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Abstract 
The material described in this thesis is the result of an internship of the master study Business Analytics. It has 
been conducted at FRISS from April 5th, 2015 until December 4th, 2015. FRISS is a consultancy and software 
company specialized in fraud- and risk management for the insurance sector and is located in Utrecht, the 
Netherlands. The main research problem described in this thesis is how to find high quality solutions to 
constrained Portfolio Value Optimization problems by using modern metaheuristic search procedures. A number 
of distinct search procedures were implemented and extensively tested. The experiments described in this work 
indicate that in practice high quality solutions can be found in short timespans and under a wide range of 
conditions.  
 



 

Orteliuslaan 15  |  3528 BA Utrecht, The Netherlands  |  T (+31) 30 767 0352  |  info@friss.eu  |  www.friss.eu                                Page 3 of 66                                             
 

Contents 

Abstract ......................................................................................................................................................................... 2 

1 Introduction ............................................................................................................................................................ 5 

2 Formal Problem Description .................................................................................................................................. 8 

3 Meta-Heuristics .................................................................................................................................................... 10 

3.1 Search Concepts ........................................................................................................................................ 11 

 Initial Solution .......................................................................................................................................... 11 

 Neighbourhood, Solution Space, Move and Path ................................................................................... 11 

 Trajectory- and Population-based Algorithms ........................................................................................ 12 

 Local and Global Optima ........................................................................................................................ 13 

 Cycling .................................................................................................................................................... 13 

 Granularity .............................................................................................................................................. 14 

3.2 Algorithms ................................................................................................................................................... 14 

 Evolutionary Algorithms .......................................................................................................................... 14 

 Tabu Search ........................................................................................................................................... 16 

 Particle Swarm Optimization ................................................................................................................... 17 

 Covariance Matrix Adaptation Evolutionary Strategy ............................................................................. 18 

3.3 Practical considerations of solutions........................................................................................................... 19 

 Feasibility ................................................................................................................................................ 19 

 Overfitting ................................................................................................................................................ 20 

 Solution Complexity ................................................................................................................................ 20 

4 Methods ............................................................................................................................................................... 21 

4.1 Data Description ......................................................................................................................................... 21 

 Data......................................................................................................................................................... 21 

 Calamities ............................................................................................................................................... 22 

 Randomized Real Dataset ...................................................................................................................... 23 

 Artificial Data ........................................................................................................................................... 23 

4.2 Objective Function ...................................................................................................................................... 25 

4.3 Implemented Algorithms ............................................................................................................................. 26 

 Evolutionary Algorithm ............................................................................................................................ 26 

 Tabu Search ........................................................................................................................................... 27 

 Particle Swarm Optimization ................................................................................................................... 28 

 Covariance Matrix Adaptation Evolutionary Strategy ............................................................................. 29 

5 Shiny Application ................................................................................................................................................. 31 

5.1 Artificial Dataset Generator ......................................................................................................................... 31 

5.1.1 Overview ................................................................................................................................................. 31 



 

Orteliuslaan 15  |  3528 BA Utrecht, The Netherlands  |  T (+31) 30 767 0352  |  info@friss.eu  |  www.friss.eu                                Page 4 of 66                                             
 

 Generating the parameters for the artificial dataset ............................................................................... 33 

 Generating the artificial dataset .............................................................................................................. 34 

5.2 Algorithm ..................................................................................................................................................... 34 

5.3 Analysis ....................................................................................................................................................... 36 

6 Results ................................................................................................................................................................. 38 

6.1 Experiment Protocol.................................................................................................................................... 38 

 Algorithms, datasets and parameters ..................................................................................................... 39 

 Artificial datasets ..................................................................................................................................... 39 

6.2 Results ........................................................................................................................................................ 40 

6.3 Evaluation Options ...................................................................................................................................... 43 

 Loss Ratio Reduction .............................................................................................................................. 43 

 Objective Value Improvement ................................................................................................................. 43 

 Time and Number of Iterations ............................................................................................................... 44 

 Subset Results ........................................................................................................................................ 44 

 Distribution of Solutions .......................................................................................................................... 45 

 Stability of Solutions ................................................................................................................................ 46 

6.4 Analysis ....................................................................................................................................................... 47 

 Training and Validation Results .............................................................................................................. 47 

 Calamity Influence .................................................................................................................................. 50 

 Time and Number of Iterations ............................................................................................................... 51 

 Initial Solutions ........................................................................................................................................ 52 

 Generated Solutions ............................................................................................................................... 53 

 Stability of Solutions ................................................................................................................................ 54 

7 Discussion ........................................................................................................................................................... 55 

7.1 Meta-heuristic search is useful ................................................................................................................... 55 

7.2 Comparing Algorithm Traits ........................................................................................................................ 56 

7.3 Future Research ......................................................................................................................................... 58 

8 Conclusion ........................................................................................................................................................... 59 

9 Appendix .............................................................................................................................................................. 60 

9.1 Datasets ...................................................................................................................................................... 60 

 Real Datasets ......................................................................................................................................... 60 

 Randomized Real Datasets .................................................................................................................... 61 

 Artificial Datasets .................................................................................................................................... 62 

9.2 Experiment Parameters .............................................................................................................................. 63 

10 References ...................................................................................................................................................... 64 

 

 



 

Orteliuslaan 15  |  3528 BA Utrecht, The Netherlands  |  T (+31) 30 767 0352  |  info@friss.eu  |  www.friss.eu                                Page 5 of 66                                             
 

1 Introduction 
 
The work described in this thesis takes place at FRISS. FRISS is a consultancy and software company specialized in 
fraud- and risk management for the insurance sector. FRISS focusses on three key areas: underwriting, claims and 
compliancy. In this thesis we will focus on the underwriting process. Underwriting refers to the process in which 
an insurance company assesses the risk to accept an individual as a client, i.e. a policy holder, into an existing 
portfolio, i.e. the total set of accepted policies.  
 
By definition insurance refers to the transfer of a risk, from one entity to another, in exchange for money. From 
the insurer’s perspective, accepting a client has two main effects. Firstly, the insurance company becomes liable 
for a predefined set of claims. Secondly, the insurance company receives systematic payments for the duration of 
the policy. The rejection of a policy application induces a loss of income for the insurer, however, it also frees 
them from having to pay potentially high claim amounts.  
 
The value of the insurer’s portfolio is related to the total premium income (P) taken over all policy holders in the 
portfolio and the total claim amount (S) that must be paid to the insured parties. The portfolio value is often 
taken as 𝑊 = 𝑃 − 𝑆 or as the loss ratio i.e. 𝐿 = 𝑆 𝑃⁄ .   
 
A key question in this context is the following: 
 
Can we systematically predict which clients will likely file claims after acceptance, based on an a priori known set 

of measurable features and can we use this information to increase the total value of a portfolio?” 
 
In essence, we seek to find a risk score, based on a limited set of measurable features, that can be used to 
determine which clients to accept and which clients to reject.  
 
A feature, also called risk indicator, here answers a particular question on a set of characteristics of a client e.g. 
“Does the client have a history of bad credit debt?”, “Does the client have a history of previous claims?”, “Is the 
client a young person?” etc. In the context in which FRISS operates all these types of questions can be given a ‘yes’ 
or ‘no’ answer. If the answer to the question a feature relates to is ‘yes’ we say the client, from here on called a 
case, has a hit on the particular feature. The number of features used within a specific configuration varies 
between 100 and 500. 
 
FRISS specializes in constructing risk scores that inform insurers on the risk of accepting policy applications. 
Typically, the higher the score, the higher the risk. Furthermore, FRISS provides the insurers a technical platform 
that, for a given case, can automatically gather all the necessary raw data from various internal and external data 
sources to measure the required features. Measuring features is done using decision tables, predictive models 
and profiles. Finally, the platform combines the features into a single risk score, known as the FRISS score. In this 
process, each feature is associated with a weight. For a given case, the FRISS score is the sum of all the feature 
weights for which a case has a hit.  
 
The exact weight of a feature is determined in a portfolio value analysis (PVA), which is the topic of the next 
section. Briefly, a PVA is a retrospective analysis on a historic portfolio in which all feature hits for all cases are 
known a priori, as well as the received premium and claim amounts. 
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Figure 1: A portfolio with cases and the main components 
of an individual case. Each individual case is associated 
with a 3 attributes i.e. (i) a claim amount, (ii) a premium 
income and (iii) a set of feature measurements. 

 
Figure 1 shows a toy example of an insurer’s portfolio in which each individual case is depicted as a circle. Each of 
the cases is associated with a claim amount, a premium income and a set of feature hits with corresponding 
weights. 
 
 

Figure 2: The cases divided into the accepted (A) and 
rejected (R) sets, based on the FRISS score and the cut-off. 
The cut-off value is taken as 100. 

 
 
 
The FRISS score is used to divide the portfolio into cases with an acceptable risk and an unacceptable risk, based 
on a specific cut-off value. When the FRISS score is higher or equal the cut-off value, the case is rejected, else it is 
accepted into the portfolio. Figure 2 shows a possible division of the portfolio into an accepted and a rejected set. 
 
Note that by changing the feature weights, we can change which cases end up in the accepted set, which in turn 
changes the accepted total premium income and the total claim amount. Ideally, we would like to optimize the 
feature weights in such a way that the value of the accepted set is maximized. However, in practice most insurers 
impose volume constraints on their portfolio by indicating that in a PVA at most 𝑥% of the cases can be rejected. 
With this in mind the research question of this thesis is: 
 
“How to select an optimal weight vector that maximizes the value of the accepted set of cases, while still 
respecting the volume constraint?” 
 
To find a solution to this combinatorial optimization problem, we propose to use meta-heuristic search 
algorithms. Meta-heuristic algorithms attempt to find feasible solutions for difficult optimization problems and 
problems with large search spaces. They combine a lower level search algorithm with a meta search strategy. A 
lower level search algorithm can easily get stuck into a specific part of the search space, being a local optimum, 
see Figure 3, or a large area with an almost equal objective value. A meta strategy is a higher level search strategy 
that helps the search algorithm to escape such local optima, or to lead the search algorithm to more fruitful areas 
in the solution space. Prime examples of meta-heuristic algorithms are Tabu Search [12] and Simulated Annealing 
[20]. 
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Figure 3: The optima of a part of the search space. If an 
optimum has the best objective value of the whole search 
space, it is called a global optimum. If it is the optimum of a 
certain search space area, but not the global optimum, then 
it is called a local optimum. 

 
 
 
 
The basics of a meta-heuristic algorithm are shown in Figure 4. For the problem described above we start with an 
initial solution for the feature weights. Then at every iteration the algorithm generates new solutions from the 
current solution by systematically manipulating specific parts i.e. the feature weights, while keeping the rest 
unchanged. This in essence creates a neighbourhood of solutions in relation to the current solution. The solutions 
in the neighbourhood are ‘close’ to the current solution. Subsequently the algorithm selects the best solution in 
the neighbourhood and takes this as its new current solution. This process continues until a convergence criterion 
is reached, after which the search stops.  
 
 
 
 
 
 
 
 
 
Figure 4: A) assume we have 6 features, a portfolio and a start solution of weights. For this weight vector the SPR = 
0.75. B) at each iteration the feature weights of the current solution are manipulated, leading to 5 new solutions C) The 
best generated solution is selected and replaces the current solution, after which the process repeats. 

In the upcoming sections we will dive deeper into the specifics of meta-heuristic algorithms and investigate their 
utility on generating high quality solution for portfolio value analysis as encountered at FRISS. Furthermore, to 
make proper comparisons we also generate artificial datasets for which specific characteristics e.g. portfolio size, 
loss ratio, etc., can be fully controlled.  
 
Finally, the results in this thesis are accompanied by an interactive web application build with the R/Shiny 
framework [05,22] making all results fully reproducible and in line with the guides of reproducible research 
proposed by Knuth (1984) [21]. 
 

Ch. Title Information 

2 Problem Description Formal definition of the research problem 

3 Meta-Heuristics Description of the meta-heuristic research field and algorithms 

4 Materials and Methods The available data, objective function and implemented algorithms 

5 Shiny Application Description of the interactive shiny application 

6 Results and Analysis The performed experiments, results and analysis of the results 

7 Discussion Discussion and future research  

8 Conclusion A short overview of the most important findings and results 

9 Appendix The dataset and experiment parameters 

10 References A list of related literature 
Table 1: A brief overview of the chapters and their contents. 
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2 Formal Problem Description 
 
In the current situation, the FRISS score is a based on weighted features, with the weights based on the 
knowledge of experts and previous portfolio value analysis. We expect that the effectiveness of the FRISS score 
can be greatly improved by basing the weights directly on historical, i.e. empirical, data. A challenging aspect of 
such data is that the data can be quite noisy and is certain to include relatively large outliers. In such scenarios it is 
important to develop proper evaluation schemes which warrant against overfitting and allow for robust 
estimation of parameters.  
 
In practice, the FRISS score is used to divide the portfolio into cases with an acceptable risk and an unacceptable 
risk. More formally, let A denote the set of accepted cases, the cases with acceptable risk. Assume all of these 
cases have a FRISS score lower than a specific cut-off value C. Furthermore, let R denote the set of rejected cases, 
the cases with unacceptable risk. Similarly, these cases all have a FRISS score equal to or higher than C.  
 
The goal of the portfolio value optimization is to find a set of feature weights and a cut-off C such that the value of 
the set of accepted clients is maximized, in a sense to be made precise. For instance, two alternatives to 
determine the value of the set of accepted clients are the loss ratio and the portfolio value. Note that rejecting a 
client has two main effects i.e. we lose the premium income associated with this client, but any associated claims 
will not have to be paid out. 
 
To determine the value of the accepted set, we will use the loss ratio of this set.  The loss ratio is the total claim 
amount of the cases divided by the total premium income of the cases, where both the total claim amount and 
the total premium amount are over the cases in the accepted set. The loss ratio states how much claim amount 
the insurer must pay-out for every euro of premium income. Hence we can maximize the portfolio value by 
minimizing the loss ratio. 
 
More formally, assume we have a set of K features. Let 𝑤𝑘 denote the weight of feature k and w the weight 
vector. Furthermore, let 𝑝𝑖  and 𝑠𝑖 denote the total premium income and total claim amount associated with case 
i, and let 𝑓𝑖 denote the associated FRISS score. Finally, let 𝟙𝑖,𝑘 represent an indicator variable which equals 1 if 
case i has a hit on feature k and 0 otherwise. The FRISS score of case i then equals: 

𝑓𝑖 = ∑ 𝑤𝑘  ∙  𝟙𝑖,𝑘

𝑘 ∈ 𝐾

 

Next, let  𝑃𝐴 =  ∑ 𝑝𝑖𝑖 ∈ 𝐴    denote the total premium income associated with the accepted set and let 𝑆𝐴 =
 ∑ 𝑠𝑖𝑖 ∈ 𝐴    denote the total claim amount associated with the accepted set. The loss ratio of the portfolio is then 
defined as 𝐿 = 𝑆𝐴 𝑃𝐴⁄ .  
 
As in practice most insurers impose volume constraints on their portfolio. For instance, the set of rejected cases 
R, can be at most 𝑥% of the total portfolio.  
 
The main research question thus can be reformulated as:  
 
Which weight vector w minimizes the loss ratio, while at most x% of the portfolio is rejected? 
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Mathematically, the full weight optimization problem can be formulated as the following constrained 
optimization problem:  
 
Minimize: 

(1) 𝐿  =  𝑆𝐴 𝑃𝐴⁄                                                             
Under: 

(2) 𝑃𝐴 = ∑ 𝑎𝑖 ∗ 𝑝𝑖

𝑖𝜖𝐼

                                                      

(3) 𝑆𝐴 = ∑ 𝑎𝑖 ∗ 𝑠𝑖

𝑖𝜖𝐼

                                                      

(4)  𝑎𝑖 =  {
1
0

  
∑ 𝑤𝑘 ∗  𝟙𝑖,𝑘 < 𝐶𝑘𝜖𝐾

𝑒𝑙𝑠𝑒
                            

(5) ∑ 𝑎𝑖 ≥ 𝑥 ∗ 𝐼

𝑖𝜖𝐼

                                                          

       
Formula (1) shows the loss ratio optimization formula for the portfolio. Constraints (2) and (3) define the 
premium income 𝑃𝐴 and the claim amount 𝑆𝐴 of the accepted cases, while constraint (4) defines when case i is 
accepted into the portfolio. Finally, constraint (5), defines the only real constraint, namely that we can only reject 
𝑥% of the portfolio. Table 2 shows an overview of the variables used in (1) to (5). 
 

Variable Description 

𝑳 The loss ratio of the portfolio associated with the accepted set 

𝑺𝑨 The total claim amount associated with the accepted set 

𝑷𝑨 The total premium income associated with the accepted set 

𝒊 𝝐 𝑰 i = 0,…,#cases 

𝒌 𝝐 𝑲 k = 0,…,#features 

𝑪 The cut-off value. 𝐶 𝜖 𝑅+ and integer. 

𝒂𝒊 Is case i accepted into the portfolio? 𝑎𝑖 𝜖 {0, 1}. 

𝒑𝒊 Total premium income associated with case i 

𝒔𝒊  Total claim amount associated with case i 

𝒘𝒌 The weight of feature k. 0 ≤ 𝑤𝑘 ≤  𝐶. 
𝒙 The maximum percentage of rejected portfolio 

𝟙𝒊,𝒌 Indicator variable which equals 1 if case i has a hit on feature k and 0 otherwise 
Table 2: The variables of formula (1) and constraints (2) to (5). 
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3 Meta-Heuristics  

We approach the portfolio value optimization problem described in the previous sections as a combinatorial 
optimization problem with constraints and use the advanced meta-heuristic search procedures to identify high 
quality solutions as described by Aarts et al. (2003) [01]. 
 
Meta-heuristic algorithms represent a class of search algorithms that attempt to find feasible solutions to difficult 
optimization problems with large search spaces. Typically the size of the solution space prohibits an exhaustive 
search of the whole space. Meta-heuristics provide a way to sample solutions from the solution space in order to 
find sufficiently good solutions. They combine a lower level heuristic search algorithm with a meta search strategy 
or, using the words of Bianchi et al. (2008) [H], meta-heuristic algorithms combine heuristics in a more general 
framework by using higher level concepts and search strategies.  
 
Heuristic versus meta-heuristic algorithms 
The important difference between a heuristic algorithm and a meta-heuristic algorithm lies in the higher level 
search strategy. To show a difference, let us take a look at the heuristic Hill Climbing algorithm. This algorithm 
uses a simple heuristic, namely “Having a current solution, search the neighbouring solutions for a better solution. 
When such a solution exists, move to this found solution and search again. When no better solution can be found, 
then terminate the algorithm”. 
 
When we use this algorithm on a search space as shown in Figure 3 of chapter 1, or Figure 12 of section 3.1.4, and 
would our initial solution be on the left of the given local optimum, then the Hill Climbing algorithm might end up 
in this local optimum and then terminate. However, we are searching for the global optimum more to the right. 
The heuristic algorithm is not able to escape from local optima and actively search for the global optimum.  
 
However, the meta-heuristic algorithm combines a heuristic algorithm, like the Hill Climbing algorithm, with a 
strategy to escape the local optima of a search space, or a large area with almost equal or low objective values, 
and allows the algorithm to find solutions closer to the global optima. An example of such strategy can be found 
in the meta-heuristic algorithm Tabu Search [15]. In the Tabu Search algorithm, the higher level strategy forces 
the algorithm to accept solutions with worse objective values when solutions with better values cannot be found. 
Also the strategy blocks the algorithm to move back to the previous position in the search space. 
 
Meta-heuristic algorithms 
Classic meta-heuristic approaches include e.g. Evolutionary Algorithms [09] and Simulated Annealing [20]. More 
recent approaches are based on evolutionary computing methods such as Particle Swarm Optimization [19] and 
Covariance Matrix Adaptation Evolutionary Strategies [16]. Furthermore, additional constraints and/or 
augmented objective functions may be developed in order to combat overfitting and to reduce the impact of 
calamities i.e. data outliers.  
 
In the upcoming sections we provide an overview of the various concepts used in modern search algorithms and 
provide a list of strategies that will be implemented to tackle the portfolio analysis problems as described in this 
thesis.  Many of these algorithms share concepts and ideas which can be combined into a set of algorithms known 
as hybrid-meta-heuristics. 
 
The next sections offer a more in-depth coverage of the various concepts related to search algorithms. Section 3.1 
describes the different ingredients found in many meta-heuristic algorithms, while section 3.2 provides an 
overview of the meta-heuristic algorithms that we will use in this research. Finally, section 3.3 shows some 
practical considerations about generating solutions. 
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3.1 Search Concepts 

In order to clarify the different ingredients found in modern meta-heuristics, we consider the following toy search 
problem. Given a set of features, which take integer values 0 to 9, and an objective function that maps feature 
vectors to objective values, find the best four feature combination, i.e. the feature vector of four features with 
the highest objective value. 
 
In this case the complete solution space consists of all possible combinations of the four features. As each feature 
has one out of 10 different values, there are 104possible combinations in the search space, ranging from 0000 to 
9999. 

 Initial Solution 

The initial solution, or solutions, is the starting location of the algorithm within the search space. The algorithm 
can generate this solution itself, e.g. by using a construction algorithm, or it can be given an existing solution. 
Depending on the problem at hand generating a feasible initial solution to optimization problems with constraints 
can already be a difficult problem by itself. For the toy example we arbitrarily take 0000 as our initial solution. 

 Neighbourhood, Solution Space, Move and Path 

The neighbourhood of the current solution contains all solutions that can be reached from the current solution by 
manipulating the current solution in a pre-defined systematic way. This gives us a finite set of new solutions 
which can be searched in its entirety. For instance, for the toy example we may create a neighbourhood by 
setting each of the four features to another integer value (see Figure 5). 
 
Figure 5 shows the current solution (black circle) is 0000, while the neighbourhood (red circles) consists of 
solutions which have 1 added to one of the four features of the current solution. 

 
 
 

Figure 5: The neighbourhood of the current solution. Each, 
red circled, solution in the neighbourhood has 1 added to 
one of its four features. 

 
 
 
 
When we chose one of the red solutions as our next solution, we call this a move. Hence, the search algorithm 
moves from one solution to the next in the search space. As we change solutions, the neighbourhood also 
changes. This can be seen in Figure 6. We have chosen solution 0100 as our new current solution and moved to 
that solution. Note that our previous solution from Figure 5 now is in the neighbourhood of our new current 
solution. 
 
 
 

Figure 6: When we chose a solution from our 
neighbourhood as our next current solution. We conduct a 
move. Also the neighbourhood changes. 
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At every iteration of the search algorithm we select a move. A chain of moves is called a path, because in essence 
the algorithm walks a path in the solution space, shown as the orange lines in Figure 7. In this case the first 
solution of the path is the initial solution, while the final solution, 0210, is the current solution after a path 
consisting of three moves. 
    

 

Figure 7: A path is a sequence of moves. The initial solution 
is the starting location of the path. The current solution is 
the final location of the path consisting of three moves. 

 

 

Considering Figure 5, we wrote that the solution neighbourhood is generated by systematic changing a solution’s 
features. This changing of the features can incorporate two different strategies: intensification and diversification 
strategies. As Glover et al. (2007) [20] describes, intensification strategies are based on changing features to 
encourage feature combinations which historically were found good. Also they may initiate a return to 
interesting, or attractive, search space areas to search them more thoroughly. On the other hand, diversification 
strategies seeks to incorporate new feature values and feature combinations within solutions, allowing for 
broader search. 

 Trajectory- and Population-based Algorithms 

Meta-heuristic algorithms can be divided into two main categories: trajectory-based and population-based 
algorithms. Trajectory-based algorithms manipulate a single solution at each iteration. Each iteration a 
neighbourhood is generated around the current solution and best solution in the neighbourhood is chosen to 
replace the current solution. Doing this several times creates a path as shown in Figure 7.  
 
In contrast, population-based algorithms handle multiple solutions at once. This set is often referred to as the 
population. A neighbourhood is generated for each solution, sometimes by combining the features of multiple 
solutions. Subsequently, the current population, or a part of the current population, is replaced by solutions from 
the neighbourhood. Figure 8 shows an example in which one current solution survives and the two others are 
replace by solutions from the neighbourhood. 
 

 

Figure 8: Select which solutions of the current iteration will 
be used in the next iteration. Both the solutions of the 
neighbourhood and the current solutions can be 
considered. 
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 Local and Global Optima 

The objective values of solutions in neighbouring areas are often related. Furthermore, a solution can be optimal 
for a given search space area. In this context we consider local and global optima. If an optimum has the best 
objective value of the whole search space, it is called a global optimum. If it is only the optimum of a small area in 
the search space, it is called a local optimum. Figure 9 shows a 2D search space with a local and a global optimum. 

 

 

 

Figure 9: The optima of a part of the search space. If an 
optimum gives the best objective value of the whole 
search space, it is called a global optimum. If it is the 
optimum of a small search space area, it is called a local 
optimum. 

 

 

 Cycling 

An important aspect of search algorithms is how they escape from local optima. For instance, from figure 9 it is 
clear that in order to escape the local optimum we must accept moves that will temporarily decrease the 
objective value of the current solution. However, when we allow this, the new solution typically has the previous 
local optimum as one of its neighbouring solutions. Note that a move to this neighbour, the local optimum, would 
increase the objective value again. Would we do this for a deterministic search strategy we are trapped and the 
algorithm will cycle between those two moves, see Figure 10 A) for a small example. However, cycles of more 
moves are also possible, see Figure 10 B). 
 
Thus, an essential part of search algorithms is how to escape local optima while preventing cycling, also long-term 
cycling. For instance, Tabu Search, see section 3.2.2, does this by maintaining a tabu list which prevents such 
moves from happening, while another approach is to allow for randomization which is a key factor in Evolutionary 
Algorithms, see section 3.2.1, as accepting random moves will typically decrease the possibility of cycling. 
 

Figure 10: A) Cycling between two solutions: We are in the 
local optima 2300. When we move to 2400 (move 1), we 
leave the local optima. If we then choose move to 2300 
again (move 2), we enter the same local optima again.  
B) Cycling between multiple solutions: We start at the initial 
solution, 0000, then walk a path consisting of moves 1, 2 
and 3. Would we make move 4, we end up at our initial 
solution after a cycle consisting of moves 1 to 4. 
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 Granularity 

The granularity determines the detail used in selecting the feature weights. When the granularity is low, more 
distinct feature weights are available. For instance, a granularity of 1 allows the use of all integer weights 
between 0 and the cut-off value C. While a granularity of 10 only allows the integer values 0, 10, 20, etc. till the 
cut-off value to be used. Granularity is closely related to intensification, as a lower granularity leads to a higher 
degree of intensification, as the algorithm can stay longer in an area when there are more possible solutions. 
 

Granularity Possible Feature Weights 
0 (continuous) All decimal weights between 0 and C 
1 All integer weights between 0 and C 
5 0, 5, 10, …, C 
10 0, 10, 20, …, C 

Table 3: The different feature weights for different granularities. C is the cut-off value. 

Note that some algorithms use continuous feature weights and, when the granularity is not continuous, the 
objective function rounds the feature weights before the objective value is calculated. 
 

3.2 Algorithms 

In the sections above we have described various aspects related to modern meta-heuristic search algorithms. In 
the upcoming sections we describe four meta-heuristic search algorithms from recent literature that incorporate 
many of the above described ingredients. The algorithms have been chosen to represent very different algorithms 
within the meta-heuristic research field and have proven to be able to provide high quality solutions to many 
challenging optimization problems. The selected algorithms include (1) Evolutionary Algorithms (simple variant), 
(2) Tabu Search, (3) Particle Swarm Optimization and (4) Covariance Matrix Adaptation Evolutionary Strategy 
(complex Evolutionary Algorithm variant). 
 

 Evolutionary Algorithms 

The population-based evolutionary algorithms are inspired by natural evolution and originate from the 1960’s. 
Evolutionary algorithms are one of the first meta-heuristic algorithms. Evolutionary Algorithms are population-
based algorithms. 

Figure 11: The general scheme of an Evolutionary 
Algorithm. First initialize the population, then choose 
the parents that may reproduce. Next, create offspring 
from the parents by using recombination and mutation. 
Finally, select the survivors from the population and 
the new offspring as the next generation of solutions. 
When you hit a stop criteria, terminate the algorithm. 
([13] - Figure 3.2) 
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Pseudo-code 1: The pseudo-code for the 
general scheme of the Evolutionary Algorithm 
as shown in Figure 11.  ([13] - Figure 3.1) 

 
 
 
 

Figure 11 shows the general scheme of the algorithm and Pseudo-code 1 shows the algorithm’s pseudo-code of 
the general scheme. In the initialisation phase the initial population is generated. The population is the group of 
solutions which are used in the algorithm. This initial population is mostly generated randomly, but can for 
example also consists of already known good solutions. Each solution has a certain fitness value based on their 
features, their genes. The higher the fitness of a solution, the better the solution is. 
 
Next is the parent selection. The parents, solutions chosen from the current population, will reproduce and create 
new solutions, the offspring. A stochastic process is used to determine which solutions become the parents. In 
this process even the solution with the worst fitness has a probability of becoming a parent. 
 
The reproduction of the parents is done in the recombination phase. The parent’s genes are merged and each 
gene of the offspring is chosen randomly from one of the parents. Figure 12 shows this process on a small scale 
with only 4 genes. The first and fourth gene of the first parent end up in the first offspring and the second and 
third gene come from the second parent. The other genes end up in the second offspring. 
 

 

Figure 12: Recombination of two parents to create two 
offspring. Two genes of each parent end up in each 
offspring. 

 
 
Immediately after the recombination phase comes the mutation phase. In the mutation phase small changes are 
performed to the genes of the offspring, e.g. changing a gene from 3 to 4. 
 
Then the survivors from the current generation are chosen. Both the solutions from the population and the 
offspring can survive and be in the population in the next generation. Each solution has a probability to survive, 
based on, for example, their fitness. The higher the fitness of a solution, the higher the chance to survive. 
 
Finally, the termination phase determines when the algorithm stops and the solution with the highest fitness is 
returned. The stop criterion for the termination can be i.e. the algorithm reached the maximum number of 
generations or the algorithm has not found an improvement for a number of generations. [13] 
 
 
 

BEGIN 
   INITIALIZE the population with candidate solutions 
   EVALUATE each candidate 
   REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO 
      1 SELECT parents 
      2 RECOMBINE pairs of parents 
      3 MUTATE the offspring 
      4 EVALUATE the offspring 
      5 SELECT individuals for the next generation 
   OD 
END 
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 Tabu Search 

Tabu Search is a trajectory-based algorithm designed to actively escape local optima and to prevent cycling. 
Cycling is prevented by declaring the move tabu. The algorithm is not allowed to choose a tabu-declared move for 
the next couple of iterations, keeping the algorithm from cycling into the same solutions or local optima, after just 
escaping those the previous iteration. Glover (1986) [14] introduced the algorithm and explains it more 
thoroughly in “Tabu Search – Part 1”, Glover (1989) [16], and “Tabu Search – Part 2”, Glover (1990) [17]. Tabu 
Search algorithms often use of adaptive memory and responsive exploration based on the stored memory. 
Adaptive memory refers to the fact that the algorithm stores data about the search in memory which it 
subsequently uses to improve the search process by using this data for creating more specific solutions or, for 
instance, to move to another part of the search space. This is called responsive exploration. Data that can be 
stored includes: timing, solution quality and the impact of a move [16,19]. 

 
 
Figure 13: The tabu search algorithm cycle. Initialize the 
solution, then select the candidate solutions from the 
neighbourhood. Continue by checking the candidates 
against the tabu list and selecting the best candidate. 
Finally, update the tabu list and replace the current 
solution by the best candidate solution. 

 
 

 
 
 
 
Pseudo-code 2: The pseudo-code for the 
general scheme of the Tabu Search algorithm 
as shown in Figure 13 (Adapted from [06] – 
Algorithm 2.10.1) 

 
 
 
 
 

The single solution is randomly generated in the initialisation phase. The objective value is determined by the 
objective function and a higher objective value means a better solution. 
 
Each iteration the neighbourhood of the current solution is generated. All candidate solutions in the 
neighbourhood can be reached by changing the features of the current solution in a predefined manner. Each 
candidate solution in the neighbourhood is checked against the tabu list. The tabu list contains previous feature 
changes. These feature changes are ‘tabu’. The algorithm is not allowed to redo these stored feature changes, 
generating solutions found in previous iterations. Adding feature changes to the tabu list reduces the probability 
of cycling, because for a number of iterations making specific changes to specific features are not allowed. 
 
When a candidate solution passes the tabu list check, the candidate is added to the candidate list as possible 
solution for the next iteration of the algorithm. After all candidates have been checked, the candidate solution 
with the highest objective value is taken from the candidate list. This candidate solution replaces the current 
solution and the feature differences between the two solutions are added to the tabu list. Finally, feature changes 

BEGIN 
   INITIALIZE the current solution, the tabu list and the candidate list 
   REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO 
      1 GET the neighbourhood for the current solution 
      2 FOR EACH candidate from the neighbourhood DO 
           a CHECK if features of the candidate are on the tabu list 
           b ADD candidate to candidate list if it passed ‘a’ 
         OD 
      3 SELECT the best candidate from the candidate list 
      4 UPDATE the current solution with the best candidate 
      5 UPDATE the tabu list 
   OD 
END 
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are removed from the feature list, when the number of feature changes is larger than the maximum size of the 
tabu list. 
 
The algorithm is finished when the termination condition is satisfied. This condition can i.e. be reaching the 
maximum number of iterations or not having found an improvement of the objective value for a number of 
iterations. [06] 
 

 

Figure 14: When at iteration 1 the move 0000  0100 is chosen 
from the solutions in the neighbourhood, the move 0100  
0000 is placed on the tabu list. In iteration 2 the solution 0000 is 
not considered as a valid solution in the neighbourhood, 
because the move to reach the solution is on the tabu list. 

 

 

 Particle Swarm Optimization 

The Particle Swarm Optimization algorithm is a population-based algorithm, which is based on bird flocking 
simulations. The algorithm was introduced by Kennedy & Eberhart (1995) [25]. Each solution, or particle, has a 
velocity which directs the movement of the particle through the search space.  
 
In the initialisation phase the particles from the swarm are generated randomly scattered throughout the search 
space and get a random velocity. Each particle contains the following information: its position in the search space, 
the fitness value of this position, the velocity at which it moves. Also it stores, in memory, its best known position 
and the fitness value of this position.  

 
Figure 15: The algorithm cycle. Initialize the swarm with random 
position and velocity. Communicate with other particles and 
update your velocity, position and best known position based 
on that information. (Based on [07] – Algorithm 6.2.1) 
 
 

 
 
 
 
Pseudo-code 3: The pseudo-code for the 
general scheme of the Particle Swarm 
Optimization algorithm as shown in Figure 15 
(Adapted from [07] – Algorithm 6.2.1) 
 
 
 
 
 

 
Each time step each particle communicates with up to K other particles and exchanges information about their 
previous best location. The particles communicated with are called informants. Each time step, if the best solution 
has not been improved, the informants of each particle are randomly reassigned. [09,10] 
 
 
 

BEGIN 
   INITIALIZE the particle swarm 
   REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO 
      1 FOR EACH particle in the swarm DO 
           a COMMUNICATE with up to K other particles 
           b UPDATE velocity of particles 
           c UPDATE position of particles 
           d UPDATE previous best and fitness value of particles 
      OD 
   OD 
END 
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Following M. Clerc (2010) [09], the new velocity of particle i is calculated with formula 
𝑣(𝑡 + 1)𝑖 = 𝑤 ∗ 𝑣(𝑡)𝑖 + 𝐶1 ∗ (𝑝(𝑡)𝑖 − 𝑥(𝑡)𝑖) + 𝐶2 ∗ (𝑙(𝑡)𝑖 − 𝑥(𝑡)𝑖), where 𝑣(𝑡)𝑖 is the velocity of particle i at 
time step t, 𝑝(𝑡)𝑖  is the previous best location of particle i, 𝑥(𝑡)𝑖  is the current location of particle i and 𝑙(𝑡)𝑖  is the 
previous best location of all the informants. 𝐶1 and 𝐶2 are drawn from a 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0, 0.5 + ln(2)) distribution 
and 𝑤 = 1 (2 ∗ ln(2))⁄ . Then the new position of the particle is calculated with the formula 
𝑥(𝑡 + 1)𝑖 = 𝑥(𝑡)𝑖 + 𝑣(𝑡 + 1)𝑖. When the velocity and position of all particles have been updated, then the 
previous best location and fitness value of each particle is updated. 
 
Figure 16 shows an example of the updating of the velocity and position of a particle. Part A shows the 
information that particle i, currently has. Part B shows the calculation of the new velocity. Note that 𝐶1, 𝐶2 and 𝐶3 
have already been drawn. Finally, part C shows the new position for particle i.  

 
Figure 16:  
A) The current information of particle i.           
B) Calculating the new velocity based on the current 
information. Note that to simplify this example 𝒘 =  𝑪𝟐 = 𝟎. 𝟐𝟓 
and 𝑪𝟏 = 𝟎. 𝟓𝟎. 
C) Calculating the new position of particle i, using the new 
velocity. 
 

 
The algorithm terminates and returns the best found position in the search space when the stop criterion is 
satisfied. This stop criterion can i.e. be that the maximum time step has been reached or that the swarm has 
flocked together in a small area in the search space. 
 

 Covariance Matrix Adaptation Evolutionary Strategy 

Hansen et al. (2001) [22] propose the trajectory-based Covariance Matrix Adaptation Evolutionary Strategy (CMA-
ES) algorithm as an improvement of standard Evolution Strategy algorithm for local optimization, as well as global 
optimization [17]. The algorithm is designed to solve problems that cannot easily be solved by naïve random 
search, i.e. brute-force search and deterministic search. Based on the chosen population size, CMA-ES can be a 
trajectory-based or population-based algorithm. The generation cycle of the algorithm is shown in Figure 17. 
 

Figure 17: The generation cycle of the CMA-ES algorithm. 
Start with initialisation of the population. Choose the 
parents that my generate offspring by recombination and 
mutation. Select the solutions from the offspring and 
current population that survive. Then conduct self-
adaptation on the recombination, mutation and selection 
parameters. Finally, when you hit a stop criterion, 
terminate the algorithm. (Based on [13] – Figure 3.1) 
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Pseudo-code 4: The pseudo-code for the 
general scheme of the CMA-ES algorithm as 
shown in Figure 17 (adapted from [02], slide 16) 
 
 
 
 
 
 

The initialisation phase generates the initial population with population size µ, which are generated randomly, 
and the self-adaptation parameters of this solution. 
 
Following Auger et al. (2013) [02], 𝜆 offspring solutions are generated each generation g. The offspring for 

generation g is generated using the formula 𝑥𝑖
𝑔

 ~ 𝑚𝑔−1 +  𝜎𝑔−1 ∗ 𝑁(0, 𝐶𝑔−1) for each of the 𝑖 = 1. . 𝜆 offspring. 

In this formula 𝑚𝑔−1 is the weighted average of the population of generation g-1, 𝜎𝑔−1 is the mutation step size 
of generation g-1 and is based on the length of the evolution path of m over the previous generations. The 
evolution path is the distance in the search space that m covered in the previous generations. When the evolution 
path is long then make 𝜎𝑔 >  𝜎𝑔−1 and when the evolution path is short 𝜎𝑔 < 𝜎𝑔−1. Last is 𝐶𝑔−1, which is the 
covariance matrix used by the multi-variate normal distribution in generation g-1. 
 
As most evolution strategy algorithms CMA-ES uses parent selection, recombination and mutation.  These are 
hidden in the update steps of the self-adaptation parameters. The parent selection and recombination steps can 
be found in calculating 𝑚𝑔−1. 𝑚𝑔−1 is the weighted average over the poulation of generation g-1. [21] When a 
weight is 0 then that specific solution is not selected to become a parent and all solutions that become parents 
recombine their features to create 𝑚𝑔−1. Mutation is included in the generation of the offspring for generation g. 
We add values drawn from the multi-variate normal distribution 𝑁(0, 𝐶𝑔−1) to 𝑚𝑔−1.  
 
The most important part of the self-adaptation of the CMA-ES algorithm is updating the covariance matrix. The 
covariance matrix keeps track of the pairwise dependencies between the solution variables. By keeping track of 
these dependencies the algorithm aims to increase the likelihood of repeatedly producing succesful mutation 
steps. 
 
The algorithm terminates and returns the best found solution when the stop criterion is satisfied. This stop 
criterion can i.e. be that the maximum number of generations has been reached or that the fitness value has not 
been improved for a number of generations. 
 

3.3 Practical considerations of solutions 

In practical applications three criteria come into play in accepting solutions, i.e. the solution feasibility, the 
solution generalization and the solution complexity. 

 Feasibility 

In the context of the portfolio value analysis problem described in this work, a solution is considered feasible 
when it satisfies the rejection constraint, see formula (5) in chapter 2. This constraint states that the rejected set 
R can contain a maximum of 𝑥% of the portfolio. This fact makes it generally easy to construct feasible solutions. 

BEGIN 
   INITIALIZE the initial populations and the covariance matrix 
   REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO 
      1 SELECT the parents 
      2 SAMPLE the offspring 
      3 SELF-ADAPTATION of the search parameters 
           a UPDATE the mean 
           b UPDATE the covariance matrix of the normal distribution 
           c UPDATE parameter step size 𝜎 
   OD 
END 
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Furthermore, when solutions violate this constraint, they are easy to make feasible. Note that by changing 
enough feature weights to zero, we will always end up with a feasible solution. In addition, the 0-weight vector is 
always feasible as you do not reject a single case. 
 
Figure 18 shows a small example of two solutions. The first solution has a higher loss ratio and acceptance 
percentage, “% accepted”, and the second solution has a slightly lower loss ratio and reasonably lower 
acceptance percentage. When taking the minimum acceptance percentage as 0.90, or 90%, the first solution is 
feasible, while the second is not. 
 

Figure 18: Two solutions, the second solution has a slightly 
better loss ratio, but rejects more cases. Having the 
maximum reject percentage set to 10% makes the first 
solution feasible, while the second is unfeasible. 

 

 Overfitting 

A concern in applying meta-heuristics is that they can be too aggressive. When an algorithm generates solutions 
which work well on training data, but generalize poorly on unseen data, it is said to overfit the data. The 
overfitting can happen, for instance, due to the presence of outliers in the data, for instance, the algorithm tries 
only to remove cases with a high claim amount, instead of removing groups of cases which together have a high 
claim amount. Without proper care the meta-heuristics may focus on regions in the solution space that will lead 
to the rejection of outliers. This can lead to solutions that reject only a few outliers, which leads to a strong 
reduction in loss ratio, with minimum volume loss. However, the outliers in the portfolio data are typically 
random and do not represent systematic behaviour. Hence, focusing on non-representative data points may lead 
to overfitted solutions. In section 4.1.2 the outliers will be explained in-depth. 

 Solution Complexity 

Meta-heuristic algorithms have another problem besides overfitting, although there are similarities. The solutions 
that meta-heuristic algorithms find, can be very complex, because they have just found one special pattern that 
provides a very good solution. This means that a very complex solution can often be an overfitting solution.  
 
Also most complex solutions are hard to understand. Would we use the weight vector found by an algorithm, we 
must be able to understand the solution, or at least be able to explain what it does, based on the training data. 
We would like to be able to explain the weight vectors as FRISS provides its services to insurers. Insurers do not 
like to choose for black box solutions, because they must be able to explain to their clients why certain policies 
are rejected. 
 
To reduce the solution complexity we can use Occam’s razor [28]. This principle states, that when two solutions, 
one simple and one complex, predict equally well, then the least complex one should be chosen. When there is 
not enough information to truly determine the best solution, we can better choose the solution that makes the 
least assumptions or is easier to understand. There are voices against using Occam’s razor in certain situations 
[11]. However, for our problem simple and understandable solutions are the key. An additional advantage of 
using Occam’s razor is that the chance of a solution overfitting on the data is reduced by choosing simpler 
solutions. 
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4 Methods 

This chapter contains descriptions about the data and the different methods used in this thesis. First, section 4.1 
describes the data that was available for the thesis and which data we created ourselves. Section 4.2 shows the 
development of the objective function. Finally, section 4.3 shows the implementations of the algorithms, 
described in section 3.2, we will use to solve the problem. 

4.1 Data Description 

 Data 

The data of this thesis is divided into three different kinds: real data, randomized real data and artificial data. The 
real data consists of anonymized portfolio value analysis data, while the artificial data is generated by a dataset 
generator with user-specified parameters.  
 
Representation 
Each dataset contains cases and each case contains the total premium income, the total claim amount and the 
feature hits of the case. The premium income and the claim amount are decimal numbers, while the hit, or no hit, 
on a feature is binary. Figure 19 shows an example of some cases for a given dataset. 
 

 
Figure 19: Four cases. This dataset has 116 features (ind1…ind116), a claim amount and a premium income. “ind” 
stands for “risk indicator”. 
 
Case Characteristics 
We can roughly divide the cases of a dataset based on two characteristics i.e. the number of feature hits and the 
height of the claim amount. For the first characteristic, we consider two major differences i.e. cases with zero 
feature hits and cases with at least one hit. For the second characteristic, we consider differences in cases with a 
claim amount of zero, a normal claim amount and those with exceptionally high claim amounts i.e. the outliers in 
the dataset. The latter group is described more in-depth in section 4.1.2. Note that in a portfolio value analysis 
the cases with a FRISS score of zero will always be in the accepted group of policies as their score is always below 
the cut-off value.  
 
Compound Cases 
Datasets at FRISS typically contain many thousands of cases. The number of unique feature vectors i.e. hit 
patterns, however, is often much lower. For instance, all cases with a FRISS score of zero have the same hit 
pattern, i.e. none of them has any hits. The claim amount and premium income of cases with the same hit pattern 
can be summed up, combining multiple cases to a single case. This single case is called a compound case, as the 
single case is a composition of multiple cases with the same hit pattern. Combining cases can greatly reduce the 
size of most datasets and adds an extra item to the dataset, compound, which is the number of cases combined 
into the compound case. Figure 20 shows five compound cases. Generally, the size reduction allows for faster 
calculation of the objective value of a solution as there are fewer cases to compute the FRISS score for. 
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Figure 20: Five compound cases of a compressed dataset. They contain a total of 19067 cases, see the “compound” 
item. The claim amount and premium income are the sum of the claim amount and premium income of the compound 
cases.  “ind” stands for “risk indicator”. 

 Calamities 

The outliers in the data are often referred to as calamities. Calamities form an important part of the optimization 
problem. Calamities are cases with extremely high claim amounts. High claim amounts can occur e.g. when a 
house burns down or when an expensive vehicle is involved in an accident. These cases have a very large 
influence on loss ratio computations. When not properly addressed, the optimization process may bias towards 
solutions that only remove a few calamities. However, we cannot simply remove the calamities from the data, as 
they represent genuine claims. Also calamities cannot be easily modelled, because they occur mostly by chance 
and the number of calamites is typically small, around 0.15% of all cases with at least one claim.  
 
Which cases will be referred to as calamities are mostly determined by determining a maximum claim amount for 
a normal case and any cases with a larger claim amount are considered calamities. This maximum normal claim 
amount is typically the value of the 99.99th percentile of the claim amount distribution. At FRISS for cars the 
calamity value is taken as 25.000, but for housing this value is much higher. 
 

Figure 21: Five calamity cases. The claim amount is much higher than the claim amount of any normal claim. “ind” 
stands for “risk indicator”. 
 
Spreading Calamities 
We might deal with calamities by spreading them out over other claims. Spreading is a technique used by FRISS 
for portfolio value analysis. The claim amount of each calamity is capped at the maximum normal claim amount 
for a case, as explained in the last paragraph. We then sum the claim amount that is above this value, which we 
refer to as E, the excess amount. Then we divide the premium of each case, 𝑝𝑖, by the total premium amount over 
all cases, P, i.e. 𝑝𝑖% =  𝑝𝑖 𝑃⁄ . 𝑝𝑖% is the percentage of the total premium amount that is associated with case i. 
Finally, the claim amount of case i is increased by 𝑝𝑖% of the excess amount E. Note that the calamities also 
receive their share of the excess amount. 
 
This leads to a re-distribution of the claim amount in which the total loss ratio and premium amount remains 
unaltered, while the excess E is spread out over the cases in such way that cases with low premium amounts 
receive small corrections, while others receive larger corrections. Other approaches to deal with calamities are 
possible, but in this thesis only this approach is considered. Figure22 shows five spreaded cases of which the first 
two were calamity cases. 
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Figure 22: Five cases of a spread-out dataset. The first two cases were calamities, the last three cases were normal 
cases. The claim amount has first been topped-off at 25.000. Then the topped-off claim amount of the calamities has 
been added to the claim amount of all cases based on the premium amount of each case. “ind” stands for “risk 
indicator”. 
 
Note that spreading might reduce the overfitting of the meta-heuristic algorithms on the data as otherwise the 
algorithm may reduce the loss ratio only by removing only a few calamity cases. Such a move would indeed 
reduce the loss ratio, but will likely lead to a solution that generalizes poorly, because by far most calamities are 
related to chance effects. These chance effects are not possible to model e.g. someone had a car accident with 
bodily harm   

 Randomized Real Dataset 

The randomized real datasets are created from the normal real datasets.  First, the dataset is split into two parts. 
The feature hits and the pair of the claim amount and premium income. The feature hits and the pairs are then 
put together randomly, so that each combination of feature hits is joined with a new claim amount and premium 
income. This randomized real dataset will be used in the experiments of chapter 6 to determine if an algorithm 
can find a pattern where no pattern should be present i.e. to detect the ability of algorithms to overfit on the 
data. 

 Artificial Data 

Comparing the effectiveness of the meta-heuristics is challenging as the true relation of the measured feature set 
and the claim amounts is not known in the real datasets.  Therefore, we will create a set of artificial datasets to 
test specific scenarios in which the ground truth, i.e. the relation of the features and the premium and claim 
amounts, is known. These sets will be generated by an artificial dataset generator that is specially build for this 
thesis and forms an important ingredient in the experiments described in chapter 6. Knowing which features are 
correlated to the claim amount also helps to see if the algorithms pick the correct feature weights. 
 
The dataset generator generates datasets based on user input and the expert knowledge of FRISS. First, the 
internal parameters are calculated based on user input or on an existing dataset. These internal parameters are 
then used to stochastically generate the artificial dataset. 
 
The expert knowledge is knowledge that was obtained from historical data and previous portfolio value analysis. 
For instance, when we have a case, the number of claims of that case is Poisson distributed, see Figure 23, and 
the claim amount per claim is Lognormal distributed, see Figure 24. Finally, the premium income per case follows 
an Exponential distribution, see Figure 25. 
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Figure 23: The distribution of 
the calculated number of 
claims for one of the real 
datasets and 100.000 
instances of the Poisson 
distribution. We can 
conclude that the number of 
claims could be Poisson 
distributed. 

 
 
 
 
 
 
 
 
 
 
 
Figure 24: The log of the 
claim amount of a real 
dataset and the log of 
100.000 instances of the 
lognormal distribution. We 
can conclude that the claim 
amount could be lognormal 
distributed. 

 

 

 

 

 
 
 
Figure 25: The premium 
income and 100.000 
instances from the 
exponential distribution. We 
can conclude that the 
premium income could be 
exponentially distributed 
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We make two assumptions when generating an artificial dataset. The first assumption is that there is a connection 
between the number of feature hits and the chance to have one or more claims. In practise, for each feature hit 
of a case the mean of the Poisson distribution, used for that specific case, is increased by a small amount. The 
second assumption is that every case with at least one claim has the same chance of being a calamity case. 
 
An artificial dataset is divided into up to four different risk groups, risk groups 0 to 4. Each risk group can have 
different parameters. Each risk group has a specific set of features for which it can hit. However, risk group 0 
contains no features as this group contains all cases without feature hits. Cases in the other three groups can hit 
on their own features and the features of the lower risk groups, i.e. cases of risk group 1 can only hits on his own 
set of features, while cases of risk group 2 can hits on both their own set of features, as well as the features of risk 
group 1. Finally, each case of a risk group must have at least a single feature hit in his own group. 
 
Section 5.1 shows the artificial dataset generator as implemented in the application and the generation of data is 
explained more in-depth. 
 

4.2 Objective Function 

The objective function is used to determine how good a solution is. The solution with the best objective value is 
the solution returned by the algorithms after termination. Different options are available for measuring the 
objective value of a solution. For this thesis we focus on the loss ratio as the objective value of a solution. The 
basic objective function therefore is: 

(1) 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝐿𝑜𝑠𝑠𝑅𝑎𝑡𝑖𝑜 =  
𝑆𝐴

𝑃𝐴
⁄  

where 𝑆𝐴 is the total claim amount over all claims in the accepted set A and 𝑃𝐴 is the total premium income over 
all claims in the accepted set A. 
 
Taking the loss ratio as the objective value of a solution, immediately means that the best solution has the lowest 
objective value. However, our problem has a restriction on the number of cases that can be rejected, in other 
words the solution with the lowest objective value can be infeasible. Objective function (1) does not check if a 
solution is infeasible nor pushes the algorithm towards producing feasible solutions. It will only search for the 
solution that minimizes the loss ratio. 
 
By adding a penalty to the objective function, algorithms will be pushed towards producing feasible solutions, 
because a solution that is closer to being feasible has a lower penalty and thus can have a better objective value. 
This gives us objective function (2). 

(2) 𝑂𝑣𝑎𝑙𝑢𝑒 =  
𝑆𝐴

𝑃𝐴
⁄ + (1 − 𝟙𝑎%≥𝑥) ∗ (1 − 𝑥 − 𝑎%) 

           with 𝑎% =
1

𝐼
∑ 𝑎𝑖𝑖 ∈ 𝐼  

 
Objective function (2) incorporates a penalty in the form of (1 − 𝟙a%≥x) ∗ (1 − x − a%). When a solution is feasible, 

having 𝟙a%≥x = 1, then no penalty is given. However, when the solution is infeasible, a penalty of (1 − x − a%) is 

given. The size of the penalty is the distance to feasibility, e.g. when a solution accepts only 80% of the cases and 
a solution is feasible when it accepts 90%, then 0.1 is added to the solution’s objective value. 
 
Objective function (2) is used for the CMA-ES and PSO algorithms. For the EA and TS algorithms a slightly different 
objective function is used. As we programmed the EA and TS algorithms ourselves this allows for more freedom in 
designing the objective function for the algorithms. CMA-ES and PSO on the other hand are pre-programmed and 
have limited possibilities for the objective function. 
 
 



 

Orteliuslaan 15  |  3528 BA Utrecht, The Netherlands  |  T (+31) 30 767 0352  |  info@friss.eu  |  www.friss.eu                                Page 26 of 66                                             
 

The objective function used for the EA and TS algorithms is (3).  
 

(3) 𝑂𝑣𝑎𝑙𝑢𝑒 =  
𝑆𝐴

𝑃𝐴
⁄ + (1 − 𝟙𝑎%≥𝑥) ∗ (1 − 𝑥 − 𝑎%) ∗ (1 + 9 ∗ 𝑖𝑡𝑒𝑟

𝑚𝑎𝑥𝑖𝑡𝑒𝑟⁄ ) 

   with 𝑎% =
1

𝐼
∑ 𝑎𝑖𝑖 ∈ 𝐼  

 
This objective function increases the penalty given to an infeasible solution each generation, for EA, and iteration, 
for TS. The first generations the penalty is only slightly larger than in objective function (2), but for the last 
iteration the penalty is 10 times as high. This forces the algorithms even stronger to search for feasible solutions. 
 

4.3 Implemented Algorithms 

In this thesis different one variant of each type of the meta-heuristic algorithms, described in section 3.2, have 
been implemented. This section shows for each of the algorithms the best performing variant. These variants are 
further addressed in the experiments described in section 6.1.  

 Evolutionary Algorithm 

Our Evolutionary Algorithm uses a population of 10 individuals which are randomly generated in the initialisation 
phase. The fitness of each individual solution, generated by the algorithm, is determined by evaluation function 
(3) of section 4.2. The algorithm terminates after 1000 generations. The granularity of the feature weights is 10. 
This helps keeping the solutions simpler and more understandable for the user. 
 
Each generation, all solutions in the population become parents and are assigned randomly in pairs of two. Each 
pair will generate two offspring through recombination and mutation. The probability for each gene to be 

assigned to offspring one or two is 𝑝𝑟 =  0.1 ∗ (1.01 −
𝑔

𝑚𝑎𝑥𝑔
). The result is that each generation the probability 

for each gene to end up in the other offspring is decreased. In the mutation phase each gene mutates with 

probability 𝑝𝑚 =  0.1 ∗ (1.01 −
𝑔

𝑚𝑎𝑥𝑔
). When a gene mutates, its new value is chosen randomly from the full 

range of feature weights. Also, each gene has a probability 𝑝0 =  0,05 ∗ (1.01 −
𝑔

𝑚𝑎𝑥𝑔
) to set its weight to 0. This 

second mutation increases the probability that the created offspring is feasible, while also keeping the solutions 
as simple as possible. In this case ‘simple’ means using only the features that are really needed for a good fitness 
value. 
 
At the end of each generation the best solutions from the population and the offspring survive and become the 
population for the next generation. 
 
The algorithm focusses on finding feasible solutions as fast as possible, while trying to keep the solution fitness 
low, and then improving the fitness. As the recombination and mutation probability decreases slowly each 
generation, fewer changes are made to the feature weights the longer the algorithm runs. This reduces jumping 
away from the current optimal solution. However, this also means that solutions can get stuck in local optima 
easier. 
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Figure 26: The loss ratio and acceptance percentage of 
all solutions generated by two runs of the Evolutionary 
Algorithm. The colour of each solution is linked to a 
specific iteration: Red (0), yellow (250), green (500), blue 
(750) and purple (1000). 

 
 
 
 
 
 
 

 
Parameter Value Abbrevation (when 

used in a formula) 

Population Size 10  

Number of Generations 1000 maxg 

Current Generation 1..maxg g 

Number of Offspring 10  

Recombination Probability (for each gene) 0.1*(1.01 – g/maxg) 𝑝𝑟 

Mutation Probability to random weight (for each gene) 0.1*(1.01 – g/maxg) 𝑝𝑚 

Mutation Probability to 0 weight (for each gene) 0.05*(1.01 – g/maxg) 𝑝0 

Granularity 10  

Cut-off Value 100 C 

Initial Solution Feature Weight Range 1..C  

Table 4: The parameters used in the Evolutionary Algorithm. The second column contains the abbreviation of 
the parameter (when the parameter is used in a formula) and the value is the initial value or value range of the 
parameter. 

  Tabu Search 

The feature weights of the initial solution are chosen randomly. The algorithm runs for 1000 iterations and then 
terminates. Each iteration the algorithm selects 10 candidates from the neighbourhood of the current solution. 
The neighbourhood consists of all solutions that differ in up to 5 features from the current solution. The 
difference of these features is chosen from 𝑚 = {−10, −5, −1, 1, 5, 10}.  
To select the candidate solutions, the algorithm first selects 5 features that are not on the tabu list and then 
randomly selects 10 solutions from the neighbourhood which differ from the current solution in one or more 
features and has no differences in any other feature. So, for example, when the 5 chosen features are features 1 
to 5, a solution with only changes in features 1 and 2 can be a candidate, but a solution that has changes in 
features 1, 2 and 6 is not. From the 10 candidate solutions the best solution is chosen to replace the current 
solution and the chosen 5 features are placed on the tabu list. The size of the tabu list is 25% of the total number 
of features. When the size exceeds the 25% the oldest features are removed from the tabu list. 
 
The 5 features are selected randomly, but the algorithm uses adaptive memory programming [18] to assigns a 
probability to each feature. This probability is based on the previous times the feature was selected by the 
algorithm. When the last time the feature was selected ended up with a candidate solution that had a higher 
objective value than the current solution, the probability of choosing the feature is higher. Also the number of 
times the algorithm found a candidate solution that was better or worse than the current solution is taken into 
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account. The probability of choosing a feature increases when more candidate solutions with better object values 
were found in previous iterations. 
 
The objective value is obtained by using evaluation function (3) of section 4.2. 
 

 
 
 
Figure 27: The loss ratio and acceptance percentage of 
all solutions generated by two runs of the Tabu Search 
algorithm. The colour of each solution is linked to a 
specific iteration: Red (0), yellow (250), green (500), 
blue (750) and purple (1000). 

 
 
 
 
 
 
 
 

 
Parameter Value Abbrevation (when 

used in a formula) 

Population Size 1  

Number of Iterations 1000 maxg 

Number of Candidate Solutions 10  

Weight Mutation Range {-10, -5, -1, 1, 5, 10} m 

Number of Changed Features 5  

Tabu List Size 25% of #features  

Cut-off Value 100 C 

Initial Solution Feature Weight Range 1..C  

Table 5: The parameters used in the Tabu Search algorithm. The second column contains the abbreviation of 
the parameter (when the parameter is used in a formula) and the value is the initial value or value range of the 
parameter. 

 Particle Swarm Optimization 

In R the package “pso” [04] contains two variants of the Particle Swarm Optimization algorithm, namely the 
Standard PSO 2007 and 2011 variants described by Clerc (2012) [10]. We will use the Standard PSO 2007 variant. 
The algorithm will run for 400 time steps and then terminates. 
 
The particle swarm consists of 25 particles of which 24 are initialized randomly scattered through the search 
space by the algorithm and one is defined as the 0-weight vector. This might increase the chance that the 
algorithm generates feasible solutions earlier, because at least one initial solution is feasible. All particles start 
with a random velocity. 
 
The algorithm uses evaluation function (2) of section 4.2. The evaluation function calculates the fitness value 
using a granularity of 10. However, as the PSO algorithm itself uses continuous weights, the granularity of the 
weights only affects the evaluation function. The evaluation function therefore rounds the weights before 
calculating the fitness value. 
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We use 3 informants, although we also tried different numbers, based on research from Garcia-Nieto et al. (2012) 
[14]. They recommend using around six informants. However, our results when using six informants were worse 
than our chosen three informants. 
 

 
 
 
 
Figure 28: The loss ratio and acceptance percentage of 
all solutions generated by two runs of the Particle 
Swarm Optimization algorithm. The colour of each 
solution is linked to a specific iteration: Red (0), yellow 
(100), green (200), blue (300) and purple (400). 

 
 
 
 
 
 
 

 
Parameter Value Abbrevation (when 

used in a formula) 

Population Size 25  

Number of Time Steps 400 maxg 

Granularity 10  

Number of Informants 3 K 

Cut-off Value 100 C 

Initial Solution Feature Weight Range [0, 𝐶
2⁄ ]  

Table 6: The parameters used in the Particle Swarm Optimization algorithm. The second column contains the 
abbreviation of the parameter (when the parameter is used in a formula) and the value is the initial value or 
value range of the parameter. 

 Covariance Matrix Adaptation Evolutionary Strategy 

In R the package “cmaes” [31] contains the CMA-ES algorithm. The package allows for changing the initial 
parameters, but changing parameters, other than the population size and number of generations, is discouraged. 
The explanation by Auger and Hansen (2013) [02] is that the algorithm choses near optimal parameters itself, 
based on previous research. 
 
Our CMA-ES algorithm uses a population size of 1 with 10 offspring created each generation. The feature weights 
of the initial solution are chosen randomly from the range [𝐶

5⁄ , 𝐶
2⁄ ] where 𝐶 is the cut-off value. This range seems 

to give a good initial solutions.  
 
The algorithm uses evaluation function (2) of section 4.2 and uses a granularity of 1. This slightly simplifies the 
solutions the algorithm returns without increasing the loss ratio, because integer weighted solutions are easier to 
read than continuous weighted solutions. However, using higher granularities than 1, makes the algorithm find 
solutions that do have an increased loss ratio. Also more runs end up in bad local optima. Note that CMA-ES uses 
continuous weights. As we are using a granularity of 1, the fitness function rounds the weights to integers before 
calculating the loss ratio. 
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Figure 29: The loss ratio and acceptance percentage 
of all solutions generated by two runs of the 
Covariance Matrix Adaptation Evolutionary Strategy 
algorithm. The colour of each solution is linked to a 
specific iteration: Red (0), yellow (250), green (500), 
blue (750) and purple (1000). 

 
 
 
 
 

 
Parameter Value Abbrevation (when 

used in a formula) 

Population Size 1 µ 

Number of Generations 1000 maxg 

Granularity 1  

Number of Offspring 10 λ 

Cut-off Value 100 C 

Initial Solution Feature Weight Range [𝐶
5⁄ , 𝐶

2⁄ ]  

Table 7: The parameters used in the Covariance Matrix Adaptation Evolutionary Strategy algorithm. The 
second column contains the abbreviation of the parameter (when the parameter is used in a formula) and the 
value is the initial value or value range of the parameter. 
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5 Shiny Application 
“shiny” [08] is a package for the statistical program R [29] that allows for easy to build and user-friendly web 
applications. This chapter shows the shiny application that we specifically built for this thesis. The application is 
mostly written in R, but a small part is written in C++ for speed. [03,12] The application is available and free to use 
on “https://padejonge.shinyapps.io/WeightOptimisation”. Note that the datasets loaded into and created in the 
free to use application cannot be saved. The sections of this chapter give an overview of the three tabs in the 
application. These tabs are the “Artificial Dataset Generator”, the “Algorithm” and the “Analysis” tabs. 
 

5.1 Artificial Dataset Generator 

The first tab of the Shiny Application contains the Artificial Dataset Generator and options for loading and saving 
datasets into and from the application. In this section we will show the user interface of the Dataset Generator. 

5.1.1 Overview 

User input 
The left side of the first tab, see Figure 30, contains the user input for the dataset generator’s parameters. Here 
we see multiple options grouped together. These groups are Risk Group Parameters, Mean feature hits per rank 
and Calamity Options. Also there are some single parameters, namely Remove 0 hit features, Seed and Input the 
probability to hit on features, of which the latter is optional. 

 
Figure 30: The left part of the Artificial Dataset Generator Tab. To the left are the pre-set parameters for the user input. 
To the right are the calculated parameters from the dataset created with the pre-set parameters and seed 1000. 
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Risk Group Parameters 
The dataset generator generates cases based on minimum two and maximum 4 risk groups, groups 0 to 4. Each 
group is a set of cases, which combined form the artificial dataset. Each group is generated with its own set of 
parameters and features. The parameters that can be set for each risk groups are explained in Table 8. 
 

Parameter Explanation 
Volume The number of cases 
Loss Ratio The loss ratio 
Premium amount The premium income per case 
Claim.Mean The mean claim amount per case 
Claim.SD The standard deviation of the mean claim amount 
Features The number of features. The first risk group has no features. 

Table 8: The parameters of each risk group, which are used by the dataset generator. 

Mean feature hits per risk group 
This group sets the mean number of feature hits for the risk groups. For example, take a look at the parameters in  
Figure 0. A case of risk group 2 it has on average 1.05 and 1.1 hits on features of risk groups 1 and 2 respectively. 
A case must always have at least one hit on the features of its own risk group. 
 
Calamity Options 
The parameter subgroup Calamity Options contains the options for calamity claims. These parameters can be 
used to add outliers, calamities, to the dataset. Table 9 gives a short overview of the parameters.  
The first parameter is Value which is the minimum claim amount of any calamity case. The Claim Amount is the 
mean claim amount for the calamity cases. Percentage determines the percentage of cases with at least one claim 
to become a calamity case. Finally, the Spread parameter can be used to spread-out the claim amount of the 
calamity cases as is explained at section 4.1.2. 
 

Parameters / Options Explanation 
Value When a case has a claim amount is higher than this value, it is considered a 

calamity. 
Claim Amount The mean claim amount of generated calamity cases. 
Percentage The percentage of the cases with at least one claim that is a calamity case. 
Spread Spread the calamity claim amount over all other cases. 

Table 9: The calamity case parameters and extra options for the dataset generator. 
 
Single Parameters 
Besides the standard parameters explained above, there are a couple of extra options, shown in Table 10. The 
first is Remove 0 hit features. When set to yes then if any feature is created without a case with a hit on it, then 
the feature is removed from the dataset. Seed sets the random number generator seed. This can be used create 
exactly the same dataset multiple times. Probability to hit on features allows to put in probabilities for cases to hit 
on specific features. A feature with probability 0.1 will hit, on average, twice as much than a feature with 
probability 0.05. Note that the probabilities do not need to add up to 1. The application takes care of normalizing 
the probabilities. When the parameter is empty, when no probabilities are given, every feature of a specific risk 
group is assigned the same probability.  
 

Options Explanation 
Remove 0 hit features Any features that have no case with a hit are removed from the dataset. 
Seed Use a seed to generate the dataset 
Probability to hit on feature Define the probability to hit on a specific feature. The probabilities are allowed not 

to add up to 1. (optional) 
Table 10: The extra options for the dataset generator. 
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Creating, loading and saving datasets 
The right side of the Artificial Dataset Generator tab, see Figure 31, contains options to generate a new artificial 
dataset, to load in an existing dataset, to obtain approximations of the parameters of the current dataset in the 
application and to save the current dataset. Also some statistics, like the total premium income and claim 
amount, of the current datasets in the application are shown. 
 

 
 

 

Figure 31: The right part of the Artificial 
Dataset Generator Tab. This side contains 
various options for creating and saving 
datasets, as well as some statistics of the 
current dataset in the application. 

 
 
 
 
 
 
 
 
 
 
 

Generate artificial dataset generates a new artificial dataset based on the user input. Load an existing dataset 
allows for loading an existing dataset, with extension .RData, into the application. With Obtain the parameters of 
the current dataset an approximation of the parameters of the current dataset are returned. With these 
parameters we can create a similar dataset. However, the number of features at the parameter Indicator of the 
Risk group parameters in the user input must be filled out. The result of obtaining the parameters of an existing 
dataset is shown in the right figure of  
Figure 1. Last, at Save current dataset you can enter a name or file path to save the dataset currently in the 
application. 

 Generating the parameters for the artificial dataset 

Feature hits 
When generating a new dataset the user input parameters are obtained from the application. First, the 
probabilities to hit on specific features are calculated. When the input parameter Probability to hit a knowledge 
rule is empty all features of a risk group are assigned the same chance, else each hit gets assigned a probability 
based on the input parameter. Also mean number of feature hits for each risk group is obtained from the user 
input. The probability is calculated based on the binomial distribution as each feature has its own probability to 
hit. The probability parameter for the binomial distribution is calculated by finding the root of the polynomial 
containing the coefficients of the binomial distribution. The found binomial probability outputs the average 
selected in the user input. 
 
Number of claims 
First, a base value for the lambda parameter of the Poisson distribution is calculated. This is done based on the 
average premium income and average claim amount per case. Then, taking into account the probability of the 
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features to hit, the extra lambda value for the Poisson distribution is calculated. For each feature hit the base 
value of the lambda parameter is increased by the extra lambda value. In this way the assumption about the 
relation between the number of feature hits and the number of claims is made. The more feature hits the higher 
the chance to have more claims. 
 
Calamities 
Finally, the lambda parameter for the exponential distribution for the claim amount of the calamities is 
calculated. To enforce that the calamity claim value is always high enough to create a calamity case, a lower 
bound of the calamity value is set used while generating the parameter. This lower bound is also used when 
generating the calamities in the artificial dataset. 

  Generating the artificial dataset 

Feature hits 
The feature hits are generated with the binomial distribution. Each feature has the probability to hit that was 
calculated as explained in section 9.1.1. As each risk group can have different probabilities to hit on a feature, the 
hits are generated for each group separately. As each case must have at least one feature hit on the risk group 
specific features of its risk group, each case without such a hit is randomly assigned a hit. 
 
Premium income 
The premium income is generated with the exponential distribution. The parameter used for the exponential 
distribution is 1 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 𝑖𝑛𝑐𝑜𝑚𝑒⁄ , where the premium income is taken from the user input. The premium 
income can be different for each risk group. 
 
Number of claims and claim amount 
The number of claims for each case is determined based on the Poisson distribution, as shown in section 9.1.1. 
First, for each feature hit the lambda parameter of the Poisson distribution is increased by the extra lambda 
value, to increase the chance of more claims. 
For each claim that is generated for a case the claim amount will be drawn from a lognormal distribution.  
 
Calamities 
First, based on a binomial distribution the cases are determined that become calamity cases. Only the cases with 
at least one claim are considered. The claim amount of each chosen case is then increased by the calamity claim 
value drawn from the exponential distribution, with a minimum value of the calamity value. 
 

5.2 Algorithm 

On this tab the different meta-heuristic algorithms can be run and the best solution will be shown afterwards. 
Several options are available for running the algorithms. Figure 32 shows the options for the algorithms within the 
application.  
 
To run an algorithm set the different options to your liking. First is the option Algorithm. Choose here one of the 5 
algorithms available for the application, the 4 meta-heuristic algorithms and an algorithm that randomly draws 
solutions, section 6.1 covers this last algorithm. Then the #Iterations option to set the number of iterations, and 
#Solutions, the population size. The #Offspring per solution defines the number of offspring that each solution 
generates per iteration. #Runs is the number of times the algorithm is run. The 3 means the algorithm is run 3 
times with the same basic parameters. Maximum reject % is the maximum percentage of the portfolio that is 
allowed to be rejected. Cut-off value is the FRISS score at which a case is rejected. Manipulation chance is the 
probability for each feature to be manipulated. Step size determines the granularity of the feature weights as 
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defined in section 3.1.6. The Initial lower bound and Initial upper bound determine the minimum and maximum 
feature weights for the initial solution(s). Last is the Seed which sets the seed of the random number generator 
when the chosen seed is not 0. You can select one or more seeds and the number of seeds does not need to equal 
the number of runs. Note that the CMA-ES algorithm used in the application is a slightly different version of the 
algorithm described in sections 3.2.4 and 4.3.4. The changes are due to added code for returning extra 
information about the generated solutions. 
 

 
 
 
 

 
Figure 32: The left part of the Algorithm Tab. Here the various 
options for the algorithms can be chosen. In the application 
this is one column of options. Note that the “Step size” 
parameter is the granularity of the feature weights as 
described in section 3.1.6. 
 
 
 
 
 
 
 
 
 

After an algorithm has been run the right side of the Algorithm Tab, see Figure 33, shows the best solution found 
under Best generated solution and the parameters of the last run under Last run. The lower part shows several 
graphs about the generated solutions and the objective value improvement of the generated solutions. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: The right part of the Algorithm Tab. The last run of the algorithm can be viewed, as well as the best 
generated solution of the last run. The plots shows, from left to right, the solutions created, the improvement of the 
loss ratio (black) and the objective value of the solution (blue), and the movement of the best solution. In this last plot, 
the colour of the line shows the iteration in which the solution was generated.  
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5.3 Analysis 

On the Analysis Tab the previous algorithm run on the Algorithm tab can be viewed. In the top right of the tab you 
can choose to which run to view or to view all runs together, to better compare the solutions to each other, 
regarding objective function improvement and movement. 
 
 

 
 

Figure 34: The left side of the Analysis Tab. Here the best 
solutions of each run can be viewed, as well as the best 
solutions of all runs together. Also you can see the 
objective values of the best solutions of the different 
runs by subsampling against the training set. 

 
 
 
 
 
 
 
 
 
 
 
 
When you choose View the selected run, see Figure 34, the tab shows the best solution found in that specific run 
and also shows the plots about generated solutions, objective value and loss ratio improvement and movement 
through the search space, which are basically the same as the plots shown in Figure 31, but of the selected run.  
 
When you select View all runs the plots change to what you can see in Figure 33. The first plot will be empty at 
first, but the second plot shows the fitness improvement of all runs, while the third plot shows the movement for 
all runs. The first plot can be filled by pressing the “Subset” button. With this button the application starts 
creating subsets of the data and calculates the fitness of the best weight vector on the subsets. With user input, 
see Figure 34, the number of subsets and the percentage of the dataset that must be in each set. Also the seed of 
the random number generator can be set. The working of subsetting the dataset is shown more in-depth at 
section 6.3.3. 
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Figure 35: When both the “View all runs”- and “Create Subsets”-buttons shown in Figure 34 are pressed, then the first 
plot shows a boxplot containing the loss ratio over the subsets. The second plot shows the objective value 
improvement of the runs and the third plot shows the change in the loss ratio and acceptance percentage of the best 
solution of each run. 
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6 Results 

6.1 Experiment Protocol 

Figure 36: Experiment Protocol: (1) In the outer loop the data is divided K times into a training set and a validation set. 
(2) From the training set, the original set, a second training set, the spread set, is created by spreading the calamities 
in the training set. (3) In the first inner loop the J algorithms are run N times on the two training sets, generating weight 
vectors. (4) The weight vectors are tested against S subsets of the full data. (5) The weight vectors are tested against 
four datasets: the full dataset, the two training sets and the validation set. 
In total K*2*J*N weight vectors and K*2*J*N*(S+4) results are generated for one dataset. 
 
In Figure 36, the Experiment Protocol is shown. This is the schema we use to produce all results in this thesis. We 
will use a master script to produce all results. This script is not included in this thesis, but comparable results can 
be generated with the application shown in chapter 5 and the parameter values shown in chapter 9. For each part 
of the Experiment Protocol pre-defined seeds are used. 
 
In the Outer Loop each dataset is processed and is divided into 𝐾 folds. Each fold is used 𝐾 − 1 times in the 
training set and once as validation set, (1). From the training set, basically the original training set, a second set is 
generated, (2). This set, the spread training set, is the original training set with the calamities spread out, as 
explained in section 4.1.2. As calamities are considered all cases with a claim amount higher than 25.000 euros. 
 
Then, in the first Inner Loop, (3), each of the 𝐽 algorithms is run 𝑁 times on both the original and spread training 
sets created by (2). Each algorithm run generates one weight vector for each training set.  
 
Then in the second Inner Loop, (4), the generated weight vectors will be tested against S subsets, each containing 
80% of the full dataset, to determine how well the weight vector performs when tested against a dataset 
consisting of part training data and part unknown data which is in the validation set.  
 
The weight vectors are then put against four datasets, namely the original and spread training sets, the validation 
set and the full dataset, determining the objective value of the weight vector, on each dataset, (5). The results of 
the weight vectors can be paired together based on fold, algorithm and training set. In this manner a clean 
performance comparison can be made to determine de effects of the training set and algorithm used. 
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 Algorithms, datasets and parameters 

Five algorithms, 𝐽 =  5, will compete, these are the four meta-heuristic algorithms shown in chapter 4.3, and an 
algorithm that basically draws random solutions. This last algorithm draws random feature weights from the 
search space with a weight granularity of 5. For this random algorithm, we also tested with granularities of 1 and 
10, but a granularity of 5 generally returned the best solutions. The data of this test is not shown in this thesis.  
 
For each algorithm 10.000 objective value evaluations are processed, except for the random algorithm which will 
do 100.000 objective value evaluations. The idea is that when fast drawing of random solutions will easily yield a 
good solution, than meta-heuristic algorithms are unnecessary to solve the problem. 
 
We will use eight different datasets, namely two real datasets, the same real datasets randomized, see section 
4.1.3, and four artificial datasets, see section 4.1.4. In section 6.1.2 the scenario’s behind the different artificial 
datasets is explained and section 9.1 contains the generation parameters of these datasets. 
 
The Outer Loop will divide each dataset into 𝐾 =  5 folds and each algorithm in the first Inner Loop will do 𝑁 =
 5 runs. In total 𝐾 ∗ 2 ∗ 𝐽 ∗ 𝑁  =  5 ∗ 2 ∗ 5 ∗ 5 =  250 weight vectors will be generated for each dataset. The 
second Inner Loop will take 𝑆 =  100 subsets of the data. In total 8 ∗ 250 ∗ 4 =  8.000 weight vectors and 8 ∗
250 ∗ 100 =  200.000 subset results will be generated. 
 
In section 9.2 the specific parameters of each run are shown. Though all meta-heuristic algorithms will do the 
same number of objective value evaluations, not all algorithms will have the same number of iterations, solutions 
and solutions in the neighbourhood. 

 Artificial datasets 

Increasing Risk 
Each risk group, as described in section 4.1.4, has a slightly higher risk than the previous risk group.  All risk groups 
have the same mean claim amount per claim and premium income, as well as the same average number of 
feature hits on the risk group specific features of each risk group. However, each risk group has a higher loss ratio, 
which immediately means a higher risk for the insurer. To make up for the higher risk, the risk groups have a 
decreasing number of cases and risk group specific features. This dataset is created as somewhat ideal portfolio. 
You have a large amount of low risk cases and a small amount of high risk cases, where the risk increases slowly 
with each risk group. 
 
Small Calamities 
The second dataset almost has the same parameters as the first dataset. However, the dataset contains 15 times 
more calamity cases, 19 and 291 respectively, but with a lower average calamity claim amount, 42.000 versus 
30.000 euros. This dataset represents data with a large amount of small local optima, equivalent to a portfolio 
with a large number of cases with higher than average claim amounts. 
 
High Risk 

The third dataset is a high risk dataset. 2 3rd⁄  of the cases are in risk groups with high loss ratio and claim amount, 
while the average premium income is decreases each risk group. This can be seen as people filing high value 
claims, but may default on paying their insurance premium. 
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Medium Risk 
The last dataset has medium risk with half of the cases are in the second risk group. However, despite having a 
low number of calamities, the calamities have a high calamity claim amount. This dataset follows a scenario 
where we have low risk cases, but when a calamity occurs there are extensive costs. Think of a car accident with 
bodily injury. 
 
The exact generation parameters and the statistics of the artificial datasets are shown in section 9.1. Also the 
artificial dataset generator parameters, that can be used to obtain an approximation of the client datasets and 
randomized client datasets, are available there. 
 

6.2 Results 

The results obtained from the experiments of section 6.1 are shown in Tables 11, 12 and 13. In Table 11 the 
average results of the different algorithms on the datasets are shown. On the rows of the table the results of the 
algorithms are shown and the results are divided between the results on the training set (T), the validation set (V), 
the whole dataset (D) and the whole dataset with spread-out calamities (Ds). These results are the average loss 
ratio (Lr) and average acceptance percentage (Acc) over 25 runs, namely 5 folds of each dataset and 5 algorithm 
runs per fold. Each column contains the average results of the found weight vectors on the datasets. These results 
are divided into two groups, based on if the calamities of the training set were spread-out (yes) or not (no). 
 
We can see that generating feasible solutions for the High Risk dataset is harder than for most other datasets. 
Also the random draw algorithm has troubles generating feasible solution on some datasets. 
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  A Real A Real B Incr. Risk Small 
Calamities 

High Risk Med. Risk Real A 
Random. 

Real B 
Random. 

B C D\E no yes no yes no yes no yes no yes no yes no yes no yes 

EA Lr T 0.56 0.62 0.66 0.67 0.58 0.58 0.69 0.70 0.95 0.98 0.89 0.99 0.67 0.69 0.68 0.68 

V 0.63 0.65 0.69 0.69 0.59 0.59 0.72 0.72 1.01 1.01 1.03 1.01 0.74 0.74 0.70 0.70 

D 0.58 0.61 0.66 0.68 0.58 0.58 0.70 0.70 0.96 0.98 0.92 0.98 0.69 0.69 0.68 0.68 

Ds 0.63 0.65 0.68 0.69 0.58 0.58 0.70 0.70 0.99 0.99 1.00 0.99 0.70 0.70 0.69 0.69 

Acc T 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 

V 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 

D/Ds 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 

TS Lr T 0.58 0.63 0.67 0.68 0.57 0.57 0.68 0.69 0.95 0.97 0.95 0.98 0.71 0.72 0.68 0.69 

V 0.62 0.66 0.69 0.69 0.59 0.59 0.72 0.72 0.99 0.99 1.01 1.01 0.73 0.73 0.71 0.70 

D 0.59 0.63 0.67 0.68 0.58 0.58 0.69 0.69 0.96 0.96 0.96 0.97 0.72 0.72 0.69 0.69 

Ds 0.63 0.66 0.68 0.69 0.58 0.58 0.70 0.70 0.98 0.98 0.99 0.99 0.72 0.72 0.69 0.69 

Acc T 0.90 0.90 0.93 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.98 0.97 0.95 0.94 

V 0.90 0.90 0.93 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.98 0.97 0.95 0.94 

D/Ds 0.90 0.90 0.93 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.98 0.97 0.95 0.94 

CMAES Lr T 0.62 0.63 0.68 0.69 0.57 0.57 0.69 0.69 0.71 0.71 0.92 0.98 0.72 0.72 0.69 0.69 

V 0.64 0.65 0.69 0.69 0.59 0.59 0.71 0.71 0.74 0.73 1.01 1.02 0.74 0.74 0.71 0.70 

D 0.63 0.63 0.68 0.68 0.58 0.58 0.69 0.69 0.72 0.71 0.94 0.98 0.72 0.72 0.69 0.69 

Ds 0.66 0.67 0.69 0.69 0.58 0.58 0.70 0.70 0.73 0.72 0.99 0.99 0.72 0.73 0.70 0.70 

Acc T 0.90 0.90 0.93 0.90 0.90 0.90 0.90 0.90 0.64 0.62 0.90 0.90 0.95 0.94 0.93 0.93 

V 0.90 0.90 0.93 0.90 0.90 0.90 0.90 0.90 0.64 0.62 0.90 0.90 0.95 0.94 0.93 0.93 

D/Ds 0.90 0.90 0.93 0.90 0.90 0.90 0.90 0.90 0.64 0.62 0.90 0.90 0.95 0.94 0.93 0.93 

PSO Lr T 0.56 0.62 0.65 0.67 0.57 0.58 0.65 0.70 0.54 0.54 0.89 0.98 0.68 0.70 0.68 0.68 

V 0.62 0.64 0.68 0.69 0.59 0.59 0.71 0.72 0.60 0.59 1.02 1.01 0.74 0.73 0.70 0.70 

D 0.57 0.60 0.66 0.67 0.58 0.58 0.69 0.70 0.55 0.53 0.92 0.97 0.69 0.70 0.68 0.68 

Ds 0.63 0.65 0.68 0.69 0.58 0.58 0.70 0.70 0.58 0.55 1.00 0.99 0.71 0.71 0.69 0.69 

Acc T 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.49 0.46 0.90 0.90 0.91 0.91 0.91 0.91 

V 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.49 0.46 0.90 0.90 0.91 0.91 0.91 0.91 

D/Ds 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.49 0.46 0.90 0.90 0.91 0.91 0.91 0.91 

Rand. Lr T 0.60 0.64 0.69 0.70 0.56 0.56 0.68 0.68 0.58 0.59 0.81 0.91 0.72 0.73 0.70 0.71 

V 0.61 0.67 0.69 0.69 0.56 0.56 0.69 0.68 0.61 0.60 0.91 0.88 0.73 0.73 0.70 0.70 

D 0.60 0.66 0.69 0.69 0.56 0.56 0.68 0.68 0.59 0.59 0.83 0.87 0.72 0.73 0.70 0.70 

Ds 0.64 0.68 0.70 0.70 0.56 0.56 0.68 0.68 0.61 0.59 0.90 0.91 0.73 0.73 0.71 0.71 

Acc T 0.83 0.87 0.93 0.90 0.82 0.82 0.82 0.82 0.46 0.45 0.54 0.58 0.88 0.88 0.93 0.93 

V 0.83 0.87 0.93 0.90 0.82 0.82 0.82 0.82 0.46 0.45 0.54 0.58 0.88 0.88 0.93 0.93 

D/Ds 0.83 0.87 0.93 0.90 0.82 0.82 0.82 0.82 0.46 0.45 0.54 0.58 0.88 0.88 0.93 0.93 

Table 11: The mean loss ratio and acceptance percentage of each algorithm of the training, validation and full datasets 
for the weight vectors generated on the original and spread training sets. (A) the dataset that was used. (B) The 
algorithm used for training. (C) The results are split in: Lr = loss ratio and Acc = acceptance percentage. (D) The 
dataset where the result was obtained from: T = training set, V = validation set, D = full dataset and Ds = full dataset 
with calamities spread-out. (E) Was the weight vector trained on the spread training set (yes) or not (no)? 
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Table 12 shows the average results of subsetting the datasets and then calculating the objective value of the 
found weight vectors. The rows of the table show the average results of the algorithms. These results are divided 
into results over the whole dataset (D) and the whole dataset with spread out calamities (Ds), which are divided 
again into the average loss ratio (Lr) and the standard deviation of the loss ratios (Std). Also included is the 
average feasibility of the weight vectors over the datasets. The results are taken over 100 subsets of both 
datasets.  
The columns each contains the results on a specific dataset and if the calamities of the training set that produced 
the weight vector were spread-out (yes) or not (no).  
 
 

  A Real A Real B Incr. Risk Small 
Calamities 

High Risk Med. Risk Real A 
Random. 

Real C 
Random. 

B C D\E no yes no yes no yes no yes no yes no yes no yes no yes 

EA D Lr 0,58 0,61 0,66 0,68 0,58 0,58 0,70 0,70 0,96 0,98 0,92 0,98 0,69 0,69 0,68 0,68 

Std 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,02 0,03 0,01 0,01 0,01 0,01 

Ds Lr 0,63 0,65 0,68 0,69 0,58 0,58 0,70 0,70 0,99 0,90 1,00 0,99 0,70 0,70 0,69 0,69 

Std 0,01 0,01 0,01 0,01 0,00 0,00 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 

D/Ds Feas 0,67 0,59 0,73 0,43 0,56 0,61 0,63 0,58 0,59 0,53 0,68 0,75 0,93 0,82 0,87 0,91 

TS D Lr 0,59 0,63 0,67 0,68 0,57 0,58 0,69 0,69 0,96 0,96 0,96 0,97 0,72 0,72 0,69 0,69 

Std 0,01 0,01 0,01 0,01 0,01 0,00 0,01 0,01 0,01 0,01 0,03 0,03 0,01 0,01 0,01 0,01 

Ds Lr 0,63 0,66 0,68 0,69 0,58 0,58 0,70 0,70 0,98 0,98 0,99 0,99 0,72 0,72 0,69 0,69 

Std 0,01 0,01 0,01 0,01 0,00 0,00 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 

D/Ds Feas 0,74 0,62 0,97 0,57 0,67 0,65 0,57 0,59 0,80 0,68 0,80 0,73 1,00 1,00 1,00 0,99 

CMAES D Lr 0,63 0,63 0,68 0,68 0,58 0,57 0,69 0,69 0,72 0,71 0,94 0,98 0,72 0,72 0,69 0,69 

Std 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,02 0,02 0,03 0,03 0,01 0,01 0,01 0,01 

Ds Lr 0,66 0,67 0,69 0,69 0,58 0,58 0,70 0,70 0,73 0,72 0,99 0,99 0,72 0,73 0,70 0,70 

Std 0,01 0,01 0,01 0,01 0,00 0,00 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 

D/Ds Feas 0,87 0,62 1,00 0,55 0,62 0,59 0,66 0,61 0,00 0,00 0,74 0,59 1,00 1,00 1,00 1,00 

PSO D Lr 0,58 0,60 0,66 0,67 0,58 0,58 0,69 0,70 0,55 0,53 0,92 0,97 0,69 0,70 0,68 0,68 

Std 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,02 0,02 0,02 0,03 0,01 0,01 0,01 0,01 

Ds Lr 0,63 0,65 0,68 0,69 0,58 0,58 0,70 0,70 0,58 0,55 0,10 0,99 0,71 0,71 0,69 0,69 

Std 0,01 0,01 0,01 0,01 0,00 0,00 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 

D/Ds Feas 0,74 0,58 0,89 0,47 0,65 0,56 0,59 0,58 0,00 0,00 0,50 0,53 1,00 0,95 0,95 0,99 

Rand. D Lr 0,60 0,66 0,69 0,69 0,56 0,56 0,68 0,68 0,59 0,58 0,84 0,97 0,72 0,73 0,70 0,70 

Std 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,02 0,02 0,03 0,03 0,01 0,01 0,01 0,01 

Ds Lr 0,64 0,68 0,70 0,70 0,56 0,56 0,69 0,68 0,61 0,59 0,90 0,91 0,73 0,73 0,71 0,70 

Std 0,01 0,01 0,01 0,01 0,00 0,00 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 

D/Ds Feas 0,00 0,00 1,00 0,60 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,96 1,00 

Table 12: The mean of the results of testing the weight vectors against 100 subsets of the data. (A) The dataset that 
was used. (B) The algorithms that produced the weight vectors. (C) Were the subsets made from D = the full dataset or 
from Ds = the full dataset with calamities spread-out. (D) The type of result: Lr = the mean loss ratio on the subsets. 
Std = the standard deviation of the loss ratios of the subsets. Feas = the percentage of subsets on which the weight 
vector returned a feasible solution. (E) Was the weight vector trained on the spread training set (yes) or not (no)? 
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Table 13 shows the average runtime in seconds of a specific algorithm over a specific dataset. The average is 
taken over all runs of the algorithm over the specific dataset, regardless if the training set was spread-out and the 
current fold of the dataset. This makes an average of 50 runs for each time result.  
 
We can immediately see that of the meta-heuristic algorithms, our implementation of the Tabu Search algorithm 
is the fastest, while the implementation of the Particle Swarm Optimization algorithm is very slow. 
 

 Time (in seconds) 

Dataset EA TS CMAES PSO Random 

Real A 16 12 28 108 39 

Real B 4 3 6 20 12 

Increasing Risk 48 45 75 411 140 

Small Calamities 47 44 75 393 142 

High Risk 72 69 121 610 264 

Medium Risk 92 89 154 789 291 

Real A Randomized 15 12 27 104 38 

Real B Randomized 4 3 6 19 11 
Table 13: The average runtime per run of a specific algorithm on a specific dataset. The runtime is in seconds. 
The average runtime is taken over 50 runs. 

 

6.3 Evaluation Options 

 Loss Ratio Reduction 

The most important evaluation option is the reduction of the loss ratio. Can the algorithms find solutions that 
greatly improve, read decrease, the loss ratio by rejecting cases? For example, we have two algorithms. The first 
algorithm reduces the loss ratio by 0.03 and the second algorithm reduces the loss ratio by 0.10. In this case the 
second algorithm clearly performs better.  

 Objective Value Improvement 

Figure 37 shows three different objective value improvement curves from different algorithms. All curves have 
the same initial and final objective value. However, clear difference can be seen in the speed the objective value is 
improved. Curve A shows the curve of an algorithm that improves the objective value by much in the first few 
iterations and then slows down. The algorithm of curve B improves the objective value in large steps after a 
couple of generations. Finally, the algorithm that created curve C shows a slow objective value improvement in 
the first and last few generations. 
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Figure 37: Three different objective value curves. All 
curves have the same initial and final fitness. However, 
curve A improves the objective value by much in the first 
few generations and then slows down. Curve B improves 
the objective value in large steps when it finds a better 
loss ratio. Curve C improves slowly the first few 
generations, then speeds up and slows down again. 

 

 

 

 

 
All three curves have advantages and disadvantages. Curve A’s advantage is the rapid improvement of the 
objective value, finding a good solution in a short time. However, the algorithm might get stuck in a local 
optimum when the algorithm focusses on a too small search area. Curve B improvement by large steps is nice, but 
the algorithm seems to have trouble to continuously find solutions with better objective value. Curve C is steadily 
improving the objective value by small steps at the first few iterations and possibly exploring large portions of the 
search space. However, when the steps are to small it might not find the best solution before it reaches the final 
iteration. 

 Time and Number of Iterations 

The time and number of iterations before a feasible and/or acceptable solution is generated is important. As long 
as the algorithm has not found feasible solutions, the objective function restrains the improvement of the loss 
ratio by the algorithm, because of the penalty given to infeasible solutions, see section 4.2. Algorithms are forced 
to accept solutions with higher loss ratio’s in order to find feasible solutions. 
 
For this reason alone, we would like to see an algorithm that already starts generating feasible solutions in the 
first few iterations, because then the algorithm has more iterations to improve the loss ratio of the feasible 
solutions. 
 
Also, when the algorithm generates feasible and good solutions faster, fewer iterations are needed to obtain an 
acceptable solution, which directly reduces the total runtime. However, comparing the runtime of different 
algorithms is difficult, as the algorithms can have e.g. a not-optimal implementation and a different number of 
calculations that must be performed by the algorithm. 

 Subset Results 

In the Experiment Protocol subsets of the data are generated to test the fit of a specific weight vector on the 
data. The data of the subset is drawn from the full dataset, see Figure 38 for an example, and that means that 
each subset contains cases from the original training set and the validation set. When a weight vector has a highly 
variable loss ratio and/or acceptance percentage over the different subsets, this might be a sign that the 
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algorithm generated a weight vector that has an overfit or a generally bad fit on the training set. However, when 
the variability is low the weight vector could provide a good indication of the dataset. 
 
 
 

Figure 38: We create subsets from the Data by leaving 
certain cases out of the Data for each subset. E.g. subset 1 
has left out cases B and I, while subset s left out D and E. 
For each sample you calculate the objective value against 
the weight vectors. 

 
 
 
 

 Distribution of Solutions 

The manner the loss ratio and acceptance percentage of the generated solutions are distributed, can give 
important information about the algorithm’s performance. Figure 39 shows three different distributions of 
solutions. First, there is (A), which shows the Random Draw algorithm. The solutions are spread over a large area 
and the solutions aren’t focussed on one particular area. Then (B), the Evolutionary Algorithm. The solutions of 
the first few iterations are, just like (A), distributed over a large area. However, the algorithm generates solutions 
with more similar loss ratio and acceptance percentage after more iterations have been done. Finally, (C), the 
CMA-ES algorithm. This algorithm generates for each iteration solutions with similar loss ratio keeping the 
solutions close together and mostly creating a narrow line of solutions.  
 
The unfocussed manner of generating solutions of (A) might find good solutions when the generated solutions are 
feasible. However, when this is not the case then none of the generated solutions will be any good. As (B) has a 
wide solution distribution in the early iterations it might cover a large portion of the search space. After which it 
starts focussing on the most promising solutions. (C) has a good chance of finding better solutions in the current 
neighbourhood of the current solution, but has a higher chance of getting stuck in a local optimum as it only 
searches close by. 
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Figure 39: The generated solutions of (A) Random Draw, (B) Evolutionary Algorithm and (C) CMA-ES on the same 
dataset. Each algorithm shows a very different distribution of points. (A)’s distribution of points is unfocussed and 
spread over a large area, while (B)’s distribution has the solutions closer and closer together, slowly focussing onto 
one small area as more iterations are executed. However, (C) distributes its solutions very close together, creating a 
narrow line.  
Note that the x- and y-axis are different. However, this does not have any impact on the shown distributions. Also (B) 
has the initial solutions located to the left of the feasibility boundary, while (C) starts on the right. Again, this does not 
change the specific manner the solutions are distributed. 

 Stability of Solutions 

The stability of the solutions is about a single question “Do the final solutions of multiple runs of the same 
algorithm look similar?”, i.e. that specific features have similar weights in weight vectors obtained from running 
an algorithm multiple times on the same dataset.  An algorithm that returns similar weight vectors every run 
might be more reliable to find good solutions, than an algorithm that returns a very different weight vector each 
run. Table 14 shows 4 weight vectors, A to D, generated by two different algorithms. Algorithm 1 finds similar 
weight vectors, A and B, while algorithm 2 finds different weight vectors, C and D. 
However, the stability of the found weight vectors might say less about the algorithm than about the problem 
itself. The search space could have multiple local and global optima with basically the same loss ratio and 
acceptance percentage. Therefore, it is mostly based on preference, if we wish to use an algorithm which returns 
similar weight vectors or very different ones. 
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Algorithm 1 A 30 40 0 90 100 30 10 

B 20 40 5 100 85 30 15 
         
         

Algorithm 2 C 35 30 0 90 95 30 20 

D 0 70 40 30 100 75 0 

Table 14: Algorithm 1 generated weight vectors A and B, which have more similar feature weights than weight vectors 
C and D, which were generated by algorithm 2. When the generated weight vectors of an algorithm are stable the 
algorithm returns similar weight vectors every run, while an unstable algorithm returns different weight vectors. Note 
that the loss ratio and acceptance percentage can be exactly the same. 

6.4 Analysis 

 Training and Validation Results 

The average loss ratio’s in Table 11, see section 6.2, show that the weight vectors trained by the meta-heuristic 
algorithms on the training set with spread-out calamities have never a lower average loss ratio. Also, the 
acceptance percentage is in almost every case the same. However, the difference between the loss ratio on the 
training set and the validation set is generally larger for the weight vectors trained on the original training set, see 
Table 15. This could mean that although the weight vectors trained on datasets with spread-out calamities usually 
have a higher loss ratio on the training set, the loss ratio is closer to the loss ratio found on the validation set. 
 

A Real A Real B Increasing 
Risk 

Small 
Calamities 

High Risk Medium 
Risk 

Real A 
random. 

Real B 
random. 

B \ C no yes no yes no yes no yes no yes no yes no yes no yes 

EA 0.07 0.03 0.03 0.02 0.01 0.01 0.03 0.02 0.06 0.03 0.14 0.02 0.07 0.05 0.02 0.02 

TS 0.04 0.03 0.02 0.01 0.02 0.02 0.04 0.03 0.04 0.02 0.06 0.03 0.02 0.01 0.03 0.01 

CMAES 0.02 0.02 0.01 0.00 0.02 0.02 0.02 0.02 0.03 0.02 0.09 0.04 0.02 0.02 0.02 0.01 

PSO 0.06 0.02 0.03 0.02 0.02 0.01 0.06 0.02 0.06 0.05 0.13 0.03 0.06 0.03 0.02 0.02 

Random 0.01 0.03 0.00 -0.01 0.00 0.00 0.01 0.00 0.03 0.01 0.10 -0.03 0.01 0.00 0.00 -0.01 

Table 15: The differences between the average validation set loss ratio and the average training set loss ratio (𝐋𝐫𝐕 −
𝐋𝐫𝐓).We can see that, except on the Real B dataset, the difference of the average loss ratio’s is smaller for weight 
vectors trained on a spread training set than on the original training set. (A) the dataset that was used. (B) The 
algorithm used for training. (C) Was the weight vector trained on the spread training set (yes) or not (no)? 
 
Table 16 shows the standard deviation of the loss ratio of the 25 generated weight vectors on the different 
datasets. The validation set generally has a larger standard deviation than the training set. The influence of a 
single case, e.g. a calamity, in the validation set is higher than that in the training set, because of the 80/20 split of 
the training and validation sets. The standard deviation of the weight vectors trained on the original training set 
and spread-out training set can be considered equal. 
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 A Real A Real B Increasing 
Risk 

Small 
Calamities 

High Risk Medium 
Risk 

Real A 
random. 

Real B 
random. 

B C \ D no yes no yes no yes no yes no yes no yes no yes no yes 

T EA 0,01 0,01 0,01 0,01 0,00 0,00 0,01 0,01 0,01 0,00 0,02 0,03 0,01 0,01 0,01 0,01 

TS 0,01 0,01 0,01 0,01 0,00 0,00 0,01 0,01 0,01 0,00 0,03 0,02 0,01 0,01 0,01 0,01 

CMAES 0,02 0,02 0,01 0,01 0,00 0,00 0,01 0,01 0,02 0,01 0,03 0,02 0,01 0,01 0,01 0,01 

PSO 0,01 0,01 0,01 0,01 0,00 0,00 0,01 0,01 0,03 0,03 0,03 0,03 0,01 0,01 0,01 0,01 

Random 0,03 0,02 0,01 0,01 0,01 0,01 0,01 0,01 0,05 0,03 0,05 0,03 0,02 0,01 0,01 0,01 

V EA 0,04 0,03 0,04 0,05 0,02 0,02 0,03 0,03 0,03 0,02 0,11 0,12 0,05 0,05 0,04 0,04 

TS 0,03 0,03 0,05 0,05 0,02 0,02 0,03 0,03 0,03 0,03 0,11 0,12 0,04 0,05 0,05 0,04 

CMAES 0,04 0,04 0,04 0,04 0,02 0,02 0,03 0,03 0,04 0,04 0,11 0,11 0,04 0,05 0,04 0,04 

PSO 0,03 0,03 0,04 0,05 0,02 0,02 0,03 0,03 0,05 0,06 0,12 0,11 0,05 0,05 0,04 0,04 

Random 0,05 0,05 0,05 0,05 0,02 0,02 0,04 0,04 0,08 0,08 0,16 0,14 0,04 0,05 0,04 0,04 

Table 16: The standard deviation of the loss ratio’s found over the different folds and runs. Each standard deviation is 
done over 25 runs. On most training sets and validation sets the standard deviation of the loss ratio’s found on the 
spread-out training set is equal or lower than the standard deviation of the loss ratio’s found on the original training 
set. (A) The dataset that was used. (B) The training set (T) or validation set (V). (C) The algorithm used for training. (D) 
Was the weight vector trained on the spread training set (yes) or not (no)? 
 
Figure 40 shows the loss ratio and acceptance percentage of all runs on four of the datasets, namely “Real A”, 
“Increasing Risk”, “Medium Risk” and “Real A Randomized”. The runs are divided by algorithm and if the training 
sets were spread-out or not. As we could see at Table 15, the loss ratio of the weight vectors trained on the 
spread-out training set are higher. Also the difference of the acceptance percentages, shown in Table 16, are 
clearly visible. The loss ratios of the training sets are much closer together than the validation set’s loss ratios. 
Although the loss ratio values differ greatly, the acceptance percentages on the training and validation sets are 
almost equal. 
 
We can also see that the algorithms might overfit on the Medium Risk dataset, as the variance of the validation 
loss ratios is so much higher than the variance of the training loss ratios. On the other hand, the weight vectors 
generated on the Increasing Risk dataset seem to have a very good fit. 
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Figure 40: The loss ratio and acceptance percentage on the training sets and validation sets of four different datasets. 
The algorithms are numbered 1 to 5 (EA, TS, CMAES, PSO, Random). “not spread” means that the original training set 
was used, while “spread” means the spread-out training set was used. In the legend: T.acc = training set acceptance 
percentage. T.lr = training set loss ratio. V.acc = validation set acceptance percentage. V.lr = validation set loss ratio. 
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Table 17 shows the average improvement of the loss ratio over the used datasets. When a value is red, the 
average acceptance percentage of the solutions on which the improvement is found, is lower than 90%. In other 
words, too many cases have been rejected and the solutions are infeasible.  
When we look at the average improvements on the validation sets, we can clearly see that the algorithms found 
good improvements on the Real A, Increasing Risk, Small Calamities and High Risk datasets. However, the Real B 
and Medium Risk datasets are improved less. When inspecting the results on the subsets, the Medium Risk 
dataset also shows good improvements. 
For both the validation sets and the subsets, the results of the Real A randomized and Real B randomized datasets 
show no real improvement. This shows that the real datasets indeed have specific patterns in the feature hits, 
claim amount and premium income and also that these patterns disappear when we randomize the datasets. 
 

 B Real A Real B Increasing 
Risk 

Small 
Calamities 

High Risk Medium 
Risk 

Real A 
random. 

Real B 
random. 

 C 0.73 0.71 0.66 0.79 1.09 1.06 0.73 0.71 

A D \ E no yes no yes no yes no yes no yes no yes no yes no yes 

V EA 0.10 0.08 0.02 0.02 0.07 0.07 0.07 0.07 0.08 0.08 0.03 0.05 -0.01 -0.01 0.01 0.01 

TS 0.11 0.07 0.02 0.02 0.07 0.07 0.07 0.07 0.10 0.10 0.05 0.05 0.00 0.00 0.00 0.01 

CMAES 0.09 0.08 0.02 0.02 0.07 0.07 0.08 0.08 0.35 0.36 0.05 0.04 -0.01 -0.01 0.00 0.01 

PSO 0.11 0.09 0.03 0.02 0.07 0.07 0.08 0.07 0.49 0.50 0.04 0.05 -0.01 0.00 0.01 0.01 

Random 0.12 0.06 0.02 0.02 0.10 0.10 0.10 0.11 0.48 0.49 0.15 0.18 0.00 0.00 0.01 0.01 

S EA 0.15 0.12 0.05 0.03 0.08 0.08 0.09 0.09 0.13 0.11 0.14 0.08 0.04 0.04 0.03 0.03 

TS 0.14 0.10 0.04 0.03 0.09 0.08 0.10 0.10 0.13 0.13 0.10 0.09 0.01 0.01 0.02 0.02 

CMAES 0.10 0.10 0.03 0.03 0.08 0.09 0.10 0.10 0.37 0.38 0.12 0.08 0.01 0.01 0.02 0.02 

PSO 0.15 0.13 0.05 0.04 0.08 0.08 0.10 0.09 0.54 0.56 0.14 0.09 0.04 0.03 0.03 0.03 

Random 0.13 0.07 0.02 0.02 0.10 0.10 0.11 0.11 0.50 0.51 0.22 0.09 0.01 0.00 0.01 0.01 

Table 17: The improvement, read decrease, made to the loss ratio of the datasets by rejecting specific cases.  The red 
values are obtained from runs of which the average acceptance percentage was “<90%”. In other words the found 
solutions are mostly infeasible solutions. (A) the average loss ratio improvement on the V=validation set and on the 
S=subset datasets. (B) The datasets on which the improvement was measured.  (C) The initial loss ratio of the 
datasets. (D) The algorithm used for training. (E) Was the weight vector trained on the spread training set (yes) or not 
(no)? 

 Calamity Influence 

Calamities can have a large influence on the search algorithms. The more calamities in the dataset and the higher 
their claim amount, the larger this influence is. In Figure 41 three different meta-heuristic algorithm runs are 
shown. Each point is a generated solution and the colour is based on which iteration it was generated, from red to 
purple. . On a relatively normal dataset the generated solutions can be seen distributed like the first. These are 
the generated solutions of a Tabu Search run. Two (local) optima are clearly visible by the two areas with a lot of 
purple coloured solutions. The second figure shows the same algorithm and the same dataset, but in this case the 
calamities are spread-out. Now there are no visible local optima, there only is a global optimum. On an 
extraordinary dataset something like the third figure might happen. For every couple of calamities in the dataset, 
the algorithm found a local optimum. Although this figure is from an early Evolutionary Algorithm variant, it 
illustrates a worst-case scenario when looking at the influence of calamities. Therefore, we state that calamities 
can have a serious influence on the performance of a meta-heuristic algorithm. 
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Figure 41: Three different runs of meta-heuristic algorithms. Each point is a generated solution. The colour is based on 
the iteration it was generated (from red to purple). The first figure shows the generated solutions of a Tabu Search run. 
Two (local) optima are clearly visible by the purple solutions. The second figure shows the generated solutions of the 
same algorithm on the same dataset, but in this case the dataset has spread-out calamities. There is no visible local 
optimum. The third figure shows what may happen with a problematic dataset.  For each couple of calamities a local 
optima was found. Although the search pattern is of an early Evolutionary Algorithm variant (therefore not included in 
the thesis), it was run on one of the used datasets and shows a worst case scenario.  

 Time and Number of Iterations 

EA and TS are very fast, finishing on the largest datasets in around 90 seconds, and also CMAES has reasonable 
speed with around 2.5 minutes. However, the PSO algorithm is, compared to the other algorithms, very slow. On 
a medium-sized dataset, it already takes 6.5 minutes to finish one run. Table 18 and Figure 42 show that the size 
of a dataset is almost linearly related to the runtime of the algorithms. The size of a dataset is the number of 
compound cases times the number of features. 
Note that the runtime is over training sets containing 80% of each dataset, because the results were obtained 
with 5-fold cross validation. However, we can safely assume that, in most instances, at least a single case of each 
compound case is in each dataset created by the cross validation. 
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Figure 42: The size of a dataset and the average time          Table 18: The datasets ordered by size. The size is the  
it took each algorithm to finish one run. The size and         number of compound cases time the number of features. 
The runtime have an almost linear relation. 

 Initial Solutions 

We can already state that for some algorithms the initial solution is very important. Mostly the CMAES and PSO 
algorithms need a profitable initial solution, i.e. both algorithms generate better solutions when the initial 
solution(s), which are randomly generated, are close to, or are, feasible. More importantly the closer the 
acceptance percentage of the initial solution(s) is to the minimum allowed acceptance percentage, the better the 
solutions that the algorithms find.  
 
However, the EA and TS algorithms have little trouble regarding the initial solution, mostly because of their 
manner of feature manipulation. The EA algorithm draws random weights, so multiple weights can be changed 
drastically in a single iteration, allowing it to leave the location of the initial solution very fast. While the TS 
algorithm can leave any area by adding moves to the tabu list. 
 
Figure 43 shows the best loss ratio and acceptance percentage of five CMAES runs (left) and five PSO runs (right). 
Of the CMAES runs, four runs went fine, those are on the left. However, the fifth run had an initial solution to far 
away from the minimum acceptance percentage and got stuck in a local optimum. Of the PSO runs, all five runs 
got stuck in the same very bad local optimum, even though one of the initial solutions was the, always feasible, 0-
weight vector. 
 

Dataset #Comp. Cases #Features Size 

Real B (random.) 2206 39 86.034 

Real A (random.) 4971 109 541.839 

Small Calamities 19432 100 1.943.200 

Increasing Risk 19509 100 1.950.900 

High Risk 45426 80 3.634.080 

Medium Risk 43418 100 4.341.800 
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Figure 43: The initial solutions of these five CMAES (left) and PSO (right) runs do matter. On this dataset, the purple, 
most right, CMAES run has an initial solution with a loss ratio away from the feasibility boundary of 0.9 and is not able 
to improve its loss ratio and find a good solution. While the PSO runs cannot even find a feasible solution (not taking 
into account the initial solution with the 0-weight vector). 

 Generated Solutions 

Table 19 shows some parts of different weight vectors. These parts show some of the characteristics of the 
different algorithms. As coded, EA sets feature weights randomly to 0 and this improves the loss ratio quite well, 
which is also shown by the weight vector shown as 75% of the weights is 0! Seen over all weight vectors 
generated, this percentage lies around 40%. TS has quite some weights close to 0. However, because of the tabu 
list the algorithm hardly sets them to 0. CMAES spreads out the weights almost equally over the features and only 
a few weights are close to 0 and 100. Then PSO, this algorithm has its weights distributed closely like EA, but with 
fewer weights on 0. Finally, random draw shows some equally spread out weights, which is more or less what you 
would expect. 
 

Feature: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

EA 0 10 40 70 90 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 

TS 0 44 56 64 95 36 0 25 2 6 30 0 14 87 1 0 41 1 18 0 50 

CMAES 1 24 5 43 28 39 10 51 31 66 61 21 38 43 18 33 5 34 50 33 35 

PSO 10 10 30 100 100 100 30 10 40 20 30 100 0 40 0 0 30 0 50 70 80 

Random 15 85 35 20 100 60 80 30 10 70 25 85 25 65 20 75 40 55 20 75 35 

Table 19: For each algorithm a part of a weight vector (trained on the same dataset) is shown. These parts show some 
characteristics of the algorithms. EA sets feature weights to 0 if it means an immediate improvement of the loss ratio. 
In this case 75% of the weights is 0!  TS has also quite a few features close to 0 weight, but because of the tabu list it 
hardly sets them to 0. CMAES spreads out the weights almost equally over the features. While PSO seems to combine 
EA and CMAES. Some weights at 0 or 100 while the rest has quite equal weights. Finally, Random shows some equally 
spread out weights, like CMAES, but does not really lower weights to 0. 
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 Stability of Solutions 

Then the stability of the algorithms, see section 6.3.5. Table 20 shows for the different algorithms a part of three 
different weight vectors. These are weight vectors trained on the Real C dataset. The color-coding tells how close 
the weights are together. Dark green weights have at most a 5 point difference, light green weights differ at most 
a 10 points and orange weights differ at most 20 points. 
We can clearly see that the Evolutionary algorithm is the most stable, while the random draw is the least stable. 
Furthermore, the other three algorithms are generating equally stable solutions. This behaviour is also visible with 
weight vectors generated on the other datasets. 
 

 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

EA 0 80 20 100 100 100 70 0 50 0 10 0 0 60 0 0 60 0 60 0 80 

10 10 40 30 100 100 40 0 0 0 10 100 0 0 30 0 70 100 50 0 100 

0 10 40 70 90 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 

TS 4 38 0 29 18 0 44 21 59 12 50 100 53 22 17 0 19 6 0 0 49 

4 27 28 86 88 31 1 31 32 1 50 51 48 54 0 10 1 34 1 88 51 

0 44 56 64 95 36 0 25 2 6 30 0 14 87 1 0 41 1 18 0 50 

CMAES 1 24 5 43 28 39 10 51 31 66 61 21 38 43 18 33 5 34 50 33 35 

1 46 19 31 31 31 34 29 48 10 45 33 53 42 20 17 15 46 44 1 31 

33 32 26 56 41 35 16 14 27 36 45 60 33 42 38 50 32 26 25 9 22 

PSO 10 10 30 100 100 100 30 10 40 20 30 100 0 40 0 0 30 0 50 70 80 

0 10 30 70 100 100 10 10 20 10 30 100 50 10 10 0 0 0 0 10 10 

0 40 60 50 0 100 0 0 10 0 10 10 0 0 0 10 30 0 0 0 70 

Random 25 75 0 10 75 95 0 55 10 100 0 100 50 25 90 10 10 25 25 45 45 

35 90 0 70 5 25 75 0 20 95 40 55 0 25 40 10 40 10 10 80 25 

15 85 35 20 100 60 80 30 10 70 25 85 25 65 20 75 40 55 20 75 35 

Table 20: Some weights of weight vectors generated by the different algorithms trained on the real B dataset. The 
color-coding shows how stable the weights are. Dark green means that the weights have a maximum point difference 
of 5, light green means that the weights differ at most 10 points, while orange means that the weights differ at most 20 
points. You can clearly see that the EA algorithm produces more stable solutions than the random algorithm. 
 
However, the weight vectors trained on the same training set, but with spread out calamities, show a different 
pattern, which is visible in Table 21. Fewer weights are coloured dark green and the Evolutionary Algorithm is not 
producing very stable solutions anymore. The stability of the weight vectors of the other algorithms is comparable 
to the stability shown in Table 20. 
 

 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

EA 30 90 10 90 80 60 40 0 50 0 0 20 100 80 20 10 0 0 0 0 0 

0 20 40 100 40 100 0 10 0 30 20 100 60 20 0 0 0 0 0 0 10 

10 70 10 50 70 100 0 40 50 0 20 100 50 0 0 0 10 100 0 0 30 

TS 0 10 10 14 80 47 22 16 49 38 47 48 46 29 0 39 0 0 26 0 38 

0 30 33 58 93 5 22 1 47 41 39 9 28 20 0 26 0 71 30 78 70 

1 0 18 19 100 1 39 6 79 33 2 19 21 23 25 0 34 10 2 0 26 

CMAES 24 25 7 33 27 31 18 43 29 55 66 21 31 26 22 11 22 27 14 37 47 

1 29 22 27 31 42 31 28 48 36 43 39 52 45 23 20 17 46 42 12 33 

52 36 22 48 51 25 19 26 32 13 50 49 28 18 32 13 34 29 18 19 32 

PSO 10 10 30 10 80 100 40 10 40 0 20 100 0 10 0 0 30 0 70 0 90 

0 40 0 30 100 70 50 20 70 20 20 100 10 20 0 20 50 100 20 10 0 

0 50 10 30 20 80 30 10 70 50 50 100 40 0 0 0 10 20 10 0 60 

Random 25 75 0 10 75 95 0 55 10 100 0 100 50 25 90 10 10 25 25 45 45 

30 20 0 40 70 65 30 15 20 50 65 45 15 75 75 50 35 10 10 80 5 

15 85 35 20 100 60 80 30 10 70 25 85 25 65 20 75 40 55 20 75 35 

Table 21: Some weights of weight vectors generated by the different algorithms trained on the real B dataset with 
spread-out calamities. The color-coding shows how stable the weights are. Dark green means that the weights have a 
maximum point difference of 5, light green means that the weights differ at most 10 points, while orange means that 
the weights differ at most 20 points. 
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7 Discussion 
7.1 Meta-heuristic search is useful 

We chose for meta-heuristic algorithms based on the properties of the problem and methods proposed by 
various papers, e.g. “Tabu Search – Part II” (1989) of F. Glover [17], wherein meta-heuristic algorithms are used to 
solve combinatorial optimization problems. Our analysis shows that on the real and artificial datasets, the meta-
heuristic algorithms do perform better than just randomly drawing weight vectors.  
 
Also, to compare randomly drawing weight vectors with the meta-heuristic search when no pattern should be in 
the data, we ran the algorithms on the randomized real datasets. On these datasets the random draw works 
equally well compared to the meta-heuristic search. Therefore, we can conclude that, when the data contains 
patterns, systematic search is useful regarding our problem. As the meta-heuristic algorithms can find and exploit 
the patterns in the data. 
 
Although search is better than random draw, the exact solution does not matter as most algorithms are perfectly 
able to generate solutions with equal loss ratio and acceptance percentage. Probably, there are no real 
differences between the algorithms, because the problem was easier than expected, there was only one 
constraint and solution feasibility was easy to achieve. 
 
Besides meta-heuristic algorithms, some other methods could be considered for solving the combinatorial 
optimization problems.  These methods are Complete Enumeration, a Mixed Integer Linear Problem solver and 
other meta-heuristic algorithms, for instance Generalized Simulated Annealing. 
 
Complete Enumeration 
Complete Enumeration basically is just testing all possible solutions and is sure to find the optimal solution. 
However, this is undoable. For instance, we take K features and cut-off value C the number of unique solutions is 
𝐾𝐶+1. This is an exponentially growing amount of solutions. I.e. when we consider 𝐾 = 25 and 𝐶 = 100, then the 
number of possible solutions is 1.55 ∗ 10141, which is more than the estimated number of particles in the 
universe. The FRISS software usually contains between 100 and 400 features. 
 
Increasing the granularity of the feature weights helps, but taking our small example above with a weight 

granularity of 5 or 10, this still leaves us with 2.27 ∗ 1029 and 2.38 ∗ 1015 solutions respectively. When taking the 
smaller amount and 1 microsecond, 1 ∗ 10−6 seconds, to calculate one solution, we need little over 31 years to 
calculate the objective value of every solution. This means that complete enumeration is not feasible as method 
for solving our problem. 
 
Mixed integer linear problem solver 
The second method is using a Mixed Integer Linear Problem solver (MILP solver). The optimization problem can 
be rewritten as a mixed integer problem, for which a solver can, theoretically, find the exact optimal objective 
value and corresponding solution. However, there are downsides of using a solver. Firstly, using a solver is 
expensive. Would we use one of the best solvers available at the time of writing, Cplex. This solver costs $10.000 
on an annual basis. Secondly, there are problems concerning the properties of our problem. The data mostly 
available for this problem are crude approximations of the actual insurance portfolios. For instance, when an 
insurer has a portfolio of 1 million cases and provides FRISS with a set of 100.000 cases that is only 10% of the 
portfolio. Therefore, the available data is only a crude approximation of the real data. 
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Both the meta-heuristic algorithms and the MILP solver face this same problem. However, the solver will give an 
exact solution to this crude approximation of the portfolio. While a meta-heuristic algorithm, which does not 
guarantee an optimal solution, searches for a solution which lies close to the optimal solution. Because the 
dataset is an approximation of the full portfolio, it is doubtful if using a solver to exactly solve a problem with an 
approximation of the dataset is useful. Also the precise solution might not generalize well to the whole portfolio, 
while a sub-optimal solution might. 
 
However, in this specific case the question can be raised if the combinatorial optimization problem is sufficiently 
well formulated. To be precise, every solution with a better objective value than the current solution must be 
accepted. When this better solution does not generalize, then the data is not a good approximation of the whole 
portfolio, or a constraint or objective must be added to the current objective function. 
 
Other meta-heuristic algorithms 
Besides the four meta-heuristic algorithms used in this thesis, there is an extensive list of other possible 
algorithms. For instance, hybrid meta-heuristic algorithms can be used. These are meta-heuristic algorithms 
which, e.g. combine search strategies of two different algorithms or switch the neighbourhood generation of the 
solutions halfway through the search. There are almost infinite variations of hybrid algorithms that can be 
considered. However, our results show that the knowledge of meta-heuristic algorithms and the programmer’s 
skill seem at least equally important to finding a good solution than choosing the right algorithm 
 
Generated Simulated Annealing 
Of the other meta-heuristic algorithms possible, we did also try the Generalized Simulated Annealing algorithm. 
Although no data is included in this thesis. Generalized Simulated Annealing is a global search algorithm based on 
the original Simulated Annealing algorithm proposed by Kirkpatrick at all. (1983) [26]. Tsallis & Stariolo (1996) [32] 
proposed a global search distribution, which is a generalized version of the local search distribution used with 
Simulated Annealing.  
 
The Generalized Simulated Annealing algorithm seems to generate good solutions. However, the algorithm needs 
much more objective value evaluations, and run time, than the other meta-heuristic algorithms that were used. 
The jumping through the search space and accepting worse solutions allows for escaping local optima, but also 
increases the number of iterations needed to settle down into the currently found local or global optima. 
 

7.2 Comparing Algorithm Traits 

We will not declare one algorithm the best algorithm to solve our combinatorial optimization problem. As 
described in section 7.1 and substantiated by the analysis in section 6.4, the meta-heuristic search algorithms 
perform equally well when the seed of the random number generator is good. Although when the seed is bad 
than there is a difference between the CMAES and PSO algorithms on one hand and EA and TS on the other, with 
the latter performing more reliably as the former often gets stuck into local optima. 
 
Run time 
The run times of the used algorithms differ a lot, as shown in section 6.2 and noted in section 6.4. However, we 
cannot fully compare the run times of the different algorithms, as the specific implementation of each algorithm 
decides much of the total run time. Currently we might only compare the EA, TS and Random Draw algorithms, 
because the CMAES and PSO implementations have been written by respectively Trautmann et al. (2011) [31] and 
Bendtsen (2012) [04].  
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The run time is influenced by the skill of the programmer of the algorithm and the type of algorithm, i.e. 
comparing two algorithms that use very different computations is like comparing apples and oranges. Therefore, 
we cannot prove that one algorithm truly is faster than another. For instance, an older version of our EA 
algorithm took more than twice the current run time for the same number of iterations with the only reason 
being a worse implementation. 
 
Solution Complexity 
We can make a slight difference between algorithms based on the complexity of the generated solutions. Two 
algorithms, EA and PSO, generate solutions with a weight granularity of 10, which generally returns solutions that 
are simpler as well as easier to understand. Also these two algorithms generate solutions with low loss ratio, so 
we can state that they have a slight advantage over the other algorithms based on Occam’s razor, see section 3.3. 
Starting with feasible or unfeasible weight vectors does not matter most of the time. The search algorithms have 
the tendency to always reject the maximum amount of cases that are allowed to be rejected. In other words, they 
try to abuse the feasibility constraint as much as possible. 
 
Overfitting on Calamities 
The relation between overfitting on the calamities in the data seems relatively small. Only large calamities are 
shown to be rejected. Also, sections 6.4.1 and 6.4.2 show that the standard deviation of the loss ratio of the 
generated weight vectors, over the original and spread-out training sets, is equal. So, it does not make any real 
difference on which training set the weight vector was trained. However, the loss ratio of the weight vectors 
trained on the spread-out training sets are closer to the loss ratio of the validation sets.  
 
All in all, we can state that on our used datasets the difference between using the original and spread-out training 
sets is neglectable. There might only be a slight advantage for the weight vectors trained on the spread-out 
training set as their loss ratio is closer to the loss ratio of the validation set.  
 
Increased number of objective value evaluations 
Besides the showed results in chapter 6, we also ran the same experiments with 20.000 objective value 
evaluations for each algorithm instead of the used 10.000 evaluations. In practice, this means doubling of the 
number of iterations for each algorithm. In most cases the extra evaluations did not significantly improve the 
objective value of the best solution. Figure 44 shows a Tabu Search algorithm run that returns no significant 
improvement of the objective value.  
 
 
 
 
 

Figure 44: The improvement of the objective 
value of a Tabu Search algorithm after iteration 
1000 is coloured red. In this case the extra 
iterations only improves the objective value by 
0.0016.  
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7.3 Future Research 

Initial solutions 
Currently the initial solutions of the algorithms are generated randomly. A method that searches for better than 
random initial solutions might give the search algorithms a boost in the first few iteration. For example, we can 
choose a couple of features and run a few iterations on the dataset and then use the resulting weight vectors for 
the initial solutions of the real run. 
 
Operational and feature costs 
The problem definition, introduced in chapter 2, can be extended. As mentioned in the introduction, FRISS’ 
technical platform consults various external data sources. For most of these data sources a fee must be paid for 
each case. Therefore, in some situations the benefit of adding a specific data source, and thus using specific 
features, can be less than the cost associated with its use. Also insurers have operational costs, e.g. personal costs 
and housing costs. These can be modelled as a fixed percentage of their total premium income. For most insurers 
this value lies around 35%. Both types of costs are subtracted from the bruto premium income. Formula (1) of 
section 2.1 would then become: 

𝐿 =
𝑆𝐴

((1 − 𝑐%) ∗ 𝑃𝐴 −  𝐼 ∗ ∑ 𝑐𝑘 ∗𝑘𝜖𝐾  𝟙𝑤𝑘>0)⁄  

Variable Description 

𝑳 The loss ratio of the portfolio associated with the accepted cases 

𝑺𝑨 The total claim amount associated with the accepted cases 

𝑷𝑨 The total premium income associated with the accepted cases 

𝒊 𝝐 𝑰 i = 0,…,#cases 

𝒌 𝝐 𝑲 k = 0,…,#features 

𝒄% The percentage of the premium income used for the insurer’s operational costs 

𝒄𝒌 The costs of using feature k. 𝑐𝑘 ≥ 0. 

𝟙𝒘𝒌>𝟎 Indicator variable which equals 1 if weight k is larger than 0 and 0 otherwise 

Table 22: The variables of formula (1) and constraints (2) to (4). 

 
Workload 
The chosen problem definition makes a split between the immediately accepted cases, the set A, and the 
immediately rejected cases, the set R. However, FRISS usually works with three layers, namely green, orange and 
red, where commonly the green cases are in the set A and the red cases are in the set R. The orange cases are 
cases that the insurer has to investigate, say a set I, as their FRISS score is not low enough to be accepted nor high 
enough to be rejected. This can be modelled as a workload constraint for the insurer. Which basically implies that 
we cannot reject more than 𝑥% of the cases immediately, but we also may not have more than 𝑦% of the cases 
as workload. 
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8 Conclusion 

The key question of this thesis was: Can we systematically predict which clients will likely file claims after 
acceptance, based on an a priori known set of measurable features and can we use this information to increase 
the total value of a portfolio? This key question gave us the following research question: How to select an optimal 
weight vector that maximizes the value of the accepted set of cases, while still respecting the volume constraint? 
 
Based on our research, we can conclude that we can successfully select a set of feature weights, assigning each 
potential client a risk score. This risk score allows us to reject clients associated with a higher risk. Rejecting high 
risk clients improves the portfolio, because fewer claims will have to be paid out. This allows the loss ratio to 
decrease. A lower loss ratio generally means that the total value of the underlying portfolio is higher. Secondly, a 
low loss ratio is often associated with low risk. 
 
To find the specific sets of weights which optimize the loss ratio of the portfolio a diverse set of meta-heuristic 
algorithms can be used. These algorithms are able to produce solutions in a relatively short time. We found that 
systematic search is better than randomly generating sets of feature weights, but that the algorithm choice is not 
decisive for the loss ratio improvement that can be made, as each tested meta-heuristic algorithm is able to find 
near optimal sets of feature weights. However, the underlying portfolio data is decisive for the loss ratio 
improvement. Also, the algorithms generally respect the volume constraint, but they do attempt to get maximum 
value out of the constraint by rejecting just the allowed number of cases. 
 
Finally, we can conclude that large outliers in the data do not have a major impact on the search. When we 
compare the loss ratio of the weight vectors trained on the original and spread-out training sets, the variance is 
equal. However, a noticeable difference is that, when training on the spread-out training sets, the loss ratio of the 
weight vectors found, is closer to the loss ratios found on the validation sets. This might indicate that a weight 
vector trained on a spread-out training set generalizes better towards the whole portfolio than a weight vector 
trained on an original training set. 
 
As the algorithms do not differ much in performance, any preference for which algorithm to use must be based 
on other features. Two of these features are the time needed to find a satisfying solution and the simplicity of this 
solution. Based on these two features, we recommend using our Evolutionary Algorithm. 
 
An important contribution of this work is a free to use application, which is shown and explained in chapter 5, 
containing all algorithms and options described. The application is implemented using modern web standards 
with R as the statistical engine.  
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9 Appendix 

9.1 Datasets 

In this section the different datasets are mentioned shortly. Also the parameters for the artificial dataset 
generator are given, so that the artificial datasets can be recreated, while an approximation of the real datasets 
can be generated. Table 23 shows an overview of the datasets used in this thesis. Shown are the number of cases 
a dataset has. How many calamities there are in the dataset. The starting loss ratio of the dataset, which we want 
to improve by changing the feature weights. The number of features and finally, the number of compound cases, 
which are created when cases with the same pattern of feature hits are summed. 
 

Dataset #Cases #Calamities Loss Ratio #Features #Comp. cases 

Real A 71.092 133 0.729 109 4.971 

Real B 56.779 52 0.706 39 2.206 

Real A Randomized 71.092 133 0.729 109 4.971 

Real B Randomized 56.779 52 0.706 39 2.206 

Increasing Risk 100.000 19 0.658 100 19.509 

High Risk 100.000 32 1.087 80 45.426 

Medium Risk 100.000 19 1.060 100 43.418 

Small Calamities  100.000 291 0.791 100 19.432 
Table 23: A short overview of the eight datasets that are used for this thesis. First, there are two real datasets. Then the 
same two datasets randomized and finally four artificial datasets. 

 Real Datasets 

Tables 24 and 25 show the parameters for the artificial dataset generator to create an approximation of the two 
real datasets used in this thesis. The risk group specific features are chosen based on the original feature weights 
in the FRISS software. 
 
Dataset: Real A 

Volume Loss Ratio Premium 
Income 

Claim 
Amount 

Claim SD Features 

22962 0.37 383 835 1.198 0 

27477 0.55 341 1172 1.254 26 

11868 0.51 368 1224 1.286 17 

8785 0.66 369 1401 1.309 66 

 

 

 

Number of hits per feature 

4063,7,4,2574,625,5737,156,6338,3529,11711,5416,1013,1206,2203,129,54,3477,273,185,283,6,3,2295,223,158,7556,2525,266,305,8
73,1646,60,860,1442,4718,4,1,286,331,374,835,207,314,36,86,390,45,190,441,360,7,682,752,294,528,1,226,492,89,274,358,124,50,33,
8,4,1696,193,610,191,86,14,20,2,315,26,69,8,16,6,2,1,237,13,48,6,13,18,6,13,2,23,17,2,28,87,12,6,4,12,59,2,5,13,10,30,48,14,44 

Table 24: The first real dataset, Real A. From top to bottom: the Risk Group parameters, the Feature Hits parameters, 
the Calamity Case parameters and the number of hits per feature. 

 

Value Claim Mean Percentage 

25000 44000 0.0124 

Risk 1 Hits Risk 2 Hits Risk 3 Hits 

1.31 0 0 

1 1.1 0 

1.3 0.23 1.08 
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Dataset: Real B 
Volume Loss Ratio Premium 

Income 
Claim 
Amount 

Claim SD Features 

17226 0.6 427 1448 1.135 0 

23362 0.58 499 1508 1.198 23 

14809 0.67 366 1634 1.189 11 

1382 0.64 347 1543 1.21 5 

 

 

 

Number of hits per feature 

206,9,741,26,151,8285,1826,210,7161,296,131,1,4,14707,390,206,228,359,2450,1098,14757,117,348,365,2358,2169,3489,250,5649,1
68,3868,1,149,74,88,422,314,424,195 

Table 25: The second real dataset, Real B. From top to bottom: the Risk Group parameters, the Feature Hits 
parameters, the Calamity Case parameters and the number of hits per feature. 

 Randomized Real Datasets 

The Randomized Real datasets are created from the Real A and B datasets by randomizing the features and the 
combination of premium income and claim amount pairs, see section 4.1.3. The R-code used for the randomization 
is shown at Code 1. 

 
 
 
 
 
 
 

Code 1: The R-code used for randomizing the real datasets. The randomization is over the premium income and claim 
amount pairs. The third column selected at the 3rd code row, at K+(1:3), is a row reserved for the size of a compound 
case. 

When using the shiny application from the shown url in chapter 5, the randomization using the code cannot be 
done. Therefore, approximations of the datasets can be created using the parameters shown in Tables 26 and 27, 
in combination with the parameters of Tables 24 and 25. 
 
Dataset: Real A Randomized 

Volume Loss Ratio Premium 
Income 

Claim 
Amount 

Claim SD Features 

22962 0.49 363 1170 1.263 0 

27477 0.49 365 1073 1.261 26 

11868 0.53 359 1158 1.302 17 

8785 0.48 360 1042 1.212 66 

Table 26: the Risk Group parameters of the randomized version of dataset Real A. 
 
Dataset: Real B Randomized 

Volume Loss Ratio Premium 
Income 

Claim 
Amount 

Claim SD Features 

17226 0.58 465 1507 1.177 0 

23362 0.63 466 1552 1.183 23 

14809 0.6 462 1483 1.161 11 

1382 0.71 462 1770 1.307 5 

Table 27: the Risk Group parameters of the randomized version of dataset Real B. 
 

Value Claim Mean Percentage 

25000 49800 0.005 

Risk 1 Hits Risk 2 Hits Risk 3 Hits 

1.55 0 0 

1.07 1.2 0 

1.17 0.55 1.04 

K <- dim(dataset)[2] – 3 #the number of features 
set.seed(1234) 
randomized <- cbind(dataset[,1:K],dataset[sample(1:nrow(dataset)),K+(1:3)]) 
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 Artificial Datasets 

Tables 28, 29, 30 and 31 show, for the four artificial datasets, the parameters of the artificial dataset generator that 
were used to generate the datasets. 

Dataset: Increasing Risk 
Volume Loss Ratio Premium 

Income 
Claim 
Amount 

Claim SD Features 

40000 0.45 550 2000 0.5 0 

32500 0.6 550 2000 0.5 60 

22500 0.85 550 2000 0.5 30 

5000 1.5 550 2000 0.5 10 

 

 

 

Table 28: The first artificial dataset, Increasing Risk. From top to bottom: the Risk Group parameters, the Feature Hits 
parameters and the Calamity Case parameters. 

Dataset: High Risk 
Volume Loss Ratio Premium 

Income 
Claim 
Amount 

Claim SD Features 

25500 0.3 350 1500 0.5 0 

8500 0.5 320 1750 0.5 40 

33000 1.2 300 2250 0.5 15 

33000 1.5 280 2500 0.5 25 

 

 

 

Table 29: The second artificial dataset, High Risk. From top to bottom: the Risk Group parameters, the Feature Hits 
parameters and the Calamity Case parameters. 

Dataset: Medium Risk with high calamity claim amount 
Volume Loss Ratio Premium 

Income 
Claim 
Amount 

Claim SD Features 

10000 0.5 350 1500 0.5 0 

50000 0.7 320 1750 0.5 60 

13250 1.1 280 2000 0.5 15 

26750 1.3 320 2500 0.5 25 

 

 

 

Table 30: The third artificial dataset, Medium Risk. From top to bottom: the Risk Group parameters, the Feature Hits 
parameters and the Calamity Case parameters. 

 

 

 

Value Claim Mean Percentage Seed 

25000 50000 0.0015 32000 

Risk 1 Hits Risk 2 Hits Risk 3 Hits 

1.25 0 0 

1.25 1.25 0 

1.25 1.25 1.25 

Value Claim Mean Percentage Seed 

25000 100000 0.002 100 

Risk 1 Hits Risk 2 Hits Risk 3 Hits 

2 0 0 

1.25 1.5 0 

1.2 1.25 1.5 

Value Claim Mean Percentage Seed 

25000 250000 0.0015 20 

Risk 1 Hits Risk 2 Hits Risk 3 Hits 

2 0 0 

1.5 1.25 0 

1.25 1.1 1.25 
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Dataset: Small Calamities 
Volume Loss Ratio Premium 

Income 
Claim 
Amount 

Claim SD Features 

40000 0.45 550 2000 0.5 0 

32500 0.6 550 2000 0.5 60 

22500 0.85 550 2000 0.5 30 

5000 1.5 550 2000 0.5 10 

 

 

 

Table 31: The fourth artificial dataset, Small Calamities. From top to bottom: the Risk Group parameters, the Feature 
Hits parameters and the Calamity Case parameters. 

 

9.2 Experiment Parameters 

Table 32 shows the algorithm parameters that are used in the experiments of section 6.1. All parameter, except 
for the Cross-Val. Seed parameter, can also be used in the artificial dataset generator, to replicate the results of 
this thesis. The Cross-Val. Seed parameter is the seed used to split up the datasets in folds for the 5-fold cross-
validation. See also section 6.1 Figure 36 for information on the use of this parameter. 
 

Parameter \ Algorithm CMAES EA PSO TS Rand. Draw 

#Iterations 1000 1000 400 1000 1000 

#Solutions 1 10 25 1 100 

#Offspring per Sol. 10 1 1 10 1 

#Runs 5 

Maximum Reject % 0.1 

Cut-off value 100 

Manipulation chance - 0.1 - - - 

Step size 1 10 10 - 5 

Initial lowerbound 20 0 0 0 - 

Initial upperbound 50 50 0 50 - 

Run Seed 1234,2345,3456,4567,5678 

Subset Seed 1111 

Cross-Val. Seed 9999 

Table 32: The algorithm parameters for the runs on the datasets. The ‘-‘ means that the specific parameter is not used 
by that specific algorithm. When replicating the results with the artificial dataset generator, note that it does not 
contain the Cross-Val. Seed parameter. This parameter is used outside the application to generate the fold for the 5-
fold cross-validation. Note that the step size parameter is the weight granularity show in section 3.1.6. 

 

 

 

 

 

 

 

Value Claim Mean Percentage Seed 

25000 30000 0.02 9876 

Risk 1 Hits Risk 2 Hits Risk 3 Hits 

1.25 0 0 

1.25 1.25 0 

1.25 1.25 1.25 
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