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Abstract

Ground Services are a vital part of the operations of any airport. In order to
make these operations more efficient, more safe, and more sustainable, KLM
has started an autonomous operations project, which aims to automate as much
of the ground service operations as possible. To this end, it is crucial to gain
insights into the movement of the traffic around the airport grounds. To aid
in this endeavour, a digital twin is being developed that can track all ground
service equipment vehicles. This thesis’ aim is to introduce methodologies that
can be used to predict the location of the vehicles in this digital twin in a future

state.

To this end, multiple sequence-to-sequence encoder-decoder model architec-
tures were trained along with a transformer model and an mixture density
network model. These models were trained on different scenarios to find the

impact of changes to the experiment setups

Through this, we learned that the behaviour in movement for different types
of vehicles used in ground service operation were too diverse to capture the
information at once in a single model. We also studied the effect of changing
the input data used for our models. We found that the performance of models
could be improved by decreasing the input sequence length, and by selecting

data to ensure a higher rate of diversity in the training data.

Unfortunately, we were unable to find a model structure that was able to predict
trajectories that can be seen as a realistic representation of the true movements

happening on the airport aprons using the proposed methods.
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Introduction

To make sure that all travellers are able to fly according to schedule, it is of the utmost
importance to prepare each aircraft before a flight. Ground service operations encompass
all the actions upon which a timely departure and a smooth transfer of a passenger is
dependent. These actions range from checking-in and boarding to unloading, to loading
and refueling, ground services is responsible for the perfect pit stop for every aircraft. Each
process that is part of the ground service operations is enabled by the use of specialized

vehicles and well trained personnel.

There is continuous growth in the demand for air travel, but there is also difficulty in
finding the personnel necessary to be able to accommodate this demand. To still be able
to facilitate all passengers and ensure smooth and safe travel, the Royal Dutch Airlines
(KLM) is starting to look into slowly automating as much of the ground service operations
as possible. If this is done successfully, this can result in safer, more efficient, and cheaper

handling of the necessary processes.

1.1 Problem statement

One of the first steps in this Autonomous Operations project is to get more insights into
what is happening on the airport aprons on a daily basis. Where are all vehicles located? Is
there enough equipment available? Which vehicles should be assigned to do a given task?
These questions and more are important in order to run an automated airport smoothly.
Thus, a digital twin is in production to track all activity around the Schiphol Airport

premises.



1.2 Information about the host organization

In its current state, the twin is able to provide insights into past behavior of the vehicles,
and track activity of the ground service equipment in real time and is mainly used as tool
for visualization. In the setting of the airport, where there is limited direct communication
between vehicles, real-time prediction of vehicle traffic may help alleviating some pressure
on the traffic demands due to operations. Thus, knowing where vehicles may be in the
future can help with planning, assigning vehicles to tasks, optimizing traffic flows and in

the future perhaps with fully automating the ground service operations.

Machine learning can play a pivotal role in advancing the digital twin. By using specialized
algorithms to their advantage, we may be able to move beyond simple visualization and
explore more predictive analyses. Loads of data is being collected every day, and machine
learning is a useful tool to derive underlying information from this data. For instance,
machine learning models can analyze historical vehicle behavior and real-time data from
ground service equipment (GSE) to forecast future traffic patterns at airports. A simple
first step in this would be to use machine learning algorithms to predict the trajectories of
the many vehicles in the system in order to gain extra information about the busyness of

the environment and to locate possible bottleneck locations.

1.2 Information about the host organization

KLM is mainly a provider of air transportation services. The company is involved in various
operations including transporting passengers and cargo, maintaining airframes, engines,
and components, as well as operating charters and scheduled services with affordable fares.
Founded in 1919, KLM is the oldest, still operating, airline company in the world and
yearly they carry millions of passengers to locations all over the world with a fleet of over
100 aircraft. KLM is actively involved in finding more sustainable and efficient methods

to run its operations.

Too show KLM possibilities the future that may hold, the KLM Ground Service Business
Development department aims to demonstrate innovative ideas and technologies by means

of various projects.

1.3 Research objective

The Autonomous Operations project of which this research is part is primarily used as a
demonstration of what will be needed to achieve fully automated ground service operations.

Therefore, the focus of this research is not in delivering the most accurate model to be used,



1.4 Structure of the report

but to show where there are possibilities that can be exhausted to further the developments

towards autonomous operations.

Thus the objective of this research is to provide possible answers to the following question:
How can machine learning aid in predicting trajectories of multiple GSE vehicles in order

to forecast the future state of an airport environment?

In this report, we will look into how the provided data can be used to make predictions that
are usable for prediction performed in the existing digital twin environment. This will be
done by exploring different experimental setups and training different models which should
be capable of capturing information from sequential data. In the end, conclusions will be
drawn about the data needed to solve the proposed problem and possible approaches for

solving the problem.

1.4 Structure of the report

This report consists of eight chapters followed by a list of references used to support the
research. Three appendices containing extra information can be found at the end of the

report

In Chapter[IJthe reader will be introduced to the research topic and the problem that will be
tackled in the report. Then, Chapter[2]will provide extra background information into some
of the leading background topics of this research. Chapter [3] will discuss the methodologies
used previously in research with similar goals as this project. In Chapter [4, the data
that is used for this project will be described and explored. Following, the methodologies
applied during this research are explained in Chapter The resulting outcomes of this
research are shown in Chapter [6] and will be discussed in Chapter [} Finally, Chapter [§]
will complete this report by summarizing the most important findings and offering ideas

for future research.



Background

In this chapter, some background information about airport ground services and the un-

derlying project this research is part of, will be explained.

2.1 Airport ground services

Airport ground services are an important aspect of the logistics of aviation. The ground
handling operations oversees a diverse list of services that are aimed toward facilitating
smooth, efficient and safe movement of aircrafts, passengers, and cargo around the airport.
Ground services are divided into various tasks, each of which are performed by specially
trained teams. The tasks that fall under ground services include ramp handling on the
apron where the aircrafts are parked, baggage handling, aircraft servicing, cargo handling
and passenger handling. All these tasks are performed under strict time pressure. This
pressure comes from the necessity to meet tight turnaround times between flights, and
thus requires seamless coordination between different forces to meet departure times and
prevent flight delays and the disruption of flight schedules. Figure gives a partial
overview of tasks that have to be performed between the landing of an airplane and the

next departure. Ground handling is responsible for the execution of all these tasks.

Each of these tasks comes with its own safety hazards and risks, as it entails working
close to moving aircraft and heavy equipment. All personnel undergo training before they
are permitted to work on the aprons, equipping them with the necessary knowledge and
skills to mitigate these risks. Training programs teach about safety protocols, emergency
procedures, and the proper use of protective equipment to ensure the safety of ground

handling staff at all times. Additionally, specialized vehicles and equipment are employed



2.2 Autonomous operations
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Figure 2.1: A schematic of a part of the turnaround process of an aircraft (23).

for each task, designed to enhance efficiency and safety. A list of the different vehicles that
will be discussed in this project can be found in Appendix [A]

2.2 Autonomous operations

In 2050 Amsterdam Schiphol airport aims to be the most sustainable airport in the world
(3). Simultaneously, they aim to enhance the capacity utilization of the airports while
ensuring safety. The sustainable and autonomous transformation of all vehicles and asso-

ciated processes on the airport will contribute significantly to this objective.

Autonomous operations for vehicles on airport grounds are an upcoming area in the de-
velopment in the airport industry. As mentioned, ground services include a large range
of tasks which have to be performed in succession to ensure a fast turnaround time and
a successful flight. Automating tasks underneath the wings of an airplane can offer many

benefits such as safety, cost reduction and reduced emissions (2).

Airplanes are mostly similar, and have standardised configuration (30} 7). This makes

it so that the same equipment can be used for many different airplanes, and thus making



2.3 Digital twins

automation a feasible goal in terms of equipment and an interesting field of research.
However, automation of the full ground handling operations is not a task as simple as
just having the equipment. The American Federal Aviation Administration (FAA) has
also included autonomous operations in their research landscape for the upcoming years
(I). However, they also admit that there are still plenty challenges in this field. In their

research landscape they aim to research multiple factors including, but not limited to:

e Infrastructure and methodologies to facilitate the operations of autonomous ground

vehicles (such as navigation, charging, or refueling).
e Examination of the influence of weather conditions on equipment performance.

e Development of training protocols and guidelines for flight crews, dealing with han-

dling emergency or unforeseen circumstances.

e Implementation of measures for the security and identification of autonomous vehi-

cles.

There is also the problem that tasks need to be allocated to different vehicles and planned
optimally in order to keep the operations running smoothly and efficiently. Research in this
field is already advancing. For example, Chen et al. (9)) already introduced a framework
that merges task assignment and route planning for automating ground handling operations

from a multi-agent viewpoint.

It is safe to say that in order to successfully automate the ground services operations,
insights in the movements of the vehicles is necessary. For that, a digital twin is currently

being developed.

2.3 Digital twins

A digital twin is a virtual representation of a real-world product, system, or process (its
physical counterpart), used for a multitude of tasks. These tasks include simulation, test-
ing, monitoring, and maintenance. In its initial introduction by Michael Grieves, the digital
twin was designed to be used with Product Lifecycle Management and coexist with the
physical entity it represents throughout its entire life cycle from creation to disposal (13).
Nowadays, the intended use of a digital twin is to provide users with better ways to gain
a better understanding of increasingly sophisticated and complicated systems. This will
results in a reduction of failures and problems in the physical system. This in turn reduces

expenses, time, and also risks to everyone involved with the physical system (14)).



2.3 Digital twins

The digital twin being developed at KLM can be more accurately described as a Digital
Twin Environment (DTE). A DTE is a digital space where besides topographic objects,
specific objects (like GSE vehicles) are also represented. Furthermore, in a DTE, temporal
relations between objects over time are also shown (22)). DTEs serve a variety of purposes.
This includes prediction and interrogation. The predictive purposes are evident when a
digital twin is used to predict future behavior and performance of the system. A fully
functional twin can take actual components and the history of said components in the
system to predict the behavior of the system. By analyzing and combining data from
multiple instances, one would be able to provide a range of possible future states. The
interrogative purposes cover the idea that, since a digital twin is connected to its physical
counterpart, regardless of the location of the counterpart, one is able to gather information
about the system’s current state and performance remotely. Data collected from multiple
instances in a DTE may relate to different trends or patterns which may in turn help with

the predictive objectives for which the twin was implemented (14]).



Related Work

This chapter aims to explore what has been done before in research and projects with

similar goals in trajectory prediction.

Trajectory prediction can be defined as the act of forecasting future states of dynamic
agents in a system given their current and past states. This definition can be translated
to two main different focal points in research: (1) vision based motion prediction and,
(2) a more top-down approach with next location prediction in a Vehicle-to-everything
(V2X) network. In the vision based approaches, computer vision is often used to detect
and analyze surroundings of a vehicle to prevent dangerous situation and to allow more
efficient routing (33). These approaches often use CNN-based models to extract features
from images and then use different techniques such as RNN-based methods (24)), generative
methods (I2)) or statistical approaches such as Hidden Markov Models(g]), to predict future

states of their environment.

Even though these methods may give insights in how trajectory prediction is applied in
general, the methodologies used are not applicable in the scope of this research. This
project focuses primarily on using location data, and not computer vision. However, there
is a plethora of research in different settings where a top-down location approach is used.
We will divide these into three categories. First we will describe the sequence based
temporal approaches, graph based approaches, and then a few generative methods that

have been used previously.



3.1 Sequence-based approaches

3.1 Sequence-based approaches

Trajectories are often represented as a sequence of datapoints with given timestamps.
Thus, models that are able to derive temporal relations from data are often considered in
the trajectory prediction task. Most of the methods that fall into this category leverage
the strengths of recurrent neural networks (RNN). Especially LSTMs and GRU-units are
often mentioned as a solution towards dealing with the time-dependencies in the data. A
simple application of these models can be found in the work of Kim et al. (I7). They
used a simple two-cell LSTM model to predict the trajectories of moving vehicles over
an occupancy grid map. The method used consist of a compact model that is only used
to predict trajectories of at most two seconds into the future. In the results we can also
already find that, as may be expected, the prediction error increases significantly as we look
more timesteps ahead. Alahi et al. (4) combined multiple LSTM models using a ’social’
pooling layer in order to not only model the short term movement of a single person, but
also to try and capture human-human interactions into their method. There method is
shown to outperform previous state-of-the-art models on standard datasets. The results
clearly show how the model is able to make intelligent route choices like yielding for other
agents in the system. Trajectory prediction is also used in naval research. Suo et al. (34)
used a GRU model to predict vessel trajectories. In their research, they have shown that
their model is able to achieve similar results to models using LSTM layers, however, their

model improves on computation efficiency.

Unfortunately, simple LSTM models are not enough to get a decent result in trajectory
prediction. Since trajectory prediction in the simplest sense can be described as analyzing
an input trajectory, and predicting its continuation, we can see this task as a sequence-to-
sequence problem. Therefore, more often model architectures that are designed to capture
the intrinsic information of sequences are used in for trajectory prediction. The most
commonly seen architecture is an encoder-decoder model using LSTM blocks. Park et al.
(26)) try to predict the trajectory of vehicles across an occupancy grid map using the work
of Kim et al. (I7) as baseline. Here we can see that using the encoder-decoder model,
Park et al. are able to achieve better results. If we look at the last predictions (so after
two seconds), Park et al, are on average of by 0.93 grids, whereas this value was 1.31 for
Kim et al. In their work, Wang et al. (40) also show that sequence-to-sequence models
outperform the baselines. They use three different sequence-to-sequence architectures, and
for each of them the MSE (over the whole data) is shown to be approximately half the

value compared to the other models used. It does show that the sequence models appear



3.2 Graph-based approaches

to be a little behind the other models when it comes to one-step predictions, but when

looking further ahead, the sequence model outperforms consistently.

Deo and Trivedi (I1)) show in their work that this architecture is able to predict the param-
eters of a bivariate Gaussian distribution instead of the trajectory itself. In their output
sequence, each element corresponds to the means and variances of future locations for the
vehicle. Using this strategy, they outperform state-of-the-art models on the same datasets,
showing the viability of this approach. To take the sequence-to-sequence architecture a
step further, Nadarajan and Sivanraj (25)) use and encoder-decoder model but enhance it
using a spacial, and a temporal attention mechanism. They do this to analyse the mul-
tiscale spatiotemporal dependencies in non-Euclidean space to forecast traffic. This way,
they take into account similarities between different places in the road network. In their
model, they also integrate data from external factors such as the weather, to get the final
predictions. Their model is shown to have more accurate MSE scores compared to other

models consistently up until two hours into the future.

In a vastly different direction, Qin et al. (27) use a CNN based approach for their trajectory
predictions. Instead of predicting the exact locations, they split their area of interest into
grids and follow their vehicles as a series of grid number. By converting each value into a
one-hot vector and then concatenating all vectors in a sequence over a temporal dimension,
they created a spatio-temporal grid representing each trajectory. These grids were then
used to train a Capsule network. Capsule networks use groups of neurons that encode
specific properties of its input. Using this method, they were able to achieve improved

accuracy scores compared to LSTM and regular CNN models.

3.2 Graph-based approaches

Most traffic situations consist of intricate information that cannot be simply defined by
linear dependencies. Thus, a graph representation, consisting of nodes and edges corre-
sponding to to individual spatial units are often used to model these intricacies. Most
graph based models use graph convolutional networks (GCN) in order to learn more com-
plex topographical information that is more difficult to handle for convolutional networks.
In forecasting tasks, GCNs are often combined with different methods that are able to
handle temporal relations such as RNNs. Zhao et al. (44]) show that by combining GCNs
with GRU-units, one can achieve forecasting results which indicate a steady state under

different prediction horizons. This means that these models are not only able to accurately

10



3.3 Generative methods

predict the short-term dependencies in data, but that they are also applicable in long-term

prediction tasks.

These so-called temporal GCNs also form the base of more complex applications of graph
networks. For example, Li et al. (19) propose a dynamic graph convolutional recurrent
network where dynamic graphs are generated using an encoder-decoder architecture that is
often seen in the previously mentioned sequence-to-sequence models. They combine these
generated graphs with previously defined static distance based graphs and use a GCN with
GRU units for their final predictions. Zhi et al. (20)) take this model a step further by
proposing a method where they fuse multiple graphs with different similarity information to
model dynamic spatio-temporal relations in traffic. They show that their proposed method
is able to outperform multiple different baseline models on different datasets. However, a
main limitation of this methodology is that their are high requirements for the datasets on
which it is used. Since the model requires a lot of accurate traffic flow-, road-, POI- and
weather data, the limited availability of data which meets the requirements may affect the

generalization ability of the method.

Another use of GCN model is provided by Zhu et al. (45). They propose an attribute-
augmented spatio-temporal GCN for traffic forecasting. In this work they derive augmented
graphs in order to consider more external factors that may affect the movement of traffic
in their GCN model. The main contribution of this model is that not only their prediction
outperform commonly used baseline models, but they are also able to show attribute
importance. Through this they have also shown that diversity of external factors can be

used improve forecasting performance.

3.3 Generative methods

Another approach to predicting the trajectory for a vehicle is by using generative models.
These models focus on generating new data samples that resemble the training data by
learning the underlying distribution. An example of this approach can be found in the work
of Rossi et al. (29). They propose an architecture using generative adversarial networks to
generate different trajectories that portray different behavior. However, they also conclude
that in most scenarios that LSTM outperforms GAN, meaning that the latter is not a
replacement for the former. On the other hand, the scenario where GANs did outperform

is when a multi-modal approach is necessary or in cases with high uncertainty.

11



3.3 Generative methods

Using a different model, Bhattacharyya et al. (5l predicted drone trajectories. Their
conditional flow variational autoencoder model uses conditional priors based on conditional
normalizing flows, which allow for the model to take conditional information into account
when decoding the training data. This in turn allows for more complex multi-modal
representations of the data in the latent space of the model. This approach is also shown
to achieve results on the same level as other state of the art generative models used for

this task.

Serensen et al. (36) used a Bidirectional Long-Short-Term-Memory Mixture Density Net-
work to characterise the underlying distributions of the movements of ships. This applica-
tion of trajectory prediction is used not only to prevent dangerous situations at sea, but
also to attempt to identify unknown vessels at sea. They applied multiple different model
architectures in their project and where able to predict locations of vehicles with a mean
difference of 2.53km 50 minutes into the future. This is, on the scale of the maritime
trajectory prediction, accurate and on par, if not better, than state of the art attention

models.

Finally, Zeng et al. (43) answer the question if transformer models are effective for time
series forecasting. Their finding, using a relatively simple model, is that in this task,
transformers may be susceptible to temporal information loss. However, Jiang et al. (L6])
propose a different structure compared to regular transformers where the model should
be more viable in tasks involving sequence data by combining the transformer model with
LSTM structures. They show that in busy maritime waters, their approach outperforms
state of the art models for trajectory prediction thus indicating that adapted transformers

can be used for trajectory prediction.

12



Data

In this chapter we will look at the data that has been used during this project. We will
delve into the raw data and how it has been processed to obtain useful trajectories. We
we also take a look the data itself by doing an exploratory analyses both on the raw data

as well as on the obtained trajectory data.

4.1 Description

The data used in this project is a dataset for which data point have been collected since
2021. Over time, the GSE vehicles have been equipped with sensors that are able to
register data about the vehicle at short time intervals. Approximately every minute, if a
vehicle is active, an instance is saved with information about the vehicle’s location and
its status. The recording of the instances is a project that has been introduced in stages,
thus, over time, more vehicles’s movement is tracked and recorded. Different vehicles, may
be equipped with one of three different types of sensors ((CTRACK’, "WEBFLEET”’, or
"TARGA’). The information retrieved from these different sensor types and transmitted
to the dataset is consistent regardless of the type. At the end of each day, the dataset is
updated with all data instances up until the day before.

The data has 17 different features that are recorder. However, many of these features,
such as the company which owns the vehicles and the department to which the vehicle
belongs, are all limited to only a single unique value in the data, and thus do not provide
distinguishable information. Table gives a short overview of the variables in the data

that are have been used during this project.

13



4.2 Pre-processing

Variable name | Description

Eventld An identifying string that is uniquely generated for each instance in the data.
EventSource The sensor type used to collect the instance.

EventTimeUtc | The date and time (in UTC) at which an instance was recorded.

AssetName Identifying name for each vehicle.

Assetld Id assigned to each vehicle by the sensors.
AssetType The type of vehicle.

Latitude The latitude value of the location of the vehicle.
Longitude The longitude value of the location of the vehicle.

Table 4.1: Overview of the relevant variables in the dataset.

Even though there are two variables that seem to be usable as identifier for the vehicles in
the dataset (AssetName and AssetId), only AssetName can actually be used to distinguish
vehicles. Because the assigning of Assetlds is done seperately by each tracker system (the
three different EventSources), there is overlap in some ids between sensor types causing
clashing Assetlds for different vehicles. So even though there are more unique Assetld
values in the data, they can not be used to identify vehicles, which is why the AssetName

is used as identifier.

4.2 Pre-processing

The first step before we are able to make predictions will be to process the data in a
suitable form to feed it into our model architectures. This process involves cleaning the

data and transforming it into a usable form.

4.2.1 Trajectory extraction

To get usable trajectory information from the raw GSE data, a few steps have been taken.
First of all, the data is split by vehicle and sorted in the chronological order of the event-
times. From there, we can obtain the first event for a vehicle as the start of the first
trajectory. Next, we check the time difference between the current latest event and the
next. If this differences is within a given threshold, the next event is added to the trajectory.
In the scenario where the allowed difference is larger than one time-unit, the time steps in
between the two events are interpolated with copies of the earlier event. This is done to
ensure consistency in the time steps as missing data may drastically degrade the quality

of the predictions (42)). In case where the next event does not happen within the specified

14



4.2 Pre-processing

time range, the current trajectory is closed off and a new one is started with the now latest

event as the beginning.

Each trajectory is represented as a list of pairs of (latitude, longitude) datapoints. With
each trajectory, some key information is also tracked to get insights in the data. Aside from
the name and type associated with the vehicle, we also measure the travelled distance, the
start- and end times for each trajectory (and thus the total duration) and the number of

time steps the vehicle remains stationary during the trajectory.

4.2.2 Data selection

Not all event data will be used in order to extract trajectories. There are two main reasons
for not taking a data point into account. First of all, events for which both the vehicle
name and vehicle type are unknown are taken out of the data. This is done because there
is no way of knowing to what vehicle the data point belongs. This may cause events from
different vehicles to be used together in a single trajectories which would naturally cause
incoherence and mistakes in the our training data. The second filter to screen out data is
based on the location at which the event is recorded. The scale of this project is limited
to Schiphol airport grounds, however, some data points are recorded far from away. Even
though this mostly concerns company car type vehicles, there are other vehicles that are
also located outside of the premises in the data. For this reason, the decision was made to
filter out all datapoints where the registered longitude was below 4.73 or above 4.81. For

the latitude all datapoints before 52.285 and after 52.335 were filtered out.

4.2.3 'Trajectory preparation

During training of the models, not all trajectories will be used as input. One can imagine
that a trajectory consisting of only a few data points does not hold a lot of information
compared to longer ones. The trajectories used are those that are of length of at least
two thirds of the desired input sequence length. The base scenario discussed will use input
trajectories of length 45. This means that for a trajectory to be considered for the training,
it has to be of at least length 30. If a trajectory is too short for the experiment, but meets
the minimum length requirement, these trajectories are assumed to have been stationary
before they began. Thus, they are padded in front of the sequence using the first value of
the true sequence. If a trajectory is longer than the desired input length, it is split into

separate trajectories of the desired length. This is done both starting from the front of
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4.2 Pre-processing

the trajectory, as well as starting from the back, to ensure that only limited sequential

information is lost during the splitting of long trajectories of indivisible sizes.

4.2.4 Normalization

Normalization is used to rescale data such that different features are of similar scale, often
between 0 and 1. This is done to minimise bias in a model caused by a difference of scale
between explanatory features. For this project, min-max normalization will be applied to

all numerical features that are used as input to a model.

Previous research shows that min-max normalization is a successful technique when deal-
ing with a 2d GPS coordinate system (7). Similarly, Shi et. al. (3I) used min-max
normalization in a GPS based flight prediction task.

In min-max normalization, the data is rescaled towards a new range of values within pre-

defined boundaries. This technique uses the following formula:

i — Tmin

x
x; = Ymin + (Ymaz — Ymin), (4~1)

Tmax — Tmin

where Xy and Ty, are the minimum and maximum value respectively of the variable
to be normalized. ¥min and Ymq, are the boundaries of the selected range towards which

the data is to be rescaled.

4.2.5 Data representation

The trajectories will be used in two different representations during this project. The first
representation is the straightforward sequence of normalized (latitude, longitude) pairs.
This representation shows the exact location where the events have been recorded in the
data and thus will be used to try and predict the exact continuations of the trajecto-
ries. Secondly, an area based representation will also be used. In this representation, the
premises has been divided into multiple small subareas, which are used to give an approx-
imation of where the vehicles are located at a given time. The area has been divided into
625 parts, where there a total of 25 divisions along both the longitude, as well as the lon-
gitude. This is also illustrated in Figure When used in training, the sequence of areas
representing the movement of a vehicle has been transformed into a sequence of one-hot

vectors.
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Figure 4.1: The total area of the Schiphol premises partitioned into multiple subareas.

4.3 Exploratory analysis

The data used can be split into two different sets: firstly, the raw event data, consisting
of numerous instances of recorded events by the different GSE vehicles, that the has been
used in to extract the trajectories, and secondly, the trajectories themselves represented
as a sequence of consecutive events. We will look into both datasets to get a better idea
of the underlying distributions of our data points. This will mainly be done visually as an

aid in understanding the frameworks in which this project partakes.

4.3.1 Event data

The event data is an incredibly rich dataset consisting of millions of recorded events. When
we only look at the data recorded in 2023, just under 50 million instances can be found in
the data. Each instance representing a single event of a single vehicle recorded at a single
moment. One would expect that on different moments in time, these instances would show
more or fewer activity in the use of GSE vehicles. To get insights in this, the number of

vehicles active in certain time frames is plotted in Figure [£.2]

There are a few conclusions to be drawn from the plots in Figure First of all, we see

a spike in activity at 0:57 daily when we look at the top-left plot. This spike is caused by
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4.3 Exploratory analysis

one type of sensor (the CTRACK sensors) which give an automatic status update daily
at this time. Furthermore, in the same plot we see two clear peaks. The first at around
6:00 and the second around 18:00. These peaks correspond to the beginning and the end
of a working day and can be assumed to be caused by the vehicles being taken from and

returned to designated areas.

Both in the distributions per day of the week and per day of the month, there appear to
be no significant seasonality or trends. This indicates that the amount of use for vehicles
is not dependent on those time frames. Even though one might expect more traffic in the
summer, since there are more flights in the vacation months, the bottom-left plot actually
appears to dip in July and August. After some investigation, this dip was found to be
caused by errors in the communication between the software and the sensors. Thus, this
pattern cannot be used as an indication of the use of the vehicles. There is a significant
increase in instances in the data between the first two months. This is not a sign of
seasonality or trend, but caused by the introduction of more recorded sensors on different

vehicles.
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Figure 4.2: Temporal distribution of the events in the data represented per minute of the
day (top-left), day of the week (top-right), day of the month (bottom-left), and per month
(bottom-right). The blue line represents the mean values at those times, whereas the light
blue area portrays the standard deviation.
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Figure 4.3: Temporal distribution of the events in the data of December 2023 represented
per minute of the day (left), day of the week (middle), and day of the month (right). The
blue line represents the mean values at those times, whereas the light blue area portrays the

standard deviation.

Because the number of data points is too large to use in an efficient manner. The decision
was made to only use the data of December 2023 in the training process. This leaves us
with just over 6 million instances of event data. The temporal distribution of this data
can be found in Figure [£.3] which confirms the observation madein Figure [f.2] The one
main difference, is that there is a suspicious lack of activity between the 17th and the 19th
day of the month. This irregularity is again caused by a problem in the communication
between sensors and software. However, as the time distributions seem to be independent

on the day, this is not seen as a problem for this project.

The sensor data can be collected anywhere. For example, some vehicles like the company
cars, are recorder to travel throughout the country. However, since this project focuses on
the premises of the Schipol Airport grounds, we will only look at the vehicle present there.
Figure shows a heatmap of the events recorded on a single day (October 1, 2023). The
most important conclusion we can draw from Figure is that even though the grounds
do have a defined road network, the vehicles are not always restricted in their movement.
This is especially evident in Figure (b). When we look at the lower-left corner, we see
that all recorded events follow a straight line along the road, on the apron however, there

is no clear structure on where the vehicles should move.

The data used is event data collected over multiple vehicles. Different vehicles can have
different uses for the ground service process. In total there are 15 different vehicle types

recorded in the data and there is also an 'unknown’ token for vehicles for which the type
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(a) Heatmap of the locations of events in the dataset. (b) Zoomed in heatmap.

Figure 4.4: A heatmap of locations of the recorded events. Figure (b) shows a zoomed
in version focused on the red rectangle in Figure (a).

has not been properly recorded. In Appendix [A] a description for each of the different
vehicles types can be found. In total, 890 vehicles were recorded in use in December 2023.
Figure shows the distribution of the different vehicles types in the data. There is a
clear imbalance between the different vehicle. Approximately 25 percent of the vehicles
has no known vehicle type associate with the AssetName. From the other vehicles, a clear
majority of the vehicles is either a company car or a GPU. It is logical that these vehicles
are represented most in the data, as company cars are the most universally used means of
transport for employees around the Schiphol grounds and each ramp is equipped with a
GPU vehicle to power the parked aircrafts. The other vehicles are easier to share between

aprons or ramps and thus a lower number of them is necessary in the vehicle fleet.

The final factor to look at is the utilization of the vehicles. Figure shows for how many
moments a vehicle has a recorded event on average. Important to consider when looking at
Figure[4.6]is that the presented utilization is purely based on the number of events found in
the data. However, there are situation where a vehicle is used, placed at a given location,
and then turned off. For example, the Trap Pax vehicles which are used to help passengers
board a plane, can be placed next to an aircraft for an extended period of time. When the
vehicle is not powered, there are no events recorded by the sensor, but the vehicle is still

in use. Thus, the presented utilization is an underestimation of the true use. Remarkable
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Figure 4.5: Distribution of the different vehicle types in the data.

in Figure is that there is one vehicle recorded with an utilization of almost 1. This
is the ’vehicle’ that has been recorded as with the AssetName and AssetType 'unknown’.
Thus this data point does not represent a single vehicle, both more a collection of vehicles
whose information is not properly recorded. The data points this outlier represent will for

this similar reasons also not be taken into account for the rest of the project.

Aside from the the distributions for all instances together, we also considered information
as shown in Figures [1.3] and [£.6] for vehicles of the different types separately. These plots
portray behaviour similar to that of the distributions for all vehicles combined, thus to
prevent redundancy, the plots for only vehicle types 'unknown’, ’"Company Car’, and 'GPU’
can be found in Appendix

4.3.2 Trajectories

The extracted trajectories are shown to have vastly different types of behaviors. Figure [1.7]
shows how diverse the trajectories are. The black trajectory depicts a route where the
vehicle traveled around most of the airport buildings. Whereas the trajectory encircled in
red shows mostly local movement almost in a single location. These different behaviours
in movement can to a certain extend also be linked to the vehicle types and the tasks those
vehicles have to perform. The encircled trajectory is characteristic for a GPU vehicle which
is mostly stationary. Since there are plenty of these units around the airport, they also do

not have to moved much and thus show limited movement. On the other hand company
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Figure 4.6: Utilization of the vehicles.

cars, or the ’trekker’ vehicles, have to move around more to perform the tasks they are
assigned to. Figurd4.§shows the total number of trajectories recorded for each vehicle type.
We can see that, unsurprisingly the most trajectories are recorded for the most commonly
seen vehicles. However, besides vehicle types ’Company Car and 'unknown’ there appears
to be a more balanced distribution of trajectories, decreasing with the number of vehicles

of a type.

The trajectories have been extract with different idle windows, meaning different time
spans allowed without an event before a trajectory is cut off. In Table information
about the trajectories is shown. Remarkable is the high stationary percentages shown.
These mean that even though trajectories of a certain length have been seen in the data.
The vast majority of the trajectories are stationary most of the time. Nonetheless, this
percentage does decrease when we take a higher idle window, which is surprising as the
gaps created by the idle window are filled with stationary sequences. Due to the higher
number of eligible trajectories, and the lower stationary percentages, we will mainly focus

on trajectories with an idle window size of 10 during this project.

In Figure[4.9] the number of useful trajectories, according to the length criteria described in
Section [£.2.3]can be seen. In this figure we can clearly see that the number of trajectories is
much more balanced after the selection process. When we look at the idle window of size 1,

there is still a steady decline of the number of trajectories for different types. On the other
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Figure 4.7: Examples of extracted trajectories. Encircled in red, a relatively stationary

trajectory can be seen, while the trajectory highlighted in black is shown to go around the
premises.
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Figure 4.8: The number of trajectories recorded for each vehicle type.
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Figure 4.9: Number of useful trajectories separated by vehicle type and idle window.

Idle window | Number of trajectories mean duration mean stationary percentage
1 22590 71 minutes 10 seconds 0.87
5 37517 93 minutes 19 seconds 0.77
10 40866 97 minutes 1 second 0.76

Table 4.2: Trajectory information per idle window size

hand, the trajectories extracted with an idle window of size 10 appear to be more equally
divided over the different company types and are also more frequent. Unfortunately, there
are still a few types for which there are barely any trajectories eligible to be used according
to the defined criteria. Though, this was to be expected as we have seen that there are a

few vehicle types for which there are only a few records in the data as seen in Figure [4.5]

Correspondingly, in Figure the distributions of the trajectory lengths for the eligible
trajectories and the percentage stationary per vehicle type are shown for the trajectories
with an idle window of 10 minutes. In Figure m (a), we see that the trajectories consist
for the majority of between the 50 and 150 instances. Interestingly, for the type "trekker 3-
wiel’, we see a significantly larger spread in the boxplot. We can also see in Figure m (b)
that there are a few vehicle types, like the GPU and "Trap Pax’ which display a consistently

high stationary behavior. This is caused by the nature of these vehicles as for the tasks
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they are used for, the vehicles are required to remain on the same place while in use. For
the vehicles that are required to move more, like the company cars, we still see that they

are often found on the same location of multiple consecutive time steps.
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Figure 4.10: Overview of trajectory length (a) and stationary percentage (b) per vehicle
type.
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Methodology

In this chapter, methodology for the trajectory prediction performed in this project will
be explained. First the models used will be explained, then we will delve deeper into how

the models were trained and how the results will be evaluated.

5.1 Models

In Chapter [l we explained how the primary source of available data is limited to trajectory
data which is derived from the raw GSE GPS data. Due to the nature of this data the
choice was made to include three different types of models: (1) Recurrent Neural Networks
(RNNs), (2) sequence-to-sequence architectures and (3) generative models. These models
were chosen as they enable us to take the temporal nature of the sequences in the data
into account. This should allow for the underlying structures in the data to be captured

effectively.

5.1.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of neural networks designed to process
sequential data by maintaining an internal memory. In RNNs extra connections are in-
cluded that form directed cycles within hidden layers to capture temporal behavior. This
architecture enables RNNs to model and predict sequences of data. In this project we will

mainly use a variant of RNNs called long short-term memory (LSTM) models.

The idea behind RNNs is that they can use feedback connections in the network to store a
representation of recent inputs in the model. However, they also have a high risk of either

vanishing or exploding gradients. To solve this problem, Hochreiter and Schmidhuber
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Figure 5.1: A single LSTM cell (28)).

(15) proposed the LSTM cell to be introduced in neural networks. LSTM have obtained
widespread adaptations in sequential data analysis, time series prediction and classification
tasks across various domains. Their ability to retain temporal information over extended

periods of time makes them outstandingly effective for handling time-series data.

LSTM units consist of multiple cell that use three multiplicative gates to control the flow of
information through the model. The input gate determines which new information should
be stored in the cell. The forget gate combines the previous hidden state and the current
input, and determines which information can be discarded. And thirdly the output gate

controls the output of the model at each time step. Figure shows a single LSTM cell.

To clarify Figure the LSTM cell is also provided in equation form in Equations[5.1

fe=0Wp - [hi—1,2¢] + by) (5.1)
i = o (Wi - [hee1, 2] + b;)
Cy = tanh(We. - [h¢_1, 4] + be)
Cy=fr % Ci_q +ip % Cy (5.3)
or = o(Wo - [he—1,2¢] + bo)
hy = oy * tanh(Cy)
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Where:

t : The current time step in the sequence with ¢t =1,2,...,T

T : The sequence length

ft + Forget gate output

¢+ Input gate output

C, : Candidate cell state

C; : Updated cell state

o : Output gate output

h; : Current hidden state

Wy, Wi, We, W, : Weights
ht_1,x¢ : Previous hidden state, current input

by, bi,be,b, : Biases

In this project, an extension of this traditional architecture will also be used. The so-
called Bidirectional LSTM (BiLLSTM) incorporates two separate LSTM layers. One that
processes a sequence from start to finish, and one that processes the data backwards, hence
the name ’Bidirectional’. This extended architecture has previously been shown to improve
performance of time-series forecasting problems (32)). Therefore, in this project we will also

investigate if the bidirectional learning can be leveraged to improve on the results.

Both the LSTM and BiLLSTM models that are used in this project will be used as a baseline

for the larger models to compare performance to.

5.1.2 Sequence-to-Sequence learning

Sequence-to-sequence learning is a deep learning framework used to take sequential inputs
to generate a corresponding output. Often this architecture is used in combination with
RNN variants like LSTMs. Most commonly these models will be found in tasks like machine
translation and speech recognition, but as shown in Chapter [3] they are also proven to
be effective models in trajectory prediction. The main idea behind sequence-to-sequence
learning is to encode the input sequence step-by-step into a single vector which is then
decoded by a second set of LSTM models (35).
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Figure 5.2: The structure of a sequence-to-sequence LSTM encoder-decoder model (18).

5.1.2.1 LSTM encoder-decoders

The sequence-to-sequence architecture that is used in this project is an LSTM encoder-
decoder model. This means that the input trajectories are encoded and decoded using
LSTMs. Figure shows the general structure of this architecture. Here, the input X,
for each time step t is input into each own LSTM block in the encoder network. After
each input has been processed, the hidden states of the LSTM block are carried over as
the input of the next block. This is repeated until the full input sequence or trajectory has
been encoded in the hidden states of the final LSTM block. In the decoding, the model is
firstly fed with an arbitrary token that is meant to indicate the beginning end/or end of a
sequence. This token is used to predict the first value(s) of the output sequence, next the
final token in the output sequence is fed back into the model until a stopping condition

has been met.

Because the predicted tokens are fed back into the model, it is not possible to predict
the full output sequence at once and a special inference has to be done. This process is
described in Algorithm 1. The stop condition is often either the maximum output sequence
length has been reached, or the end token has been predicted as output, indicating the end

of the sequence.

5.1.2.2 Attention

There are still challenges with the encoder-decoder models. For example, when the input
sequences are too long, it might be hard to compress the sequence into a proper state vector
without losing too much information. Another problem may be that for different steps in
the decoding process, information from different points in the input may be relevant. In

short, the encoded state vector can act as a bottleneck for information (39). To circum-
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Algorithm 1 Inference Algorithm for Seq2Seq Encoder-Decoder Model

H
@

11:
12:
13:
14:

Input: Encoder model E, Decoder model D, input sequence X
Output: Generated output sequence Y
Initialize empty output sequence Y
h < E(X) Encode input sequence
Initialize decoder input token yg to start token
stop__condition < False
while not stop condition do
Uty h < D(yi—1,h) Decode with previous hidden state and previous output token
Append ¢; to Y
if ¢ is end token then
break
end if
end while

return Y

vent this, an attention mechanism can be built into the model. An attention mechanism

determines the significance of various components of the inputs at every decoder step. The

adapted architecture can be seen in Figure In this architecture the encoder is not

obligated to condense all information in the training data into a single vector. Instead,

it can give a representation of the information from all source tokens. In this project, we

use a simple dot product for the attention mechanism. However, other functions, such

as the bilinear function used in the Luong model (21)), could have been used as well. In

Algorithm 2, we can see the adapted algorithm for the inference when attention is included

in the model.
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Figure 5.3: The structure of an encoder-decoder model with an extra attention mechanism

(39). The blue circles represent the attention mechanism, in this case: a dot product.

Algorithm 2 Inference Algorithm for Seq2Seq Model with Attention Mechanism

1: Input: Encoder model F, Decoder model D, input sequence X, maximum output
sequence length Ty«

Output: Generated output sequence Y

Initialize empty output sequence Y

h < E(X) {Encode input sequence}

Initialize decoder input token gg to start token

t+1

stop_condition < False

while ¢t < Tjax and not stop _condition do

© % N> TR Wy

Compute attention weights a; using h and y;_1

H
e

Uty h < D(y¢—1, h,a;) {Decode with previous hidden state, previous output token,
and attention weights}

11:  Append 9 to Y

12 if ¢ is end token then

13: stop _condition < True

14:  end if

15: t+—t+1

16: end while

~

17: return Y
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5.1.3 Generative models

Sequence-to-sequence models focus on mapping an input sequence to an output sequence,
where the encoder processes the input sequence into a representation of a fixed dimension.
Generative models differ from sequence-to-sequence models in that they try to replicate the
underlying probability distributions of the training data. Once the underlying distribution
is known, new datapoints can be sampled that resemble the original data. In this project,
two generative models are used to see if we can get a close approximation of the true

continuations of the given input trajectories using these models.

5.1.3.1 Transformers

Transformers can be used both as a sequence-to-sequence model, but also a generative
model. Even though in the setting of trajectory prediction, transformers probably repre-
sent a sequence-to-sequence model more, we discuss them in this section as they are vastly
different from the previously described models. Unlike the previously mention RNN based
networks, transformers use a mechanism called self-attention to capture dependencies be-
tween input and output tokens (38). The structure of the model can be seen in Figure .
The self-attention mechanism is the base of the transformer and it uses a query, key and
value matrices to compute attention scores between all pairs of input tokens. This calcu-

lation is shown in Equation [5.5

Attention(Q, K, V) = softma (QKT> V, (5.5)
) Y = X ) M
Vdy,

Where:
e () represents the query matrix,
e K represents the key matrix,

e 1/ represents the value matrix, and

e dj, represents the dimensionality of the key vectors.
This self-attention is then used in the multi-head attention layers as shown in Equation [5.6
MultiHead (@, K, V') = Concat(heady, ..., headh)WO,
where head; = Attention(QWZ, KW/, v}, (5.6)
fori=1,2,...,h.

After the self-attention layers, each token’s representation passes through a position-wise

feedforward neural network. By leveraging self-attention mechanisms and multi-head at-
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Figure 5.4: The structure of a transformer model (38))

tention, transformers can efficiently capture long-range dependencies in sequences, making

them highly effective for various sequence processing tasks.

5.1.3.2 MDN models

Mixture Density Networks (MDN) are a type of neural networks where instead of assuming
that we can get a deterministic output for each given input, it is assumed that the condi-
tional distribution of the target data is, in fact, Gaussian (6)). In MDN models, the output
is not an exact target value, but the parameters of a mixture of Gaussian distributions
which represent the data. The conditional probability is modelled by approximating the

probability as a mixture of several known probability density functions (PDF) as shown in
Equation [5.7

plylz) = 3 au(@)oi(yle) (5.7
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Where:
e m represents the number of mixtures,
e o, (x) the mixture weight for the m’th mixture normalised using the softmax func-
tion, and
e ¢;(y|x) represents the individual mixture component, which is modelled as a Gaus-
sian PDF as seen in Equation [5.8

_ ( 2
$iylz) = ! _HymHH}

(2m)/20;(x)¢ P { 20;(x)?
With:

e f represents the number of target features,
e .. (x) represents the mean vector of features the m’th mixture, and

e o0;(x) represents the standard deviation of the features.

An MDN model is a neural network where the final layer is actually a concatenation of
three separate feed forward layers which each represent the values of either o, u, or o. For

this experiment a model consisting of 10 mixtures was trained.

5.1.4 Model architectures

During this project multiple different architectures were trained to compare there perfor-
mance in the end. All mentioned models were used in both the scenario where we predict
the GPS locations directly, and also the area based predictions. However, they do differ
in that the final fully connected layer in the area based models use a softmax activation
instead of a linear activation in order to get a probability distribution over the possible

areas.

As baseline models, both a simple one layer LSTM and a BiLSTM model were used. These
models consisted of only an input layer, then one RNN layer and finally a time distributed

fully connected layer to get the desired outcomes.

When we look at the more complex architectures, in all scenarios two models were trained,
one with an LSTM encoder and one with a BiLSTM encoder. Because the decoders require
the outputs to be generated one by one in these models, it is not possible to apply the
backwards learning used in a BiLSTM in the decoder. Thus, all decoders consist of regular

LSTM blocks.
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Figure 5.5: The sequence-to-sequence framework with two stacked LSTM layers preceded
by a FC layer (40).

The simplest encoder-decoder model are built out of one layer of RNN blocks in both the
encoder and the decoder. From there, the complexity of the models was increased step-
by-step. The first step was to stack an extra layer of RNN blocks on top of the first in
the encoder. These models will be referred to as the double (Bi)LSTM models. Thirdly,
we build models inspired by the architecture used in the works of Wang et al. (40). Their
model consist of two stacked LSTM blocks as well, but they embedded their trajectories
in a fully connected layer first. The layout of this model can be seen in Figure [5.5]

Finally, we also deployed a sequence-to-sequence model which incorporates an attention
mechanism as s