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Abstract

This thesis investigates how well Machine Learning techniques work in predicting
when a failure will occur at sewage pumping station Zuidbroek. We also investigate
if the vibrations or power consumption (or both) from the two pumps in the station
form a better predictor. Around 15,000 observations were used together with 17 pump
failures. Two machine learning models are compared, a supervised and unsupervised
model. The first model is a Random Forest were we used different sampling techniques
to overcome the heavily unbalanced data. The second model is k-means clustering. The
Random Forest models show poor performance where a large number of false positives
are predicted and 0% precision. The k-means clustering models show much better per-
formance and are able to distinguish two different system phases. In combination with
a decision rule we were able to achieve a precision of 63% and a sensitivity 94%. This
model also results in an average time to failure of two hours, meaning that it gives, on
average, a two hour window after the prediction until the actual failure occurs.
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Chapter 1

Introduction

Water boards in The Netherlands are government agencies that are responsible for wa-
ter management in specific regions. Hoogheemraadschap Hollands Noorderkwartier
(HHNK) is one of 21 water boards and operates in Noord-Holland, above the No-
ordzeekanaal. There they work on safety and social issues such as preventing floods,
providing clean and healthy water and safe waterways. As such, they manage hun-
dreds of water pumping stations that require regular maintenance in order to function
properly. When it comes to maintenance, there are different strategies available. Susto
et al. [20] define the following main categories:

1. Run-to-Failure : maintenance is performed after a failure has occurred. This is
the simplest strategy but also the least cost-effective because of the high costs of
interventions and the down-time of the asset after a failure.

2. Preventive Maintenance : maintenance is performed according to a schedule that
is based on time or process iterations. This generally works well to prevent fail-
ures but also results in unnecessary maintenance being performed and leads to
an increase in operating costs.

3. Predictive Maintenance : maintenance is performed by continuously monitoring a
machine or process and predicting when a failure will occur. By using analytical
tools based on historical data, this strategy allows detection of failures before
they happen. This makes it possible to intervene in time which then leads to less
down-time and operational costs.

Predictive maintenance shows to be a good maintenance strategy because it maximizes
operational hours while reducing the required maintenance and associated costs [16].
And since technological advances have made it easier to collect large amounts of data
of industrial processes, Machine Learning (ML) has become a popular choice when ap-
plied to performing Predictive Maintenance. The major distinction in Machine Learn-
ing is made between supervised and unsupervised techniques. With supervised learn-
ing, the data contains a label that is to be predicted. Regression techniques are used for
numerical labels while categorical labels require classification techniques. In the case
of Predictive Maintenance, supervised learning techniques are used to classify the con-
dition of an asset based on the historical data of that asset during different conditions.
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Figure 1.1: Maintenance Strategies [8]

The labels in the data correspond to the condition, for example healthy, deterioration,
failure.

With unsupervised learning, there is no label to classify a certain condition of an asset.
The main focus here is to determine groups in the available data that can be related
to the conditions of an asset. A certain group could indicate whether the machine is
running as normal while another group could indicate an upcoming failure. Unsuper-
vised learning can also work as outlier detection algorithms, where data points that
show large deviations from the majority can be interpreted as irregular behaviour from
the asset.

HHNK currently has a vision to become a more data-driven organization. So, in col-
laboration with consultancy firm Neelen & Schuurmans, they have started a number
of data science projects. One of these projects focuses on performing predictive main-
tenance for sewage pumping stations which transport sewage water for purification.
Maintenance on these pumping stations currently happens according to a fixed main-
tenance plan or when a pump malfunctions. However, by using monitoring data, the
water board might be able to predict when maintenance is required before a malfunc-
tion occurs. Using a predictive maintenance strategy can result in preventing down-
time of the pumping stations, irregular work hours for maintenance engineers and less
costs when compared to regular maintenance.

Domain experts at HHNK believe that failures at a pumping station can be determined
in two ways, namely by using data of the vibrations of the pump or the power con-
sumption of the pumps. In order to determine the effectiveness of Predictive Mainte-
nance for the pumping stations of HHNK, different measurements are being taken at a
station in Zuidbroek. These measurements include, among others, vibrations, temper-
ature and power consumption from the two pumps. There is also data available that



Chapter 1. Introduction 3

Figure 1.2: Sewage pump station Zuidbroek with its two centrifugal pumps. These
pumps pump the water that flows into the basement to higher ground so that it can be
transported to the water purification site.

contains information on when and what type of malfunctions occurred, meaning that
supervised Machine Learning can be applied.

The aim of this research is to develop a model which can be used for performing predic-
tive maintenance on station Zuidbroek by using the available data. The main research
question of this thesis is therefore:

"How well do certain Machine Learning models perform when predicting the failure of
components of the sewage pump station Zuidbroek?"

We will also determine whether or not there is a difference in predictions when using
either the vibrations or the power consumption of the pumps. If the same predictions
can be achieved with just the power consumption, there would be no need to place the
expensive vibration sensors. The sub-question of this thesis is therefore:

"Can the same predictions be achieved without the vibration data?"
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We will apply one supervised classification model, namely Random Forest, and one un-
supervised model, namely k-means clustering. We expect the Random Forest model to
perform the best since tree-based model seem to work very well in Predictive Mainte-
nance [8]. A Random Forest is also explainable, meaning that we can determine which
attributes of the data influence the classification of the model. This also makes it useful
in determining the influence of the vibration data when compared to the power con-
sumption data. The unsupervised model, k-means, was included due to the limited
number of malfunctions which make the data set highly imbalanced. So this model
can be useful in determining groups of data, independent of the malfunctions and the
temporal aspect of the data.

The structure of this thesis is as follows: Chapter 3 discusses the available data, the
preparation process, which attributes were created and finally which type of malfunc-
tions were selected for early detection. Chapter 4 explains the concepts of Random
Forest and k-means clustering and Chapter 5 shows the results of both models. Finally,
Chapter 6 gives a final conclusion and an answer to the research questions.



5

Chapter 2

Literature Review

In regards to technology, it is becoming increasingly easier to collect and analyze large
amounts of data of industrial processes. As such, Machine Learning (ML) methods
have shown to be a popular choice when it comes to utilizing these data for mainte-
nance approaches. Carvalho et al. [8] concluded that, among papers published between
2009 and 2018, Random Forest is the most frequented ML algorithm when performing
predictive maintenance. This is followed by Artificial Neural Networks, Support Vec-
tor Machines and k-means clustering. The first three techniques are examples of super-
vised learning models and, in the case of predictive maintenance, are used to classify
the condition of an asset based on the historical data of that asset during different con-
ditions. Methods such as k-means are unsupervised techniques and can be used to
determine certain groups in the data that relate to operating conditions.

While there does not seem to be a preference for a certain type of asset on which to
apply these techniques, Carvalho et al. [8] does mention a preference for vibration data
to train these ML models on. For example, Amihai et al. [3] applied a Random Forest
model on vibration data collected from industrial pumps in order to predict certain
metrics about the health of the pumps up to 7 days ahead. Another example is Biswal
and Sabareesh [5], who used a neural network to classify the operational conditions of
wind turbines. They also trained this model using vibration data that was collected
when the turbine was in a healthy vs non-healthy condition.

In regards to unsupervised learning techniques, Uhlmann et al. [21] was successful
in determining operational groups of a Selective Melting Machine by using data from
multiple sensors.

Bruyn [7] also applied ML methods in order to perform Predictive Maintenance for sev-
eral pumping stations in the municipality of Utrecht. They used a number of models,
namely Long-Short Term Memory, X-Gradient Boasting, Random Forest and Support
Vector Machine. Based on these models they attempted to predict major defects three
days in advance and decide which model is best suited for this task. As for the data that
was used, they ended up using only the flow rate and water level from their database,
which were aggregated to a few different values. They then engineered a number of
features such as day of the week, 5 minute difference in flow rate and the percentage
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of time that the station was in defect during the past 3 days and added open source
weather data. The flow rate and water level are also attributes that we will be using.
It’s also interesting to see that Bruyn [7] used different aggregation levels for different
methods. For instance, for the non-temporal methods the data was aggregated per day
whereas for the temporal methods the data was aggregated per minute. Their final con-
clusions were that the X-Gradient Boasting performed the best of the four algorithms,
where 45% of the predicted failures were actually failures.

More recent papers published after 2020 often make the distinction in predictive main-
tenance between failure prediction and remaining useful life (RUL) [10] [22] [18]. Fail-
ure prediction is the generic use of predictive maintenance, which we will be utilizing
in this thesis, where the main goal is to predict when a failure will occur [10]. Whereas
RUL is related to prognostics which gives the remaining operational time of machinery
before it requires replacement or repair. But when it comes to applying machine learn-
ing models for predictive maintenance, these papers also mention the more traditional
ML methods that were also mentioned by Carvalho et al. [8]. These vary from different
kinds of neural networks such as traditional, convolutional and recurrent networks to
hidden Markov models, auto-encoders and transfer learning.

Davari et al. [10] summarizes works on general data-driven solutions for predictive
maintenance. Here, most techniques are different types of neural networks but clus-
tering is also mentioned as a method to identify types of faults. These methods are
applied to different data sources from different types of sensors and machinery. Their
summary also shows a preference for vibration data.

As for evaluating the performance of these failure prediction methods, the proposed
metrics can be calculated form the confusion matrix. Measures such as recall, specificity
and precision give an understanding of the number of accurately predicted failures
and/or the number of wrongfully predicted failures. The AUC-ROC is also used to
evaluate the performance of the prediction and for error analysis.
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Chapter 3

Data

This chapter discusses the available data. Paragraph 3.1 elaborates on the different
measurements taken at sewage pump station Zuidbroek and paragraph 3.2 explains
what type of malfunctions occur and which of these are suitable for early detection.
Paragraph 3.3 describes how the data was processed and which new features were cre-
ated. Finally, Paragraph 3.4 discusses which attributes were chosen to create a number
of data sets that are suitable to use with the chosen models mentioned in Chapter 4.

3.1 Zuidbroek Measurements

Sewage pump station Zuidbroek consists of two wastewater pumps that pump water
from the basement to higher ground so that the water can travel to the water purifica-
tion site. There are three vibration sensors on each pump and one temperature sensor
on pump 1. The vibration sensors are located on the Non-Drive End (sensors 1 + 4),
Drive End (sensors 2 + 5) and Coupling Side of the pumps (sensors 3 + 6). For each
of these vibration sensors we have the following data: the root mean square of the
vibration speed (v-RMS), the root mean square of the acceleration (a-RMS) and the
maximum acceleration (a-Peak). The v-RMS gives an indication of mechanical fatigue,
the a-RMS indicates mechanical friction and the a-Peak indicates mechanical impact.
Aside from the vibrations and temperature, there are also measurements such as the
power consumption of the pumps and the amount of water that flows into the sta-
tion. In total, there are 14 attributes spanning from January 2019 to October 2020. An
overview of these attributes, along with the frequency of the measurements, is shown
in Table 3.1. Each attribute also includes the timestamp of when the measurement was
taken.

There is also data available of when certain malfunctions have occurred at Zuidbroek.
This will be the target attribute that will be predicted with the supervised learning
model, Random Forest. Chapter 3.2 explains which of these malfunctions were suitable
for early detection.

1In Dutch: Debiet
2In Dutch: Waterhoogte
3In Dutch: Vullingsgraad
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Attribute Description Unit Frequency
Flow rate 1 The m3 of wa-

ter that has been
pumped

m3/h 2 minutes

Water level 2 The water level in
the basement.

M (NAP) 2 minutes

Fill rate 3 % 2 minutes
Pressure 4 Bar 2 minutes
Power consump-
tion pump 1

The amount of
electricity used by
pump 1.

A 2 minutes

Power consump-
tion pump 2

The amount of
electricity used by
pump 2.

A 2 minutes

Pump temperature The temperature of
pump 1.

◦C ∼ 1 minute

v-RMS sensor Root Mean Square
of the vibration
speed.

m/s ∼ 1 minute

a-RMS sensor Root Mean Square
of the acceleration.

m/s2 ∼ 1 minute

a-Peak sensor The maximum ac-
celeration.

m/s2 ∼ 1 minute

Malfunction Registered mal-
functions

1 or 0 -

Table 3.1: Available Data attributes measured at different frequencies.

3.2 Malfunctions

In regards to malfunctions that can be predicted, domain experts are especially inter-
ested in blockages 5 where it is expected that the flow rate and fill rate remain stable
but the vibrations are high.

In the next chapter we will distinguish between malfunctions and failures as follows:
malfunctions are every logged event from Zuidbroek but don’t necessarily require in-
tervention, while failures do require intervention. We will use failures for early de-
tection. The available data contains information about the malfunctions that have oc-
curred at Zuidbroek, the most important characteristics being the type of malfunction
and the duration. Not all malfunctions are suitable for early failure detection. Based
on domain expert suggestions, we selected the following malfunctions to be used as
failures for early detection:

• Dry-run: When, during the set time of two minutes, less than the set dry-run (300
m3/h) flow rate is being pumped.

4In Dutch: Persleidingdruk
5In Dutch: Pruikvorming
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• Failure F.O.: can have multiple causes but is usually caused by an overload where
too much power needs to be delivered to the motor in order to pump the neces-
sary amount of water.

• Failure General: caused by a malfunction with the main power.

As mentioned before, the failure data is very skewed because failures do not occur
frequently since station Zuidbroek is relatively stable. Starting off with eighty failures
which can be used with the available data, five of these are dry-runs, five are failure
F.O. and seventy are failure general. A large number of these failures are automatically
generated and logged due to other, previously occurred malfunctions. For example,
the logged dry-run failures are a result of a broken flow rate meter. And because the
flow rate was not being measured longer than the set time of two minutes, an automatic
dry-run failure was generated.

Before Selection After Selection
Total over period
January 2019 - Oc-
tober 2020

80:
• dry-runs: 5
• failure F.O.: 5
• failure gen-

eral: 70

42:
• failure gen-

eral: 42

Total excluding
gaps over period
January 2019 -
October 2020

34:
• dry-runs: 2
• failure F.O.: 1
• failure gen-

eral: 31

17:
• failure gen-

eral: 17

Table 3.2: The number of malfunctions after selecting those suitable for early predic-
tion. The models that use the vibration data will have less malfunctions due to the gaps
in this data.

Another example of this is shown in Figure 3.1. This graphs shows the mean 2-minute
values for the power consumption, two sensors, the outgoing pressure, flow rate, fill
rate and water level. The dotted lines represent when a malfunction was reported ((1))
and when it was signed off ((0)). We can see here that a mechanic was present at the
sewage pump station around 07:30 am (the blue dotted line) and that they very likely
turned off pump 1 in order to work. This caused the flat line in the first two graphs for
the power consumption and vibrations from pump 1. During this off-period for pump
1, the third and fourth graphs show that pump 2 is now pumping more in order to
pick up the slack from pump 1. See the shorter cycles in the power consumption and
vibrations for pump 2. After a few hours an automatic malfunction "Failure General
Pump 1" is logged (the red dotted line) due to pump 1 being off for longer than the set
time. About an hour later, the mechanic is done working and pump 1 is turned back
on (the green dotted line).
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Figure 3.1: Malfunction effect: Failure General Pump 1 logged in July 2019 is caused by
a mechanic switching pump 1 off. Because pump 1 was off longer than the set time-out,
an automatic failure was generated.
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Figure 3.2: Failure General Pump 2 logged in September 2019. This shows an uptick in
the flow rate, resulting in the pumps using more power and pump 2 suddenly shutting
off around noon.

These examples show that a large number of the failures are not random, which makes
predicting them impossible. So we will limit ourselves to the failures that occurred
"randomly" on a single day, without previous malfunctions. Unfortunately, this only
leaves 42 failures all of type Failure General Pump 2, and only 17 of these fall into
the periods of which there is vibration data available. Figure 3.2 shows one of these
failures, where there is an increase around noon in flow rate, pressure and water level.
Both pumps also start using more power in order to pump away the excess amount of
water when suddenly pump 2 shuts off during the peak. This seems to show a usable
pattern that can be detected by machine learning algorithms.
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3.3 Pre-Processing

Data Aggregation

Table 3.1 shows that the vibration data is logged at a different frequency than the other
attributes, respectively one minute vs two minutes. The first step is to decide a step-
size or granularity (∆t) for this data set. Using a small granularity could cause noise
to remain in the data which is frequently the case with, for example, sensor data from
smart watches and smart phones [12]. Noise in the context of predictive maintenance
could have a different meaning where it may already indicate something wrong with
the machine. So, we will choose the smallest granularity possible. And because we
want to be able to compare the predictive power of the vibrations with that of the
power consumption of the pumps, we will use ∆t = 2 minutes. For every step-size we
will calculate the mean. In order to mitigate the run-time of the models, we will limit
the step aggregation to the mean instead of also adding statistics such as the minimum
and maximum.

Due to infrastructure issues, the vibration data collection encountered issues and as a
result, there are various gaps in the vibration and pump temperature data, some span-
ning several months. This means that when we include the vibration and temperature
data in the data set, we have a total of around 244,000 observations. Excluding the
vibrations and temperature leaves us with 443,000 observations.

Missing Values

After the data aggregation, we are left with some missing values for certain attributes.
An overview is shown in Appendix A.1. Fortunately, there are not many missing val-
ues. The attribute "Pressure" contains the most, with around 1% missing. In order to
retain as much valuable data as possible, we will impute the missing values using inter-
polation. This is easily done since all of our data is numerical and it is also the preferred
method when handling temporal sequences since it results in much more natural val-
ues [12]. For this method we will take the average of the previous and next value of
the same attribute. When given with the temporal sequence x1

i , xi
2, ..., xi

N for attribute i,
with missing value xi

j, it will be predicted as

xi
j =

xi
j−1 + xi

j+1

2
(3.1)

Feature Engineering

Now that the data has been aggregated and missing values have been interpolated, we
will extract some useful attributes from our data set in order to improve the predictive
performance of our model. Hoogendoorn and Funk [12] mention two main ways of
doing this. One is creating attributes in the time domain and the other is creating them
in the frequency domain. We will focus on the time domain. Because our data set is



Chapter 3. Data 13

a time series, applying a supervised learning model to predict a failure or no failure
is difficult based on only the data at a specific time point. The graphs in Figure 3.2
are examples that show that anomalous behaviour doesn’t necessarily translate to only
peaks in the accelerations but also shorter wavelengths in the series leading up to a
failure. In order to capture this historically observed behaviour, we will summarise
these values using a window size λ.

Take xi
t as the attribute i at time point t and its corresponding window of observed

values [xi
t−λ, ..., xi

t]. We will summarise the mean aggregated values with a window
λ = 3 hours using the variance as follows:

x_vari
t =

∑t
n=t−λ(xi

n − x̄i)2

λ + 1
(3.2)

Where

x̄i =
∑t

n=t−λ xi
n

λ + 1

Because we expect the observed values leading up to a failure to show constant faster
accelerations, we expect that the variance of these values will be lower when compared
to the "normal accelerations".

3.4 Final Data Set

The methods that we will apply, mentioned in Chapter 4, are computationally expen-
sive. In an effort to mitigate the run time, we will limit the number of attributes and
observations.

Figure 3.3 shows interesting patterns for the correlations of the mean values of the at-
tributes for ∆t = 2 minutes. We can see that the vibration sensors of pump 1 are highly
correlated with each other but the sensors of pump 2 show a different pattern where
sensor 4 shows less correlation with the sensors 5 and 6. The vibrations from pump
1 and pump 2 also show no correlation with each other, which is to be expected since
they are two different machines, but each pump does show some correlation with its
corresponding power consumption. The graph also shows some correlation between
the measurements from the basement and the measurements from the pumps, which
can be attributed to the fact that the water level and flow rate determine how hard the
pumps will pump.

In regards to the attributes for the final data set, we will select the ones that show less
correlation with others and only consider the mean values. For example, since the vi-
bration sensors from pump 1 are highly correlated with each other, we will only take
one of these values into consideration. For pump 2 we will take two values into con-
sideration since sensor 4 does not show correlation with the other two. Also, because
there are so few malfunctions, we will only use the data from the three days leading
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Figure 3.3: Correlation Matrix of the mean values of the attributes with ∆t = 2, based on
the Pearson correlation coefficient. The data from when pumps have shut off due to a
malfunction, is excluded. The vibration sensors on pump 1 all show strong correlation
with each other. Whereas one of the sensors on pump 2 shows less correlation with
the other two sensors. There is also correlation between the vibrations and the power
consumption.
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up to a failure. We expect that this will give enough information on how the pumping
station runs normally and when a malfunction is about to occur.

Since we also want to be able to compare the influence of the vibrations and power con-
sumption on the model performance, we will create different data sets. An overview
of the attributes in the different data sets is shown in Table 3.3. Data set 1 forms the
base set and consists of the 2 minutes mean aggregated values of the vibrations, power
consumption and various measurements from the basement. The remaining data sets
form variations on this set. Data set 2 removes the vibrations and temperature leaving
us a set to see the effects of the power consumption. Data set 3 is to see the effects of
the vibrations and temperature and set 4 only has data from pump 2. Data set 5 also
consists of the power consumption, but with more data since leaving out the vibrations
gets rid of the gaps in the data. This last data set will help determine if the model
performance when using the power consumption increases when using more data.

Available attributes Data set Number of observations
timestamp

1 15,000

failure
pump 1 sensor 1 a-peak mean
pump 2 sensor 4 a-peak mean
pump 2 sensor 5 a-peak mean
pump 2 sensor 6 a-peak mean
pump 1 power consumption mean
pump 2 power consumption mean
pump 1 temperature mean
basement flow rate mean
basement pressure mean
basement water level mean
all attributes variance previous 3 hours
Data set 1 - vibrations - temperature 2 15,000
Data set 1 - power consumption 3 15,000
Data set 1 - pump 1 4 15,000
Data set 2 complete power consumption 5 54,500

Table 3.3: Final data sets with ∆t = 2 minutes with data set 1 forming the base set. The
remaining data sets will be based on variations of the base set. The data sets consist of
the mean aggregated values for a selection of the vibration sensors. For each attribute
we also calculate the variance of the previous 3 hours of every time stamp.
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Chapter 4

Machine Learning Models

4.1 Random Forest

Tree-based classification models work by using a set of splitting rules to partition a
feature space into smaller regions that have a similarity in response values [6]. A few
of the many benefits of these decision trees, is that they produce easy to interpret rules
that can also be visualized with tree diagrams. An example of one is shown in Figure
4.1. Kuhn and Johnson [15] explain that classification trees aim to partition the training
data into smaller, more homogeneous groups. In this context, homogeneity means
that the nodes of the split are more pure, meaning that each node contains a larger
proportion of a class. One way to measure purity is with the Gini index. For a given
node in a two-class problem, the Gini index is defined as:

p1(1− p1) + p2(1− p2) (4.1)

with p1 and p2 being the class 1 and class 2 probabilities. Because p1 + p2 = 1, when
either of the class probabilities is driven towards zero, the node will be pure in regards
to one of the classes. The node will be least pure when p1 = p2.

A Random Forest for classification is an ensemble of decision trees where multiple
classification trees are built on bootstrap samples of the train data. Each tree casts a
vote for the classification and the proportion of these votes across the ensemble gives
the predicted probabilities.

The data from pumping station Zuidbroek has an imbalance in the number of failures
and non-failures that occur. And when it comes to modeling discrete classes, this im-
balance can have a significant impact on how effective the model is. Kuhn and Johnson
[15] discuss a number of methods to remedy severe class imbalance. These methods
include, among others, model tuning to increase the sensitivity of the minority class,
using alternative probability cutoffs, assigning unequal case weights and using differ-
ent sampling methods. Because of time constraints, we will focus on the latter and
apply different sampling methods to the random forest model.
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Figure 4.1: Example of a decision tree predicting whether or not a failure will occur (1
or 0) based on the maximum root mean square of the vibration speed of sensor 1, the
maximum root mean square of the acceleration of sensor 2 and 6 and the maximum
pump temperature of pump 1.



Chapter 4. Machine Learning Models 18

The data will be split according to a stratified split with 70% for the train set and 30%
for the test set. For the training phase we will also apply k-fold cross validation where
the train set is split into k = 10 non-overlapping chunks, and use k − 1 chunks to
train on and one chunk to test upon. Further tuning of the model will be done by
trying different values for the parameter mtry, which denotes the number of randomly
selected predictors to choose from at each split.

4.1.1 Sampling Methods

A random forest model takes random samples of the training data to build decision
trees on. With a large class imbalance, the minority class can be underrepresented
in these samples which will most often result in a heavily over-fit model which will
classify every instance as the majority class. A straightforward approach to avoid this,
is to balance the class frequencies for the training phase so that the model does not have
to deal with the imbalance [15]. While the train set will be sampled to be balanced,
the test set shall remain unbalanced in order to compute honest estimates of future
performance.

Kuhn and Johnson [15] mention a number of subsampling techniques which they ap-
ply with the caret package. They also warn for the pitfalls of sampling the training
data before model fitting, namely overly optimistic estimates because there is a possi-
bility that the holdout set that is generated during re-sampling does not reflect the class
imbalance. And the performance of the model can become more uncertain due to the
random subsampling process.

As an alternative, the subsampling can be included inside the usual re-sampling pro-
cess. Fortunately, in recent versions of the caret package this can be achieved with
relatively simple syntax. We will apply the following subsampling methods that are
conducted inside of re-sampling:

• Under-sampling: Randomly sample from the majority class so that it’s roughly
the same size as the minority class. Take for example a training set where the
majority class takes up 90% of the samples and the minority class the remaining
10%. Under-sampling will randomly sample from the majority class so that it also
takes up 10% of the training set. This leaves 20% of the total training set to fit the
model.

• Over-sampling: Randomly sample, with replacement, from the minority class
until it’s the same size as the majority class.

• Random Over-Sampling Examples (ROSE): Uses artificially generated balanced
samples according to a smoothed bootstrap approach [17].

• Syntetic Minority Over-sampling Technique (SMOTE): Uses a combination of under-
sampling the majority class and over-sampling the minority which can achieve
a better performance (in ROC space). When over-sampling the minority, this
method uses synthetically created minority class examples [9].
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4.1.2 Performance Metrics

In order to compare the different models, we will use the performance metrics sensitiv-
ity, specificity, precision, F1 and AUC. For a description of these metrics, see Table 4.2.
Because of the class imbalance, the accuracy is obviously not a reliable metric. Instead,
we will focus on metrics that describe how well each of the classes are predicted, with
an emphasis on how well the failures are predicted. Most of these metrics can be de-
rived from the model’s confusion matrix (see Table 4.1). This matrix gives an overview
of the class predictions, namely:

• TN: True Negatives. These are the number of cases where the model predicts no
failure and the true value is also no failure.

• FN: False Negatives. The number of cases predicted as no failure but are actually
a failure.

• FP: False Positives. The number of cases predicted as a failure but are actually not
a failure.

• TP: True Positives. The number of cases predicted as a failure and are actually a
failure.

True value
No Failure Failure

Predicted value No Failure TN FN
Failure FP TP

Table 4.1: Confusion Matrix for a two-class classification problem

The Area Under Curve is the only metric that cannot be determined with the confu-
sion matrix but is instead calculated with the Receiver Operating Characteristic (ROC)
curve. The ROC curve is a tool to determine alternate thresholds for class probabili-
ties when considering the sensitivity and specificity. When one of the Random Forest
models results in a sensitivity of 0% and a specificity of 100%, these values are due to
the default 10% probability threshold. A different threshold could capture more true
positives and lead to an improved sensitivity.

The ROC curve is generated by using multiple thresholds when evaluating the class
probabilities for the model [15]. For each threshold value, the sensitivity and specificity
are plotted against each other. Figure 4.2 shows an example for one of the Random
Forest models. With the 50% default threshold, the sensitivity is at its lowest at 0%. By
decreasing the threshold, the sensitivity is improves to 80%. This does come with a cost
of a decrease in specificity.

The area under the ROC curve can be used as a performance metric. Since a perfect
model would have 100% specificity and sensitivity and therefore an area of one. While
a bad model would result in a ROC curve that runs along the 45◦ diagonal, with an
area of around 0.50.
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Figure 4.2: A receiver operator characteristic (ROC) curve for the Random Forest
model. The orange dot indicates the values corresponding to a cutoff of 0.1 %, meaning
probabilities greater than 0.001 are labeled as failures.

4.2 k-means Clustering

Whereas the Random Forest model from the previous sections is a supervised learn-
ing method, as in we supply the classification of the instances to the model, k-means
clustering is an unsupervised learning method. This method is fairly intuitive, where it
finds a predefined number of cluster, k, in the given data. Each cluster has a cluster cen-
ter, which is chosen randomly at first, and is refined in a loop. Each point is assigned
to a cluster based on the minimum distance to the cluster center. There are different
distance metrics that can be used when it comes to numerical data, and the most well
known is the Euclidean distance. This defines the distance between two point xi and xj

as:

euclidean_distance(xi, xj) =

√√√√ p

∑
k=1

(xk
i − xk

j )
2 (4.2)

Once each data point is assigned to a cluster, the cluster centers are recalculated as the
average of all the points in the cluster. This process keeps repeating until the cluster
centers don’t change (or change very little). The full algorithm is shown in Hoogen-
doorn and Funk [12].

There are a number of papers [21] [2] [4] that have successfully used k-means to identify
machine conditions. These clusters, which can convey a machine’s age or condition, are
then often used as an extra attribute in the data that is fed into a supervised learning al-
gorithm. But Uhlmann et al. [21] was able to identify the machine’s behavioural groups
as clusters. These were clusters that showed normal behaviour and faulty behaviour.
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Metric Formula Description
Sensitivity TP

TP+FN The percentage of
failures that were
labeled correctly

Specificity TN
TN+FP The percentage

of non-failures
that were labeled
correctly

Precision TP
TP+FP The percentage of

predicted failures
that were labeled
correctly

F1 2 Precision∗Recall
Precision+Recall Where recall is the

same as sensitivity,
this gives a har-
monic mean of the
precision and recall

Area Under Curve
(AUC)

- Area under the
ROC curve

Average Time to
Failure (ATF)

- The average
amount of time
between a failure
prediction and an
actual failure

Table 4.2: Performance metrics. The AUC is only applicable to the Random Forest and
the Average Time to Failure only for k-means.

In our case we will see if the behaviour of the pumps can be captured in clusters. We
will be able to see how the time series leading up to a failure is clustered and if any
discernible pattern appears. Such a pattern can be used to determine a decision rule to
evaluate whether the system is heading towards a failure. For example,

"If the system stays in cluster 2, which represents an irregular phase, for at least x minutes,
this could result in a failure."

The duration of an "irregular" phase will be called the warning signal and based on
such a decision rule, we will be able to calculate predictions of a time-series, which
will also enable us to use the performance metrics mentioned in Table 4.2. The metric,
Average Time to Failure, will also allow us to calculate the average time between a
failure prediction and when the failure actually occurred.

In order to determine an optimum solution we will vary a number of parameters in this
k-means and decision rule model. These are mentioned in Table 4.3, where the length
of the warning signal is expected to have the highest impact on the model performance.

In regards to the data, there will be no regular train/test split since the three days
leading up to a failure will function as a "test" set. These data will determine if the
decision rule results in false positives during the moments before a failure. Data set
5 however, will be used to perform a train/test split, where the power consumption
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Parameter Description Values
centers the number of

clusters used in
k-means

2, 3

iter.max the maximum
number of itera-
tions allowed

10, 50, 100

nstart the number of ini-
tial configurations
for the randomly
chosen centroids

10, 50, 100, 1000

warning signal duration of an ir-
regular phase

2-90 minutes

Table 4.3: Parameter values for tuning k-means and decision rule model.

model resulting from data set 2 will be applied to the failures in data set 5 that are not
in data set 2.

4.2.1 Silhouette Score

The Silhouette score is a metric which measures the tightness of the clusters, relative
to the distance to the closest cluster [12]. This is another metric that can be used to
evaluate the number of clusters that we expect to find. Hoogendoorn and Funk [12]
first define the average distance of a point to the other points in its cluster as:

a(xi) =
∑∀xj∈Cl

distance(xi ,xj)

|Cl |
where xi ∈ Cl (4.3)

Followed by the average distance to the points in the closest cluster:

b(xi) = min
∀Cm 6=Cl

∑∀xj∈Cm distance(xi ,xj)

|Cm|
where xi ∈ Cl (4.4)

They then define the silhouette score as:

silhouette =
∑N

i=1
b(xi)−a(xi)

max(a(xi),b(xi))

N
(4.5)

This score compares the distances a(xi) and b(xi) and the resulting measure says how
the clusters are relative to the distance to the clusters closest to them. This score ranges
from -1 to 1, with -1 being the worst score and 1 the best. -1 would mean that the
distance from points to the closest clusters is lower than the distance between points
within the cluster. A score closer to 1 would mean low values for a(xi), which indicates
a tight clustering, and high values for b(xi), which would indicate that the clusters are
far apart.
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Chapter 5

Results

This chapter discusses the evaluation of the results from the Random Forest and k-
means clustering models. These models will be evaluated based on the performance
metrics that were discussed in Chapter 4.

5.1 Random Forest

Training an original random forest model without re-sampling leads, as expected, to a
very overfit model where the model classifies every instance of the train set correctly
but when applied to the test set, classifies every instance as "no failure".

True value
No Failure Failure

Predicted value No Failure 4654 5
Failure 0 0

Table 5.1: Confusion Matrix of the test set for the original random forest model without
sampling. This model is heavily overfit and predicts only no-failures.

When applying different sampling methods, we do see different results. The resulting
performance metrics of these models are shown in Figure 5.1. All of these models
show a high specificity meaning that a high percentage of the "no failures" are predicted
correctly, which is usually the case in severely imbalanced data sets. But we can see that
this is not the case for most models when looking at the sensitivity, precision and F1,
which are all very low. This means that very few of the failures are predicted correctly
and of the predicted failures, very few are actually failures (see the confusion matrix
in Table 5.2). The smote- and under-sampling models however, seem to perform better
in sensitivity. Interestingly, all models show a AUC of around 0.75 which means that
while the current classifiers score badly in performance, there is a possibility to increase
performance by using a different threshold. The performance metrics also do not differ
much across the different data sets. The only difference seems to lie in the sensitivity
where we can see that the under-sampling model performs the best with the data set
that includes both the vibrations and the power consumption.
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Figure 5.1: Performance metrics for different sampling methods when applying the
models to the test set. The data has ∆t = 2 minutes and the y value is the 2 hour horizon.
Data set 1 includes both the vibrations and power consumption, data set 2 excludes the
vibrations, data set 3 excludes the power consumption and data set 4 excludes the data
from pump 1. The main difference between data sets lies in the achieved sensitivity of
the smote- and under-sampling models.

Figure 5.2: ROC curves for different sampling methods on data set 1. The data has ∆t =
2 minutes and the y value is the 2 hour horizon. Data set 1 includes both the vibrations
and power consumption.
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Figure 5.3: Performance metrics for different sampling methods when applying the
models to the test set and using the optimal threshold from the corresponding ROC
curve. The data has ∆t = 2 minutes and the y value is the 2 hour horizon. Data set
1 includes both the vibrations and power consumption, data set 2 excludes the vibra-
tions, data set 3 excludes the power consumption and data set 4 excludes the data from
pump 1. .

When using the corresponding optimal threshold from the ROC curve for each model,
we can see in Figure 5.3 that the sensitivity across all models increases. But as expected,
this has no influence on the precision meaning that the classifiers predict a large num-
ber of false positives i.e. predicts failures that are not truly failures. The results also
show the expected trade-off between specificity and sensitivity. The models with a
higher sensitivity also have a lower specificity. The smote model seems to perform
well across data sets, with a sensitivity of 100% and a specificity of around 75%. There
also aren’t any extreme differences between the results for the different data sets. The
data set containing only the measurements from pump 1, does have a few models that
perform slightly worse when compared to the other sets.

In Figure 5.4, the variable importance of the smote model shows that the variance of
the previous 3 hours has the most impact. Especially for the water level, flow rate and
power consumption of pump 2. This could be attributed to the fact that the operating
intensity of the two pumps depends on the water level, flow rate and pressure. For
example, an increase in flow rate would cause an increase in operating intensity for
the pumps. While a higher water level would cause a decrease in operating intensity
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True value
No Failure Failure

Predicted value No Failure 3696 0
Failure 952 5

Table 5.2: Confusion Matrix of the test set for the smote model when using data set 1.
This model has a high sensitivity because it classified all the failures correctly but a low
precision due to a large number of False Positives.

Figure 5.4: Variable importance for the top 10 variables of the smote model based on
the Gini-index. The results are shown respectively from left-to-right and top-to-bottom
for data set 1, 2, 3 and 4.

when the flow rate and pressure remain constant, since the higher water level will
cause a higher pre-pressure, making it easier to pump the water away. The vibration
and temperature measurements seem to have less impact, except when excluding the
power consumption.

Finally, when trying to predict further into the future, one would expect a steady de-
cline in performance. But Figure 5.5 shows how volatile the sensitivity and specificity
behave when using data set 1 with both the vibrations and power consumption and
data set 5 with the larger number of observations.
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Figure 5.5: The smote model applied to data set 1 (with both the vibrations and power
consumption) and data set 5 (the larger data set of the power consumption) for different
prediction horizons.

5.2 k-means Clustering

As mentioned in chapter 2, k-means clustering has been successful in determining
the types of faults and/or operating conditions of machines [5] [11]. Applying k-
means clustering would ideally results in more than two clusters. One indicating a
normal/standard condition, one indicating an irregular condition or period to a failure
and one indicating when the pumps are in failure. Since we filtered out the data during
the failures, finding two clusters would still be reasonable. When calculating the sil-
houette score for multiple numbers of clusters, Figure 5.6 shows that the highest score
is reached with just two clusters. The highest score being just above average (∼ 0.55),
belongs to the data sets without the vibrations and temperature. This would indicate
that the power consumption form tighter clusters when compared to the vibrations and
temperature.

After applying k-means clustering for two clusters to the data that contains both the
vibrations and power consumption (data set 1), we can look at how this clusters the
time series leading up to the failure from September 2019 mentioned in Chapter 3.2. It
would be preferable that there is a change in cluster some time before the failure occurs,
which can be then used as a warning signal. The results in Figure 5.7 show how the
data leading up to the failure are clustered. In this case, k-means is able to distinguish
a different cluster, shown in red, around two hours before the first failure is registered.
This is the moment where there is an increase in the mean water level en flow rate and
pump 2 shuts off, resulting in pump 1 using more power to pick up the slack. The
remainder of the series after the second failure was not used for clustering since we
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Figure 5.6: Silhouette score for the different data sets. Set 1: vibrations + power con-
sumption, set 2: power consumption, set 3: vibrations, set 4: vibrations + power con-
sumption pump 2 and set 5: larger set of power consumption.

only consider the data from three days prior to a failure.

Based on Figure 5.7, cluster 1 (green) could indicate a normal phase and cluster 2 (red)
a irregular/warning phase. Using this we can look at how the time series are clustered
for all 17 failures. Figure 5.8 shows horizontal bars for each failure which represent
how often, in the three days before a failure, a certain cluster appeared. In Figure 5.8(a)
we can see that during the three days before a failure, cluster 1 is prevalent, which
could indicate that for most of the time the system is running in a normal phase. The
last failure from the 26th of February 2020 being the exception in this case since 90%
of the time the system ran in an irregular phase. Now lets look at what happens to
the time series closer to a failure. During the three hours before a failure, shown in
Figure 5.8(b), we see that cluster 2 occurs more often or that the system is running in an
irregular phase. Note that not all of the bars add up to three days or three hours since
some of the failures occurred on the same day.

By looking at the failure dates shown on the y-axis in Figure 5.8(b), we can see which
failures occurred on the same day. For example, on the 4th of September 2019 there
were two failures within a couple of hours of each other. The most failures on one day
occurred on the 19th of November 2019. During the three hours before the first failure
on the 19th of September 2019, the system ran an hour in a normal phase and two hours
in an irregular phase. During the time leading up to the second failure of that day,
the system stayed in an irregular phase. The same can be said of the other days with
multiple failures. After the initial failure, the system seems to stay in an irregular phase.
A look at the failure logs does show that these failures are logged as fixed before the
next one occurs. So these recurring failure logs could be due to maintenance engineers
who are, at that time, working on fixing the issue at hand.

Focusing on just the initial failure on days with multiple failures and the days with a
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Figure 5.7: Two consecutive failures General Pump 2 from September 2019 after ap-
plying k-means clustering for two clusters on data set 1: vibrations + power consump-
tion12. The model is able to distinguish a different cluster (red) around 2 hours before
the first failure is registered.

single failure, we can see that there are failures where the system ran in an irregular
phase for the entire three hours leading up to the failure (e.g. 13-11-2019, 19-11-2019,
17-02-2020 and 26-02-2020). Whereas others ran a shorter irregular phase. The three
failures that occurred on 09-02-2020, 27-01-2020 and 22-02-2020 also show the shortest
irregular phase of around half an hour.

Now, Figure 5.9 shows a similar picture but gives us the opportunity to see how often
the system changes cluster/phase during the three days and three hours leading up to
a failure. If we look at the days leading up to a failure in Figure 5.9(a), we can see that
for the majority of the time the system runs in a normal phase and always ends in an
irregular phase (red) which is then followed by a failure. We can also see that there are
irregular periods during those days and periods where the system oscillates between
phases. During this oscillation, the system switches between a normal and irregular
phase for anywhere between 0 and 10 minutes. These irregular periods could be the
result of malfunctions which, as mentioned previously, do not require intervention and
tend to resolve on their own.

5.2.1 Decision Rule(s)

Based on the system during the three hours before a failure, shown in 5.9(b), we can
determine a decision rule for when a failure is likely to occur according to how long the
system has been in an irregular phase. Figure 5.9(b) shows a clear pattern where the
system stays in an irregular phase for a certain period before the failure occurs. This
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(a) 3 days before a failure (b) 3 hours before a failure

Figure 5.8: The total amount of time that the system ran in a certain cluster/phase
before each failure was registered along with the corresponding proportions, based on
data set 1: vibrations + power consumption. It shows that for most failures the system
runs in an irregular phase for the majority of time when closer to a failure. Note that
some bars are shorter due to multiple failures on one day.

pattern changes when we use different data. Looking at similar plots for the other data
sets shown in Appendix B, we can see that the data sets that incorporate the vibrations
show a consistent irregular phase leading up to a failure whereas the data sets with just
the power consumption shows an oscillation between the phases for a certain duration.
When oscillating, the system quickly jumps back and forth between the two clusters.
These two situations would require different decision rules. Based on the data sets that
include vibrations we will decide that:

"If the system stays in an irregular phase (cluster 2) for at least x minutes, predict
a failure."

(5.1)

For the data sets that include only power consumption this would be:

"If the system oscillates between regular and irregular phase for at least x min-
utes, predict a failure."

(5.2)

We will choose an initial value of 38 minutes for the warning signal based on Figure
5.9(b), as this value enables us to predict all failures. The first results of using different
warning signals is shown in Figure 5.10 where both decision rules have been applied to
the different data sets in order to calculate predictions during the three days leading up
to a failure. These results show that decision rule 5.1 does work best for the data sets
that include the vibrations and rule 5.2 works better for the power consumption. The
sets that include the vibrations also perform better than the sets with just the power
consumption. We can also see that a shorter warning signal of 20 minutes results in a
much higher sensitivity where about 90% of failures have been predicted correctly.
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(a) 3 days before a failure (b) 3 hours before a failure

Figure 5.9: The time series 3 days vs 3 hours before a failure labeled with the corre-
sponding cluster, based on data set 1: vibrations + power consumption. This shows
how often the system changes cluster during the time leading up to a failure. Note that
some bars are shorter due to multiple failures on one day.

Figure 5.10: Performance measures based on prediction results using 2 clusters with left
decision rule 5.1 and right decision rule 5.2. The Warning Signal represents the max-
imum (oscillating) duration of the irregular phase. A maximum duration rule works
best for data that includes vibrations whereas a maximum oscillating rule works better
for sets with the power consumption.
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5.2.2 Parameter Tuning

As expected, the parameters iter.max and nstart had zero effect on the performance of
the decision rules and using three clusters for k-means also results in a pattern of sys-
tem phases that make it difficult to determine a suitable decision rule (see Appendix B).
As a result, we shall focus on the effect of the warning signal on the model performance.

When varying the length of the warning signal, we achieve the results shown in Figure
5.11. The dotted line shows an "optimum" based on four performance metrics. Note
that the average time to failure for the vibrations appears jagged as a side effect from
decision rule 5.1. Again the model based on the data set with the vibrations outper-
forms the model based on the set with the power consumption. When using a warning
signal of 22 minutes, the vibration model shows a high specificity and sensitivity of
respectively 0.95 and 0.94. This means that a 95% of non-failures and 94% of failures
are predicted correctly. With the corresponding precision, 62% of the predicted failures
are actual failures. The resulting average time to failure in this case is around 2 hours
meaning that after a prediction is made, it will take on average 2 hours for the failure to
occur. The optimum warning signal when using the power consumption model at 28
minutes, results in overall lower scores across across all metrics, where the specificity
and sensitivity drop 30% and the precision and average time to failure is halved.

(a) Prediction scores data set 1: vibrations +
power consumption

(b) Average Time to Failure data set 1: vi-
brations + power consumption

(c) Prediction scores data set 2: power con-
sumption

(d) Average Time to Failure data set 2:
power consumption

Figure 5.11: Performance metrics for varying lengths of the warning signal. The dotted
line shows an "optimal" length for a warning signal.
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Score Data set 1:
vibrations +
power con-
sumption

Data set 2:
power con-
sumption

Data set 3:
vibrations

Data set 4:
pump 2

Data set 5:
power con-
sumption

Sensitivity 0.94 0.64 0.94 0.53 0.50
Specificity 0.95 0.58 0.97 0.96 0.62
Precision 0.62 0.33 0.64 0.28 0.32

F1 0.74 0.44 0.76 0.37 0.39
Average
Time to

Failure (in
hours)

2.2 1.02 2.2 4.4 1.5

Table 5.3: Results k-means + decision rule model.

The overall results in Table 5.3 also show that it is the vibrations which add the pre-
dictive power since data set 1 and 3 achieve similar results. Using only the data from
pump 2 achieves the lowest results. We can also conclude that using almost four times
the amount of power consumption data (data set 5) does not lead to a model with better
results.

Sensitivity Specificity Precision F1 Average Time to Failure
Score 0.55 0.62 0.27 0.37 1.02

Table 5.4: Power consumption decision rule model applied to data set 5 as test set. This
model has an oscillating warning signal duration of 28 minutes. Note that this test set
excludes the failures from data set 2.
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Chapter 6

Conclusion

The main challenge of Predictive Maintenance is to determine an efficient maintenance
strategy that maximizes operational hours while reducing the required maintenance
en associated costs. This thesis investigated the use of applying Machine Learning
techniques to see if such an efficient strategy is possible compared to the current main-
tenance schedule, where maintenance is performed twice a year. We also determined
whether vibration data adds any predictive power to this strategy.

We developed two predictive models for sewage pumping station Zuidbroek; a super-
vised learning model (Random Forest) and a unsupervised learning model (k-means
clustering). The data consists of various measures taken from the basement of the sta-
tion and the power consumption and vibrations of the two pumps. This data is severely
imbalanced, with the failures making up less than 1% of the data. Because of the class
imbalance, we applied different sampling techniques to the Random Forest model. The
Random Forest and k-means clustering model were evaluated on performance by us-
ing the sensitivity, specificity, precision, and F1.

Our research question was formulated as "How well do certain Machine Learning models
perform when predicting the failure of components of the sewage pump station Zuidbroek?".
The Random Forest model achieves a sensitivity of 75% meaning that it was able to
correctly classify 75% of failures. However, this model also has a precision of close
to 0.00%. This means that this model produces a large number of false positives (i.e.,
classifies non-failures as failures). The large number of false positives could be due to
disruptions occurring. According to domain experts these could show the same change
in patterns as the failures we highlighted but will eventually correct themselves. These
disruptions also show up in the k-means clustering results.

The k-means clustering model performs better when compared to the Random Forest.
This is somewhat surprising since the highest Silhouette score was only 0.56 for 2 clus-
ters, which would indicate that the data does not form very compact clusters. But with
these two clusters we were able to distinguish two different system phases, namely a
normal and irregular phase. Based on this behaviour we created two decision rules
for the vibration and power consumption features, respectively. These rules predict
whether a failure might occur when the system has stayed in an irregular phase for a
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certain period of time. The best results were achieved when using the vibration fea-
tures. When the system stayed in an irregular phase for at least 22 minutes, 94% of the
failures were predicted correctly (sensitivity) and of the predicted failures, 62% were
actually failures (precision). The vibration model also gives an average time to failure
of 2 hours. Meaning that, on average, there is a 2 hour window to take action in order
to avoid a possible failure.

To answer the sub-question "Can the same predictions be achieved without the vibration
data?", the Random Forest models show no difference in performance when using ei-
ther the vibration or power consumption data or when using both. Based on these re-
sults, the same performance is achieved when using just the power consumption of the
pumps. The variable importance of the best performing model also shows that the stan-
dard deviation of the past 3 hours for the different attributes, has the most predictive
power. And of these attribute standard deviations, attributes such as water level and
power consumption of pump 2 rank much higher than the vibration attributes. The k-
means clustering also achieves a higher Silhouette score when using the data sets with
just the power consumption. This indicates that the power consumption forms tighter
clusters than the vibrations. But, this is contradictory to the fact that in this model the
vibrations offer much better predictive results compared to the power consumption.

K-means clustering does show promising results in being able to distinguish two types
of system phases. The small number of failures does take the model performance into
question, however, the power consumption model yields similar results when using
four times the number of failures.

It is important to note that these results are based on a limited number of actual failures,
17 in total. This does take into question how generalizable these conclusions are. A les-
son learned is that in order to perform supervised learning in this case, would require
a change in how the necessary data is collected. At the start of the data analyses we ran
into a lot of issues with time zone differences due to data being collected from different
systems. This was corrected to the best of our abilities. Logging failures would also
require logging a cause since a large number of the logged failures were not actually
due to a failure but due to sensor issues and maintenance being performed.

In conclusion, it is difficult to say how effective these models are in order to perform
predictive maintenance on sewage pump station Zuidbroek and more data would be
needed to validate this. But k-means clustering does give hopeful results that predictive
maintenance is possible and that the vibration measures are more effective to do this
than just the power consumption.
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Appendix A

Data Attributes

Attribute Percentage of missing values
Flow rate 1 0.00%
Water level 2 0.00%
Fill rate 3 0.48%
Pressure 4 1.10%
Power consump-
tion pump 1

0.00%

Power consump-
tion pump 2

0.00%

Pump 1: tempera-
ture

0.12%

Pump 1: Sensor 1 0.00%
Pump 1: Sensor 2 0.00%
Pump 1: Sensor 3 0.00%
Pump 2: Sensor 4 0.00%
Pump 2: Sensor 5 0.04%
Pump 2: Sensor 6 0.04%

Table A.1: Percentage of missing data per attribute with ∆t = 2 min.

1In Dutch: Debiet
2In Dutch: Waterhoogte
3In Dutch: Vullingsgraad
4In Dutch: Persleidingdruk
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Appendix B

K-means clustering

(a) Total amount of time in a phase 3 days before failure. (b) Total amount of time in a phase 3 hours before failure.

(c) Phases of the time series 3 days before failure. (d) Phases of the time series 3 hours before failure.

Figure B.1: Clusters or phases of each time series according to data set 2: power con-
sumption.
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(a) Total amount of time in a phase 3 days before failure. (b) Total amount of time in a phase 3 hours before failure.

(c) Phases of the time series 3 days before failure. (d) Phases of the time series 3 hours before failure.

Figure B.2: Clusters or phases of each time series according to data set 3: vibrations.
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(a) Total amount of time in a phase 3 days before failure. (b) Total amount of time in a phase 3 hours before failure.

(c) Phases of the time series 3 days before failure. (d) Phases of the time series 3 hours before failure.

Figure B.3: Clusters or phases of each time series according to data set 4: pump 2.
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(a) Total amount of time in a phase 3 days before failure. (b) Total amount of time in a phase 3 hours before failure.

(c) Phases of the time series 3 days before failure. (d) Phases of the time series 3 hours before failure.

Figure B.4: Clusters or phases of each time series according to data set 5: expanded
power consumption.
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(a) Prediction scores data set 3: vibrations (b) Average Time to Failure data set 3: vibrations

(c) Prediction scores data set 4: vibrations +
power consumption pump 2

(d) Average Time to Failure data set 4: vibra-
tions+ power consumption pump 2

Figure B.5: Performance metrics for varying lengths of the warning signal. The dotted
line shows the "optimal" length for a warning signal.



Appendix B. K-means clustering 42

(a) Prediction scores data set 5: power consump-
tion

(b) Average Time to Failure data set 5: power
consumption

Figure B.6: Performance metrics for varying lengths of the warning signal when using
data set 5 which contains a larger selection of power consumption data.
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(a) Results data set 2: Power consumption

(b) Results data set 5: Power consumption (larger)

Figure B.7: The Average Time to Failure when varying the length of the warning signal
and the cluster/phase duration when the system is oscillating.
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Figure B.8: Performance measures k-means clustering for varying values of the param-
eters nstart and seed.
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