distribution ofθ and we get
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Eθ maxaB(a,θa,ω) as the expected benefit of the optimum decision with perfect information.
We derive the following formula for the EVPI:

EVPI = Eθ max
a

B(a,θa,ω)−max
a

EθB(a,θa,ω) (4)

If the EVPI is low, then we expect that only a very low benefit will be gained with further
research.So we will then choose the strategy with the greatest expected benefit. But if the EVPI
is high we should consider whether to perform more research.

Next we should consider which outcome attribute(s) gives the most information. This can be
done by calculating the expected value of perfect partial information. Suppose we have now
perfect information of a subset of all parameters:θI ⊃ θ. And θC is the complement ofθI .
Now with perfect information of this subsetθI the expected benefit of the optimum decision is
given by maxaEθC|θI

B(a,θa,ω). But because the true parameters forθI are unknown we should
average this expression over the joint distribution ofθI and we getEθI maxaEθC|θI

B(a,θa,ω) as
the expected benefit of the optimum decision with perfect partial information. So we derive the
following formula for the EVPPI:

EVPPI= EθI max
a

EθC|θI
B(a,θa,ω)−max

a
EθB(a,θa,ω) (5)

By varyingθI andcalculating the EVPPIs we obtain information about which parameters provide
the highest value when studied.

To eliminate all parameter uncertainty (of the subset) is impossible because this will require
research study with infinite sample sizes. The EVPI and EVPPIs therefore give an upper bound
of the expected benefit of doing further research. The larger the sample size, the closer the
expected benefit will reach the upper bounds. In fact, the larger the sample size, the larger the
reduction of the kurtosis (degree of peakedness) of the underlying parameter distributions (so
reducing uncertainty). An additional factor is that the larger the sample size the higher the costs
of the research. So a trade-off must be made between the costs and the expected benefit of doing
the research.

After defining the most valuable parameters, data (D), for these set of parameters, could be obtain
by doing the research. With this data we can update the underlying parameter distributions.

If the data is known the expected benefit of the optimum decision will be given by maxaEθC,(θI |D)B(a,θa,ω).
But because the data is unknown we should average this expression over the joint distribution of
obtaining data and we getED maxaEθC,(θI |D)B(a,θa,ω) as the expected benefit of the optimum
decision with partial sampling information. So we derive the following formula for the EVPSI:

EVPSI= ED max
a

EθC,(θI |D)B(a,θa,ω)−max
a

EθB(a,θa,ω) (6)

If this EVPSI does exceed the cost of research, only then is further research justified.
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G Treeage Model
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Figure 14: Reference test strategy
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