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Abstract

Currently, predictive Machine Learning (ML) Algorithms become
more and more integrated in our daily lives. Much is unknown about
how all the various Algorithm Fairness Metrics compare for differ-
ent factors. Therefore, this study aimed to research the impact of the
dataset, supervised ML classification Algorithm, its Surrounding mod-
els, Bootstrapping the train / test split and varying Seed choice for the
train / test split on the Algorithm Fairness Metrics that were described
by Verma and Rubin (2018). Three ML Algorithms were applied on
two datasets to predict the binary classifications of individuals who are
respectively being a recidivist or having an income of more than 50K.
The ML Algorithms are Random Forest (RF), XGBoost and Linear
Support Vector Classifier (LinearSVC). The stability of the Algorithm
Fairness Metrics was tested by building Surrounding models around
the Basis RF, XGBoost and LinearSVC models. Overall, the Algo-
rithm Fairness Metric results are not stable, their value depend on
many factors and its relation is often unclear. It is important to take
each metric and feature combination characteristic into consideration
when using predictive ML Algorithms on real-life cases. The underly-
ing python code of this study distinguishes itself from other python
packages as it computes all the Algorithm Fairness Metrics in one go,
given any dataset that has five feature groups with 2, 3, 6, 7, 5 items.
I hope this inspires other researchers to use this as a source to gain
insight into how the Algorithm Fairness Metrics interact and differ for
their specific predictive ML Algorithms.

Keywords

Algorithm Fairness Metrics, Fairness Random Forest, Fairness Linear Support Vector Classi-

fier, Fairness XGBoost.
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Chapter 1

Introduction

As published at nos.nl by Schellevis and de Jong (2019), based on a Government In-
formation Act and a confidential inventory of 54 government agencies, it became clear
that the Dutch government uses predictive Machine Learning (ML) Algorithms on a
large scale. As a reaction on a new Dutch Algorithm Law, a journalist from NRC.nl
(2019) described that companies and governments are currently increasingly relying on
predictive ML Algorithms to determine, for example, whether a job applicant should be
hired, whether someone is committing fraud or whether you are eligible for a credit or
mortgage application. To solve such classification problems, ML Algorithms often use
labeled data, and therefore mostly supervised ML classification Algorithms. These ML
Algorithms seem to offer a good outcome in the decision-making process, but there are
major risks, as stated by Wilson (2019).

In the summer of 2019, the People’s Party for Freedom and Democracy, a conservative-
liberal Dutch political party, proposed new rules to protect society against the misuse of
ML Algorithms and Artificial Intelligence, as described in a Dutch financial newspaper
by van Wijnen (2019). In that same newspaper, Baurichter (2019) described that this
raised the discussion whether the current General Data Protection Regulation (GDPR)
is protecting us enough. The proposal of the Dutch political party followed after the
proposal of the Democrats in the United States to create the Algorithmic Accountability
Act (AAA) that should protect us from being discriminated by ML Algorithms.

Even though Dutch privacy lawyers Elisabeth Thole and Özer Zivali state that the
GDPR is sufficient if it is maintained properly, the AAA was accepted by the United
States senate, as mentioned by New (2019). Hence, firms with existing and new high-
risk automated decision systems are required to submit an Impact Assessment Report
at the Federal Trade Commission. In this, a company must be able to demonstrate
that self-acting systems do their work accurately, fairly and without prejudice. This is
to prevent ML Algorithms from discriminating against customers based on skin color,
place of residence or gender. The system must also prevent third parties from accessing
the sensitive private data of customers, as described by Baurichter (2019).

The lawsuit over a now controversial government program, as described by Schellevis
(2019), and the outcome of the Correctional Offender Management Profiling for Alter-
native Sanctions (COMPAS), as mentioned by Larson et al. (2016), illustrate once more
the problems with Algorithm unfairness that governmental applied models show.

The Algorithm Fairness topic is increasing in popularity and its discussions are not
over yet. By testing the Algorithm Fairness Metrics and analyze the outcomes, this
study aims to complement other research in the Algorithm Fairness field. Also, it may
act as an aid for researchers to gain insight into how the Algorithm Fairness Metrics
interact and differ for their supervised ML classification Algorithms in solving binary
classification problems.

1



2 R.M.V. Humphris — Testing Algorithm Fairness Metrics

1.1 The Problem

Currently, predictive ML Algorithms become more and more integrated into existing
practices and products. When their outcomes are unfair, this may have huge conse-
quences for our daily lives. Past research mostly focused on applying ML Algorithms,
measuring its performance, applying Algorithm Fairness Metrics and mitigating the
unfairness based on this Fairness Metric.

Verma and Rubin (2018) distinguish 32 Algorithm Fairness Metrics. Much is un-
known about how these 32 Algorithm Fairness Metrics compare for different dataset,
supervised ML classification Algorithms, feature combinations, as well as their stability.

1.2 Research Question

To test the Algorithm Fairness Metrics for supervised ML classification problems, this
study aims to answer the following research question: What is the impact of the dataset,
supervised ML classification Algorithm choice, its Surrounding models, Bootstrapping
the train / test dataset split and varying Seed choice for the train / test dataset split
on the Algorithm Fairness Metrics?

1.3 Thesis Outline

The rest of this paper is organised as follows: Section 2 employs an overview of the lit-
erature about ML classification Algorithms, Algorithm Fairness Metrics and Algorithm
performance metrics; Section 3 describes the two datasets that are used for this study;
Section 4 contains the Method; Section 5 shows the results for the two datasets; Section
6 involves the Conclusion; Finally, Section 7 mentions potential Further Research in the
Discussion.



Chapter 2

Literature Review

This Chapter contains a Machine Learning (ML) Overview which explains what part of
ML is covered for this study, a description of important Supervised ML Classification
Algorithms, followed by the Re-sampling Methods and the Model Tuning part. Also,
the definition, causes, challenges, mitigation and metrics of Algorithm Fairness are de-
scribed. The Chapter ends by a description of Algorithm Performance Classification
Metrics as well as the approach of obtaining the threshold value from the ROC-curve.

2.1 Machine Learning Overview

As described by Sharma (2019), Artificial refers to something which is made by human
or non natural things. Intelligence means the ability to understand or think. Artificial
Intelligence (AI) is an intelligence where we want to add all the capabilities to machines
that human contain.

Patel (2018) and Sharma (2019) address that ML is the learning in which machines
can learn by its own without being explicitly programmed. It is an application of AI that
provides systems the ability to automatically learn and improve from experience. In ML
problems, the goal is to make predictions of unknown data by using ML Algorithms.

According to Yona (2017), ML Algorithms are, in essence, big computational ma-
chines that are trained to recognize and leverage statistical patterns in the data.

As explained by Pedregosa et al. (2019a), ML problems can be divided into four
categories: Reinforcement Learning, Unsupervised Learning, Semi-Supervised Learning
and Supervised Learning. This study only addresses Supervised Learning.

2.2 Supervised Learning Problems

As described by Patel (2018), in Supervised Learning, the training data is labeled. It
establishes a learning process, compares the predicted results with the actual results
of the training data, and continuously adjusts the predictive model until the predicted
results of the model reach an expected accuracy, such as classification and regression
problems. Figure 2.1 shows the Supervised Learning scheme where labeled training data
is used for the Learning Algorithm to make a prediction, based on Zhu and Singh (2017).

Figure 2.1: The Supervised Learning scheme.

3
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As described by Garbade (2018), in classification problems, samples belong to two or
more classes and we want to learn from already labeled data how to predict the class of
unlabeled data. This study addresses three supervised ML classification Algorithms for
binary classification. They are described in the next Section.

2.3 Supervised Machine Learning Classification Algorithms

This Section describes the characteristics of Decision Trees, Gradient Boosting, Random
Forest, XGBoost and the Linear Support Vector Classifier. Also, the advantages and
disadvantages are mentioned.

2.3.1 Decision Trees

Chakure (2019) explains that Decision Trees (DTs) are trees that are built through a
process known as binary recursive partitioning. This is an iterative process of splitting
the data into partitions, and then splitting it up further on each of the branches. To
create a tree, the training examples are divided into subsets, this is the start of the
tree development. This continues until the DT represents the training set. Hence, a new
example is classified by submitting it to a series of tests that determine the class label
of the example. These tests are organized in a hierarchical structure called a DT. DTs
follow the Divide-and-Conquer Algorithm because it splits the data into subsets before
it is split into even smaller subsets. Figure 2.2 shows a DT scheme.

Figure 2.2: Decision Tree scheme.

Advantages: As described by Dhiraj (2019), DTs require, compared to other ML Algo-
rithms, less effort for data preparation during pre-processing, requires no normalization
or scaling of the data and it is very intuitive and easy to explain to technical teams, as
well as stakeholders.
Disadvantages: As described by Chakure (2019) and Dhiraj (2019), overfitting is com-
mon, the decision boundary is restricted to being parallel to attribute axes, and small
changes in the training data can result in large changes in the decision logic. For larger
datasets, result interpretation becomes harder and the training time increases.

2.3.2 Gradient Boosting

As described by Elsinghorst (2018), Gradient Boosting (GB) is another technique for
performing supervised ML tasks where weak learners are converted into strong learners.
DTs are used as the weak learner in GB. It is common to constrain the weak learners
in specific ways, such as a maximum number of layers, nodes, splits or leaf nodes. This
is to ensure that the learners remain weak, but can still be constructed in a greedy
manner, as described by Brownlee (2019b). Sing (2018) explains each new tree is a fit
on a modified version of the original data set, which is where the AdaBoost Algorithm
enters the scene.
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Brownlee (2019b) explains the three elements of GB: A loss function to be optimized,
a weak learner to make predictions and an additive model to add weak learners to
minimize the loss function.

As explained by Grover (2017), the intuition behind the GB Algorithm is to repeti-
tively leverage the patterns in residuals and strengthen a model with weak predictions
and make it better. Once we reach a stage that residuals do not have any pattern that
could be modeled, we can stop modeling residuals (otherwise it might lead to overfit-
ting). Algorithmically, we are minimizing our loss function, such that test loss reach its
minimal.

Brownlee (2019b) describes that the first realization of boosting that saw great
success in application was Adaptive Boosting, or AdaBoost for short. The AdaBoost
Algorithm begins by training a DT in which each observation is assigned an equal
weight. After evaluating the first tree, we increase the weights of those observations
that are difficult to classify and lower the weights for those that are easy to classify. The
second tree is therefore grown on this weighted data. The idea is to improve upon the
predictions of the first tree, as stated by Sing (2018).

Compared to XGBoost, see Section 2.3.4, GB Machines (GBMs) use the metric error
to evaluated measure the model, instead of a bunch of metrics such as error and log
loss, as described by Sing (2018). Figure 2.3.2 shows the GB Scheme where the error
reduces each tree, it is inspired by Serengil (2019).

Figure 2.3: Gradient Boosting scheme.

Advantages: Brownlee (2019b) states that a new boosting Algorithm does not have to be
derived for each loss function that may want to be used, instead, it is a generic enough
framework that any differentiable loss function can be used. Also, Github (2019a) de-
scribes that its predictive accuracy cannot be beat, no data pre-processing is required
and it handles missing data well.
Disadvantages: Brid (2018) explains that GBMs will continue improving to minimize
all errors. According to Kumar (2020), this can overemphasize outliers and cause over-
fitting. You have to use cross-validation to neutralize this. GBMs can also be computa-
tionally expensive since it often require many trees (> 1000). Other disadvantages are
the high flexibility results in many hyperparameters that interact and influence heavily
the behavior of the approach which requires a large Grid Search during hyperparameter
tuning and its result are less interpretable, as described by Github (2019a).

2.3.3 Random Forest

Glen (2019) describes Random Forests (RFs) as a large number of DTs, combined
at the end of the process. Morde and Setty (2019) states that DTs are a graphical
representation of possible solutions to a decision based on certain conditions. In the
evolution of tree-based Algorithms, after DTs and bagging, RF evolves.

According to Morde and Setty (2019), bagging is an ensemble meta-Algorithm com-
bining predictions from multiple DTs through a majority voting mechanism. Hastie
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et al. (2009) explains that RFs combine the simplicity of DTs with flexibility resulting
in a vast improvement in accuracy. Figure 2.4 shows the Random Forest Scheme.

Figure 2.4: Random Forest Scheme.

Advantages: Kho (2018) describes the benefits of RFs as being Impressive in Versatility,
being Parallelizable, being great with high dimensional data, being faster to train than
DT because we are working only on a subset of features in this model. He also explains
that each DT has a high variance, but low bias. But because we average all the trees
in RF, we are averaging the variance as well so that we have a low bias and moderate
variance model.
Disadvantages: Some drawbacks for RFs are that they are not all that interpretable;
they are like black boxes, and for large data sets, the size of the trees can take up a lot
of memory, as described by Kho (2018) and Jansen (2020).

The Random Forest Algorithm

Hastie et al. (2009) describe the RF Algorithm for classification:

1. For b = 1 to B:

(a) Draw a Bootstrap sample Z∗ of size N from the training data.

(b) Grow a random-forest tree Tb to the Bootstrapped data, by recursively repeating
the following steps for each terminal node of the tree, until the minimum node
size nmin is reached.

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into two daughter nodes

2. Output the ensemble of trees {Tb}B1 .

• To make a prediction at a new point x: Let Ĉb(x) be the class prediction of the
bth random-forest tree. Then ĈBr f(x) = majority vote {Ĉb(x)}B1 .

2.3.4 XGBoost

As explained by Morde and Setty (2019) and Brownlee (2016), XGBoost stands for
eXtreme Gradient Boosting (GB) and is a DT-based ensemble ML Algorithm that uses
a GB framework. As mentioned by Morde and Setty (2019), over the years, DTs have
evolved to bagging, RF, boosting, GB and then finally to XGBoost. Two widely used
ensemble learners are bagging and boosting which both help to reduce the variance in
any learner, as described by Sundaram (2018).

As explained by Mandot (2019), in boosting, the trees are built sequentially such
that each subsequent tree aims to reduce the errors of the previous tree. Each tree learns
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from its predecessors and updates the residual errors. Hence, the tree that grows next in
the sequence will learn from an updated version of the residuals. The combining process
of the DTs start at the beginning, instead of at the end like RFs, mentions Glen (2019).

GB involves creating and adding DTs to an ensemble model sequentially. New trees
are created to correct the residual errors in the predictions from the existing ensemble.
The simplest hyperparameters are the maximum depth of the DTs being trained, the
loss function being used, and the number of classes in the dataset. The eta Algorithm
requires special attention since it gives us a chance to prevent overfitting. The eta can
be thought of more intuitively as a learning rate. Rather than simply adding the pre-
dictions of new trees to the ensemble with full weight, the eta will be multiplied by the
residuals being adding to reduce their weight. This effectively reduces the complexity
of the overall model, as all explained by Seif (2019).

Advantages: As explained by Elsinghorst (2018) and Brownlee (2016), advantages of
using XGBoost are its execution speed and model performance. Compared to GBMs,
XGBoost has a number of nifty tricks that make it exceptionally successful, particularly
with structured data. It has advanced regularization which improves model generaliza-
tion and it computes second partial derivatives. The latter provides more information
about the direction of gradients and how to get to the minimum of our loss function.
Disadvantages: Jain (2016) explains that the XGBoost model requires parameter tuning
to improve and fully leverage its advantages over other ML Algorithms. Also, the im-
plementation of gradient boosted machines is relatively slow, due to the model training
that must follow a sequence. They, therefore, lack scalability due to their slowness, as
stated by CFI (2020).

The XGBoost Algorithm

Sundaram (2018) describes the XGBoost Algorithm, since we use the notation from
Hastie et al. (2009), the notation of a qualitative response variable is G. He defines
model F0 as the initial model to predict G, model H1 is fit to the residuals of this initial
model. F0 and H1 combined gives F1, the boosted version of F0. Mathematically, the
steps are as followed:

1. Define a function F0 which minimizes the loss function or MSE:

F0(x) = argminγ

n∑
i=1

L(Gi, γ) = argminγ

n∑
i=1

(Gi − γ)2. (2.1)

The corresponding residual is denoted by G− F0.

2. Fit model H1 to the residual of step 1. This will be a regression tree which will try
and reduce the residuals from the previous step. Its output will help in predicting the
successive function F1(x) that brings down the residuals, here F1(x) = F0(x)+H1(x).
Hence, H1(x) learns from the residuals of F0(x) and suppresses it in F1(x).

3. Repeat to compute model H2 and H3, each makes use of the residuals from the
preceding function.

Gradient Boosting is then:

1. F0(x) is as defined for boosting.

2. The gradient boost of the loss function is:

rim = −α[
δ(L(Gi, F (xi))

δF (xi)
]F (x)=Fm−1(x). (2.2)

3. Fit each model H1, H2, ... on the gradient obtained at each step.

4. Derive the multiplicative factor γ1, γ2, ... and the boosted model F1, F2, ... by:

Fm(x) = Fm−1(x) + γmhm(x), for m = 1, 2, ... (2.3)
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2.3.5 Linear Support Vector Classification

The Linear Support Vector Classification (LinearSVC) is a scalable Linear Support
Vector Machine (SVM) for classification, implemented using liblinear, as mentioned by
Pedregosa et al. (2020a). SVMs is the technique you use when you want to optimally sep-
arate hyperplanes for two classes that are not linearly separable and the classes overlap,
as described by Hastie et al. (2009). It produces nonlinear boundaries by constructing
a linear boundary in a large, transformed version of the feature space.

According to Navlani (2018), SVMs offers higher accuracy than other classifiers such
as DTs and it is known for its kernel trick to handle nonlinear input spaces. The classifier
separates data points using a hyperplane with the largest amount of margin to find an
optimal hyperplane which helps in classifying new data points, explains Navlani (2018).

Cortes and Vapnik (1995) explain, in the support-vector network, three ideas are
combined. First, the solution technique from optimal hyperplanes which allows for an
expansion of the solution vector on support vectors. Secondly, the idea of convolution of
the dot-product which extends the solution surfaces from linear to non-linear. Thirdly,
the idea of soft margins which allow for errors on the training set.

Figure 2.5 shows the high level view of what the SVM does, the yellow line is the
hyperplane separating orange and grey points, it is inspired by Medium (2019) and
Sanjeevi (2017).

Figure 2.5: Support Vector Machine scheme.

Advantages: The advantages of using SVMs are its effectivity in high dimensional spaces
and it is still effective in cases where number of dimensions is greater than the number
of samples, as explained by Pedregosa et al. (2019b). Also, it used a subset of training
points in the decision function (called support vectors), so it is also memory efficient.
Finally, SVMs are versatile, meaning that different Kernel functions can be specified for
the decision function. Common kernels are provided, but it is also possible to specify
custom kernels, as stated by Pedregosa et al. (2019b).
Disadvantages: Pedregosa et al. (2019b) describe the disadvantages of the SVMs, they
state that if the number of features is much greater than the number of samples, avoiding
over-fitting in choosing Kernel functions and regularization term is crucial. Moreover,
they do not directly provide probability estimates, these are calculated using an expen-
sive five-fold cross-validation.

Using Linear kernels or LinearSVC may be an alternative to reduce the computation
time significantly, as explained by Pedregosa et al. (2019b). Pedregosa et al. (2020a)
described that LinearSVC is similar to SVC with parameter kernel = linear, but im-
plemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice
of penalties and loss functions and should scale better to large numbers of samples.
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The Support Vector Machine Algorithm

As described by Hastie et al. (2009), for training data pairs (x1, y1), ...(xN , yN ) with
xi ∈ Rp and yi ∈ {−1, 1}, define a hyperplane by:

x : f(x) = xTβ + β0 = 0, (2.4)

where β is a unit vector ||β|| = 1. A classification rule induced by f(x) is

G(x) = sign[xTβ + β0]. (2.5)

The convex optimization problem, also known as the support vector criterion for sepa-
rated data is:

minβ,β0 ||β|| subject to yi(x
T
i β + β0) ≥ 1, i = 1, ..., N, (2.6)

where the norm constraint on β is dropped and M = 1
||β|| . For the non-separable case,

also a convex optimization problem, the support vector classifier is:

min||β|| subject to

{
yi(x

T
i β + β0) ≥ 1− ξi∀i,

ξi ≥ 0,
∑
ξi ≤ constant.

(2.7)

The value ξi is is the proportional amount by which the prediction f(xi) = xTi β + β0
is on the wrong side of its margin. By bounding it, the total proportional amount by
which prediction fall on the wrong side of their margin. By bounding its sum, the total
number of training misclassifications at a constant value is bounded. For convenient
computation, the support vector classifier for the non-separable case is:

minβ,β0
1

2
||β||2 + C

N∑
i=1

ξi subject to i ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi∀i, (2.8)

where C is the cost parameter that replaces the previous constraint. Larger values
of C focus attention more on (correctly classified) points near the decision boundary,
while smaller values involve data further away. Either way, misclassified points are given
weight, no matter how far away. Using cross-validation, the optimal choice for C can be
made. The quadratic programming solution can be described by Lagrange multipliers,
the Lagrange primal function is:

LP =
1

2
||β||2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(x
T
i β + βo)− (1− ξi)]−

N∑
i=1

µiξi, (2.9)

minimizing this with respect to β, β0 and ξi and setting the respective derivatives to zero
you obtain six equations that characterize the solution to the primal and dual problem.
First, you get β =

∑N
i=1 αiyixi, 0 =

∑N
i=1 αiyi, αi = C − µi,∀i with αi, µi, ξi ≥ 0∀i. The

Lagrangian dual objective function then becomes:

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
i′=1

αiαi
′yiyi′x

T
i x

T
i′ , (2.10)

which you maximize subject to 0 ≤ αi ≤ C and
∑N

i=1 αiyi = 0. The last three equation
are the Karush-Kuhn-Tucker conditions which are αi[yi(x

T
i β+β0)− (1−ξi)] = 0, µiξi =

0, yi(x
T
i β + β0) − (1 − ξi) ≥ 0. Figure 2.6 shows the support vector classifiers for the

nonseparable case where ξi represents the points that are on the wrong side with a
distance of M ∗ ξi, as explained by Navlani (2018) and Hastie et al. (2009).
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Figure 2.6: Support Vector Machine with margins and ξi.

2.4 Re-sampling Methods

As described by Sagar (2019) and Peixeiro (2019), re-sampling is the method of taking
samples iteratively from the original data samples which is an indispensable tool in mod-
ern statistics. According to Sagar (2019), the method of re-sampling is a non-parametric
method of statistical inference which means that the parametric assumptions that ig-
nore the nature of the underlying data distribution are avoided. Peixeiro (2019) explains
that it involves repeatedly drawing samples from a training set and refitting a model
of interest on each sample in order to obtain additional information about the fitted
model. Two commonly used re-sampling methods are Bootstrap and Cross Validation,
as mentioned by Sagar (2019).

2.4.1 Bootstrap

As explained by Brownlee (2018a), the Bootstrap method is a re-sampling technique
used to estimate statistics on a population by sampling a dataset with replacement. It
is used in applied ML to estimate the skill of ML models when making predictions on
data not included in the training data. Frost (2020) describes the Bootstrap method:

• The Bootstrap method has an equal probability of randomly drawing each original
data point for inclusion in the re-sampled datasets.

• The procedure can select a data point more than once for a re-sampled dataset. This
property is the “with replacement” aspect of the process.

• The procedure creates re-sampled datasets that are the same size as the original.

The process ends with your simulated datasets having many different combinations of
the values that exist in the original dataset. Each simulated dataset has its own set
of sample statistics, such as the mean, median, and standard deviation. Bootstrapping
procedures use the distribution of the sample statistics across the simulated samples as
the sampling distribution, as stated by Frost (2020).

Hence, as described by Raschka (2016), the Bootstrap method can be used when you
are particularly interested in estimating the uncertainty of the performance estimates.

2.4.2 Cross Validation

Brownlee (2018b) describes Cross Validation (CV) as being a statistical method used
to estimate the skill of ML models. It is commonly used in applied ML to compare and
select a model for a given predictive modeling problem because it is easy to understand,
easy to implement, and results in skill estimates that generally have a lower bias than
other methods. That K-fold CV is a procedure used to estimate the skill of the model
on new data, as explained by Brownlee (2018b).



Testing Algorithm Fairness Metrics — R.M.V. Humphris 11

As stated by Malik (2018), the process of K-Fold CV is straightforward. You divide
the data into K folds. Out of the K folds, K-1 sets are used for training while the
remaining set is used for testing. The Algorithm is trained and tested K times, each
time a new set is used as testing set while remaining sets are used for training.

Figure 2.7 shows the scheme of K-Fold CV, as inspired by Krishni (2018). In the
end, the result of the K-Fold CV is the average of the results obtained on each set.

Figure 2.7: K-Fold CV scheme.

2.5 Model Tuning

Ippolito (2019) describes three common approaches to hyperparameter optimization,
they are Grid Search, Random Search and Genetic Algorithms. Scikit-learn contains
the GridSearchCV and RandomizedSearchCV objects from Pedregosa et al. (2020b) and
Pedregosa et al. (2020c), which enables the use of Cross Validation (CV) and parameter
tuning, while Jain (2018) describes the Genetic Algorithm for tuning hyperparameters.

2.5.1 Cross Validation

ML models tuning is a type of optimization problem where both CV and hyperparam-
eters are important, as stated by Ippolito (2019).

As described by Mandava (2018), model parameters are internal to the model whose
values can be estimated from the data while hyperparameters are external to the model
and cannot be directly learned from the regular training process. These parameters
express “higher-level” properties of the model such as its complexity or how fast it
should learn. Hyperparameters are model-specific properties that are ‘fixed’ before you
even train and test your model on data.

Pedregosa et al. (2020b) explains both CV and hyperparameter tuning are commonly
done at the same time in data pipelines, and are defined as followed:

• CV is the process of training learners using one set of data and testing it using a
different set.

• Hyperparameter tuning is the process to selecting the values for a model’s parameters
that maximize the accuracy of the model.

2.5.2 Grid Search

Grid Search CV conducts an exhaustive search for the combination of hyperparameters
that maximizes the CV performance, according to some user-defined score function, as
stated by Lopez de Prado (2020). Pedregosa et al. (2020b) describes that GridSearch CV
implements a “fit” and a “score” method where the hyperparameters of the estimator
that are used to apply these methods, are optimized by a cross-validated Grid Search.
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The theory on DataCamp (2020) explains that GridSearch CV can be computation-
ally expensive, especially if you are searching over a large hyperparameter space and
dealing with multiple hyperparameters. A solution is the use of RandomizedSearchCV.

Mantovani et al. (2015) describes that, the hypothesis that a simple Random Search
method is sufficient to adjust the hyper-parameters of SVMs is investigated. A set of
experiments compared the performance of five tuning techniques: three meta-heuristics
commonly used, Random Search and Grid Search. The experimental results show that
the predictive performance of models using Random Search is equivalent to those ob-
tained using meta-heuristics and Grid Search, but with a lower computational cost.

2.5.3 Random Search

An advantage of using Random Search is that not all hyperparameter values are tried
out, as stated by the theory on DataCamp (2020). Instead, a fixed number of hyperpa-
rameter settings is sampled from specified probability distributions. Koehrsen (2018a)
explains that both Grid Search and Random Search are hands-off, but require long run
times because they waste time evaluating unpromising areas of the search space.

Pedregosa et al. (2020b) mentions the two main benefits of the Random Search.
First of all, a budget can be chosen independent of the number of hyperparameters and
possible value. Secondly, adding hyperparameters that do not influence the performance
does not decrease efficiency.

Stalfort (2019) went through the conceptual explanation of Grid Search and Ran-
dom Search to understand which one is better for the Random Forest Algorithm. The
conclusion was that Random Search is preferred.

2.5.4 Genetic Algorithm

Wirsansky (2020) describes that the usage of the Genetic Algorithm approach allowed
them to improve the results of the Grid Search. Instead of trying out every possible
combination of hyperparameters, using evolutionary Algorithms instead of Grid Search
in Scikit-learn, will cause to evolve only the combinations that give the best results while
also reducing the time required to find the best hyperparameters for your estimator, as
stated in the Github (2019b) that describes Sklearn-deap.

Especially for the XGBoost, where many hyperparameters were tuned in this study,
Genetic Algorithm may reduce the computation time a lot. The theory behind this is
explained by Jain (2018) and is as followed:

1. Initialization: The initial population, which will have certain traits and will be tested
in a certain environment to observe how well the individuals (parents) in this popu-
lation perform, based on a predefined fitness criteria.

2. Selection: Based on the fitness value, the top performing parents are selected and
labelled as the survived population.

3. Crossover: The parents in the survived population will mate to produce offspring,
using a combination of two steps. Crossover is the first step where the genes (param-
eters) from the mating parents will be recombined, to produce offspring, with each
children inheriting some genes (parameters) from each parent.

4. Mutation: The second step is mutation where some of the values of the genes (param-
eters) will be altered to maintain a genetic diversity. This allows the nature/Genetic
Algorithm to typically arrive at a better solution.

Then, the second generation of the population contain both survived parents as well as
children. The survived parents are kept to retain best fitness hyperparameters in case
the offspring’s fitness value turns out to be worse than the parents. The corresponding
Python code forms the inspiration for the code of this study.
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2.6 Algorithm Unfairness

This section will discuss the definition, causes, metrics and mitigation of Algorithm
Unfairness. As described by Jacobson (2019), despite the seeming objectivity of the
process of training ML Algorithms to maximize prediction accuracy on training data,
it sometimes results in ML Algorithms that, while computationally correct, produce
outputs that are biased and unjust from a human perspective.

2.6.1 Causes And Challenges Of Algorithm Unfairness

Jacobson (2019) states that a large piece of the challenge is that ML Algorithms can
only be as fair as the data itself. If the underlying data is biased in any way, there
is a risk that its structural inequalities will not only be replicated but possibly even
amplified in the ML Algorithm. ML engineers must be aware of their own blind spots
and implicit assumptions; all the small decisions they make about finding, organizing,
and labeling training data for these models can be as impactful as their choice of ML
techniques, as described by Jacobson (2019).

According to Hao (2019), often, the training data is blamed for being biased and
therefore are the reason for Algorithm Unfairness. The Algorithm Unfairness causes
can be distinguished by the following three stages: the framing problem, data collection
problem and data preparation problem. Hao (2019) describes them as followed:

• Framing problem: The variable that you want to predict can be defined in various
ways, this is decided based on on the context of the goal. Also, as explained by Baron
and Hershey (1988), these decisions are made for various business reasons other than
Fairness or discrimination.

• Data collection problem: Training data may be unrepresentative of reality, or it reflects
prejudices. Prejudices may be reflected if the data contains historical decisions that
show that men are hired more often than women. The ML Algorithm will hence do
the same thing. By selecting which features to use for the ML Algorithm to make a
prediction, you consequently introduce bias.

• Data preparation problem: Choosing which attributes to consider or ignore can signif-
icantly influence your model’s prediction accuracy. But while its impact on accuracy
is easy to measure, its impact on the model’s bias is not.

2.6.2 Definitions Of Algorithm Unfairness

Whatever the causes of Algorithm Unfairness or its corresponding challenges, its defi-
nition is not straightforward. There are many definitions of Unfairness, depending on
the context, the corresponding dataset but also the researcher in question. However, the
majority agrees this is not a trivial task and that Unfair ML Algorithms are skewed
toward a particular group, as can be read from for example Jacobson (2019), Mehrabi
et al. (2019) and Yona (2017).

Verma and Rubin (2018) describe 32 definitions of Fairness for the Algorithmic
classification problem, see Table 2.1 for an overview. After explaining the rationale
behind the definitions, they apply them on a case-study.

2.6.3 Notation

This study uses the notations that are inspired by the paper of Verma and Rubin (2018).
For each dataset, N characteristics define individual k with k = 1, ...,K. Characteristic
ni with i = 1, ..., N , having Mni . The collection of features is binary, characteristics of
individual k are denoted by:

Xk([n1;nN ]) = [m(n1, 1), ...,m(n1,Mn1), ...,m(nN , 1), ...,m(nN ,MnN )]. (2.11)
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Statistical
Fairness
Measures

1-12. Statistical Metrics
Definitions based on
predicted outcome

13. Group Fairness
14. Conditional statistical parity

Definitions based on
predicted and
actual outcomes

15. Predictive parity
16. Predictive quality
17. Equal opportunity
18. Equalized odds
19. Conditional use accuracy equality
20. Overall accuracy equality
21. Treatment equality

Definitions based on
predicted probabilities
and actual outcome

22. Test-fairness
23. Well-calibration
24. Balance for positive class
25. Balance for negative class

Similarity-
Based
Measures

26. Causal discrimination
27. Fairness through unawareness
28. Fairness through awareness

Causal
Reasoning

29. Counterfactual Fairness
30. No unresolved discrimination
31. No proxy discrimination
32. Fair inference

Table 2.1: Fairness definitions, as distinguished by Verma and Rubin (2018).

For a specific characteristic ni, individual k can be described by:

Xk(ni) = [m(ni, 1), ...,m(ni,Mni)]. (2.12)

To compare outcomes for different characteristics, take j(i) = 1, ...,Mn1 and l(i) =
1, ...,Mn1 where j(i) 6= l(i). The classification of individual k is Yk = c with C ∈ 0, 1.
The predicted probability of individual k being part of classification c is:

Sk,c = P (Yk = c|Xk([n1;nN ])). (2.13)

The predicted classification of individual k is dk = c. In general, if sk > g, dk = 1 where
g is a certain threshold.

2.6.4 Fairness Metrics

The following subsections describe the 32 Algorithm Fairness Metrics of Verma and
Rubin (2018), by applying the notation as described above. Six Algorithm Fairness
Metric types can be distinguished. The Algorithm Fairness Metric model numbers are
indicated in the brackets.

Algorithm Fairness Metrics Type 1: Statistical Metrics (1− 12)

Verma and Rubin (2018) explain that Statistical Metrics, the first 12 Algorithm Fairness
Metrics, form the basis of all the Algorithm Fairness Metrics.

As explained by Sunasra (2017), the Confusion matrix contains four values, the True
Positive (TP), False Negative (FN), False Positive (FP) and the True Negative (TN)
values. They form the first four Algorithm Fairness Metrics and are described as:

1. TP values occur when you predict a “Yes” which is the same as the actual value.

2. FN values occur when you predict “No” while the actual value is “Yes”.

3. FP values occur when you predict a “Yes” while the actual value is “No”.

4. TN values occur when you predict a “No” which is the same as the actual value.

The remainder eight Algorithm Fairness Metrics can be found in Table 2.2.
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Statistical metric Description

Positive predictive value (PPV) TP
TP+FP = P (Y = 1|d = 1)

False Discovery Rate (FDR) FP
TP+FP = P (Y = 0|d = 1)

False Omission Rate (FOR) FN
TN+FN = P (Y = 1; d = 0)

Negative Predictive Value (NPV) TN
TN+FN = P (Y = 0|d = 0)

True Positive Rate (TPR) TP
TP+FN = P (d = 1|Y = 1)

False Positive Rate (FPR) FP
FP+TN = P (d = 1|Y = 0)

False Negative Rate (FNR) FN
TP+FN = P (d = 0|Y = 1)

True Negative Rate (TNR) TN
FP+TN = P (d = 0|Y = 0)

Table 2.2: Algorithm Fairness Metric 4-12.

Algorithm Fairness Metrics Type 2: Def. based on predicted outcome (13, 14)

The second Algorithm Fairness Metric type consists of the following two Algorithm
Fairness Metrics:

1. Group Fairness: P (d = 1|m(ni, b(i)) = P (d = 1|m(ni, l(i))

2. Conditional Statistical Parity: Using a set of attributes L = m(ni, j(i)), ...., this is
calculated by P (d = 1|L,m(ni, n(i)) = P (d = 1|L,m(ni, l(i))

where b(i) = 1, ...,Mni and l(i) = 1, ...,Mni where b(i) 6= l(i).

Algorithm Fairness Metrics Type 3: Def. based on predicted and actual out-
comes (15− 21)

The third Algorithm Fairness Metric type includes the following seven Algorithm Fair-
ness Metrics:

1. Predictive parity: P (Y = 1|d = 1,m(ni, b(i))) = P (Y = 1|d = 1,m(ni, l(i)))

2. Predictive quality: P (d = 1|Y = 0,m(ni, b(i))) = P (d = 1|Y = 0,m(ni, b(i)))

3. Equal opportunity: P (d = 0|Y = 1,m(ni, b(i)) = P (d = 0|Y = 1,m(ni, l(i)))

4. Equalized odds:
P (d = 1|Y = 1,m(ni, b(i))) = P (d = 1|Y = 1,m(ni, l(i))) ∧
P (d = 1|Y = 0,m(ni, b(i))) = P (d = 1|Y = 0,m(ni, l(i)))

5. Conditional use accuracy equality:
P (Y = 1|d = 1,m(ni, b(i))) = P (Y + 0|d = 0,m(ni, l(i)))

6. Overall accuracy equality: P (d = Y,m(ni, b(i))) = P (d = Y,m(ni, l(i)))

7. Treatment equality: FN
FP m(ni, b(i)) = FN

FP m(ni, l(i))

where b(i) = 1, ...,Mni and l(i) = 1, ...,Mni where b(i) 6= l(i).

Algorithm Fairness Metrics Type 4: Def. based on predicted probabilities
and actual outcome (22− 25)

The following four Algorithm Fairness Metrics belong to the fourth Algorithm Fairness
Metric type:

1. Test Fairness: P (Y = 1|S = s,m(ni, b(i))) = P (Y = 1|S = s,m(ni, l(i)))

2. Well calibration: P (Y = 1|S = s,m(ni, b(i)))− P (Y = 1|S = s,m(ni, l(i))) = s

3. Balance for positive class: E(S|Y = 1,m(ni, b(i))) = E(S|Y = 1,m(ni, l(i)))

4. Balance for negative class: E(S|Y = 0,m(ni, b(i))) = E(S|Y = 1,m(ni, l(i)))

for s = [0, 0.1, ..., 1.0]. and where b(i) = 1, ...,Mni and l(i) = 1, ...,Mni and b(i) 6= l(i)
holds.
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Algorithm Fairness Metrics Type 5: Similarity based measures (26− 28)

The fifth Algorithm Fairness Metric type addresses the following three Algorithm Fair-
ness Metrics:

1. Causal discrimination: For identical characteristics, except for one, create
Xm(ni,n(i)) = Xm(n1,l(i)) and also d(m(ni, n(i))) = d(m(n1, l(i))) where b(i) = 1, ...,Mni

and l(i) = 1, ...,Mni where b(i) 6= l(i).

2. Fairness through unawareness: After removing sensitive attribute, create
Xm(ni,b(i)) = Xm(n1,l(i)) and also d(m(ni, n(i))) = d(m(n1, l(i))) where b(i) = 1, ...,Mni

and l(i) = 1, ...,Mni where b(i) 6= l(i).

3. Fairness through awareness: The distance between the outcome probabilities for two
applicants is: D(i, J) = S(i) − S(j). The k value is defined as being the difference
is average of each feature option. For each Feature option, the average D is cal-
culated and the percentage violating cases is defined as the percentage for which
D(M(x),M(y(x)) ≤ k(x, y).

Algorithm Fairness Metrics Type 6: Causal Reasoning (29− 32)

The following definitions are used for the creation of the Causal graph:

• Using the chi-squared test to determine the dependency. When there is a dependency,
a path is drawn between the two features.

• When the value of one feature can be used to derive a value of another, it is called a
proxy attribute.

• When a feature is independent of another, meaning one cannot draw a path between
them, but indirectly you can arrive at it, this is called a resolving attribute.

• When the indirect path is via a two proxy attributes, it is called a discriminatory
path.

• When the indirect path is via a resolving attribute, it is called a non-discriminatory
path. There is a distinction between protected and unprotected features.

The following four Algorithm Fairness Metrics belong to this sixth Algorithm Fairness
Metric type:

1. Counterfactual fairness: Fairness is achieved when the predicted outcome is indepen-
dent of the protected features. In other words, there is no direct descendant from a
protected feature to the predicted outcome.

2. No unresolved discrimination: Fairness is achieved when there is only an indirect link,
hence via a resolving feature, from the protected feature to the predicted outcome.

3. No proxy discrimination: Fairness is achieved when there exist no path from the
protected feature to the predicted outcome that is blocked by a proxy variable.

4. Fair inference: Paths are classified as either legitimate or illegitimate. When a feature
is a proxy for the protected attribute, this path is illegitimate. Hence, Fairness is
achieved when there are no illegitimate paths from the protected feature to the
predicted outcome

2.6.5 Unfairness Mitigation Problems And Solutions

Many research has been done to mitigate the Unfairness to achieve Algorithmic Fairness.
According to Jacobson (2019), achieving this seems as difficult as achieving Fairness
in human-led decision-making systems. Human systems are biased in all of the ways
that Algorithmic systems are biased — since both are human creations — and human
decision-makers are additionally biased in ways that machines are not.
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Hao (2019) describes four reasons of why Algorithm Unfairness is hard to fix. First, the
introduction of bias is not always obvious during a model’s construction because you may
not realize the downstream impacts of your data and choices until much later. Removing
explicit gendered words like “women” and “men” may not be enough since there may
also be implicitly gendered words, being words that are apparently highly correlated
with the explicit gendered words. This is defined as the unknown unknowns. Secondly,
many standard practices are not designed with bias detection in mind. Since data is
split into the training set and testing set, the data you use to test your ML Algorithm
will have the same bias as the part that was used to train the ML Algorithm. Therefore,
skewed or prejudiced results can be unwitnessed. The third reasons is about the lack of
social context. An ML Algorithms can be used for different tasks in different contexts.
According to Selbst et al. (2019), this causes the portability trap since ML Algorithms
ignore a lot of social context. He states: “You can’t have a system that you apply for
‘fair’ criminal justice results then applied to employment. How we think about Fairness
in those contexts is just totally different.” Finally, the definition of Unfairness has a long
history of debate in philosophy, social science and law. In the ML field, its definition
should be defined in mathematical terms which is a task on itself. The difference within
the ML is that the concept of Fairness has to be defined in mathematical terms. As
stated by Cage (2016), there is a mathematical limit to how fair any ML Algorithm or
human decision-maker can ever be.

According to Yona (2017), hiding information from the ML Algorithm may be the
best way to treat different groups the same. However, removing the protected attribute
alone is not sufficient since it is often redundantly encoded in the rest of the observed
features. Two issues were described by Yona (2017), the aware versus the unaware issues
as a Fairness of the process and Fairness of the outcome, their definition is as followed:

• The unaware approach ensures Fairness of the process since it forces the fact that
during the learning phase, the ML Algorithm does not in any way treat individuals
differently based on their protected attribute. However, the final outcome can actually
be less fair towards the protected and non protected sub-groups.

• The aware approach uses a process that is not fair since it explicitly uses gender
information, and learns different classification rules for people of different parts of the
population. However, aware approach can actually reach an outcome that is more fair
towards the minorities.

Another approach is applying Treatment equality or Conditional procedure accuracy
equality, describes Berk et al. (2017). Treatment equality is achieved by a classifier that
yields a ratio of false negatives and false positives that is the same for both protected
group categories. Conditional procedure accuracy equality is achieved when condition-
ing on the known outcome, the classifier is equally accurate across protected group
categories. This is equivalent to the FN rate and FP rate being the same for men and
women. However, since there is a trade-off, it is not easy to determine which of the two
methods is the best. Ultimately it is up to the stakeholders to determine the trade-offs.

According to Hellman (2019), another alternative is focusing on whether the scores
produced by the ML Algorithm are equally predictive for each group or we could focus
on whether the error rates produced by the ML Algorithm are equal. The controversy
appears to focus on those two measures. To summarize, ML Algorithms are used to
predict some endpoint of interest – sickness, recidivism, or a multitude of other possible
traits. These ML Algorithms generally avoid the use of classifications that are protected
by antidiscrimination law, like race or sex. The ML Algorithm can exhibit equal pre-
dictive value such that scores will be equally predictive of the target trait for members
of one group as for members of the other. Or, the ML Algorithm can exhibit error rate
balance such that people of each group who have or lack the target variable are equally
likely to be accurately scored by the test.
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2.7 Algorithm Performance Classification Metrics

To estimate the generalization error of a model, it is required to test the model with
a dataset which it has not seen yet, this is the testing dataset, as stated by DeZyre
(2019). One has to determine how to divide the dataset into the training dataset and
testing dataset. With less training data, your parameter estimates have greater variance.
With less testing data, your performance statistic will have greater variance. When the
dataset contains “enough” data, there is not a big difference between using 90% or 80%
of the dataset for training. In both cases, the testing dataset is large enough to yield
meaningful results and is representative of the dataset as a whole, as mentioned by
Google Developers Machine Learning (2019).

To measure the performance of a classification model, methods such as Precision-
Recall, Classification Accuracy, F1 score, Log-loss, AUC, Confusion matrix, Classifica-
tion report can be used. Classification accuracy is the number of correct predictions
made as a ratio of all predictions made. This is the most common evaluation metric for
classification problems, as mentioned by Brownlee (2019a).

According to Brownlee (2019a), it is also the most misused evaluation metric. They
state that it is really only suitable when there are an equal number of observations in
each class (which is rarely the case) and that all predictions and prediction errors are
equally important, which is often not the case.

2.7.1 Confusion matrix

The Confusion matrix is one of the most intuitive and easiest metrics used for finding
the correctness and accuracy of the model. It is used for classification problem where
the output can be of two or more types of classes, as described by Sunasra (2017).

Yona (2017) states the Confusion matrix has one undeniable mathematical fact.
There are relationships between the cell counts since they must sum to the total number
of observations. Therefore, the different kinds of Fairness are also related and there are
many trade-offs.

2.8 ROC-curve And The Threshold

The Confusion matrix is useful for measuring, for example the accuracy and the ROC
curve. AUC stands for the Area under the ROC curve and indicates how well the proba-
bilities from the positive classes are separated from the negative classes, as explained by
Agarwal (2019). AUC is both a scale and-invariant as a classification-threshold-invariant.
As stated by Agarwal (2019), it measures the quality of the model’s predictions irre-
spective of what classification threshold is chosen, unlike F1 score or accuracy which
depend on the choice of threshold.

Brownlee (2020) describes that the default threshold for the ML classification Algo-
rithms is 0.5. He explains that the default threshold can result in poor performance. As
such, a simple and straightforward approach to improving the performance of a clas-
sifier that predicts probabilities on an imbalanced classification problem is to tune the
threshold used to map probabilities to class labels. In some cases, such as when using
ROC-curves and Precision-Recall curves, the best or optimal threshold for the classifier
can be calculated directly.

In other cases, it is possible to use a Grid Search to tune the threshold and locate
the optimal value, as explained by Brownlee (2018c) and Larrabee (2020).



Chapter 3

The Datasets

3.1 Crime Dataset - Predicting Recidivism

3.1.1 General

The dataset is collected by Angwin et al. (2016) from the Broward County Clerk’s
Office in Florida, United States. It contains data of 11, 757 criminal defendants of the
Broward County Jail that entered and left jail between January 2013 and March 2016.
Its average population was about 3, 500, as stated by Avg (2016). According to Blomberg
et al. (2010), monthly, there were about respectively 4, 000 male and 1, 000 female jail
bookings. The initial purpose of the dataset was to obtain the COMPAS (Correctional
Offender Management Profiling for Alternative Sanctions) scores which is a popular
commercial Algorithm used by judges and parole officers for scoring criminal defendant’s
likelihood of recidivism. It has been shown that the Algorithm is biased in favor of white
defendants, and against black inmates, based on a two year follow up study (i.e who
actually committed crimes after two years), as noted by Ofer (2017).

3.1.2 Data Preparation And Data Analysis

This study considers the criminal defendant’s characteristics and whether they commit-
ted crimes after two years, COMPAS scores are omitted. Hence, the resulting features
are: Gender, Age, Age Category, Race, Legal Status, Marital Status, Language, number
of crimes while juvenile, overall prior number of crimes and the number of days in jail
for their recent crime.

About 10% of the criminal defendants have an unknown jail date. Based on their
age and screening data, their jail date is approximated. The date out of jail is approx-
imated by analyzing the crime they commit and the amount of days previous criminal
defendants had to be in jail for it. Overall, the number of days in jail varied from one
day up to about 2, 000 days for those whose expected date out of jail is after 2016. Table
3.1 shows the features that are used for the Algorithm Fairness Metric calculations.

Gender Age Category Race Marital Status Legal Status

Features
Male

Female

< 25,
25− 45,
> 45

African-American,
Asian, Caucasian,
Hispanic, Native
American, Other

Divorced, Married,
Separated, Significant

Other, Single,
Widowed, Unknown

Pretrial, Post
Sentence,
Unknown,

Other

Table 3.1: Feature overview.

The criminal defenders of the Crime Dataset have the following characteristics:

• 79.41% (9, 336) is Male and 20.59% (2, 421) is Female, see Figure 3.1.

• Ages vary between 18 years and 96 years. More than half of the defendants is
between the Age of 25 and 45, see the pie chart in Figure 3.2.

19



20 R.M.V. Humphris — Testing Algorithm Fairness Metrics

Figure 3.1: Gender distribution. Figure 3.2: Age Category distribution.

• Almost half of the criminal defendants is African-American, followed by more than
one third Caucasian, see Table 3.2 for the descending proportion of each Race.

• The majority of the criminal defendants is single (74.69%). See Table 3.3 for the
descending proportion of each Marital Status type.

• In 95% of the cases, the criminal defendants are in pretrial during their jail stay.
People who cannot afford to post bail — in particular, people from poor com-
munities — remain in jail, often until their cases are resolved, while those who
have access to financial resources are able to secure their liberty, as explained by
Lokhart (2019). Only a couple of criminal defendants are conditionally released
after some days to await their trial. The remainder violated their probation, are
in post sentence, deferred sentencing or had an unknown status.

Race Proportion

African American 49.44%

Caucasian 35.75%

Hispanic 9.36%

Other 5.62%

Asian 0.49%

Native American 0.34%

Table 3.2: Race distribution.

Marital Status Proportion

Single 74.69%

Married 11.81%

Divorced 4.50%

Significant Other 3.18%

Unknown 2.97%

Separated 2.38%

Widowed 0.47%

Table 3.3: Marital Status distribution.

In total, 68.50% (8, 054) of the criminal defendants turned out to be a recidivist.

• About 85% is male.

• About 60% is in of the age between 25 and 45 years old, followed by about 26%
of the age < 25.

• About 60% is of the race African American, followed by about 30% Caucasians,
7% Hispanic and 4% other and less than 1% of Asians and Native Americans.

• About 80% is single, followed by 7% being married, 3% having a significant other
or an unknown status, the remainder consists of criminal defendants being either
separated or widowed.

• About 95% is in their pretrial, followed by about 2% being in post sentence or
being unknown, the remainder is other or probation violator.

3.2 Income Dataset

3.2.1 General

The dataset considers data from the Unites States Census Bureau of 1994, derived from
Lichman (2013) where Barry Becker extracted the 1994 Census (2019) Database. Census
(2019) considers themselves as the nation’s leading provider of quality data about its
people and economy. The dataset contains information of 32, 561 United States citizens.
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3.2.2 Data Preparation And Data Analysis

In this study, features to predict whether someone makes over 50K a year are: Work
Class, Education, Marital Status, Relationship, Race, Gender, Capital Gain / Loss,
Working hours per week, Native Country. The features for the Algorithm Fairness Metric
calculations have been chosen such that they are comparable to the Crime Dataset.

For the Education features, initially 16 could be distinguished, see Figure 3.3. Finally,
four are distinguished, based on the Dutch school system as described by Nuffic (2013).
The Dutch “Basisschool”, noted as “Basic School” includes Pre-school, Kindergarten
and Elementary school (grade 1 until 6). The Dutch “Middelbare school”, notes as
“Middle School”, includes Junior High and Senior High (grade 9 until 12). The university
group includes both the Bachelors and Master, but also those who followed “some
college”. The remainder belong to the Above University group.

The Weekly working hours were initially a continuous variable which is made cat-
egorical by distinguishing those who work less than 40 hours per week, as Part-time,
those who work exactly 40 hours, as Full-time, and those who work more than that as
“Above full-time”.

Table 3.4 shows the features that are used for the Algorithm Fairness Metric calcu-
lations.

Gender Working hours Race Marital Status Education

Features
Male

Female

Part-time,
Full-time,

Above full-time

African-American,
Asian, Caucasian,
Hispanic, Native
American, Other

Divorced, Married,
Separated, Significant

other, Single,
Widowed, unknown

Basic school,
Middle school,

University,
Above university

Table 3.4: Feature overview.

Figure 3.3: Initial Education distribution.

The people of the Income Dataset have the following characteristics:

• Gender: 66.92% (21, 790) is Male and 33.08% (10, 771) is Female, see Figure for
the pie chart 3.4.

• Weekly working hours: The number of hours working for those who work Part-
time vary from one hour up to 39 hours. The majority of the individuals work
Full-time. The average number of Working hours per week is 40.44.

• Race: The majority is White, followed by Black, Asian-Pac-Islander, Amer-Indian-
Eskimo and Other, see Table 3.5 for the details.
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• Marital Status: The majority is Married and one third is Single, see Table 3.6 for
the proportion per Marital Status.

• Education: The amount of individuals who finished the Dutch Middle school or
obtained an University degree is both about 44%. See Figure 3.6 for the pie chart.

Figure 3.4:
Gender distribution.

Figure 3.5: Working
hours distribution.

Figure 3.6:
Education distribution.

Race Proportion

White 85.43%

Black 9.59%

Asian-Pac-Islander 3.19%

Amer-Indian-Eskimo 0.96%

Other 0.83%

Table 3.5: Race distribution.

Marital Status Proportion

Married 45.99%

Single 32.81%

Divorced 13.65%

Separated 3.15%

Widowed 3.05%

Married, spouse Absent 1.28%

Married, spouse in Armed Forces 0.07%

Table 3.6: Marital Status distribution.

Income Larger Than 50K

Considering the individuals that have a yearly income of above 50K, out of the 32, 561
entries, this turned out to be the case for 24.08% (7, 841).

• About 85% is Male.

• About 49% works above Full-time, 41% works Full-time and 9% works Part-time.

• About 91% are Caucasian, 5% is African-American and 4% is Asian. The remain-
der consists of the races Native American, Hispanic and Other.

• About 86% of the individuals are Married, 6% is Divorced, 6% is Single and 1%
is Widowed. The remainder consist of those who are Separated. There are no
individuals whose Marital Status can be classified as Significant Other.

• About 60% obtained an University degree, 24% finished their Dutch Middle School
degree, while 17% obtained a degree higher than the University degree. Only 0.28%
solely finished their Dutch Basic School.



Chapter 4

Method

This Chapter explains the Method of this study. The first Section describes the Ma-
chine Learning (ML) Algorithms, the threshold setup, the hyperparameters of the Basis
model, the hyperparameters of the Surrounding models, the Bootstrap approach and
the varying Seed choice approach for the Random Forest (RF), XGBoost and Linear
Support Vector Classifier (LinearSVC). The second Section explains how the results for
each Algorithm Fairness Metric are interpreted, for each dataset. Finally, the program-
ming language and laptop specifications are mentioned.

4.1 Machine Learning Algorithms

Three ML Algorithms are applied on two datasets to predict the binary classifications
of individuals who are respectively being a recidivist or having an income above 50K.

The motivation of using two datasets is to conclude whether eventual found patterns
are generic or differ for each dataset, this will help to reinforce later conclusions.

The three ML Algorithms are RF, XGBoost and LinearSVC which are three common
and often, in accuracy, successful ML algorithms for classification problems, as described
in Section 2.3. To analyze the model accuracy and its relation with the Algorithm
Fairness Metrics, Basis models and Surrounding models are obtained.

Basis models are generated by a five fold Cross-Validated (CV) hyperparameter Grid
Search over hyperparameter settings for RF and LinearSVC, or by Genetic Algorithm for
XGBoost. Surrounding models are built around each Basis model of the ML Algorithm.

For the train / test split, similar Seed choice (random state = 0), a Bootstrap with
10 and 100 iterations or 10 and 100 different Seed choices are used for the Basis models
and Surrounding models. Before calculating the Algorithm Fairness Metrics, the models
were trained and tested by using the optimal cut-off value from its ROC-curve.

Threshold

Optimal decision threshold g is determined by the optimal cut-off value of the ROC-
curve where the True Positive Rate (TPR) is high and the False Positive Rate (FPR)
is low. A high TPR is preferred for both datasets since, for the Crime Dataset, it is
desirable for our social security to make good classifications as wrong classifications
results in liberating a dangerous prisoner. For the Income Dataset, it is in the interest
of the bank to make good classifications to prevent them from giving mortgages to those
who cannot afford it.

The thresholds are obtained through the roc curve() module of Scikit. The optimal
cut-off is defined for the case when TPR− (1−FPR) is as close to zero as possible, as
explained by Miler Jerkovic (2019).
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Basis Model

For each dataset, the script finds three Basis models (one for each ML Algorithm)
for the prediction of the classification after tuning the hyperparameters. This is done
through RandomizedSearchCV using a five fold CV hyperparameter Grid Search for RF
and LinearSVC and through Genetic Algorithm for XGBoost. The Genetic Algorithm
for XGBoost does not include this five fold CV hyperparameter Grid Search since the
hyperparameter tuning process is based on the script by Koehrsen (2018b).

The size of the grid is tailored for the computation power of the laptop that was used
in this study. Hence, by trial and error, ranges of the hyperparameter grid are defined.
The grid and hyperparameter specifics for each ML Algorithm are described in Section
4.1.1, Section 4.1.2 and Section 4.1.3.

Finally, the Basis model is trained and tested by using the optimal cut-off value from
its ROC-curve. The optimal hyperparameter combinations of the Basis models form the
basis of the Surrounding models.

Surrounding Models

Around each Basis model, to be able to analyze its accuracy and Algorithm Fairness
Metric values for different hyperparameters, Surrounding models were defined. These
Surrounding models are based on the optimal hyperparameters of the Basis model. The
goal is to cover many hyperparameter combinations around this Basis model to be able
to analyze and base conclusions on it.

For hyperparameter i its value is ai and the range is [ai− 1
2ai; ai + 1

2ai]. There is no
scientific reason behind this, it is solely based on the experience with smaller or larger
ranges for the hyperparameters.

Smaller hyperparameter ranges resulted in Surrounding models with similar accu-
racy, AUC and hyperparameters, hence having similar Algorithm Fairness Metric values.
This is not desirable since the goal is to analyze and compare the different Algorithm
Fairness Metric values.

On the other hand, larger hyperparameter ranges resulted in, especially for the
XGBoost models, Surrounding models that are not desirable in two ways. First of all,
the were cases where the difference in accuracy was more than 40% or the Surrounding
model classified each item with 100% zeros or 100% ones. Secondly, the AUC value was
similar to that of a No Skill classifier (AUC value of 0.50). As a result, for both cases,
this questioned the value and the meaning of the eventual conclusions for the Algorithm
Fairness Metric results. For this reason, the range of [ai − 1

2ai; ai + 1
2ai] was chosen.

In total, 200 Surrounding models are created based on the hyperparameter combina-
tions within its range, by randomly selecting 200 random hyperparameter combinations
with the random.seed(0) setting. This amount of 200 Surrounding models is chosen in
the interest to reduce the computation time while still being able to analyze the course
of the accuracy and Algorithm Fairness Metrics and to compare it with the Basis model.

Step sizes were dynamically chosen to obtain 200 Surrounding models. Larger step
size result in less models, while smaller step sizes result in more models while still being
within the [ai− 1

2ai; ai + 1
2ai] range. Very small step size would, especially for the seven

hyperparameters for XGBoost, result in tens of thousands different hyperparameter
combinations. On the other hand, for RF, since their tuned hyperparameters have an
integer value, there may be less than 200 models.

Finally, each Surrounding model is trained and tested by using the optimal cut-off
value from its ROC curve.

Bootstrap

To analyze the impact of Bootstrapping for a train / test dataset split of 80% / 20%
for the Basis models, using random state = 0, Bootstraps with 10 iterations as well as
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a Bootstrap with 100 iterations are performed. The grid and hyperparameter specifics
for each ML Algorithm are described in Section 4.1.1, Section 4.1.2 and Section 4.1.3.
This resulted in respectively 10 and 100 Basis models for each ML Algorithm.

Note that, to analyze the impact of the Bootstrap process on the Algorithm Fairness
Metrics and to reduce the computation time, Algorithm Fairness Metrics are only cal-
culated for the Basis models from the Bootstrap with 10 iterations. Hence, not for the
corresponding Surrounding models or for the the Bootstrap with 100 iterations and its
Surrounding models. However, the accuracy values and hyperparameter characteristics
are known and may contain some useful information.

Seed Choice

For the train / test dataset split of 80% / 20%, the Basis models use a Seed choice
of random state = 0. To analyze the impact of the Seed choice on the Algorithm
Fairness Metrics, the already defined Basis models and Surrounding models were fitted
for varying train sets by changing the random Seed choice for the train / test dataset
split of 80% / 20%.

In total, results are obtained for respectively 10 and 100 varying Seed choices where
the random state value is chosen by randomly sampling respectively these 10 and 100
values with the random.seed(0) setting.

Note that, to analyze the impact of the Seed choice on the Algorithm Fairness Metrics
and to reduce the computation time, Algorithm Fairness Metrics are only calculated for
the Basis models and Surrounding models for the 10 varying Seed choices. Hence, not
for the 100 varying Seed choices. However, the accuracy and AUC values are known and
may contain some useful information.

4.1.1 Random Forest

As described by the Random Forest Classifier of Pedregosa et al. (2011), 19 hyper-
parameters can be tuned to increase the performance of the model. As described by
Meinert (2019), RF is from itself already very good at classification and hence it may
not be necessary to do an exhaustive Grid Search. Also, by minimizing the number of
hyperparameters for the hyperparameter tuning and using step sizes, the computation
time is significantly reduced.

To find the RF Basis model for each dataset, hyperparameter tuning involved the
number of trees (n estimators) and the maximum depth of the tree (max depth). These
two hyperparameters had the biggest impact on the datasets, removing the other hy-
perparameters from the grid did not seem to decrease the accuracy as much as when
n estimators or max depth would be removed from the hyperparameter tuning process.
To note, the remainder hyperparameters are set at the default value.

For the RF Basis model, to reduce the computation time, the grids of n estimators
and max depth are set from 1 until 100 with step size 10. This process was done based
on the scripts from Koehrsen (2018b). Using Scikit-Learn’s RandomizedSearchCV()
method, Koehrsen (2018b) describes that hyperparameter ranges can be defined to
randomly sample from the grid, performing a five fold CV for each value combination.

As described in Section 4.1, the optimal number of n estimators is a1 and the
optimal max depth is a2 where their range for the Surrounding RF models is Ai =
[ai− 1

2ai; ai+
1
2ai] for i = 1, 2. The 200 hyperparameter combinations for the Surrounding

RF models are obtained by randomly choosing, with the random.seed(0) setting, (b1, b2)
for b1 in A1 for b2 in A2. Since the tuned hyperparameters have an integer value, there
may be less than 200 hyperparameter combinations.

Each hyperparameter combination forms the input of a Surrounding RF model while
the remainder hyperparameters are set at the default value. Section 8.1.1 in the Ap-
pendix shows the model details of the RF Basis model.
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4.1.2 XGBoost

As described by xgboost developers (2020), the XGBoost Classifier involves 23 hyperpa-
rameters. The number of hyperparameters for the hyperparameter tuning is minimized
to seven but still may results in a significant amount of hyperparameter combinations
for different step sizes.

The computation time of RandomizedSearchRV() is not feasible, hence hyperparam-
eter tuning was performed by using Genetic Algorithm. The Genetic Algorithm process
was performed based on the scripts from Jain (2018) which does not include the five
fold CV hyperparameter Grid Search.

Based on the script, the number of items within the hyperparameter range are
based on the number of parents which is set at 8. The learning rate, min child weight,
gamma, subsample and colsample bytree are calculated by taking the random value of
an uniform distribution. The remainder two hyperparameters are calculated by pseudo-
random number generators for various distributions. In line with the script of Jain
(2018), the number of parents mating and the number of generations are set at 4. The
Basis XGBoost model hence contains hyperparameter values a1, ..., a7. See Section 8.1.2
in the Appendix for the model details.

The ranges of the seven hyperparameters of the Basis XGBoost model are Ai =
[ai − 1

2ai; ai + 1
2ai] for i = 1, ..., 7. The 200 combinations for the Surrounding XG-

Boost models are obtained by randomly choosing, with the random.seed(0) setting,
200 possible combinations of these seven hyperparameters within their set range. Each
hyperparameter combination forms the input of a Surrounding XGBoost model.

4.1.3 LinearSVC

To obtain the Basis LinearSVC model, hyperparameter tuning was applied by using
RandomizedSearchCV(). Different values for C value and tolerance value are considered
since these hyperparameters had the biggest impact on the LinearSVC performance.

The C value requires restrictions to reduce the computation time, especially for the
larger Income dataset. Hence, the maximum C value is 10.

The tolerance value varies from 1e − 5 up to 100. The ranges of the two hyperpa-
rameters of the Basis LinearSVC model are Ai = [ai − 1

2ai; ai + 1
2ai] for i = 1, 2.

The 200 combinations are obtained by randomly choosing, with the random.seed(0)
setting, (b1, b2) for b1 in A1 for b2 in A2. Each hyperparameter combination forms the
input of a Surrounding LinearSVC model.

4.2 Interpreting The Results

This Section describes how the Algorithm Fairness Metrics results are interpreted. Their
calculations are done based on Verma and Rubin (2018), some Algorithm Fairness Met-
rics use feature combination differences, while others take the entire dataset into account.

The 32 Algorithm Fairness Metrics can be distinguished in six types and have five
different result types. For each dataset, every Algorithm Fairness Metrics result type
has its own description, they are explained in the subsections. Overall, the five different
Algorithm Fairness Metrics result types are distinguished as followed:

1. The results of the Algorithm Fairness Metric 1− 12 can be shown by one or multiple
graphs in which the behavior of each metric for the Basis Models and the Surrounding
Models for each Algorithm can be distinguished.

2. For Algorithm Fairness Metric 13, 15 − 21, 26 and 27, the goal is to compare two
features in terms of their Unfairness. In total, 46 combinations can be made. To
analyze the impact of the amount of data for the Algorithm Fairness Metrics, three
groups are created based on the proportion of data of each feature. The first group
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considers feature combinations where the amount of data of each item is similar. The
second group considers feature combinations of which one item covers almost twice
as much, compared to the other. The third group considers feature combination of
which I think they may be interesting to analyse such as different genders for the
Crime Dataset.

3. Algorithm Fairness Metric 14 is a special Algorithm Fairness Metric since it involves
the common feature combinations within the dataset. The unique feature combina-
tions of the dataset are distinguished and, by counting its appearances, they are
ranked in decreasing order. Only the top ranked combinations are considered for this
Algorithm Fairness Metric.

4. For Algorithm Fairness Metric 28, one table is returned where the changing feature,
its k-value, corresponding average D-value and the percentage of violating cases are
displayed for each of the ML Algorithms.

5. For Algorithm Fairness Metric 29-32, a Causal graph forms the source. Based on this
Causal graphs, the Fairness definitions are either met or not.

4.2.1 Groups Crime Dataset

This subsection describes the result types 2-5 for the Crime Dataset, type 1 is excluded
as its result interpretation does not depend on feature combinations for this study.

Result Type 2

Algorithm Fairness Metric 13, 15− 21, 26 and 27 compare Gender, Age Category, Race,
Marital Status and Legal Status with each other. In total, 46 feature combinations can
be made. See Section 8.2.1 in the Appendix for the overview.

To make the results comparable, three groups have been made based on the pro-
portion of the dataset. The following percentages are round to integers. Each group,
contains multiple combinations, indicated by Group m.n where m is the group number
and n represents the combination number within that group. The first group consists
of the following three feature combinations, in descending order of contribution:

• Group 1.1: Race African-American and Caucasian, respectively 49% and 34%;

• Group 1.2: The age group < 25 and > 45, respectively 20% vs. 22%;

• Group 1.3: Divorced vs. Significant other, respectively 5% vs. 4%.

The second group considers the following three combinations, in descending order of
contribution they are:

• Group 2.1: group 25− 45 vs. < 25, respectively 58% and 20%;

• Group 2.2: Age group 25− 45 vs. > 45, respectively 58% and 22%;

• Group 2.3: Married vs. Divorced, respectively 11% vs. 5%.

The third group considers the following four combinations, in descending order of con-
tribution they are:

• Group 3.1: Gender Male vs. Female, respectively 80% vs. 20%;

• Group 3.2: Single vs. Married, respectively 75% vs. 11%;

• Group 3.3: Race Caucasian vs. Hispanic, respectively 34% vs. 10%;

• Group 3.4: Race Caucasian vs. Other, respectively 34% vs. 46%.
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For the same data proportion of the two features, such as for Group 1.2 and 1.3, a
relationship may be observed. If not, this may be caused by the different feature impor-
tances of each model. When the results within a group differ significantly, the proportion
of data and the Algorithm Fairness Metrics may hence not have a clear relation. In this
case, in the attempt to still find other promising patterns, only the first combination of
each group are used for the result interpretation. This is sufficient since the first com-
binations within each group also represent the largest coverage in terms of data, since
the items are grouped in descending order of contribution.

Result Type 3

For Algorithm Fairness Metric 14, the combination of Gender, Age Category, Race,
Marital Status and Legal Status matter. Four features are used to make a comparison
with the remainder features. The Unfairness value is calculated for all combinations,
ranked in descending order of contribution, Section 8.2.2 in the Appendix shows part
of the table.

For those who have the same proportion of combination percentage (column 4), only
the top cases in terms of proportion are selected (column 4 and 5). It would not be fair
to compare groups who have extremely different proportions, for example 18.2% versus
0.1% (first row). Therefore, four combinations are considered:

• Single Males in the Age Category 25 − 45 in pretrial (cover 33%), comparing Race
African-American with Caucasian (respectively 18% and 10% out of the 33%).

• Single African-American Males in pretrial (cover 31%), comparing the Age Category
< 25 and 25− 45 (respectively 9% and 18% out of the 31%).

• Single African-Americans in the Age Category 25− 45 in pretrial (cover 23%), com-
paring Males and Females (respectively 18% and 5% out of the 23%).

• Single Caucasian Males in pretrial (cover 19%), comparing the Age Category 25− 45
and > 45 (respectively 10% and 5% out of the 19%).

Result Type 4

Verma and Rubin (2018) change the age variable to calculate Algorithm Fairness Met-
ric 28. Therefore, for the Crime Dataset, the Age Category is changed. Hence, two
additional individuals have been generated for changing Age Category.

Verma and Rubin (2018) generated individuals with increasing age, with steps of
five years up to an age addition of 25 years. For the Crime Dataset, this means only
addressing the age categories 25 − 45 and > 45, where there is only a way up. The
value k is defined as the normalized difference between the means of each Age Category
group, hence before the ages were categorical.

Result Type 5

The causal graphs contain all the attributes that were used for the Basis models of the
three ML Algorithms. Each ML Algorithm hence has its own Causal graph. Next to
Gender, Age Category, Race, Marital Status and Legal Status, other attributed (and
hence nodes) in the graphs are: normalized number of days in jail, normalized year of
birth, normalized age in jail, normalized age when leaving jail and whether there are
multiple or no previous (juvenile) counts.

Verma and Rubin (2018) used solid and dashed lines to distinguish the relationship
being direct or indirect, however this study only uses solid lines since this also enables
you to distinguish this.

Note that no causal graphs have been created for the Surrounding models since, in
terms of dependency among the features and the predicted values, they are expected to
retrieve the same results.
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4.2.2 Groups Income Dataset

Result Type 2

Algorithm Fairness Metric 13, 15−21, 26 and 27 compare Gender, weekly working hours,
Race, Marital Status and Education with each other. See Section 8.3.2 in the Appendix
for the overview. As in Section 4.2.1, three groups have been made based on the propor-
tion of the dataset. The following percentages are rounded to integers . The first group
consists of the following three feature combinations, in descending order of contribution
they are:

• Group 1.1: Finishing an University degree vs. Dutch Middle School, respectively 44%
and 43%;

• Group 1.2: Working Part-time vs. working above Full-time, respectively 24% and
30%;

• Group 1.3: Being separated vs. Widowed, respectively 3% and 3%.

The second group consists of the following three feature combinations, in descending
order of contribution they are:

• Group 2.1: Male vs. Female, respectively 67% and 33%;

• Group 2.2: Working Full-time vs. working Part-time, respectively 47% and 24%;

• Group 2.3: Being Divorced vs. Single, respectively 14% and 32%.

The third group consists of the following four feature combinations, in descending order
of contribution they are:

• Group 3.1: Being African-American vs. Caucasian, respectively 9% and 86%;

• Group 3.2: Being Divorced vs. Married, respectively 14% and 48%;

• Group 3.3: Finishing higher than University degree vs. Dutch Middle School, respec-
tively 12% and 43%;

• Group 3.4: Being Married vs. Single, respectively 48% and 32%;

When the results within a group differ significantly, the first combination of each group
is used to interpret results, as was explained in Section 4.2.1.

Result Type 3

For Algorithm Fairness Metric 14, the combination of Gender, Working hours, Race,
Marital Status and Education matter. As in Section 4.2.1, four characteristics are used
to make a comparison with the remaining characteristics. The Algorithm Fairness Metric
was calculated for all combinations where the four characteristics covered at least 5% of
the data, this led to 99 combinations. See Table 8.6 in the Appendix for the overview.

The most common combination, excluding education, were Married Caucasian Males
who are working Full-time which is 17% of the data. Of this, 2% finished a degree
above University, 7% has an University degree, 8% has a Dutch Middle School degree
and 0.4% only finished Dutch Basic School. Therefore, we only compare those who
have an University degree and those who finished Dutch Middle School, since they
represent respectively 7% and 8% of the data. Applying this approach to the remainder
99 combinations, this results in the following:

• Married Caucasian Males who are working Full-time (cover 17%), comparing those
with an University degree with those who finished Dutch Middle School ( 7% and 8%
out of the 17%).
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• Married Caucasian Males with an University degree (cover 16%), comparing those
who work are working Full-time with those who are working more than Full-time (7%
and 8% out of the 16%).

• Married Caucasian Males who are working more than Full-time (cover 16%), compar-
ing those with an University degree with those who finished Dutch Middle School (
8% and 5% out of the 16%).

• Married Caucasian Males who finished Dutch Middle School (cover 15%), comparing
those who are working Full-time with those who are working more than Full-time (8%
and 5% out of the 15%).

Result Type 4

For the Algorithm Fairness Metric 28, it is impossible to adjust a feature in the way that
was done for the Crime Dataset. Even though the Education attribute is ranked, there
is no way to define the value of k as being the mean difference between each category
group. This requires numerical data, which is unavailable for the Income Dataset.

The Education attribute can be partially converted to numerical data when taking
the number of school years as the value. However, those who have a degree which is
higher than the University degree, may have very different values.

Result Type 5

The causal graphs will contain all the attributes that were used for the Basis models of
the three ML Algorithms. Each ML Algorithm hence has its own Causal graph. Next
to Gender, working hours, Race, Marital Status and Education, other attributed (and
hence notes) in the graphs are for example their occupation, working type, work branch
and the capital information. The graphs are translated in to Tables where a value of
one means the null hypothesis is rejected.

4.2.3 Programming Language And Laptop Specifications

Calculations of this study are done through the Python programming language. As
stated by Rathi (2019), reasons to choose for this language are its in-built library, it
being easy to integrate and to create prototypes, its high productivity and the object-
oriented paradigm. The laptop is a Lenovo Thinkpad with an operating system type of
64-bit, x64-based processor and an installed RAM of 16.0GB. The processor has the
following specifications: INTEL(R) Core(TM i7− 7600U) CPU @ 2.80GHz 2.90GHz.



Chapter 5

Results

The first Section of this Chapter describes the performance of the Basis models, Sur-
rounding models, Bootstrap approach and the varying Seed choice approach on the
train / test dataset split for both datasets and each ML Algorithm. The second Section
describes the Algorithm Fairness Metric results for all six types, each subsection covers
an Algorithm Fairness Metric where the outcomes for both datasets are mentioned.

The Figures in this Chapter represent the values of each Basis model (dashed hori-
zontal lines) as well as the Ranked Performance of the Surrounding models (solid lines).
The values in the Figures are the absolute values, the titles indicate which feature is
treated unfair. For example, the title “A vs. B (x)” indicates that the Unfairness value
of B is larger than that of A. This results in a negative Algorithm Fairness Metric value
which is made absolute for the purpose of the Figures and is presented on the y-axis.

5.1 Machine Learning Algorithms

This Section describes the performance of the Basis models, Surrounding models, Boot-
strap approach and the varying Seed choice approach on the train / test dataset split for
both datasets and each ML Algorithm. The accuracy, hyperparameters and / or AUC
values are compared for the different models and displayed in Figures and Tables.

5.1.1 Crime Dataset

Basis Models

The hyperparameter grid for the Random Forest (RF) Classifier performs calculations
for varying number of trees and maximum tree depth. The RandomizedSearchCV()
results in a Basis RF model that contains 60 trees and has a maximum tree depth of
14. Its accuracy is 61.57%, based on a threshold value of 0.32. Figure 5.1 shows the
ROC-curve and the AUC value of 0.66, compared to a No Skill classifier with an AUC
value of 0.50.

Hyperparameter tuning for XGBoost is done through the Genetic Algorithm. The
hyperparameters of the Basis XGBoost model are as followed: maximum tree depth of
3, min child weight is 5, gamma value of 4.74, subsample value of 0.96, learning rate
of 0.82, colsample bytree is 1 and 4 trees. Its accuracy is 61.61%, based on a threshold
value of 0.31. Figure 5.2 shows the ROC-curve and the AUC value of 0.66, compared to
a No Skill classifier with an AUC value of 0.50.

The hyperparameter grid for the Linear Support Vector Classifier (LinearSVC) con-
siders C values up to 10 and a tolerance value for stopping criteria between 1e− 5 and
100. The RandomizedSearchCV() results in a Basis LinearSVC model that has a C value
and a tolerance value of 1. Its accuracy is 61.95%, based on a threshold value of 0.31.
Figure 5.3 shows the ROC-curve and the AUC value of 0.67, compared to a No Skill
classifier with an AUC value of 0.50.

31
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Figure 5.1:
RF ROC-curve
Crime Dataset.

Figure 5.2:
XGBoost ROC-curve
Crime Dataset.

Figure 5.3:
LinearSVC ROC-curve
Crime Dataset.

Surrounding Models

For each ML Algorithm, the Surrounding models have different hyperparameters:

1. Surrounding RF models have between 30 and 90 trees and a maximum tree depth
between 7 and 21.

2. Surrounding XGBoost models have the following hyperparameter values: maximum
tree depth between 1.5 and 4.5, min child weight between 2.5 until 7.5, gamma
value between 2.37 and 7.11, subsample value of between 0.48 and 1.44, learning
rate between 0.41 and 1.23, colsample bytree between 0.5 and 1.5 and the number
of trees between 2 and 6.

3. Surrounding LinearSVC models have C and tolerance values between 0.5 and 1.5.

Table 5.1 shows the accuracy statistics for the Surrounding models for each ML Al-
gorithm, round to three decimals. Figure 5.4 shows the Ranked Performance of the
accuracy for all the Surrounding models, it shows the impact of the hyperparameters
for each ML Algorithm and emphasizes the wide accuracy range of the Surrounding
XGBoost models.

RF XGBoost LinearSVC

min. 0.582 0.430 0.612

max. 0.632 0.699 0.636

avg. 0.612 0.585 0.624

sd. 0.010 0.041 0.004

Table 5.1: Crime Dataset
Basis model accuracy.

Figure 5.4: Crime Dataset Ranked
Performance Surrounding model accuracy.

Bootstrap

Table 5.2-5.4 show the model accuracy and hyperparameters of the Basis models of each
ML Algorithm after performing a Bootstrap with respectively 10 and 100 iterations on
the train / test dataset split. The values indicate the difference in the model accuracy
and hyperparameter values compared to the Basis model for each ML Algorithm that
is described in Section 5.1.1.



Testing Algorithm Fairness Metrics — R.M.V. Humphris 33

For the RF, results between the two iterations are rather similar. Both iterations
show that the Bootstrap on the train / test dataset split results in varying accuracy,
max depth values and n estimators values. This is also illustrated by the values of the
standard deviations. After 10 iterations, the Basis RF model has a maximum tree depth
of 21 and contains 41 trees. After 100 iterations, the Basis RF model has a maximum
tree depth of 21 and contains 60 trees.

For the XGBoost, results between the two iterations vary but still show that the
Bootstrap on the train / test dataset split results in varying accuracy and hyperparam-
eters. Using the hyperparameter order in line with the column order of Table 5.3, the
Basis XGBoost model has respectively the following hyperparameters after 10 iterations:
8, 6, 5.56, 1, 0.38, 0.94, 29 and after 100 iterations: 9, 5, 9.6, 0.5, 0.38, 0.73, 48.

For the LinearSVC, results between the two iterations are similar. Both iterations
show that the Bootstrap on the train / test dataset split results in varying accuracy
and C values. For both iterations, the Basis LinearSVC model has a C value of 1 and a
tolerance value of 0.01.

RF 10 iterations 100 iterations

accuracy max depth n estimators accuracy max depth n estimators

min. (6.24)% 7 (39) (6.01)% 7 (39)

max. (2.70)% 67 31 (1.72)% 77 31

avg. (4.13)% 28 1 (3.76)% 34 7

sd 0.59% 8 (41) 0.60% 11 (40)

Table 5.2: Crime Dataset Bootstrap results for RF.

XGBoost 10 iterations

accuracy max depth min child weight gamma subsample learning rate colsample bytree n estimators

min. (24.40)% (1.00) (4.00) (3.70) (0.82) (0.65) (0.95) 25.00

max. 12.48% 6.00 4.00 4.35 0.04 0.13 (0.06) 225.00

avg. (4.83)% 3.60 0.30 0.37 (0.31) (0.24) (0.65) 141.40

sd 14.75% 2.69 2.28 2.70 0.25 0.26 0.29 63.50

100 iterations

accuracy max depth min child weight gamma subsample learning rate colsample bytree n estimators

min. (25.48)% (2.00) (5.00) (4.66) (0.93) (0.80) (0.97) 0.00

max. 13.13% 6.00 4.00 4.88 0.03 0.18 (0.01) 250.00

avg. 3.14% 2.16 (0.79) (0.00) (0.46) (0.29) (0.47) 110.96

sd 12.34% 2.81 2.95 2.62 0.27 0.28 0.28 68.46

Table 5.3: Crime Dataset Bootstrap results for XGBoost.

LinearSVC 10 iterations 100 iterations

accuracy C tol accuracy C tol

min. (1.89)% 0 (1) (2.53)% 0 (1)

max. 0.08% 4 0 0.73% 6 0

avg. (0.77)% 1 (1) (1.11)% 1 (1)

sd 0.58% 1 0 0.59% 1 0

Table 5.4: Crime Dataset Bootstrap results for LinearSVC.

Seed Choice

For respectively 10 and 100 different Seed choices, the accuracy of the Basis model and
Surrounding models are varying. For the case of 10 different Seed choices, their values
are [6311, 6890, 663, 4242, 8376, 7961, 6634, 4969, 7808, 5866].

For 100 different Seed choices on the train / test dataset split, the maximum dif-
ference in accuracy for respectively the Basis RF, XGBoost and LinearSVC models are
4.7%, 4.9% and 5.3%.

For 10 different Seed choices on the train / test dataset split, the maximum difference
in accuracy for respectively the Basis RF, XGBoost and LinearSVC models are 3.3%,
4.0% and 2.3%, see Figure 5.5 for the Basis model accuracy for varying Seed choice.
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Figure 5.6 shows the different AUC values of the Basis models for the 10 varying
Seed choices on the the train / test dataset split. For different Seed choices, results for
the Basis models are varying, there is no clear relation.

Figure 5.5: Accuracy Basis models for
varying Seed choice, Crime Dataset.

Figure 5.6: AUC values Basis models for
varying Seed choice, Crime Dataset.

For the same 10 varying Seed choices on the train / test dataset split, the maximum
difference in accuracy for respectively the Surrounding RF, XGBoost and LinearSVC
models are 6.3%, 5.4%, 5.1%. For the AUC values, this is respectively 5.9%, 3.7% and
5.4%. For varying Seed choices, results for the Surrounding models of each ML Algorithm
are varying, there is no clear relation.

5.1.2 Income Dataset

Basis Models

The hyperparameters for the Basis RF, XGBoost and LinearSVC models are as de-
scribed in Section 5.1.1. From the RandomizedSearchCV(), the Basis RF model con-
tains 60 trees and has a maximum tree depth of 14. Its accuracy is 78.97%, based on a
threshold value of 0.29. Figure 5.7 shows the ROC-curve, the AUC value is 0.88.

Based on the Genetic Algorithm process, the hyperparameters of the Basis XGBoost
model are as followed: maximum tree depth of 2, min child weight is 6, gamma value
of 9.57, subsample value of 0.30, learning rate of 0.04, colsample bytree is 0.83 and 161
trees. The Basis XGBoost model has an accuracy of 78.75%, based on a threshold of
0.28. Figure 5.8 shows the ROC-curve, the AUC value is 0.88.

The hyperparameter grid for the LinearSVC considers C values up to 10 and toler-
ance values for stopping criteria from 1e−5 up to 100. From the RandomizedSearchCV(),
the Basis LinearSVC model has a C value and a tolerance value of 1. Its accuracy is
79.27%, based on a threshold value of 0.88. Figure 5.9 shows the ROC-curve, the AUC
value is 0.25.

Surrounding Models

For each ML Algorithm, the Surrounding models have different hyperparameters:

1. Surrounding RF models have between 30 and 90 number of trees and a maximum
tree depth between 7 and 21.

2. Surrounding XGBoost models have the following hyperparameter values: maximum
tree depth between 1.5 and 3.0, min child weight between 3 until 9, gamma value
between 4.79 and 14.36, subsample value of between 0.15 and 0.45, learning rate
between 0.42 and 1.24, colsample bytree between 0.02 and 0.06 and the number of
trees between 80 and 241.

3. Surrounding LinearSVC models have C and tolerance values between 0.5 and 1.5.
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Figure 5.7:
RF ROC-curve
Income Dataset.

Figure 5.8:
XGBoost ROC-curve
Income Dataset.

Figure 5.9:
LinearSVC ROC-curve
Income Dataset.

Table 5.10 shows the accuracy statistics for the Surrounding RF, XGBoost and Lin-
earSVC models. Figure 5.5 shows the Ranked Performance of the accuracy for all the
Surrounding models. It shows that, in terms of the accuracy, only a few models can be
distinguished. There are seven different Surrounding RF models, two different XGBoost
Surrounding models and two different Surrounding LinearSVC models.

RF XGBoost LinearSVC

min. 0.777 0.762 0.787

max. 0.794 0.791 0.797

avg. 0.787 0.772 0.792

sd. 0.004 0.009 0.001

Table 5.5: Income Dataset
Basis models accuracy.

Figure 5.10: Income Dataset Ranked Perfor-
mance Surrounding model accuracy.

Bootstrap

The Surrounding models of the Bootstrap iterations on the train / test dataset split
are similar in accuracy for the Bootstrap with 10 iterations and the Bootstrap with 100
iterations on the train / test dataset split.

Table 5.6-5.8 show the model accuracy and hyperparameters of the Basis models
of each ML Algorithm after performing a Bootstrap with 10 and 100 iterations for
each Algorithm. The values show that there is a difference in model accuracy and
hyperparameter values compared to the Basis model for each ML Algorithm that is
described in Section 5.1.2.

For the RF, results between the two iterations are different. Both iterations show that
the Bootstrap on the train / test dataset split results in varying accuracy, max depth
values and n estimators values. This is also illustrated by the standard deviations. The
Basis RF model for 10 iterations has a maximum tree depth of 90 and 91 trees. For 100
iterations, the Basis RF model has a maximum tree depth of 91 and 71 trees.

For the XGBoost, values differ for the two iterations. Using the hyperparameter
order in line with the column order of Table 5.3, for 10 iterations, the Basis XGBoost
model has hyperparameters: 2, 3, 5.63, 0.25, 0.92, 0.89, 254, and for 100 iterations:
3, 2, 8.86, 0.23, 1, 0.64, 60.
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For the LinearSVC, results between the two iterations are rather similar. Both it-
erations show that the Bootstrap on the train / test dataset split results in varying
accuracy, C values. For the Basis LinearSVC model, after 10 iterations, a C value of
1 and a tolerance value of 0.01 are retrieved. For 100 iterations, the Basis LinearSVC
model has a C value of 1 and a tolerance value of 0.001.

RF 10 iterations 100 iterations

accuracy max depth n estimators accuracy max depth n estimators

min. (4.75)% 27 (19) (5.20)% 27 (39)

max. (3.60)% 77 31 (2.95)% 77 31

avg. (4.15)% 51 11 (3.86)% 55 5

sd 0.34% 3 (45) 0.41% 16 18

Table 5.6: Income Dataset Bootstrap results for RF.

XGBoost 10 iterations

accuracy max depth min child weight gamma subsample learning rate colsample bytree n estimators

min. (6.07)% 0.00 (5.00) (8.99) (0.17) 0.01 (0.79) (131.00)

max. 0.41% 6.00 1.00 0.06 0.59 0.88 0.06 93.00

avg. (2.16)% 2.80 (1.90) (5.43) 0.23 0.45 (0.29) (9.60)

sd 1.98% 1.94 1.81 3.12 0.27 0.29 0.29 71.67

100 iterations

accuracy max depth min child weight gamma subsample learning rate colsample bytree n estimators

min. (13.52)% (1.00) (6.00) (9.55) (0.27) (0.02) (0.82) (157.00)

max. 1.26% 7.00 3.00 0.21 0.70 0.96 0.15 93.00

avg. (2.52)% 2.77 (1.53) (4.08) 0.21 0.44 (0.36) (49.63)

sd 2.84% 2.47 2.81 2.75 0.27 0.29 0.30 72.48

Table 5.7: Income Dataset Bootstrap results for XGBoost.

LinearSVC 10 iterations 100 iterations

accuracy C tol accuracy C tol

min. 0.29% 0 (1) (0.04)% 0 (1)

max. 0.86% 2 0 1.51% 4 0

avg. 0.49% 0 (1) 0.57% 1 (1)

sd 0.17% 1 0 0.30% 1 0

Table 5.8: Income Dataset Bootstrap results for LinearSVC.

Seed Choice

For respectively 10 and 100 different Seed choices, the accuracy of the Basis model and
Surrounding models are varying. For the case of 10 different Seed choices, their values
are [27670, 12623, 24836, 29171, 13781, 1326, 8484, 31636, 16753, 15922].

For 100 different Seed choices on the train / test dataset split, the maximum dif-
ference in accuracy for respectively the RF, XGBoost and LinearSVC Basis models are
3.7%, 4.0% and 3.2%.

For 10 different Seed choices on the train / test dataset split, the maximum difference
in accuracy for respectively the RF, XGBoost and LinearSVC Basis models are 1.6%,
3.4% and 2.4%, see Figure 5.11. Figure 5.12 shows the different AUC values of the Basis
models for the 10 varying Seed choices on the the train / test dataset split. Both Figures
show that for different Seed choices, results for the Basis models are varying, there is
no clear relation.

For the same 10 varying Seed choices on the train / test dataset split, the maximum
difference in accuracy for respectively the RF, XGBoost and LinearSVC Surrounding
models are 5.5%, 3.4%, 2.4%. For the AUC values, this is respectively 3.2%, 2.8% and
3.0%. For varying seed choices, results for the Surrounding models of each Algorithm
are varying, there is no clear relation.
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Figure 5.11: Accuracy Basis models for
varying Seed choice, Income Dataset.

Figure 5.12: AUC values Basis models for
varying Seed choice, Income Dataset.

5.2 Results Algorithm Fairness Metric Type 1:
Statistical Metrics (1− 12)

This Section describes the results for the Basis Models, Surrounding Models, the Boot-
strap approach and the varying Seed choice approach on the train / test dataset split for
the first 12 Algorithm Fairness Metrics. Each subsection starts by describing the results
for the Crime Dataset and then shortly mentions the results for the Income Dataset.

5.2.1 Basis Models

The results of the first four Algorithms Fairness Metrics are shown in Figure 5.13. The
TP, FP, FN and TN values are counts and show that the Basic LinearSVC model is
never the most unfair. Overall, all ML Algorithms have, compared to the TP, FP and
FN values, high TN values. Figure 5.14 shows the result of Algorithm Fairness Metric
5-12. Again, the Basis LinearSVC model always performs between the Basis RF model
and the Basis XGBoost model.

Figure 5.13: Result Basis models
Crime Dataset.

Figure 5.14: Result Basis models
Crime Dataset.

The results of the first four Algorithms Fairness Metrics for the Income Dataset are
different to that of the Crime Dataset since for each of the 12 Algorithm Fairness
Metrics, hardly any difference can be observed. For the Income Dataset, the Basis RF,
XGBoost and LinearSVC models have almost the exact same values.

5.2.2 Surrounding Models

Figure 5.15 shows the Ranked Performance of the Surrounding models of the three ML
Algorithms for the TP values. The Ranked Performances of the FP, FN and TN are
very similar in course, the majority of the models perform similar to the Basis models.
This also automatically holds for the TPR values, as well as the FNR values.
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Figure 5.16 shows that, for the Surrounding XGBoost and RF models, a significant
amount performs below the value of the Basis model. The same holds for the NPV
values and the TNR values. However, Figure 5.17 shows the opposite, this also holds
for the FOR values and the FPR values.

Figure 5.18 shows the correlation coefficients between the Algorithm Fairness Metrics
and the accuracy of the Surrounding models. The x-axis contains the values for each of
the 12 Algorithm Fairness Metrics where the points indicate the correlation coefficient
of, given the color, either the Surrounding RF, LinearSVC or XGBoost models.

For TN, PPV, NPV and TNR, there is a perfect positive correlation between the Al-
gorithm Fairness Metrics and the Surrounding XGBoost model accuracy. Surrounding
models with a higher accuracy, have a higher Unfairness value for these specific Algo-
rithm Fairness Metrics. The opposite is the case for the FP, FDR, FOR, TPR and the
accuracy of the Surrounding XGBoost models. The correlation coefficients of the Sur-
rounding RF models are less varying, and closer to zero, compared to the Surrounding
XGBoost and LinearSVC models.

Figure 5.15: True
Positive value
Ranked Performance
Crime Dataset.

Figure 5.16: Positive
Predictive value
Ranked Performance
Crime Dataset.

Figure 5.17: False
Discovery Rate
Ranked Performance
Crime Dataset.

Figure 5.18: Correlation coefficients Algorithm Fairness Metrics 1-12 and Surrounding
model accuracy, Crime Dataset.

The Income Dataset shows similar results for the Surrounding LinearSVC models. The
Algorithm Fairness Metrics show varying results for the Surrounding RF and XGBoost
models. See Figure 5.19-5.21 for the Ranked Performances of each ML Algorithm. The
correlation graphs show similar results as for the Crime Dataset.

5.2.3 Bootstrap

For the Crime Dataset, the Bootstrap with 10 iterations on the train / test dataset split,
retrieves 10 varying Basis ML values for Algorithm Fairness Metrics 1− 12. There is no
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Figure 5.19: True
Positive Ranked
Performance
Income Dataset.

Figure 5.20: Positive
Predictive value
Ranked Performance
Income Dataset.

Figure 5.21: False
Discovery Rate
Ranked Performance
Income Dataset.

clear relationship. For the Income Dataset, the same holds. There is no clear relationship
as to how the Algorithm Fairness Metric vary for the Basis models from the different
Bootstrap iterations.

5.2.4 Seed Choice

For the 10 different Seed choices on the train / test dataset split, varying Algorithm
Fairness Metrics 1− 12 are retrieved for the Basis models and the Surrounding Models
of each ML Algorithm. There is no clear relationship. This holds for both the Crime
Dataset and the Income Dataset.

5.3 Results Fairness Metric Type 2:
Def. Based On Predicted Outcome (13, 14)

This Section describes the results for the Basis Models, Surrounding Models, the Boot-
strap approach and the varying Seed choice approach on the train / test dataset split
for Algorithm Fairness Metric 13 and 14. Values for the Algorithm Fairness Metrics
are defined by the difference in fairness between two features, this hence represents the
value of Unfairness. Feature combination groups are as described in Section 4.2.1.

Each subsection describes an Algorithm Fairness Metric in which the results for
the Crime Dataset are described, followed by a short description of the results for the
Income Dataset.

13. Group Fairness

Overall, values for Algorithm Fairness Metric 13 of the Basis models vary for the three
feature combination groups, as well as for other feature combinations. For each first
feature combination of a feature combination group, the following Basis model has the
highest Unfairness value for the Crime Dataset:

• Group 1.1: XGBoost by more than about 7% compared to RF and LinearSVC;

• Group 2.1: LinearSVC by more than about 6% compared to RF and XGBoost;

• Group 3.1: LinearSVC by more than 12% compared to RF and XGBoost.

For the Income Dataset, for feature combination Group 1.1, the Basis RF, LinearSVC
and XGBoost model have a Unfairness values of respectively 31.8%, 30.0% and 31.5%.
For each feature combination within the three feature combination groups and for each
ML Algorithm, the Unfairness values vary for the Income Dataset.
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For the Crime Dataset, Figure 5.22-5.24 show the Ranked Performance of the Algo-
rithm Fairness Metrics for respectively feature combination Group 1.1, Group 2.1 and
Group 3.1. The correlation coefficient gives the following results for the feature combi-
nation groups:

• Unfairness values of feature combination Group 1.1, 2.1 and 3.1 are positively corre-
lated with the predictions of the Surrounding RF models.

• Unfairness values of feature combination Group 1.1 and 2.1 are negatively correlated
with the predictions of the Surrounding LinearSVC models, while this is the opposite
for Group 3.1.

• Unfairness values of feature combination Group 1.1 and 3.1 are positively correlated
with the predictions of the Surrounding XGBoost models, while this is the opposite
for Group 2.1.

Figure 5.22: Ranked
Performance Group 1.1
Crime Dataset.

Figure 5.23: Ranked
Performance Group 2.1
Crime Dataset.

Figure 5.24: Ranked
Performance Group 3.1
Crime Dataset.

For the Income Dataset, the Surrounding models vary more than for the Crime Dataset,
the majority is close to the Unfairness value of the Basis model for each ML Algorithm.
Figure 5.25-5.27 show the Ranked Performance of the Surrounding models for the Un-
fairness values for each ML Algorithm.

Figure 5.25: Ranked
Performance Group 1.1
Income Dataset.

Figure 5.26: Ranked
Performance Group 2.1
Income Dataset.

Figure 5.27: Ranked
Performance Group 3.1
Income Dataset.

After the Bootstrap with 10 iterations was performed on the train / test dataset split,
the following Basis ML Algorithm performs the worst for the Crime Dataset:

• Group 1.1: LinearSVC by more than about 6% and 20% compared to respectively
XGBoost and RF.
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• Group 2.1: LinearSVC by more than about 4% and 9% compared to respectively
XGBoost and RF.

• Group 3.1: LinearSVC by more than about 5% and 20% compared to respectively
XGBoost and RF.

For the Income Dataset, results are similar. However, the extent to which the worst
performing Basis ML Algorithm (the LinearSVC) performs, compared to the other ML
Algorithms, is smaller.

For the Crime Dataset, the Bootstrap with 10 iterations on the train / test dataset
split, retrieves 10 varying Basis ML values for Algorithm Fairness Metrics 1−12. There
is no clear relationship.

For the Income Dataset, the same holds. There is no clear relationship as to how
the Algorithm Fairness Metric vary for the different iterations of the Bootstrap.

For varying Seed Choice on the train / test dataset split, the values for Algorithm
Fairness metric 13 are varying for each ML Algorithm and its Basis models and Sur-
rounding models. For both the Crime Dataset and the Income Dataset, there is no clear
relation between the varying Seed choice and its varying Algorithm Fairness Metric.

14. Conditional Statistical Parity

For the Crime Dataset, Figure 5.28 shows significant differences for the four combina-
tions for the Basis models of each ML Algorithm. The Basis LinearSVC model retrieves
the largest Unfairness value.

Unfairness values for Basis models of each ML Algorithm vary even more for the
Income Dataset. There are differences between the ML Algorithms of almost 40%, see
Figure 5.28. For Combi 1 and Combi 4 cases, the Basis RF model retrieves remarkable
higher Unfairness values compared to the other two ML Algorithms.

Figure 5.28: Result Basis models
Crime Dataset.

Figure 5.29: Result Basis models
Income Dataset.

For both the Crime Dataset and the Income Dataset, the Unfairness values vary among
the Surrounding models for each of the four selected combination and each ML Algo-
rithms. There is no clear relationship.

For the Bootstrap with 10 iterations and the 10 varying Seed choice on the train /
test dataset split, the varying Algorithm Fairness Metrics do not show a clear relation.
This holds for Combi 1, Combi 2, Combi 3 and Combi 4 of the Crime Dataset and the
Income Dataset.
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5.4 Algorithm Fairness Metrics Results Type 3: Def. Based
On Predicted And Actual Outcomes (15− 21)

This Section describes the results for the Basis Models, Surrounding Models, the Boot-
strap approach and the varying Seed choice approach on the train / test dataset split
for Algorithm Fairness Metric 15 − 21. Unfairness values are the difference in fairness
between two features. Feature combination groups are as described in Section 4.2.1.

For the Crime Dataset, Algorithm Fairness Metric 15− 21 all show different results,
without a clear relation, for the Bootstrap approach and varying Seed choices approach
on the train / test dataset split. For the Bootstrap approach, this holds for the 10
Basis models of each ML Algorithm. For the 10 varying Seed choices, this holds for the
corresponding Basis models and the Surrounding models of each ML Algorithm. The
same is observed for the Income Dataset. However, the extent to which the Algorithm
Fairness Metric values differ is smaller compared to the Crime Dataset.

15. Predictive Parity

Figure 5.30 and Figure 5.33 show different results for each group and each of the Basis
models. The group differences for the Crime Dataset are larger than those of the Income
Dataset. Both dataset indicate positive correlation for the Algorithm Fairness Metric
value and the accuracy of the Surrounding ML models, see Figure 5.31 and Figure 5.34.

Figure 5.30: Result
Basis models
Crime Dataset.

Figure 5.31: Correlation
coefficients for Surrounding
model accuracy
Crime Dataset.

Figure 5.32: Ranked
Performance Group 1.1
Crime Dataset.

Figure 5.33: Result
Basis models
Income Dataset.

Figure 5.34: Correlation
coefficients for Surrounding
model accuracy
Income Dataset.

Figure 5.35: Ranked
Performance Group 1.1
Income Dataset.
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Figure 5.32 shows that for the Crime Dataset, various Surrounding models differ in
Unfairness value, when compared to the Basis model. Feature combination Group 2.1
and feature combination Group 3.1 show different results, the Surrounding models have
either an overall lower Unfairness value or is very concentrated around the Basis model.

For feature combination Group 1.1 of the Income Dataset, see Figure 5.35, out of
the Surrounding ML models, only a handful can be distinguished in terms of its Un-
fairness value. The Surrounding models for feature combination Group 2.1 and feature
combination 3.1 show very similar results.

16. Predictive Equality

The Predictive Equality for the Crime Dataset differs for each group, as well as each
Algorithm, see Figure 5.36. The Unfairness value of the three feature combination groups
all show a positive correlation with the accuracy of the Surrounding models, as can be
seen in Figure 5.37. Figure 5.38 shows the Ranked Performance for feature combination
Group 1.1. Surrounding models for feature combination Group 2.1 are different, they are
concentrated around the Basis model. The Ranked Performance of feature combination
Group 3.1 is similar tot that of feature combination Group 1.1.

Figure 5.36: Result
Basis models
Crime Dataset.

Figure 5.37: Correlation
coefficients for Surrounding
model accuracy
Crime Dataset.

Figure 5.38: Ranked
Performance Group 1.1
Crime Dataset.

Figure 5.39: Result
Basis models
Income Dataset.

Figure 5.40: Correlation
coefficients for Surrounding
model accuracy
Income Dataset.

Figure 5.41: Ranked
Performance Group 1.1
Income Dataset.

For the Income Dataset, see Figure 5.39 and 5.40, conclusions are similar to that of
the Crime Dataset. The Surrounding models show that, for each Algorithm, only a
hand full can be distinguished. Figure 5.41 shows the Ranked Performance for feature
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combination Group 1.1, Group 2.1 and 3.1 show different distributions, the majority of
the Surrounding models perform similar to the Basis model.

17. Equal Opportunity

The Predictive Equality for the Crime Dataset differs for each group, as well as each
ML Algorithm, see Figure 5.42. The value of Algorithm Fairness Metric 17 of the three
feature combination groups all show a positive and a negative correlation with the
accuracy of the Surrounding models. The negative correlation holds for Group 2.1 and
the Surrounding XGBoost models, as can be seen in Figure 5.43. Figure 5.44 shows the
Ranked Performance for feature combination Group 1.1, Group 2.1 has similar results.
Surrounding models for Group 3.1 have a broader range in terms of the Algorithm
Fairness Metric value.

Figure 5.42: Result
Basis models
Crime Dataset.

Figure 5.43: Correlation
coefficients for Surrounding
model accuracy
Crime Dataset.

Figure 5.44: Ranked
Performance Group 1.1
Crime Dataset.

Figure 5.45: Result
Basis models
Income Dataset.

Figure 5.46: Correlation
coefficients for Surrounding
model accuracy
Income Dataset.

Figure 5.47: Ranked
Performance Group 1.1
Income Dataset.

For the Income Dataset, see Figure 5.45 and 5.46, compared to the Crime Dataset,
the Basis ML Algorithms are less varying for each feature combination Group. The
Surrounding models show that, for each ML Algorithm, only a hand full can be distin-
guished. Figure 5.47 shows the Ranked Performance for feature combination Group 1.1,
feature combination Group 3.1 has similar Ranked Performance.
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18. Equalized Odds

Figure 5.48 and Figure 5.51 show different results for each group and each of the Basis
models. The group differences for the Crime Dataset are larger than those of the Income
Dataset. Both dataset show that the Algorithm Fairness Metric value is positively cor-
related with the accuracy of the Surrounding models, see Figure 5.49 and Figure 5.52.
The Ranked Performance of feature combination Group 2.1 and Group 3.1 are similar
to feature combination Group 1.1.

Based on Figure 5.51 and 5.52, compared to the Crime Dataset, the Basis ML
Algorithms of the Income Dataset are more varying for each feature combination group.
Figure 5.53 shows the Ranked Performance for feature combination Group 1.1, feature
combination Group 3.1 has similar Ranked Performance.

Figure 5.48: Result
Basis models
Crime Dataset.

Figure 5.49: Correlation
coefficients for Surrounding
model accuracy
Crime Dataset.

Figure 5.50: Ranked
Performance Group 1.1
Crime Dataset.

Figure 5.51: Result
Basis models
Income Dataset.

Figure 5.52: Correlation
coefficients for Surrounding
model accuracy
Income Dataset.

Figure 5.53: Ranked
Performance Group 1.1
Income Dataset.

19. Conditional Use Accuracy Equality

For the Crime Dataset, feature combination Group 2.1 and Group 3.1 show higher
Unfairness values for the Basis LinearSVC model. For feature combination Group 1.1,
the Basis RF model retrieves the highest Unfairness value, see Figure 5.54.

Also, the Algorithm Fairness Metric values are positively correlated with the accu-
racy of the Surrounding models, as can be seen in Figure 5.55. The same holds for the
Crime Dataset, however, the variation of the ML Algorithms within feature combination
Group 1.1, Group 2.1 and Group 3.1 are less varying, see Figure 5.57 and Figure 5.59.
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For both datasets, the Ranked Performances of the Surrounding models vary among
the three Groups for each ML Algorithm, being either very concentrated towards the
Basis model, or the opposite.

Figure 5.54: Result
Basis models
Crime Dataset.

Figure 5.55: Correlation
coefficients for Surrounding
model accuracy
Crime Dataset.

Figure 5.56: Ranked
Performance Group 1.1
Crime Dataset.

Figure 5.57: Result
Basis models
Income Dataset.

Figure 5.58: Correlation
coefficients for Surrounding
model accuracy
Income Dataset.

Figure 5.59: Ranked
Performance Group 1.1
Income Dataset.

20. Overall Accuracy Equality

Results from Algorithm Fairness Metric 20 are similar to that of Algorithm Fairness
Metric 19. Hence, for the Crime Dataset, feature combination Group 2.1 and Group 3.1
show higher Unfairness values for the Basis LinearSVC model. For feature combination
Group 1.1, the Basis RF model retrieves the highest Unfairness value.

Also, the Algorithm Fairness Metric values are positively correlated with the accu-
racy of the Surrounding models. The same holds for the Income Dataset, however, the
variation of the ML Algorithms within feature combination Group 1.1, feature combi-
nation Group 2.1 and Group 3.1 are less varying.

21. Treatment Equality

The results for Algorithm Fairness Metric 21 are also similar to that of Algorithm
Fairness Metric 19. However, instead of the Basis LinearSVC model, feature combination
Group 1.1 and Group 2.1 show higher Unfairness for the Basis XGBoost model.
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5.5 Algorithm Fairness Metrics Results Type 4:
Def. Based On Predicted Probabilities
And Actual Outcome (22− 25)

22-23. Test-Fairness and Well-calibration

Table 5.9 shows the lowerbound for which the Algorithm is calibrated for the Crime
Dataset. For both the Basis RF, LinearSVC and the XGBoost model and the various
feature combination groups, the classifier satisfies the Test-Fairness definition, Algo-
rithm Fairness Metric 22, for high predicted probabilities but not for low scores.

RF LinearSVC XGBoost

Group 1.1 0.5 0.7 0.5

Group 2.1 0.5 0.7 0.5

Group 3.1 0.5 0.6 0.5

Table 5.9: Lowerbound for the well-calibrated scores s, Crime Dataset.

Table 5.10 shows the lowerbound for which the Algorithm is calibrated for the Income
Dataset. The Basis LinearSVC and XGBoost model and the various feature combina-
tion groups, satisfy the Test-Fairness definition, Algorithm Fairness Metric 22, for high
predicted probabilities and low scores. For the Basis RF model, for feature combination
Group 3.1, Group 1.1 and Group 2.1 this is satisfied for high predicted probabilities but
not for low scores.

RF LinearSVC XGBoost

Group 1.1 0.5 0.3 0.2

Group 2.1 0.5 0.3 0.3

Group 3.1 0.3 0.3 0.2

Table 5.10: Lowerbound for the well-calibrated scores s, Income Dataset.

24. Balance For Positive Class

Figure 5.60 shows that the Basis models have different results for each feature combi-
nation group. For feature combination Group 1.1 and Group 3.1, the Basis XGBoost
model has the highest Unfairness value. For Group 2.1, the Basis RF model retrieves
the highest Unfairness value. Figure 5.61 shows different results compared to the Crime
Dataset. The Basis LinearSVC model has the highest Unfairness value for Group 2.1
and 3.1 while this is the Basis XGBoost model for feature combination Group 1.1.

Figure 5.60: Result Basis models,
Crime Dataset.

Figure 5.61: Result Basis models,
Income Dataset.

Different results are obtained for a varying Seed choices on the train / test dataset split,
there is no clear relationship. This holds for both datasets.
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25. Balance For Negative Class

Figure 5.62 shows the Balance for Negative Class for the Crime Dataset. The Algorithm
Fairness Metric values vary among the ML Algorithms, as well as the groups. The Basis
RF model results in the highest Unfairness value for feature combination Group 1.1
and Group 2.1. For feature combination Group 3.1, the Basis LinearSVC model has a
significant higher Unfairness value, compared to the Basis RF and XGBoost model.

Compared to the Crime Dataset, the Income Dataset shows different results, see Fig-
ure 5.63. For all the three groups, the Basis LinearSVC model has the highest Unfairness
value.

Figure 5.62: Result Basis models,
Crime Dataset.

Figure 5.63: Result Basis models,
Income Dataset.

Different results are obtained for a varying Seed choices on the train / test dataset split,
there is no clear relationship. This holds for both datasets.

5.6 Results type 5: Similarity Based Measures (26− 28)

26. Causal Discrimination

Figure 5.64 shows the Causal Discrimination for the Basis models for feature combi-
nation Group 1.1, Group 2.1, Group 3.1 for the Crime Dataset. For both cases, the
XGBoost has the highest Unfairness.

For the Income Dataset, the overall Unfairness values are lower. In specific, the Basis
XGBoost models retrieve low (almost zero) Unfairness.

Figure 5.64: Result Basis models
Crime Dataset.

Figure 5.65: Result Basis models
Income Dataset.

27. Fairness Through Unawareness

The Basis models for Algorithm Fairness Metric 27 show similar results for feature
combination Group 1.1 and Group 2.1. Feature combination Group 3.1 is not calcu-
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lated since the gender feature is removed from the Crime Dataset for this Metric. The
Basis RF model results in the highest Unfairness, compared to the Basis LinearSVC
and XGBoost model. The ML Algorithms have similar Unfairness values for feature
combination Group 1.1 and 2.1, differing about one percent.

For both datasets, the Surrounding models show different Unfairness metrics for
each feature combination Group and ML Algorithm.

28. Fairness Through Awareness

Algorithm Fairness Metric 28 can only be calculated for the Crime Dataset. Table 5.11
shows the results for the Basis RF, LinearSVC and the XGBoost models. Values are
round to three decimals and show that the distance metric of the Basis RF and XGBoost
model are close to zero. Violating cases decrease for both the Basis RF and LinearSVC
models between the age category from 25 years up to 45 years to ages above 45 years.

Age category difference k RF avg. D RF % viol. LinearSVC avg. D LinearSVC % viol. XGBoost avg. D XGBoost % viol.

25− 45 0.137 0.068 0.163 0.133 0.431 0 0

> 45 0.277 0.060 0.031 0.188 0.150 0 0

Table 5.11: Fairness Through Awareness, Crime Dataset.

5.7 Algorithm Fairness Metric Results type 6:
Causal Reasoning (29− 32)

Table 5.12 shows the Causal Reasoning Table, they are similar for the Basis RF, Lin-
earSVC en XGBoost models. Values of one indicate a dependency between the two
features. Conclusions of Algorithm Fairness Metrics 29-32 are based on this. The pre-
dicted Algorithm outcome depends on many features. Either direct or indirect, all the
feature are accessible. There are both illegitimate and legitimate paths between the
features and the predicted Algorithm outcome.

norm. nr.
days in jail

norm. age
jail out

no total
counts

multiple juv
counts

multiple total
counts

no juv
counts

norm. year
of birth

norm. age
jail in

gender age cat race
marital
status

legal
status

language

predicted
RF /

LinearSVC /
XGBoost

norm. nr.
days in jail

x 1 0 0 0 0 1 1 0 0 0 0 0 0 0

norm. age
jail out

1 x 1 1 1 1 1 1 0 1 1 1 0 0 1

no total
counts

0 1 x 1 1 1 1 1 1 1 1 1 0 0 1

multiple juv
counts

0 1 1 x 1 1 0 1 0 0 0 0 0 0 0

multiple total
counts

0 1 1 1 x 1 1 1 1 1 1 1 0 0 1

no juv
counts

0 1 1 1 1 x 0 1 0 0 0 0 0 0 0

norm. year
of birth

1 1 1 0 1 0 x 1 0 1 1 1 0 0 1

norm. age
jail in

1 1 1 1 1 1 1 x 0 1 1 1 0 0 1

gender 0 0 1 0 1 0 0 0 x 0 0 0 0 0 1

age cat 0 1 1 0 1 0 1 1 0 x 1 1 0 0 1

race 0 1 1 0 1 0 1 1 0 1 x 1 0 1 1

marital
status

0 1 1 0 1 0 1 1 0 1 1 x 1 1 1

legal
status

0 0 0 0 0 0 0 0 0 0 0 1 x 1 0

language 0 0 0 0 0 0 0 0 0 0 1 1 1 x 0

predicted
RF /

LinearSVC /
XGBoost

0 1 1 0 1 0 1 1 1 1 1 1 0 0 x

Table 5.12: Causal Reasoning Table for the Crime Dataset.

For the Income Dataset, a similar Table is retrieved for the Basis RF, LinearSVC en
XGBoost models. See Section 8.3.2 in the Appendix for the Causal Reasoning Table.

For both datasets, the varying Seed choice for the train / test dataset split resulted
in similar Causal Reasoning Graphs and Tables.



Chapter 6

Conclusion

This study aimed to research the impact of the dataset, the supervised Machine Learning
(ML) classification Algorithm choice, its Surrounding models, Bootstrapping the train
/ test dataset split and a varying Seed choice for the train / test dataset split on the
Algorithm Fairness Metrics that were described by Verma and Rubin (2018).

Except for Algorithm Fairness Metric type 6, the Algorithm Fairness Metrics showed
different results for the two datasets in this study. Hence, the results are not generic
which reinforces other conclusions of this study.

Compared to the smaller Crime Dataset, for each ML Algorithm, the Basis model
and Surrounding models of the Income Dataset were more accurate. Also, their Algo-
rithm Fairness Metric values were more stable than those of the Crime Dataset. Conse-
quently, larger datasets tend to have more accurate ML Algorithms and have therefore
more stable Algorithm Fairness Metric values.

The ML Algorithms showed different Algorithm Fairness Metric results. For the
datasets in this study, the Basis LinearSVC model was the best performing ML Algo-
rithm. For various Algorithm Fairness Metrics, prediction of the Basis LinearSVC model
showed higher unfairness values compared to the less performing Basis Random Forest
and XGBoost models.

Surrounding models are models that are built around the Basis model, they differ
in accuracy and hyperparameters. This study compared the Algorithm Fairness Metric
values of three feature combination. Often, a positive correlation between the accuracy
of the Surrounding models and the Algorithm Fairness Metric value was observed. In
other words, models with higher accuracy tend to have higher unfairness.

For each of the six Algorithm Fairness Metric types, varying values are obtained
when performing a Bootstrap with 10 iterations on the train / test dataset split. Also,
there are varying Algorithm Fairness Metric values for the 10 different Seed choices
on the train / test dataset split. Hence, the representation of each feature, and its
proportion in the training set or test set, tend to be leading for the Algorithm Fairness
Metric values.

To summarize, Algorithm Fairness Metric results are not stable and depend on many
factors. They are impacted by the dataset, the supervised ML classification Algorithm
choice, its Surrounding models, Bootstrapping the train / test dataset split and for
varying Seed choice for the train / test dataset split. However, relations are often unclear.

It is important to take each Algorithm Fairness Metric and each feature combination
characteristic into consideration when using predictive Algorithms on real-life cases. The
underlying python code of this study may be very useful. It distinguishes itself from other
python packages as it computes all the Algorithm Fairness Metrics in one go, given any
dataset that has five feature groups with 2, 3, 6, 7, 5 items.

To conclude, this study aims to inspire other researchers to use this as a source to
gain insight into how the Algorithm Fairness Metrics interact and differ for their specific
predictive ML Algorithms.
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Chapter 7

Discussion

First of all, the computation time has been a challenging aspect throughout this study,
especially for the larger Income Dataset. This limited the size of the hyperparameter
grid as well as certain hyperparameter values such as the C value for LinearSVC which
is a good alternative for the computationally heavy Support Vector Machine.

Secondly, the definition of a Surrounding model with their hyperparameter range
have been chosen based on trial and error. As a result, especially for the Surrounding
XGBoost models, the Algorithm Fairness Metrics of models with very different accuracy
were compared. Saving interim results of the RandomizedSearchCV() and the Genetic
Algorithm could have resulted in models that one deems to classify as better Surrounding
model. With this approach, the results for models with different hyperparameters and
almost equal accuracy may be compared.

Thirdly, more iterations for the Bootstrap and broader analyzing its results would
have been beneficial to make conclusion about this, as well as the impact of the seed
choice for the train/test dataset split before passing the models onto the Algorithm
Fairness Metrics calculations.

Fourthly, To make sense of the 32 Algorithm Fairness Metrics, outcomes for the three
Algorithms and the two datasets where both had 46 one-on-one feature comparisons.
A tool that automatically analyzes each of the Algorithm Fairness Metrics for each
dataset and Algorithm, and base conclusion on this, is left for further research. This
would help to analyze which Algorithm Fairness Metric is more stable compared to
another Algorithm Fairness Metric, and why.

In addition, to make the results comparable, I distinguished feature combination
groups based on their data proportion in the dataset. However, this approach leads
to Algorithm Fairness Results that vary significantly for each group. Further research
should rule out this cause. Stratified sampling may give more insight into this. Also,
it may be useful to include some analyses as to how each models classifies a feature in
terms of importance.

Next, models with higher accuracy tend to have higher unfairness. The approach of
this study has many uncertainties, the Algorithm Fairness Metrics depend on various
factors. Further research should find out whether this trade-off also holds for a different
approach.

Moreover, the python script that has been created for this study, automatically
creates both the excel sheets with fairness values as well as the Ranked Performance
graphs. Feature removal is included as well, though, its Algorithm Fairness Metrics
calculations and result interpretation is left for further research. Finally, using programs
such as PowerBI of Tableau, will contribute to the readability of the Algorithm Fairness
Metric results.
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Appendix

8.1 Model Parameter Settings

8.1.1 Random Forest

The parameter grid for the RandomizedSearchCV() of the Base Random Forest model
is as followed:
grid = {′n estimators′ : [x for x in range(1, 100, 10)]
′max depth′ : [xforxinrange(1, 100, 10)]}

The remainder hyperparameter settings are set at default, hence:

bootstrap = True
ccp alpha = 0.0;′

class weight = None;
criterion =′ gini′;
max features =′ auto′;
max leaf nodes = None;
max samples = None;min impurity decrease = 0.0;
min impurity split = None;
min samples leaf = 1;
min samples split = 2;
min weight fraction leaf = 0.0;
n jobs = None;
oob score = False;
random state = None;
verbose = 0;warm start = False.

8.1.2 XGBoost

The parameter settings for the Genetic Algorithm of the Base LinearSVC model is as
followed:

XGBoost parameter Uniform distribution parameters

learning rate [0.01; 1]

min child weight [0.01; 10]

gamma [0.01; 10]

subsample [0.01; 1]

colsample bytree [0.01; 1]

Table 8.1: XGBoost parameters whose value is from an Uniform distribution.
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XGBoost parameter Random number range

n estimators [10, 1500]

max depth [1, 10]

Table 8.2: XGBoost parameters whose value is a random value.

The remainder hyperparameter settings are set at default, hence:

base score = 0.5;
booster =′ gbtree′;
colsample bylevel = 1;
colsample bynode = 1;
max delta step = 0;
missing = None;
n jobs = 8;
nthread = None;
objective =′ binary : logistic′;
random state = 0;
reg alpha = 0;
reg lambda = 1;
scale posweight = 1;
seed = None;
silent = None;
verbosity = 1.

8.1.3 LinearSVC

The parameter grid for the RandomizedSearchCV() of the Base LinearSVC model is as
followed:
LinearSVC grid = {’C’: [x for x in range(1,10)], ’tol’: [1e-5, 1e-4, 1e-3, 1e-2, 1, 10,100]}

The remainder hyperparameter settings are set at default, hence:
class weight = None;
dual = True; fit intercept = True;
intercept scaling = 1;
loss =′ squared hinge′;max iter = 1000;
multi class =′ ovr′,
penalty =′ 12′;
randomstate = None.
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8.2 Crime Dataset

8.2.1 Groups for Algorithm Fairness Metrics 13, 15− 21, 26, 27

Combination
Proportion

comparing 1
Proportion,
comparing 2

(’Male’, ’Female’) 79.8% 20.2%

(’Less than 25’, ’25-45’) 20.4% 58%

(’Less than 25’, ’Greater than 45’) 20.4% 21.6%

(’25-45’, ’Greater than 45’) 58% 21.6%

(’race African-American’, ’race Asian’) 49.4% 0.5%

(’race African-American’, ’race Caucasian’) 49.4% 34%

(’race African-American’, ’race Hispanic’) 49.4% 10.2%

(’race African-American’, ’race Native American’) 49.4% 0.4%

(’race African-American’, ’race Other’) 49.4% 5.6%

(’race Asian’, ’race Caucasian’) 0.5% 34%

(’race Asian’, ’race Hispanic’) 0.5% 10.2%

(’race Asian’, ’race Native American’) 0.5% 0.4%

(’race Asian’, ’race Other’) 0.5% 5.6%

(’race Caucasian’, ’race Hispanic’) 34% 10.2%

(’race Caucasian’, ’race Native American’) 34% 0.4%

(’race Caucasian’, ’race Other’) 34% 5.6%

(’race Hispanic’, ’race Native American’) 10.2% 0.4%

(’race Hispanic’, ’race Other’) 10.2% 5.6%

(’race Native American’, ’race Other’) 0.4% 5.6%

(’Divorced’, ’Married’) 4.5% 11.4%

(’Divorced’, ’Seperated’) 4.5% 2%

(’Divorced’, ’Significant other’) 4.5% 4%

(’Divorced’, ’Single’) 4.5% 74.6%

(’Divorced’, ’Widowed’) 4.5% 0.5%

(’Divorced’, ’Unknown maritalStatus’) 4.5% 3.1%

(’Married’, ’Seperated’) 11.4% 2%

(’Married’, ’Significant other’) 11.4% 4%

(’Married’, ’Single’) 11.4% 74.6%

(’Married’, ’Widowed’) 11.4% 0.5%

(’Married’, ’Unknown maritalStatus’) 11.4% 3.1%

(’Seperated’, ’Significant other’) 2% 4%

(’Seperated’, ’Single’) 2% 74.6%

(’Seperated’, ’Widowed’) 2% 0.5%

(’Seperated’, ’Unknown maritalStatus’) 2% 3.1%

(’Significant other’, ’Single’) 4% 74.6%

(’Significant other’, ’Widowed’) 4% 0.5%

(’Significant other’, ’Unknown maritalStatus’) 4% 3.1%

(’Single’, ’Widowed’) 74.6% 0.5%

(’Single’, ’Unknown maritalStatus’) 74.6% 3.1%

(’Widowed’, ’Unknown maritalStatus’) 0.5% 3.1%

(’legal Pretrial’, ’legal Post Sentence’) 95% 1.8%

(’legal Pretrial’, ’legal Unknown’) 95% 2.8%

(’legal Pretrial’, ’legal other’) 95% 0.4%

(’legal Post Sentence’, ’legal Unknown’) 1.8% 2.8%

(’legal Post Sentence’, ’legal other’) 1.8% 0.4%

(’legal Unknown’, ’legal other’) 2.8% 0.4%

Table 8.3: Groups Crime Dataset.
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8.2.2 Groups for Conditional Statistical Parity

Combination
Proportion of
combination

Comparing
Proportion

comparing 1

Proportion
comparing 2

[’Male’, ’25-45’, ’Single’, ’legal Pretrial’] 33.3% (’race African-American’, ’race Asian’) 18.2% 0.2%

[’Male’, ’25-45’, ’Single’, ’legal Pretrial’] 33.3% (’race African-American’, ’race Caucasian’) 18.2% 10.1%

[’Male’, ’25-45’, ’Single’, ’legal Pretrial’] 33.3% (’race African-American’, ’race Hispanic’) 18.2% 3.4%

[’Male’, ’25-45’, ’Single’, ’legal Pretrial’] 33.3% (’race African-American’, ’race Native American’) 18.2% 0.1%

[’Male’, ’25-45’, ’Single’, ’legal Pretrial’] 33.3% (’race African-American’, ’race Other’) 18.2% 1.4%

[’Male’, ’25-45’, ’Single’, ’legal Pretrial’] 33.3% (’race Asian’, ’race Caucasian’) 0.2% 10.1%

[’Male’, ’race African-American’, ’Single’, ’legal Pretrial’] 31.2% (’Less than 25’, ’25-45’) 9.2% 18.2%

[’Male’, ’race African-American’, ’Single’, ’legal Pretrial’] 31.2% (’Less than 25’, ’Greater than 45’) 9.2% 3.8%

[’Male’, ’race African-American’, ’Single’, ’legal Pretrial’] 31.2% (’25-45’, ’Greater than 45’) 18.2% 3.8%

[’25-45’, ’race African-American’, ’Single’, ’legal Pretrial’] 22.79% (’Male’, ’Female’) 18.2% 4.6%

[’Male’, ’25-45’, ’race African-American’, ’legal Pretrial’] 22.1% (’Divorced’, ’Married’) 0.3% 1.7%

[’Male’, ’25-45’, ’race African-American’, ’legal Pretrial’] 22.1% (’Divorced’, ’Seperated’) 0.3% 0.4%

[’Male’, ’25-45’, ’race African-American’, ’legal Pretrial’] 22.1% (’Divorced’, ’Significant other’) 0.3% 1.4%

[’Male’, ’25-45’, ’race African-American’, ’legal Pretrial’] 22.1% (’Divorced’, ’Single’) 0.3% 18.2%

[’Male’, ’25-45’, ’race African-American’, ’legal Pretrial’] 22.1% (’Divorced’, ’Widowed’) 0.3% 0%

[’Male’, ’25-45’, ’race African-American’, ’legal Pretrial’] 22.1% (’Divorced’, ’Unknown maritalStatus’) 0.3% 0.1%

[’Male’, ’25-45’, ’race African-American’, ’legal Pretrial’] 22.1% (’Married’, ’Seperated’) 1.7% 0.4%

[’Male’, ’race Caucasian’, ’Single’, ’legal Pretrial’] 18.8% (’Less than 25’, ’25-45’) 3.8% 10.1%

[’Male’, ’race Caucasian’, ’Single’, ’legal Pretrial’] 18.8% (’Less than 25’, ’Greater than 45’) 3.8% 4.8%

[’Male’, ’race Caucasian’, ’Single’, ’legal Pretrial’] 18.8% (’25-45’, ’Greater than 45’) 10.1% 4.8%

[’Male’, ’25-45’, ’race African-American’, ’Single’] 18.8% (’legal Pretrial’, ’legal Post Sentence’) 18.2% 0.4%

[’Male’, ’25-45’, ’race African-American’, ’Single’] 18.8% (’legal Pretrial’, ’legal Unknown’) 18.2% 0%

[’Male’, ’25-45’, ’race African-American’, ’Single’] 18.8% (’legal Pretrial’, ’legal other’) 18.2% 0.1%

[’Male’, ’25-45’, ’race African-American’, ’Single’] 18.8% (’legal Post Sentence’, ’legal Unknown’) 0.4% 0%

[’Male’, ’Less than 25’, ’Single’, ’legal Pretrial’] 15.3% (’race African-American’, ’race Asian’) 9.2% 0.1%

[’Male’, ’Less than 25’, ’Single’, ’legal Pretrial’] 15.3% (’race African-American’, ’race Caucasian’) 9.2% 3.8%

[’Male’, ’Less than 25’, ’Single’, ’legal Pretrial’] 15.3% (’race African-American’, ’race Hispanic’) 9.2% 1.2%

[’Male’, ’Less than 25’, ’Single’, ’legal Pretrial’] 15.3% (’race African-American’, ’race Native American’) 9.2% 0%

[’Male’, ’Less than 25’, ’Single’, ’legal Pretrial’] 15.3% (’race African-American’, ’race Other’) 9.2% 1%

[’Male’, ’Less than 25’, ’Single’, ’legal Pretrial’] 15.3% (’race Asian’, ’race Caucasian’) 0.1% 3.8%

[’25-45’, ’race Caucasian’, ’Single’, ’legal Pretrial’] 13.1% (’Male’, ’Female’) 10.1% 3%

[’Male’, ’25-45’, ’race Caucasian’, ’legal Pretrial’] 13.1% (’Divorced’, ’Married’) 0.8% 1.4%

[’Male’, ’25-45’, ’race Caucasian’, ’legal Pretrial’] 13.1% (’Divorced’, ’Seperated’) 0.8% 0.3%

[’Male’, ’25-45’, ’race Caucasian’, ’legal Pretrial’] 13.1% (’Divorced’, ’Significant other’) 0.8% 0.4%

[’Male’, ’25-45’, ’race Caucasian’, ’legal Pretrial’] 13.1% (’Divorced’, ’Single’) 0.8% 10.1%

[’Male’, ’25-45’, ’race Caucasian’, ’legal Pretrial’] 13.1% (’Divorced’, ’Widowed’) 0.8% 0%

[’Male’, ’25-45’, ’race Caucasian’, ’legal Pretrial’] 13.1% (’Divorced’, ’Unknown maritalStatus’) 0.8% 0%

[’Male’, ’25-45’, ’race Caucasian’, ’legal Pretrial’] 13.1% (’Married’, ’Seperated’) 1.4% 0.3%

[’Less than 25’, ’race African-American’, ’Single’, ’legal Pretrial’] 11.31% (’Male’, ’Female’) 9.2% 2.1%

[’Male’, ’25-45’, ’race Caucasian’, ’Single’] 10.5% (’legal Pretrial’, ’legal Post Sentence’) 10.1% 0.3%

[’Male’, ’25-45’, ’race Caucasian’, ’Single’] 10.5% (’legal Pretrial’, ’legal Unknown’) 10.1% 0%

[’Male’, ’25-45’, ’race Caucasian’, ’Single’] 10.5% (’legal Pretrial’, ’legal other’) 10.1% 0.1%

[’Male’, ’25-45’, ’race Caucasian’, ’Single’] 10.5% (’legal Post Sentence’, ’legal Unknown’) 0.3% 0%

[’Male’, ’Greater than 45’, ’Single’, ’legal Pretrial’] 9.9% (’race African-American’, ’race Asian’) 3.8% 0%

[’Male’, ’Greater than 45’, ’Single’, ’legal Pretrial’] 9.9% (’race African-American’, ’race Caucasian’) 3.8% 4.8%

[’Male’, ’Greater than 45’, ’Single’, ’legal Pretrial’] 9.9% (’race African-American’, ’race Hispanic’) 3.8% 0.9%

[’Male’, ’Greater than 45’, ’Single’, ’legal Pretrial’] 9.9% (’race African-American’, ’race Native American’) 3.8% 0.1%

[’Male’, ’Greater than 45’, ’Single’, ’legal Pretrial’] 9.9% (’race African-American’, ’race Other’) 3.8% 0.3%

[’Male’, ’Greater than 45’, ’Single’, ’legal Pretrial’] 9.9% (’race Asian’, ’race Caucasian’) 0% 4.8%

[’Male’, ’Less than 25’, ’race African-American’, ’legal Pretrial’] 9.4% (’Divorced’, ’Married’) 0% 0.1%

[’Male’, ’Less than 25’, ’race African-American’, ’legal Pretrial’] 9.4% (’Divorced’, ’Seperated’) 0% 0%

[’Male’, ’Less than 25’, ’race African-American’, ’legal Pretrial’] 9.4% (’Divorced’, ’Significant other’) 0% 0%

[’Male’, ’Less than 25’, ’race African-American’, ’legal Pretrial’] 9.4% (’Divorced’, ’Single’) 0% 9.2%

[’Male’, ’Less than 25’, ’race African-American’, ’legal Pretrial’] 9.4% (’Divorced’, ’Widowed’) 0% 0%

[’Male’, ’Less than 25’, ’race African-American’, ’legal Pretrial’] 9.4% (’Divorced’, ’Unknown maritalStatus’) 0% 0%

[’Male’, ’Less than 25’, ’race African-American’, ’legal Pretrial’] 9.4% (’Married’, ’Seperated’) 0.1% 0%

[’Male’, ’Less than 25’, ’race African-American’, ’Single’] 9.4% (’legal Pretrial’, ’legal Post Sentence’) 9.2% 0.1%

[’Male’, ’Less than 25’, ’race African-American’, ’Single’] 9.4% (’legal Pretrial’, ’legal Unknown’) 9.2% 0%

[’Male’, ’Less than 25’, ’race African-American’, ’Single’] 9.4% (’legal Pretrial’, ’legal other’) 9.2% 0.1%

[’Male’, ’Less than 25’, ’race African-American’, ’Single’] 9.4% (’legal Post Sentence’, ’legal Unknown’) 0.1% 0%

[’Female’, ’25-45’, ’Single’, ’legal Pretrial’] 8.6% (’race African-American’, ’race Asian’) 4.6% 0%

[’Female’, ’25-45’, ’Single’, ’legal Pretrial’] 8.6% (’race African-American’, ’race Caucasian’) 4.6% 3%

[’Female’, ’25-45’, ’Single’, ’legal Pretrial’] 8.6% (’race African-American’, ’race Hispanic’) 4.6% 0.7%

[’Female’, ’25-45’, ’Single’, ’legal Pretrial’] 8.6% (’race African-American’, ’race Native American’) 4.6% 0%

[’Female’, ’25-45’, ’Single’, ’legal Pretrial’] 8.6% (’race African-American’, ’race Other’) 4.6% 0.3%

[’Female’, ’25-45’, ’Single’, ’legal Pretrial’] 8.6% (’race Asian’, ’race Caucasian’) 0% 3%

[’Male’, ’Greater than 45’, ’race Caucasian’, ’legal Pretrial’] 7.8% (’Divorced’, ’Married’) 1% 1.1%

[’Male’, ’Greater than 45’, ’race Caucasian’, ’legal Pretrial’] 7.8% (’Divorced’, ’Seperated’) 1% 0.2%

[’Male’, ’Greater than 45’, ’race Caucasian’, ’legal Pretrial’] 7.8% (’Divorced’, ’Significant other’) 1% 0.5%

[’Male’, ’Greater than 45’, ’race Caucasian’, ’legal Pretrial’] 7.8% (’Divorced’, ’Single’) 1% 4.8%

[’Male’, ’Greater than 45’, ’race Caucasian’, ’legal Pretrial’] 7.8% (’Divorced’, ’Widowed’) 1% 0.1%

[’Male’, ’Greater than 45’, ’race Caucasian’, ’legal Pretrial’] 7.8% (’Divorced’, ’Unknown maritalStatus’) 1% 0.1%

[’Male’, ’Greater than 45’, ’race Caucasian’, ’legal Pretrial’] 7.8% (’Married’, ’Seperated’) 1.1% 0.2%

[’Female’, ’race African-American’, ’Single’, ’legal Pretrial’] 7.7% (’Less than 25’, ’25-45’) 2.1% 4.6%

[’Female’, ’race African-American’, ’Single’, ’legal Pretrial’] 7.7% (’Less than 25’, ’Greater than 45’) 2.1% 1%

[’Female’, ’race African-American’, ’Single’, ’legal Pretrial’] 7.7% (’25-45’, ’Greater than 45’) 4.6% 1%

[’Male’, ’Greater than 45’, ’race African-American’, ’legal Pretrial’] 6.2% (’Divorced’, ’Married’) 0.5% 1.3%

[’Male’, ’Greater than 45’, ’race African-American’, ’legal Pretrial’] 6.2% (’Divorced’, ’Seperated’) 0.5% 0.2%

[’Male’, ’Greater than 45’, ’race African-American’, ’legal Pretrial’] 6.2% (’Divorced’, ’Significant other’) 0.5% 0.2%

[’Male’, ’Greater than 45’, ’race African-American’, ’legal Pretrial’] 6.2% (’Divorced’, ’Single’) 0.5% 3.8%

[’Male’, ’Greater than 45’, ’race African-American’, ’legal Pretrial’] 6.2% (’Divorced’, ’Widowed’) 0.5% 0.1%

[’Male’, ’Greater than 45’, ’race African-American’, ’legal Pretrial’] 6.2% (’Divorced’, ’Unknown maritalStatus’) 0.5% 0.1%

[’Male’, ’Greater than 45’, ’race African-American’, ’legal Pretrial’] 6.2% (’Married’, ’Seperated’) 1.3% 0.2%

[’Greater than 45’, ’race Caucasian’, ’Single’, ’legal Pretrial’] 6.16% (’Male’, ’Female’) 4.8% 1.3%

[’Female’, ’25-45’, ’race African-American’, ’legal Pretrial’] 5.7% (’Divorced’, ’Married’) 0.1% 0.5%

[’Female’, ’25-45’, ’race African-American’, ’legal Pretrial’] 5.7% (’Divorced’, ’Seperated’) 0.1% 0.1%

[’Female’, ’25-45’, ’race African-American’, ’legal Pretrial’] 5.7% (’Divorced’, ’Significant other’) 0.1% 0.3%

[’Female’, ’25-45’, ’race African-American’, ’legal Pretrial’] 5.7% (’Divorced’, ’Single’) 0.1% 4.6%

[’Female’, ’25-45’, ’race African-American’, ’legal Pretrial’] 5.7% (’Divorced’, ’Widowed’) 0.1% 0%

[’Female’, ’25-45’, ’race African-American’, ’legal Pretrial’] 5.7% (’Divorced’, ’Unknown maritalStatus’) 0.1% 0%

[’Female’, ’25-45’, ’race African-American’, ’legal Pretrial’] 5.7% (’Married’, ’Seperated’) 0.5% 0.1%

[’Male’, ’race Hispanic’, ’Single’, ’legal Pretrial’] 5.4% (’Less than 25’, ’25-45’) 1.2% 3.4%

[’Male’, ’race Hispanic’, ’Single’, ’legal Pretrial’] 5.4% (’Less than 25’, ’Greater than 45’) 1.2% 0.9%

[’Male’, ’race Hispanic’, ’Single’, ’legal Pretrial’] 5.4% (’25-45’, ’Greater than 45’) 3.4% 0.9%

Table 8.4: Conditional Statistical Parity groups Crime Dataset.
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8.3 Income Dataset

8.3.1 Groups for Algorithm Fairness Metrics 13, 15− 21, 26, 27.

Combination
Proportion

comparing 1
Proportion,
comparing 2

(’Male’, ’Female’) 66.8% 33.2%

(’Fulltime’, ’Parttime’) 46.6% 24%

(’Fulltime’, ’Above fulltime’) 46.6% 29.4%

(’Parttime’, ’Above fulltime’) 24% 29.4%

(’race African American’, ’race Asian’) 9.1% 3.3%

(’race African American’, ’race Caucasian’) 9.1% 86%

(’race African American’, ’race Hispanic’) 9.1% 0%

(’race African American’, ’race Native American’) 9.1% 0.9%

(’race African American’, ’race Other’) 9.1% 0.7%

(’race Asian’, ’race Caucasian’) 3.3% 86%

(’race Asian’, ’race Hispanic’) 3.3% 0%

(’race Asian’, ’race Native American’) 3.3% 0.9%

(’race Asian’, ’race Other’) 3.3% 0.7%

(’race Caucasian’, ’race Hispanic’) 86% 0%

(’race Caucasian’, ’race Native American’) 86% 0.9%

(’race Caucasian’, ’race Other’) 86% 0.7%

(’race Hispanic’, ’race Native American’) 0% 0.9%

(’race Hispanic’, ’race Other’) 0% 0.7%

(’race Native American’, ’race Other’) 0.9% 0.7%

(’Divorced’, ’Married’) 14.1% 47.9%

(’Divorced’, ’Seperated’) 14.1% 3.2%

(’Divorced’, ’Significant other’) 14.1% 0%

(’Divorced’, ’Single’) 14.1% 32.1%

(’Divorced’, ’Widowed’) 14.1% 2.7%

(’Divorced’, ’Unknown maritalStatus’) 14.1% 0%

(’Married’, ’Seperated’) 47.9% 3.2%

(’Married’, ’Significant other’) 47.9% 0%

(’Married’, ’Single’) 47.9% 32.1%

(’Married’, ’Widowed’) 47.9% 2.7%

(’Married’, ’Unknown maritalStatus’) 47.9% 0%

(’Seperated’, ’Significant other’) 3.2% 0%

(’Seperated’, ’Single’) 3.2% 32.1%

(’Seperated’, ’Widowed’) 3.2% 2.7%

(’Seperated’, ’Unknown maritalStatus’) 3.2% 0%

(’Significant other’, ’Single’) 0% 32.1%

(’Significant other’, ’Widowed’) 0% 2.7%

(’Significant other’, ’Unknown maritalStatus’) 0% 0%

(’Single’, ’Widowed’) 32.1% 2.7%

(’Single’, ’Unknown maritalStatus’) 32.1% 0%

(’Widowed’, ’Unknown maritalStatus’) 2.7% 0%

(’Above uni’, ’Uni’) 11.5% 44.2%

(’Above uni’, ’Middelbare school’) 11.5% 42.6%

(’Above uni’, ’Basisschool’) 11.5% 1.7%

(’Uni’, ’Middelbare school’) 44.2% 42.6%

(’Uni’, ’Basisschool’) 44.2% 1.7%

(’Middelbare school’, ’Basisschool’) 42.6% 1.7%

Table 8.5: Groups Income Dataset.
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8.3.2 Groups for Conditional Statistical Parity

Combination
Proportion of
combination

Comparing
Proportion

comparing 1
Proportion

comparing 2

[’Male’, ’Fulltime’, ’race Caucasian’, ’Married’] 17.4% (’Above uni’, ’Uni’) 2.0% 7.0%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Married’] 17.4% (’Above uni’, ’Middelbare school’) 2.0% 7.9%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Married’] 17.4% (’Above uni’, ’Basisschool’) 2.0% 0.4%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Married’] 17.4% (’Uni’, ’Middelbare school’) 7.0% 7.9%

[’Male’, ’race Caucasian’, ’Married’, ’Uni’] 16.4% (’Fulltime’, ’Parttime’) 7.0% 1.7%

[’Male’, ’race Caucasian’, ’Married’, ’Uni’] 16.4% (’Fulltime’, ’Above fulltime’) 7.0% 7.7%

[’Male’, ’race Caucasian’, ’Married’, ’Uni’] 16.4% (’Parttime’, ’Above fulltime’) 1.7% 7.7%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Married’] 15.8% (’Above uni’, ’Uni’) 2.7% 7.7%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Married’] 15.8% (’Above uni’, ’Middelbare school’) 2.7% 5.2%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Married’] 15.8% (’Above uni’, ’Basisschool’) 2.7% 0.2%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Married’] 15.8% (’Uni’, ’Middelbare school’) 7.7% 5.2%

[’Male’, ’race Caucasian’, ’Married’, ’Middelbare school’] 15.1% (’Fulltime’, ’Parttime’) 7.9% 1.9%

[’Male’, ’race Caucasian’, ’Married’, ’Middelbare school’] 15.1% (’Fulltime’, ’Above fulltime’) 7.9% 5.2%

[’Male’, ’race Caucasian’, ’Married’, ’Middelbare school’] 15.1% (’Parttime’, ’Above fulltime’) 1.9% 5.2%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Middelbare school’] 12.9% (’Divorced’, ’Married’) 1.3% 7.9%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Middelbare school’] 12.9% (’Divorced’, ’Seperated’) 1.3% 0.3%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Middelbare school’] 12.9% (’Divorced’, ’Significant other’) 1.3% 0.0%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Middelbare school’] 12.9% (’Divorced’, ’Single’) 1.3% 3.4%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Middelbare school’] 12.9% (’Divorced’, ’Widowed’) 1.3% 0.0%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Middelbare school’] 12.9% (’Divorced’, ’Unknown maritalStatus’) 1.3% 0.0%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Middelbare school’] 12.9% (’Married’, ’Seperated’) 7.9% 0.3%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Uni’] 10.7% (’Divorced’, ’Married’) 0.8% 7.0%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Uni’] 10.7% (’Divorced’, ’Seperated’) 0.8% 0.2%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Uni’] 10.7% (’Divorced’, ’Significant other’) 0.8% 0.0%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Uni’] 10.7% (’Divorced’, ’Single’) 0.8% 2.6%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Uni’] 10.7% (’Divorced’, ’Widowed’) 0.8% 0.0%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Uni’] 10.7% (’Divorced’, ’Unknown maritalStatus’) 0.8% 0.0%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Uni’] 10.7% (’Married’, ’Seperated’) 7.0% 0.2%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Uni’] 10.5% (’Divorced’, ’Married’) 0.9% 7.7%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Uni’] 10.5% (’Divorced’, ’Seperated’) 0.9% 0.1%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Uni’] 10.5% (’Divorced’, ’Significant other’) 0.9% 0.0%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Uni’] 10.5% (’Divorced’, ’Single’) 0.9% 1.8%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Uni’] 10.5% (’Divorced’, ’Widowed’) 0.9% 0.0%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Uni’] 10.5% (’Divorced’, ’Unknown maritalStatus’) 0.9% 0.0%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Uni’] 10.5% (’Married’, ’Seperated’) 7.7% 0.1%

[’Male’, ’Fulltime’, ’Married’, ’Middelbare school’] 9.2% (’race African American’, ’race Asian’) 0.8% 0.2%

[’Male’, ’Fulltime’, ’Married’, ’Middelbare school’] 9.2% (’race African American’, ’race Caucasian’) 0.8% 7.9%

[’Male’, ’Fulltime’, ’Married’, ’Middelbare school’] 9.2% (’race African American’, ’race Hispanic’) 0.8% 0.0%

[’Male’, ’Fulltime’, ’Married’, ’Middelbare school’] 9.2% (’race African American’, ’race Native American’) 0.8% 0.1%

[’Male’, ’Fulltime’, ’Married’, ’Middelbare school’] 9.2% (’race African American’, ’race Other’) 0.8% 0.1%

[’Male’, ’Fulltime’, ’Married’, ’Middelbare school’] 9.2% (’race Asian’, ’race Caucasian’) 0.2% 7.9%

[’Fulltime’, ’race Caucasian’, ’Married’, ’Middelbare school’] 9.0% (’Male’, ’Female’) 7.9% 1.1%

[’Above fulltime’, ’race Caucasian’, ’Married’, ’Uni’] 8.3% (’Male’, ’Female’) 7.7% 0.6%

[’Male’, ’Above fulltime’, ’Married’, ’Uni’] 8.2% (’race African American’, ’race Asian’) 0.2% 0.2%

[’Male’, ’Above fulltime’, ’Married’, ’Uni’] 8.2% (’race African American’, ’race Caucasian’) 0.2% 7.7%

[’Male’, ’Above fulltime’, ’Married’, ’Uni’] 8.2% (’race African American’, ’race Hispanic’) 0.2% 0.0%

[’Male’, ’Above fulltime’, ’Married’, ’Uni’] 8.2% (’race African American’, ’race Native American’) 0.2% 0.0%

[’Male’, ’Above fulltime’, ’Married’, ’Uni’] 8.2% (’race African American’, ’race Other’) 0.2% 0.0%

[’Male’, ’Above fulltime’, ’Married’, ’Uni’] 8.2% (’race Asian’, ’race Caucasian’) 0.2% 7.7%

[’Fulltime’, ’race Caucasian’, ’Married’, ’Uni’] 8.1% (’Male’, ’Female’) 7.0% 1.0%

[’Male’, ’Fulltime’, ’Married’, ’Uni’] 8.0% (’race African American’, ’race Asian’) 0.6% 0.3%

[’Male’, ’Fulltime’, ’Married’, ’Uni’] 8.0% (’race African American’, ’race Caucasian’) 0.6% 7.0%

[’Male’, ’Fulltime’, ’Married’, ’Uni’] 8.0% (’race African American’, ’race Hispanic’) 0.6% 0.0%

[’Male’, ’Fulltime’, ’Married’, ’Uni’] 8.0% (’race African American’, ’race Native American’) 0.6% 0.1%

[’Male’, ’Fulltime’, ’Married’, ’Uni’] 8.0% (’race African American’, ’race Other’) 0.6% 0.1%

[’Male’, ’Fulltime’, ’Married’, ’Uni’] 8.0% (’race Asian’, ’race Caucasian’) 0.3% 7.0%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Middelbare school’] 7.7% (’Divorced’, ’Married’) 1.0% 5.2%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Middelbare school’] 7.7% (’Divorced’, ’Seperated’) 1.0% 0.1%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Middelbare school’] 7.7% (’Divorced’, ’Significant other’) 1.0% 0.0%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Middelbare school’] 7.7% (’Divorced’, ’Single’) 1.0% 1.4%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Middelbare school’] 7.7% (’Divorced’, ’Widowed’) 1.0% 0.1%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Middelbare school’] 7.7% (’Divorced’, ’Unknown maritalStatus’) 1.0% 0.0%

[’Male’, ’Above fulltime’, ’race Caucasian’, ’Middelbare school’] 7.7% (’Married’, ’Seperated’) 5.2% 0.1%

[’Male’, ’race Caucasian’, ’Single’, ’Uni’] 6.7% (’Fulltime’, ’Parttime’) 2.6% 2.3%

[’Male’, ’race Caucasian’, ’Single’, ’Uni’] 6.7% (’Fulltime’, ’Above fulltime’) 2.6% 1.8%

[’Male’, ’race Caucasian’, ’Single’, ’Uni’] 6.7% (’Parttime’, ’Above fulltime’) 2.3% 1.8%

[’Male’, ’race Caucasian’, ’Single’, ’Middelbare school’] 6.7% (’Fulltime’, ’Parttime’) 3.4% 1.9%

[’Male’, ’race Caucasian’, ’Single’, ’Middelbare school’] 6.7% (’Fulltime’, ’Above fulltime’) 3.4% 1.4%

[’Male’, ’race Caucasian’, ’Single’, ’Middelbare school’] 6.7% (’Parttime’, ’Above fulltime’) 1.9% 1.4%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Single’] 6.6% (’Above uni’, ’Uni’) 0.5% 2.6%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Single’] 6.6% (’Above uni’, ’Middelbare school’) 0.5% 3.4%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Single’] 6.6% (’Above uni’, ’Basisschool’) 0.5% 0.2%

[’Male’, ’Fulltime’, ’race Caucasian’, ’Single’] 6.6% (’Uni’, ’Middelbare school’) 2.6% 3.4%

[’Female’, ’race Caucasian’, ’Single’, ’Uni’] 6.5% (’Fulltime’, ’Parttime’) 2.5% 2.8%

[’Female’, ’race Caucasian’, ’Single’, ’Uni’] 6.5% (’Fulltime’, ’Above fulltime’) 2.5% 1.3%

[’Female’, ’race Caucasian’, ’Single’, ’Uni’] 6.5% (’Parttime’, ’Above fulltime’) 2.8% 1.3%

[’Male’, ’Above fulltime’, ’Married’, ’Middelbare school’] 5.6% (’race African American’, ’race Asian’) 0.2% 0.1%

[’Male’, ’Above fulltime’, ’Married’, ’Middelbare school’] 5.6% (’race African American’, ’race Caucasian’) 0.2% 5.2%

[’Male’, ’Above fulltime’, ’Married’, ’Middelbare school’] 5.6% (’race African American’, ’race Hispanic’) 0.2% 0.0%

[’Male’, ’Above fulltime’, ’Married’, ’Middelbare school’] 5.6% (’race African American’, ’race Native American’) 0.2% 0.0%

[’Male’, ’Above fulltime’, ’Married’, ’Middelbare school’] 5.6% (’race African American’, ’race Other’) 0.2% 0.0%

[’Male’, ’Above fulltime’, ’Married’, ’Middelbare school’] 5.6% (’race Asian’, ’race Caucasian’) 0.1% 5.2%

[’Above fulltime’, ’race Caucasian’, ’Married’, ’Middelbare school’] 5.4% (’Male’, ’Female’) 5.2% 0.2%

[’Female’, ’Fulltime’, ’race Caucasian’, ’Uni’] 5.3% (’Divorced’, ’Married’) 1.4% 1.0%

[’Female’, ’Fulltime’, ’race Caucasian’, ’Uni’] 5.3% (’Divorced’, ’Seperated’) 1.4% 0.1%

[’Female’, ’Fulltime’, ’race Caucasian’, ’Uni’] 5.3% (’Divorced’, ’Significant other’) 1.4% 0.0%

[’Female’, ’Fulltime’, ’race Caucasian’, ’Uni’] 5.3% (’Divorced’, ’Single’) 1.4% 2.5%

[’Female’, ’Fulltime’, ’race Caucasian’, ’Uni’] 5.3% (’Divorced’, ’Widowed’) 1.4% 0.3%

[’Female’, ’Fulltime’, ’race Caucasian’, ’Uni’] 5.3% (’Divorced’, ’Unknown maritalStatus’) 1.4% 0.0%

[’Female’, ’Fulltime’, ’race Caucasian’, ’Uni’] 5.3% (’Married’, ’Seperated’) 1.0% 0.1%

[’Male’, ’race Caucasian’, ’Married’, ’Above uni’] 5.2% (’Fulltime’, ’Parttime’) 2.0% 0.4%

[’Male’, ’race Caucasian’, ’Married’, ’Above uni’] 5.2% (’Fulltime’, ’Above fulltime’) 2.0% 2.7%

[’Male’, ’race Caucasian’, ’Married’, ’Above uni’] 5.2% (’Parttime’, ’Above fulltime’) 0.4% 2.7%

[’Female’, ’Parttime’, ’race Caucasian’, ’Single’] 5.1% (’Above uni’, ’Uni’) 0.4% 2.8%

[’Female’, ’Parttime’, ’race Caucasian’, ’Single’] 5.1% (’Above uni’, ’Middelbare school’) 0.4% 2.0%

[’Female’, ’Parttime’, ’race Caucasian’, ’Single’] 5.1% (’Above uni’, ’Basisschool’) 0.4% 0.0%

[’Female’, ’Parttime’, ’race Caucasian’, ’Single’] 5.1% (’Uni’, ’Middelbare school’) 2.8% 2.0%

[’Fulltime’, ’race Caucasian’, ’Single’, ’Uni’] 5.1% (’Male’, ’Female’) 2.6% 2.5%

[’Parttime’, ’race Caucasian’, ’Single’, ’Uni’] 5.1% (’Male’, ’Female’) 2.3% 2.8%

Table 8.6: Conditional Statistical Parity groups Income Dataset.
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