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“I am the master of my fate, I am the captain of my soul”

from Invictus, by William Ernest Henley
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Abstract

Ground Services are a vital part of the operations of any airport. In order to

make these operations more efficient, more safe, and more sustainable, KLM

has started an autonomous operations project, which aims to automate as much

of the ground service operations as possible. To this end, it is crucial to gain

insights into the movement of the traffic around the airport grounds. To aid

in this endeavour, a digital twin is being developed that can track all ground

service equipment vehicles. This thesis’ aim is to introduce methodologies that

can be used to predict the location of the vehicles in this digital twin in a future

state.

To this end, multiple sequence-to-sequence encoder-decoder model architec-

tures were trained along with a transformer model and an mixture density

network model. These models were trained on different scenarios to find the

impact of changes to the experiment setups

Through this, we learned that the behaviour in movement for different types

of vehicles used in ground service operation were too diverse to capture the

information at once in a single model. We also studied the effect of changing

the input data used for our models. We found that the performance of models

could be improved by decreasing the input sequence length, and by selecting

data to ensure a higher rate of diversity in the training data.

Unfortunately, we were unable to find a model structure that was able to predict

trajectories that can be seen as a realistic representation of the true movements

happening on the airport aprons using the proposed methods.
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1

Introduction

To make sure that all travellers are able to fly according to schedule, it is of the utmost

importance to prepare each aircraft before a flight. Ground service operations encompass

all the actions upon which a timely departure and a smooth transfer of a passenger is

dependent. These actions range from checking-in and boarding to unloading, to loading

and refueling, ground services is responsible for the perfect pit stop for every aircraft. Each

process that is part of the ground service operations is enabled by the use of specialized

vehicles and well trained personnel.

There is continuous growth in the demand for air travel, but there is also difficulty in

finding the personnel necessary to be able to accommodate this demand. To still be able

to facilitate all passengers and ensure smooth and safe travel, the Royal Dutch Airlines

(KLM) is starting to look into slowly automating as much of the ground service operations

as possible. If this is done successfully, this can result in safer, more efficient, and cheaper

handling of the necessary processes.

1.1 Problem statement

One of the first steps in this Autonomous Operations project is to get more insights into

what is happening on the airport aprons on a daily basis. Where are all vehicles located? Is

there enough equipment available? Which vehicles should be assigned to do a given task?

These questions and more are important in order to run an automated airport smoothly.

Thus, a digital twin is in production to track all activity around the Schiphol Airport

premises.
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1.2 Information about the host organization

In its current state, the twin is able to provide insights into past behavior of the vehicles,

and track activity of the ground service equipment in real time and is mainly used as tool

for visualization. In the setting of the airport, where there is limited direct communication

between vehicles, real-time prediction of vehicle traffic may help alleviating some pressure

on the traffic demands due to operations. Thus, knowing where vehicles may be in the

future can help with planning, assigning vehicles to tasks, optimizing traffic flows and in

the future perhaps with fully automating the ground service operations.

Machine learning can play a pivotal role in advancing the digital twin. By using specialized

algorithms to their advantage, we may be able to move beyond simple visualization and

explore more predictive analyses. Loads of data is being collected every day, and machine

learning is a useful tool to derive underlying information from this data. For instance,

machine learning models can analyze historical vehicle behavior and real-time data from

ground service equipment (GSE) to forecast future traffic patterns at airports. A simple

first step in this would be to use machine learning algorithms to predict the trajectories of

the many vehicles in the system in order to gain extra information about the busyness of

the environment and to locate possible bottleneck locations.

1.2 Information about the host organization

KLM is mainly a provider of air transportation services. The company is involved in various

operations including transporting passengers and cargo, maintaining airframes, engines,

and components, as well as operating charters and scheduled services with affordable fares.

Founded in 1919, KLM is the oldest, still operating, airline company in the world and

yearly they carry millions of passengers to locations all over the world with a fleet of over

100 aircraft. KLM is actively involved in finding more sustainable and efficient methods

to run its operations.

Too show KLM possibilities the future that may hold, the KLM Ground Service Business

Development department aims to demonstrate innovative ideas and technologies by means

of various projects.

1.3 Research objective

The Autonomous Operations project of which this research is part is primarily used as a

demonstration of what will be needed to achieve fully automated ground service operations.

Therefore, the focus of this research is not in delivering the most accurate model to be used,
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1.4 Structure of the report

but to show where there are possibilities that can be exhausted to further the developments

towards autonomous operations.

Thus the objective of this research is to provide possible answers to the following question:

How can machine learning aid in predicting trajectories of multiple GSE vehicles in order

to forecast the future state of an airport environment?

In this report, we will look into how the provided data can be used to make predictions that

are usable for prediction performed in the existing digital twin environment. This will be

done by exploring different experimental setups and training different models which should

be capable of capturing information from sequential data. In the end, conclusions will be

drawn about the data needed to solve the proposed problem and possible approaches for

solving the problem.

1.4 Structure of the report

This report consists of eight chapters followed by a list of references used to support the

research. Three appendices containing extra information can be found at the end of the

report

In Chapter 1 the reader will be introduced to the research topic and the problem that will be

tackled in the report. Then, Chapter 2 will provide extra background information into some

of the leading background topics of this research. Chapter 3 will discuss the methodologies

used previously in research with similar goals as this project. In Chapter 4, the data

that is used for this project will be described and explored. Following, the methodologies

applied during this research are explained in Chapter 5. The resulting outcomes of this

research are shown in Chapter 6 and will be discussed in Chapter 7. Finally, Chapter 8

will complete this report by summarizing the most important findings and offering ideas

for future research.
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2

Background

In this chapter, some background information about airport ground services and the un-

derlying project this research is part of, will be explained.

2.1 Airport ground services

Airport ground services are an important aspect of the logistics of aviation. The ground

handling operations oversees a diverse list of services that are aimed toward facilitating

smooth, efficient and safe movement of aircrafts, passengers, and cargo around the airport.

Ground services are divided into various tasks, each of which are performed by specially

trained teams. The tasks that fall under ground services include ramp handling on the

apron where the aircrafts are parked, baggage handling, aircraft servicing, cargo handling

and passenger handling. All these tasks are performed under strict time pressure. This

pressure comes from the necessity to meet tight turnaround times between flights, and

thus requires seamless coordination between different forces to meet departure times and

prevent flight delays and the disruption of flight schedules. Figure 2.1 gives a partial

overview of tasks that have to be performed between the landing of an airplane and the

next departure. Ground handling is responsible for the execution of all these tasks.

Each of these tasks comes with its own safety hazards and risks, as it entails working

close to moving aircraft and heavy equipment. All personnel undergo training before they

are permitted to work on the aprons, equipping them with the necessary knowledge and

skills to mitigate these risks. Training programs teach about safety protocols, emergency

procedures, and the proper use of protective equipment to ensure the safety of ground

handling staff at all times. Additionally, specialized vehicles and equipment are employed
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2.2 Autonomous operations

Figure 2.1: A schematic of a part of the turnaround process of an aircraft (23).

for each task, designed to enhance efficiency and safety. A list of the different vehicles that

will be discussed in this project can be found in Appendix A.

2.2 Autonomous operations

In 2050 Amsterdam Schiphol airport aims to be the most sustainable airport in the world

(3). Simultaneously, they aim to enhance the capacity utilization of the airports while

ensuring safety. The sustainable and autonomous transformation of all vehicles and asso-

ciated processes on the airport will contribute significantly to this objective.

Autonomous operations for vehicles on airport grounds are an upcoming area in the de-

velopment in the airport industry. As mentioned, ground services include a large range

of tasks which have to be performed in succession to ensure a fast turnaround time and

a successful flight. Automating tasks underneath the wings of an airplane can offer many

benefits such as safety, cost reduction and reduced emissions (2).

Airplanes are mostly similar, and have standardised configuration (30, 37). This makes

it so that the same equipment can be used for many different airplanes, and thus making
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2.3 Digital twins

automation a feasible goal in terms of equipment and an interesting field of research.

However, automation of the full ground handling operations is not a task as simple as

just having the equipment. The American Federal Aviation Administration (FAA) has

also included autonomous operations in their research landscape for the upcoming years

(1). However, they also admit that there are still plenty challenges in this field. In their

research landscape they aim to research multiple factors including, but not limited to:

• Infrastructure and methodologies to facilitate the operations of autonomous ground

vehicles (such as navigation, charging, or refueling).

• Examination of the influence of weather conditions on equipment performance.

• Development of training protocols and guidelines for flight crews, dealing with han-

dling emergency or unforeseen circumstances.

• Implementation of measures for the security and identification of autonomous vehi-

cles.

There is also the problem that tasks need to be allocated to different vehicles and planned

optimally in order to keep the operations running smoothly and efficiently. Research in this

field is already advancing. For example, Chen et al. (9) already introduced a framework

that merges task assignment and route planning for automating ground handling operations

from a multi-agent viewpoint.

It is safe to say that in order to successfully automate the ground services operations,

insights in the movements of the vehicles is necessary. For that, a digital twin is currently

being developed.

2.3 Digital twins

A digital twin is a virtual representation of a real-world product, system, or process (its

physical counterpart), used for a multitude of tasks. These tasks include simulation, test-

ing, monitoring, and maintenance. In its initial introduction by Michael Grieves, the digital

twin was designed to be used with Product Lifecycle Management and coexist with the

physical entity it represents throughout its entire life cycle from creation to disposal (13).

Nowadays, the intended use of a digital twin is to provide users with better ways to gain

a better understanding of increasingly sophisticated and complicated systems. This will

results in a reduction of failures and problems in the physical system. This in turn reduces

expenses, time, and also risks to everyone involved with the physical system (14).
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2.3 Digital twins

The digital twin being developed at KLM can be more accurately described as a Digital

Twin Environment (DTE). A DTE is a digital space where besides topographic objects,

specific objects (like GSE vehicles) are also represented. Furthermore, in a DTE, temporal

relations between objects over time are also shown (22). DTEs serve a variety of purposes.

This includes prediction and interrogation. The predictive purposes are evident when a

digital twin is used to predict future behavior and performance of the system. A fully

functional twin can take actual components and the history of said components in the

system to predict the behavior of the system. By analyzing and combining data from

multiple instances, one would be able to provide a range of possible future states. The

interrogative purposes cover the idea that, since a digital twin is connected to its physical

counterpart, regardless of the location of the counterpart, one is able to gather information

about the system’s current state and performance remotely. Data collected from multiple

instances in a DTE may relate to different trends or patterns which may in turn help with

the predictive objectives for which the twin was implemented (14).
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3

Related Work

This chapter aims to explore what has been done before in research and projects with

similar goals in trajectory prediction.

Trajectory prediction can be defined as the act of forecasting future states of dynamic

agents in a system given their current and past states. This definition can be translated

to two main different focal points in research: (1) vision based motion prediction and,

(2) a more top-down approach with next location prediction in a Vehicle-to-everything

(V2X) network. In the vision based approaches, computer vision is often used to detect

and analyze surroundings of a vehicle to prevent dangerous situation and to allow more

efficient routing (33). These approaches often use CNN-based models to extract features

from images and then use different techniques such as RNN-based methods (24), generative

methods (12) or statistical approaches such as Hidden Markov Models(8), to predict future

states of their environment.

Even though these methods may give insights in how trajectory prediction is applied in

general, the methodologies used are not applicable in the scope of this research. This

project focuses primarily on using location data, and not computer vision. However, there

is a plethora of research in different settings where a top-down location approach is used.

We will divide these into three categories. First we will describe the sequence based

temporal approaches, graph based approaches, and then a few generative methods that

have been used previously.
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3.1 Sequence-based approaches

3.1 Sequence-based approaches

Trajectories are often represented as a sequence of datapoints with given timestamps.

Thus, models that are able to derive temporal relations from data are often considered in

the trajectory prediction task. Most of the methods that fall into this category leverage

the strengths of recurrent neural networks (RNN). Especially LSTMs and GRU-units are

often mentioned as a solution towards dealing with the time-dependencies in the data. A

simple application of these models can be found in the work of Kim et al. (17). They

used a simple two-cell LSTM model to predict the trajectories of moving vehicles over

an occupancy grid map. The method used consist of a compact model that is only used

to predict trajectories of at most two seconds into the future. In the results we can also

already find that, as may be expected, the prediction error increases significantly as we look

more timesteps ahead. Alahi et al. (4) combined multiple LSTM models using a ’social’

pooling layer in order to not only model the short term movement of a single person, but

also to try and capture human-human interactions into their method. There method is

shown to outperform previous state-of-the-art models on standard datasets. The results

clearly show how the model is able to make intelligent route choices like yielding for other

agents in the system. Trajectory prediction is also used in naval research. Suo et al. (34)

used a GRU model to predict vessel trajectories. In their research, they have shown that

their model is able to achieve similar results to models using LSTM layers, however, their

model improves on computation efficiency.

Unfortunately, simple LSTM models are not enough to get a decent result in trajectory

prediction. Since trajectory prediction in the simplest sense can be described as analyzing

an input trajectory, and predicting its continuation, we can see this task as a sequence-to-

sequence problem. Therefore, more often model architectures that are designed to capture

the intrinsic information of sequences are used in for trajectory prediction. The most

commonly seen architecture is an encoder-decoder model using LSTM blocks. Park et al.

(26) try to predict the trajectory of vehicles across an occupancy grid map using the work

of Kim et al. (17) as baseline. Here we can see that using the encoder-decoder model,

Park et al. are able to achieve better results. If we look at the last predictions (so after

two seconds), Park et al, are on average of by 0.93 grids, whereas this value was 1.31 for

Kim et al. In their work, Wang et al. (40) also show that sequence-to-sequence models

outperform the baselines. They use three different sequence-to-sequence architectures, and

for each of them the MSE (over the whole data) is shown to be approximately half the

value compared to the other models used. It does show that the sequence models appear
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3.2 Graph-based approaches

to be a little behind the other models when it comes to one-step predictions, but when

looking further ahead, the sequence model outperforms consistently.

Deo and Trivedi (11) show in their work that this architecture is able to predict the param-

eters of a bivariate Gaussian distribution instead of the trajectory itself. In their output

sequence, each element corresponds to the means and variances of future locations for the

vehicle. Using this strategy, they outperform state-of-the-art models on the same datasets,

showing the viability of this approach. To take the sequence-to-sequence architecture a

step further, Nadarajan and Sivanraj (25) use and encoder-decoder model but enhance it

using a spacial, and a temporal attention mechanism. They do this to analyse the mul-

tiscale spatiotemporal dependencies in non-Euclidean space to forecast traffic. This way,

they take into account similarities between different places in the road network. In their

model, they also integrate data from external factors such as the weather, to get the final

predictions. Their model is shown to have more accurate MSE scores compared to other

models consistently up until two hours into the future.

In a vastly different direction, Qin et al. (27) use a CNN based approach for their trajectory

predictions. Instead of predicting the exact locations, they split their area of interest into

grids and follow their vehicles as a series of grid number. By converting each value into a

one-hot vector and then concatenating all vectors in a sequence over a temporal dimension,

they created a spatio-temporal grid representing each trajectory. These grids were then

used to train a Capsule network. Capsule networks use groups of neurons that encode

specific properties of its input. Using this method, they were able to achieve improved

accuracy scores compared to LSTM and regular CNN models.

3.2 Graph-based approaches

Most traffic situations consist of intricate information that cannot be simply defined by

linear dependencies. Thus, a graph representation, consisting of nodes and edges corre-

sponding to to individual spatial units are often used to model these intricacies. Most

graph based models use graph convolutional networks (GCN) in order to learn more com-

plex topographical information that is more difficult to handle for convolutional networks.

In forecasting tasks, GCNs are often combined with different methods that are able to

handle temporal relations such as RNNs. Zhao et al. (44) show that by combining GCNs

with GRU-units, one can achieve forecasting results which indicate a steady state under

different prediction horizons. This means that these models are not only able to accurately

10



3.3 Generative methods

predict the short-term dependencies in data, but that they are also applicable in long-term

prediction tasks.

These so-called temporal GCNs also form the base of more complex applications of graph

networks. For example, Li et al. (19) propose a dynamic graph convolutional recurrent

network where dynamic graphs are generated using an encoder-decoder architecture that is

often seen in the previously mentioned sequence-to-sequence models. They combine these

generated graphs with previously defined static distance based graphs and use a GCN with

GRU units for their final predictions. Zhi et al. (20) take this model a step further by

proposing a method where they fuse multiple graphs with different similarity information to

model dynamic spatio-temporal relations in traffic. They show that their proposed method

is able to outperform multiple different baseline models on different datasets. However, a

main limitation of this methodology is that their are high requirements for the datasets on

which it is used. Since the model requires a lot of accurate traffic flow-, road-, POI- and

weather data, the limited availability of data which meets the requirements may affect the

generalization ability of the method.

Another use of GCN model is provided by Zhu et al. (45). They propose an attribute-

augmented spatio-temporal GCN for traffic forecasting. In this work they derive augmented

graphs in order to consider more external factors that may affect the movement of traffic

in their GCN model. The main contribution of this model is that not only their prediction

outperform commonly used baseline models, but they are also able to show attribute

importance. Through this they have also shown that diversity of external factors can be

used improve forecasting performance.

3.3 Generative methods

Another approach to predicting the trajectory for a vehicle is by using generative models.

These models focus on generating new data samples that resemble the training data by

learning the underlying distribution. An example of this approach can be found in the work

of Rossi et al. (29). They propose an architecture using generative adversarial networks to

generate different trajectories that portray different behavior. However, they also conclude

that in most scenarios that LSTM outperforms GAN, meaning that the latter is not a

replacement for the former. On the other hand, the scenario where GANs did outperform

is when a multi-modal approach is necessary or in cases with high uncertainty.
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3.3 Generative methods

Using a different model, Bhattacharyya et al. (5) predicted drone trajectories. Their

conditional flow variational autoencoder model uses conditional priors based on conditional

normalizing flows, which allow for the model to take conditional information into account

when decoding the training data. This in turn allows for more complex multi-modal

representations of the data in the latent space of the model. This approach is also shown

to achieve results on the same level as other state of the art generative models used for

this task.

Sørensen et al. (36) used a Bidirectional Long-Short-Term-Memory Mixture Density Net-

work to characterise the underlying distributions of the movements of ships. This applica-

tion of trajectory prediction is used not only to prevent dangerous situations at sea, but

also to attempt to identify unknown vessels at sea. They applied multiple different model

architectures in their project and where able to predict locations of vehicles with a mean

difference of 2.53km 50 minutes into the future. This is, on the scale of the maritime

trajectory prediction, accurate and on par, if not better, than state of the art attention

models.

Finally, Zeng et al. (43) answer the question if transformer models are effective for time

series forecasting. Their finding, using a relatively simple model, is that in this task,

transformers may be susceptible to temporal information loss. However, Jiang et al. (16)

propose a different structure compared to regular transformers where the model should

be more viable in tasks involving sequence data by combining the transformer model with

LSTM structures. They show that in busy maritime waters, their approach outperforms

state of the art models for trajectory prediction thus indicating that adapted transformers

can be used for trajectory prediction.
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4

Data

In this chapter we will look at the data that has been used during this project. We will

delve into the raw data and how it has been processed to obtain useful trajectories. We

we also take a look the data itself by doing an exploratory analyses both on the raw data

as well as on the obtained trajectory data.

4.1 Description

The data used in this project is a dataset for which data point have been collected since

2021. Over time, the GSE vehicles have been equipped with sensors that are able to

register data about the vehicle at short time intervals. Approximately every minute, if a

vehicle is active, an instance is saved with information about the vehicle’s location and

its status. The recording of the instances is a project that has been introduced in stages,

thus, over time, more vehicles’s movement is tracked and recorded. Different vehicles, may

be equipped with one of three different types of sensors (’CTRACK’, ’WEBFLEET’, or

’TARGA’). The information retrieved from these different sensor types and transmitted

to the dataset is consistent regardless of the type. At the end of each day, the dataset is

updated with all data instances up until the day before.

The data has 17 different features that are recorder. However, many of these features,

such as the company which owns the vehicles and the department to which the vehicle

belongs, are all limited to only a single unique value in the data, and thus do not provide

distinguishable information. Table 4.1 gives a short overview of the variables in the data

that are have been used during this project.
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Variable name Description
EventId An identifying string that is uniquely generated for each instance in the data.
EventSource The sensor type used to collect the instance.
EventTimeUtc The date and time (in UTC) at which an instance was recorded.
AssetName Identifying name for each vehicle.
AssetId Id assigned to each vehicle by the sensors.
AssetType The type of vehicle.
Latitude The latitude value of the location of the vehicle.
Longitude The longitude value of the location of the vehicle.

Table 4.1: Overview of the relevant variables in the dataset.

Even though there are two variables that seem to be usable as identifier for the vehicles in

the dataset (AssetName and AssetId), only AssetName can actually be used to distinguish

vehicles. Because the assigning of AssetIds is done seperately by each tracker system (the

three different EventSources), there is overlap in some ids between sensor types causing

clashing AssetIds for different vehicles. So even though there are more unique AssetId

values in the data, they can not be used to identify vehicles, which is why the AssetName

is used as identifier.

4.2 Pre-processing

The first step before we are able to make predictions will be to process the data in a

suitable form to feed it into our model architectures. This process involves cleaning the

data and transforming it into a usable form.

4.2.1 Trajectory extraction

To get usable trajectory information from the raw GSE data, a few steps have been taken.

First of all, the data is split by vehicle and sorted in the chronological order of the event-

times. From there, we can obtain the first event for a vehicle as the start of the first

trajectory. Next, we check the time difference between the current latest event and the

next. If this differences is within a given threshold, the next event is added to the trajectory.

In the scenario where the allowed difference is larger than one time-unit, the time steps in

between the two events are interpolated with copies of the earlier event. This is done to

ensure consistency in the time steps as missing data may drastically degrade the quality

of the predictions (42). In case where the next event does not happen within the specified
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time range, the current trajectory is closed off and a new one is started with the now latest

event as the beginning.

Each trajectory is represented as a list of pairs of (latitude, longitude) datapoints. With

each trajectory, some key information is also tracked to get insights in the data. Aside from

the name and type associated with the vehicle, we also measure the travelled distance, the

start- and end times for each trajectory (and thus the total duration) and the number of

time steps the vehicle remains stationary during the trajectory.

4.2.2 Data selection

Not all event data will be used in order to extract trajectories. There are two main reasons

for not taking a data point into account. First of all, events for which both the vehicle

name and vehicle type are unknown are taken out of the data. This is done because there

is no way of knowing to what vehicle the data point belongs. This may cause events from

different vehicles to be used together in a single trajectories which would naturally cause

incoherence and mistakes in the our training data. The second filter to screen out data is

based on the location at which the event is recorded. The scale of this project is limited

to Schiphol airport grounds, however, some data points are recorded far from away. Even

though this mostly concerns company car type vehicles, there are other vehicles that are

also located outside of the premises in the data. For this reason, the decision was made to

filter out all datapoints where the registered longitude was below 4.73 or above 4.81. For

the latitude all datapoints before 52.285 and after 52.335 were filtered out.

4.2.3 Trajectory preparation

During training of the models, not all trajectories will be used as input. One can imagine

that a trajectory consisting of only a few data points does not hold a lot of information

compared to longer ones. The trajectories used are those that are of length of at least

two thirds of the desired input sequence length. The base scenario discussed will use input

trajectories of length 45. This means that for a trajectory to be considered for the training,

it has to be of at least length 30. If a trajectory is too short for the experiment, but meets

the minimum length requirement, these trajectories are assumed to have been stationary

before they began. Thus, they are padded in front of the sequence using the first value of

the true sequence. If a trajectory is longer than the desired input length, it is split into

separate trajectories of the desired length. This is done both starting from the front of
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the trajectory, as well as starting from the back, to ensure that only limited sequential

information is lost during the splitting of long trajectories of indivisible sizes.

4.2.4 Normalization

Normalization is used to rescale data such that different features are of similar scale, often

between 0 and 1. This is done to minimise bias in a model caused by a difference of scale

between explanatory features. For this project, min-max normalization will be applied to

all numerical features that are used as input to a model.

Previous research shows that min-max normalization is a successful technique when deal-

ing with a 2d GPS coordinate system (7). Similarly, Shi et. al. (31) used min-max

normalization in a GPS based flight prediction task.

In min-max normalization, the data is rescaled towards a new range of values within pre-

defined boundaries. This technique uses the following formula:

x′i = ymin +
xi − xmin

xmax − xmin
(ymax − ymin), (4.1)

where xmin and xmax are the minimum and maximum value respectively of the variable

to be normalized. ymin and ymax are the boundaries of the selected range towards which

the data is to be rescaled.

4.2.5 Data representation

The trajectories will be used in two different representations during this project. The first

representation is the straightforward sequence of normalized (latitude, longitude) pairs.

This representation shows the exact location where the events have been recorded in the

data and thus will be used to try and predict the exact continuations of the trajecto-

ries. Secondly, an area based representation will also be used. In this representation, the

premises has been divided into multiple small subareas, which are used to give an approx-

imation of where the vehicles are located at a given time. The area has been divided into

625 parts, where there a total of 25 divisions along both the longitude, as well as the lon-

gitude. This is also illustrated in Figure 4.1. When used in training, the sequence of areas

representing the movement of a vehicle has been transformed into a sequence of one-hot

vectors.
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Figure 4.1: The total area of the Schiphol premises partitioned into multiple subareas.

4.3 Exploratory analysis

The data used can be split into two different sets: firstly, the raw event data, consisting

of numerous instances of recorded events by the different GSE vehicles, that the has been

used in to extract the trajectories, and secondly, the trajectories themselves represented

as a sequence of consecutive events. We will look into both datasets to get a better idea

of the underlying distributions of our data points. This will mainly be done visually as an

aid in understanding the frameworks in which this project partakes.

4.3.1 Event data

The event data is an incredibly rich dataset consisting of millions of recorded events. When

we only look at the data recorded in 2023, just under 50 million instances can be found in

the data. Each instance representing a single event of a single vehicle recorded at a single

moment. One would expect that on different moments in time, these instances would show

more or fewer activity in the use of GSE vehicles. To get insights in this, the number of

vehicles active in certain time frames is plotted in Figure 4.2.

There are a few conclusions to be drawn from the plots in Figure 4.2. First of all, we see

a spike in activity at 0:57 daily when we look at the top-left plot. This spike is caused by
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one type of sensor (the CTRACK sensors) which give an automatic status update daily

at this time. Furthermore, in the same plot we see two clear peaks. The first at around

6:00 and the second around 18:00. These peaks correspond to the beginning and the end

of a working day and can be assumed to be caused by the vehicles being taken from and

returned to designated areas.

Both in the distributions per day of the week and per day of the month, there appear to

be no significant seasonality or trends. This indicates that the amount of use for vehicles

is not dependent on those time frames. Even though one might expect more traffic in the

summer, since there are more flights in the vacation months, the bottom-left plot actually

appears to dip in July and August. After some investigation, this dip was found to be

caused by errors in the communication between the software and the sensors. Thus, this

pattern cannot be used as an indication of the use of the vehicles. There is a significant

increase in instances in the data between the first two months. This is not a sign of

seasonality or trend, but caused by the introduction of more recorded sensors on different

vehicles.

Figure 4.2: Temporal distribution of the events in the data represented per minute of the
day (top-left), day of the week (top-right), day of the month (bottom-left), and per month
(bottom-right). The blue line represents the mean values at those times, whereas the light
blue area portrays the standard deviation.
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Figure 4.3: Temporal distribution of the events in the data of December 2023 represented
per minute of the day (left), day of the week (middle), and day of the month (right). The
blue line represents the mean values at those times, whereas the light blue area portrays the
standard deviation.

Because the number of data points is too large to use in an efficient manner. The decision

was made to only use the data of December 2023 in the training process. This leaves us

with just over 6 million instances of event data. The temporal distribution of this data

can be found in Figure 4.3, which confirms the observation madein Figure 4.2. The one

main difference, is that there is a suspicious lack of activity between the 17th and the 19th

day of the month. This irregularity is again caused by a problem in the communication

between sensors and software. However, as the time distributions seem to be independent

on the day, this is not seen as a problem for this project.

The sensor data can be collected anywhere. For example, some vehicles like the company

cars, are recorder to travel throughout the country. However, since this project focuses on

the premises of the Schipol Airport grounds, we will only look at the vehicle present there.

Figure 4.4 shows a heatmap of the events recorded on a single day (October 1, 2023). The

most important conclusion we can draw from Figure 4.4 is that even though the grounds

do have a defined road network, the vehicles are not always restricted in their movement.

This is especially evident in Figure 4.4 (b). When we look at the lower-left corner, we see

that all recorded events follow a straight line along the road, on the apron however, there

is no clear structure on where the vehicles should move.

The data used is event data collected over multiple vehicles. Different vehicles can have

different uses for the ground service process. In total there are 15 different vehicle types

recorded in the data and there is also an ’unknown’ token for vehicles for which the type
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(a) Heatmap of the locations of events in the dataset. (b) Zoomed in heatmap.

Figure 4.4: A heatmap of locations of the recorded events. Figure 4.4 (b) shows a zoomed
in version focused on the red rectangle in Figure 4.4 (a).

has not been properly recorded. In Appendix A a description for each of the different

vehicles types can be found. In total, 890 vehicles were recorded in use in December 2023.

Figure 4.5 shows the distribution of the different vehicles types in the data. There is a

clear imbalance between the different vehicle. Approximately 25 percent of the vehicles

has no known vehicle type associate with the AssetName. From the other vehicles, a clear

majority of the vehicles is either a company car or a GPU. It is logical that these vehicles

are represented most in the data, as company cars are the most universally used means of

transport for employees around the Schiphol grounds and each ramp is equipped with a

GPU vehicle to power the parked aircrafts. The other vehicles are easier to share between

aprons or ramps and thus a lower number of them is necessary in the vehicle fleet.

The final factor to look at is the utilization of the vehicles. Figure 4.6 shows for how many

moments a vehicle has a recorded event on average. Important to consider when looking at

Figure 4.6 is that the presented utilization is purely based on the number of events found in

the data. However, there are situation where a vehicle is used, placed at a given location,

and then turned off. For example, the Trap Pax vehicles which are used to help passengers

board a plane, can be placed next to an aircraft for an extended period of time. When the

vehicle is not powered, there are no events recorded by the sensor, but the vehicle is still

in use. Thus, the presented utilization is an underestimation of the true use. Remarkable
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Figure 4.5: Distribution of the different vehicle types in the data.

in Figure 4.6 is that there is one vehicle recorded with an utilization of almost 1. This

is the ’vehicle’ that has been recorded as with the AssetName and AssetType ’unknown’.

Thus this data point does not represent a single vehicle, both more a collection of vehicles

whose information is not properly recorded. The data points this outlier represent will for

this similar reasons also not be taken into account for the rest of the project.

Aside from the the distributions for all instances together, we also considered information

as shown in Figures 4.3 and 4.6 for vehicles of the different types separately. These plots

portray behaviour similar to that of the distributions for all vehicles combined, thus to

prevent redundancy, the plots for only vehicle types ’unknown’, ’Company Car’, and ’GPU’

can be found in Appendix B.

4.3.2 Trajectories

The extracted trajectories are shown to have vastly different types of behaviors. Figure 4.7

shows how diverse the trajectories are. The black trajectory depicts a route where the

vehicle traveled around most of the airport buildings. Whereas the trajectory encircled in

red shows mostly local movement almost in a single location. These different behaviours

in movement can to a certain extend also be linked to the vehicle types and the tasks those

vehicles have to perform. The encircled trajectory is characteristic for a GPU vehicle which

is mostly stationary. Since there are plenty of these units around the airport, they also do

not have to moved much and thus show limited movement. On the other hand company
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Figure 4.6: Utilization of the vehicles.

cars, or the ’trekker’ vehicles, have to move around more to perform the tasks they are

assigned to. Figure4.8 shows the total number of trajectories recorded for each vehicle type.

We can see that, unsurprisingly the most trajectories are recorded for the most commonly

seen vehicles. However, besides vehicle types ’Company Car and ’unknown’ there appears

to be a more balanced distribution of trajectories, decreasing with the number of vehicles

of a type.

The trajectories have been extract with different idle windows, meaning different time

spans allowed without an event before a trajectory is cut off. In Table 4.2, information

about the trajectories is shown. Remarkable is the high stationary percentages shown.

These mean that even though trajectories of a certain length have been seen in the data.

The vast majority of the trajectories are stationary most of the time. Nonetheless, this

percentage does decrease when we take a higher idle window, which is surprising as the

gaps created by the idle window are filled with stationary sequences. Due to the higher

number of eligible trajectories, and the lower stationary percentages, we will mainly focus

on trajectories with an idle window size of 10 during this project.

In Figure 4.9, the number of useful trajectories, according to the length criteria described in

Section 4.2.3 can be seen. In this figure we can clearly see that the number of trajectories is

much more balanced after the selection process. When we look at the idle window of size 1,

there is still a steady decline of the number of trajectories for different types. On the other
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Figure 4.7: Examples of extracted trajectories. Encircled in red, a relatively stationary
trajectory can be seen, while the trajectory highlighted in black is shown to go around the
premises.

Figure 4.8: The number of trajectories recorded for each vehicle type.
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Figure 4.9: Number of useful trajectories separated by vehicle type and idle window.

Idle window Number of trajectories mean duration mean stationary percentage
1 22590 71 minutes 10 seconds 0.87
5 37517 93 minutes 19 seconds 0.77
10 40866 97 minutes 1 second 0.76

Table 4.2: Trajectory information per idle window size

hand, the trajectories extracted with an idle window of size 10 appear to be more equally

divided over the different company types and are also more frequent. Unfortunately, there

are still a few types for which there are barely any trajectories eligible to be used according

to the defined criteria. Though, this was to be expected as we have seen that there are a

few vehicle types for which there are only a few records in the data as seen in Figure 4.5.

Correspondingly, in Figure 4.10, the distributions of the trajectory lengths for the eligible

trajectories and the percentage stationary per vehicle type are shown for the trajectories

with an idle window of 10 minutes. In Figure 4.10 (a), we see that the trajectories consist

for the majority of between the 50 and 150 instances. Interestingly, for the type ’trekker 3-

wiel’, we see a significantly larger spread in the boxplot. We can also see in Figure 4.10 (b)

that there are a few vehicle types, like the GPU and ’Trap Pax’ which display a consistently

high stationary behavior. This is caused by the nature of these vehicles as for the tasks
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they are used for, the vehicles are required to remain on the same place while in use. For

the vehicles that are required to move more, like the company cars, we still see that they

are often found on the same location of multiple consecutive time steps.

(a) Length of trajectories per vehicle type.
(b) stationary percentage of trajectories

per vehicle type.

Figure 4.10: Overview of trajectory length (a) and stationary percentage (b) per vehicle
type.
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5

Methodology

In this chapter, methodology for the trajectory prediction performed in this project will

be explained. First the models used will be explained, then we will delve deeper into how

the models were trained and how the results will be evaluated.

5.1 Models

In Chapter 4 we explained how the primary source of available data is limited to trajectory

data which is derived from the raw GSE GPS data. Due to the nature of this data the

choice was made to include three different types of models: (1) Recurrent Neural Networks

(RNNs), (2) sequence-to-sequence architectures and (3) generative models. These models

were chosen as they enable us to take the temporal nature of the sequences in the data

into account. This should allow for the underlying structures in the data to be captured

effectively.

5.1.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of neural networks designed to process

sequential data by maintaining an internal memory. In RNNs extra connections are in-

cluded that form directed cycles within hidden layers to capture temporal behavior. This

architecture enables RNNs to model and predict sequences of data. In this project we will

mainly use a variant of RNNs called long short-term memory (LSTM) models.

The idea behind RNNs is that they can use feedback connections in the network to store a

representation of recent inputs in the model. However, they also have a high risk of either

vanishing or exploding gradients. To solve this problem, Hochreiter and Schmidhuber
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Figure 5.1: A single LSTM cell (28).

(15) proposed the LSTM cell to be introduced in neural networks. LSTM have obtained

widespread adaptations in sequential data analysis, time series prediction and classification

tasks across various domains. Their ability to retain temporal information over extended

periods of time makes them outstandingly effective for handling time-series data.

LSTM units consist of multiple cell that use three multiplicative gates to control the flow of

information through the model. The input gate determines which new information should

be stored in the cell. The forget gate combines the previous hidden state and the current

input, and determines which information can be discarded. And thirdly the output gate

controls the output of the model at each time step. Figure 5.1 shows a single LSTM cell.

To clarify Figure 5.1, the LSTM cell is also provided in equation form in Equations 5.1-5.4

ft = σ(Wf · [ht−1, xt] + bf ) (5.1)

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(Wc · [ht−1, xt] + bc)
(5.2)

Ct = ft ∗ Ct−1 + it ∗ C̃t (5.3)

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)
(5.4)
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Where:

t : The current time step in the sequence with t = 1, 2, ..., T

T : The sequence length

ft : Forget gate output

it : Input gate output

C̃t : Candidate cell state

Ct : Updated cell state

ot : Output gate output

ht : Current hidden state

Wf ,Wi,Wc,Wo : Weights

ht−1, xt : Previous hidden state, current input

bf , bi, bc, bo : Biases

In this project, an extension of this traditional architecture will also be used. The so-

called Bidirectional LSTM (BiLSTM) incorporates two separate LSTM layers. One that

processes a sequence from start to finish, and one that processes the data backwards, hence

the name ’Bidirectional’. This extended architecture has previously been shown to improve

performance of time-series forecasting problems (32). Therefore, in this project we will also

investigate if the bidirectional learning can be leveraged to improve on the results.

Both the LSTM and BiLSTM models that are used in this project will be used as a baseline

for the larger models to compare performance to.

5.1.2 Sequence-to-Sequence learning

Sequence-to-sequence learning is a deep learning framework used to take sequential inputs

to generate a corresponding output. Often this architecture is used in combination with

RNN variants like LSTMs. Most commonly these models will be found in tasks like machine

translation and speech recognition, but as shown in Chapter 3, they are also proven to

be effective models in trajectory prediction. The main idea behind sequence-to-sequence

learning is to encode the input sequence step-by-step into a single vector which is then

decoded by a second set of LSTM models (35).
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Figure 5.2: The structure of a sequence-to-sequence LSTM encoder-decoder model (18).

5.1.2.1 LSTM encoder-decoders

The sequence-to-sequence architecture that is used in this project is an LSTM encoder-

decoder model. This means that the input trajectories are encoded and decoded using

LSTMs. Figure 5.2 shows the general structure of this architecture. Here, the input Xt

for each time step t is input into each own LSTM block in the encoder network. After

each input has been processed, the hidden states of the LSTM block are carried over as

the input of the next block. This is repeated until the full input sequence or trajectory has

been encoded in the hidden states of the final LSTM block. In the decoding, the model is

firstly fed with an arbitrary token that is meant to indicate the beginning end/or end of a

sequence. This token is used to predict the first value(s) of the output sequence, next the

final token in the output sequence is fed back into the model until a stopping condition

has been met.

Because the predicted tokens are fed back into the model, it is not possible to predict

the full output sequence at once and a special inference has to be done. This process is

described in Algorithm 1. The stop condition is often either the maximum output sequence

length has been reached, or the end token has been predicted as output, indicating the end

of the sequence.

5.1.2.2 Attention

There are still challenges with the encoder-decoder models. For example, when the input

sequences are too long, it might be hard to compress the sequence into a proper state vector

without losing too much information. Another problem may be that for different steps in

the decoding process, information from different points in the input may be relevant. In

short, the encoded state vector can act as a bottleneck for information (39). To circum-

29



5.1 Models

Algorithm 1 Inference Algorithm for Seq2Seq Encoder-Decoder Model
1: Input: Encoder model E, Decoder model D, input sequence X

2: Output: Generated output sequence Ŷ

3: Initialize empty output sequence Ŷ

4: h← E(X) Encode input sequence
5: Initialize decoder input token y0 to start token
6: stop_condition← False
7: while not stop_condition do
8: ŷt, h← D(yt−1, h) Decode with previous hidden state and previous output token
9: Append ŷt to Ŷ

10: if ŷt is end token then
11: break
12: end if
13: end while
14: return Ŷ

vent this, an attention mechanism can be built into the model. An attention mechanism

determines the significance of various components of the inputs at every decoder step. The

adapted architecture can be seen in Figure 5.3. In this architecture the encoder is not

obligated to condense all information in the training data into a single vector. Instead,

it can give a representation of the information from all source tokens. In this project, we

use a simple dot product for the attention mechanism. However, other functions, such

as the bilinear function used in the Luong model (21), could have been used as well. In

Algorithm 2, we can see the adapted algorithm for the inference when attention is included

in the model.
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Figure 5.3: The structure of an encoder-decoder model with an extra attention mechanism
(39). The blue circles represent the attention mechanism, in this case: a dot product.

Algorithm 2 Inference Algorithm for Seq2Seq Model with Attention Mechanism
1: Input: Encoder model E, Decoder model D, input sequence X, maximum output

sequence length Tmax

2: Output: Generated output sequence Ŷ

3: Initialize empty output sequence Ŷ

4: h← E(X) {Encode input sequence}
5: Initialize decoder input token y0 to start token
6: t← 1

7: stop_condition← False
8: while t ≤ Tmax and not stop_condition do
9: Compute attention weights at using h and yt−1

10: ŷt, h ← D(yt−1, h, at) {Decode with previous hidden state, previous output token,
and attention weights}

11: Append ŷt to Ŷ

12: if ŷt is end token then
13: stop_condition← True
14: end if
15: t← t+ 1

16: end while
17: return Ŷ
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5.1.3 Generative models

Sequence-to-sequence models focus on mapping an input sequence to an output sequence,

where the encoder processes the input sequence into a representation of a fixed dimension.

Generative models differ from sequence-to-sequence models in that they try to replicate the

underlying probability distributions of the training data. Once the underlying distribution

is known, new datapoints can be sampled that resemble the original data. In this project,

two generative models are used to see if we can get a close approximation of the true

continuations of the given input trajectories using these models.

5.1.3.1 Transformers

Transformers can be used both as a sequence-to-sequence model, but also a generative

model. Even though in the setting of trajectory prediction, transformers probably repre-

sent a sequence-to-sequence model more, we discuss them in this section as they are vastly

different from the previously described models. Unlike the previously mention RNN based

networks, transformers use a mechanism called self-attention to capture dependencies be-

tween input and output tokens (38). The structure of the model can be seen in Figure 5.4.

The self-attention mechanism is the base of the transformer and it uses a query, key and

value matrices to compute attention scores between all pairs of input tokens. This calcu-

lation is shown in Equation 5.5.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (5.5)

Where:

• Q represents the query matrix,

• K represents the key matrix,

• V represents the value matrix, and

• dk represents the dimensionality of the key vectors.

This self-attention is then used in the multi-head attention layers as shown in Equation 5.6

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O,

where headi = Attention(QWQ
i ,KWK

i , V W V
i ),

for i = 1, 2, . . . , h.

(5.6)

After the self-attention layers, each token’s representation passes through a position-wise

feedforward neural network. By leveraging self-attention mechanisms and multi-head at-
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Figure 5.4: The structure of a transformer model (38)

tention, transformers can efficiently capture long-range dependencies in sequences, making

them highly effective for various sequence processing tasks.

5.1.3.2 MDN models

Mixture Density Networks (MDN) are a type of neural networks where instead of assuming

that we can get a deterministic output for each given input, it is assumed that the condi-

tional distribution of the target data is, in fact, Gaussian (6). In MDN models, the output

is not an exact target value, but the parameters of a mixture of Gaussian distributions

which represent the data. The conditional probability is modelled by approximating the

probability as a mixture of several known probability density functions (PDF) as shown in

Equation 5.7.

p(y|x) =
m∑
i=1

αi(x)ϕi(y|x) (5.7)
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Where:

• m represents the number of mixtures,

• αm(x) the mixture weight for the m’th mixture normalised using the softmax func-

tion, and

• ϕi(y|x) represents the individual mixture component, which is modelled as a Gaus-

sian PDF as seen in Equation 5.8.

ϕi(y|x) =
1

(2π)c/2σi(x)c
exp

{
−∥ y − µi(x) ∥2

2σi(x)2

}
(5.8)

With:

• f represents the number of target features,

• µm(x) represents the mean vector of features the m’th mixture, and

• σi(x) represents the standard deviation of the features.

An MDN model is a neural network where the final layer is actually a concatenation of

three separate feed forward layers which each represent the values of either α, µ, or σ. For

this experiment a model consisting of 10 mixtures was trained.

5.1.4 Model architectures

During this project multiple different architectures were trained to compare there perfor-

mance in the end. All mentioned models were used in both the scenario where we predict

the GPS locations directly, and also the area based predictions. However, they do differ

in that the final fully connected layer in the area based models use a softmax activation

instead of a linear activation in order to get a probability distribution over the possible

areas.

As baseline models, both a simple one layer LSTM and a BiLSTM model were used. These

models consisted of only an input layer, then one RNN layer and finally a time distributed

fully connected layer to get the desired outcomes.

When we look at the more complex architectures, in all scenarios two models were trained,

one with an LSTM encoder and one with a BiLSTM encoder. Because the decoders require

the outputs to be generated one by one in these models, it is not possible to apply the

backwards learning used in a BiLSTM in the decoder. Thus, all decoders consist of regular

LSTM blocks.
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5.1 Models

Figure 5.5: The sequence-to-sequence framework with two stacked LSTM layers preceded
by a FC layer (40).

The simplest encoder-decoder model are built out of one layer of RNN blocks in both the

encoder and the decoder. From there, the complexity of the models was increased step-

by-step. The first step was to stack an extra layer of RNN blocks on top of the first in

the encoder. These models will be referred to as the double_(Bi)LSTM models. Thirdly,

we build models inspired by the architecture used in the works of Wang et al. (40). Their

model consist of two stacked LSTM blocks as well, but they embedded their trajectories

in a fully connected layer first. The layout of this model can be seen in Figure 5.5.

Finally, we also deployed a sequence-to-sequence model which incorporates an attention

mechanism as shown in Figure 5.3. The transformer network that was also used was a

standard transformer as explained earlier and shown in Figure 5.4. Lastly, the MDN model

used to generate trajectories two LSTM layers followed by the MDN-layer. Table 5.1 gives

an overview of the models used. As seen in Table 5.1, the MDN model was not trained on

the area based trajectories. This decision was made because the nature of MDN models is

to approximate a continuous distribution and in the scenario where the locations are split

into subareas, the output is not continuous.
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5.2 Training and evaluation

Model GPS area
LSTM x x
BiLSTM x x
Seq2seq_LSTM x x
Seq2seq_BiLSTM x x
Seq2seq_double_LSTM x x
Seq2seq_double_BiLSTM x x
Seq2seq_double_LSTM_FC x x
Seq2seq_double_BiLSTM_FC x x
Seq2seq_attention x x
Transformer x x
MDN x

Table 5.1: Overview of the models used during this project

5.2 Training and evaluation

For each experiment run, the data has been split into three separate sets, a training set,

a validation set, and a test set. The training data is the data that is fed into the models

during the training phase of the process. Simultaneously, the validation set is used to track

how well the models perform during training on unseen data. Finally, the test set will only

be used to make the final predictions which will be used to evaluate the final performance

of the models. A 60/20/20 split has been applied on the full dataset to create the separate

sets.

The training of the models was done using the Adam optimizer. This choice as made as

Adam is the most commonly used optimizer in the literature seen (16, 25, 29, 36). During

training, we used the mean squared error (MSE) loss function for the models where the GPS

coordinates were predicted, and the categorical cross-entropy for the area based models.

The formulae for these loss functions can be found in Equation 5.9 and 5.10, respectively.
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5.3 Experimental setup

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (5.9)

Where:

• yi represents true values,

• ŷi represents the predicted values, and

• n is the total number of datapoints.

Categorical Cross-Entropy = − 1

n

n∑
i=1

m∑
j=1

yij log(ŷij) (5.10)

Where:

• yij represents true probability of sample i being of class j,

• ŷij represents the predicted probability of sample i being of class j,

• n is the total number of datapoints, and

• m the number of possible different classes.

During the training of the sequence-to-sequence models, we also apply an algorithm called

teacher forcing. Teacher forcing is an algorithm that involves feeding the true values of a

sequence back into an RNN model instead of the predicted values. This method can be

used to accelerate the convergence of the loss during training, as it stabilizes the learning

process by not allowing it to deviate too far from the ground truth (41).

5.3 Experimental setup

During this project we aim to predict the location as accurately as possible. To measure

this, we make predictions up until 15 minutes into the future. As the basis for this project,

all models were trained towards this task using an input trajectory of 45 minutes with no

allowed idle window on the full dataset. From here, we performed four different experiments

to see how different factors would influence the performance of the model.

First of all, since the data only records events when a vehicle sends a signal, it is too

harsh to say that a trajectory stops when only a single minute of data is missing. In some

cases the vehicle may be stationary for a few minutes, but still in be use. This would

cause the trajectory to be registered as ended, even though that is not necessarily true.

To counteract this, scenarios where trajectories were allowed an idle window were tested

as well. The idle windows represent the amount of time we can have no event happening
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5.3 Experimental setup

Experiment Idle
window

Data used Input sequence
length

Base 10 All 45
Idle windows 1, 5, 10 All 45
Split by vehicle type 10 Split by vehicle type 45
Stationary trajectory 10 Split by vehicle type

Fewer stationary
trajectories

45

Input sequence length 10 Split by vehicle type 15, 30, 45

Table 5.2: Overview of the setup for each experiment

in our data without the trajectory being ended. This was done for idle windows of 5 and

10 minutes.

The second experiment was to split the data by vehicle type. This had to be done, as

different vehicles portray vastly different behavior when we look at the trajectories. Even

though this could possibly be taken into account if we introduce an information vector into

the models, the decision was made to create separate models for each vehicle type as that

would be an easier way to counteract this problem without increasing the complexity too

much.

Thirdly, it was noticeable that a vast majority of the trajectories depicted a lot of stationary

behavior, that is to say, a lot of consecutive events for a given vehicle were recorded at the

same location. This may cause bias in the models towards predicting stationary behavior.

However, this behavior is in general less interesting for this task, thus the decision was

made to test what would happen to the predictions if we were to limit the number of highly

stationary trajectories in the training data. This was done by calculating the percentage

of stationary time steps in a trajectory and using a linear probability to decide whether or

not a trajectory is used in training.

The final experiment was aimed at examining the influence of the input trajectory length on

the results. One can imagine that longer input sequences may mean that the information is

harder to decode and thus result in worse performance. We used input sequences of length

15 and 30, next to the already mentioned 45 minutes to see how shorter input sequences

may change the results. Table 5.2 summarizes the setup for each experiment.
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5.4 Hyperparameters

Parameter Tested values Used value
Learning rate 0.01, 0.001, 0.0001 0.001
Batch size 64, 128, 256 128
Number of epoch 15, 25 25
Hidden layer size 16, 32, 64, 128, 256 64

Table 5.3: Overview of the hyperparameters used.

5.4 Hyperparameters

The hyperparameters were chosen using a gridsearch method. Parameter tuning is an

important optimization step as without proper tuning, models may be more susceptible

to either over- or underfitting. This in turn makes the models worse at generalization and

thus can cause worse performance on the test data. An overview of the hyperparameters

that were tuned, with the tested values, and the final choice is given in Table 5.3. The

parameters were tuned on the base scenario where all vehicle were taken into account at

once with input trajectories of 45 minutes an idle window of 10 minutes.

5.5 Evaluation metrics

In testing, the models will not compared using the loss functions. Since we want to evaluate

the results in a temporal manner, the loss functions, which are taken over the full sequences,

do not say much about the performance. For example, a model that is very accurate in

the first five time steps, may have way worse results that other models later on in the

trajectory. The loss function in training averages this, however in practice, it may be

more desirable to have more accurate results in earlier time steps. Towards this end, we

computed metrics separately for each time step for our models. For the models that predict

the GPS locations directly, the mean absolute difference (in km) was taken as metric. This

metric is shown in Equation 5.11.

MD =
1

n

n∑
i=1

d(yi − ŷi) (5.11)

Where:

• d(yi− ŷi) represents the distance between the true values yi and the predicted values

ŷi,
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5.5 Evaluation metrics

However, since the data is originally presented as normalised longitude, latitude pairs, the

distance values cannot be taken directly from the outputs. After denormalizing our data,

we can use the Haversine formula (Equation 5.12) to calculate the true distances in km

(10).

a = sin2
(
∆lat
2

)
+ cos(lat1) · cos(lat2) · sin2

(
∆long

2

)
c = 2 · atan2

(√
a,
√
1− a

)
d = R · c

(5.12)

For the area based models, we use categorical accuracy as evaluation metric. The cate-

gorical accuracy measures the frequency of how often the true values and predicted values

match. The accuracy measure can simply be described as the percentage of correctly

predicted values as seen in Equation 5.13.

Categorical accuracy =
1

n

n∑
i=1

(yi = ŷi) (5.13)
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6

Results

In this chapter we will discuss the results obtained by the trained models. These results

were all obtained by testing the models on a separate test dataset that was left out of the

training of the model. We will elaborate on the results for each experiment and highlight

the key outcomes.

There are four different experiments that will be considered. First of all, the results

achieved in the base scenario, as described in Section 5.3, will be highlighted. Next, we

will delve into the effect of changing the idle windows for the trajectories. Subsequently,

we will discuss the effect of separating the data and training a model for each vehicle

type apart. The third experiment portrays the effect of a decreased number of stationary

trajectories in the training data. And finally, we will analyze the effect of different lengths

of input sequences.

The results of each model will be discussed based on how well they are able to predict up

to 15 time steps into the future. For all scenarios we will consider both the direct GPS

location predictions, as well as the area based predictions. For the GPS locations we will

be considering the true difference in distance between prediction and ground truth, for the

area based predictions, the accuracy will be used as metric.

6.1 Base scenario

In the base scenario, all of the models were trained on the training data as a whole.

This setup is mainly used to see the impact of the changes proposed in the attempted

experiments on the results. In Figure 6.1 the learning curves for both the GPS model and
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6.1 Base scenario

(a) Learning curve for the GPS model. (b) Learning curve for the area model.

Figure 6.1: Learning curves for the single LSTM seq2seq model for both the GPS model (a)
and the area model (b).

the area model are shown. The learning curves in Figure 6.1 show that the training process

is mostly converse towards a stable training and validation loss. One might still argue that

there is still a somewhat descending trend ongoing for the losses shown, especially in

Figure 6.1 (b) for the area based model. However, a significant amount of extra training

epochs would be needed for the possible decrease in learning loss to have a large impact.

Thus, the choice of using 25 epochs to train the data seems to be an acceptable choice in

this scenario. Some of the other learning curves do show a behavior that is characteristic

for overfitting. For the basic LSTM model and the transformer model, the validation loss

does not seem to decrease over time whereas the training loss does, widening the gap

between the two. The plots for these learning curves can be found in Appendix C.

Figure 6.2 shows the results from the prediction made by the models. For both the GPS

predictions, as well as the area based predictions, the basic LSTM model used as baseline.

Both plots also clearly show that the predictions are more accurate at the first few time

steps compared to later time steps. For the models besides the LSTM model, there appears

to be no clear deciding factor that makes one of the models stand out more than the other.

In both cases, all models, both sequence-to-sequence, as well as the transformer and the

regular BiLSTM model are very close together in terms of performance.
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6.2 Idle windows

(a) Distance errors for the GPS predictions. (b) Accuracy of the area predictions.

per vehicle type.

Figure 6.2: Prediction performance for each model for the base scenario. (a) shows the
differences in distance (in km) for the difference in GPS location and (b) shows the accuracy
at each step for the area based prediction.

6.2 Idle windows

Three different idle windows were used in this project to see what the results would be if

we allowed for more slack in the time the trajectories were allowed to have no recordings

before being cut short. The base experiment uses a window of 10 minutes. However, we

also experimented with windows of five minutes and a window of one minute, the latter

meaning that there was no break allowed in between instances. Figures 6.3 and 6.4 show

the performance of these two experiments, respectively.

Interestingly, Figures 6.3 and 6.4 show that even though the basic LSTM model still has

the worst performance in the first few steps, when we look at both GPS predictions,

the baseline LSTM model seems to perform average on the later steps in the prediction.

At time step 15, the LSTM is actually able to predict, on average over 100 meter more

accurate than some of the other models. Another observation is that in the area models,

the accuracy seems the decrees slower as the idle window gets smaller. Where we saw a

decrease of approximately 10% in the base scenario, this only seems to be around 5% for

some of the models trained on data with an idle window of 1. But, when combining these

results together with the values in Table 4.2, this may seem to be an occurrence caused by

the higher stationary percentages.
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6.2 Idle windows

(a) Distance errors for the GPS predictions. (b) Accuracy of the area predictions.

per vehicle type.

Figure 6.3: Prediction performance for each model with an idle window of 5. (a) shows the
differences in distance (in km) for the difference in GPS location and (b) shows the accuracy
at each step for the area based prediction.

(a) Distance errors for the GPS predictions. (b) Accuracy of the area predictions.

per vehicle type.

Figure 6.4: Prediction performance for each model with an idle window of 1. (a) shows the
differences in distance (in km) for the difference in GPS location and (b) shows the accuracy
at each step for the area based prediction.
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6.3 Split by vehicle type

(a) Distance errors for the GPS predictions. (b) Accuracy of the area predictions.

per vehicle type.

Figure 6.5: Prediction performance for each model trained on data of only ’Trekker 3-wiel’
vehicles. (a) shows the differences in distance (in km) for the difference in GPS location and
(b) shows the accuracy at each step for the area based prediction.

6.3 Split by vehicle type

The next step was to train models for each vehicle type separately. This decision was made

because, as we have seen previously, different vehicle types may portray different behaviors

in their trajectories. Thus, training a model for each vehicle type separately may lead

to more accurate predictions. Also, since Figure 4.10 (b) shows that there is a relation

between the the ratio of stationary activity in trajectories and the trajectory types. As

the results in the previous experiment led us to believe that stationary trajectories may

be too prevalent, splitting the vehicles by type when training may solve this problem. We

will compare the results from vehicle types ’Trekker 3-wiel’ and GPU as they are shown

to be respectively the least and most stationary vehicles according to Figure 4.10 (b). The

resulting model performances for ’Trekker 3-wiel’ can be found in Figure 6.5 and those for

the GPU vehicles can be found in Figure 6.6.

When comparing Figure 6.5 to Figure 6.2, we clearly see improvement when looking at the

GPS predictions. As Figure 6.5 shows that most models are able to predict the location

15 steps ahead with an accuracy of between 50 and 100 meters on average. However, the

area based prediction seems to be all over, with only a single accuracy score higher than

0.6 being seen in the plot. On the other hand, the GPU performance seen in Figure 6.6

shows clear improvements in performance. With the location being consistently predicted
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6.3 Split by vehicle type

(a) Distance errors for the GPS predictions. (b) Accuracy of the area predictions.

per vehicle type.

Figure 6.6: Prediction performance for each model trained on data of only GPU vehicles.
(a) shows the differences in distance (in km) for the difference in GPS location and (b) shows
the accuracy at each step for the area based prediction.

within 10 meters by some models and the accuracy for the area based models being above

0.96 continuously for all models except the baseline LSTM model.

Even though it is interesting to see the how the different models perform in terms of

metrics, the plots themselves do not translate well to actually real world interpretation of

the results. To get an idea of the real implications of the model outcomes, in Figure 6.7

some of the actual predicted trajectories are shown. These predictions were made on

trajectories for vehicles of type ’Trekker 3-wiel’.

Figure 6.7 does seem a somewhat cluttered, but we can make some clear observations

based on what we see. First of all, we see that each of the different models predicts similar

continuations for the trajectories, regardless of the input. The light-orange trajectories for

example all seem to move in a north-eastern direction at first, before making a turn and

moving back towards where the vehicle came from. Similarly, we can observe that each

of the green trajectories are predicted to first go north, before turning towards the west.

Even though they are not shown for the other experiments, similar observations could be

made when plotting the predictions for those models.

46



6.4 Stationary trajectories

Figure 6.7: Actual and predicted trajectories based on vehicle type ’Trekker 3-wiel’. The
black trajectories indicate the true trajectories, whereas each colored trajectory represents a
prediction of a given model.

6.4 Stationary trajectories

As splitting the trajectories by vehicle type when training the models clearly revealed a

relation between the performance of the models and the percentage of stationary behaviour

in the data, the next experiment was to see what would happen when fewer stationary

trajectories were allowed in the training data. This was done by applying a simple linear

filter which lowered the probability of a trajectory being used the more stationary sequences

were seen in a trajectory. Since the splitting of the data by vehicle type did seem to improve

the performance of the models for the more active vehicle types as well, the decision was

made to keep the vehicle types separate in this experiment and the next. For comparison

we will again, look at the results for the ’Trekker 3-wiel’ vehicles and the GPUs. The

performances can be found in Figure 6.8 and 6.9, respectively.

Figure 6.8 reveals that reducing the number of trajectories in the training data does not

appear to do much good for the performances. In Figure 6.8 (a) we see that the baseline

models are off by on average 1.5 and 3 kilometers respectively for the BiLSTM and the

LSTM model. The other models do appear to still be able to predict somewhat reasonable

predictions where the 15th step predictions are all on average still around 250 meter off or
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6.4 Stationary trajectories

(a) Distance errors for the GPS predictions. (b) Accuracy of the area predictions.

per vehicle type.

Figure 6.8: Prediction performance for each model trained on data of only ’Trekker 3-wiel’
vehicles with fewer stationary trajectories. (a) shows the differences in distance (in km) for
the difference in GPS location and (b) shows the accuracy at each step for the area based
prediction.

(a) Distance errors for the GPS predictions. (b) Accuracy of the area predictions.

per vehicle type.

Figure 6.9: Prediction performance for each model trained on data of only GPU vehicles with
fewer stationary trajectories. (a) shows the differences in distance (in km) for the difference
in GPS location and (b) shows the accuracy at each step for the area based prediction.
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6.5 Input sequence length

less. An interesting development in the area based model, is that the sequence-to-sequence

model with a double BiLSTM decoder and a preceding fully connected layer actually is

actually able to predict with at least 70% accuracy for all but the first time step. This is

approximately doubles that of the other models.

Cutting the number of instances in the training data down did not work well for the model

that predict the movement of the GPU vehicles. The best GPS predictions are still almost

half a kilometer off after 15 time steps. The area based model shows interesting straight

patterns in the accuracies. This is a clear indication that there was too little data left over

to properly train a model and make predictions. Also all of the accuracies shown are below

0.25 which is a significant decrease compared to what was seen before.

6.5 Input sequence length

The final experiment run, was to see how the results would change if we used shorter

input sequences to predict the same length of output as before. As limiting the number

of trajectories with high stationary behavior, did not appear to have a possible effect on

the predictions, we did go back to using all trajectories for this experiment. However, we

did keep the split in vehicle types. In Figure 6.10 and 6.11, the performance metrics are

shown for vehicles of type ’Trekker 3-wiel’ with an input trajectory length of 30 and 15

minutes, respectively.

Both figures show that the LSTM model still under-performs compared to the others.

Especially in the first step of the GPS base locations, the distance errors of the LSTM

model appears to be on average around 200 meters more compared to the other models.

The GPS predictions do appear to have very similar results with both input length showing

a slight upward trend in distance error from between 0 and 50 meters to 50 to 100 meters.

In Figure 6.10 (b) we notice that for the area based prediction, most of the models start

between an accuracy of 60 to 70 percent, decreasing with around 10 percent of the time

steps. We do see that the sequence-to-sequence models that use regular LSTMs in the

encoder, do have significantly more trouble making accurate predictions in the first time

step. Figure 6.11 shows that the area based predictions all start with an accuracy of

approximately at 70 or just percent, which in this scenario, also decrease at a similar rate

as with the input length of 30 data points.
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6.5 Input sequence length

(a) Distance errors for the GPS predictions. (b) Accuracy of the area predictions.

per vehicle type.

Figure 6.10: Prediction performance for each model trained on data of only ’Trekker 3-wiel’
vehicles with input length 30. (a) shows the differences in distance (in km) for the difference
in GPS location and (b) shows the accuracy at each step for the area based prediction.

(a) Distance errors for the GPS predictions. (b) Accuracy of the area predictions.

per vehicle type.

Figure 6.11: Prediction performance for each model trained on data of only ’Trekker 3-wiel’
vehicles with input length 15. (a) shows the differences in distance (in km) for the difference
in GPS location and (b) shows the accuracy at each step for the area based prediction.
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6.6 MDN trajectory generation

Figure 6.12: Distance error for trajectories generated by the MDN model.

6.6 MDN trajectory generation

The final model to be discussed is the result of the MDN trajectory generation. Figure 6.12

shows the distribution of the distance error for each time step between the true trajectories,

and the generated continuations of the given input trajectories.

The distances are on average further off for the MDN model than the results we have seen

for the sequence-to-sequence models. However, contrarily to the encoder-decoder models, it

is important to consider that generative models are not used to directly map an input into a

given desired output. Instead, this model tries to approximate the underlying distribution

of the input data as a combination of Gaussian distributions.

To see how the data is modelled by this model, a single generated sequence is shown in

Figure 6.13. The generated trajectory shows very erratic movements all over the Schiphol

premises. Since this model was trained on the full data, it is thus not hard to explain

the large differences in distances between the generated data and the true data shown

in Figure 6.12, as the data consist of a lot stationary behavior, which is the contrary of

what is seen here. Because of this, the generated trajectories do not represent the data

well. However, as seen previously in Figure 4.7, the erratic movement is not necessarily

uncharacteristic for some of the seen behavior in the data.
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6.6 MDN trajectory generation

Figure 6.13: A single trajectory generated by the MDN model.
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7

Discussion

In the previous we have seen how different setups for the experiments could change the

performance of the resulting trajectories. From these results, we can draw a few main

conclusions.

1. Splitting the data for each vehicle type will improve prediction performance for spe-

cific data points.

2. Having more diverse trajectories, in terms of movements, in the training data may

result in overall better performance.

3. Shorter input sequences may lead to more accurate outputs.

4. The resulting predicted continuations of the trajectories do not resemble the trajec-

tories.

As the first point states, we saw that by training models separately on data for each

vehicle type, we could improve the accuracy of the resulting predictions. This makes

sense as different vehicles are used for different tasks, and thus portray different behavior.

Furthermore, since the data was not well balanced in terms of the number of trajectories

per vehicle type, some of the behaviors were more prevalent in the data, causing the models

to favor that behavior in the trajectory prediction. This would make it so that vehicles for

which the normal movement is relatively stationary, some movement is still being expected

by the models. The other way around, vehicles that one would expect to move around the

premises more, appear more suppressed. Thus using the data for different vehicle types

separately has proven to aid in diminishing this effect.
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In a similar trend, we can conclude from the results that having more diversity in the

behavior betrayed by the trajectories may improve the performance for some of the models.

Especially when we look at the more actively moving vehicles, in Figure 6.8 we saw that at

least one of the models was able to outclass the other and achieve higher accuracies when

making predictions. Coincidentally, this was also the largest model trained, in terms of

complexity and the number of parameters. This could be seen as an indication that it is

possible for these types of models to make more accurate predictions than what was shown

during this research, but that more complex architectures may be needed to achieve this.

In turn, this also is a logical result as the erratic movements some of the vehicles portray,

may be too hard to discern properly for the smaller models.

The most surprising result found was seen in Figures 6.10 and 6.11. Here we found that

smaller input sequences led to more accurate performances from the models. Two possible

underlying reason could be causing this. First of all, it may be that the encoders were

not able to properly encode the information given to them by the longer input sentences,

resulting in less accurate prediction given by the decoder. Secondly, since the trajectories

were shown to contain a lot of stationary behavior, decreasing the input size may have

caused the active movements to be better separated from the stationary, causing more

diversity in the input trajectories. This would mean that there is more useful information

to be learned by the model.

Unfortunately, as shown in Figure 6.7, the accuracies shown in the figures exhibited in

this report, do not directly translate to realistic trajectories predicted by the models. It

is strongly suspected that this is cause by the large imbalance between active movement

and stationary trajectories in the data. As seen in 4.2, a vast majority of the trajectories

portray stationarity. As this is also the information that is fed into the models during

training, it is highly likely that the models suffered from exposure bias and thus are unable

to properly discern when a vehicle should be expected to move larger distances.

It is hard to say of one specific model used for the sequence-to-sequence predictions out-

performed the others. Both the transformer and the encoder-decoder models have shown

similar results in when talking about accuracy of the models. Each model trained did

outperform the basic LSTM model in most, if not all, scenarios presented. This means

that there is merit to using more complex models for this tasks. However, there will always

be a trade-off between complexity and computational speed. As indicated before, more

complex models may be able to better grasp the underlying information from the data,
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but more research will be needed to conclude if the extra complexity is worth the outcome

in terms of performance.

These results seem to differ from what was found in previous research. In Chapter 3, we

explained how different project have already shown that similar approaches can be effective

for trajectory prediction. However, since none of those projects were either on an openly

traversable area, like the airport aprons, or on a way larger scale, like naval predictions, it is

hard to directly compare the results. For example, in ship trajectory prediction, locations

that were off by one kilometer could be seen as accurate (36), whereas in our case, that

would mean we expect a vehicle to be on the other side of the premises. In terms of actual

distance, our model do seem to be able to predict within a similar distance as shown in

previous research on which our approach was partly based (40).

The generative approach towards finding a continuation for the trajectories that was

shortly explored with MDN models did show, complete contrarian behavior compared

to the sequence-to-sequence predictions. In the MDN model, the generated trajectories

seemed to be too chaotic. However, admittedly, the options explored for the generation of

models was severely limited. Thus it is unjust if we conclude based solely on the results

seen here, that his approach is not a viable one. Additionally it was also to be expected

that these models would not result in accurate reconstructions of the true trajectories, as

generative models like the MDN model are more aimed towards modelling the underlying

distribution of the data instead of being able to map a given input into a desired output.
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8

Conclusion

This project has focused on answering the question of to what extent different deep learning

methods can be used in order to augment a digital twin environment for the GSE processes

with the ability to do future predictions for traffic present on the Schiphol airport premises.

8.1 Conclusions

For this task, multiple models were trained on different experimental setups to find out

to what extend they are able to predict the continuations of trajectories for different GSE

vehicles. Through data analysis and preparation, a process of extracting trajectories from

raw location data was defined and these trajectories were used to describe and predict the

movements of the vehicles. The first model used was a simple LSTM which was seen as

a baseline to compare the other models to. The other models we used were a collection

of different sequence-to-sequence encoder-decoder models and a transformer network. Be-

tween these networks, there was not a single standout model that was able to consistently

make better predictions than the others.

By doing multiple experiments we were able to draw some conclusions about how the setup

of the experiment influences the performance. We have shown that not training the models

on the full data, but training a separate model for each vehicle type, made to so that the

predictions for the isolated vehicles improved. Also using a process that increases the

diversity of the data has been shown to potentially improve the forecasting performances.

Thirdly, we have seen that using shorter input sequence allowed us the improve on the

accuracy of the predictions.
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8.2 Future research

Unfortunately, even though our models were statistically able to perform predictions with

relative accuracy, the predicted trajectories were shown to not be a realistic representation

of actual movement of the GSE vehicles. This was most likely caused by the inherent

characteristics of the data that was used to train the models. However, the complexity of

the setting of the airport premises may also have had a significant influence on the results.

8.2 Future research

Even though the results showed that the models trained during this project do not translate

to a directly applicable use for the prediction of the trajectories of GSE vehicles, and thus

the traffic on the Schiphol grounds. We did provide groundwork toward the implementation

of a digital twin that is usable to gain insights in future states of the environment. There

are two main directions in which future research can make steps towards an end product.

First of all one may attempt to build further from this project and further develop these or

similar models. in that case, we would recommend to critically consider what data is to be

used. We expect that the characteristics of the current data are one of the major limiting

factors in this project. Thus making sure that the data used consists of more diversity

would possibly enhance the performance models significantly.

Another possibility would be to augment the data used by using extra data that describe

factor that have an influence on the movements around the premises. One could for example

think about somehow training models that also take flight schedules and/or inter-vehicle

interactions into account. Since the area used contained both restricted movement over

road networks, but also open movement around the gates, the decision was made to train

models that are able to predict without these movement restrictions. However, looking into

defining the roadnetwork as graph and using graph based models to do further forecasting

may also be a viable option for developing a suitable product to help in the Autonomous

Operations project.
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Appendix A

Overview of vehicle types

Company Car: Regular cars or minivans that are driven by KLM personnel around the

premises of the airport.

Dispenser: Vehicles able to dispense fuel from underground systems into an aircraft.

Ground Power Unit (GPU): Vehicles which are able to provide power to parked air-

craft.

Kleine Tankwagen: Vehicles used to carry fuel and fuel aircraft.

Powerstow LLH: Vehicles equipped with a snake-type rollertrack conveyor belt to help

ground personnel load and unload luggage.

Powerstow SLH: A smaller version of the Powerstow LLH.

Toiletwagen: Vehicles used to empty and refill lavatories on board the planes.

Transportband: Vehicles carrying conveyor belts used to load and unload baggage onto

an aircraft.

Transporter: Vehicles used to transport containers and pallets from dollies to maindeck

loader and vice versa.

Trap pax: Vehicles equipped with a staircase to help with the boarding process for pas-

sengers.

Trekker 3-wiel: Small vehicles used to tug the dollies that carry loose baggage, mailbags,

and other small cargo.
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Trekker 4-wiel: Vehicles used to tug the dollies that carry loose baggage, mailbags, and

other small cargo.

Trekker misc: Vehicles used to tug the dollies that carry loose baggage, mailbags, and

other small cargo.

Vliegtuigtrekker: Pushback tugs used to move aircraft to and away from the gates upon

arrival or departure.

Waterwagen: Vehicles used to store and provide water to the aircraft.

Unknown: Token used to indicate that it is unknown what vehicle type is linked to the

event in the data.
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Appendix B

Plots of the exploratory analysis for
different vehicle types

In this appendix, we present plots illustrating the temporal distributions and utilization

of specific vehicles within the observed dataset. To prevent redundancy, the plots for only

vehicle types ’unknown’, ’Company Car’, and ’GPU’ are shown.

Unknown

Figure B.1: Temporal distribution of the events in the data of December 2023 filtered by
vehicle type ’unknown’, represented per minute of the day (left), day of the week (middle), and
day of the month (right). The blue line represents the mean values at those times, whereas
the light blue area portrays the standard deviation.
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Figure B.2: Utilization of the vehicles of vehicle type ’unknown’.

Company Car

Figure B.3: Temporal distribution of the events in the data of December 2023 filtered by
vehicle type ’Company Car’, represented per minute of the day (left), day of the week (middle),
and day of the month (right). The blue line represents the mean values at those times, whereas
the light blue area portrays the standard deviation.
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Figure B.4: Utilization of the vehicles of vehicle type ’Company Car’.

GPU

Figure B.5: Temporal distribution of the events in the data of December 2023 filtered by
vehicle type ’GPU’, represented per minute of the day (left), day of the week (middle), and
day of the month (right). The blue line represents the mean values at those times, whereas
the light blue area portrays the standard deviation.
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Figure B.6: Utilization of the vehicles of vehicle type ’GPU’.
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Appendix C

Learning curves for the base scenario

In this appendix, we provide the plots depicting the learning curves for the LSTM model

and the transformer model. These plots represent the learning process for models trained

on the base scenario.

(a) Learning curve for the GPS model. (b) Learning curve for the area model.

Figure C.1: Learning curves for the LSTM model for both the GPS model (a) and the area
model (b).
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(a) Learning curve for the GPS model. (b) Learning curve for the area model.

Figure C.2: Learning curves for the transformer model in the base scenario for both the
GPS model (a) and the area model (b).
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