
Vrije Universiteit Amsterdam SINCERIUS

Master Internship Report

Unsupervised Outlier Detection in Support
of Financial Due Diligence

Author: Lotte Huft (2596520)

1st supervisor: prof. dr. Mark Hoogendoorn
daily supervisor: dr. Jan van Angelen (SINCERIUS)
2nd reader: prof. dr. André C.M. Ran

August 25, 2022

Preface

I wrote this paper as a thesis for the Master Business Analytics followed at the Vrije

Universiteit van Amsterdam. It is part of an internship I followed at SINCERIUS as a

contribution to the modernization of the Financial Due Diligence branch of the organiza-

tion.

I would like to thank Jan van Angelen from the Business Intelligence team for being my

external supervisor. In addition, I would like to thank all the consultants at SINCERIUS

for giving their expert opinions to help me to be able to evaluate my results and everyone

who helped me in any other way before and during my thesis.

I would also like to thank Professor Mark Hoogendoorn for being my supervisor and help-

ing me during this whole process. He greatly supported me with his guidance and insight.

Lastly, I would like to thank Professor André C.M. Ran for being my second reader.

i

Summary

In this thesis the added value of unsupervised outlier detection during the Financial Due

Diligence process is discussed. More specifically, it is performed on monthly revenue data

per client of a set of companies. Based on a review of related literature three algorithms

have been chosen and their results are compared to each other and to results from expert

interviews with consultants within the field. This is done to answer the research question;

"Which of the researched algorithms used to perform an unsupervised outlier detection

on client revenue data yields the result which most closely resembles the outlier detection

performed by FDD consultants?".

From the results it is shown that from the algorithms tested Local Outlier Factor per-

forms best when compared to the experts’ opinions. However, even the results from Local

Outlier Factor still leave a lot of room for improvement by performing further research.

The most significant areas of improvement for future research are concluded to be re-

implementing the algorithms on a larger data set with both a broader selection of company

types as well as a greater selection of similar companies. Another important area to pay

attention to is the feature engineering and selection.

ii

Contents

1 Introduction 1

2 Background 5

2.1 Application Domain . 5

2.2 Machine Learning . 5

3 Review of Related Literature 8

4 Data 11

4.1 Data Exploration . 11

4.2 Data pre-processing . 17

5 Methods 21

5.1 Isolation Forest . 21

5.2 Local Outlier Factor . 24

5.3 One-Class Support Vector Machine . 27

6 Experimental setup 29

6.1 Data split . 29

6.2 Implementing algorithms . 29

6.3 Evaluation . 30

7 Results 32

7.1 Pattern analysis of the results from the implemented

algorithms . 32

7.2 Comparative results . 35

8 Conclusion and Discussion 39

A List of abbreviations 41

iii

CONTENTS

B Local Outlier Factor definitions 42

C Explanation of extra features related to the companies 43

D Explanation of extra features derived from the revenue 44

E Heatmap results of implemented algorithms 45

References 49

iv

1

Introduction

When the transaction of ownership of a company or part of a company occurs, i.e., Mergers

and Acquisitions (M&A), different kinds of investigations are done into the company in

question. These investigations are often referred to as due diligence. Examples of these

types of due diligence are Strategic, Financial, and Legal Due Diligence. During Financial

Due Diligence (FDD), one of the main objectives is finding anything notable in the heaps

of financial data these companies have. Parts of the data are obtained from audit files.

These files contain all the financial transactions of a company and have many different

uses, e.g., during audit. (1) (2)

The data from audit files is mostly analyzed manually, only using some software tools

to transform and visualize data. This leaves a lot of room by improvement when imple-

menting forms of Machine Learning. Since the Transaction Services (TS) market is a highly

competitive one, having a leg up to the competition can contribute in whether a company

is chosen to perform the FDD. In addition, making a process quicker can save time within

a FDD, which in turn can fasten the turnover time of projects and leave more time to take

on more new deals.

The field of Machine Learning is undeniably still a developing one with an increasing

popularity in different kinds of fields. Every once in while a paper will be written about

the so-called trends and challenges still to be solved. Examples of this are the papers by

Jordan and Mitchell (3) and by Holzinger et al. (4). These papers give some demonstra-

tion of the magnitude the Machine Learning industry has already reached and at the same

time show some of the many problems that are yet to be solved. The financial sector is

not staying behind on the advancements. In the book by Puneet Mathur (5) the influence

1

Machine Learning has on three different sectors has been thoroughly researched. Finance

is named here as one of these sectors, with the other two being retail and healthcare. In

Chapter 14, fraud detection is pointed out as one of the fields within finance where the

advantageous of Machine Learning have already been recognized and, partly, realized. Ma-

chine Learning has now become an important part of the field. Therefor the field of fraud

detection will be used as a source of existing research in this thesis. In the same chapter

some application examples of Machine Learning within a couple of other finance segments

are described. Two of these segments are "Finance advisory and management services"

and "Accounting", which are both somewhat related to Financial Due Diligence. However,

these fields are also classified as the two with the lowest Technology Maturity Level. This

confirms the observation that not all of finance has adopted Machine Learning. In the

sector of FDD most of the analysis seem to still be done by hand.

One of the possible areas of improvement is performing an outlier detection on the "rev-

enue per client" data. This data consists of all monetary income transactions of a company,

specifically those that can be linked to a specific client of the company in question. The

data can be summed to portray these transactions monthly. As a part of a FDD, for most

companies this data is analyzed to locate abnormal behavior from clients. This is done

to make sure the revenue of a company is sustainable. For example, if a company gets a

large part of its revenue from a single client, this will be flagged. Another example could

be high spikes or dips in the revenue linked to an otherwise relatively consistent customer.

Abnormal behavior will consequently be queried at the company in question to be able to

conclude if the abnormal behavior is also something to be alarmed about.

The locating of these abnormal behaviors, or outliers in other terms, is the problem

that this thesis will be focusing on. This is a task that can be very time consuming and

sensitive to errors when done by humans, even when these humans are sector experts. In

the current set up, the revenue per client data is mostly analyzed using Excel templates.

Specifically, by visualizing the trend lines, of the top clients, and searching for outliers

by looking at these visuals. Although Excel is an excellent tool for data analysis, it will

hopefully be easier, faster, and less prone to errors when this task is done using Machine

Learning. Since this specific problem is not one that has been extensively researched, this

thesis will be comparing it to similar problems where outlier detection is used on financial

data, mainly the aforementioned fraud detection.

In the paper by Xiaogang Su and Chih-Ling Tsai (6) the history of the Machine Learning

2

problem of outlier detection is explained. In the early stages performing a statistical anal-

ysis was the most sophisticated way of finding outliers in a data set and this had to be

done under assumptions of the distribution of the data. In the current day, this might still

be a feasible way to approach some problems within the field. However, with the evolution

of data collection the size of data sets has greatly increased, both by number of dimensions

and number of observations. These statistical analysis approaches are not scalable enough

to be able to deal with these types of sets within a timely matter. In addition, these

approaches rely on the data to be quantitative and will not work for ordinal or categorical

data.

Furthermore, some more current approaches are discussed in the paper and a distinction

is made between techniques to be used when the true outliers of the data are known and

those used when this information is not available. In the latter case a technique referred

to as unsupervised Machine Learning should be used.

Another part of the paper discusses the problem that data used for outlier detection is

inherently unbalanced, which makes classifying new data into outliers and non-outliers a

complicated task.

The data used in this thesis is completely unlabeled and it is also hard to classify each

of the instance within it as an outlier with a 0 or 1 certainty. In addition to the previously

discussed challenges with supervised learning, this is enough reason to decide to approach

the outlier detection on the client revenue data as an unsupervised Machine Learning prob-

lem.

In this thesis, three algorithms will be tested against the problem of outlier detection in

client revenue data. These algorithms have been proven to work well for similar problems.

The research question deducted from this problem is "Which of the researched algorithms

used to perform an unsupervised outlier detection on client revenue data yields the result

which most closely resembles the outlier detection performed by FDD consultants?".

The second chapter of this thesis will be focusing on the background of this problem.

This contains the current situation at SINCERIUS and some more information about

the company. In addition, this chapter will be discussing the related Machine Learning

background. Some literature related to the problem of this thesis is discussed in chapter

three. This includes some literary background of Unsupervised Outlier detection and

elaborating on some of the commonly used algorithms within this field.

In the four chapter, the enquiring, exploration, description, and processing of the data

are be discussed.

3

The methods used to research the question at hand are described in chapter five and in

chapter six the experimental setup is given. After, the results derived from these methods

are reported in chapter seven.

Lastly, chapter eight will be the conclusion and discussion of this thesis.

Find the appendix and references at the end of the report.

4

2

Background

2.1 Application Domain

This thesis is written about research done under an internship done at SINCERIUS. This

company is made up of multiple branches. They started as a company providing Trans-

action Services in the form of Financial Due Diligence for M&A transactions. After some

years, a Business Intelligence (BI) team was added, which now focuses on the improvement

of different internal processes but also sells Financial and Operational tools to improve the

insight the clients have of their data. Lastly, a Performance Improvement (PI) branch was

established. The PI team helps companies elevate their business by using their extensive

knowledge to produce analyses on how to improve their operations. This thesis will be

building on the desire within SINCERIUS to always be improving. The focus will be on

the processes within the TS team. The team has years of audit files available of a great

number of companies in different branches and with a variety of backgrounds. At SIN-

CERIUS, these audit files play a great part in determining whether a company is as fiscally

healthy as they present to be. As of this moment, they mainly dissect these audit files

using EXCEL.

2.2 Machine Learning

According to Plasek (2016) (7) defining the history of Machine Learning is impossible. He

also claimed that the innovation of the field has not come close to what historical figures like

Alan Turing deemed as possible. However, in 1959, A.L. Samuel (8) wrote a paper about

writing a program that was able to play checkers. In this same paper he would also define

the term Machine Learning. He has also described the field of Machine Learning as "Field

5

2.2 Machine Learning

of study that gives computers the ability to learn without being explicitly programmed".

All this has made him a crucial part of the history of this science.

Machine Learning problems can typically be put in one of four classes. The next defi-

nitions follow those of the book by Rebala et al. (9). Firstly, supervised algorithms can

make predictions on new data after learning from examples of data where the target values

are already known. These target values can also be referred to as labels. It learns what

key characteristics decide what the label should be and subsequently use them as a bases

to predict the labels of any new data. This method can be used when, for example, doing

classification or forecasting. In the case of unsupervised algorithms, the opportunity is

created to still learn about data in an automated way when no labels are available. These

algorithms are trained to identify trends within the data and create groups based on those

similarities. A variation between supervised and unsupervised learning is semi-supervised

learning, where only a part of the training data has been labeled to save time. Only a

small amount of the data needs to be labeled for the algorithms to work, instead of the

large amount supervised learning needs. It then will use techniques similar to unsupervised

learning to create clusters and link those to the labeled data. Lastly, Reinforcement learn-

ing is a technique used when the algorithm has many to decide from and/or the current

situation is ever changing. For example, when an algorithm plays a human in chess. Every

turn there are a lot of possible moves and depending on what the opponent’s next move

is a whole new set of moves is created at every turn. To solve this and other problems

with a similar setup, it must learn by trial and error. The longer it learns, the better

it gets at estimating the long-term consequences of its choices while trying to maximize

a predetermined score. For every decision it makes, it takes into consideration its own

current state as well as the current state of the external environment.

Continuing on the subject of unsupervised learning since this is the class of Machine

Learning this thesis will be focusing on. Like previously stated, unsupervised machine

learning groups similar data by searching for similarities, assigning data to different groups

without particularly knowing what these groups entail. The formal term for this is clus-

tering. A deduction from the clustering problem is outlier detection. Outlier detection can

be summarized finding data points that can be classified as anomalies. (10)

In other words, the algorithm tries to separate the data in a, smaller, group of outliers

and a group of "normal" data. In the following section some examples of techniques that

unsupervised outlier detection methods can be based on will be explained in more detail.

This follows the methods as named in the paper by Wang et al. (11).

6

2.2 Machine Learning

Firstly, probabilistic models rely on the assumption that most data originates from the

same distribution. If the likelihood that an instance is sampled from this particular dis-

tribution is very small, it has a high chance of being an outlier according to this type of

model. Next, clustering-based models define outliers as instances not part of clusters as a

result of a clustering algorithm. On the other hand, distance-based models compare the

distance from each instance to the closest k instances around it, i.e., the k-th nearest neigh-

bor distance. If the k-th nearest neighbor distance of an instance is larger than average,

it is probably an outlier by the rules of distance-based models. These methods however

do not work well for data sets with multiple clusters with different densities. A similar

method that works better for these types of data sets are the density-based methods. These

methods compare the density of the area around an instance to those of instances close

to it, i.e., it compares the local density to the local densities of its k-nearest neighbors.

Since these techniques really focuses on comparing data to other local data, they are also

called local models. Lastly, time series outlier detection models are used to find outliers

in data sets ordered on some timescale. These outliers can either be a single instance with

an unexpected value or a complete window of time. Expected values of time series can be

found by taking in consideration some noise, a general trend, and the seasonality. When

an instance or a window of time deviates too much from this expectation, it might be an

outlier.

7

3

Review of Related Literature

In a paper by Domingues et al. (12) 14 algorithms were compared to each other on 15

different data sets. These data sets contained both real data sets and synthetic ones.

To show the performance of these algorithms, the ROC AUC and the PR AUC were

calculated. AUC is an abbreviation for the Area Under the Curve and ROC stands for

Receiver Operating Characteristics. The ROC-Curve represents the trade-off between the

correctly classifying the positive examples, true positives, and falsely classifying negative

examples as positive, false positives. In the case of outlier detection this translates to the

trade-off between correctly classifying outliers and incorrectly classifying non-outliers as

outliers. The PR AUC is a similar measure for binary classification, where PR stands for

Precision-Recall and the PR AUC is the trade-off between these two measures. Precision

shows what part of the data classified as positive are true positives. Recall shows what part

of the real positives have been classified as positive. The PR AUC has been introduced

as a substitute for the ROC AUC when dealing with data that contains a large imbalance

between the classes. To explain this a bit further, a threshold is set for a classification on

problem where only 0.1% of the data is a true positive. This threshold shows to have a

low false positive rate, like 0.1, and a high true positive rate, like 0.9, which seems to be a

good result. Although, this comes down to 90% of the true positive class being correctly

classified, more than 99% of what is classified as positives will be false positives. Therefore,

ROC AUC does not work well in these cases. All this is discussed further in a paper by

Zhou et al. (13).

In addition to testing the performance of each algorithm per data set, the robustness of

the algorithms was also tested by Domingues et al. (12). This was done by changing the

number of features, the sample size, and the noise density. When changing the number of

features and the sample size, the training time, prediction time, and memory the algorithms

8

needed was also tracked. This is all done to test how scalable these algorithms are for

different types of data.

When looking at the mean average precision over all data sets the best performing

algorithms looked to be iForest, RKDE, PPCA, and OCSVM. When testing the robustness

of these algorithms all seem to obtain good results. DPGMM and GMM also shows good

robustness.

When looking at the increase of training and prediction time when increasing the number

of features and the number of samples, LSA and iForest had the best overall result. Other

algorithms did perform well one some of these criteria but lacked overall scalability. For

example, LOF and RKDE do very well when the number of features is increased for both

training and prediction time but increasing the number of samples makes them go over 24

hours, after which the algorithms reach a timeout for this research. In addition, these two

algorithms also reached the max memory usage in that part of the testing. As a conclusion

in this paper, iForest is as the overall best performing algorithm. RKDE and OCSVM are

also given as good performers, yet both are less scalable than the previously mentioned

iForest.

Another comparative paper where multiple unsupervised outlier detection algorithms are

tested against each other with the help of 14 different data sets is the paper by ur Rehman

et al. (14). To be specific, Four, similar, proposed methods are tested against 19 state-

of-art unsupervised algorithms using the ROC AUC as an evaluation metric. Although

the proposed methods seem to perform the best in the results shown for the synthetic

data sets, LOF obtained the best ROC AUC values out of the state-of-art algorithms. In

addition, LOF also had a far shorter computational time. In the tests using real data, the

proposed algorithms again gave the overall best results. However, not all state-of-art al-

gorithms that the paper previously mentioned were included in the results. When looking

at the results that were given, LDF and k-NN did outperform the proposed methods on

some data sets. Furthermore, the best performing state-of-art algorithms varies somewhat

between the different data sets.

Now to discuss some studies that are also dealing with outlier detection in financial set-

tings to show which algorithms are proven to work well for data similar to the set used

in this thesis. Firstly, the paper by Ahmed et al. (15) compares ten techniques to find

outliers in financial data, specifically transaction data of stocks on the Australian Stock

Exchange. It uses a set outlier ratio and uses ROC AUC as an evaluation measure. This

paper concludes that all but two algorithms performed worse than a random classifier. The

9

algorithms that did perform well were LOF and CMGOS with a true positive rate close to

100%.

Next, the paper by Verhoeyveld et al. (16) compares two algorithms to a baseline so-

lution to perform outlier detection on tax declaration to identify fraudulent behavior. The

algorithms tested are FWAD and LOF, with the baseline being the absolute sum of some

tax ratios, also called fraud indicators. These fraud indicators are also given to the algo-

rithms as features. In this paper the evaluation is done by checking how many of known

fraud cases are contained in what the algorithms classify as the most suspicious cases.

This research concludes that depending on the sector the optimal method can vary, and

some sector specific research might be needed before implementing any of them. Time

complexity is also important in this research. Since the baseline performs very well in this

area and LOF perform rather poorly, the advice is given to first try the baseline technique.

If this does not result in a desirable outcome, it is suggested to try LOF. The paper also

suggests another algorithm, FWLOF, that might work well while still adhering to time

constraints. However, this algorithm was not included in the research itself.

Another paper using outlier detection to detect fraud is the one by Mensah et al. (17). In

this paper, the techniques iForest, OCSVM, and k-Means are used to discern transactions

where online travel agents try to defraud airlines when selling commissioned travel tickets.

These algorithms are tested on a data set without any transformations as well as on a

normalized and a standardized version. The evaluations were done using precision and

recall. The F1 and F2 scores were also calculated with the equation:

Fβ = (1 + β2)
precision ∗ recall

β2 ∗ precision+ recall
(3.1)

These scores give a combined measure of both recall and precision, where as β increases

so does the weight of the recall. The F2 score was used as the main metric to conclude

which algorithm performed best. iForest turned out to be the best performing, but only

on the data without any transformations. OCSVM performed second best and got the

best score without any transformations. k-Means performed best when the data was either

standardized or normalized, with normalization giving the best score.

10

4

Data

This research uses data obtained from audit files. Audit files are used to exchange financial

information between companies. These files can be extracted from most financial systems

companies might use and are saved as XML-files. They contain all the financial transactions

a company has made in a year. For finding the outliers in the revenue, the focus will lie

on the transaction data. The selection of transaction data that only includes revenue data

is made by filtering on the account numbers linked to revenue accounts.

In the next part this data will be described further as well as the addition of some

extra features from different sources. Next, the properties and characteristics are explored.

Lastly, the creation of new features by transforming existing ones is elaborated.

4.1 Data Exploration

In this section, the data will be discussed in more depth. After collecting data on 15

different projects, which sometimes contained multiple companies, the unnecessary columns

and rows were dropped, and the remaining data was grouped. The filtering of rows was

done so only the transaction data linked to revenue would remain. Columns that were

dropped were inconsistent references of descriptions which did not supply any interesting

information. Another column that was dropped was the transaction date, since the goal is

to approach a simulation of the way it would normally be looked at, which is by month.

Month and year are individual columns, which are kept in the data instead of a ’start

of month date’ since dates are hard to deal with features. Now by grouping the data is

reduced to 179,219 rows and the columns year, month, company, and customer id as well

as the summed amount of revenue.

11

4.1 Data Exploration

The earliest data starts in 2017 and the last available year is 2021. The data contains 35

unique companies and a total of 60,673 unique customers across all companies. However,

approximately 51 thousand of these customers belong to one company. The distribution of

the other companies and the number of unique customers each has had in the past years

can be seen in figure 4.1. The number of unique customers per company is shown after it

was normalized. This was done to make lower counts still readable, since there is such a

large difference. The bottom eleven all have seven or less customers.

Figure 4.1: Distribution of customers among companies

Figure 4.2: Boxplot of distribution of total monthly revenue per
customer

One would normally expect revenue to be positive but for reasons like refunds this might

not always be the case. During the data exploration it was found that on a monthly per

12

4.1 Data Exploration

client bases in our data the revenue was positive around 98% of the time. Within the same

measures, the minimum value is -81 thousand, the maximum 1.7 million, and the mean

948, with a standard deviation of 1,130. The distribution of the fifth till the ninety-fifth

percentile of the summed revenue is shown in figure 4.2. This percentile is taken instead

of the total data set to be able to get a better image of the distribution. Else there was

not much visible due to the data’s long right tail. This tail is still very distinguished in

the boxplot, in other words the data is heavily left-skewed. These extreme and negative

values might give an indication on where outliers can be found.

In the following part, some different cross-sections of the total revenue are shown and

discussed.

In figure 4.3 it shows that the years 2017 and 2021 have much less revenue. However,

this is most likely caused by these years having less data. When only looking at the data

where companies have reported a full year and averaging the revenue per year over the

number of companies a completely different trend is shown. This is shown in figure 4.4.

It can be concluded that on average there is a strong trend of increasing revenue for the

companies in the data set. This is the case for most of the individual companies within

the data.

Figure 4.3: Distribution of total
revenue amount over the years

Figure 4.4: Distribution of average
revenue amount of the companies over
the years

When looking at figure 4.5 some seasonality might be present but most noticeable is the

revenue in January, which is much higher than in any other month. When averaging this

data on the number of companies that reported revenue in that month, the trend does not

change a lot. Most noticeably, the peak in January came down a bit. The peak in January

13

4.1 Data Exploration

can be explained by two companies that reported all their revenue in January. The new

distribution can be seen in figure 4.6.

Figure 4.5: Distribution of total
revenue amount over the months

Figure 4.6: Distribution of average
revenue amount of the companies over
the months

Lastly, in figure 4.7 it shows that just like the number of clients per company, the total

amount of revenue per company is also vastly varying. This is also visible in figure 4.8,

where the variance of the revenue is shown in a histogram. The cubic root of this variance

had to be taken to make the figure somewhat readable, since some companies have a very

high month to month variance of revenue.

Figure 4.7: Distribution of total
revenue amount over the companies

Figure 4.8: Variance of the distribu-
tion of revenue company

These trends and high variability give some insight on where outliers might be found.

However, it also shows a possible pitfall of having an imbalanced data set. If there is

not enough data for similar kinds of companies, the algorithms might completely classify

them as outliers. Even though the behavior shown is completely normal, it is just not

represented over the companies in the data set.

14

4.1 Data Exploration

More information is added to this revenue data by adding features obtained from other

sources where descriptions of the companies are given. Nine of these features are binary

and do not differ over the months or clients within a company. In figure 4.9 the spread

of these binary features has been visualized. These features all give some information

about each company, like what kind of sector the company is part of. So, figure 4.9 shows

what kind of companies are in the total data set. In appendix C all these features are

listed, including their definition. In the appendix, two other features are listed. Namely,

FTE_company and Saldo_EBITDA. FTE_company represents the Full-time equivalent

(FTE) of a company in a specific year. In this definition, 1 FTE equals a full work

week. Therefore, two employees working half a work week add up to 1 FTE. A histogram

of the distribution of this feature is shown in figure 4.10. Saldo_EBITDA shows the

total EBITDA (Earnings Before Interest, Tax, Depreciation, and Amortization) in each

month per company. EBITDA is an important measure when talking about the health of

a company and taking it into consideration when trying to find out whether a monthly

revenue is normal could be important. EBITDA is calculated by Revenue - Cost Of Sale

- Operational expenses. The visual representation of how this is distributed over the data

can be found in figure 4.11.

These features are added because they give insight in the type of companies the algo-

rithms are dealing with. Hopefully this will give them a way to group future new data with

similar companies in the current data. The distinctions these types of features make can

be informative on the revenue patterns the company might have and therefor what does

not align with them, i.e., might be an outlier.

Finally, the underlying distribution of the summed revenue feature was research. When

taking the summed amount from the fifth till the ninety-fifth percentile, the data seems

to fit the Johnson’s S_u distribution with a location parameter θ = −1.9942, a scale

parameter σ = 0.6018, and two shape parameters δ = 7.8589 and γ = 4.0215. The

data fitted to the Probability Density Function of this distribution can be seen in figure

4.12. Johnson’s SU distribution was proposed as a variation on the normal distribution,

transformed to include kurtosis and skewness into its parameters (18). This can be used

to deal with asymmetric data with fatter tails than the usual normal distribution. In

the paper by Choi et al. (19) it is shown that this distribution is good at encapsulating

financial time series. In addition, Cayton et al. (20) proposes a two-step version of the

Johnson’s SU distribution, which in the same paper is proven to work well for forecasting

losses of financial asset portfolios. For these reasons, it is relevant and not surprising to

know that this financial data also behaves according to this distribution.

15

4.1 Data Exploration

Figure 4.9: Spread of 0 and 1 values of the binary features per distinct company

Figure 4.10: Distribution of the num-
ber of FTE’s in a year per company

Figure 4.11: Distribution of the
monthly EBITDA amount per company

16

4.2 Data pre-processing

Figure 4.12: Summed amount fit-
ted to the Johnson’s S_u distribution,
θ = −1.9942, σ = 0.6018, δ = 7.8589,
γ = 4.0215

Figure 4.13: Summed amount fit-
ted to the Johnson’s S_u distribu-
tion after filled in missing values,
θ = −2.5260, σ = 0.8208, δ = 5.0398,
γ = 4.3652

4.2 Data pre-processing

To be able to effectively train the Machine Learning models, data often must be pre-

processed in some kind of way. This could, for example, be pertaining to dealing with

missing data or performing data normalization, but the first part of data pre-processing is

always splitting the data in a train, validation, and test data set.

In this case this was done on a company level, so every company’s data will be in one of

the data sets completely. When splitting these companies, it was discovered that some had

very little instances. It was decided to delete all companies with less than 1.000 instances

since they do not have enough data to find any patterns or relations within the company.

This means deleting all companies with less than 1.000 rows in the data set after grouping

on month, year, and customer. In practice this means that the company deleted with the

largest number of data rows had 789 rows. All these companies also meet at least one

out of two requirements that make them unfit for this research. The first requirement is

that the company reported all its revenue in two or less months a year. From experience

this usually means that the data is not reliable in the first place. The second requirement

regards the number of customers the company reports on. When the number of customers

is lower than fifteen, it would be easier to do a quick manual analysis, since missing

something important is less likely when all the customers can be taken into consideration.

In addition, it was earlier discovered that one of the companies had a much larger number

of instances than the other ones. This company was capped at around 10.000 instances

by randomly selecting customers and deleting all the data of the customers that were not

selected.

17

4.2 Data pre-processing

After this process, 44,795 rows or instances are left in the data set and these origin from

only 12 companies. It should be noted that it would have been desirable to have data from

more companies. This might not be enough data to properly learn from the different types

of trends within the data, especially since it was discovered that the data has quite a high

variability.

Another part of data pre-processing is dealing with missing values. The data is not

measured at a set time interval, but a new data row is just added every time a customer

pays for something that can be linked to revenue. Therefor there is no direct measure to

check whether there is any missing data, and the assumption can and needs to be made

that the data does not include any missing data. However, sometimes customers will not

have revenue in every month, for these cases the months between their first occurrence in

the data and the last will be assigned a revenue of zero. This is done to be able to better

follow the trend of clients that may not have revenue in every month. However, this does

add around 300 thousand zero values to the data. This changes the distribution of the

data, but it still fits the Johnson’s SU distribution with different parameters. This new

distribution can be found in figure 4.13.

In this case the method feature engineering was a paramount part of the data pre-processing.

Entity and customer id are not features that could be used to train the models. There-

for, including new features is a suitable way to add back some of the information about

which transactions belong to the same customers. Adding features can also make sure that

similar customers and companies get grouped together.

In appendix D the features added from transforming the summed amount of revenue are

given with a description. The selection of these particular features is based on expert inter-

views. From those could be concluded that these features would cover all the information

looked at when doing the outlier detection manually. Therefor it was concluded that this in-

formation would also be beneficial to have when training the algorithms. To give a bit more

of a insight on these features table 4.1 presents some simple statistical facts about them.

When looking at the distribution of all these features it shows that mean_per_client,

mean_last_12_months_client, mean_last_3_months_client, percentage_of_total, nor-

malized_amount_total, and normalized_amount_company all have very similar distribu-

tions to the summed amount, as shown in figure 4.12. One feature with some remarkable

characteristics seems to be features growth_percentage_client. After looking at the distri-

bution, but also the distribution when filtering the data on a 0.05 to 0.95 interval, it seems

18

4.2 Data pre-processing

to contain some very high and low data points These could probably be explained by in-

stances where a growth percentage is calculated with one of the columns approaching zero,

but not being zero exactly. The 0.05 to 0.95 interval distribution is shown in figure 4.14.

The peak in the middle is much higher than the other frequencies. This peak is precisely at

a growth percentage of zero, which mainly represents all the instances without any revenue.

Table 4.1: Added features derived from the revenue with description

Median mean std min max
mean_per_client -20,34 -350,61 5002,12 -846399,00 9959,25
mean_per_company -93,39 -347,57 1952,51 -82782,53 4641,04
number_of_clients 50919,00 45527,19 15413,54 1,00 50919,00
number_of_clients_in_year 18994,00 18400,59 7270,50 1,00 25685,00
number_of_non_zero_months_mean 10,37 10,47 3,18 1,00 43,04
growth_percentage_client 1,00 9,22E+11 2,73E+14 -5,89E+16 6,55E+16
growth_percentage_LY_client 1,00 5,37 2989,01 -229797,00 2021249,00
mean_last_12_months_client -5,85 -243,37 4352,55 -550797,63 9110,25
mean_last_12_months_company -729574,20 -653756,71 301092,01 -1056839,18 8772,75
mean_last_3_months_client 0,00 -288,79 5491,40 -842513,16 25130,24
mean_last_3_months_company -773950,84 -777358,50 319930,98 -1418311,47 10298,00
total_month_of_company -851894,72 -902212,75 371373,02 -3825786,88 17000,00
percentage_of_total 0,00 0,00 0,03 -6,68 8,47
normalized_amount_total 0,05 0,00 1,00 -245,42 11,83
normalized_amount_company 0,00 -350,61 6854,67 -1678152,54 80523,87

19

4.2 Data pre-processing

Figure 4.14: Distribution of growth percentage per client

20

5

Methods

5.1 Isolation Forest

The algorithm iForest (21) finds outliers by separating data instances until they isolate

from all other data. This is done by building tree like structures that are called isolation

trees, or iTrees for short. These iTrees have a binary structure and an example of what

it could look like can be seen in figure 5.1. A data instance becomes isolated when it is

an external node, which means no other instances are also part of this node. Starting in

the root node with a complete data set, a binary separation is made at every node. These

binary separations are made on the values of one feature per node. An iTree is done once

all the data instances have been isolated. Since outliers are expected to be different than

"normal" data, they will need to go through less binary separations to become isolated.

Therefore, data instances that isolate closer to the root have a greater chance of being an

outlier.

In the training stage of iForest multiple of these iTrees are created, also called a forest

of iTrees. The iTrees are created repeatedly to account for randomness. For example, an

outlier might take a long time to isolate in one tree by coincidence. To create the forest of

iTrees, two input parameters need to be specified. The first being the amount of iTrees that

the algorithm will create, this uses the notation t. The second parameter is the amount

of data instances the algorithm will use to create one tree. This is also called the sample

size and uses the notation ψ. These instances for a sample are randomly picked from the

complete train data set and for every tree this is the same complete data set. So, after

randomly picking a sample of size ψ and creating an iTree where all the instances in the

sample are isolated, the iTree is added to a collection of trees, which in turn will be the

21

5.1 Isolation Forest

Figure 5.1: Structure of tree

iForest. The iForest is complete when it contains t iTrees. In the worst-case scenario, this

process will lead to a time complexity of O(tψ2) and a space complexity of O(tψ).

The next step in this process is the evaluation stage. During this stage, every instance in

the evaluation set gets assigned an anomaly score. This is done by running them through

the iTrees created in the training stage. This means every instance x will go through all the

splits until it ends up in an external node. This will give a path length h(x) for an instance

for every iTree. The path length is the number of edges between the root node and the

external node where the instance ends up in, see figure 5.1 for reference. Finding the path

length for a long path can take a long time so a hlim can be added as an input parameter.

When the current path length equals hlim, the total path length will be approximated by

adding an estimation of the average path length of the remaining sub-tree to the current

path length. The sub-tree in this case is part of the iTree that is reachable after the current

node. In equation 5.1 the equation to estimate this average path length is given, where ψ

is the number of instances of the data left at this point in the tree during training. This

is also equal to the number of external nodes that are at the end of the sub-tree, since

every data instance needs to be isolated. The harmonic series, H(i), is used in equation

5.1 to estimate the path length. This series can be denoted as H(i) =
∑i

n=1
1
n and be

approximated by using the natural logarithm and the Euler-Mascheroni constant as shown

22

5.1 Isolation Forest

in equation 5.2.

c(ψ) =

2H(ψ − 1)− 2(ψ−1)

ψ for ψ > 2

1 for ψ = 2
0 otherwise

(5.1)

H(i) ≈ ln(i) + γ, γ = Euler −Mascheroni constant (5.2)

Now the path length through each iTree has been calculated for an instance, the anomaly

score s can also be calculated. First calculate the average path length for the complete

sample size ψ with equation 5.1. This c(ψ) can be plugged into equation 5.3 together with

the mean of all path lengths of an instance, E(h(x)). When this score is close to 1, it means

that the average path length of the instance is much smaller than the overall estimated

path length, E(h(x))
c(ψ) will be small, and the instance is an anomaly. When the score is lower

than 0.5, it likely is not since the average path length of the instance is larger than the

overall estimated path length, and E(h(x))
c(ψ) is larger than 1. However, if every instance in

the evaluation set returns a score around 0.5, it means the set has no real anomalies and

all paths have a similar length, which means that for all instances E(h(x))
c(ψ) ≈ 1.

s(x, ψ) = 2
−E(h(x))
c(ψ) (5.3)

The evaluation stage can be repeated for the test stage.

In this paper, the implementation of the Isolation Forest algorithm was done using

the Python package sklearn.ensemble.IsolationForest, which origins from the library of

scikit-learn. The paper by Lui et al. has concluded that ψ = 28 = 256, t = 100, and

hlim = ceil(log2(ψ)) are good input parameters for experiments.

23

5.2 Local Outlier Factor

5.2 Local Outlier Factor

As it is in the name, this method of finding outliers is done by giving each instance a

Local Outlier Factor.(22) This factor defines how much of an outlier a data point is. This

factor is calculated by comparing the density of its neighborhood with the density of its

neighbors’ neighborhoods, i.e. if the neighborhood of its neighbors is much denser than its

own the data point is likely to be a (local) outlier.

The basis of this algorithm lies on the distance between data points within the set, where

d(p, q) represents the distance between two data points p and q. For this case, the often-

used Euclidean distance as described in equation 5.4 was used to calculate the LOF. When

writing the Euclidean distance out for a multi-dimensional problem with n dimensions, like

the one this paper discusses, it would look like the one in equation 5.5.

d(p, q) =
√
(p− q)2 (5.4)

d(p, q) =
√∑

n
i=1(pi − qi)2 (5.5)

In addition, the factor is only reliant on one parameter, namely the k. This parameter

represents the number nearest neighbors a data point will (at least) have in its local

neighborhood and can be any positive integer. In figure 5.2 a 2D-representation of what

such a neighborhood of a data instance p would look like. In this figure a data instance o

is represented as a dot on the boundary of the neighborhood. This data point is the kth

farthest from p. For example, if k = 10, like in figure 5.2, o is the data point with the tenth

farthest distance but could also be the eleventh for k = 11. It is possible for more data

points to have the exact same distance to p as o. In that case those are also part of the

neighborhood of p and the neighborhood has more than k data instances. The distance

between p and the data point kth farthest from an object is also called the k-distance and

the actual neighborhood of an object is called the k-neighborhood.

Before giving the formula for the LOF, these terms need to be formally defined. Firstly,

about the k-distance of an object p in the data set, k-distance(p), two things are true:

1. At least k other objects have a distance equal to or smaller than it from p.

2. At most k − 1 objects have a distance smaller than it from p.

24

5.2 Local Outlier Factor

Figure 5.2: 2D representation of the k-distance for a data instance p

Secondly, the k-neighborhood of p is denoted as Nk(p) and includes the points not

farther away from p than the previously discussed k-distance. Every data point within

this neighborhood is what is called the k-nearest neighbors of p.

The following part is to elaborate some term needed to calculate the LOF and describe

the coinciding equations.

Reachability distance This distance represents the maximum between the actual dis-

tance between two data points and the k-distance of one of them. Formally, reach −
distk(p, o) is the reachability distance of p with respect to object o and is given by

reach − distk(p, o) = max{k − distance(o), d(p, o)}. This is also made visual in figure

5.3

Local reachability distance This is the inverse average of the reachability distance of

an object p with respect to each of its k-nearest neighbors. This can also be referred to as

lrdk(p) and is given in equation 5.6.

25

5.2 Local Outlier Factor

Figure 5.3: 2D representation of the reachability distance

lrdk(p) =
|Nk(p)|∑

o∈Nk(p) reach− distk(p, o)
(5.6)

Local outlier factor The formula where this algorithm got its name from is given in

equation 5.7. This calculates the average of the ratio between lrdk(o) and lrdk(p) , where

o is an object in the neighborhood of p.

LOFk(p) =

∑
o∈Nk(p)

lrdk(o)
lrdk(p)

|Nk(p)|
(5.7)

Find the official definitions of what is described above as defined in the original paper

by Breunig et al. in appendix B

This is all implemented using the sklearn.neighbors.LocalOutlierFactor package in Python,

also originating from the scikit-learn library. In addition, the paper by Breunig et al. de-

scribes that a k between 10 and 20 works well for most cases. For this reason, it was set

to 20 within this experiment.

26

5.3 One-Class Support Vector Machine

5.3 One-Class Support Vector Machine

OCSVM (23) is an outlier detection algorithm derived from the SVM algorithm. SVM is an

algorithm that was extensively research by Vladimir Vapnik and was first introduced in the

paper by Boser et al. (24). SVM can be used for either regression or classification problems

and is inherently a supervised algorithm. OCSVM is a version of SVM classification,

modified in a way to be able to classify data into a normal class in an unsupervised

manner. If a data point cannot be classified into the normal class, it is seen as an outlier.

SVM classifies data by creating a hyperplane to separate the data from one class from

the other data, i.e., creating two classes. The algorithm can be modified to be able to

recognize multiple classes by repeating this for each class. A hyperplane is like a line but

with more dimensions, or a multi-dimensional space. In the case of SVM the number of

dimensions a hyperplane is equal to the number of features the data has minus one.

The goal of the SVM is not only to separate the class but also to do this in the most

optimal way possible. This is done by maximizing the distance between the data points

closest to the hyperplane and the hyperplane itself. This is called the max margin. These

data points which help decide the location of the hyperplane are called support vectors.

To translate this into a one class problem, the training data into a feature space of higher

dimension, which is done using a kernel k(x, y) to project the data into the feature map φ.

After doing this, most data can and needs to be separated from the origin of this feature

space by creating a hyperplane. The data that cannot be separated by this hyperplane

are seen as outliers. This hyperplane can be found by solving the quadratic program in

equation 5.8.

min
w,b,ξ

1

2
||w||2 + 1

νl

∑
i

ξi − ρ

s.t. (w ∗ φ(xi))ρ− ξi

ξi ≥ 0

(5.8)

In this equation, i ∈ [l], where l is the number of instances in the training set. This

makes ξi the slack variable of a certain data point. The slack variable causes some points

to be able to be in the margin separating the hyperplane and the support vectors. This

variable is desired to be as small as possible.

When tuning the OCSVM algorithm for this research, ν ∈ (0, 1) was one of the most

important ones. This parameter represents the trade-off between the number if support

vectors the hyperplane will use and the number of outliers the algorithm will allow. By the

27

5.3 One-Class Support Vector Machine

agency of it being the upper bound of the fraction of outliers, as well as the lower bound

of the fraction of support vectors. This trade-off simultaneously represents the two goals

of creating the hyperplane in an OCSVM. Namely, separating most data points from the

origin and doing this with a large margin from the hyperplane.

If the optimization problem in equation 5.8 can be solved for w and ρ then a signum

function f(x) 5.9 can be derived. This function will be +1 for all data points contained

by the hyperplane and -1 for all other data points. This function can be used to decide

whether new data is classified as an outlier under the previously trained OCSVM.

f(x) = sgn((w ∗ φ(x))− ρ) (5.9)

The standard formula of a kernel is given in equation 5.10. In this research, the Gaussian

kernel, as shown in equation 5.11, was used to map the data. This kernel is proven to have

the best performance when it comes to OCSVM in a paper by Bounsiar et al. (25).

k(x, y) = (φ(x) ∗ φ(y)) (5.10)

k(x, y) = e−||x−y||
2/c (5.11)

To implement to OCSVM algorithm, the sckikit-learn library was used once again, this

time with the usage of the sklearn.svm.OneClassSVM package.

28

6

Experimental setup

6.1 Data split

Data collection was done manually by going through different projects to get the right data

from a variety of companies. Then the data was rewritten to CSV format so they could

be put into a pandas DataFrame.

After this, the data is split into three sets. While doing this, a company is always complete

in one data set and not split up into multiple sets. The first set used is the train data

set; this is used to let the algorithms decide what outliers are. They will all make their

own set of rules on how to classify an instance as an outlier or not. This data set contains

6 companies and 29.058 instances. Next, the evaluation set is used to see how the algo-

rithms perform on completely new data. After taking the results of the evaluation set in

considerations, the algorithms can still be modified and re-trained on the train set. This

set contains 3 companies and 15.737 instances. Lastly, the test set should not be looked

at until the very end and at that point the algorithms and data should not be altered any

further. This data set is used to test how well the final algorithms perform. This data set

also contains 3 companies and consists of 16.573 instances.

6.2 Implementing algorithms

The next part is implementing the described algorithms. This was all done using multiple

Python libraries but the most important one was sklearn. Within these algorithms some

parameters need to defined. The parameters and their chosen values are shown in table

6.1. Most of these values were already given in the methods chapter and these values are

29

6.3 Evaluation

based on prior research where they have been proven to work well. The only parameter

that was not assigned a value yet was ν for the OCSVM algorithm. The value 0.1 was

chosen based on the average fraction of outliers defined by experts within these and similar

data sets. These algorithms all have built-in scoring functions modelled after the scoring

techniques described in the methods chapter of this thesis. These scores are how these al-

gorithms show how much of an outlier they think data is. The algorithms are first trained,

on the train data. For the test set the outlier scores are obtained by running the trained

algorithms on the set. The scores are then taken as the results and must be evaluated.

It was also research how important a feature in the data set was to the result. For Isolation

Forest, this was done using a Python library called SHAP and for the other two algorithms

this was done using the function permutation_importance. This function, similar to the

score function, is built-in to the sklearn library of these specific functions. This resulted

in a top 4 most important features per algorithm.

Table 6.1: Chosen parameter for the different algorithms

IF LOF OCSVM

ψ = 28 = 256 k = 20 ν = 0.1

t = 100

hlim = ceil(log2(ψ))

6.3 Evaluation

To evaluate the results, first a global overview of the patterns of the algorithms was created.

This was done using heatmaps. These were created per company and were separated by

month on the horizontal axis, one month per row, and by client on the vertical axis, one

client per column. This particular cross section of the multi-dimensional data was chosen

to mimic the way the data is used in the current situation. Each algorithm can give a data

point a form of an outlier score. The heatmaps are used to make these scores readable

for large amounts of data. This causes a comprehensible view of how outliers are spread

throughout the data. The heatmaps have a scale from green to red. This represents the

scale of a low outlier score to a high one, respectively. Since the three algorithms all gave

quite varying intervals of outlier scores, the scores were all standardized to fit into a 0 to

1 scale. Also, the clients are ordered from highest to lowest revenue. These heatmaps are

30

6.3 Evaluation

provided to give a first glance on how the algorithms center the outliers in the different

companies.

Thereafter, the same set of data were reviewed by a couple of field experts, in this case

these were Financial Due Diligence Consultants. The data is setup with the same cross

section as for the heatmaps, but instead of colors the cells contain the amount of revenue.

They have flagged the parts of the data they would have paid extra attention to if they

would be to use the data in a Due Diligence project. These results they were used to score

the algorithms on both precision as well as recall.

First, the average monthly outlier score was calculated. This resulted in some pronounced

dips, meaning likely outliers. These dips were then scored against the months the experts

identified, using both recall and precision.

Second, a similar analysis was made on a per client level. However, in this case it was

harder to find a clear cutoff point between likely outliers and likely normal occurrences. To

still be able to score the algorithms on this, the top 5, 10, and 30 most likely outliers were

taken and compared to the expert results. The recall and precision were calculated here

too but, in this case, it should be noted that the number of outliers the experts flagged

were higher than 10 and lower than 30 for all companies. Therefore, the top 5 and 10 could

never get a perfect precision.

Lastly, a second set of expert interviews were conducted. The experts were given the

same source data but this time 30 occurrences, per company, were highlighted and the

experts were asked whether they agreed if these were outliers. One occurrence refers the

a specific month of a single client. The 30 occurrences given to the experts were the

combined top 10 most likely outliers defined by the three algorithms. The choice was

made to evaluate the results in this was because it was again hard to draw a line between

what were and were not outliers according to the algorithms. In addition, when looking

at specific occurrences, the results of the first interviews did not always agree completely

person per person. When doing the interviews like this the results were almost identical.

Since this technique still does not give a set of definitive outliers only the precision could

be calculated.

31

7

Results

In this chapter, the first part will be giving high-over analysis of the trends of what is

classified as likely to be an outlier between the different algorithms and companies. In

addition, the differences in feature importance between the different the algorithms are

discussed. After, the same type of analysis will be given on the results of the expert

interviews. Lastly, a more detailed and score-based comparison will be made between the

results given by the algorithms and the results from the expert interviews.

7.1 Pattern analysis of the results from the implemented
algorithms

In the figures E.1, E.2, and E.3, as part of appendix E, the results of testing the algorithms

on three different companies in the form of heatmaps are shown.

Analyzing the results of Company A, as seen in figure E.1, leads to the following obser-

vations. In this case, Isolation Forest ranks the clients with the highest total revenue very

high on the outlier scale for every month. However, when a client’s revenue is less than its

monthly average, that month will score a bit lower. These are often the important clients

to look at when looking for anomalies in the monthly revenue data. Mostly because when

these clients change their habit, the relative impact on the company will be considerably

higher. In this case, out of 152 clients, the top 5 clients make up almost 50% of the client

bound revenue.

In addition, some slight outlier behavior is flagged around the last quarter of every year.

This could be an identifier of some sort of seasonality. Also, the year 2021, which is the

last year in the available data for this company, is leaning towards the outlier side of the

scale.

32

7.1 Pattern analysis of the results from the implemented
algorithms

Local Outlier Factor has a completely different result. Although it also seems to flag the

last quarters of a year, it does not look at the clients with a high revenue as outliers. They

seem to be classified as the most normal data. In the first year of the data, and especially

when looking at the clients with a lower revenue, a group of some data flagged as slight

outliers can be observed.

Lastly, the last row seems to be varying heavily between inliers and outliers. One ex-

planation for this could be that this client had months with positive revenue as well as

months where the revenue is negative. This is generally very uncommon. This variation

between inliers and outliers can also be seen in the classification done by Isolation Forest

yet less prominent.

The results of One-Class SVM algorithm shown in the heatmaps however do not lead to

easily analyzable patterns for any of the companies in the test data.

Although highlighting different months for each company, LOF also seems to focus on

a seasonality pattern for Company B and C. For Company B it signals the whole month

of January for each year as having a lot of highly outlying data and from December till

April as being at least moderately outlying. Meanwhile, the other months are leaning more

green. Once again, the customers with a higher revenue veer more towards being inliers.

A closely related pattern can be seen for Company C.

The algorithm Isolation Forest seems to act a specific way throughout the different com-

panies as well. Like with Company A, it seems to locate the most outliers within the

clients with a relatively higher revenue for both Company B and C. In addition, both

companies do seem to have a seasonality pattern within their outliers similar to the ones

LOF identified. Lastly, for Company C, the last year in the data set is also seen as having

more outliers than the other years. This could be due to is being an incomplete year, since

this was also the case for Company A.

For each company the 10 occurrences that were seen as most likely to be outliers had

no overlap between the algorithms. When looking at the clients that were given as most

likely to be outliers there however was some overlap. In tables 7.1, 7.2, and 7.3 the fraction

of overlap between the different algorithms for each company is shown for the top 5, 10,

and 30 clients given to be most likely to be outliers.

Lastly, the feature importance analyses of the three algorithms gave rather differing results.

The four most important features per algorithm can be found in table 7.4. Some noticeable

differences can be named. One being the fact that three of the four features identified as

33

7.1 Pattern analysis of the results from the implemented
algorithms

important for IF are company specific binary features, namely to_customer, subscription,

and education. Next, the important features for the OCSVM model all say something

about revenue amount with only total_month_of_company regarding a company wide

revenue comparison. The other three features all tell something about the amount of rev-

enue of each client. On the other hand, the important features for LOF turned out to

be of a more varying range. Two of the features being related to revenue with on being

client specific, growth_percentage_client, and one being month and company specific, to-

tal_month_of_company. Of the other two features one is a year and company specific

continuous value, and the other is a company specific binary, Saldo_EBITDA and out-

side_nl respectively. From IF the feature importance per instance could be derived using

SHAP. From the top 10 most likely outliers per company the five most important features

were summarized, and these results are shown in table 7.5.

Table 7.1: Overlap between top results per client of the different algorithms for Company A

Top 5 Top 10 Top 30

IF LOF OCSVM IF LOF OCSVM IF LOF OCSVM
IF 1,00 0,00 0,00 1,00 0,00 0,00 1,00 0,07 0,30
LOF 0,00 1,00 0,00 0,00 1,00 0,00 0,07 1,00 0,17
OCSVM 0,00 0,00 1,00 0,00 0,00 1,00 0,30 0,17 1,00

Table 7.2: Overlap between top results per client of the different algorithms for Company B

Top 5 Top 10 Top 30

IF LOF OCSVM IF LOF OCSVM IF LOF OCSVM
IF 1,00 0,00 0,00 1,00 0,00 0,00 1,00 0,13 0,03
LOF 0,00 1,00 0,00 0,00 1,00 0,00 0,13 1,00 0,10
OCSVM 0,00 0,00 1,00 0,00 0,00 1,00 0,03 0,10 1,00

Table 7.3: Overlap between top results per client of the different algorithms for Company C

Top 5 Top 10 Top 30

IF LOF OCSVM IF LOF OCSVM IF LOF OCSVM
IF 1,00 0,00 0,20 1,00 0,00 0,20 1,00 0,17 0,43
LOF 0,00 1,00 0,00 0,00 1,00 0,20 0,17 1,00 0,50
OCSVM 0,20 0,00 1,00 0,20 0,20 1,00 0,43 0,50 1,00

34

7.2 Comparative results

Table 7.4: Top 4 most important features per algorithm

IF LOF OCSVM

to_customer growth_percentage_client mean_per_client
Subscription total_month_of_company mean_last_12_months_client
education Saldo_EBITDA total_month_of_company
mean_per_company_scaled outside_nl mean_per_client_not_zero

Table 7.5: Feature importance of IF for the top 10 results per company

Company A Company B Company C Total
normalized_amount_total 10 10 10 30
number_of_non_zero_months 10 10 10 30
FTE_company 0 0 1 1
total_month_of_company 0 5 9 14
growth_percentage_LY_client 9 0 0 9
Month 8 9 9 26
percentage_of_total 0 10 9 19
softwareandIT 3 1 1 5
mean_last_12_months_company 10 2 0 12
Saldo_scaled 0 0 1 1
to_customer 0 3 0 3

7.2 Comparative results

In the next section the results that were given by the algorithms are compared to the results

obtained from the expert interviews. Some generalizations about the types of comments

that were often made about the three companies were made. These are noted here:

• The comments were mainly made about the customers with the highest average

revenue

• The company wide seasonal patterns of peaks and drops of the revenue flow.

• Large clients that start to bring in less revenue or have brought in no revenue in the

last months. This could signal a big client is leaving or has already left, which could

cause in a big drop in total revenue.

• A new client with a high monthly revenue. It is interesting to know if this trend will

continue since it is the start of an increase of total revenue.

35

7.2 Comparative results

• A seemingly one-off client with a high revenue in that one month. This could also

be the start of a new client, e.g., this client might not get invoiced monthly.

• Clients with a high total revenue with a different month-to-month pattern than most

other high paying customers. This could be that they pay in a different month or

that they might not pay monthly while others do.

In the expert interviews, 14 out of Company A’s 152 clients were flagged as containing

something important or, in other words, as containing outliers. For Company B, the ex-

perts flagged 15 out of 210 and for Company C this number was 20 out of 72. In table

7.9 it is shown how many of those clients were classified as most likely to be an outlier by

the different algorithms. In the table this is divided in to the Top 5 most likely as well as

the Top 10 and 30. From this table IF works best for all three companies, with the best

performance for Company A.

Next, the experts flagged some months as overall containing outliers. These months can

be found in figure 7.1 as highlighted in yellow and green. The yellow months are what

they defined as the seasonal patterns and the green would be any other months containing

outliers that they did not see as seasonality.

The other columns are showing the results of the algorithms. Where the red highlighted

months represent all the months scoring lower than 0.4 on average, which means they are

likely to be outliers. This value was chosen since this value seemed to represent a good

split between the months with a peak outlier score and the months where the outlier score

dipped. A second color coding was added for IF, since it seemed to have a second set of,

slightly higher, dips in the score. These months were given an orange color.

Lastly, the most notable thing when looking at OCSVM is that it sees all months in

Company C as likely outliers. This is cause by all but one month having an average score

below 0.002, while the remaining month has a score close to one. The dips that follow

after adjusting can be found in the last column.

The Recall and Precision of these results can be found in the tables 7.6 and 7.7. This

includes the split between yellow and green months in Company A as well as the discussed

adjustments made to the results of IF and OCSVM. The best performing algorithms per

test case are given in bold text.

This shows that LOF performs best in most cases but IF also performs well in some cases.

Lastly, the 10 occurrence that were classified as most likely to be outliers, per company and

36

7.2 Comparative results

per algorithm, were shown to a different set of experts and their opinion was used to score

these outcomes. Since the 10 occurrences had no overlap between the different algorithms,

each company had 30 occurrences that were shown to the experts. The precision that was

calculated for these results are shown in table 7.10. This able demonstrates that, just like

the per client results, IF performs best. OCSVM gave no correctly identified outliers in

any of the companies and LOF did not either for two of the companies.

Figure 7.1: Monthly results per company and algorithm

37

7.2 Comparative results

Table 7.6: Top results per month compared to expert opinions, Company A

IF IF - Adj. LOF OCSVM

Recall
Green (seasonality) 0,90 1,00 0,20 0,50
Yellow (other) 0,00 0,57 0,71 0,14
Total 0,53 0,82 0,41 0,35

Precision
Green (seasonality) 1,00 0,63 0,20 0,42
Yellow (other) 0,00 0,25 0,50 0,08
Total 1,00 0,88 0,70 0,50

Table 7.7: Top results per month compared to expert opinions, Company B and C

Company B Company C

IF LOF OCSVM IF IF - Adj. LOF OCSVM OCSVM - Adj.
Recall 1,00 1,00 0,33 0,33 1,00 1,00 1,00 0,67
Precision 1,00 1,00 0,07 0,14 0,30 1,00 0,07 0,29

Table 7.8: Top results per client compared to expert opinions scored on recall

Company A Company B Company C

IF LOF OCSVM IF LOF OCSVM IF LOF OCSVM
Top 5 0,22 0,00 0,00 0,07 0,00 0,00 0,15 0,00 0,10
Top 10 0,57 0,00 0,00 0,27 0,00 0,00 0,25 0,00 0,25
Top 30 0,93 0,07 0,14 0,67 0,00 0,00 0,50 0,20 0,40

Table 7.9: Top results per client compared to expert opinions scored on precision

Company A Company B Company C

IF LOF OCSVM IF LOF OCSVM IF LOF OCSVM
Top 5 0,80 0,00 0,00 0,20 0,00 0,00 0,60 0,00 0,07
Top 10 0,80 0,00 0,00 0,40 0,00 0,00 0,50 0,00 0,17
Top 30 0,43 0,03 0,07 0,33 0,00 0,00 0,33 0,13 0,27

Table 7.10: Precision scores of the 10 most likely outliers, per algorithm, per company

Company A Company B Company C

IF LOF OCSVM IF LOF OCSVM IF LOF OCSVM
Precision 1.0 0.5 0 0.8 0 0 0.7 0 0

38

8

Conclusion and Discussion

In conclusion, the three algorithms seem to behave similar in all three companies discussed

in this paper. They seem to prioritize the same kind of patterns when looking for outliers

in different sets of data, all the while still creating some sort of uniqueness with them.

Namely, LOF will find some sort of different seasonal pattern for each company. IF also

finds seasonality in all three companies, with Company B having the most pronounced

pattern. It also classifies centers a lot of outliers around the clients with the highest revenue.

OCSVM classifies outliers as being scattered, seemingly without a distinct pattern.

In addition, IF performs the overall best on every test, except for when looking at the

seasonal pattern of Company A. LOF is also quite good at finding the seasonal patterns,

especially for Company B and C. However, when looking at the per client and per oc-

currence results, all but IF perform very poorly. Therefore, this algorithm has the most

potential in this case of unsupervised outlier detection.

This gives the answer to the research question of "Which of the researched algorithms

used to perform an unsupervised outlier detection on client revenue data yields the result

which most closely resembles the outlier detection performed by FDD consultants?". In

most cases IF most closely resembles the outlier detection performed by the FDD consul-

tants on client revenue data.

This thesis ended up not including a lot of different companies, which might have caused

the data to not have enough diversification within every set of data. Continuing this re-

search or performing similar experiments in the future could definitely benefit from having

a broader set of companies to test, validate, and train on. With this, it is not only im-

portant to have different types of companies, but also collecting companies with similar

39

characteristics.

In addition, it would be helpful to perform a semi-supervised outlier detection, so the

algorithms have some sort of idea of what outliers could look like. This can also help

a lot during the validation stage to be able to easier identify which algorithms are still

performing poorly. If this was spotted earlier on in the process, OCSVM and LOF could

maybe have been tweaked in a way that they would have shown a better performance.

Moreover, this thesis relied highly on what information experts use to make the same

analysis, for example during feature engineering. This might not be the best approach and

therefore more time can be put into researching literature on effective feature engineering

for similar problems.

Lastly, the algorithms all have very different features that are most important to the final

outlier score they give to data. This might mean different things and therefore it might be

effective to re-evaluate which features are considered, especially for the worse performing

algorithms.

40

Appendix A

List of abbreviations

M&A Mergers and acquisitions
FDD Financial Due Diligence
TS Transaction Services
BI Business Intelligence
PI Performance Improvement
PR Precision-Recall
ROC Receiver Operating Characteristics
AUC Area Under the Curve
iForest Isolation Forest
iTree Isolation Tree
LOF Local Outlier Factor

OCSVM One Class Support Vector Machines

41

Appendix B

Local Outlier Factor definitions

(22)

Definition 1 (k-distance of an object p). For any positive integer k, the k-distance of
object p, denoted as k − distance(p), is defined as the distance d(p, o) between p and an
object o ∈ D such that:

i. for at least k objects o′ ∈ D|{p} it holds that d(p, o′) ≤ d(p, o)

ii. for at most k − 1 objects o′ ∈ D|{p} it holds that d(p, o′) < d(p, o)

Definition 2 (k-distance neighborhood of an object p). Given the k-distance of p, the
k-distance neighborhood of p contains every object whose distance from p is not greater
than the k-distance, i.e. Nk−distance(p)(p) = {q ∈ D/{p}|d(p, q) ≤ k − distance(p)}.
These objects q are called the k-nearest neighbors of p.

Definition 3 (reachability distance of an object p w.r.t. object o). Let k be a natural
number. The reachability distance of object p with respect to object o is defined as
reach− distk(p, o) = max{k − distance(o), d(p, o)}

42

Appendix C

Explanation of extra features related
to the companies

Feature name description

FTE_company Total of FTE in a particular year of a single company
FY Binary, does this year have a full year of data for this

company
software and IT Binary, does this company fall in this sector
education Binary, does this company fall in this sector
business and financial services Binary, does this company fall in this sector
food and consumer goods Binary, does this company fall in this sector
to_business Binary, is this company’s target clientele other busi-

nesses
to_customer Binary, is this company’s target clientele individual

customers
Subscription Binary, is this company’s business model subscription-

based
holding Binary, is this company the holding of a group of com-

panies
outside_nl Binary, does this company do business outside the

Netherlands (does not need to be exclusively)
Saldo_EBITDA Total EBITDA (Earnings Before Interest, Tax, Depre-

ciation and Amortisation) value of the company in this
month (EBITDA = Revenue - Cost Of Sale - Opera-
tional expenses)

43

Appendix D

Explanation of extra features derived
from the revenue

Feature name description

mean_per_client Mean revenue of a particular client of a company over all months
mean_per_client_not_zero mean_per_client, but without the months where there was no rev-

enue and than some
mean_per_company Mean revenue of a company over all months
number_of_non_zero_months Describes how many months a client had revenue over all months
number_of_non_zero_months_mean Mean of number_of_non_zero_months over all clients per company
growth_percentage_client Increase in revenue of a client compared to the previous month
growth_percentage_company Increase in revenue of a company compared to the previous month
growth_percentage_LY_client Increase in revenue of a client compared to the same months last year
growth_percentage_LY_company Increase in revenue of a company compared to the same months last

year
mean_last_12_months_client Mean monthly revenue over the last 12 months of a particular client

of a company
mean_last_12_months_company Mean monthly revenue over the last 12 months of a company
mean_last_3_months_client Mean monthly revenue over the last 3 months of a particular client

of a company
mean_last_3_months_company Mean monthly revenue over the last 3 months of a company
percentage_of_total What percentage of the total revenue of the company came from this

client in this month
normalized_amount_client Normalize the revenue data per client
normalized_amount_company Normalize the revenue data per company
normalized_amount_total Normalize the revenue data over all rows

44

Appendix E

Heatmap results of implemented
algorithms

45

Figure E.1: Results Company A, rows ordered by total revenue of a client

46

Figure E.2: Results Company B, rows ordered by total revenue of a client

47

Figure E.3: Results Company C, rows ordered by total revenue of a client

48

References

[1] Jeffrey Berkman. Due Diligence and the Business Transaction: Getting a Deal

Done. Apress, 1st ed. edition, 2014. 1

[2] Thorsten Feix. End-to-End MA Process Design. Springer Medizin Verlag, Heidel-

berg, Duitsland, 1st ed. 2020 edition, 2020. 1

[3] M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives,

and prospects. Science, 349(6245):255–260, 2015. 1

[4] Andreas Holzinger, Peter Kieseberg, Edgar Weippl, and A Min Tjoa.

Current Advances, Trends and Challenges of Machine Learning and Knowl-

edge Extraction: From Machine Learning to Explainable AI. Lecture Notes

in Computer Science, pages 1–8, 2018. 1

[5] Puneet Mathur. Machine Learning Applications Using Python: Cases Studies from

Healthcare, Retail, and Finance. Apress, 1st ed. edition, 2018. 1

[6] Xiaogang Su and Chih-Ling Tsai. Outlier detection. WIREs Data Mining and

Knowledge Discovery, 1(3):261–268, 2011. 2

[7] Aaron Plasek. On the Cruelty of Really Writing a History of Machine

Learning. IEEE Annals of the History of Computing, 38(4):6–8, 2016. 5

[8] A. L. Samuel. Some Studies in Machine Learning Using the Game of Check-

ers. IBM Journal of Research and Development, 3(3):210–229, 1959. 5

[9] Gopinath Rebala, Ajay Ravi, and Sanjay Churiwala. An Introduction to

Machine Learning. Springer Publishing, New York, Verenigde Staten, 2019. 6

[10] Emre Celebi. Unsupervised Learning Algorithms. Springer Publishing, New York,

Verenigde Staten, 1 edition, 2018. 6

49

REFERENCES

[11] Xiaochun Wang and Xiali Wang. New Developments in Unsupervised Outlier

Detection. Springer Medizin Verlag, Heidelberg, Duitsland, 1st ed. 2021 edition, 2021.

6

[12] Rémi Domingues, Maurizio Filippone, Pietro Michiardi, and Jihane

Zouaoui. A comparative evaluation of outlier detection algorithms: Ex-

periments and analyses. Pattern Recognition, 74:406–421, 2018. 8

[13] Qian M. Zhou, Lu Zhe, Russell J. Brooke, Melissa M. Hudson, and Yan

Yuan. A relationship between the incremental values of area under the

ROC curve and of area under the precision-recall curve. Diagnostic and

Prognostic Research, 5(1), 2021. 8

[14] Atiq ur Rehman and Samir Brahim Belhaouari. Unsupervised outlier de-

tection in multidimensional data. Journal of Big Data, 8(1), 2021. 9

[15] Mohiuddin Ahmed, Nazim Choudhury, and Shahadat Uddin. Anomaly De-

tection on Big Data in Financial Markets. Proceedings of the 2017 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining 2017,

2017. 9

[16] Jellis Vanhoeyveld, David Martens, and Bruno Peeters. Value-added

tax fraud detection with scalable anomaly detection techniques. Applied

Soft Computing, 86:105895, 2020. 10

[17] Caleb Mensah, Jan Klein, Sandjai Bhulai, Mark Hoogendoorn, and Rob

van der Mei. Detecting Fraudulent Bookings of Online Travel Agencies

with Unsupervised Machine Learning. Lecture Notes in Computer Science, pages

334–346, 2019. 10

[18] N. L. Johnson. Systems of Frequency Curves Generated by Methods of

Translation. Biometrika, 36(1/2):149, 1949. 15

[19] Pilsun Choi and Kiseok Nam. Asymmetric and leptokurtic distribution

for heteroscedastic asset returns: The SU-normal distribution. Journal of

Empirical Finance, 15(1):41–63, 2008. 15

[20] Peter Julian Cayton and Dennis Mapa. Time-varying conditional Johnson

SU density in value-at-risk (VaR) methodology. 01 2012. 15

50

REFERENCES

[21] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-Based Anomaly

Detection. ACM Transactions on Knowledge Discovery from Data, 6(1):1–39, 2012.

21

[22] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg

Sander. LOF. ACM SIGMOD Record, 29(2):93–104, 2000. 24, 42

[23] B Schölkopf, R Williamson, A Smola, J Shawe-Taylor, and J Platt.

Support Vector Method for Novelty Detection. NIPS, 12:582–588, 1999. 27

[24] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A train-

ing algorithm for optimal margin classifiers. Proceedings of the fifth annual

workshop on Computational learning theory - COLT ’92, 1992. 27

[25] Abdenour Bounsiar and Michael G. Madden. Kernels for One-Class Sup-

port Vector Machines. 2014 International Conference on Information Science Ap-

plications (ICISA), 2014. 28

51

	1 Introduction
	2 Background
	2.1 Application Domain
	2.2 Machine Learning

	3 Review of Related Literature
	4 Data
	4.1 Data Exploration
	4.2 Data pre-processing

	5 Methods
	5.1 Isolation Forest
	5.2 Local Outlier Factor
	5.3 One-Class Support Vector Machine

	6 Experimental setup
	6.1 Data split
	6.2 Implementing algorithms
	6.3 Evaluation

	7 Results
	7.1 Pattern analysis of the results from the implemented algorithms
	7.2 Comparative results

	8 Conclusion and Discussion
	A List of abbreviations
	B Local Outlier Factor definitions
	C Explanation of extra features related to the companies
	D Explanation of extra features derived from the revenue
	E Heatmap results of implemented algorithms
	References

