
Anne Jonker (Student number: 2528666)

Master Thesis

.

-

.

Bag & Tag’em, A new Dutch stemming algorithm

in Exact Sciences

August 1, 2019

Vrije Universiteit Amsterdam

Faculty of Exact Sciences

Author: Anne Jonker (Student number: 2528666)

Contact information: annejonker@gmail.com

Supervisors: Jornt de Gruijl (Bright & Company), Corné de Ruijt (VU), Prof. Dr. Sandjai

Bhulai (VU), and Prof. Dr. Guszti Eiben (VU)

Title: Master Thesis . - . Bag & Tag’em, A new Dutch stemming algorithm

Research period: January 2019 - August 2019

Report date: August 1, 2019

Presentation date: August 15, 2019

Presentation location: Kerkweg 31, 3603 CL Maarssen, The Netherlands

Study line: Master Business Analytics

University address: De Boelelaan, 1081a, 1081 HV Amsterdam, The Netherlands

Bright & Company address: Kerkweg 31, 3603 CL Maarssen, The Netherlands

Page count: 72+10

Abstract: The aim of this thesis is to overcome the problems that the current state-of-the-art

stemmers face in the Dutch language. The main issue is that the current stemmers cannot

handle 3rd person singular forms of verbs, wherein the verbs ends with a t, as well as many

irregular words and forms. This is done by combining a new tagging module with a new

stemmer that uses a set of rigid rules: the Bag & Tag’em (BT) algorithm. The tagging

module is tested on and evaluated using three algorithms: MLR, NN, XGB. The stemming

module is compared with and evaluated to current state-of-the-art stemming algorithms for

the Dutch Language. Even though there is still room for improvement, the new BT algorithm

performs well in the sense that it is more accurate than the current stemmers and faster than

brute-force-like algorithms.

Keywords: Text mining, Stemming, Tagging, Dutch language

i

Preface

Before you lies the thesis: "Bag & Tag’em - A new Dutch stemming algorithm". It has been

written to fulfil the final graduation requirements of the Business Analytics program at the

Vrije Universiteit Amsterdam (VU). I was engaged in researching and writing this Master

thesis from February to August 2019.

Writing this thesis has been a journey that lasted well over six months and I could not have

completed it without the help from a lot of people. First of all I would like to thank Jornt De

Gruijl from Bright & Company who came up with the idea of a new stemmer. In addition

to the idea itself, I am also grateful for the continuous support in programming the algo-

rithm, and helping me tackle the numerous problems that arose along the way. Furthermore,

Bright & Company made me feel at home from the very first moment I entered the office in

Maarssen, the Netherlands. I had a great time with all of my colleagues while working there!

Another person I am very grateful to have met was Corné de Ruijt, who was my University

supervisor. Corné assisted in tackling theoretical obstacles and in something that should not

be forgotten in a project this size: time management. Furthermore, I want to thank my other

supervisors: Prof. Dr. Sandjai Bhulai and Prof. Dr. Guszti Eiben for taking the time to read

and correct my thesis.

In addition, I would like to thank my friend Tjalling Otter for helping to manually check

the Dutch documents and proof-reading chapters for grammar, and finally my wonderful

girlfriend Janine Nanlohy who supported me endlessly throughout the conception of this

thesis.

It is my sincere wish that you enjoy reading this thesis, and that it may inspire future research

as well as assist in decision-making challenges.

Anne Jonker, August 1, 2019

The Author

ii

List of Figures
Figure 1. Text mining process adapted from (Vijayarani, Ilamathi, & Nithya, 2015) 8
Figure 2. Neural Network obtained from (Rahul Bhatia, 2018). 19
Figure 3. Overview of the parameters in a Neural Network . 20
Figure 4. AdaBoost (Gautam, 2018). 25
Figure 5. Pervasive attention representation (Elbayad, Besacier, & Verbeek, 2018) 27
Figure 6. Flowchart of the three modules in the BT algorithm. 29
Figure 7. Distribution of tags in the dataset . 32
Figure 8. Workings of SMOTE obtained from (Rikunert, 2017). 35
Figure 9. Data collection & Feature space flowchart . 35
Figure 10. Tagging module flowchart . 40
Figure 11. Stemming of the various tags flowchart . 49

List of Tables
Table 1. Overview most important word types taalkundig ontleden in the Dutch language 3
Table 2. Personal pronouns in the Dutch language . 4
Table 3. Example of verb forms in the Present Simple (ott) . 5
Table 4. Example of verb forms in the Present perfect (vtt) . 5
Table 5. Example of verb forms in the Past tense (ovt) . 6
Table 6. Adjective stemming of superlatives . 6
Table 7. Example of production technique (English) . 12
Table 8. Example of production technique (Dutch) . 13
Table 9. Bias and variance in XGB . 24
Table 10. Tags explained . 31
Table 11. N-gram example . 33
Table 12. Attributes of datasets . 33
Table 13. Performance measuring . 36
Table 14. Algorithm tuned parameters and optimal parameters based on dataset 37
Table 15. F1-scores on the first dataset . 38
Table 16. F1-scores on the second dataset . 39
Table 17. F1-scores on the third dataset . 39
Table 18. F1-scores on the fourth dataset . 40
Table 19. Example of under and overstemming. 42
Table 20. Example compounded verbs . 43
Table 21. Verb stemming rules . 44
Table 22. Example of verbs in stemming algorithm . 45
Table 23. Stemming rules applied to the root for verbs. 45
Table 24. Adjectives stemming rules . 46
Table 25. Stemming rules applied to adjectives . 47
Table 26. Evaluation datasets overview in absolute numbers . 51

iii

Table 27. Understemming of the algorithms on evaluation datasets . 53
Table 28. Overstemming of the algorithms on evaluation datasets. 53
Table 29. Computational time of stemmers in ms: mean (std. dev.) of 100 runs, 100

loops each . 54
Table 30. Computational time of Taggers in seconds: mean (std. dev.) of 100 runs,

100 loops each . 55
Table 31. Confusion matrix Frog and manual tags . 55
Table 32. F1-scores of the Frog tagging algorithm on the manual dataset 55
Table 33. Overview all word types taalkundig ontleden in the Dutch Language. 66
Table 34. Verb forms of time in Dutch language. 67

iv

Contents
1 INTRODUCTION . 1

1.1 Introduction . 1
1.2 Background Dutch language . 2

1.2.1 Type of words . 2
1.2.2 Grammar rules . 3

2 LITERATURE . 8
2.1 Text mining . 8

2.1.1 Gathering of documents . 9
2.1.2 Tokenisation. 10
2.1.3 Stopword removal . 10
2.1.4 Term Frequency Inverse Document Frequency . 11

2.2 Stemming . 11
2.2.1 The production technique . 12
2.2.2 Prefix and Suffix-stripping algorithms . 13

2.3 Part of Speech Tagging. 14
2.3.1 Multinomial Logistic regression (MLR). 15
2.3.2 Neural Network (NN) . 18
2.3.3 Extreme Gradient Boosting (XGB) . 23

2.4 Sequential Models . 27

3 METHODS. 29
3.1 Data Collection & Feature space . 30

3.1.1 Data Collection . 30
3.1.2 Feature space . 32

3.2 Tagging algorithms . 35
3.3 Stemming algorithms . 41

3.3.1 Verbs (WW) . 42
3.3.2 Adjectives (BVNW) . 46
3.3.3 Noun (ZNW) . 47
3.3.4 Adverb (BW). 48
3.3.5 Exception list . 48

3.4 Model evaluation . 49

4 RESULTS . 52
4.1 Accuracy of the models . 52

5 CONCLUSION & DISCUSSION . 56
5.1 Conclusion . 56
5.2 Discussion . 57
5.3 Further Research . 58

BIBLIOGRAPHY . 60

v

APPENDICES . 66
Appendices . 66
A Overview word types taalkundig ontleden in the Dutch Language 66
B Overview forms of times in Dutch language . 67
C Code for the stemming algorithm . 68
D Exception list . 71
E Evaluation documents . 72

E.1 Document 1 (BFG) . 72
E.2 Document 2 (Newspaper article) . 73
E.3 Document 3 (Wikipedia article on VU) . 74
E.4 Document 4 (Vacancy Ajax) . 75

vi

1 Introduction

1.1 Introduction

With the current availability of large quantities of digitised documents and data, the data

mining research field faces a shift from a lack of available data to an abundance of it. The idea

of data mining is to discern valuable patterns in data, which are not or cannot be perceived by

even the most observant analysts. The field has evolved tremendously over the last decade

and is now entering a mature phase (Weiss, Indurkhya, & Zhang, 2015).

The increased availability of data has also resulted in a resurgence of a sub-field of data

mining: text mining. In order to perform analysis on unstructured data such as text, data

is commonly preprocessed in a number of ways. One such commonly used preprocessing

step is to reduce the number of variants of the same word back to a common root in order

to reduce noise and enhance the accuracy of the analyses that follow. This is referred to as

stemming, whereby words are reduced to their stem. Stemming has been studied thoroughly

for the English language and considerable success has already been achieved. This is mainly

done through use of the Porter algorithm (Porter, 2001) that uses a rigid rule-based system

to stem a word.

The problem with many other languages, in particular the Dutch language, is that they have

been less of a focal point for research and that many words are irregular when it comes to

their derivations. As such, they do not conform to the otherwise established rule sets, forming

exceptions. The goal of this thesis is to construct a new algorithm that is more accurate than

the state-of-the-art algorithms currently in use for the Dutch language. The algorithm will

make use of two important components.

The first component will be a new tagging algorithm that categorises a word based on the

letters that comprise it. This differs from established tagging algorithms which make use of

large corpora of pre-tagged words. In theory, this would decrease the requisite computational

resources, at the cost of some degree of accuracy, but more robustness in coping with e.g.

neologisms.

1

The second component will be to apply pre-determined rules to stem a word based on the

aforementioned tag. This part of the approach is similar to the Porter algorithm, but will

instead use rules specific to the Dutch language.

The final algorithm could aid in analysing large quantities of Dutch text documents, due to

its robustness and computational efficiency compared to current standards. As such, many

existing and novel applications of text mining stand to gain from the algorithm described in

this article.

Text mining is currently already implemented in numerous fields. It can be applied in

sentiment analyses to determine the overall reputation of a company (Pang, Lee, et al.,

2008), identifying and analysing cybercrime activities (Kontostathis, Edwards, & Leather-

man, 2010) or fraud detection (Phua, Lee, Smith, & Gayler, 2010). These are just a few

examples of the increasing possibilities to apply text mining to numerous problems faced by

companies and researchers on a daily basis.

1.2 Background Dutch language

Before the various methods in text mining are explained, first some background information

is given on the Dutch language. First the various types of words in Section 1.2.1 afterwards

grammar rules in Section 1.2.2, which will be referred back to in Chapter 3. Section 1.2.2

will also show the problems some of the current state of the art stemmers have when it comes

to verbs, which is the main reason why a new stemmer had to be build.

1.2.1 Type of words

In the Dutch language there are two ways to categorise types of words in a sentence. One

way is called : taalkundig ontleden (linguistic parsing) the other: redekundig ontleden (rea-

sonably dissect).

Redekundig ontleden groups words together that belong together. For example De lange

vrouw wilde een limonade bestellen (The tall woman wanted to order a lemonade) splits up

the sentence in three parts: De lange vrouw (The tall woman) which is the subject of the

2

sentence, wilde bestellen (wanted to order) which are the verbs explaining what the subject

is doing, and een limonade (a lemonade) which explains what the subject wanted.

For reasons that will be described later on in this thesis, only the taalkundig ontleden (lin-

guistic parsing) will be explained in more detail. In linguistic parsing each word is labelled

(tagged) based on the type of word in the sentence.

In total are there 22 word types in Dutch linguistic parsing shown in Table 33 in Appendix A.

Not all of the word types will be used in this thesis, however the most important word types

for this thesis are described in Table 1. The Auxiliary verb, Linking verb and Independent

verb are combined in one general word type: Werkwoord (verb).

Type Translation Example Translation

Lidwoord Article De lange vrouw The tall woman

Zelfstandig

naamwoord
Noun De lange vrouw The tall woman

Bijvoeglijk

naamwoord
Adjective De lange vrouw The tall woman

Werkwoord Verb Ik zal lopen I shall walk

Persoonlijk

voornaamwoord

Personal

pronoun
Ik zal lopen I shall walk

Voorzetsel Preposition Ik geef dit aan haar I give this to her

Bijwoord Adverb Morgen komt hij niet He will not come tomorrow

Table 1. Overview most important word types taalkundig ontleden in the Dutch language

1.2.2 Grammar rules

To understand why certain rules are applied for stemming, there is a necessity to know how

Dutch words are constructed. First the verbs will be explained, afterwards the adjectives and

finally the nouns. The other word types are less interesting due to the fact that they are most

likely to be stop words which is explained in Section 2.1.3 or not able to be stemmed at all.

In the Dutch language there are ten forms of time in verbs. For each verb (except for the

3

past participle and Imperative), there are six personal forms. The six personal pronouns

determines who did something and are presented in Table 2, together with their respective

translation.

Personal

pronoun
Translation

ik I

jij you

hij / zij him / her

wij us

julllie them

zij they

Table 2. Personal pronouns in the Dutch language

The ten forms of time as presented in Table 34 in Appendix B and it shows the first person

of the regular verb leren (to study). The Table shows that the number of forms when only the

word leren is taken into account, for the singular form can be reduced to four forms: leer,

leren, geleerd, leerde. The other forms are created by using hulp werkwoorden (auxiliary

verbs) to determine the time and if you shall do it. This is crucial for the rest of this thesis

to understand why only four types of verbs are examined, instead of the ten. Therefore only

the ott, vtt, ovt will be discussed since leren is an infinitive which is also contained in the ott.

First the Onvoltooid tegenwoordige tijd (ott) (Present tense) is explained using three verbs, to

deduct the grammar rules. In general the difference with stem works as a basic rule, but when

the column of weten (to know) is observed then two strange things occur. No additional t

is added to the stem because in the Dutch language there are no verbs that end with double

t or d. Furthermore in the plural form an e is removed in the stem. Weten is therefore an

irregular verb and many examples like this are present in the Dutch language. For now we

can assume that the general rules work rather well. Due to this assumption other state of the

art stemming algorithms fail on these types of verbs. Especially if or when not to remove the

letter t at the end of a verb.

4

Personal

pronoun

werken

(to work)

worden

(to become)

weten

(to know)

Difference

with stem

ik werk word weet stem

jij werkt wordt weet stem + t

hij werkt wordt weet stem + t

wij werken worden weten stem + en

jullie werken worden weten stem + en

zij werken worden weten stem + en

Table 3. Example of verb forms in the Present Simple (ott)

The Present perfect (vtt) as shown in Table 4, shows that werken is not suffix stripped the

same as the two other verbs. Where simply removing the prefix ge from the verbs worden

and weten results in the infinitive, this is not the case for werken. The helping verb is different

between werken and weten on one side (helping verb is hebben (to have) and worden (helping

verb is zijn (to become). This does not have an influence on how the main verb is constructed.

Personal

pronoun

werken

(to work)

worden

(to become)

weten

(to know)

Difference

with stem

ik heb gewerkt ben geworden heb geweten ge- & -t or -en

jij hebt gewerkt bent geworden hebt geweten ge- & -t or -en

hij heeft gewerkt is geworden heeft geweten ge- & -t or -en

wij hebben gewerkt zijn geworden hebben geweten ge- & -t or -en

jullie hebben gewerkt zijn geworden hebben geweten ge- & -t or -en

zij hebben gewerkt zijn geworden hebben geweten ge- & -t or -en

Table 4. Example of verb forms in the Present perfect (vtt)

The Simple past tense (ovt) as shown in Table 5 shows a more complicated deduction of

"simple" rules, grammar should normally follow. In general one can remove either a te(n) or

de(n) from the Past tense form, to convert the verb into present simple. The additional n is

stripped in case the verb is a plural. For these verbs (almost all) the singular personal share

the same affixes among the singular forms, which is also true for the plural personal forms.

5

Personal

form

werken

(to work)

worden

(to become)

weten

(to know)

Difference

with stem

ik werkte werd wist -te or new word

jij werkte werd wist -te or new word

hij werkte werd wist -te or new word

wij werkten werden wisten -ten or -en

jullie werkten werden wisten -ten or -en

zij werkten werden wisten -ten or -en

Table 5. Example of verb forms in the Past tense (ovt)

All these various forms of verbs and when to remove certain parts of a word or even adding

vowels is a huge challenge, which is tried to be tackled in this thesis. The verbs are the most

challenging part but also the adjectives are not always as easy to stem as it first seems to be.

Similar to the English language an adjective is generally placed between an article and a

noun, since the adjective describes something about the noun. For example de mooie bloem

(the beautiful flower). Most of the adjectives have the same suffixes as shown as an example

in Table 6. These are the superlatives and again there are irregular adjectives (goed), which

is the same as in English (good, better, best). Similar with the previous examples of the verbs

weten the number of vowels in the adjective rood also changes.

Similar problems with the adjectives occur in the verbs but the number of various forms is

smaller and therefore easier to capture in rules.

Mooi

(beautiful)

Goed

(good)

Rood

(red)

Difference

with stem

mooi goed rood stem

mooie goede rode -e

mooier beter roder -er or new word

mooist best roodst -st or new word

mooiste beste roodste -ste or new word

Table 6. Adjective stemming of superlatives

6

For nouns there are two important features to help reducing the noun to its singular form.

The first is more obvious when it comes to plural nouns. The second feature are the verklein-

woorden (diminutives). To reduce a plural noun to a singular noun only a few suffixes has to

be removed: -en, -s, or more uncommon but still relevant :eren.

For the diminutives either the suffix -tjes for plural or tje for singular, is removed. Again

there are exceptions, which will need a slightly different approach to be stemmed correctly.

The technique on how to get the correct stem will be discussed in Chapter 3.

7

2 LITERATURE

2.1 Text mining

Text mining is the process of gathering and extracting useful information from unstructured

textual data sources (Feldman & Sanger, 2007). This is accomplished by identifying patterns

in a collection of documents, which results in such things as identifying key concepts and

keywords.

Text mining shares many high-level architectural aspects with data mining. These include

preprocessing and pattern-exploring techniques. Many of the pattern-exploring techniques

used in text mining share their origins with those in the general data mining field (Feldman

& Sanger, 2007).

Differences mainly arise due to the often required preprocessing of text data. Whereas in data

mining data the data is more frequently structured (i.e. in tabular form), this is not necessarily

the case for text mining (Feldman & Sanger, 2007). In order to establish structure in the

unstructured data preprocessing is an important step. During preprocessing, text mining

tends to focus mainly on identifying, integrating and normalising representative features in

documents. This results in data that analyses can be conducted on.

The text mining process itself can be summarised in seven steps, as described in the next

parts of this literature study. The steps described are not all necessary in the text mining

process, but are considered standard practice. The procedure is presented in Figure 1 and

illustrates the preprocessing part, as this is the focal point of this thesis:

Figure 1. Text mining process adapted from (Vijayarani, Ilamathi, & Nithya, 2015)

8

2.1.1 Gathering of documents

Development and testing of a stemming algorithm starts with a representative selection of

words or text in the target language. For our approach, we opted to use a fairly large corpus

of documents in the Dutch language.

There are many ways to gather documents: either from extant document warehouses, databases

or data lakes. The benefit of collecting documents from these sources is that it is likely that

they have already been cleaned, and that their quality is likely to be adequately high. A

downside of using these sources, is that in general these databases were constructed for a

specific goal. Therefore it might lack some information required for the intended analyses.

Another method is to utilise web crawlers that automatically retrieve documents from the

internet (Weiss, Indurkhya, Zhang, & Damerau, 2010). The benefit of using a web crawler

is to gather information fast from many various sources. The downside of doing so is that -

despite the potentially high availability of relevant documents - their quality is often consid-

ered to be lacking or the data lineage is unclear. This may necessitate an arduous and lengthy

cleaning process, and is only to be considered when other available databases are lacking or

even unavailable.

After the documents are collected they have to be standardised to the same format. The rea-

son for this is that the original documents were likely generated in various ways. Examples

of this are documents generated by a word processor, ASCII (i.e. plain-text) sources, or even

pictures of documents. Currently, a best practice in the text mining field is to save documents

in the the XML format, which uses tags to divide a document into separate parts.

The benefit of the XML format is that not only the text can be stored and retrieved, but

also metadata such as the associated subject, authors and publication dates. This facilitates

mining algorithms when clustering topics, or can be used to assign priority to recent sources,

as they are likely to be more important.

9

2.1.2 Tokenisation

Tokenisation is the process of dividing strings of text into separate tokens. These tokens can

be symbols, words, terms, or some other type of meaningful elements (Vijayarani, Janani,

et al., 2016). Tokenisation generally follows a few simple heuristics, explained in detail by

(Weiss et al., 2015):

1. a new token starts with a space, tab or the end of a line. These are called whitespaces.

2. characters [() < > > ? ;] are always delimiters and therefore are

treated as tokens.

3. characters [. ,] could either be delimiters (and therefore tokens) or not, depend-

ing on the characters around them. An example of this is that the number 44,210.98

is one number and should not be treated as 44, 210, and 98. Therefore the heuristic

checks whether the previous and next character are numbers.

2.1.3 Stopword removal

After tokenising the documents, certain so-called stopwords are typically removed. These

are words that are so common that they convey little to no information. Examples are: de/het

(the), een (a/an), en (and), deze (this), (dat) that, etc. This is done to save on computational

time, as such words do not have to be stemmed or analysed.

The stopword removal algorithm simply scans the documents for occurrences of these ele-

ments with the use of a comprehensive list. That list is constructed from the most frequently-

used words that occur in a large set of documents. For the Dutch language, such a list is

already available and contains approximately 150 words (Porter, 2001).

In the case of sequential models, which will be explained in Section 2.4, stopwords are not

removed. In that case, the word itself may not offer any novel information, but the sequence

that it is embedded in could.

10

2.1.4 Term Frequency Inverse Document Frequency

Term Frequency Inverse Document Frequency (TF/IDF) is a technique used in text mining,

as a weighting factor for features. The general idea is that the importance of a word increases

as the word frequency in a document increases, but it is offset by a weight indicating how

common that word is, as found in reference documents (Salton & Buckley, 1988).

IDF by itself can also be used to remove the importance from common words, that have

barely any information (Paik, 2013). Therefore TF/IDF can be used for: relevance ranking,

scoring and creating a stop word list, as explained in Section 2.1.3.

The calculation consists of two components: The Term Frequency (TF) and the Inversed

Document Frequency (IDF) (Aizawa, 2003).

The TF is the count of term t in document d, where TF is defined as: TF(t,d) = ft,d .

The IDF as shown in Equation (2.1) is the measure on how much information is gained from

t in the document collection D. N stands for the total number of documents and is divided by

the number of documents in the dataset that contain t. The logarithm is used to dampen the

effects of the IDF function.

IDF (t,D) = log
(

N
|{d ∈ D : t ∈ d}|

)
(2.1)

The two components multiplied give the TF/IDF function, as presented in Equation (2.2).

TF/IDF (t,d,D) = TF (t,d) · IDF (t,D) (2.2)

2.2 Stemming

Once separate words are identified and stopwords are removed, documents typically have to

be stemmed. Stemming is the process by which words or grammatical forms are reduced to

common stems (Jivani et al., 2011). An example of this is to reduce the words walking and

walked to their common stem: walk. The purpose of doing so is to decrease the number of

11

occurrences of words that have different forms, yet convey the same meaning.

Several stemming algorithms are applied in the text mining field, and can be categorised by

one of four classes (Jivani et al., 2011):

1. Table Methods: Production technique. This stemming algorithm relies on a large table

where the stem is found based on the word.

2. Truncating Methods: Lancaster, Porter, Snowball. These stemming algorithms only

use affix stripping.

3. Inflectional and Derivational Methods: Part of Speech, Sequential models. These

stemming algorithms rely more on large corpora and context information.

4. Statistical Methods: Hidden Markov Models (HMM) . The stemming algorithms use

probabilities to determine what the correct stem should be, mostly done in forms of

Neural Networks.

2.2.1 The production technique

The production technique works in a manner that is antipodal from that of the other tech-

niques. It generates a look-up table from all stems found in the Lexicon of the language.

Utilising the same example as before, walk will prompt the program to generate a table with

all possible grammatical derivations of the stem. This look-up table is shown in Table 7.

Stem Form

Walk Walk

Walk Walks

Walk Walked

Walk Walking

Table 7. Example of production technique (English)

The problem is that languages change over time. New words and different spellings are

added to dictionaries, which implies the need for constant maintenance of the look-up tables.

As this is likely to be a manual process, there is also a chance of introducing human errors.

The handling of neologisms requires a robust approach based on generalisations.

12

Another problem with the production technique is the large amount of computational power

required to search through the entire table for every word. This is especially true for a

language that, as stated, presents a large number of grammatical irregularities and exceptions,

like Dutch. The Dutch translation of walk is "loop". All its different derivations are shown

in Table 8. This example illustrates that the size of the look-up table has already doubled,

even when only a single verb is considered. This combined with the ever expanding size of

the dictionaries poses a problem.

Stem Form

Lop Loop

Lop Loopt

Lop Lopen

Lop Liep

Lop Liepen

Lop Gelopen

Lop Lopende

Table 8. Example of production technique (Dutch)

2.2.2 Prefix and Suffix-stripping algorithms

A more common Stemming technique is Prefix and Suffix-stripping. This technique relies

on a set of rules in order to remove certain parts of words, be it at the start (Prefix) or at the

end (Suffix). A few basic rules (of many) are as follows (Willett, 2006):

1. If the word ends with -ing, remove ing,

2. If the word ends with -ed, remove ed,

3. If the word ends with -s, remove s.

For the example given in Table 7, this set of rules would work perfectly. However, problems

occur when irregular verbs are concerned; for example run and ran. Both have the same stem

- run - but this technique would identify two different stems instead. The Dutch language

contains many irregular verbs and nouns and is therefore problematic in this regard. Every

language has its own characteristics and will need a language specific stemmer for each one.

13

There are a few different variants of stemming algorithms that serve a specific purpose. Some

require the stripped stem to be a word that is contained in the Lexicon of the language (akin

to the process lemmatisation or reducing a word to canonical form). If this is not the case

then a new rule has to be applied to reduce it even further to derive a proper stem, or expand

the Lexicon itself.

The benefit of rule-based stemming techniques is fast conversion of documents (Jivani et al.,

2011), but the downside is potentially large inaccuracies due to the absence of language-

specific rules.

The most common algorithms for the prefix and suffix stripping are: Porter (Willett, 2006),

Lancaster(Paice, 1990) and Snowball (Porter, 2001). Snowball is a version of the Porter

algorithm adapted to make the set of rules more language-specific.

2.3 Part of Speech Tagging

A different approach to stemming is to make use of Part of Speech Tagging (PoS), in which

words are tagged based on their function in the sentence and then accordingly handled further

by different sets of rules (Monz & De Rijke, 2001).

The tagger tags words as a type or "speech tag", i.e.: noun, adjective, verb and so on. A

rule-based approach based on probability was proposed by (Brill, 1992). The tagger starts

by assigning each a tag to each word, by estimating the probability obtained from a large

previously tagged corpus. This is done disregarding any context given by words in the same

sentence. The example that was presented in the paper shows that in the following two

sentences the word run is tagged as a verb, since the word run was most likely to be a verb

in the tagged corpus, despite it not being a verb in the first sentence.

1. The run lasted thirty minutes.

2. We run three miles every day.

The tagger’s performance improved further by implementing two procedures. The first pro-

cedure is that words that were not contained in the training corpus and started with a capital

letter were tagged as a noun. This resulted in improved performance when names were

14

involved, specifically.

The second procedure also took the words not contained in the training corpus and analysed

the last three letters of the word. The different three-letter combinations were then compared

to other words in the trained tagged corpus, to determine a probability based on similarities

of words with the corresponding tags.

The conclusion of the paper showed that the performance of this simple part-of-speech tagger

was roughly the same as other stochastic taggers, but had more advantages. These include

speed, applicability and easier transferable in different languages.

Two PoS taggers for the Dutch language are Alpino (Van der Beek, Bouma, Malouf, & Van

Noord, 2002) and Frog (Bosch, Busser, Canisius, & Daelemans, 2007) which also use a large

pre-tagged corpus from the CELEX database (Van der Wouden, 1990).

To achieve automated PoS tagging, many different algorithms or methods are available. To

maintain brevity and overview, three methods are examined and explained in the next sec-

tions. Since PoS tagging is a multinomial classification problem various algorithms can be

applied ranging from relatively simple to more complex.

2.3.1 Multinomial Logistic regression (MLR)

The Multinomial Logistic regression is one of the most basic regression techniques for multi-

nomial classification problems (He & Zelikovsky, 2006). MLR is a classification method

which is a generalised form from the binary logistic regression method. Like any regression,

it requires independent and dependent variables.

One of the assumptions made for the model is that each dependent variable (tag) has only one

feature for each observation. This means that in the example described previously the word

ren can only have one tag. Either as a verb (run) or a noun (rabbit cage) but not both. This

assumption on the one hand simplifies the problem but also might lose information about the

correct stem (Greene, 2003).

The MLR makes a linear combination to determine which class (k) belongs to observation

(i). In the case of word tagging the class would be the tag and the observation the word. The

15

regression coefficients are described by βm,k for features m ∈ {1, . . . ,M} and k ∈ {1, . . . ,K}.

The probability function is described in Equation (2.4), and the log-likelihood that is used in

MLR is shown in Equation (2.5).

Scikit-learn (Pedregosa et al., 2011) provides multiple parameters that can be adjusted to

further improve the model. Not all will be discussed, but the parameters that were optimised

and what they do are.

Since tagging is not a binary problem but a multinomial, as there are more than two possible

tags, the parameter of multi_class was set to multinomial. There are multiple algorithms

that can be used in the multinomial logistic regression for optimisation. Each algorithm has

advantages and disadvantages depending on the dataset. The algorithms that are tested are:

newton-cg, lbfgs, sag and saga.

The reason for not using the liblinear algorithm is that it is limited to one-versus-rest schemes,

while the other algorithms are capable of handling multinomial loss. The Equations: (2.4),

(2.5), (2.6) and derivatives were obtained from (Hastie, Tibshirani, Friedman, & Franklin,

2005), which are needed to explain the workings of the optimisation algorithms and their

respective penalty functions.

Newtons Method for optimisation (Newton-cg) is an second order optimisation function to

determine either a maximum or minimum of a function f (β1,β2, ...,βp). It is an iterative

function as described in Equation (2.3), where 5 f (β (n) is the gradient of f (β (n) and H

the Hessian of f (β (n), which is the matrix of second partial derivatives (Schmidt, Fung, &

Rosales, 2007).

β
(n+1) = β

(n)−H−1
(

β
(n)
)
5 f

(
β
(n)
)

(2.3)

There are two main drawbacks of using Newtons method, whereas this method is compu-

tationally expensive due to the Hessian inverse matrix calculations (unless it is a diagonal

matrix) and is attracted to saddle points. Newton-cg is capable of handling L2 penalty func-

tions, which will be explained in more detail further on in this section.

The limited Memory Broyden-Fletcher-Goldfarb-Shanno algortihm (lbfgs), is an optimisa-

16

tion algorithm belonging to the quasi-Newton method family, which uses a limited amount

of computer memory. Similar to the newton method lbfgs uses an estimation to the inverse

Hessian matrix to determine a minimum or maximum of a function. The difference lies in

the fact that the inverse Hessian matrix is not stored, but stores the past k updates of the

position β (n) and the gradient 5 f
(

β (n)
)

(Zhu, Byrd, Lu, & Nocedal, 1997). This results

in a more efficient usage of memory and therefore an increased computational speed . The

lbfgs algorithm from Sklearn (Pedregosa et al., 2011) supports the L2 penalty function.

Stochastic Average Gradient (SAG) optimises the sum of a finite number of smooth convex

functions. The SAG iterations costs are independent from the number of terms in the sum,

which is the same in other stochastic gradient techniques. The reason why SAG has a faster

convergence rate compared to other black-box stochastic gradient techniques is that SAG

stores the values of the previous m calculated gradient values, instead of storing all.(Schmidt

et al., 2007).

The drawback of using SAG is the fact that it can only handle L2 penalisation, in the package

from Sklearn (Pedregosa et al., 2011). A variation on SAG is called SAGA, which overcomes

the drawback of SAG, as SAGA can handle L1, L2, elasticnet penalty functions.

The algorithms are also tested on various penalty functions if the algorithm can handle these.

The penalty functions are L1, L2, elasticnet or no penalty at all.

L1 regularisation is also known as Lasso Regression and L2 regularisation as Ridge Regres-

sion. In Lasso Regression an absolute value of magnitude of coefficient is added as penalty

term to the loss function ||β j||. In Ridge Regression a squared magnitude of coefficients is

added ||β ||2.

In both Lasso and Ridge Regression a new variable λ is introduced, which determines how

much of the penalty is added. If the value of λ is set to zero, the original loss function is

retrieved. If the value of λ is set too high, too much penalty is added and leads to underfitting

(Fu, 1998).

In Lasso the less important feature coefficients are reduced to zero. This removes certain

features from the equation entirely, which works well if there are many features to select

17

from (Tibshirani, 1996). In Ridge regression, feature coefficients that obtain large values

are penalised and therefore the coefficients are "shrunk". This helps in reducing model com-

plexity, multi-collinearity and overfitting of certain features (Fu, 1998). Elastic net is a linear

combination of Lasso and Ridge regression (Zou & Hastie, 2005). An additional parameter

α is added to determine the weight on each of the penalty functions. If α is set to zero

then the ridge regression is used as the penalty function and if α is set to one, the lasso re-

gression is used. The penalty function is described in Equation (2.6) which is added to the

log-likelihood function.

The number of maximum iterations until one of the solving algorithms converges, is also

varied to ensure maximal performances.

Pr(G = k|X = x) =
eβ0k+β T

k x

∑
K
`=1 eβ0,l+β T

l x
(2.4)

`
(
{β0k,βk}K

1
)
=−

[
1
N

N

∑
i=1

(
K

∑
k=1

yi`

(
β0k+xT

i βk

)
− log

(
K

∑
k=1

eβ0k+xT
i βk

))]
(2.5)

+λ

[
(1−α) ||β ||2 +α

p

∑
j=1
||β j||

]
(2.6)

2.3.2 Neural Network (NN)

Literature suggests that Neural Networks show promising results in Natural Language Pro-

cessing (NLP) (Schmid, 1994) and therefore the implementation of neural networks is inves-

tigated also.

NNs work with a black-box principle similar to how the human brain functions: it uses

layers of nodes that each perform their own filtering and transformation of input and spread

components of the task to be learned amongst themselves. There is a layer of input nodes,

hidden layers filled with processing nodes and a final layer of output nodes, as shown in

Figure 2. The workings of the Neural Network shown below are described in (Hansen &

Salamon, 1990).

18

Figure 2. Neural Network obtained from (Rahul Bhatia, 2018)

The input layer contains all possible features, with each node directly representing a feature.

If a feature is present in a word, then the node (or "neuron") gets activated and signals to the

next hidden layer. The NN learns by propagating an error back from the output layer of the

network to the input layer, adjusting weights of neurons based on their contribution to the

final output.

This is done by adding up the squares of the differences of each of the errors output activa-

tion’s and the value in the output neuron that is desired, which is the cost of a single training

example. If the NN is accurate the cost will be relatively small, and high if the weights and

biases have not been set properly. Therefore the average cost function on all of the training

data in a NN has to be minimised which is done using gradient descent, which is the learning

part in a NN also known as back propagation (Hinton, 1987).

It is important for the cost function to have a "smooth" output, where it is possible to find a

local minimum by taking small steps in the gradient descent. This is a difference between

artificial and biological neurons where in artificial neurons the activation ranges between 0

and 1, and biological neurons are binary (i.e. active or inactive).

In the next Equations (2.7) - (2.13) new parameters are introduced, which require some

19

explanation. The equations and their derivatives were obtained from (Nielsen, 2015). yq is

the desired output of neuron q, whereas α
(L)
q is the activation value of neuron q in the last

layer L. Neuron p is the index of the neuron in the previous layer (L− 1) connecting to

neuron q in the next layer L. C0 is the cost function of a single neuron, which has to be

minimised. The weight between neuron p and q is defined as β
(L)
pq in layer L. The bias: b(L)p

is the bias of neuron p in layer L. The activation function f can be Sigmoid, ReLU or any

other known activation function.

An overview of these parameters in a NN is presented in Figure 3, where for simplicity

reasons and clarity, not all connections are drawn except for neuron p to neuron q.

Figure 3. Overview of the parameters in a Neural Network

The weighted sum as described in Equation (2.7) is the sum of all the activation values in the

previous layer multiplied by the respective weights to node q, to the total of which the bias

(bq) of node q is added.

W (L)
q = b(L)q +

P

∑
p=0

β
(L)
pq α

(L−1)
p (2.7)

The activation value α is explained in Equation (2.8), where f is a general activation function

(i.e. Sigmoid, ReLU, tanh). Combining Equations (2.7) and (2.8) results in Equation (2.9),

which shows the cost function for an output neuron which has to be minimised. This is done

20

by taking the squared difference between the activation value (α) of neuron q and the desired

output
(
yq
)

of neuron q

α
(L)
q = f

(
W (L)

q

)
(2.8)

C0 =
P(L−1)

∑
p=0

(
α
(L)
q − yq

)2
(2.9)

The relative impact of change in weights, as presented in Equation (2.10) and relative impact

of change in activation, as presented in Equation (2.11), on the cost function are derived

using the chain rule for a single output neuron q.

∂C0

∂β
(L)
pq

=
∂w(L)

q

∂β
(L)
pq

·
∂α

(L)
q

∂w(L)
q

· ∂C0

∂α
(L)
q

(2.10)

∂C0

∂α
(L−1)
p

=
P(L−1)

∑
p=0

∂w(L)
q

∂β
(L)
pq

·
∂α

(L)
q

∂w(L)
q

· ∂C0

∂α
(L)
q

(2.11)

These relative impacts of weights and activation’s on all of the output neurons are the com-

ponents that make up the gradient vector 5C which are presented in Equations (2.12) and

(2.13)

∂C

∂β
(l)
pq

= α
(l−1)
p f ′(W (l)

p)
∂C

∂α
(l)
p

(2.12)

∂C

∂α
(l)
p

=
Pl+1−1

∑
p=0

β
(l+1)
pq α

(l−1)
p f ′(W (l+1)

p)
∂C

∂α
(l+1)
p

(2.13)

The gradient vector, which contains all of the weights and biases in the NN, shows the

magnitude of each component on the cost function. The number of hidden layers and the

number of neurons in each of the layers is chosen based on experiments (i.e. grid search to

optimise parameter settings).

21

Preferably, the activation of a neuron is bounded, e.g. to prevent erratic behaviour when re-

ceiving input unlike data present in the training set. Therefore a Sigmoid function (Equation

(2.14)) is used to bring back the weighted sum to a value between 0 and 1. The Sigmoid

activation function: ασ , also known as the logistic curve, is commonly used in NNs.

ασ =
1

(1+ e−Wp)
(2.14)

A new technique is called the rectified linear unit (ReLU) (Xu, Wang, Chen, & Li, 2015)

which found its origin in biology, where negative values get a value of 0 and the positive

values keep their value. The rationale behind this is that a neuron cannot be more "inactive"

than 0, while a neuron that is activated strongly has more priority than that of one that is

barely activated.

The downside of using ReLU as an activation function is that a neuron can "die". A neuron

is considered dead when its weights are stuck on negative values, thus always resulting in an

output of 0. Therefore it no longer contributes to the error term used in training, is no longer

updated, and is no longer used in the network. This potentially results in a substantial part

of the NN being unused, but still using computation time (Volpi & Tuia, 2016), where the

problem of dying neurons increases as the size of the network increases due to the vanishing

gradient problem (Hochreiter, 1998).

There are variants to ReLU: Leaky ReLU, Parametric ReLU (Equation (2.15)) (Trottier,

Gigu, Chaib-draa, et al., 2017), Exponential Linear ELU (Clevert, Unterthiner, & Hochre-

iter, 2015) (Equation (2.16)) and ReLU-6 (Equation (2.17)) (Krizhevsky & Hinton, 2010).

These variants (except for ReLU-6) prevent dying neurons. In the Parametric ReLU and

Exponential ELU a value for a must be determined, trough experiments.

Leaky : f (Wp)

0.01Wp if Wp < 0

Wp if Wp ≥ 0
, Parametric : f (Wp)

aWp if Wp < 0

Wp if Wp ≥ 0
(2.15)

22

Exponential : f (Wp)

a
(
eWp−1

)
if Wp < 0

Wp if Wp ≥ 0
(2.16)

ReLU-6 : f (Wp)


0 if Wp < 0

Wp if Wp ≥ 0 and Wp < 6

6 if Wp ≥ 6

(2.17)

The total number of connections between neurons (or nodes) in a network with 100 input

nodes, 2 hidden layers each consisting of 20 nodes and a output layer of 10 nodes is then

100 ·20 ·20 ·10 = 400.000. These are only the weighted connections since every node, after

the input layer also has a bias which is 20+ 20+ 10 = 50 more bias connections, which

means that there are 400.050 total connections in this NN.

2.3.3 Extreme Gradient Boosting (XGB)

Due to the rise and extensive documentation on Extreme Gradient Boosting with very promis-

ing results in other fields, this was also implemented and investigated (Chen & Guestrin,

2016). No other articles were found implementing XGB for tagging purposes in any lan-

guage. XGB is an enhancement of Gradient Boosting (Chen & Guestrin, 2016). The en-

hancement lies in the fact that it is a more regularised model formalisation to control over-

fitting. Gradient boosting itself is a machine learning technique which can be used for regres-

sion and classification. Using decision trees it creates a prediction model from an ensemble

of weak prediction models. The methods XGB uses are explained in more detail to under-

stand the workings in the final model.

In a classification decision tree two errors can occur: bias- or variance-related errors. When

there is a high bias and low variance the model underfits and when there is a low bias with

high variance the model overfits. An accurate model has low bias and low variance as shown

in Table 9.

23

Low variance High variance

High bias Underfits Wrong model

Low bias Correct model Overfits

Table 9. Bias and variance in XGB

A solution to prevent a model to overfit is bootstrap aggregation, also known as bagging

(Breiman, 1996). In bagging the data in the training set is resampled with replacement.

The final model is the average of the models that were resampled. If the models overfit then

the different models should overfit in different areas and therefore taking the average reduces

the variance error.

Another method to solve overfitting is Random Forrest (RF) (Ho, 1995). RF has an additional

component next to bagging. RF also randomly takes different columns (features) to be used

in the model. Since RF adds an additional layer of randomness this reduces the overfitting

even more than just bagging.

To prevent underfitting a method: Adaptive Boosting (AdaBoost) (Freund, Schapire, & Abe,

1999) can be applied. AdaBoost is a sequential method in contrary to bagging and RF which

can be done in parallel. When a simple classifier is examined which needs to predict only

two classes: a round or a triangle as shown in Figure 4, it works as follows.

After each round the weights of the wrong predicted observations are increased, while de-

creasing the weight of the correct observations.

This process is repeated until a predetermined number of rounds is passed. The errors in the

training model in each round are summed to the final model.

Rather than simply putting a cutoff point on either X1 or X2, the AdaBoost made a more

sophisticated and accurate model to reduce bias related errors.

24

Figure 4. AdaBoost (Gautam, 2018)

Gradient Boosting (GB) is a more common technique to use then AdaBoost (Friedman,

2002).

The idea of GB is similar to AdaBoost but it works with regression techniques. An initial

classifier is fitted on the training data and the errors are observed. In every round of GB the

errors are compensated. Therefore instead of learning the initial concept the learning takes

place on the errors.

From the start there are initial residuals, then the model is fit. Afterwards the whole model

is taken, with recalculations of the errors and fitted to the residuals again. This process is

repeated until a certain threshold is met.

The residuals are the gradient of the Root Mean Squared Error function (RMSE) (Gilroy,

Hirsch, & Cohn, 1990). The problem with classification problems is the fact that there are

no residuals, which necessitates a different loss function. An example is the loss function

from the logistic regression: logistic loss.

The gradient of logistic loss are called pseudo-residuals (Friedman, 2002). However the

25

method of building the final model remains the same, but instead of fitting on the residuals

one fit on the pseudo-residuals.

Since XGB can be used as a classifier, it can also be used to predict the tag of a word, based

on features. Scikit-learn (Pedregosa et al., 2011) also made XGB available for regression and

classification problems, with parameters that can be changed. The first parameter is the loss

which can be set to either deviance or exponential. This parameter determines which loss

function is to be optimised. When the deviance option is chosen the same loss function is

used as in logistic regression with probabilistic outputs. In case of exponential the AdaBoost

algorithm is used, whereof the workings has previously been described.

The second parameter that can be adjusted is the learning rate. Since the newly build trees

correct the residual errors, obtained from the previous trees, there is a possibility that the

model fit rather quickly. This results in overfitting of the training dataset, which has to be

avoided. To overcome this problem one can use a weighting factor on the corrections, that

the new constructed tree adds to the model. The weighting factor is also know as the learning

rate. The learning rate is a float where larger values, result in less corrections for each newly

added tree. When the learning rate is set relatively low, more trees are needed to find a good

solution since the correction for each tree on the model is smaller.

The number of trees that are build is captured my the n_estimators parameter. There is a

trade off between computation time and performance, but in general it is safer to set the

number of estimators high. This is especially the case when the learning rate is set low, as

previously explained.

The max_depth parameter determines the maximum number of splits a tree is allowed to

make, before a new tree is build.

26

2.4 Sequential Models

Sequential models can be used in various ways to help stem or tag a word not only based

on prefixes and suffixes, but more importantly on the role of the word in a sentence. There

are many ambiguous words that are written the same but do not have the same meaning. An

example is Ik wilde de vrouw helpen (I wanted to help the woman) and de wilde vrouw hielp

mij (the wild woman helped me). When only the word wilde is examined it can either be

a verb (to want) or an adjective (wild). Many promising results have been observed using

Long-Term-Short-Memory (LSTM) models (Chung, Gulcehre, Cho, & Bengio, 2014) for

natural language processes.

Another method is called Pervasive Attention which uses a 2D Convolutional Neural Net-

work for Sequence-to-Sequence Prediction (Elbayad, Besacier, & Verbeek, 2018).

Figure 5. Pervasive attention representation (Elbayad, Besacier, & Verbeek, 2018)

Figure 5 is a graphical representation of a decoder network topology with two hidden layers.

Nodes at bottom and top represent input and output respectively. Horizontal connections are

used for Recurrent Neural Networks (RNN), diagonal connections for Convolutional Neural

Networks (CNN). Vertical connections are used in both cases. Parameters are shared across

time-steps (horizontally), but not across layers (vertically).

27

In this case it is used to predict what the next word is going to be, but can also be used to

determine the next possible tag. A problem that possibly occurs in using sequential models

on business or social media texts is that not always full sentences are used. When a table

of contents is included it is hard for a sequential model to determine what a word is. Social

media texts are most often unstructured and lack grammar spelling. These can create noise

and decreases accuracy of the stemming algorithms.

Another problem with a pure sequential model is finding the first word and determining the

tag. This would ideally be a combination of examining the suffixes and prefixes of a word.

In case the first tag is incorrectly predicted the error will likely propagate to subsequent tags.

28

3 METHODS

The scope of this thesis limits itself to the Dutch language, and only evaluating three tagging

algorithms: MLR, NN, XGB, due to time restrictions and data availability. For the actual

stemming a new rule based stemmer is developed, part of the Bag & Tag’em (BT) algorithm.

Frog is generally regarded as highly accurate for the Dutch language and may be considered

a benchmark representing the state of the art in terms of performance. Frog determines both

tag and stem (or lemma) based on a single word rather information from the sentence that

word was taken from. Since PoS-Tagging shows promising results in literature and due to

the availability of the Frog algorithm as a ground truth, we investigated the feasibility of a

novel approach that combines a token-based (single-word) tagging module and a rule-based

stemming module.

The stemming module uses the tag from the tagging module to determine which rules to

apply to reduce the word to its stem. Sequential models were out of scope for the research

described in this thesis, as we were not aware of any available data sets that could be a

ground truth. The following sections will describe how the final product was designed and

constructed, with next steps such as extension by sequential models discussed in Section 5.3.

A visual representation of the three modules used in this thesis are presented in Figure 6.

Figure 6. Flowchart of the three modules in the BT algorithm

29

3.1 Data Collection & Feature space

3.1.1 Data Collection

To determine which algorithms to use in the final product, documents were collected to

conduct analysis and for training purposes. To increase the probability of "correct" usage in

the Dutch language certain types of publications are preferred over others. An example can

be Social Media information, where sentences can contain many grammar mistakes. The

probability of correctly constructed Dutch sentences is likely higher in legal documents. A

web crawler tends to "grab" all information about a certain topic and does not discriminate

necessarily on the quality of grammar, which is another downside of using web crawlers.

This was done by downloading publicly available collective labour agreements (CLA) as

PDF files from the website of the largest Dutch trade union: FNV. Besides the CLA’s, pages

from Wikipedia and Dutch children’s books were used to diversify the words used. The PDF

documents where parsed using a combination of Tika parser (Mattmann & Zitting, 2011)

and Tesseract (Smith, 2007), both of which are open source in Python 3.6. All programming

was conducted in the Anaconda environment using Spyder (3.3.4) and Jupyter Notebooks

(5.7.8).

In total 252 CLA’s, five pages from Wikipedia and three children book chapters were parsed.

The Wikipedia pages contained information on: Amsterdam, The Dutch Royal family, Koala’s,

the flooding of the Netherlands in 1953 and famous Dutch painter: Rembrandt van Rijn. The

three children book chapters were: Spijt from Carry Slee, Pluk van de Petteflet by Annie MG

Schmidt and Hoe overleef ik de brugklas? by Francine Oomen.

The parsed documents were tokenised using the same heuristics as previously described in

Section 2.1.2. Although it is common practice to perform stop word removal as described

in Section 2.1.3 it was not used for our data collection purposes. The rationale was that this

would remove information for the training of the different models.

The unique words were converted into a Pandas dataframe for further analysis. To prevent

overfitting on words due to frequency of occurrence, only the unique words were added.

If the word de (the) would be contained in the dataset many times, it could result that the

30

feature de is more prone to label words as a BW (adverb), instead of a ovt (simple past tense).

The dataframe was connected with the Frog algorithm using LaMachine (van Gompel &

Hendrickx, 2019) and a virtual machine, to obtain the tag for each word.

Since Frog uses a taxonomy of tags that is more complex than needed for our classification

purposes, Frog tags were converted into six new tag categories, further explained in Table

10.

Because in the Dutch language the verbs can be contained in these three categories only these

were used for simplification purposes. There is a difference in how a sentence is constructed

but looking at the prefix and suffix of the main verb are these sufficient, as explained in

Section 1.2.

Tag Translation Example Dutch

ZNW Noun Dog Hond

BVNW Adjective Big Groot

BW Adverb Other Ander

ott Present tense Walk Loop

ovt Simple past tense Walked Liep

vtt Past perfect tense Walking Gelopen

Table 10. Tags explained

The final dataset consisted of 25.389 unique words after cleaning, with the distribution of

the tags shown in Figure 7. An additional dataframe was built combining the three verb

categories into a single verb category (WW) for experimental purposes. During writing of the

code all words that were not a verb, noun or adjective were labelled BW. This contradicts the

information from Section 1.2, since there are a lot more categories. For stemming purposes it

is more convenient to list these as a BW due to the fact that these words will not be stemmed

regardless.

31

Figure 7. Distribution of tags in the dataset

3.1.2 Feature space

The words were converted into a feature space word. A feature space word is a word with an

_ symbol added to the beginning and end of the word. For example the word walking would

be converted into _walking_. This ensures that in the next step it is still clear what the first

and final letters of the word were.

Since algorithms generally cannot handle strings but need vectors to be able to conduct

analyses on, a new vector space was created. To construct the dependent variables in the

various algorithms, one can use N-grams of characters in words (Cavnar, Trenkle, et al.,

1994). This means that single letters are matched with their N neighbours as an input feature

of a word. An example is shown in Table 11 where the N-grams are converted into N-gram

vectors in a later stage to be used in the algorithms.

This is slightly different from the technique described in Section 2.3, where only the last

three letters were examined. Using N-grams other potential landmark features are taken into

account, including the beginning and middle parts of a word.

32

Word 1-gram 2-gram

ren r,e,n re,en

loop l,o,o,p lo,oo,op

Table 11. N-gram example

The feature space consisted of 28 · 26 = 728 different vectors. There are 26 letters in the

Dutch alphabet, together with the new _ symbols on the beginning and the end of the word.

The word ren would have a value of one in the vectors: _r, re, en, n_ and a zero in all other

vectors. This is done using an encoder provided by (Pedregosa et al., 2011) which uses one

hot coding.

The distribution of the features was skewed, which is to be expected in textual data. Some

combinations are more common (e.g. en) than others, while some do not occur at all (e.g. xq)

in the Dutch language. Based on experiments and manual inspection, features that occurred

less than 200 times in the data were removed, to decrease possible noise in the algorithms

later on. In total there are four different datasets with the same words but differences in tag

construction and if feature selection was conducted. An overview is given in Table 12.

Dataset Verb tags grouped Feature selection

1 No No

2 No Yes

3 Yes No

4 Yes Yes

Table 12. Attributes of datasets

Since the distribution of the different tags (Figure 7) was imbalanced the different train and

test sets were carefully constructed. First a stratified (80/20) sample was obtained from

dataset number one. Stratifying is a technique that does not randomly take 80% of the data

but 80% of each of the categories. To ensure that all datasets train on the same words, the

same words were used from the initial train and test set.

33

If the dataset is not balanced it could lead to biased predictions and thus a misleading accu-

racy. An example of this can be found in a fraud detection system. If 1% of the transactions

are fraudulent, the model can get an accuracy of 99% by classifying all transactions as non-

fraudulent transactions. The model is too biased towards non-fraudulent transactions.

There are multiple ways to solve imbalance in a dataset. Two of these are Random Under-

Sampling and Random Over-Sampling. Random Under-Sampling randomly removes obser-

vations of the majority class. This helps balancing the dataset but the removed observations

could have contained valuable information, dropping of which could lead to a bias or other-

wise hinder performance (Drummond, Holte, et al., 2003).

Random Over-Sampling is a technique where observations of minority classes are dupli-

cated randomly. This helps balancing while ensuring that there is no loss of information.

The downside to this technique is that it is prone to overfitting on the data since the same

information is duplicated and therefore potentially weighted disproportionately (Drummond,

Holte, et al., 2003).

In order to keep information while mitigating the risks of over-sampling, we used an ap-

proach called SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). SMOTE is an over-

sampling method in which minority classes are over-sampled by creating synthetic observa-

tions. This method consists of four steps where Figure 8 shows the end result:

1. SMOTE identifies the feature vector and its nearest neighbour.

2. The linear distance is taken between the two feature vectors.

3. On the line created at step 2, a new synthetic observations is placed based on a random

number ranging from 0 to 1. If the random number is 0.5 then the new synthetic

observation is placed right in the middle.

4. The previous steps are repeated until a predetermined number of new observations are

added. An important note to this is that only the original observations are used to

create new synthetic observations.

34

Figure 8. Workings of SMOTE obtained from (Rikunert, 2017).

A visual representation on the various steps from Section 3.1, is presented in Figure 9. Sec-

tion 3.2 will continue on the manner how a tagging algorithm is build using the train and test

set.

Figure 9. Data collection & Feature space flowchart

3.2 Tagging algorithms

Three different algorithms were investigated to see which of these could predict the correct

tag in the test set. The three algorithms are: MLR, XGB, NN. To evaluate the accuracy

of these algorithms a performance measuring score was used. In classification algorithms

generally the precision and recall are used to determine the performance. To calculate the

precision and recall Table 13 is used. For simplification purposes only nouns and non-nouns

are explained. If the actual data states that a word is a noun and so does the algorithm then

this is a true positive (TP). If the actual data states that a word is a noun but the algorithm

predicts a non-noun then this is a false negative (FN). If the actual data states that a word is a

non-noun but the algorithm predicts a noun then this is a false positive (FP) (Olson & Delen,

2008). The equations for the precision and recall of a class k, are shown in Equation (3.1).

35

Actual

Predicted

True

positive

(TP)

False

positive

(FP)

False

negative

(FN)

True

negative

(TN)

Table 13. Performance measuring

Precisionk =
TPk

TPk +FPk
, Recallk =

TPk

TPk +FNk
(3.1)

The actual used performance measure is the F1-score which is the harmonic mean of pre-

cision and recall (Chinchor, 1992). This is the most common performance measure in in-

formation retrieval, despite being criticised (Hand & Christen, 2018). The article states that

precision and recall are equally important for the F1-score which is not necessarily the case.

While this is a valid criticism, the regular F1-score is used as shown in Equation (3.2) for

class k.

F1k = 2 · Precisionk ·Recallk
Precisionk +Recallk

(3.2)

The algorithms were implemented using packages from Scikit-learn (Pedregosa et al., 2011).

To improve the predictions of the algorithms parameters were tuned, as previously described

in Sections 2.3.1, 2.3.3 and 2.3.2. The tuning was performed trough grid searches. A grid

search takes a range of values for pre-selected parameters and calculates the model’s per-

formance (i.e. the F1-score) attained with the different combinations of parameter values, to

finally return the optimal parameter settings.

Since the datasets are not entirely the same, all algorithms were grid searched for each dataset

separately, but with the same range in a grid search. This resulted in the following hyper-

parameters presented in Table 14. The hidden layer size of the optimal parameters per dataset

36

are tuples. This means that in (α ,β): α represents the number of hidden nodes in the first

hidden layer, and β the number of hidden nodes in the second hidden layer.

Algorithm Parameter Range 1 2 3 4

MLR Penalty All L2 L2 L2 L2

MLR Solver All Saga Saga Saga Saga

MLR Max iterations 45-75 68 65 61 58

NN Hidden layers 1-5 2 2 2 2

NN Hidden layer size 20, 50, 100 (50,20) (50,20) (20,20) (20,20)

NN Activation All ReLU ReLU ReLU ReLU

NN Solver All Adam Adam Adam Adam

NN Max iterations
50, 100, 200,

1000, 3000
3000 3000 3000 3000

XGB Maximum depth 10-20 18 17 15 14

XGB Learning rate
0.01, 0.05,

0.1, 0.15
0.1 0.1 0.1 0.1

XGB Number of estimators
50, 100, 300,

500, 1000
300 300 300 300

Table 14. Algorithm tuned parameters and optimal parameters based on dataset

Table 14 shows no big differences in optimal parameters among the various datasets. The

only variation in optimal parameters are: The maximum number of iterations for the MLR,

the hidden layer sizes from the NN and maximum depth from the XGB. The value for the

previously mentioned parameters decreases as the number of feature vectors and possible

tags decreases.

The results of the datasets using the optimised parameters are shown in Tables: 15, 16, 17,

18. The micro average F1-score is defined as the sum of all correctly predicted observations

divided by the total number of observations, as shown in Equation (3.3).

Micro average =
∑

k
i=1 TPi

∑
k
i=1 TPi +∑

k
i=1 FPi

(3.3)

37

The macro average F1-score is defined as sum of the precision on each of the classes divided

by the total number of classes K, as shown in Equation (3.4).

Macro average =

(
∑

k
i=1 TPi

∑
k
i=1 TPi+∑

k
i=1 FPi

)
K

(3.4)

The weighted average F1-score is defined as the correct predicted observations multiplied by

the support and divided by the number of observations as shown in Equation (3.5).

Weighted average =
∑

k
i=1 TPi ·Supporti
∑

k
i=1 Supporti

(3.5)

The support is the number of observations per tag in the test set. On all the datasets the

XGB-Classifier outperforms the other algorithms, based on the weighted average.

Dataset 1 Neural Network XGB MLR Support

BVNW 0.59 0.66 0.60 824

BW 0.28 0.27 0.13 219

ZNW 0.79 0.83 0.81 2982

ott 0.54 0.61 0.57 542

ovt 0.16 0.18 0.18 201

vtt 0.61 0.69 0.65 310

micro avg 0.68 0.74 0.71 5078

macro avg 0.49 0.54 0.49 5078

weighted avg 0.67 0.72 0.68 5078

Table 15. F1-scores on the first dataset

38

Dataset 2 Neural Network XGB MLR Support

BVNW 0.59 0.67 0.58 824

BW 0.25 0.28 0.18 219

ZNW 0.78 0.84 0.81 2982

ott 0.57 0.60 0.54 542

ovt 0.16 0.19 0.15 201

vtt 0.65 0.68 0.65 310

micro avg 0.66 0.75 0.71 5078

macro avg 0.50 0.54 0.48 5078

weighted avg 0.67 0.73 0.68 5078

Table 16. F1-scores on the second dataset

Dataset 3 Neural Network XGB MLR Support

BVNW 0.57 0.67 0.60 824

BW 0.21 0.26 0.17 219

WW 0.59 0.66 0.59 1053

ZNW 0.78 0.83 0.80 2982

micro avg 0.68 0.76 0.71 5078

macro avg 0.53 0.61 0.54 5078

weighted avg 0.68 0.74 0.69 5078

Table 17. F1-scores on the third dataset

39

Dataset 4 Neural Network XGB MLR Support

BVNW 0.59 0.67 0.58 824

BW 0.27 0.40 0.17 219

WW 0.61 0.66 0.59 1053

ZNW 0.80 0.83 0.80 2982

micro avg 0.71 0.76 0.71 5078

macro avg 0.57 0.63 0.53 5078

weighted avg 0.74 0.75 0.70 5078

Table 18. F1-scores on the fourth dataset

The best results were obtained from dataset four. The problem is that in limiting the number

of possible tags it should improve the accuracy any way. Since it is necessary to give a more

accurate tag than just WW (verb) to the stemming algorithm an additional XGB-classifier

model was trained. This takes as input the WW converted back to the three original verb

tags: ott, ovt, vtt together with the incorrectly classified verbs.

The latter are the words that the model incorrectly classified as a verb (i.e. false positives),

which were isolated so as to retain potential information leading to the initial classification

error. These words were renamed to BW2, but discarded afterwards.

A visual representation of the various steps explained in this Section 3.2, is presented in

Figure 10.

Figure 10. Tagging module flowchart

40

3.3 Stemming algorithms

The quality of a stemmer is determined by its ability to accurately reduce words belonging

together to a common stem while ensuring that words that do not belong together yield

different stems (Moral, de Antonio, Imbert, & Ramırez, 2014). There are two main errors

that determine the precision and both relate to the aggressiveness of the stemmer in removing

parts of the words. If the stemmer is not aggressive enough, insufficient prefixes and/or

suffixes are deleted which can result in the incorrect stem. This type of error is called under-

stemming, since the stemmer stripping of words is under the required level.

The other type or error is over-stemming, where the stemmer is too aggressive and removes

too many parts of the word. This leads to clearing parts of the morphological root, which

results in loss of semantic information and falsely reducing words to a common root. (Porter,

2001) makes two distinctions in over-stemming. The actual over-stemming where the deleted

suffix results in a change of the meaning of the stem (the deleted part is a suffix but belongs

to the root). The other distinction is so called mis-stemming. In this case the deleted part

is not actually a suffix but part of the root. An example of mis-stemming was also given in

(Porter, 2001): when a rule was implemented for removing the suffix -ly it goes well for the

word "cheaply", since this results in "cheap". The problem occurs when this is also done for

the word "reply". Following the same rule "reply" stems to "rep", which is normally used as

an abbreviation for the semantically different word "representative".

Under- and over-stemming decrease the performance of the stemmer and therefore the qual-

ity. There are some solutions to decrease these errors. One solution to prevent over-stemming

is to set a minimum length of the stem. This decreases the probability that a suffix is removed

even though this was not a suffix to begin with. For example: removing the suffix -en from

the word "ren" (run or a rabbit cage) would result in a "r". Typically the stem needs a

minimum of two or three letters. Removing suffixes from words is very tricky due to the

differences in languages and exceptions that occur. Carefully constructed suffix elimination

rules are therefore critical.

A theoretical example of over and understemming is as follows: when we look at Table 19.

Frog determines that there are four different stems in the total of six words: walk, walking,

41

car and caretaker.

The stemmer has has two different stems: (walki and walke), for the ground truth stem of

Frog of walking. This means that the stemmer is not aggressive enough, since according to

the stemmer the words walking and walked are not the same even tough Frog says it is. This

concept is called understemming.

The stemmer has only one stem car for two Frog stems: car and caretaker. The stemmer

was too aggressive in this case and the difference between a car and caretaker is no longer

visible. This concept is called overstemming.

A way in calculating the severity of understemming and overstemming and how it is applied

in the thesis, is described in Section 3.4.

Word Frog Stemmer

walk walk walk

walking walking walki

walked walking walke

car car car

cars car car

caretakers caretaker car

Table 19. Example of under and overstemming

The BT algorithm divides the dataframe into five subcategories which were obtained from

the tagging module. Each subcategories represents a tag which follows different stemming

rules.

3.3.1 Verbs (WW)

The first step of stemming a verb is to determine if the verb is a compounded verb. This

is done by comparing the first three characters of the verb and a list of known compounded

prefixes. Known compounded prefixes are: af, bij, in, op, over, uit. An example (Table

20) is given why it is important to know if the word is compounded especially in the past

42

perfect tense. All the verbs has its root from the verb lopen but differ in meaning. If only

prefixes and suffixes were to be removed the present simple form of the word ingelopen,

which is inlopen, would not be stemmed to the same stem. Therefore the words are split in

the beginning if the verb starts with any known compounded prefixes.

After testing there were a few verbs that were not stemmed properly due to this way of

splitting. An example was the verb opgeven (give up), the actual stem should be opgev since

the past perfect tense is opgegeven (given up). These verbs were added to an exception list

which will be discussed later on in Section 3.3.5.

Verb (vtt) Translation Stem

gelopen walked lop

afgelopen finished aflop

ingelopen walked in inlop

opgelopen sustained oplop

overgelopen defected overlop

uitgelopen ran out uitlop

Table 20. Example compounded verbs

The Dutch language contains roughly 235 irregular verbs (Haeseryn, Romijn, Geerts, Rooij,

& Van den Toorn, 1997). These verbs have different vowels and structures in different tenses,

although they should stem to the same root. Again the example of the irregular verb lopen

(present simple) shows us that the past tense is liepen (past simple). These verbs follow some

rules of the same rules as a regular verb but the stemmed version of the irregular verbs are

added into an exception list.

For stemming it is important to know if a verb is singular or plural. Therefore an additional

column is added to the dataframe indicating if the verb is singular or plural. Verbs that have

characteristics of being an infinitive (suffix -en), obtain plural and all others singular. There

are infinitives where the suffix is -enen for example rekenen (to calculate), zegenen (to bless).

The singular form of these verbs also have suffix of -en, to prevent that the singular form is

processed as an plural these verbs are added to the exception list.

43

For readability purposes and stemming of adjectives the stem that is used as the actual stem

is the first-person singular present simple. Therefore additional rules are implemented to

transform the stem to the first-person singular present simple form. The affix stripping rules

are shown in Table 21. The rules are applied in a particular order based on Dutch grammar

rules, as explained in Section 1.2.

Condition 1 Condition 2 Condition 3 Rule

1 time = vtt starts with: ge -ge

2 time = vtt ends with: d -d

3 Length >3 ends with: en -en

4 time = ovt Length>3 ends with: dt -t

5 ends with: t
second to last

letter is: d
-t

6 ends with: t is regular
second to last letter

is not a vowel
-t

7 ends with v v = f

8 ends with z z = s

Table 21. Verb stemming rules

In the Dutch language no word either ends with a v or a z. There are exceptions but these

words are "borrowed" from other languages. Borrowed words for example are quiz and jazz

and are likely to be stemmed incorrectly. Due to the fact that the number of words that are

borrowed is limited a few of these are also included in the exception list. After removing

the suffixes of a verb thus reducing the verb to its root, the last letter is examined. If the last

letter is a v, then it is replaced by the letter f. If the last letter is a z, then it is replaced by the

letter s (rule 7 and 8) and are know in the Dutch language as the valse s en valse f (foul s and

foul f).

An example on how verbs are stemmed following the rules from Table 21 is shown below in

Table 22 and worked out in Table 23.

44

Verb Translation Time Regular Final stem

gelopen walked vtt yes loop

ren run ott yes ren

gaven gave ovt no geef

wordt become ott yes word

Table 22. Example of verbs in stemming algorithm

1 2 3 4 5 6 7 8

gelopen lopen lopen lop lop lop lop lop lop

ren ren ren ren ren ren ren ren ren

gaven gaven gaven gav gav gav gav gaf gaf

wordt wordt wordt wordt wordt word word word word

Table 23. Stemming rules applied to the root for verbs

To check if a verb is irregular the exception list is called after rule 5 to decrease the size of

the exception list as much as possible, due to the fact that not all forms of a verb need to

be present. The word of Table 23 is not the actual final stem since other rules need to be

applied, this is the so called root.

When the verb is stemmed to the root, doubling of vowels is needed to bring it back to the

actual stem. The first-person singular present simple form of lopen is loop. Following the

stemming rules as previously described the root of the word lopen becomes lop. Therefore

an additional o must be placed before the last letter.

This is also the case for the letters a, e and u. To see if a vowel is doubled the algorithm

looks at the last three letters of the stemmed word, which was originally a plural. If the first

letter is a non-vowel and the second letter is a vowel, then the second letter gets doubled.

To go back to the previous example of lopen which was determined to be a plural verb in

the first step, following the stemming rules suffix -en is removed. Afterwards the last three

letters lop (in this case the full word) is examined. L is the first letter and a non-vowel, o is

the second letter and therefore is doubled resulting in loop, which is the first-person singular

45

present simple of lopen.

The final step in ensuring the correct stem, is removing double letters at the end of a verb in

case this is a non-vowel. This is due to the fact that these do not exist in the Dutch language.

3.3.2 Adjectives (BVNW)

The adjectives require less rules to bring the adjective back to the root. The root of an

adjective is defined as its shortest possible form, e.g. stripping suffixes indicating superlatives

or grammatical gender. As a design choice superlatives were brought back to the normal

form. For example goed (good), beter (better), beste (best) were all stemmed back to goed

trough the exception list. First the following suffixes are removed in a particular order, as

shown in Table 24. The adjectives can only be stemmed if the length after removing a suffix

is still greater than two. An example of the workings is shown in Table 25.

Condition:

Adjective

ends with

Rule:

Remove

1 -er -er

2 -ste -ste

3 -ende -ende

4 -en -en

5 -e -e

Table 24. Adjectives stemming rules

46

Adjective Translation Rule 1 Rule 2 Rule 3 Rule 4 Rule 5
Irregular

check

Actual

Stem

mooi beautiful mooi mooi mooi mooi mooi mooi mooi

mooiste most beautiful mooiste mooi mooi mooi mooi mooi mooi

goed good goed goed goed goed goed goed goed

beter better bet bet bet bet bet goed goed

beste the best beste beste beste beste bet goed goed

Table 25. Stemming rules applied to adjectives

The irregular check looks for the word bet in the exception list and not for beter and beste.

Again this was done to reduce the size of the exception list similar to the verbs. After the

suffixes are removed the adjective is handled in the same way as the verbs, as described in

the previous Section 3.3.1.

3.3.3 Noun (ZNW)

The stem of a noun is defined as the singular form of the noun. Therefore the first step is to

determine if a noun is plural or singular. If the noun ends on suffix en, jes or s it is considered

to be plural. There is an additional requirement on the suffix s to be a plural and that is a

reversed doubling of vowel method. Since a noun that is actually in singular form but ends

on an s, it will probably have a double vowel before the s. Since this is not possible in plural

nouns, the noun is not marked as a plural but as a singular noun. For example the noun

moeders (moms) will be stripped of the suffix s but vaas (vase) will not be stripped from the

s due to the double aa.

The plural nouns are then stripped of their respective suffixes, that marked them as a plural.

After the suffixes are removed the adjective is handled in the same way as the verbs, as

described in the previous Section 3.3.1.

47

3.3.4 Adverb (BW)

Since the adverbs are words that are likely to be removed after stemming due to no informa-

tion gain, are these also not stemmed. Names of countries, people or companies follow to

many different rules to accurately stem them.

3.3.5 Exception list

As previously mentioned, it is not possible to stem all words due to irregularities. To reduce

the size of this list, words were stemmed as much as possible and then added to an exception

list.

The irregular verbs were obtained from a Dutch dictionary website (Mijnwoordenboek.nl,

2004). This website has a large database of almost all verbs, nouns and adjectives with their

various forms.

There are four reasons why a verb was added to the exception list.

1. The present simple form already started with the prefix ge. Normally the prefix ge

would classify the verb as a vvt, but the verb geven (to give) is in the present simple

even tough it has a prefix ge.

2. In case the suffix is enen of an infinitive than the present simple singular form also

has a suffix of en. This suffix would be stripped since the algorithm assumes this is an

infinitive. An example is the verb rekenen (to calculate), the present simple singular

form is reken (I calculate). When the standard rules are applied the algorithm would

strip reken to rek (I stretch). To overcome this hurdle were these verbs also added.

3. Verbs that did not originate from the Dutch language were added. These are "bor-

rowed" from other languages and therefore do not follow Dutch grammar rules. For

example kiten (kite surfing), following the standard grammar rules the present simple

singular form should be kit but it is written as kite.

4. Finally the irregular verbs, where the past tense singular form does not convert to the

present simple singular form after affix stripping. The example that has been men-

tioned numerous times trough out this thesis is lopen (to walk). The present simple

singular form is loop but the past simple singular form is liep. The algorithms needs

48

to "know" that this is the past tense and this is achieved by the exception list.

Adjectives that were added to the exception list were the superlatives that did not convert

back to the shortest possible form after affix stripping. An example is goed (good), beter

(better), beste (best) were all stemmed back to goed by design choice.

The benefit of this exception list is that it is relatively easy to add words that are stemmed

incorrectly due to language exceptions, even tough the stemming module followed all the

general rules. An overview of the stemming procedure is presented in Figure 11.

Figure 11. Stemming of the various tags flowchart

3.4 Model evaluation

To determine how accurate the entire model is a new evaluation dataset is used. This dataset

is manually tagged and stemmed by the author of the thesis. The documents that were used

were not previously seen by the tagging algorithm. Since the type of language that the models

was trained on mainly focused on CLA’s, it is interesting to see how the models perform on

other types of text.

The description of the four documents are presented below and the actual texts are presented

in Appendix E:

1. A chapter of the Dutch translation of Roald Dahl’s book "the BFG" (i.e. “de GVR”),

to see how the model handles non-existing words.

2. A newspaper article (Marcelis, 2019) on the earthquakes happening in the northern

part of the Netherlands due to gas extraction. This article contains semi-business type

language.

49

3. A Wikipedia page containing information on the University where this model has been

developed (Vrije Universiteit Amsterdam) (Wikipedia, 2019).

4. A vacancy for a position at the (personal opinion of author) best football club in the

world: Ajax. To examine how the model performs on business language text docu-

ments (Ajax, 2019).

The stemming algorithms are tested along three dimensions: computational speed, under-

stemming and overstemming. The combinations and results of the various models will be

discussed in Section 4.

The evaluated documents were stemmed and tagged manually by the author and was con-

trolled by two other people. One was a fellow student who was double-checked by a primary

school Dutch teacher. The Cohen’s kappa was calculated to determine the accuracy of the

manually checked file (Berry & Mielke Jr, 1988). The Cohen’s kappa was calculated at

0.96% which is extremely high. Cohen’s kappa is used to determine the inter-rater agree-

ment on the document.

The words with different outcomes were analysed and changed where necessary. Some

words contained typos and there was occasional disagreement about a tag, based on only

the word. The documents were manually processed and Frog was not used to determine the

tags taken as ground truth, so that evaluation of the performance of the Frog algorithm was

possible.

An overview of the evaluation documents are given in Table 26. The distribution of tags

shows that the ovt and vvt categories are underrepresented in this dataset. The number of

words that were unknown to the CELEX database, will impact the performance of the Frog

algorithm since Frog uses CELEX to determine the tag. If Frog is unable to determine the tag

trough CELEX it uses an additional algorithm but the workings of this additional algorithm

are unknown.

50

Dataset 1 2 3 4 Total

Words 390 340 443 340 1513

Unique Words 203 177 230 182 670

CELEX unknown 27 17 40 19 102

BW 75 72 65 69 187

ZNW 48 47 88 47 224

BVNW 33 17 33 31 110

ott 34 24 41 18 103

ovt 10 8 0 10 24

vtt 3 9 3 7 22

Table 26. Evaluation datasets overview in absolute numbers

To calculate understemming the unique stems of the manual checked file were taken as the

ground truth. The reason for using the manual checked file and not the Frog algorithm, was

due to the fact that also the Frog algorithm made errors in tagging. The unique stems were

obtained using the various algorithms. The number of unique stems produced were divided

by the number of unique manual stems as shown in Equation (3.6). This gives an accuracy

percentage to compare the various algorithms.

Understemming =
Number of unique manual stems

Number of algorithm stems
(3.6)

To calculate overstemming the unique stems of the specific algorithm was taken as the ground

truth. The unique stems were compared to the number of unique manual stems as shown in

Equation (3.7). This gives an overstemming accuracy percentage to compare the various

algorithms.

Overstemming = 1− Number of algorithm stems
Number of unique manual stems

(3.7)

Computational speed was determined by using cell magic in Jupyter Notebook. The averages

were taken from 100 test runs and 100 loops each.

51

4 RESULTS

The evaluation datasets were processed to determine understemming, overstemming and the

computational speed of the various stemming algorithms. These results are discussed in

Section 4.1. The Total that is mentioned in these sections is not the sum of the various

documents, but the four databases concatenated. This is done to ensure that the number of

words in a document does not influence the average on multiple documents.

4.1 Accuracy of the models

Table 27 shows that the tagging algorithms outperform, looking at understemming (the algo-

rithm does not stem aggressively enough), the non-tagging algorithms on every document.

This is to be expected since the stemming algorithm has more information on how to accu-

rately stem.

There is some variation in the understemming accuracy among the various documents, but

all tend to a follow trend. The dataset were all documents were concatenated (Total), scores

the worst. The dataset containing information on the university from the Wikipedia page,

scores the best.

Surprising is the fact that the Frog algorithm actually performs well on the datasets were

the number of unknown words to the CELEX database (1 and 3), was the largest. This

high performance suggests that the Frog algorithm, that gets activated if a word is unknown,

performs very well.

The overall best scoring method was the BT algorithm using the manual tags to stem the

words. This was to be expected since the BT algorithm was designed to stem a word to a

stem, that corresponds with the manual stem.

52

Dataset 1 2 3 4 Total

Porter 0.9254 0.9330 0.9692 0.9382 0.9066

Lancaster 0.9300 0.9489 0.9822 0.9382 0.9262

Snowball 0.9348 0.9543 0.9736 0.9382 0.9276

BT

+ Frog tag
0.9789 0.9766 0.9910 0.9766 0.9678

BT

+ Manual tag
0.9821 9.9806 0.9930 0.9783 0.9854

BT

+ model tag
0.9673 0.9766 0.9764 0.9766 0.9656

Table 27. Understemming of the algorithms on evaluation datasets

Table 28 shows similar results as in Table 27, although the differences are smaller. The

Porter algorithm in particular shows high accuracy in overstemming. The BT algorithm

performs slightly less than the Frog tagger, but the reason for this is the almost brute-force

and sophisticated algorithm for unknown words from the Frog tagger.

Dataset 1 2 3 4 Total

Porter 0.9848 0.9771 0.9912 0.9848 0.9753

Lancaster 0.9744 0.9708 0.9583 0.9744 0.9482

Snowball 0.9795 0.9884 0.9821 0.9795 0.9698

BT

+ Frog tag
0.9894 0.9882 0.9729 0.9894 0.9690

BT

+ Manual tag
0.9832 0.9813 0.9798 0.9921 0.9722

BT

+ model tag
0.9855 0.9876 0.9729 0.9898 0.9654

Table 28. Overstemming of the algorithms on evaluation datasets

The third performance measure was computational speed. Table 29 only takes into account

to computation time needed to stem the words after a tag was determined by the tagging

53

module.

An important note while considering the computation times is that Porter, Lancaster and

Snowball have been written in C, which may be considered a low-level programming lan-

guage C compared to Python. The BT algorithm, on the other hand, was built in Python 3.6

which is a higher-level programming language and therefore requires more interpretation

software layers for execution. Some optimisation was done in the programming but there

is still room for improvement. Programmes written in C are usually much faster than pro-

grammes written in Python (Oliphant, 2007). A comparison study (Prechelt, 2000) among

various programming languages showed that the average computation time could be im-

proved by factor 2 or 3, whereas the memory consumption would also decrease by roughly

the same amount.

Table 29 shows that the BT algorithm is considerably slower, due to one of the reasons pre-

viously mentioned, but is still able to stem a single document in under one second (1000ms).

Dataset 1 2 3 4 Total

Porter 9.21 (2.04) 9.15 (3.13) 10.60 (2.22) 8.44 (2.84) 30.60 (4.71)

Lancaster 9.10 (2.21) 7.83 (1.66) 10.80 (2.30) 7.46 (1.74) 29.40 (3.27)

Snowball 6.20 (1.35) 5.67 (1.54) 7.67 (2.39) 5.74 (1.43) 20.60 (3.76)

BT 737.14 (18.63) 702.84 (17.25) 754.18 (19.31) 676.38 (17.45) 2,580 (65.90)

Table 29. Computational time of stemmers in ms: mean (std. dev.) of 100 runs, 100 loops

each

Table 30 shows the difference in computation time on determining a tag between the Frog

algorithm and the BT algorithm. Again an important not in interpreting Table 30 is that Frog

runs on a server. Therefore the computation speed is not only determined by how fast the

algorithm is able to process the information, but also the internet speed of the user. Then

again the BT algorithm is programmed in Python 3.6, while it is unknown in which language

Frog is build, presumably C.

Before a file can be stemmed there are some preprocessing steps required and these are taken

into account when Table 30 is examined.

54

Dataset 1 2 3 4 Total

Frog 79.32 (3.23) 49.81 (1.10) 53.12 (4.14) 47.29 (0.98) 136.84 (7.38)

BT 2.83 (0.21) 1.79 (0.14) 2.11 (0.18) 1.64 (0.17) 6.21 (0.92)

Table 30. Computational time of Taggers in seconds: mean (std. dev.) of 100 runs, 100 loops

each

As the Frog tags were considered the ground truth during the training on the various models

a comparison is made between the Manual tags and the Frog tags. The confusion matrix of

this comparison is presented is Table 31, with the Frog F1 scores presented in Table 32.

Frog

\

Manual

ZNW BVNW BW ovt ott vtt Total

ZNW 273 17 2 5 2 0 299

BVNW 5 131 0 1 0 2 139

BW 65 30 454 4 2 0 555

ovt 0 6 0 36 0 0 42

ott 10 2 0 0 154 3 169

vtt 3 1 0 2 0 18 24

Total 356 187 456 48 158 23 1228

Table 31. Confusion matrix Frog and manual tags

Tag F1 - Score

ZNW 0.8235

BVNW 0.8037

BW 0.8447

ovt 0.8000

ott 0.9249

vtt 0.7660

Table 32. F1-scores of the Frog tagging algorithm on the manual dataset

55

5 CONCLUSION & DISCUSSION

5.1 Conclusion

Out of the three algorithms - MLR, NN, XGB - that were tested as a possibility for a new tag-

ger, XGB was shown to be the most accurate. Furthermore, the algorithm that distinguished

between the verb categories made use of XGB, due to the resulting high F1-scores. On the

one hand, this is a surprising result, since no other instances of XGB being used as a tagging

algorithm were found in the literature, despite the fact that it showed promise with other

classification problems.

The number of rules that are implemented in the BT algorithm is relatively small, compared

to the current state-of-the-art stemming algorithms (i.e. Porter, Lancaster, Snowball). This

is mainly due to the fact that the words follow tag-specific rules, obtained from the tagging

algorithm.

Based on the results as discussed in Chapter 4 it seems that the new BT algorithm works

for the stemming and tagging of words. The goal of this thesis was to build a new stemmer

that would be more accurate than the state-of-the-art stemmers (i.e. Porter, Lancaster and

Snowball), as well as faster than the Frog algorithm. This goal has been achieved, while still

leaving room for a high degree of technical optimisation. The combination of the XGB model

and new stemming rules manages to perform well with the manually tagged and stemmed

database in terms of under- and overstemming, as well as computation speed, and thereby

resulted in the new BT algorithm.

As can be expected, the Frog algorithm performed its tasks slower in the case that it en-

countered words that are not included in the CELEX database (i.e. dataset 1 on the BFG).

Surprisingly, though, its resulting accuracy was fairly high, in some cases even performing

better than situations wherein words could be found in the CELEX database.

The newly-built BT algorithm is not yet completely optimised in terms of programming

and its ruleset. Programming it in a language that is faster than Python 3.6, such as C,

should increase the computation speed. Additional experiments should be conducted on

56

larger datasets to see whether the stemmer rules need tuning for the accuracy to be further

improved.

The overall speed of the BT algorithm is significantly higher than the current Frog algo-

rithm. Combining this with the fact its performance with under- and overstemming was

slightly worse than when using the Frog algorithm, yet still better than the truncating al-

gorithms, suggest that this new development can be considered a preliminary success. The

entire process of inserting PDF documents into the algorithm, preprocessing, then tagging

and stemming them takes an estimated time of around 8 to 10 seconds. From extensive

literature research, it can be inferred that this time can be improved by factor of 2 or 3.

Finally, after having tested the performance of the Frog algorithm, its performance turned

out to be rather lacking, especially because it is considered the ground truth for the training

models. The F1 scores combined with the confusion matrix from Tables 31 and 32 show that

65 nouns were predicted to be an adverb, which suggests that the BT algorithm would not

have stemmed these nouns.

5.2 Discussion

The new tagging module only differentiates between six possible tags, while there are more

that could be stemmed. For example the various pronouns can be stemmed back to their

respective personal pronouns. The numerical word types can also be reduced to one of the

overarching numerical word types. However, this changes the meaning of the word which is

not always preferable and are thereby tagged as an adverb, and are therefore not stemmed.

The evaluation dataset was rather small and only provides an indication of the performance

of the various algorithms. Extending the dataset is a rather tedious job which requires a lot

of time and concentration, as mistakes have to be avoided at all costs.

Like any other machine learning model the XGB-classifier can also be enhanced further by

adding more training data. By expanding the training set with a larger variety of words of

which their correct tag is known in advance, XGB can make more accurate predictions. The

number of optimised parameters can also be expanded, but due to the long training time of

57

this model the number of parameters was limited to those described in Section 2.3.3.

Unfortunately, due to time restrictions, the analysis on feature importance (i.e. which fea-

tures imply a certain tag) could not be conducted. This will be done in the near future, when

the Bag & Tag’em algorithm is ready to be distributed.

With the promising results presented in this thesis and a clear path for the future, the goal

of building a new stemming algorithm that is more accurate than the current state-of-the-art

stemmers, but faster than the Frog algorithm, has been achieved.

5.3 Further Research

Since there was no available data that was pre-tagged and included full sentences, sequential

models could not yet be implemented. Despite the encouraging results achieved in this thesis

with respect to under- and overstemming, this could be the logical next step as the literature

suggests that this could enhance the tagging performance, and thereby stemming algorithms.

The sequential model should not replace the current tagging module but should be seen as a

source of additional correction after a word is tagged by the tagger.

One suggestion would be to make use of anchor points that are provided to the tagger in order

to assist the sequential model. Anchor points in a sentence would be very common words:

personal forms, articles, forms of the most used verbs (to have, to shall, to do, to will). In

addition, this could be combined with a simple heuristic that would recognise a capital letter

in the middle of a sentence as a name.

The sentence information can be used in a pervasive attention model which would not only

look at sequences but also anchor points, as described. Combining the predicted tag with a

prefix and suffix model would further enhance the probability of selecting the correct tag.

Further analysis on feature importance has to be conducted to determine whether certain

features should be excluded from the BT algorithm to improve the XGB model, due to the

possibility of overfitting.

58

Finally, as previously mentioned in Section 5.1, the programming language that the BT algo-

rithm is written in should be altered. This has not been implemented yet due to the fact that

the author only had sufficient programming experience with Python and not with a low-level

programming languages, such as C.

59

Bibliography

Aizawa, A. (2003). An information-theoretic perspective of tf–idf measures. Information

Processing & Management, 39(1), 45–65.

Ajax, P. (2019, July 2). Ajax is op zoek naar een Assistent-Controller. Retrieved July 3, 2019,

from https://www.ajax.nl/club/vacatures.htm

Berry, K. J. & Mielke Jr, P. W. (1988). A generalization of Cohen’s kappa agreement measure

to interval measurement and multiple raters. Educational and Psychological Measure-

ment, 48(4), 921–933.

Bosch, A. v. d., Busser, B., Canisius, S., & Daelemans, W. (2007). An efficient memory-

based morphosyntactic tagger and parser for Dutch. LOT Occasional Series, 7, 191–

206.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123–140.

Brill, E. (1992). A simple rule-based part of speech tagger. In Proceedings of the third con-

ference on Applied natural language processing (pp. 152–155). Association for Com-

putational Linguistics.

Cavnar, W. B., Trenkle, J. M. et al. (1994). N-gram-based text categorization. In Proceedings

of SDAIR-94, 3rd annual symposium on document analysis and information retrieval

(Vol. 161175). Citeseer.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic

minority over-sampling technique. Journal of artificial intelligence research, 16, 321–

357.

Chen, T. & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of

the 22nd acm sigkdd international conference on knowledge discovery and data mining

(pp. 785–794). ACM.

Chinchor, N. (1992). MUC-4 evaluation metrics. In Proceedings of the 4th conference on

Message understanding (pp. 22–29). Association for Computational Linguistics.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recur-

rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network

learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289.

60

https://www.ajax.nl/club/vacatures.htm

Drummond, C., Holte, R. C. et al. (2003). C4. 5, class imbalance, and cost sensitivity:

why under-sampling beats over-sampling. In Workshop on learning from imbalanced

datasets II (Vol. 11, pp. 1–8). Citeseer.

Elbayad, M., Besacier, L., & Verbeek, J. (2018). Pervasive attention: 2d convolutional neural

networks for sequence-to-sequence prediction. arXiv preprint arXiv:1808.03867.

Feldman, R. & Sanger, J. (2007). The text mining handbook: advanced approaches in ana-

lyzing unstructured data. Cambridge university press.

Freund, Y., Schapire, R., & Abe, N. (1999). A short introduction to boosting. Journal-

Japanese Society For Artificial Intelligence, 14(771-780), 1612.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics & data anal-

ysis, 38(4), 367–378.

Fu, W. J. (1998). Penalized regressions: the bridge versus the lasso. Journal of computational

and graphical statistics, 7(3), 397–416.

Gautam, K. (2018). Ensemble Methods: Boosting. CS6375: Machine Learning, 14.

Gilroy, E., Hirsch, R., & Cohn, T. (1990). Mean square error of regression-based constituent

transport estimates. Water Resources Research, 26(9), 2069–2077.

Greene, W. H. (2003). Econometric analysis. Pearson Education India.

Haeseryn, W. J.-M., Romijn, K., Geerts, G., Rooij, J. d., & Van den Toorn, M. C. (1997).

Algemene Nederlandse Spraakkunst [2 banden].

Hand, D. & Christen, P. (2018). A note on using the F-measure for evaluating record linkage

algorithms. Statistics and Computing, 28(3), 539–547.

Hansen, L. K. & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on

Pattern Analysis & Machine Intelligence, (10), 993–1001.

Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements of statistical

learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2),

120–122.

He, J. & Zelikovsky, A. (2006). MLR-tagging: informative SNP selection for unphased geno-

types based on multiple linear regression. Bioinformatics, 22(20), 2558–2561.

Hinton, G. E. (1987). Learning translation invariant recognition in a massively parallel net-

works. In International Conference on Parallel Architectures and Languages Europe

(pp. 1–13). Springer.

61

Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd international conference

on document analysis and recognition (Vol. 1, pp. 278–282). IEEE.

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural nets

and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, 6(02), 107–116.

Jivani, A. G. et al. (2011). A comparative study of stemming algorithms. Int. J. Comp. Tech.

Appl, 2(6), 1930–1938.

Kontostathis, A., Edwards, L., & Leatherman, A. (2010). Text mining and cybercrime. Text

Mining: Applications and Theory. John Wiley & Sons, Ltd, Chichester, UK, 149–164.

Krizhevsky, A. & Hinton, G. (2010). Convolutional deep belief networks on cifar-10. Un-

published manuscript, 40(7), 1–9.

Marcelis, H. (2019, June 13). Groningen getroffen door vierde aardbeving in twee weken

tijd. Algemeen Dagblad. Retrieved June 13, 2019, from https://www.ad.nl/binnenland/

groningen-getroffen-door-vierde-aardbeving-in-twee-weken-tijd~a5a76dce/?referrer=

https://www.google.com/

Mattmann, C. & Zitting, J. (2011). Tika in action. Manning Publications Co.

Mijnwoordenboek.nl. (2004). Mijnwoordenboek werkwoorden. Retrieved March 15, 2019,

from https://www.mijnwoordenboek.nl/werkwoorden/NL/

Monz, C. & De Rijke, M. (2001). Shallow morphological analysis in monolingual infor-

mation retrieval for Dutch, German, and Italian. In Workshop of the Cross-Language

Evaluation Forum for European Languages (pp. 262–277). Springer.

Moral, C., de Antonio, A., Imbert, R., & Ramırez, J. (2014). A survey of stemming al-

gorithms in information retrieval. Information Research: An International Electronic

Journal, 19(1), n1.

Nielsen, M. A. (2015). Neural networks and deep learning. Determination press San Fran-

cisco, CA, USA:

Oliphant, T. E. (2007). Python for scientific computing. Computing in Science & Engineer-

ing, 9(3), 10–20.

Olson, D. L. & Delen, D. (2008). Advanced data mining techniques. Springer Science &

Business Media.

Paice, C. D. (1990). Another stemmer. In ACM Sigir Forum (Vol. 24, 3, pp. 56–61). ACM.

62

https://www.ad.nl/binnenland/groningen-getroffen-door-vierde-aardbeving-in-twee-weken-tijd~a5a76dce/?referrer=https://www.google.com/
https://www.ad.nl/binnenland/groningen-getroffen-door-vierde-aardbeving-in-twee-weken-tijd~a5a76dce/?referrer=https://www.google.com/
https://www.ad.nl/binnenland/groningen-getroffen-door-vierde-aardbeving-in-twee-weken-tijd~a5a76dce/?referrer=https://www.google.com/
https://www.mijnwoordenboek.nl/werkwoorden/NL/

Paik, J. H. (2013). A novel TF-IDF weighting scheme for effective ranking. In Proceed-

ings of the 36th international ACM SIGIR conference on Research and development in

information retrieval (pp. 343–352). ACM.

Pang, B., Lee, L. et al. (2008). Opinion mining and sentiment analysis. Foundations and

Trends R© in Information Retrieval, 2(1–2), 1–135.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duches-

nay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning

Research, 12, 2825–2830.

Phua, C., Lee, V., Smith, K., & Gayler, R. (2010). A comprehensive survey of data mining-

based fraud detection research. arXiv preprint arXiv:1009.6119.

Porter, M. F. (2001). Snowball: A language for stemming algorithms.

Prechelt, L. (2000). An empirical comparison of c, c++, java, perl, python, rexx and tcl. IEEE

Computer, 33(10), 23–29.

Rahul Bhatia. (2018). When not to use Neural Networks. [Online; accessed Juli 11, 2019].

Retrieved from https : / / medium . com / datadriveninvestor / when - not - to - use - neural -

networks-89fb50622429

Rikunert. (2017). SMOTE explained for noobs - Synthetic Minority Over-sampling TEch-

nique line by line. Retrieved March 15, 2019, from http : / / rikunert . com / SMOTE _

explained

Salton, G. & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval.

Information processing & management, 24(5), 513–523.

Schmid, H. (1994). Part-of-speech tagging with neural networks. In Proceedings of the 15th

conference on Computational linguistics-Volume 1 (pp. 172–176). Association for Com-

putational Linguistics.

Schmidt, M., Fung, G., & Rosales, R. (2007). Fast optimization methods for l1 regulariza-

tion: A comparative study and two new approaches. In European Conference on Ma-

chine Learning (pp. 286–297). Springer.

Smith, R. (2007). An overview of the Tesseract OCR engine. In Ninth International Con-

ference on Document Analysis and Recognition (ICDAR 2007) (Vol. 2, pp. 629–633).

IEEE.

63

https://medium.com/datadriveninvestor/when-not-to-use-neural-networks-89fb50622429
https://medium.com/datadriveninvestor/when-not-to-use-neural-networks-89fb50622429
http://rikunert.com/SMOTE_explained
http://rikunert.com/SMOTE_explained

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1), 267–288.

Trottier, L., Gigu, P., Chaib-draa, B., et al. (2017). Parametric exponential linear unit for

deep convolutional neural networks. In 2017 16th IEEE International Conference on

Machine Learning and Applications (ICMLA) (pp. 207–214). IEEE.

Van der Beek, L., Bouma, G., Malouf, R., & Van Noord, G. (2002). The Alpino dependency

treebank. In Computational linguistics in the netherlands 2001 (pp. 8–22). Brill Rodopi.

Van der Wouden, T. (1990). Celex: Building a multifunctional polytheoretical lexical data

base. Proceedings of BudaLex, 88, 363–373.

van Gompel, M. & Hendrickx, I. (2019). LaMachine: A meta-distribution for NLP software.

In Selected papers from the CLARIN Annual Conference 2018, Pisa, 8-10 October 2018

(159, pp. 209–221). Linköping University Electronic Press.

Weiss, S. M., Indurkhya, N., & Zhang, T. (2015). Fundamentals of predictive text mining.

Springer.

Weiss, S. M., Indurkhya, N., Zhang, T., & Damerau, F. (2010). Text mining: predictive meth-

ods for analyzing unstructured information. Springer Science & Business Media.

Vijayarani, S., Ilamathi, M. J., & Nithya, M. (2015). Preprocessing techniques for text mining-

an overview. International Journal of Computer Science & Communication Networks,

5(1), 7–16.

Vijayarani, S., Janani, M. R. et al. (2016). Text mining: open source tokenization tools-an

analysis. Advanced Computational Intelligence: An International Journal (ACII), 3(1),

37–47.

Wikipedia, W. (2019, February 19). Vrije Universiteit Amsterdam. Retrieved June 13, 2019,

from https://nl.wikipedia.org/wiki/Vrije_Universiteit_Amsterdam

Willett, P. (2006). The Porter stemming algorithm: then and now. Program, 40(3), 219–223.

Volpi, M. & Tuia, D. (2016). Dense semantic labeling of subdecimeter resolution images

with convolutional neural networks. IEEE Transactions on Geoscience and Remote

Sensing, 55(2), 881–893.

Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations in

convolutional network. arXiv preprint arXiv:1505.00853.

64

https://nl.wikipedia.org/wiki/Vrije_Universiteit_Amsterdam

Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. (1997). Algorithm 778: L-BFGS-B: Fortran sub-

routines for large-scale bound-constrained optimization. ACM Transactions on Mathe-

matical Software (TOMS), 23(4), 550–560.

Zou, H. & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal

of the royal statistical society: series B (statistical methodology), 67(2), 301–320.

65

Appendices

A Overview word types taalkundig ontleden in the Dutch Language

Type Translation Example Translation

Lidwoord Article De lange vrouw The tall woman

Zelfstandig naamwoord Noun De lange vrouw The tall woman

Bijvoeglijk naamwoord Adjective De lange vrouw The tall woman

Hulpwerkwoord Auxiliary verb Ik zal lopen I shall walk

Koppelwerkwoord Linking verb Zij is een vrouw She is a woman

Zelfstandig werkwoord Independent verb Vandaag ben ik ziek Today I am ill

Persoonlijk voornaamwoord Personal pronoun Ik zal lopen I shall walk

Bezittelijk voornaamwoord Possessive pronoun Mijn hond is blij My dog is happy

Aanwijzend voornaamwoord Demonstrative pronoun Die hond is blij That dog is happy

Betrekkelijk voornaamwoord Relative pronoun De hond die Henk heet The dog whose name is Henk

Vragend voornaamwoord Interrogative pronoun Hoe heet de hond? What is the dogs name?

Bepaald hoofdtelwoord Determined numeral Er zijn twee honden There are two dogs

Onbepaald hoofdtelwoord Undetermined numeral Er zijn weinig honden There are a few dogs

Bepaald rangtelwoord Determined ordinal numeral De tweede hond The second dog

Onbepaald rangtelwoord Undetermined ordinal numeral De laatste hond The last dog

Onbepaald voornaamwoord Indefinite pronoun De andere hond The other dog

Wederkerend voornaamwoord Recurring pronoun De hond schaamt zich The dog is ashamed of himself

Wederkerig voornaamwoord Reciprocal pronoun De honden wassen elkaar The dogs clean each other

Voorzetsel Preposition Ik geef dit aan haar I give this to her

Bijwoord Adverb Morgen komt hij niet He will not come tomorrow

Voegwoord Conjunction De hond blaft en ik slaap The dog barcs and I am asleep

Tussenwerpsel Interjection Foei! stoute hond Shame! bad dog

Table 33. Overview all word types taalkundig ontleden in the Dutch Language

66

B Overview forms of times in Dutch language

Form of time Dutch example Translation Translation example

Onvoltooid

tegenwoordige

tijd (ott)

ik leer Present tense I study

Voltooid

tegenwoordige

tijd (vtt)

ik heb geleerd Present perfect
I have

studied

Onvoltooid

verleden

tijd (ovt)

ik leerde
Simple past

tense
I studied

Voltooid

verleden

tijd (vvt)

ik had geleerd
Past perfect

tense

I had

studied

Onvoltooid

tegenwoordige

toekomende

tijd (ottt)

ik zal leren
Simple present

Future tense

I shall

study

Voltooid

tegenwoordige

toekomende

tijd (vttt)

ik zal geleerd hebben
Complete present

future tense

I shall

have studied

Onvoltooid

verleden

toekomende

tijd (ovtt)

ik zou leren
Unfinished

past tense

I should

have studied

Voltooid

verleden

toekomende

tijd (vvtt)

ik zou geleerd hebben
Completed past

future tense

I should

have studied

Voltooid

deelwoord (VD)
geleerd Past participle studied

Gebiedende

wijs
leer Imperative study!

Table 34. Verb forms of time in Dutch language

67

C Code for the stemming algorithm
import pandas as pd

k l i n k e r = s e t ([’ a ’ , ’ e ’ , ’ o ’])

s p e c i a l _ k l i n k e r = s e t ([’ i ’ , ’ u ’])

def REST_Stemmer (REST_data) :

REST_data [’ F i n a l s tem r e s t ’] = REST_data [’Word ’]

REST_data = REST_data . d rop ([’BT t a g ’ , ’ Alg stem ’] , a x i s =1)

REST_data . t o _ e x c e l (f i l e n a m e)

def BVNW_stemmer (BVNW_data) :

BVNW_data [’ Alg stem ’] = BVNW_data [’Word ’]

BVNW_data . l o c [BVNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ e r ’) , ’ Alg stem ’] = BVNW_data [’ Alg stem ’] . s t r [:−2]

BVNW_data . l o c [BVNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ s t e ’) , ’ Alg stem ’] = BVNW_data [’ Alg stem ’] . s t r [:−3]

BVNW_data . l o c [BVNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ ende ’) , ’ Alg stem ’] = BVNW_data [’ Alg stem ’] . s t r [:−4]

BVNW_data . l o c [BVNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ en ’) , ’ Alg stem ’] = BVNW_data [’ Alg stem ’] . s t r [:−2]

BVNW_data . l o c [BVNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ e ’) , ’ Alg stem ’] = BVNW_data [’ Alg stem ’] . s t r [:−1]

D i r t y f and s

BVNW_data . l o c [BVNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ v ’) , ’ Alg stem ’] = BVNW_data [’ Alg stem ’] . s t r . r e p l a c e (’ v ’ , ’ f ’ ,−1)

BVNW_data . l o c [BVNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ z ’) , ’ Alg stem ’] = BVNW_data [’ Alg stem ’] . s t r . r e p l a c e (’ z ’ , ’ s ’ ,−1)

Doubl ing o f a , e , o , u

BVNW_data . l o c [BVNW_data [’ Alg stem ’] . s t r [−2] . s t r . match (’ a ’) & (~ BVNW_data [’ Alg stem ’] . s t r [−3] . i s i n (k l i n k e r)) &

(~ BVNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ r ’)) , ’ Alg stem ’] = BVNW_data [’ Alg stem ’] . s t r . r e p l a c e (’ a ’ , ’ aa ’ ,−1)

BVNW_data . l o c [BVNW_data [’ Alg stem ’] . s t r [−2] . s t r . match (’ e ’) & (~ BVNW_data [’ Alg stem ’] . s t r [−3] . i s i n (k l i n k e r)) &

(~ BVNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ r ’)) , ’ Alg stem ’] = BVNW_data [’ Alg stem ’] . s t r . r e p l a c e (’ e ’ , ’ ee ’ ,−1)

BVNW_data . l o c [BVNW_data [’ Alg stem ’] . s t r [−2] . s t r . match (’ o ’) & (~ BVNW_data [’ Alg stem ’] . s t r [−3] . i s i n (k l i n k e r)) &

(~ BVNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ r ’)) , ’ Alg stem ’] = BVNW_data [’ Alg stem ’] . s t r . r e p l a c e (’ o ’ , ’ oo ’ ,−1)

BVNW_data . l o c [BVNW_data [’ Alg stem ’] . s t r [−2] . s t r . match (’ u ’) & (~ BVNW_data [’ Alg stem ’] . s t r [−3] . i s i n (k l i n k e r)) &

(~ BVNW_data [’ Alg stem ’] . s t r [−3] . i s i n (s p e c i a l _ k l i n k e r)) , ’ Alg stem ’] = BVNW_data [’ Alg stem ’] . s t r . r e p l a c e (’ u ’ , ’ uu ’ ,−1)

dou b l e l e t t e r a t t h e end

BVNW_data . l o c [BVNW_data [’ Alg stem ’] . s t r [−1] == BVNW_data [’ Alg stem ’] . s t r [−2] , ’ Alg stem ’] = BVNW_data [’ Alg stem ’] . s t r [:−1]

BVNW_data [’ F i n a l s tem BVNW’] = BVNW_data [’ Alg stem ’]

BVNW_data = BVNW_data . d rop ([’BT t a g ’ , ’ Alg stem ’] , a x i s =1)

BVNW_data . t o _ e x c e l (f i l e n a m e)

def ZNW_Stemmer (ZNW_data) :

P r e p a r i n g t h e da ta

ZNW_data [’ Alg stem ’] = ZNW_data [’Word ’]

ZNW_data [’ B T _ p l u r a l ’] = ’ ev ’

ZNW_data . l o c [ZNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ en ’) , ’ B T _ p l u r a l ’] = ZNW_data [’ B T _ p l u r a l ’] . r e p l a c e (’ ev ’ , ’mv ’)

ZNW_data . l o c [ZNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ j e s ’) , ’ B T _ p l u r a l ’] = ZNW_data [’ B T _ p l u r a l ’] . r e p l a c e (’ ev ’ , ’mv ’)

ZNW_data . l o c [ZNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ s ’) , ’ B T _ p l u r a l ’] = ZNW_data [’ B T _ p l u r a l ’] . r e p l a c e (’ ev ’ , ’mv ’)

ZNW_data . l o c [ZNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ en ’) & (ZNW_data [’ B T _ p l u r a l ’] . s t r . match (’mv ’)) , ’ Alg stem ’] =

ZNW_data [’ Alg stem ’] . s t r [:−2]

ZNW_data . l o c [ZNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ j e s ’) & (ZNW_data [’ B T _ p l u r a l ’] . s t r . match (’mv ’)) , ’ Alg stem ’] =

ZNW_data [’ Alg stem ’] . s t r [:−3]

ZNW_data . l o c [ZNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ j e s ’) & (ZNW_data [’ B T _ p l u r a l ’] . s t r . match (’mv ’)) , ’ Alg stem ’] =

ZNW_data [’ Alg stem ’] . s t r [:−1]

Foul f and s

ZNW_data . l o c [ZNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ v ’) & (ZNW_data [’ B T _ p l u r a l ’] . s t r . match (’mv ’)) , ’ Alg stem ’] =

ZNW_data [’ Alg stem ’] . s t r . r e p l a c e (’ v ’ , ’ f ’ ,−1)

68

ZNW_data . l o c [ZNW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ z ’) & (ZNW_data [’ B T _ p l u r a l ’] . s t r . match (’mv ’)) , ’ Alg stem ’] =

ZNW_data [’ Alg stem ’] . s t r . r e p l a c e (’ z ’ , ’ s ’ ,−1)

d ou b l e l e t t e r a t t h e end

ZNW_data . l o c [ZNW_data [’ Alg stem ’] . s t r [−1] == ZNW_data [’ Alg stem ’] . s t r [−2] , ’ Alg stem ’] =

ZNW_data [’ Alg stem ’] . s t r [:−1]

ZNW_data [’ F i n a l s tem ZNW’] = ZNW_data [’ Alg stem ’]

ZNW_data = ZNW_data . d rop ([’BT t a g ’ , ’ Alg stem ’ , ’ B T _ p l u r a l ’] , a x i s =1)

ZNW_data . t o _ e x c e l (f i l e n a m e)

def WW_Stemmer (WW_data) :

P r e p a r i n g t h e da ta

WW_data [’ F i r s t C h a r s ’] = [x [: 3] f o r x in WW_data [’Word ’]]

WW_data [’ S a m e n s t e l l i n g ’] = pd . np . where (WW_data . F i r s t C h a r s . s t r . match (" aan ") , " aan " ,

pd . np . where (WW_data . F i r s t C h a r s . s t r . match (" a f ") , " a f " ,

pd . np . where (WW_data . F i r s t C h a r s . s t r . match (" b i j ") , " b i j " ,

pd . np . where (WW_data . F i r s t C h a r s . s t r . match (" i n ") , " i n " ,

pd . np . where (WW_data . F i r s t C h a r s . s t r . match (" op ") , " op " ,

pd . np . where (WW_data . F i r s t C h a r s . s t r . match (" u i t ") , " u i t " , " "))))))

WW_data [’ P r o c e s s ’] = [e . r e p l a c e (k , ’ ’ , 1) f o r e , k in z i p (WW_data . Word . a s t y p e (’ s t r ’) ,

WW_data . S a m e n s t e l l i n g . a s t y p e (’ s t r ’))]

WW_data = WW_data . d rop ([’ F i r s t C h a r s ’] , a x i s =1)

i r r e g u l a r = pd . r e a d _ e x c e l (f i l e n a m e)

WW_data = pd . merge (WW_data , i r r e g u l a r , on= ’ P r o c e s s ’ , how= ’ l e f t ’)

WW_data [’BT I r r e g u l a r ’] = 1

WW_data [’ I r r e g u l a r Stem ’] = WW_data [’ I r r e g u l a r Stem ’] . f i l l n a (’ ’)

WW_data . l o c [WW_data [’ I r r e g u l a r Stem ’] . s t r . c o n t a i n s (’ ’) , ’BT I r r e g u l a r ’] = WW_data [’BT I r r e g u l a r ’] . r e p l a c e (1 , 0)

WW_data [’ Alg stem ’] = WW_data [’ P r o c e s s ’]

WW_data [’ B T _ p l u r a l ’] = ’ ev ’

To e n s u r e BVNW i s seen as mv

WW_data . l o c [WW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ en ’) , ’ B T _ p l u r a l ’] = WW_data [’ B T _ p l u r a l ’] . r e p l a c e (’ ev ’ , ’mv ’)

VTT / VVT

WW_data . l o c [WW_data [’BT t a g ’] . s t r . match (’ v t t ’) & (WW_data [’ Alg stem ’] . s t r . s t a r t s w i t h (’ ge ’)) , ’ Alg stem ’] =

WW_data [’ Alg stem ’] . s t r [2 :]

WW_data . l o c [WW_data [’BT t a g ’] . s t r . match (’ v t t ’) & (WW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ d ’)) , ’ Alg stem ’] =

WW_data [’ Alg stem ’] . s t r [: 1]

GENERAL (OTT)

Remove −en b u t e n s u r e l e n t g h i s a t l e a s t 3 c h a r s long

WW_data . l o c [WW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ en ’) & (WW_data [’ Alg stem ’] . s t r . l e n () > 3) , ’ Alg stem ’] =

WW_data [’ Alg stem ’] . s t r [:−2]

C o n v e r t s o v t ev t o o t t ev

WW_data . l o c [WW_data [’BT t a g ’] . s t r . match (’ o v t ’) & (WW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ e ’)) &

(WW_data [’ Alg stem ’] . s t r . l e n () > 3) , ’ Alg stem ’] = WW_data [’ Alg stem ’] . s t r [:−1]

Remove t a f t e r d t

WW_data . l o c [WW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ t ’) & (WW_data [’ Alg stem ’] . s t r [−2] == ’ d ’) , ’ Alg stem ’] =

WW_data [’ Alg stem ’] . s t r [:−1]

I f n o t i r r e g u l a r remove t a t t h e end

WW_data . l o c [WW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ t ’) & (WW_data [’BT I r r e g u l a r ’] == 0) &

(~ WW_data [’ Alg stem ’] . s t r [−2] . i s i n (k l i n k e r)) , ’ Alg stem ’] = WW_data [’ Alg stem ’] . s t r [:−1]

Foul s and f

WW_data . l o c [WW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ v ’) , ’ Alg stem ’] =

WW_data [’ Alg stem ’] . s t r . r e p l a c e (’ v ’ , ’ f ’ ,−1)

WW_data . l o c [WW_data [’ Alg stem ’] . s t r . e n d s w i t h (’ z ’) , ’ Alg stem ’] =

WW_data [’ Alg stem ’] . s t r . r e p l a c e (’ z ’ , ’ s ’ ,−1)

69

Doubl ing o f v ow e l s

WW_data [’ A l g _ s t e m _ r e v e r s ’] = WW_data . l o c [: , ’ Alg stem ’] . apply (lambda x : x [: : − 1])

WW_data . l o c [WW_data [’ A l g _ s t e m _ r e v e r s ’] . s t r [2] . i s i n (k l i n k e r) & (~ WW_data [’ A l g _ s t e m _ r e v e r s ’] . s t r [3] . i s i n (k l i n k e r))

& (WW_data [’ B T _ p l u r a l ’] . s t r . match (’mv ’)) & (WW_data [’ Alg stem ’] . s t r [−2] . s t r . match (’ a ’)) , ’ A l g _ s t e m _ r e v e r s ’] =

WW_data [’ A l g _ s t e m _ r e v e r s ’] . s t r . r e p l a c e (’ a ’ , ’ aa ’ ,−1)

WW_data . l o c [WW_data [’ A l g _ s t e m _ r e v e r s ’] . s t r [2] . i s i n (k l i n k e r) &

(~ WW_data [’ A l g _ s t e m _ r e v e r s ’] . s t r [3] . i s i n (k l i n k e r)) & (WW_data [’ B T _ p l u r a l ’] . s t r . match (’mv ’)) &

(WW_data [’ Alg stem ’] . s t r [−2] . s t r . match (’ e ’)) , ’ A l g _ s t e m _ r e v e r s ’] = WW_data [’ A l g _ s t e m _ r e v e r s ’] . s t r . r e p l a c e (’ e ’ , ’ ee ’ ,−1)

WW_data . l o c [WW_data [’ A l g _ s t e m _ r e v e r s ’] . s t r [2] . i s i n (k l i n k e r) &

(~ WW_data [’ A l g _ s t e m _ r e v e r s ’] . s t r [3] . i s i n (k l i n k e r)) & (WW_data [’ B T _ p l u r a l ’] . s t r . match (’mv ’)) &

(WW_data [’ Alg stem ’] . s t r [−2] . s t r . match (’ o ’)) , ’ A l g _ s t e m _ r e v e r s ’] =

WW_data [’ A l g _ s t e m _ r e v e r s ’] . s t r . r e p l a c e (’ o ’ , ’ oo ’ ,−1)

WW_data [’ Alg stem ’] = WW_data . l o c [: , ’ A l g _ s t e m _ r e v e r s ’] . apply (lambda x : x [: : − 1])

T h i s i s f o r c o r r e c t i n g t h e dou b l e l e t t e r s (B e c a r e f u l l f o r s l e e)

WW_data . l o c [WW_data [’ Alg stem ’] . s t r [−1] == WW_data [’ Alg stem ’] . s t r [−2] , ’ Alg stem ’] = WW_data [’ Alg stem ’] . s t r [:−1]

T h i s i s f o r h a n d l i n g i r r e g u l a r v e r b s

WW_data . l o c [WW_data [’BT I r r e g u l a r ’] == 1 , ’ Alg stem ’] = WW_data [’ I r r e g u l a r Stem ’]

T h i s i s f o r f i n a l i s i n g t h e s tem

WW_data [’ F i n a l s tem WW’] = WW_data [’ S a m e n s t e l l i n g ’] . f i l l n a (’ ’) + WW_data [’ Alg stem ’]

WW_data = WW_data . d rop ([’BT t a g ’ , ’ Alg stem ’ , ’ S a m e n s t e l l i n g ’ , ’ P r o c e s s ’ , ’ I r r e g u l a r Stem ’ ,

’BT I r r e g u l a r ’ , ’ B T _ p l u r a l ’] , a x i s =1)

WW_data . t o _ e x c e l (f i l e n a m e)

i f __name__== " __main__ " :

d a t a = pd . r e a d _ e x c e l (f i l e n a m e)

d a t a [’ Alg stem ’] = d a t a [’Word ’]

WW_data = d a t a . l o c [d a t a [’BT t a g ’] . s t r . match (p a t = ’ (o t t) | (o v t) | (v t t) ’)]

WW_Stemmer (WW_data)

BVNW_data = d a t a . l o c [d a t a [’BT t a g ’] . s t r . match (’BVNW’)]

BVNW_stemmer (BVNW_data)

ZNW_data = d a t a . l o c [d a t a [’BT t a g ’] . s t r . match (’ZNW’)]

ZNW_Stemmer (ZNW_data)

REST_data = d a t a . l o c [~ d a t a [’BT t a g ’] . s t r . match (p a t = ’ (o t t) | (o v t) | (v t t) | (BVNW) | (ZNW) ’)]

REST_Stemmer (REST_data)

70

D Exception list

Due to the size of the exception list, this list is not included. However the exception list will

be made publicly available when the Bag & Tag’em algorithm becomes available online. If

one wants to see the exception list before hand please contact the Author.

71

E Evaluation documents

This part of the Appendix contains the four text documents used for evaluation purposes

which were stemmed and tagged manually.

E.1 Document 1 (BFG)

72

E.2 Document 2 (Newspaper article)

73

E.3 Document 3 (Wikipedia article on VU)

74

E.4 Document 4 (Vacancy Ajax)

75

	1 Introduction
	1.1 Introduction
	1.2 Background Dutch language
	1.2.1 Type of words
	1.2.2 Grammar rules

	2 LITERATURE
	2.1 Text mining
	2.1.1 Gathering of documents
	2.1.2 Tokenisation
	2.1.3 Stopword removal
	2.1.4 Term Frequency Inverse Document Frequency

	2.2 Stemming
	2.2.1 The production technique
	2.2.2 Prefix and Suffix-stripping algorithms

	2.3 Part of Speech Tagging
	2.3.1 Multinomial Logistic regression (MLR)
	2.3.2 Neural Network (NN)
	2.3.3 Extreme Gradient Boosting (XGB)

	2.4 Sequential Models

	3 METHODS
	3.1 Data Collection & Feature space
	3.1.1 Data Collection
	3.1.2 Feature space

	3.2 Tagging algorithms
	3.3 Stemming algorithms
	3.3.1 Verbs (WW)
	3.3.2 Adjectives (BVNW)
	3.3.3 Noun (ZNW)
	3.3.4 Adverb (BW)
	3.3.5 Exception list

	3.4 Model evaluation

	4 RESULTS
	4.1 Accuracy of the models

	5 CONCLUSION & DISCUSSION
	5.1 Conclusion
	5.2 Discussion
	5.3 Further Research

	Bibliography
	Appendices
	Appendices
	A Overview word types taalkundig ontleden in the Dutch Language
	B Overview forms of times in Dutch language
	C Code for the stemming algorithm
	D Exception list
	E Evaluation documents
	E.1 Document 1 (BFG)
	E.2 Document 2 (Newspaper article)
	E.3 Document 3 (Wikipedia article on VU)
	E.4 Document 4 (Vacancy Ajax)

