
Vrije Universiteit Amsterdam Fire Department Amsterdam-Amstelland

Master Thesis

Data-Driven Simulation of Alternative
Deployment Models for the

Amsterdam Fire Department
Implications for Operational Efficiency

and Responsiveness

Author: Wenjie Hu (2743457)

1st supervisor: Rob van der Mei (Vrije Universiteit Amsterdam)
daily supervisor: Guido Legemaate (Fire Department Amsterdam-Amstelland)
2nd reader: Sandjai Bhulai (Vrije Universiteit Amsterdam)

A thesis submitted in fulfillment of the requirements for
the Master of Science degree in in Business Analytics at the Vrije Universiteit

Amsterdam.

September 4, 2025



Acknowledgements

This thesis was conducted during my internship at the Information Management team of

the Fire Department Amsterdam-Amstelland.

First and foremost, I would like to thank my family for their constant support and care

in daily life, which enabled me to focus fully on this research.

I am especially grateful to my daily company supervisor, Guido Legemaate from

Fire Department Amsterdam-Amstelland, for his invaluable guidance throughout the in-

ternship. His advice covered not only the research direction and methodology, but also

technical details, expert insights, and access to data — all of which were essential to the

success of this thesis.

I would also like to thank my first academic supervisor, Prof. Rob van der Mei from

Vrije Universiteit Amsterdam, for his encouragement, insightful suggestions, and technical

guidance. In addition, I thank my second academic supervisor, Prof. Sandjai Bhulai

from Vrije Universiteit Amsterdam, for dedicating his time to review and assess this thesis.

Finally, I would like to express my gratitude to all colleagues and everyone who provided

support or guidance during my internship and this research, both at the Fire Department

Amsterdam-Amstelland and beyond.

i



Management Summary

This study examined ways for the Fire Department Amsterdam-Amstelland (FDAA) to

improve operational efficiency through more flexible deployment models. The research

focused on alternative vehicle compositions, adaptive dispatch rules, and relocation strate-

gies, evaluated through an enhanced simulation framework. Performance was measured

using the Fraction of On-Time Arrivals (FOTA), a single, interpretable metric that

reflects both response speed and coverage.

Simulation experiments demonstrated clear benefits from flexible deployment:

• Introducing smaller and faster vehicles increased FOTA by more than 40% across all

incidents.

• Adaptive dispatch rules added a further 11–13% improvement in response perfor-

mance.

• These gains were consistent even under high-demand scenarios, showing that flexible

deployment strengthens both efficiency and resilience.

• Relocation algorithms also helped maintain coverage, but their operational use de-

pends on the development of well-designed trigger mechanisms, which requires further

research.

Based on these findings, we recommend that FDAA:

• Gradually introduce lighter units and more flexible dispatch rules into practice.

• Continue using simulation-based evaluation as a tool to support planning and decision-

making.
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List of Acronyms

Acronym Meaning

FDAA Fire Department Amsterdam-Amstelland
TS Tankautospuit (Pumper)
RV Redvoertuig (Ladder truck)
HV Hulpverleningsvoertuig (Rescue vehicle)
WO Waterongevallenvoertuig (Marine rescue boat)
MOTO Motorcycle unit
AED Automated External Defibrillator
CPR Cardiopulmonary Resuscitation
MCRP Maximum Coverage Relocation Problem
LBAP Linear Bottleneck Assignment Problem
SDOM Station Dispatch Optimization Model
FOTA Fraction of On-Time Arrivals
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Introduction

1.1 Background

The Fire Department Amsterdam-Amstelland (FDAA) is responsible for providing fire pro-

tection and emergency response services across a densely populated region in the Nether-

lands, which includes the city of Amsterdam and surrounding municipalities such as Am-

stelveen, Aalsmeer, Diemen, Uithoorn, and Ouder-Amstel. The FDAA operates 19 fire

stations, each equipped with various emergency vehicles, such as pumpers and ladders.

The FDAA operates within a complex urban environment with over one million resi-

dents. The department handles a wide variety of emergencies including structural fires,

traffic accidents, storm damage, and medical incidents. Each fire station is assigned a spe-

cific service area and may also contribute to broader response neighbourhoods depending

on incident location and severity. Resources are centrally dispatched by a call centre, which

alerts stations only after determining the required type and scale of response.

Currently, like the majority of safety regions in the Netherlands, the FDAA dispatches

resources using a relatively fixed and streamlined operating model. Regardless of the

severity or type of incident, whether it is a large fire, a small fire, or even a medical

emergency such as a cardiac arrest, the standard approach is usually to dispatch at least

a pumper truck with full six-person crew, in specific cases accompanied by one or more

specialized trucks.
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1. INTRODUCTION

1.2 Problem

While current deployment strategy ensures operational readiness, it may not be the most

time- or resource-efficient solution, especially in high-frequency, low-severity scenarios.

Given the increasing demand and limited availability of personnel, there is a growing

interest in more adaptive and modular deployment strategies.

For example, in the case of out-of-hospital cardiac arrests (OHCA), every minute of

delay can increase the likelihood of fatality by approximately 7%-10% (1). In the Nether-

lands, the legally permitted ambulance response time is up to 15 minutes, whereas the fire

department is currently required to respond within 5–10 minutes for high-priority emer-

gencies, with a maximum of 18 minutes. As a result, the fire department is frequently

called upon for urgent medical support. However, under the current system, a 6-person

crew is required because manual CPR is exhausting and must be rotated. With an AED,

however, a single responder may suffice, making rapid intervention by a motorcycle unit

carrying an AED feasible. This would also prevent tying up an entire crew, preserving

availability for other incidents.

1.3 Earlier Studies

In recent years, the FDAA has actively collaborated with academic researchers to improve

operational efficiency through data-driven decision-making. A series of studies have ex-

plored mathematical modelling, machine learning, and optimization techniques to support

tactical and strategic planning.

For example:

• Van den Berg et al. (2) developed an integer linear programming (ILP) model to

optimize fire station locations and vehicle allocation, with the objective of maximizing

population coverage and minimizing response times across different vehicle types.

• Usanov et al. (3) proposed a dynamic vehicle relocation strategy using the Maximum

Coverage Relocation Problem (MCRP) and the Linear Bottleneck Assignment Prob-

lem (LBAP), allowing the FDAA to maintain service levels during major incidents.

• Legemaate et al. (4) investigated incident forecasting based on weather data, showing

that small incidents can be reasonably predicted using Exponential Averaging (EA),

while larger incidents follow a more complex stochastic process.
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1.4 Research Objectives

While these studies have made important contributions to long-term planning and

incident management, they primarily address system-level optimization in large-scale or

strategic scenarios. By contrast, relatively little attention has been given to operational

deployment efficiency in high-frequency, low-severity events—such as medical emergencies

or small fires—where full-scale deployment may be unnecessary.

In particular, there is still a gap in the development of modular, adaptive dispatch

strategies that incorporate real-time resource availability and incident-specific require-

ments. Addressing this gap is especially important in context of rising incident volumes

and personnel shortages. This study aims to build upon previous work by introducing a

flexible deployment model designed to improve response to everyday emergencies, while

also ensuring sufficient coverage and preparedness for major incidents across the entire

service area.

1.4 Research Objectives

The current resource deployment strategy of the FDAA is based on rigid, predefined unit

structures—most commonly the standard dispatch of a six-person pumper team (TS6) to

almost all incident types. While this approach ensures readiness for major emergencies,

it often leads to over-allocation of personnel, particularly for smaller or lower-severity

incidents. These inefficiencies may consequently increase response times, limit resource

utilization efficiency, and reduce overall system flexibility.

This research examines whether operational efficiency can be significantly enhanced by

adapting the current deployment model. In particular, we investigate the potential bene-

fits of introducing more flexible unit compositions—such as two- and four-person pumpers

(TS2, TS4) and single-responder motorcycles (MOTO). These configurations have already

been implemented in several countries, demonstrating their practical feasibility for minor

incidents and time-critical emergencies such as cardiac arrests. Since real-world experi-

mentation is impractical and potentially unsafe, simulation is essential for assessing their

effects on response times and system coverage, and for identifying optimal rules for ve-

hicle dispatch and relocation. However, the simulation tool available to the FDAA in

2019 had several important limitations: it could not model flexible team sizes, simulate

mixed-resource dispatching, adapt relocation algorithms to new configurations, or capture

dynamic incident escalation. Addressing these constraints forms the core of this research.

3



1. INTRODUCTION

The main objective of this research is to improve operational efficiency at the FDAA

through more flexible and realistic simulation-based planning. Specifically, this project

aims to:

• Enhance the fire department’s existing simulator to support flexible vehicle and crew

configurations, including new types such as TS2, TS4, TS6, MOTO, and composite

units like TS6_P assembled from smaller vehicles.

• Implement adaptive dispatching rules that allow partial or minimum viable deploy-

ment for incidents like medical emergencies, where rapid single-responder arrival can

be life-saving.

• Extend and adapt relocation optimization models such as the MCRP and the LBAP

for relocation during major incidents, moving available units from less busy to tem-

porarily depleted stations to maintain area-wide coverage.

• Integrate an expanded dataset (2007–2025), including the newly established GBA fire

station, to enable more realistic scenario testing, model calibration, and validation.

• Evaluate the operational impact of various dispatch and relocation policies using

simulation experiments under realistic demand conditions.

This simulator-driven approach allows the FDAA to safely test innovative strategies in

a controlled environment, making data-driven decisions before implementing any policy

changes in the field.

1.5 Research Question

Based on the objectives outlined above, the overarching research question of this thesis is:

Main Research Question: How can an alternative deployment model be

designed for the fire department, and what are its implications for operational

efficiency and responsiveness in terms of emergency response and deployment

capacity?

This main question can be divided into the following sub-questions:

1. What are the limitations of the current dispatch and relocation mechanisms in the

fire department’s operational model?

4



1.6 Challenges and Considerations

2. How can the simulation framework be extended to incorporate additional vehicle

types and flexible dispatch rules?

3. How can historical incident and deployment data be used to calibrate and validate

these extensions?

4. What is the impact of implementing dynamic relocation algorithms on station cov-

erage during major incidents?

5. How do the proposed changes affect key performance indicators such as response

time, resource utilization, and the need for external assistance?

1.6 Challenges and Considerations

While the use of smaller, more flexible units can theoretically increase responsiveness and

reduce unnecessary resource commitment, it also introduces new complexities. For in-

stance:

• Smaller units may reduce the availability of full 6-person teams needed for major

incidents.

• The training and certification of firefighters for multiple vehicle types must be adapted.

• Dispatching decisions become more complex and require sophisticated algorithms to

balance coverage and risk.

Furthermore, adapting existing relocation algorithms (e.g., MCRP + LBAP) to this

new paradigm is non-trivial, as they were originally designed for fixed team configurations.

These models must be updated to account for flexible team sizes and partial deployments.

1.7 Thesis Structure

The remainder of this thesis is organized as follows:

• Chapter 2: Background – Introduces the theoretical and practical background of

fire department operations, dispatch strategies, and existing optimization models.

• Chapter 3: Literature Review – Reviews simulator development for Dutch emer-

gency services, historical and FDAA optimization models, and examples of interna-

tional fire department optimization applications.
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1. INTRODUCTION

• Chapter 4: Data – Details the datasets used in the study, including incident

records, vehicle and station data, and preprocessing steps.

• Chapter 5: Algorithm – Describes the modeling of flexible deployment strategies

and the adaptation of relocation algorithms.

• Chapter 6: Simulation – Presents the simulation framework and the implemen-

tation of the algorithm within the simulator.

• Chapter 7: Experiment – Reports experimental results under realistic demand

scenarios and analyses operational impacts.

• Chapter 8: Conclusion – Summarizes the main findings, key insights, and lessons

learned from the research.

• Chapter 9: Discussion and Recommendation – Provides a detailed discussion

of implications, trade-offs, limitations, and recommendations for operational imple-

mentation.
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2

Background

The FDAA is responsible for fire protection and emergency response across the Amsterdam-

Amstelland region. It operates a diverse fleet—including, but not limiting, pumpers, ladder

trucks, rescue vehicles, and marine units—to handle various incident types, such as fires,

traffic accidents, and water-related emergencies. Staffing consists of both full-time profes-

sionals, who are stationed at the fire station 24/7, and part-time volunteers, who are called

in when required.

2.1 Fire Stations

The FDAA operates 19 fire stations, strategically distributed across the region to ensure

fast and effective response. Each station is responsible for a specific service area (verzorg-

ingsgebied), and together, these areas form a network of response neighborhoods. The

number of stations covering each neighborhood depends on factors such as population

density, historical incident frequency and risk.

As shown in Figure 2.1, central and northern Amsterdam have a higher concentration of

fire stations, reflecting the historically greater incident frequency in these densely populated

areas. By contrast, the southern regions—where emergencies occur less often—are served

by fewer stations with more limited resources. For example, Aalsmeer and Uithoorn oper-

ate as volunteer-based stations on weekends, relying on part-time personnel during those

periods.

It is worth noting that the GBA station (Gezamenlijke Brandweer Amsterdam) began

operations on July 1, 2020, after the development of the original simulation tool. For

accurate modeling, the simulator must therefore be adapted to include this station. In

7



2. BACKGROUND

Figure 2.1: Distribution of fire stations in Amsterdam

contrast, the Weesp station, which started operations in 2024, lacks sufficient historical

data and is thus excluded from the simulation. Consequently, this station is also not

shown in the referenced map (Figure 2.1).

The simulation framework depends on accurate incident and vehicle dispatch records per

service area in order to fit proper probabilistic distributions for realistic scenario generation.

2.2 Vehicle Types

The FDAA operates four main types of emergency response vehicles, each designed to

handle specific incident types:

• TS (Tankautospuit / Pumper): The most frequently dispatched unit, used in

most fire-related incidents, typically crewed by six firefighters and fully equipped for

general firefighting operations, but can also handle lighter technical rescue operations.

8



2.2 Vehicle Types

• RV (Redvoertuig / Ladder truck): Used for incidents involving high-rise build-

ings or requiring vertical access and aerial water streams.

• HV (Hulpverleningsvoertuig / Rescue vehicle): Equipped for complex techni-

cal rescue operations, such as vehicle extrications and roadside accidents, involving

heavy equipment.

• WO (Waterongevallenvoertuig / Marine rescue vehicle): Deployed to water-

related emergencies—such as drownings or boat accidents—and crewed by four spe-

cially trained divers.

Each fire station is assigned specific crews and vehicles according to local demand and

incident profiles. Staffing levels and vehicle allocations are based on operational require-

ments and historical incident patterns. For instance, stations in urban centres are more

likely to have RVs and HVs due to the greater likelihood of high-rise fires or complex

traffic accidents, whereas marine units are positioned near bodies of water to respond to

water-related emergencies.

Pumpers are available at every station due to their broad applicability, whereas spe-

cialized vehicles such as RV, HV, and WO are stationed only at selected locations. Some

incidents require only a single vehicle type, while others demand a combination of units.

For example, fires are classified as small, medium, or major, with corresponding deploy-

ments of one, two, or three pumpers, respectively.

Each vehicle type requires a specific crew composition, and vehicles can only be dis-

patched when fully staffed:

• A TS requires 6 personnel: 4 general firefighters, 1 driver and 1 captain.

• Both RV and HV require 2 specialized personnel, referred to as RVHV staff, who are

qualified for aerial operations or technical.

• A WO requires 4 certified divers trained in underwater rescue.

These staffing constraints are strictly enforced in the current dispatch system, which

means that vehicles are never deployed without a full, qualified crew. While this require-

ment ensures operational safety, it also poses challenges for maintaining adequate service

coverage during peak demand or staff shortages.

9



2. BACKGROUND

2.3 Personnel

In addition to differences in vehicle crew requirements, firefighters in the FDAA are clas-

sified into two categories based on their employment status:

• Full-time firefighters are stationed at the fire stations 24/7 and respond to alarms

immediately.

• Volunteer (part-time) firefighters live near the fire station and are called in when

needed. They must first travel to the station after being alerted, and the vehicle

departs only once the required crew size has been assembled.

From a skill standpoint, there is no difference between full-time and volunteer fire-

fighters, as both receive the same professional training. The primary distinction lies in

availability at the station, which directly impacts turnout time— the time required for a

crew to get ready and depart after being alerted. Vehicles relying on volunteer staffing gen-

erally have significantly longer turnout times than those operated by fully staffed full-time

units.

For instance, in the case of TS crew composition:

• Driemond and Duivendrecht stations are staffed entirely by volunteers.

• Aalsmeer, Uithoorn, and Diemen operate with full-time crews on weekdays but switch

to volunteer staffing on weekends.

• Amstelveen follows a hybrid model, combining both full-time and volunteer firefight-

ers.

In Amstelveen, the dispatch system gives priority to full-time crews, with volunteers

mobilized only when additional staffing is required. If the mandated crew size has not been

reached, a vehicle must wait for volunteer firefighters to arrive. In our simulator, this rule

also applies if relocation temporarily results in a station being staffed by both full-time

and volunteer firefighters.

2.4 Incident Types

The FDAA responds to a wide variety of incidents, not limited to fires. These include

technical rescues, water-related emergencies, hazardous material situations, medical aid,

10



2.4 Incident Types

and more. In the legacy dataset, incident types were recorded using labels such as Bin-

nenbrand (indoor fire), Liftopsluiting (person stuck in elevator), Persoon te water (person

in water), Afhijsen spoed (urgent lifting for ambulance), and others. These detailed cate-

gories are later merged into a smaller set of generalized incident types (see Data chapter

for mapping), enabling more efficient modeling and scenario generation.

Each incident is assigned a priority level, which reflects its urgency. Although our sim-

ulator framework primarily uses three levels (1 being the highest), in practice the priority

scale is broader, with levels such as 4 and 5, used for less urgent situations. Incidents

with a priority level other than 1 are typically classified as non-critical, posing no imme-

diate threat to life or major property loss — such as elevator entrapments or minor trash

fires. Only priority 1 incidents are considered urgent, requiring immediate response. For

these high-priority cases, legal standards define the maximum allowable response time,

depending on the type of building involved. Table 2.1 summarizes these requirements for

fire-related incidents:

Table 2.1: Maximum response times (for fire incidents) by building type

Building Type Max Response Time
Enclosed shopping centers, residences above shops, detention
facilities

5 minutes

Apartment buildings, housing for persons with reduced
self-reliance

6 minutes

Other residential, retail, healthcare, educational, or lodging
facilities

8 minutes

Offices, industrial sites, sports/assembly venues, other
functions

10 minutes

Justified deviation with regional rationale 18 minutes (max)

To meet these targets, the fire department initiates response procedures immediately

after receiving an alert from the dispatch centre. This involves activating the selected

vehicle(s) and notifying the required firefighters, who must quickly prepare themselves

before departure. This preparation phase, known as the turnout time, includes tasks

such as putting on protective clothing, gathering and checking necessary equipment, and

boarding the vehicle. The vehicle can depart only once the full crew is ready, marking the

end of the turnout time.

For priority 1 incidents, vehicles use sirens and lights and are allowed to take priority

11



2. BACKGROUND

lanes and drive at slightly higher than the maximum allowed speed. In contrast, lower-

priority incidents do not justify such urgency. Firefighters can take more time to prepare,

and vehicles travel under normal traffic regulations. In priority 2 situations, some privi-

leges—such as using emergency or bus lanes—may still apply, but without sirens or lights.

In this study, we primarily focus on priority 1 incidents. However, it is important to

note that some records in the dataset may reflect inconsistencies between the initial and

recorded priority. For instance, a dispatcher may initially assign a priority 2 status, but

after discussion with the field crew and given severe traffic congestion, the crew may be

allowed to respond as if it were a priority 1. These cases often result in longer turnout

times and overall response times, yet are ultimately logged as priority 1. In our data, such

incidents appear as outliers in the response time distribution.

2.5 Response Time

The total response time of the fire department consists of three main components: dispatch

time, turnout time, and travel time. Together, these elements represent the timeline from

the moment an emergency call is received to the arrival of the fire brigade at the incident

location. This process is illustrated in Figures 2.2.

DISPATCH TURN-OUT TRAVEL ON-SCENE
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Figure 2.2: Key components of the response time (adapted from (5)).

This decomposition follows the operational timeline of an emergency response, as de-

tailed in The Data-Driven Fire Department (5):

• Dispatch time refers to the duration between the emergency call being received

and the moment when alarms are triggered in the relevant fire station. During this

period, the dispatcher collects information from the caller via the emergency dispatch
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system (GMS), determines the priority level of the incident, and decides which units

to deploy.

• Turnout time is the interval between the alarm going off in the fire station and the

moment the vehicle leaves the station. This period includes firefighter preparation,

such as getting dressed, equipping gear, and boarding the vehicle. Once ready, a fire-

fighter presses a button in the vehicle to mark the departure, which is automatically

logged in the system.

• Travel time begins when the vehicle departs from the station and ends upon arrival

at the incident location. The arrival time is again recorded by pressing a designated

button in the vehicle.

Together, these three components define the legally and operationally defined response

time. These standards are used to ensure sufficient emergency coverage and to evaluate

fire department performance across regions.

2.6 Current Operational Model

The FDAA currently operates under a standardized, fixed deployment model. When an

incident is reported, the call centre first determines the type of emergency and the required

resources, then alerts the relevant fire stations.

Once the alarm is triggered, firefighters immediately prepare—donning protective gear,

checking equipment, and boarding the vehicle. Departure occurs only when the full crew

is ready, ensuring a structured response. For most routine incidents, a single six-person

pumper crew is dispatched, while larger-scale emergencies receive additional vehicles. Mi-

nor incidents, including small fires or medical emergencies such as cardiac arrests, typically

follow this uniform deployment pattern.

Figure 2.3 illustrates this process, based on internal logs from the operational systems

used by Dutch fire services.

2.7 Challenges and Opportunities for Improvement

Despite the clarity and consistency of the FDAA’s current dispatch model, efficiency chal-

lenges arise when responding to smaller incidents. The default deployment of a six-person
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Figure 2.3: Operational timeline of a fire incident response (adapted from (5)).

pumper crew, regardless of incident type or severity, can lead to overuse of resources,

particularly for minor incidents where a full crew is not necessary.

One potential solution is the adoption of a more flexible, modular deployment system.

Instead of relying solely on standard six-person pumpers, the fire department could deploy

smaller units, such as four-person or two-person pumper teams, or even single-respondent

motorcycle units, based on the specific needs of each incident.

For instance, in the case of cardiac arrest, medical studies indicate that each minute

without defibrillation reduces the patient’s survival rate by approximately 7%-10% (1). In

the Netherlands, ambulances have a statutory response time of 15 minutes, which runs

the risk of arriving too late for effective intervention. By contrast, the fire department’s

statutory response time is 5–10 minutes for high-priority emergencies, making it a critical

first responder.

As discussed earlier, a motorcycle unit carrying an AED can often provide the critical

first intervention on its own. Deploying single-person motorcycle units could substantially

reduce response time and improve survival outcomes in such time-critical situations. Mod-

ular units also help maintain regional coverage. If a full pumper team is engaged in a

minor incident, the station may become temporarily unavailable for other emergencies.

For example, while responding to a cardiac arrest, the same station might be unable to

attend a nearby small fire. By dispatching a motorcycle unit for the medical emergency

and a smaller pumper team for the fire, the department can preserve broader operational
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readiness.

In addition to varying unit sizes, dispatch rules can be refined to allow hybrid responses.

In high-priority incidents requiring a full six-person team, nearby stations lacking full

personnel or suitable apparatus could dispatch a partial crew to perform initial assessment,

evacuation, or communication with the control centre, with the main pumper arriving

subsequently. Conversely, if only large pumpers are available, they can deploy a minimal

crew—such as sending a firefighter equipped with an AED—rather than waiting for a

more distant station with the optimal vehicle. Such adaptive strategies enable faster, more

efficient responses while improving overall operational resilience.

2.8 International Inspiration

While six-person pumpers remain standard in Amsterdam, many smaller incidents do not

require such a large response. This has prompted research and pilot programs explor-

ing alternative unit configurations. This approach is not purely theoretical. Various fire

departments worldwide have already adopted diversified vehicle and staffing models.

In countries such as the United Kingdom and Singapore, fire motorcycles have been

successfully deployed to handle time-critical or small-scale incidents. The Merseyside Fire

and Rescue Service in the UK launched a pilot scheme using motorcycles equipped with

water tanks and hose reels to address anti-social behaviour fires, such as wheelie bins and

skips, which represent a significant portion of their call-outs (6). In Singapore, the Civil

Defence Force (SCDF) deploys fire bikes manned by Emergency Medical Technicians to

rapidly reach life-threatening cases, such as cardiac arrests, ahead of ambulances. These

bikes carry essential medical equipment and enable faster initial response in dense urban

environments (7).

Another practical example comes from the Lafayette County Fire Department in the

United States, which introduced a mini pumper to reduce wear-and-tear on larger vehicles

while ensuring their availability for major incidents (8).

These international practices demonstrate the feasibility of diversifying deployment

models. By assigning units based on incident type, fire services can allocate resources

more effectively, reduce response times, and maximize the impact of available personnel.
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2.9 Remaining Challenges

Implementing such changes poses several challenges. New team configurations require

appropriate training, and in some cases, new vehicles and equipment. Moreover, splitting

teams for small incidents may temporarily limit a station’s capacity to respond to larger

fires. Although rare, high-impact cases could still lead to delays in responding to severe

incidents, especially if nearby stations are simultaneously occupied.

However, data from the FDAA shows that large-scale fires are relatively infrequent—only

around 20–30 such incidents occur annually in Amsterdam. Moreover, a flexible dispatch

model can still ensure that partial teams respond immediately for initial support, while

full operations are coordinated as needed.

2.10 The Role of Simulation

Before implementing such a system, its theoretical benefits should be validated. Simulation

plays a critical role in this process. We propose enhancing the fire department’s existing

dispatch simulator to model the new deployment strategies. By experimenting with various

configurations and dispatch rules, we can evaluate their effects on overall response time,

personnel utilization, and incident coverage.

In addition to scenario simulations, mathematical optimization models should also be

incorporated into the simulator. Currently, the FDAA’s operational model does not lever-

age algorithmic optimization in its dispatching process. However, recent studies within the

FDAA have explored the use of optimization techniques for resource planning and decision-

making. Integrating these models into the simulator will allow identification of optimal

or near-optimal dispatch strategies dynamically during simulations, further improving the

credibility and utility of the results. This enhancement can support the development of

a semi-automated decision-support tool recommending optimal unit assignments under

varying conditions.

If simulations demonstrate meaningful improvements over the current approach, the

department will have a strong foundation to justify pilot testing and investment in more

flexible deployment systems.
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Literature Review

3.1 Simulation Tools in Emergency Service Planning

The use of simulation in emergency response planning has evolved into a critical method for

evaluating and improving operational strategies without the risks and costs of real-world

experimentation. The following sections review two foundational simulation systems that

are relevant to this thesis: the TIFAR simulator developed for the Dutch ambulance sector,

and the FDAA simulator, which represents the current state-of-the-art in fire dispatch

simulation in the Netherlands. These prior works provide both methodological inspiration

and a technical baseline for the simulation-integrated optimization framework.

3.1.1 Prior Simulation Research in the Netherlands

The development of dispatch simulation tools for emergency services in the Netherlands

has a strong academic basis. Well before the FDAA’s own simulation initiative, the TIFAR

(Testing Interface For Ambulance Research) tool was created to evaluate ambulance dis-

patch strategies (van Buuren et al., 2012 (9)). TIFAR allowed Emergency Medical Service

(EMS) managers to test different dispatch strategies and relocation policies under realistic

constraints, using historical call and movement data.

The simulator was designed for the structure of the Dutch EMS, where each of the 25

regions operates its own ambulance provider (RAV), and incoming calls are classified by ur-

gency: A1 (life-threatening), A2 (non-life-threatening), and B (pre-scheduled, non-urgent).

Simulations with real demand and travel data showed that TIFAR’s results closely matched

actual performance for high-priority (A1) incidents, confirming the tool’s accuracy. TIFAR
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also handled large geospatial datasets (over 32,000 vertices), supported real-time decision

visualization, and allowed flexible rule and vehicle configurations.

Although TIFAR focused mainly on EMS, its success demonstrated the value of simula-

tion in emergency logistics. This work helped establish simulation as a reliable method for

testing what-if scenarios and optimizing emergency response systems in the Netherlands.

The more recent FDAA simulator builds on this experience, focusing on fire response and

allowing integration with mathematical optimization models.

3.1.2 The FDAA Simulator: Toward Intelligent and Data-Driven Fire
Dispatch

A notable recent development in the FDAA’s move toward a data-driven operational model

is the simulation system created as part of a professional doctorate project titled The

Data-Driven Fire Department (Van den Bogaert, 2019 (5)). This project aimed to provide

the FDAA with decision-support tools to reduce emergency response times at strategic,

tactical, and operational levels.

A key outcome was the creation of a verified and validated simulation software system.

The simulator allows users to model and evaluate changes to station locations, vehicle and

staff allocations, dispatch rules, and relocation strategies. Its modular design supports au-

tomated scenario comparisons, providing insight into how different resource configurations

affect performance metrics such as response time and coverage. The study also introduced

predictive models based on demographic data to improve incident forecasting and tested

both rule-based and AI-based approaches for dynamic vehicle relocation. While deep rein-

forcement learning showed limited improvement over existing algorithms (MCRP+LBAP),

the simulation-based response time distributions proved useful for evaluating relocation de-

cisions.

The simulator developed in this project represents a foundational step toward more

intelligent dispatch systems. However, it is not yet integrated with advanced optimization

algorithms. Integrating mathematical models—especially optimization techniques—into

the simulation framework could further enhance its decision-support capabilities. A more

detailed discussion of the simulator’s structure, functions, and planned improvements is

provided in the Simulaton chapter of this thesis.
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3.2 Evolution of Fire Resource Optimization Models

This section traces the development of fire resource allocation models—from early static

location optimization to real-time redeployment heuristics and modern hybrid frameworks.

Understanding this evolution provides critical context for the integration of simulation and

optimization in today’s fire dispatch systems.

3.2.1 Toregas et al. (1971): Static Fire Station Location Using Set
Covering

Toregas et al. (10) introduced the Location Set Covering Model (LSCM), one of the earliest

mathematical formulations for placing emergency service facilities. The model uses binary

integer programming to determine the minimal number and placement of stations such that

every demand point is within a pre-specified response radius. The model simplifies reality

by assuming equal station costs, static demand, and full availability of units. Nevertheless,

it laid the foundation for decades of facility location research in emergency services. It has

since been extended to more flexible formulations, such as the Maximal Covering Location

Problem (MCLP) (Church & ReVelle, 1974 (11)) and dynamic relocation models. The

concepts from this foundational work still underpin many modern simulation-based and

optimization-driven fire resource planning tools.

3.2.2 Kolesar and Walker (1974): Real-Time Unit Relocation During
Major Incidents

While early models like Toregas et al. (10) focused on the static location of fire sta-

tions, real-world operations often require dynamic decision-making in response to unfold-

ing events. A major advancement came from Kolesar and Walker (12), who addressed

the issue of fire station coverage degradation during large-scale incidents. Their heuristic

model supported real-time redeployment of available units to maintain city-wide response

coverage when stations became empty. It was one of the first approaches to integrate com-

putational logic into dispatch operations, balancing fairness, efficiency, and response speed

under operational constraints. Their model showed that meaningful improvements in cov-

erage during major incidents were possible, and the algorithm eventually became part of

FDNY’s real-time dispatch logic. It also established a precedent for integrating simulation

and algorithmic decision-making into fire department operations—an idea central to the

current project’s vision.
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3.2.3 MCRP + LBAP Model by FDAA

The FDAA proposed a novel relocation framework to address the operational demands

of modern fire services, as described in Fire Truck Relocation During Major Incidents

(Usanov et al., 2019 (3)). Their approach combines a Maximum Coverage Relocation

Problem (MCRP) with a Linear Bottleneck Assignment Problem (LBAP), producing a

heuristic relocation strategy that balances performance, fairness, and practical feasibility.

Compared to earlier models relying on complex cost functions or static redeployment

rules, the FDAA framework:

• Uses historical incident distributions to inform relocation decisions;

• Introduces a tunable relocation “willingness” to control the number of vehicle move-

ments based on operational capacity and dispatcher preferences;

• Maintains minimum coverage fairness across all city zones;

• Can be applied in real time with limited computational overhead.

During major incidents involving multiple units, the model identifies which idle trucks

should be relocated and to which stations to restore balanced city-wide coverage. The

optimization is solved dynamically, accounting for real-time unit availability and spatial

risk patterns derived from historical data. The model was validated through extensive

discrete-event simulations and calibrated using ten years of real incident and dispatch

data from the FDAA. Compared to benchmark strategies—including static baselines and

the Kolesar-Walker approach—the MCRP+LBAP heuristic significantly improves response

reliability under high-demand scenarios. These features also make it suitable for frontline

adoption by dispatch personnel.

Our project aims to embed and extend this model within a flexible simulation frame-

work, enabling systematic evaluation of dispatch strategies under varied deployment config-

urations. The detailed design of the MCRP+LBAP algorithm, along with the adjustments

made to adapt it to our simulator architecture, will be discussed in Chapter 5.

3.3 Other Research by FDAA

Beyond real-time dispatch and dynamic relocation, the FDAA has actively explored a

range of optimization and forecasting strategies to enhance its operational planning. Two
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notable studies are summarized below to highlight the broader context of mathematical

modeling within the organization.

3.3.1 Strategic Base Relocation and Crew Distribution Optimization

In collaboration with academic partners, the FDAA developed a mathematical program-

ming model for optimizing fire station locations and vehicle allocations (Van den Berg et

al., 2017 (2)). This model incorporates several real-world constraints:

• Some base stations must remain fixed due to historical or logistical reasons;

• Multiple vehicle types are supported, each with different response time targets;

• Differentiates between professional and volunteer firefighter crews.

Key findings from the study include:

• Relocating just 3 out of 19 stations reduced late arrivals by over 50%;

• It was unnecessary to add new stations—optimizing the locations of existing bases

proved effective and more cost-efficient;

• Minor adjustments in crew or vehicle distribution raised coverage from 83.48% to

92.88%.

This model has already informed operational decisions, such as not replacing a specific

base, and is currently in use in two other projects. It demonstrates that mathematical op-

timization models are not only theoretically valuable but also highly applicable in practice

when carefully tailored to operational realities.

3.3.2 Weather-Informed Incident Forecasting Models

Beyond dispatch and station optimization, the FDAA has explored predictive modeling

to improve resource planning under uncertain demand. One representative study focused

on incident forecasting under severe weather conditions (Legemaate et al., 2021 (4)). The

researchers developed a machine learning–based framework to forecast the number of in-

cidents per fire station, incorporating not only historical incident data but also weather

variables such as rain, wind, temperature, and visibility. Key findings include:

• Rain and wind strongly correlate with increased incident frequency, especially for

storm-related calls;
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• Temperature influences incidents in a non-linear fashion, while visibility was found

to be the least impactful;

• Inhomogeneous Poisson processes outperformed simpler models for rare but severe

incidents.

The best-performing model was an ensemble approach, which combined the strengths

of multiple forecasting techniques. Importantly, the study also identified directions for

future improvement, such as:

• Shifting from station-based to region-based forecasting, to better capture localized

environmental risk;

• Incorporating seasonal vegetation factors into risk assessment;

• Clustering incidents by type for more targeted forecasts.

3.4 International Research on Fire Brigade Optimization

Beyond the FDAA, fire agencies worldwide have increasingly adopted mathematical opti-

mization and data-driven modeling to enhance deployment efficiency. These international

efforts illustrate the growing role of operations research and simulation as essential tools

in modern emergency response planning. Two recent studies from Slovakia and Chile ex-

emplify how different methodological approaches—ranging from integer programming to

forecast-informed simulation—have been tailored to improve fire station placement, vehicle

allocation, and response coverage.

3.4.1 Slovak Research on Fire Brigade Optimization

A study by Leitner et al. (2023 (13)) from the University of Žilina explores various math-

ematical programming approaches to optimize fire brigade deployment in Slovakia. The

study presents a progression from basic to advanced models, aiming to balance efficiency

and fairness in emergency coverage. The six models discussed include:

1. Basic Coverage Model (p-median) – Minimizes total distance between demand nodes

and fire stations.

2. Radial Coverage Model – Focuses on binary coverage within a maximum distance

threshold.
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3. Generalized Disutility Model – Allows for more flexible distance penalties beyond

simple thresholds.

4. Min–Max Fairness Model – Minimizes the worst-case distance to the nearest station,

ensuring equity but possibly worsening overall averages.

5. Fair Coverage Model with Tolerance – Introduces parameters to control how many

users can be outside a defined service radius.

6. Minimum Required Station Model – Calculates the minimal number of stations

needed to satisfy fairness constraints.

The authors conclude that while simple models suffice for initial planning, advanced

fairness-oriented models provide robustness and political feasibility. Full implementation,

however, requires further simulation and real-world validation, particularly for assessing

robustness and trade-offs between multiple objectives. This demonstrates the value of

simulation tools for evaluating theoretical models in practical contexts.

3.4.2 Chilean Case Study: Fire Station and Fleet Optimization in San-
tiago

A example comes from the Santiago Fire Department (SFD) in Chile, where Pérez et al.

(2016 (14)) developed an optimization model based on real operational data (over 22,000

emergency calls from 2007 to 2011, extended to nearly 38,000 after forecasting to 2015)

to evaluate how fire station locations and fleet assignments impact emergency response

performance. Several optimization experiments were conducted:

• Baseline scenario: Using existing station locations and vehicle assignments, estab-

lishing the reference performance level;

• Scratch (full redesign) scenario: Allowing unrestricted relocation of stations and full

reallocation of vehicles, to estimate the upper bound of performance improvements;

• Fleet reallocation only: Keeping all station locations fixed, while optimizing vehicle

deployment across stations;

• Single-station relocation: Allowing only one fire station to be relocated, with full fleet

optimization. This represents a politically and operationally feasible middle ground.

The results were significant:
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• Merely reallocating the fleet (no new stations) improved coverage by up to 10–35%;

• A single-station relocation combined with optimal fleet reallocation improved cover-

age by up to 30–50%;

• In terms of time-specific performance, the percentage of calls responded to within 6

minutes increased from 70% to 95% in some configurations—all without adding new

vehicles or stations.
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The data used in this study were generated and processed according to the procedures

described in the background section. Here, we provide a detailed overview of the original

data provided by the FDAA and the additional information derived to support simulation-

based analyses.

The FDAA provided five primary sources: Incident, Deployment, Station, Vehicle, and

Deployment Characteristic. Except for Deployment Characteristic, these largely follow the

structure used in The Data-Driven Fire Department (5), with updated records covering

2018 to 2025. This expanded data includes previously unavailable information from the

GBA fire station, providing broader geographic and operational coverage.

Due to changes in data schema, naming conventions, and variable values from system

updates, we performed preprocessing to remap the new format into a structure compatible

with the simulator. These steps are detailed in Subsection 4.2.

On this updated data, we generated the additional inputs required by the simulator

using the same methods as the original project, including Prophet-based forecasts, OSRM

travel time matrices, and location datasets. Furthermore, the Deployment Characteristic

data was analyzed to extract statistical distributions for incident escalation, which are

central to modeling multi-stage emergencies.

4.1 Data Sets

The simulator in this study is based on historical incident data provided by the Amsterdam

Fire Department. The core datasets include Incident, Deployment, Station, Vehicle, and
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Deployment Characteristic, covering the period from May 2017 to April 2025. Together,

these datasets combine previously available records with newly obtained data extending

through 2025. Below, we describe each dataset in detail, outlining its structure, key at-

tributes, and role in the simulation model.

Incident

The Incident dataset forms the foundation of all other records, containing information

on incidents occurring between January 2008 and May 2025. For each incident, the fire

department logs start and end times, type, priority level, and location. The dataset consists

of 227,100 rows and 104 columns, with each row representing a single incident. This dataset

merges records from the old and updated systems. The new system introduces additional

variables and revised naming conventions, increasing the number of features from 56 to 104.

To ensure compatibility with the simulator, we mapped the essential features back to the

previous naming format without altering the original data content. These preprocessing

steps are described in Subsection 4.2.

The simulator requires only 12 key features from this dataset, summarized in Table 4.1.

Among these features, incident type is particularly important, as it determines the re-

Column Name Column Type Description

dim_incident_id int64 Incident ID
dim_incident_incident_type object Type of incident
dim_datum_datum object Date
dim_prioriteit_prio int64 Priority level
inc_dim_object_functie object Building type
dim_incident_start_datumtijd object Start time of incident
dim_incident_eind_datumtijd object End time of incident
dim_tijd_uur object Hour of the day
hub_vak_bk float64 Hub area
kazerne_groep object Station group
st_x object X coordinate
st_y object Y coordinate

Table 4.1: Dataset schema

sources required and the temporal patterns of each event. The current classification sys-

tem defines 18 types, including Outdoor fire, Alarm, Indoor fire, Resuscitation, Vehicle in
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water, and Aviation rescue, among others.

Figure 4.1: Pie chart showing proportions of incident types

As shown in Figure 4.1, Alarm incidents account for the largest share. These are typi-

cally triggered automatically and would often be categorized as Indoor fire if reported man-

ually. Differences in reporting sources—automatic alarms versus human reports—also af-

fect dispatch times. Human-reported incidents involve communication delays, while alarms

often provide faster, though sometimes false, notifications. In our study, Alarm and Indoor

fire incidents are modeled separately to capture these distinct dispatch characteristics.

All incident types are included in the simulation. It is important to note, however,

that the Incident dataset records only one row per incident, without capturing changes

in scale over time. To model the temporal evolution and escalation of incidents, we rely

on the Deployment Characteristic dataset, which provides detailed records from May 2017

to April 2025. These data are used to fit distributions related to incident escalation, as

discussed in later sections.
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Deployment

The Deployment dataset records the dispatch details of vehicles for each incident, including

vehicle type, departure and return times, and other operational timestamps. It contains

527,076 rows—each representing a single vehicle deployment—and 121 columns. Since

multiple vehicles may be dispatched to the same incident, this dataset is substantially

larger than the Incident dataset, with an average of 2.32 vehicles per incident. The data

merges records from both the old and new systems, resulting in overlapping features with

differing naming conventions. Necessary features have been mapped to ensure compatibility

with the simulator (see Subsection 4.2).

Only 10 fields are required for the simulator, as listed in Table 4.2.

Column Name Column Type Description

hub_incident_id int64 Associated incident ID
inzet_gealarmeerd_datumtijd object Time of alarm
inzet_uitgerukt_datumtijd object Time of departure
inzet_terplaatse_datumtijd object Time of arrival on scene
inzet_start_inzet_datumtijd object Start time of deployment
inzet_eind_inzet_datumtijd object End time of deployment
voertuig_groep object Vehicle group
kazerne_groep object Station group
inzet_terplaatse_volgnummer int64 Arrival sequence number
inzet_rijtijd object Travel time

Table 4.2: Fields from the Deployment dataset required by the simulator.

The variable hub_incident_id links each deployment to its corresponding incident

(dim_incident_id) in the Incident dataset. Based on these variables, the following op-

erational metrics are derived:

• Dispatch time = Alarm time − Incident start time

• Turnout time = Departure time − Alarm time

• Travel time = Travel time

• Response time = Dispatch time + Turnout time + Travel time
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Station and Vehicles

The Station dataset is relatively small, containing geospatial information about fire sta-

tions, including station name, address, postal code, city, longitude, and latitude. The

Vehicle dataset provides the staffing and equipment structure of each station, recording

the number of vehicles of each type and associated crew sizes. For confidentiality reasons,

station names are represented by letters (see Table 4.3).

Station TS RV HV WO TS_crew_ft TS_crew_pt RVHV_crew_ft RVHV_crew_pt WO_crew_ft WO_crew_pt

A 2 1 1 1 1 1 1 0 0 1
B 1 1 0 1 1 0 1 0 1 0
C 1 0 0 0 1 0 1 0 0 0
D 1 1 0 0 1 0 1 0 0 0
E 1 1 0 0 1 0 1 0 0 0
F 1 0 0 0 1 0 1 0 0 0
G 2 0 0 0 0 2 0 0 0 0
H 1 1 0 0 1 0 1 0 0 0
I 1 1 0 0 1 0 1 0 0 0
J 1 0 0 0 0 1 0 0 0 0
K 1 0 0 0 1 0 1 0 0 0
L 1 0 0 0 1 0 0 0 0 0
M 1 1 1 0 1 0 2 0 0 0
N 1 1 0 0 1 0 1 0 0 0
O 2 0 0 0 0 2 0 0 0 0
P 2 0 1 0 1 1 1 0 0 0
Q 1 0 0 0 0 1 0 0 0 0
R 1 0 0 0 1 0 0 0 0 0

Table 4.3: Vehicle availability and staffing per station.

The dataset records the number of crews, not individual firefighters. The crew sizes are

standardized as follows:

• TS: 6 firefighters

• RV and HV: 2 firefighters (shared crew)

• WO: 4 firefighters

Firefighter types are further distinguished as full-time (ft) and part-time/volunteer (pt).

Subsequently, crew units are converted into individual headcounts, and the dataset is ex-

panded to include additional vehicle types and crew compositions for the designed simu-

lation scenarios.
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Figure 4.2: : Entity-relationship diagram (adapted from (5))

The relationships between these datasets are consistent with those presented in The

Data Driven Fire Department (5). Simulation locations are generated using hub_vak_bk

from the Incident dataset, enabling the creation of a synthetic Location dataset based on

real incident locations.

Deployment Characteristic

A key enhancement in our simulator, compared to the simulator of The Data Driven

Fire Department (5), is the inclusion of incident escalation dynamics. The Deployment

Characteristic dataset captures how the scale of an incident evolves as additional resources

are dispatched. It contains 61,615 rows and 11 features, with the three most relevant fields

being:

• INCIDENT_ID: Link to the Incident dataset

• ACTUELE_KAR_WAARDE: Final registered scale of the incident

• DTG_REG_WAARDE: Datetime of final scale registration

Incident scales are categorized into four levels: small, medium, major, and very major.

The dataset records only the final scale for each incident. We assume all incidents begin
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as small and escalate sequentially, although intermediate escalation points (e.g., small to

medium) are not documented. For such cases, expert judgment is used to define plausible

escalation timelines, which will be described in detail in Chapter 6.

While the inclusion of escalation processes enhances the realism of simulated incidents,

the limited temporal coverage of this dataset (2017–2025) constrains precise statistical

fitting for all scenarios. The primary aim is to demonstrate the feasibility and structure

of this simulator enhancement, rather than to exactly replicate historical data. As the

fire department continues to collect more detailed records, future work can leverage richer

datasets for more accurate calibration.

4.2 Data Processing: Mapping and Data Generation

This section describes the preprocessing steps applied to harmonize and enrich the datasets

used in the simulation. The procedures consist of two main components: (1) mapping

existing features and values to ensure compatibility with The Data Driven Fire Department

dataset (5), and (2) generating new datasets to support simulation and forecasting.

Mapping

Although the newly acquired data (2018–2025) shares structural similarities with the orig-

inal dataset, there are notable differences in feature names and value formats. To ensure

compatibility with the simulator, we mapped the new dataset fields to match the original

format.

We adopted the variable naming conventions of the old dataset and mapped the cor-

responding new variables. The mappings for the Incident dataset are listed in Table 4.4.

Similarly, the new Deployment dataset fields were mapped to the old format as shown in

Table 4.5.

In addition to field-level mapping, we standardized incident types to align with the

simulator-compatible categories, as summarized in Table 4.6.

This standardized mapping ensures consistent recognition of incident types by the sim-

ulator.

31



4. DATA

New Field Name Mapped to (Old Format)

NR_Incident dim_incident_id
Incident_Classificatie dim_incident_incident_type
dim_incident_start_datumtijd dim_datum_datum
Incident_Prio dim_prioriteit_prio
(Missing in new data) inc_dim_object_functie (handled in Simulator section)
INC_START_BRW_YYMMDD_HHMMSS dim_incident_start_datumtijd
INC_EIND_BRW_YYMMDD_HHMMSS dim_incident_eind_datumtijd
(Derived from end time) dim_tijd_uur
Vak hub_vak_bk
Kazerne_Groep kazerne_groep
(Derived from “Vak” coordinates) st_x, st_y

Table 4.4: Mapping of new Incident dataset fields to the old format.

New Field Name Mapped to (Old Format)

NR_INCIDENT hub_incident_id
Alarm_Tijd_TS inzet_gealarmeerd_datumtijd
Uitruk_Tijd_TS inzet_uitgerukt_datumtijd
Ter_Plaatse_Tijd_TS inzet_terplaatse_datumtijd
Opdracht_Inzet_Tijd_TS inzet_start_inzet_datumtijd
INZ_INCIDENT_EIND_TIJD_TS_HHMMSS inzet_eind_inzet_datumtijd
Voertuig_Soort_Code voertuig_groep
Kazerne_Groep kazerne_groep
Voertuig_Rank inzet_terplaatse_volgnummer
Rijtijd inzet_rijtijd

Table 4.5: Mapping of new Deployment dataset fields to the old format.

Generated Data

To support simulation and forecasting, several datasets were generated following the method-

ology described in The Data Driven Fire Department (5):

• prophet_forecast — Generated using Facebook’s Prophet model (15) to estimate

the hourly arrival rate of incidents. The arrival rate varies by incident type, which

is taken into account during model training.

• OSRM_time_matrix — Computed using the Open Source Routing Machine (OSRM)

to estimate travel times between all pairs of relevant locations. As FDAA’s coverage
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Old Category Mapped to (New Category)

Letsel eigen personeel Hulpverlening algemeen (General assistance)
Hulpverlening algemeen Hulpverlening algemeen
Beknelling / bevrijding Hulpverlening algemeen
Buitensluiting Hulpverlening algemeen
Brandbare vloeistoffen Gevaarlijke stoffen (Hazardous substances)
Brandbare gassen Gevaarlijke stoffen
Overige gevaarlijke stoffen Gevaarlijke stoffen
Meten / overlast / verontreiniging Gevaarlijke stoffen
Assistentie Ambulance Assistentie ambulance (Ambulance assistance)
Afhijsen spoed Assistentie ambulance
Hulpverlening algemeen Dieren Hulpverlening dieren (Animal assistance)
Hulpverlening Dieren Hulpverlening dieren
Binnenbrand Binnenbrand (Indoor fire)
Buitenbrand Buitenbrand (Outdoor fire)
OMS / automatische melding Alarm
Brandgerucht / nacontrole Brandgerucht (Fire alarm)
Liftopsluiting Liftopsluiting (Elevator entrapment)
Assistentie Politie Assistentie politie (Police assistance)
Persoon te water Persoon te water (Person in water)
Voertuig te water Voertuig te water (Vehicle in water)
Hulpverlening water algemeen Hulpverlening water (Water rescue)
Storm en Waterschade Extreem weer (Extreme weather)
Dier te water Dier te water (Animal in water)
Reanimeren Reanimatie (Resuscitation)

Table 4.6: Mapping of old incident type categories to standardized simulator-compatible
categories.

area has expanded, new demand points were added, and the travel-time matrix was

recalculated to reflect the updated geography.

Creating the Location Dataset

Location information, recorded as numeric Hub codes in the deployment dataset, was

extracted and used to generate travel times via OSRM. The resulting Location dataset

includes each point’s longitude, latitude, and corresponding st_x and st_y coordinates for

visualization.
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This dataset is fundamental for defining:

• The service area of each fire station (based on OSRM travel times), and

• The response neighborhood used for candidate relocation zones in simulations.

Figure 4.3: Figure: Service area maps generated based on OSRM travel times

As shown in Figure 4.3, the defined service areas correspond specifically to TS-series

vehicles (TS), which are present at every station. Specialized vehicles, such as HV, RV,

or WO, are not deployed uniformly, resulting in different service areas for different vehicle

types. In this study, we focus on TS vehicles, which form the core operational units across

all stations.

While these OSRM-based service areas provide a practical approximation, they may

not fully reflect actual operations. For example, some nearby stations may not be the

primary responders due to terrain constraints or prior experience, and certain stations
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have historically served specific regions regardless of distance. Nonetheless, for simulation

purposes, these service areas are sufficiently accurate.

Finally, algorithmically generating service areas enhances user autonomy, allowing fu-

ture simulator users to update service boundaries without manual requests from the fire

department, thereby simplifying experimentation and deployment.

4.3 Data Analyse

Response time

The recording of response times is partially automated and partially reliant on manual

input by firefighters. When the control center receives an emergency report, the system

automatically logs the incident start time. Likewise, the moment the alarm is triggered

at the fire station is recorded automatically. However, subsequent timestamps—such as

vehicle departure, arrival at the scene, and return—must be manually logged by firefighters

using a button inside the vehicle. Delays or omissions in manual input can introduce

discrepancies between recorded and actual times.

For our analysis and distribution fitting, we adopt the filtering approach used in The

Data Driven Fire Department (5), excluding dispatch or turnout times exceeding 10 min-

utes.

Dispatch time Dispatch time is entirely determined by the control center and is there-

fore independent of the incident location or the proximity of fire stations. Nonetheless,

different incident types may exhibit distinct dispatch time distributions.

We focus on three categories: all incidents, Indoor Fire incidents, and Resuscitation

incidents. Domain experts report that dispatch times typically center around 90 seconds.
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Figure 4.4: Boxplot comparison of dispatch times for all incidents, Indoor Fire, and Resus-
citation.
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Figure 4.5: Dispatch time histograms for three incident types.

The boxplots in Figure 4.4 confirm that the median dispatch times for all three cat-

egories hover around 90 seconds. However, the histograms in Figure 4.5 reveal distinct
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distributional patterns, suggesting that dispatch times should be fitted separately for each

incident type.

We adopt the Bayesian approach described in the article of Oliphant (2006 (16)) to

calculate 95% confidence intervals for the mean and standard deviation of each category.

Incident types with sufficient sample sizes are fitted individually; otherwise, the overall

distribution across all incidents is used. This methodology is consistently applied to all

time-related distributions in our study. The filtered dispatch time data (≤ 10 minutes) is

fitted with a log-normal distribution, as shown in Figure 4.6.
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Figure 4.6: Histogram of dispatch time with fitted log-normal distribution.

Turnout time Turnout time is primarily influenced by firefighter type, incident prior-

ity, and vehicle type. Here, we analyze turnout times for pumper vehicles responding to

priority-1 Indoor Fire incidents.

Most stations are staffed by full-time firefighters. Exceptions include Driemond and

Duivendrecht stations, which are fully volunteer-staffed. Three additional stations—Aalsmeer,

Uithoorn, and Diemen—operate with full-time staff on weekdays but switch to volunteer

staffing on weekends. For analysis purposes, weekend data from these hybrid stations is

treated as volunteer-staffed. Turnout times shorter than 30 seconds or exceeding 10 min-

utes are excluded to account for errors, such as accidental button presses before vehicle

departure. As expected, volunteer-staffed stations exhibit longer turnout times compared

to full-time stations (Figures 4.7–4.8). Figure 4.9 further illustrates the differences across

individual stations.

Distributions are fitted based on station type, incident priority, and vehicle type. Non-

priority-1 incidents are modeled jointly as non-urgent. The primary goal is to realistically

capture differences in turnout behaviour between full-time and volunteer firefighters. If

at least one volunteer firefighter is dispatched, the distribution fitted to volunteer-staffed

responses is used.
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Figure 4.7: Turnout time histogram for priority 1 Indoor Fire – fulltime vs parttime stations
(pumper).
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Figure 4.8: Turnout time boxplot of Indoor Fire priority 1 - fulltime vs parttime.

Figure 4.10 shows gamma distributions fitted for full-time and volunteer firefighters

responding to priority-1 Indoor Fire incidents (pumper vehicles only).
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Figure 4.9: Turnout time per station of Indoor Fire priority 1 (pumper).
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Figure 4.10: Gamma distributions fitted for turnout times of volunteer and full-time fire-
fighters responding to priority-1 Indoor Fire incidents (pumper vehicles only).

39



4. DATA

Travel time For travel times, we follow the approach used in The Data Driven Fire

Department (5). OSRM-estimated travel times between locations are used as a baseline,

while residuals from actual data capture variability. We use the following formulas:

(a, b) ∼ LinearRegression
(
TRAVELest,TRAVELtrue

)
,

εfactor =
TRAVELtrue − a

b× TRAVELest
,

ε ∼ Lognormal
(
µ, σ

)
fitted from εfactor,

TRAVEL = a+ b× ε× TRAVELest.

This method is applied separately for each vehicle type. It is important to note that

OSRM travel estimates are based on regular vehicle speeds, while emergency vehicles

generally operate at higher speeds. Moreover, the upcoming simulation framework in our

study introduces new vehicle types such as MOTO, TS2, and TS4, which require further

consideration. The treatment of these vehicles will be discussed in detail in Chapter 6.

Upgrading probability and incident time distribution

In the original simulator, developed by The Data Driven Fire Department (5), incident

duration was modeled using historical on-scene times of dispatched vehicles. However,

the scale or severity of an incident was not explicitly represented. Instead, the simulator

implicitly captured scale by determining the required number of vehicles from historical

data. For example, an Indoor Fire requiring one truck was treated as small, whereas one

requiring three or more trucks was considered medium or large. This approach implied

that large-scale fires occurred immediately. In reality, however, most fires begin small and

may escalate over time.

In contrast, we propose a design in which incidents always start as small and may

escalate step by step. This better reflects real-world dynamics, where fires typically start

small and escalate only if uncontrolled. To support this mechanism, we analyze historical

data to derive upgrading probabilities and fit duration distributions for each severity level.

Each level is assigned its own time distribution. In this setup, the original simulator’s

on-scene time is replaced by fitted distributions corresponding to the current level of the

incident. This requires the Deployment Characteristic dataset.
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Upgrading Probability In our model, incidents always escalate sequentially from one

level to the next. Although we only observe the final scale of an incident, intermediate

upgrading probabilities can be derived using conditional frequency ratios:

psmall→medium =
fmedium + fmajor + fvery major

ftotal
,

pmedium→major =
fmajor + fvery major

fmedium + fmajor + fvery major
,

pmajor→very major =
fvery major

fmajor + fvery major
.

For the Indoor Fire category, we observed:

• fsmall = 4722

• fmedium = 2113

• fmajor = 505

• fvery major = 410

This results in:

• psmall→medium =
2113 + 505 + 410

7750
≈ 0.39

• pmedium→major =
505 + 410

2113 + 505 + 410
≈ 0.30

• pmajor→very major =
410

505 + 410
≈ 0.45

The Deployment Characteristic dataset provides the final scale (ACTUELE_KAR_WAARDE)

but only for recent years. Consequently, this dataset is smaller than the main Incident

dataset, limiting the analysis for now, though the fitting quality will improve as more data

accumulates. Probabilities are fitted per incident type; if sample sizes are insufficient,

we fall back on aggregate distributions across all incidents. Not all incident types have

multiple levels of severity—for example, Resuscitation and Elevator Entrapment incidents

do not escalate, and their durations continue to be modeled using fitted on-scene times.

Incident time distribution We next analyze the timing of upgrades and total duration

for each severity level. Incident IDs are linked from the Incident dataset to obtain start and

end times, while the final severity registration time (DTG_REG_WAARDE) is used to calculate

duration metrics. For clarity, we define:
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• Start moment: when the incident was first reported

• Upgrade moment: when a new severity level was registered

• End moment: when the incident concluded

Two types of duration distributions are fitted:

• Upgrade Time: Upgrade moment− Start moment

• Total Duration: End moment− Start moment

The first is used to simulate the timing of upgrades (and subsequent dispatch of additional

vehicles), while the second defines the full duration of an incident, after which vehicles

return.

In theory, these distributions may differ by incident priority. However, due to data

limitations, we do not segment by priority and instead use all available data for each

incident type. We filter out durations shorter than 1 minute or longer than 24 hours. For

upgrade times specifically, we additionally remove values above 10 hours.

Figures 4.11–4.14 illustrate log-normal fits for all incidents and indoor fire incidents,

segmented by severity level.

From the upgrade time distributions, we observe that some incidents are registered as

large-scale immediately—for instance, chemical factory fires may escalate rapidly, requiring

dispatch of multiple vehicles across all levels within a short time.

In the total duration distributions, some high-scale incidents exhibit unexpectedly short

durations. While this may reflect efficient containment, it could also arise from cases

initially declared resolved but later re-ignited. Although we filter out durations shorter

than 1 minute, the underlying causes of such anomalies cannot be determined with certainty

given the data limitations.

Some incident types and severity levels lack sufficient data to support reliable distribu-

tion fitting. However, we have made use of all available data to the best extent possible.

As more data becomes available in the future, these fits can be refined further.

Since only the final severity level is recorded, the actual timing of intermediate upgrades

remains unknown. To address this, we introduce upgrade ratios based on domain expertise.

If an incident is ultimately labeled as “major” or “very major,” we simulate intermediate
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Figure 4.11: Upgrade time distribution – All Incidents
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Figure 4.12: Upgrade time distribution – Indoor Fire
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Figure 4.13: Total Duration distribution – All Incidents
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Figure 4.14: Total Duration distribution – Indoor Fire

upgrades by distributing the total upgrade time across levels using these ratios. The details

of this mechanism are explained in Chapter 6.
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Algorithm

This chapter describes the two algorithms used in the study. The first is the relocation al-

gorithm, a combination of the MCRP and the LBAP (3), applied to move vehicles between

stations when required. The second is the Station Dispatch Optimization Model (SDOM),

developed in this work to optimize vehicle and crew deployment within a station.

Our experiments focus on applying the relocation algorithm to TS6 and Indoor Fire

incidents, as these have the greatest operational impact. The approach, however, can be

extended to other vehicle types and incident categories. The SDOM is mainly designed for

dispatching TS-series vehicles (MOTO, TS2, TS4, and TS6).

5.1 Relocation Algorithm

During major incidents, multiple trucks are dispatched and may remain on-site for extended

periods. As a result, the originating stations can run low on available vehicles, reducing

their coverage. If new incidents occur nearby, vehicles must be sent from more distant

stations, increasing response times and the risk of injuries and property damage.

To mitigate this, idle vehicles can be temporarily relocated from other stations to main-

tain regional coverage. The MCRP+LBAP algorithm determines how to relocate fire trucks

during major incidents to maximize overall coverage while minimizing travel time.

The approach consists of two parts:

• MCRP — Determines which vehicles should be relocated from which stations to

which destination stations, with the objective of maximizing coverage. The output
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is a set of origin-destination pairs indicating the required relocations.

• LBAP — Refines the MCRP solution by assigning specific relocation pairs between

origins and destinations to minimize total travel time. While the MCRP maximizes

coverage without considering travel time, LBAP ensures the relocation plan achieves

minimal travel time.

For example, if the MCRP suggests sending one vehicle from station A to B and another

from C to D, but A is closer to D and C is closer to B, LBAP will swap assignments to

reduce travel time.

MCRP Model Formulation

Parameters and Sets:

• N: set of stations

• Kn = {RN(N) | |N | = n}: set of response neighbourhoods, where each neighbour-

hood consists of the n closest stations to a given demand location

• An: incidence matrix with anik = 1 if station i ∈ N serves neighbourhood k ∈ Kn,

and 0 otherwise

• fi: number of trucks available at station i immediately after a major incident

• di: total demand in the service area of station i

• W ∈ [0, 1]: weight parameter balancing the two objectives (coverage benefit vs.

relocation cost)

• E = {i ∈ N | fi = 0}: set of empty stations

• S = {i ∈ N | fi = 1}: set of stations with exactly one available truck

• M = {i ∈ N | fi ≥ 2}: set of stations with more than one truck

Decision Variables:

• xij ∈ {0, 1}: equals 1 if a truck is relocated from station i to station j, 0 otherwise

• zi ∈ {0, 1}: equals 1 if station i becomes empty after relocation

• yi ∈ Z≥0: number of trucks at station i after relocation
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Objective Function:

max W

∑
i∈S

∑
j∈E

xij(dj − di) +
∑
i∈M

∑
j∈E

xijdj −
∑
i∈M

zidi


− (1−W )

∑
i∈N

∑
j∈E

xij

(1)

Constraints:

∑
i∈N

anikyi ≥ 1, ∀k ∈ Kn (coverage) (2)∑
j∈N

xij ≤ fi, ∀i ∈ N (supply limit) (3)

∑
j∈N

xji ≤ 1, ∀i ∈ E (one truck per empty) (4)

1− zi ≤ yi, ∀i ∈M (emptiness logic) (5)

yi = fi +
∑
j∈N

xji −
∑
j∈N

xij , ∀i ∈ N (truck count update) (6)

xij = 0, ∀i ∈ N, ∀j ∈ S ∪M (relocation only to empty) (7)

xij , zi ∈ {0, 1}, ∀i, j ∈ N (binary variables) (8)

yi ∈ Z≥0, ∀i ∈ N (non-negative integer) (9)

Constraint Descriptions:

• (2) Each response neighbourhood must be covered by at least one truck after reloca-

tions

• (3) No station can send more trucks than it originally has

• (4) Each empty station can receive at most one truck

• (5) If a multi-truck station becomes empty, zi must be 1

• (6) Tracks truck counts before and after relocations

• (7) Relocations can only go to empty stations

• (8) Binary indicators for relocation and emptiness

• (9) Truck counts must be non-negative integers

46



5.2 Personnel Considerations in Relocation Algorithm

LBAP Model Formulation

Parameters:

• O: Set of origin stations (stations sending out trucks)

• D: Set of destination stations (stations receiving trucks)

• tg(o)g(d): Travel time from the location of origin station o ∈ O to the location of

destination station d ∈ D, where g(·) maps a station to its corresponding demand

location

Decision Variables:

• x̂od ∈ {0, 1}: Equals 1 if a truck is relocated from station o to station d, and 0

otherwise

Objective Function:

min max
o∈O, d∈D

tg(o)g(d) x̂od (10)

Constraints:∑
d∈D

x̂od = 1, ∀o ∈ O (each origin assigns one truck) (11)∑
o∈O

x̂od = 1, ∀d ∈ D (each destination receives one truck) (12)

x̂od ∈ {0, 1}, ∀o ∈ O, ∀d ∈ D (binary variable) (13)

Constraint Interpretations:

• (11) Each origin station must relocate exactly one truck

• (12) Each destination station must receive exactly one truck

• (13) Assignments are binary

5.2 Personnel Considerations in Relocation Algorithm

In the original relocation algorithm, fi represents the number of available vehicles at station

i. Although personnel were not explicitly modeled, it was assumed that each available
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vehicle had a full crew (6 firefighters). A vehicle was considered available only if the

station had a complete team ready.

In our revised scenario, vehicles do not need to be fully staffed at the origin. Instead,

the combined personnel at the origin and destination must suffice to form a complete team.

The relocation algorithm is thus adjusted to account for personnel allocation.

For example, if destination station B has 6 available firefighters but no vehicles, sending

just one firefighter from station A to drive a relocated vehicle completes the team at B.

This keeps more personnel at A available for other incidents.

Additional Parameters and Decision Variables

• ci: number of firefighters available at station i

• t: team size required for a complete team (6 in this study)

• x̃ij : number of firefighters dispatched from station i to station j

New Constraints:

xij · t ≤ x̃ij + cj , ∀i ∈ N, j ∈ N (14)

x̃ij ≤ xij · ci, ∀i ∈ N, j ∈ N (15)

x̃ij ≥ xij ·max(1, t− cj), ∀i ∈ N, j ∈ N (16)∑
j∈N

x̃ij ≤ ci, ∀i ∈ N (17)

Constraint Interpretations

• (14): Relocation from station i to station j is allowed only if the dispatched fire-

fighters from station i, combined with those available at station j, are sufficient to

form a complete team of size t.

• (15): The number of firefighters dispatched from station i cannot exceed the available

personnel at that station.

• (16): At least max(1, t−cj) firefighters must be dispatched from station i to station j.

This ensures that the team at j is completed if it initially lacks firefighters; otherwise,

at least one firefighter must relocate to drive the truck.
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• (17): The total number of firefighters dispatched from station i cannot exceed its

available firefighters ci.

These personnel rules also apply to the LBAP model. Since LBAP adjusts origin–destination

assignments from the MCRP to minimize travel time, any reassignment must respect per-

sonnel constraints. If a reassignment would leave a team incomplete, it is disallowed, even

if travel time decreases. This ensures relocation plans are realistic and executable.

5.3 Station Dispatch Optimization Model (SDOM)

In this study, we propose the SDOM, a MILP-based approach designed to determine the

optimal allocation of vehicles and firefighters at the station level. The model considers

vehicle capacity, available personnel, and deployment constraints to maximize dispatch

efficiency.

The SDOM focuses exclusively on priority-1 incidents. If the nearest station cannot

provide a complete team, other stations are considered in order of increasing distance, and

the SDOM is used to compute the optimal dispatch combination.

The objective function follows a hierarchical priority:

1. Maximize the total number of dispatched firefighters

2. Minimize the number of dispatched vehicles

3. Prefer lighter vehicles when the number of vehicles is the same

Parameters and Sets

• V: set of available vehicles at the station

• r: number of firefighters still needed for dispatch

• m: number of firefighters available at the station

• ci: maximum capacity of vehicle i

• wi: vehicle preference weight for vehicle i, indicating preference
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5. ALGORITHM

Decision Variables

• xi ∈ {0, 1}: whether vehicle i is dispatched

• yi ∈ Z≥0: number of firefighters assigned to vehicle i

Objective Function

max

(∑
i∈V

yi

)
· α+

(
|V| −

∑
i∈V

xi

)
· β +

∑
i∈V

wi · xi (18)

Constraints

∑
i∈V

yi ≤ r (19)∑
i∈V

yi ≤ m (20)

yi ≤ ci · xi, ∀i ∈ V (21)

xi ∈ {0, 1}, yi ∈ Z≥0, ∀i ∈ V (22)

Weight Design to Enforce Priority in Objective (18) To guarantee the hierarchical

priority in the objective function, we define the weight parameters as follows:

1. The term (
∑

yi) · α aims to maximize the total number of dispatched crew. To

ensure that dispatching a single additional firefighter always yields a higher benefit

than reducing the maximum possible number of vehicles:

α > β · |V|

2. The term (|V| −
∑

xi) · β seeks to minimize the number of vehicles. To ensure that

reducing one vehicle yields more benefit than fully optimizing vehicle weights:

β >
∑
i∈V

wi

3. The final term
∑

i∈Vwi · xi introduces a tie-breaker preference for lighter vehicles,

applied only when the number of dispatched crew and vehicles are the same.
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5.3 Station Dispatch Optimization Model (SDOM)

Here, the vehicle preference weights wi are assigned based on vehicle type, with repre-

sentative values:

wMOTO = 0.5, wTS2 = 0.4, wTS4 = 0.3, wTS6 = 0.2

To numerically enforce the hierarchy, we define:

β =
∑
i∈V

wi + 1, α = β · |V|+ 1

Constraint Interpretations

• (19): Ensures that the total number of dispatched firefighters does not exceed the

remaining crew required for the incident.

• (20): Limits the total number of firefighters dispatched to what is available at the

current station.

• (21): Ensures the number of firefighters assigned to a vehicle does not exceed its

capacity, and firefighters can only be assigned if the vehicle is dispatched.

• (22): Defines the domains of the decision variables: xi must be binary, and yi must

be a non-negative integer.
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6

Simulation

6.1 Simulation Framework

This chapter describes the architecture of our custom-built simulation framework, devel-

oped to evaluate the performance of different dispatch strategies, resource configurations,

and vehicle compositions under dynamic incident scenarios. The simulator captures the

full emergency response process by integrating real incident data, rule-based dispatching,

vehicle relocation, and multi-vehicle deployment logic.

6.1.1 Overview of Simulation Design

The framework operates on a minute-by-minute timeline, denoted by t, and replicates the

entire response process from incident generation to vehicle recovery or relocation.

Before the main simulation begins, a series of preprocessing steps are performed during

initialization, including historical incident sampling, incident duration fitting, arrival rate

forecasting, and response time distribution estimation. These steps are executed once and

are not shown in the primary workflow.

After preprocessing, each simulation run proceeds through the following stages, as il-

lustrated in Figure 6.1:

• Incident Generator: loads and schedules incidents from historical data.

• Incident Upgrading: allows incidents to escalate probabilistically over time, pos-

sibly requiring additional vehicles.
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6.1 Simulation Framework

• Vehicle Dispatch: determines which vehicles to assign using a configurable dispatch

rule.

• Dispatch Rule: pre-defined policies for dispatch. Legacy rule sends fully crewed ve-

hicles; new rule allows partial crewing. The SDOM optimizes allocation for priority 1

incidents under the new rule.

• Relocation Planner: relocates idle vehicles to better cover anticipated future de-

mand, based on optimization models.

• MCRP and LBAP: two linear programming models used within the relocation

planner to identify relocation targets and assign specific vehicles.

• Vehicle Return: simulates the recovery and availability of vehicles after deployment

or relocation.

Incident Generator

Incident Upgrading

Vehicle Dispatch Relocation PlannerDispatch Rule

MCRP LBAP

Vehicle Return

Figure 6.1: Main modules and workflow of the simulation framework, executed after prepro-
cessing
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6.2 Incident Generation

In the simulator, incidents are generated following the approach used in the Data Driven

Fire Department project (5), focusing on three main aspects: incident type, priority, and

incident location.

The simulator stochastically generates incidents for each hour according to the hourly

arrival rates estimated by the Prophet forecaster. For each incident, type, priority, and

location are sampled according to historical frequencies. High-urgency events, such as

indoor fires and resuscitations, are more likely to be generated as priority 1 incidents, while

locations with higher historical occurrence rates receive proportionally higher generation

probabilities.

In previous versions, the simulator also generated building type to determine target

response times, since certain facilities (e.g., prisons, shopping centers) require shorter re-

sponse times. However, the updated dataset from the fire department system no longer

includes building type information. As a result, the simulator now assumes the standard

target response time for all incidents. The building type function remains in the code and

can be reactivated if such information becomes available in the future.

Once incident type and priority are determined, the simulator selects the required ve-

hicle dispatch. Unlike the previous simulator, which implicitly modeled incident scale by

assigning vehicle sets derived from historical records, our framework explicitly defines ve-

hicle requirements for different scale levels. A dispatch rule table, developed with input

from domain experts, specifies the vehicle composition for each incident type at each scale.

The dispatch rule table applies to incidents of all priority levels. The numbers indicate

the required number of teams—for example, one TS2 represents a two-person team, while

two TS4 vehicles correspond to two four-person teams. A new dispatch rule, TS6_P,

specifies six personnel without restricting vehicle type, primarily used when indoor fires

escalate from small to medium scale. Vehicle requirements for all scale levels are listed

in the Appendix, and table 6.1 illustrates the initial (small-scale) vehicle combinations for

each incident type.
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6.3 Incident Duration and Upgrading Mechanism

Incident Type RV HV WO TS2 TS4 TS6 TS6_P MOTO DRONE
General assistance 1 1
Police assistance 1
Alarm 1 1
Ambulance assistance 1 1
Fire alarm 1 1
Animal assistance 1 1 1
Outdoor fire 1 1
Resuscitation 1
Elevator entrapment 1
Person in water 1 1 1
Hazardous substances 1
Indoor fire 1 2 1
Extreme weather 1 1
Other fire 1 1
Vehicle in water 1 1 1 1
Water rescue 1 1 1
Animal in water 1 1 1
Aviation rescue 1 2 1
Unknown 1

Table 6.1: Vehicle dispatch table for small incident types

6.3 Incident Duration and Upgrading Mechanism

The fitting methods for incident duration and upgrade probabilities were introduced in

Chapter 4. Here we describe their implementation in the simulator.

Each incident starts at the small scale, and its final level is drawn from the upgrade

probabilities of its type. For types with insufficient data, both upgrade probabilities and

duration distributions fall back to the overall fitted parameters.

The simulator generates the total duration together with registration times for possible

upgrades. Because the dataset only records the final scale, we designed an upgrade ratio

to estimate intermediate timings:

• For major scale, the upgrade time is sampled as a truncated normal distribution

centered at 0.8 (range 0.75–0.85) multiplied by the very major registration time.

• For medium scale, the ratio is centered at 0.5 (range 0.45–0.55) relative to the final

(major or very major) registration time.
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6. SIMULATION

This ensures consistent timings for all stages. When a stage is reached, the simulator
dispatches additional vehicles according to the dispatch rule table.

While each final scale (S,M, J, V , see Table 6.2) has its own fitted duration distribution,
these distributions reflect incidents that ended at that scale. They cannot be used to
generate intermediate upgrade times for incidents that eventually grow larger—for example,
using the distribution of final-medium incidents to determine the medium stage of a final-
major incident would mix independent cases and lead to inconsistencies. This could even
result in smaller-scale stages lasting longer than larger ones. To avoid such conflicts, we
adopt the ratio-based approach, which ensures monotonic scaling of upgrade times. Future
work could refine these ratios or, if data permit, use explicit upgrade timestamps.

Algorithm 1 Incident upgrading process
Input: incident type i at time t0

Output: final level L ∈ {S,M, J, V }, end time te, registration times (tM , tJ , tV )

if i ∈ Istats then retrieve (pSM , pMJ , pJV ) and lognormal parameters (θS , θM , θJ , θV ) ;
else use generic (pSM , pMJ , pJV ) and (θ̃S , θ̃M , θ̃J , θ̃V ) ;

Sample r ∼ U(0, 1) Initialize tM = tJ = tV =∞ Sample ratio factors ρJ ∼ Nt(0.8, 0.02),
ρM ∼ Nt(0.5, 0.02)

if r < pSMpMJpJV then
L ← V sample dV ∼ Lognorm(θV ) until tV < dV tJ ← ρJ tV , tM ← ρM tV te ←
t0 + dV

else
if r < pSMpMJ then

L← J sample dJ ∼ Lognorm(θJ) until tJ < dJ tM ← ρM tJ te ← t0 + dJ

else
if r < pSM then

L←M sample dM ∼ Lognorm(θM ) until tM < dM te ← t0 + dM

else
L← S sample dS ∼ Lognorm(θS) te ← t0 + dS

return (L, te, tM , tJ , tV )
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6.4 Response Timing and Dispatch Design

Table 6.2: Notation used in the incident upgrading process

Symbol Meaning

S,M, J, V Incident levels: Small, Medium, Major, Very Major
Istats Incident types with specific fitted parameters
pSM , pMJ , pJV Upgrade probabilities between consecutive levels
θS , θM , θJ , θV Lognormal parameters for total duration by level
θ̃S , θ̃M , θ̃J , θ̃V Generic lognormal parameters (for types not in Istats)
dS , dM , dJ , dV Total incident duration if final level is S,M, J, V re-

spectively
t0 Incident starting time
te Incident ending time t0 + d

tM , tJ , tV Registration times for upgraded levels (when the inci-
dent is marked as upgraded)

ρM , ρJ Random scaling factors for registration times, sampled
from truncated normal distributions

r Random variable uniformly sampled from [0, 1] for de-
ciding upgrade path

6.4 Response Timing and Dispatch Design

The simulator models the response process in three phases: response, on-scene, and return.
Unlike the earlier implementation, which estimated incident duration by adding fitted on-
scene times to the response period, the new design first generates a total incident duration
and then derives the response window from it.

6.4.1 Coupling On-Scene Time and End Time

In the previous implementation, the on-scene time was fitted from historical data and
incident termination was computed as incident start time + response time + on-scene
time.

This approach did not explicitly control the overall duration. In the revised design,
an initial end time is drawn for each incident. If vehicles arrive later than the target
threshold of 8 minutes, such as when distant stations must respond, the excess delay is
evenly distributed across all responding vehicles and added to the incident duration.

Specifically, we assume a target response time of 8 minutes. Any delay beyond this
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threshold is distributed equally among the dispatched vehicles, increasing the incident
duration by (arrival delay – 8 minutes) ÷ number of responding vehicles.

For example, a small indoor fire with a base duration of 15 minutes requires two TS4
units. If their response times are 15 and 20 minutes, the adjusted duration becomes 15 +
(15–8)/2 + (20–8)/2 = 24.5 minutes.

Early arrivals shorten the duration in the same manner. This adjustment affects only
the total length of the incident, not the escalation timing, and is intended to prevent
unrealistic outcomes in the simulation.

6.4.2 Travel Time Modeling for Different Vehicle Types

Several vehicle types are included: MOTO, TS2, TS4, TS6, BUS, and DRONE. Their
travel times are derived from OSRM estimates with type-specific adjustment factors, based
on expert judgment:

• TS6 = OSRM × 1.10

• TS4 = OSRM × 1.05

• TS2 = OSRM × 1.00

• MOTO = OSRM × 0.80

• BUS = OSRM × 1.00

• DRONE = OSRM × 0.50

BUS units are used to transport TS crews when no staffed trucks are available; they
carry personnel but not equipment and must be dispatched together with fire trucks.
DRONEs, included at the request of the fire department, provide rapid reconnaissance.
They operate without crew and do not influence truck arrivals. These parameters approx-
imate travel performance and can be refined with further data.

6.5 Dispatch Rules and Multi-Vehicle Assignment

We implement two types of dispatch rules:

1. Legacy rule — current operational practice.
All dispatched vehicles must be fully crewed, regardless of incident type or priority.
Even low-demand incidents (e.g., resuscitations) require a full TS6 crew under this
rule.
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6.5 Dispatch Rules and Multi-Vehicle Assignment

2. New rule — flexible deployment with additional vehicle types.
The new rule differentiates between priority 1 and non-priority 1 incidents:

• Priority 1 incidents: Required vehicles must be included in the dispatch if
specified, but additional crew demand may be fulfilled by multiple vehicles of
different types. When no required vehicle is immediately available, the simulator
allows split dispatch to satisfy personnel requirements.

• Non-priority 1 incidents: Dispatch strictly follows the vehicle table. If the
exact type is unavailable but adequate personnel exist, a larger vehicle type
may substitute, but multiple vehicles cannot collectively fulfill a single vehicle
requirement.

This flexible scheme reduces unnecessary overstaffing and makes better use of the
available fleet. For priority 1 cases, the SDOM is applied. Stations are considered
in order of increasing travel time:

(a) Check whether the required vehicle type is available; if so, dispatch it with as
many crew as possible.

(b) If additional personnel are needed, check for available BUS units to supplement
crew transport.

(c) If neither condition is met, use the SDOM to select the best combination of
vehicles and personnel from the station.

(d) Remaining crew requirements are carried over to subsequent stations until fully
satisfied.

This mechanism can also be applied to the current deployment (TS6 only), allowing
vehicles to be dispatched with only the required crew (e.g., a TS6 with two fire-
fighters for a TS2-scale incident) and, when necessary, multiple vehicles to jointly
meet personnel demands, thus avoiding unnecessary overstaffing (as in Scenario 2
and Scenario 4, Table 7.1).

Pseudocode for Multi-Vehicle Dispatch Logic The following pseudocode summa-
rizes the core logic of the dispatch algorithm used for priority 1 incidents:
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Algorithm 2 Vehicle dispatch with multi-vehicle assignment (for prio = 1 incidents)
Input: incident location l, required vehicle type vr, required crew cr

Output: dispatch list D = {(vj , τj)} with assigned full-time/part-time crew

Sort all stations s ∈ S by travel time τs(l) ascending Initialize remaining crew c ← cr,
required_sent ← false, D← ∅ Define TS-series types T = {TS6, TS4, TS2, MOTO}

foreach (s, τs(l)) in sorted stations do
if c ≤ 0 then break;
Get available vehicles at s: Vs ← {v | v free at s}
// Step 1: dispatch required vehicle if not yet sent

if not required_sent then
foreach v ∈ Vs do

if v.type = vr or (size(v) > cr and v.type ∈ T) then
assign d← min(cr, crew_avail(v), c) if d > 0 then

set v.d_ft ← min(d, fts), v.d_pt ← d − v.d_ft append
(v, adj_travel(v, τs(l))) to D c← c− d, required_sent ← true break

if c ≤ 0 then break;
// Step 2: check BUS dispatch

foreach v ∈ Vs do
if v.type = BUS then

assign d← min(crew_avail(v), c if required_sent else c− 1) if d > 0 then
set v.d_ft ← min(d, fts), v.d_pt ← d − v.d_ft append (v, 1.1τs(l)) to D

c← c− d break

if c ≤ 0 then break;
if BUS dispatched at s then

continue
if not required_sent and c = 1 then

continue
// Step 3: SDOM optimization for remaining TS vehicles

VTS
s ← {v ∈ Vs | v.type ∈ T} (V̂, crew_alloc) ← SDOM_optimize(VTS

s , c, fts, pts)

increment SDOM counter foreach v ∈ V̂ do
assign adjusted travel time τv ← adj_travel(v, τs(l)) append (v, τv) to D c ←
c− crew_alloc(v)

if c > 0 then
append (None,None) to D; // external vehicle required

return D
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Table 6.3: Notation used in the vehicle dispatch algorithm

Symbol Meaning

l Incident location
vr Required vehicle type (e.g., TS6)
cr Crew required for vr

S Set of stations
τs(l) OSRM travel time from station s to location l

T TS vehicle series: TS6, TS4, TS2, MOTO
size(v) Full crew required to operate vehicle v (vehicle capac-

ity)
crew_avail(v) Available staff at station to crew vehicle v

d Number of crew to be dispatched on vehicle v

v.d_ft, v.d_pt Full-time / part-time staff assigned to vehicle v for this
dispatch

fts, pts Full-time and part-time staff counts at station s

adj_travel(v, τ) Adjusted travel time factor: ×1.1 for TS6, ×1.05 for
TS4, ×1 for TS2/BUS, ×0.8 for MOTO

D Dispatch result list (vehicle, travel_time)

SDOM_optimize Optimization subroutine to select vehicles/crew at a
station

(None,None) Indicates unmet crew requirement after all stations are
checked (external vehicle needed)

6.6 Vehicle Relocation and Return

6.6.1 Relocation and Return Design

When a major or very major indoor fire occurs, a relocation algorithm is triggered to
redistribute vehicles across stations. The aim is to prevent local resource shortages and
maintain adequate coverage in unaffected areas.

Relocated vehicles are assigned a support_until_t parameter, initially set to the esti-
mated end time of the triggering incident. If this estimate is updated, the support period
is adjusted accordingly. During the support period, relocated vehicles may be dispatched
to nearby incidents. After completing such calls, they first return to the temporary station
they were relocated to, rather than directly to their base station.
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Once the support period ends and the vehicle becomes available, it must return to its
base station. For consistency in simulator logic, the vehicle always returns via its temporary
station before heading back, rather than traveling directly from an incident scene to its
home base.

6.6.2 Trigger Mechanism

The relocation algorithm is currently activated under the following rule:

• Any major or very major indoor fire triggers relocation.

• A very major fire triggers relocation twice: once upon escalation to major, and once
again when it reaches very major.

This is a simplified setup, intended as a baseline for further development. More realistic
triggers could include coverage thresholds (e.g., relocation only when effective coverage falls
below a predefined level) or concurrency rules (e.g., when more than three indoor fires occur
simultaneously). Exploring such extensions is left for future work.

6.6.3 Relocation Algorithm

To enhance system resilience and dynamically rebalance coverage, relocation plans are
generated using two optimization models: the MCRP and the LBAP. The simulator applies
these plans by updating vehicle positions and assigning the support_until_t parameter,
which limits how long relocated vehicles can be dispatched outside their home base. During
this period, they are treated the same as vehicles permanently stationed there.

6.6.4 Required Input Data

• Travel times: Pairwise travel times between fire stations and demand locations,
derived from OSRM.

• Current deployments: The current distribution of vehicles among stations.

– Only vehicles currently located at their base stations are considered eligible
for relocation. This avoids selecting vehicles that have already been relocated
and not yet returned, which would introduce significant complexity into both
simulation logic and operational feasibility.

• Demand rates: Estimated spatial probabilities of incident occurrence, aggregated
per station based on historical frequency at associated demand locations.
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• Response neighbourhood matrix (A): A binary matrix where aik = 1 indicates
that station i ∈ N can serve neighbourhood k ∈ Kn, based on travel-time proximity.

In this study, we set n = 3, meaning each neighbourhood can be served by its three
nearest stations. This configuration results in 44 response neighbourhoods across
the study area (see Figure 6.2). The simulator also allows users to specify different
values of n, which would yield alternative response neighbourhood configurations.

Figure 6.2: Response neighbourhoods (n = 3) derived from OSRM travel times

6.7 Summary and Future Improvements

The proposed simulation framework offers a flexible and modular environment to evaluate
emergency response strategies under realistic conditions. Its main strengths include:

• A dynamic incident upgrading mechanism based on fitted distributions.

• Support for multi-vehicle dispatch and flexible vehicle substitution logic.

63



6. SIMULATION

• Integration of relocation strategies using mathematical optimization (MCRP + LBAP).

• Customization of dispatch rules, including the SDOM.

• Differentiation between multiple vehicle types and dynamic availability.

However, several limitations remain, suggesting directions for future development:

• Coverage-based Relocation Trigger: current relocation is periodic and could
be enhanced with real-time coverage evaluation to trigger relocations only when
necessary.

• More Realistic Upgrading Paths: incident escalation processes could be modeled
using agent-based logic or Markov chains to simulate resource intensification more
realistically.

• Richer Vehicle Types & Traffic Inputs: extending the model to include addi-
tional vehicle types (e.g., ladder trucks, ambulances) and dynamic travel times based
on traffic data would improve realism.
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Experiment

7.1 Experimental Setup

To evaluate the performance of different vehicle deployment strategies and dispatch oper-
ations, we designed a set of simulation scenarios based on realistic configurations in the
Amsterdam-Amstelland fire region. The main factors of variation are vehicle deployment
(legacy vs. new configurations), dispatch rules (current vs. redesigned), and the use of a
relocation strategy.

Vehicle Deployment Scenarios

We distinguish between two main vehicle deployment settings. The crew numbers shown
here represent the staffing required to operate the deployed vehicles, not the total number
of firefighters employed by the department. In reality, to sustain year-round operations,
the fire department employs several times more personnel than those directly assigned to
vehicles.

• Legacy Deployment: This reflects the current operational setup used by the fire
department. Only TS6 vehicles are deployed, with staffing patterns based on the
existing full-time and part-time crew assignments. The total number of TS6 vehicles
is 22, supported by 84 full-time and 48 part-time firefighters.

• New Deployment: In collaboration with domain experts, a new configuration was
designed incorporating additional vehicle types—namely MOTO, TS2, and TS4—while
reducing overall crew demand. The new scenario deploys 18 MOTO, 10 TS2, 12 TS4,
and 9 TS6 vehicles across the region, supported by 73 full-time and 28 part-time fire-
fighters.
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Each station is equipped with one BUS and one DRONE under both deployments.
Tables A.4 and A.5 provide a detailed overview of the station-level allocations. While
the new configuration implies additional procurement and operational costs, these are not
explicitly modelled in our analysis. Instead, we use the expert-proposed setup as a reference
for operational evaluation. Future work could extend the model by including cost-efficiency
considerations.

Although the simulator supports a wide range of vehicle types (e.g., RV, HV, DRONE),
the analysis in this chapter focuses on the TS-series vehicles, which are central to urban
firefighting operations. Results for other vehicle types are produced but not discussed in
detail.

All scenarios are simulated over a “100-year”. The “100-year” simulation does not rep-
resent a continuous century of operations. Rather, it consists of 100 independent one-year
runs, each with its own randomly generated incident stream. At the end of each year,
vehicle states are reset and incidents restart from day one. Final results are aggregated
across all runs to obtain stable estimates.

This design was chosen mainly due to computational limitations of the platform, which
was run on a machine with an Intel(R) Core(TM) Ultra 5 125U processor (1.3 GHz, 12
cores, 14 logical processors). Running a single continuous 100-year simulation with full
incident and vehicle history was not feasible. Moreover, the year-by-year reset mitigates
the effect of early random fluctuations—for example, if a single station happens to be
overloaded at the start of the simulation, this could trigger cascading delays. The reset
provides a neutral starting point each year and improves statistical fairness across runs.

Scenario Design

For both deployment configurations, we simulate four operational scenarios, resulting in a
total of eight test cases. The scenarios differ in dispatch rules and whether a relocation
strategy is applied:

Each scenario is simulated over a 100-year equivalent of incident data. To assess system
performance under stress, all scenarios are also evaluated under high-demand conditions,
where incident arrival rates are doubled to emulate extreme operational pressure — a
situation of particular interest to the fire department.

Evaluation Metrics

The primary performance indicator in this study is response time, defined as the interval
between the incident start time and the arrival time of the first vehicle. It reflects op-
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Table 7.1: Operational scenarios for simulation experiments

Scenario Vehicle Deploy-
ment

Dispatch Rule Relocation
Strategy

1 (benchmark — current system) Old deployment Legacy No
2 Old deployment New No
3 Old deployment Legacy Yes
4 Old deployment New Yes
5 New deployment Legacy No
6 New deployment New No
7 New deployment Legacy Yes
8 New deployment New Yes

erational effectiveness and compliance with legal response-time targets. We compute the
proportion of incidents responded to within the legally defined thresholds, which vary by
location and risk level.

We define the Fraction of On-Time Arrivals (FOTA) at threshold T as the share of
incidents with response times not exceeding T . A higher FOTA indicates better coverage
and faster intervention.

We also track the rate of incidents requiring external assistance, i.e., cases where
no TS-series vehicle is available within the region, prompting support from neighboring
service areas. This is especially relevant for high-priority incidents, such as resuscitations
or indoor fires, where delayed responses can have serious consequences.

To gain further insight, metrics are analyzed not only for all incidents but also for
selected high-priority types:

• Indoor fires (“Binnenbrand”)

• Resuscitations (“Reanimatie”)

• Periods of major incidents: defined as times when an ongoing indoor fire is categorized
as “major” or “very major”

The last category is particularly important, as the relocation strategy is only triggered
during large-scale incidents. While other incident types could also require relocation in
practice, we limit activation to indoor fires in this study to keep the scenarios clear and
controlled. For analyses covering all incidents and indoor fires specifically, an 8-minute
threshold is used; for resuscitations, a 6-minute threshold is applied, consistent with Stieglis
et al. (2025 (17)), which highlights that first-shock delivery within six minutes is a key
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survival indicator.

7.2 Results

This section presents the simulation results for the eight scenarios described in Section 7.1.
We first report the outcomes for the normal arrival-rate experiments (using the hourly ar-
rival rates estimated by the Prophet forecaster), followed by the high-demand experiments
(arrival rates scaled by 2), and finally the results for Big incident periods (periods with
at least one major or very-major indoor fire). For each set of experiments, we provide: (i)
relocation-algorithm activity, (ii) overall statistics for all incidents, (iii) indoor fire (“Bin-
nenbrand”) results, and (iv) resuscitation (“Reanimatie”) results. Where relevant, we also
report station-level FOTA (Fraction Of Time Available) rankings and statistical tests. All
detailed per-scenario external-support tables are collected in Appendix A.4.

7.2.1 Normal Arrival Rate (Baseline)

7.2.1.1 Relocation Algorithm Execution

Table-like summary of relocation algorithm activations and executions in the relocation-
enabled scenarios under normal arrival rates:

• Old deployment scenarios (TS6 only)

– Scenario 3: Relocation_activated = 2720, Relocation_performed = 2662 (97.87%)

– Scenario 4: Relocation_activated = 2795, Relocation_performed = 2763 (98.86%)

• New deployment scenarios (new vehicles)

– Scenario 7: Relocation_activated = 2812, Relocation_performed = 2071 (73.65%)

– Scenario 8: Relocation_activated = 2793, Relocation_performed = 969 (34.69%)

Interpretation: The number of relocation triggers is similar across old and new deploy-
ment scenarios, indicating that the occurrence of major indoor fires is comparable. In
the old deployment, relocations were almost always executed once triggered. In the new
deployment, however, many triggered relocations could not be carried out, particularly in
Scenario 8. This is due to the smaller number of TS6 vehicles available (the current im-
plementation only relocates TS6s) and to the new dispatch rule, which assigns TS6s more
frequently to smaller incidents, increasing their utilization and reducing their availability
for relocation.
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7.2.1.2 Aggregate Behaviour (All Incidents)

When aggregating all incident types, the overall fraction of cases requiring external as-
sistance remains below 0.01% across all scenarios (complete counts are provided in Ap-
pendix A.4, Table A.4.0.1).

Station-level FOTA and ranking. We calculated FOTA for each station and ranked
the stations according to their performance.

Table 7.2: Station-level FOTA (All periods, All incidents, normal arrival rate)

station_letter Scenario_1 Scenario_2 Scenario_3 Scenario_4 Scenario_5 Scenario_6 Scenario_7 Scenario_8

A 49.70% 56.33% 49.27% 56.94% 60.61% 56.88% 60.52% 57.18%
B 48.49% 53.80% 48.67% 54.33% 59.65% 61.76% 59.17% 61.88%
C 50.29% 55.85% 50.11% 56.47% 60.08% 62.46% 60.27% 62.42%
D 50.40% 56.21% 50.42% 56.38% 60.50% 59.30% 60.34% 59.43%
E 58.86% 63.64% 59.02% 64.07% 69.51% 66.95% 69.05% 66.94%
F 57.52% 62.46% 57.45% 63.06% 66.16% 65.28% 65.60% 64.63%
G 35.94% 40.18% 35.59% 39.83% 42.94% 42.90% 43.10% 43.32%
H 46.31% 51.93% 46.72% 52.44% 55.58% 56.30% 55.78% 56.36%
I 52.92% 58.84% 52.89% 58.73% 59.03% 61.13% 59.35% 61.41%
J 24.04% 27.36% 24.41% 26.76% 30.39% 28.43% 30.99% 28.65%
K 46.89% 51.43% 46.67% 51.94% 54.65% 53.42% 54.94% 52.92%
L 57.05% 61.93% 57.37% 61.63% 59.79% 62.67% 59.39% 62.24%
M 49.02% 55.04% 48.62% 54.84% 58.15% 61.35% 58.00% 60.79%
N 66.03% 69.44% 65.90% 70.15% 76.23% 76.13% 76.59% 75.96%
O 36.93% 40.05% 36.08% 40.75% 41.94% 41.18% 41.64% 40.93%
P 47.40% 53.40% 47.71% 54.13% 63.37% 62.12% 63.04% 61.97%
Q 29.73% 32.99% 29.56% 33.26% 33.59% 35.60% 34.06% 36.01%
R 51.82% 57.50% 52.05% 57.61% 58.91% 58.60% 58.59% 58.39%

Tables 7.2 and 7.3 summarize the station-level FOTA values and their rankings. Fig-
ure 7.1 illustrates FOTA curves for all stations and scenarios.

Overall, scenarios with the new vehicle mix (Scenarios5–8) achieve higher FOTA com-
pared to the original deployment (Scenarios1–4), indicating shorter response times. Vari-
ation among the new-deployment scenarios is minimal.

Scenario 1 represents the current operational model (only TS6) without the new dis-
patch rules or relocation, whereas Scenario 5 introduces the new vehicle types while keeping
the operational mode otherwise unchanged. The results demonstrate that incorporating
the new vehicle mix significantly enhances performance: overall FOTA increases from
33.64% to 47.50%, an absolute improvement of 13.86 percentage points, corresponding to
a relative gain of approximately 41.20%.

Given that the response time distributions are visibly non-normal (Figure 7.2), poten-
tially log-normal, we applied the Mann–Whitney U test to compare medians.
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Table 7.3: Station FOTA ranks (All periods, All incidents, normal arrival rate)

station_letter Scenario_1 Scenario_2 Scenario_3 Scenario_4 Scenario_5 Scenario_6 Scenario_7 Scenario_8

A 7 6 8 4 1 5 2 3
B 8 6 7 5 3 2 4 1
C 7 6 8 5 4 1 3 2
D 8 6 7 5 1 4 2 3
E 8 6 7 5 1 3 2 4
F 7 6 8 5 1 3 2 4
G 7 5 8 6 3 4 2 1
H 8 6 7 5 4 2 3 1
I 7 5 8 6 4 2 3 1
J 8 5 7 6 2 4 1 3
K 7 6 8 5 2 3 1 4
L 8 3 7 4 5 1 6 2
M 7 5 8 6 3 1 4 2
N 7 6 8 5 2 3 1 4
O 7 6 8 5 1 3 2 4
P 7 6 8 5 3 2 4 1
Q 7 6 8 5 4 2 3 1
R 8 6 7 5 1 2 3 4

Mean 7.44 5.61 7.56 5.11 2.39 2.67 2.56 2.67
Rank 7 6 8 5 1 3 2 3

Figure 7.1: FOTA curves for all stations and scenarios (normal arrival rate, all incidents)

The hypotheses were:

• H0: median_Scenario 1 ≤ median_Scenario 5,

• H1: median_Scenario 1 > median_Scenario 5.
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7.2 Results

Figure 7.2: Comparison of Scenario 1 (old deployment, legacy dispatch rule) vs Scenario 5
(new deployment, legacy dispatch rule) under normal arrival rate.

The test yields p < 10−4; hence, H0 is rejected. This confirms that Scenario 1 has a
significantly higher median response time than Scenario 5, demonstrating that introducing
the new vehicle types can improve fire department performance in terms of response time.

Effect of dispatch rule and relocation (All incidents). Figure 7.3 compares re-
sponse time distributions between the old and new dispatch rules under two deployment
settings: (a) Scenario 1 vs. Scenario 2 (no relocation), and (b) Scenario 3 vs. Sce-
nario 4 (with relocation). In both cases, adopting the new dispatch rule shifts the response
time distribution towards shorter values, yielding a FOTA improvement of approximately
11–13%.

(a) Scenario 1 vs Scenario 2 (b) Scenario 3 vs Scenario 4

Figure 7.3: Impact of switching from old dispatch rule to new dispatch rule under normal
arrival rate.
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The relocation-only scenario (Scenario 3) shows little improvement over the baseline
(Scenario 1) and is actually slightly worse in our simulation results. This is mainly because
relocation events are rare compared to the total number of dispatches: out of 865,343
dispatches, the relocation algorithm was triggered only 2,662 times (about 0.31%). Since
relocation occurs only for major or very major indoor fires, its overall impact on aggregate
performance is limited under the current triggering rules.

7.2.1.3 Indoor Fire (Binnenbrand)

In the simulator, indoor fires have specific vehicle requirements: the initial small level
requires two TS4 units, while all higher severity levels require TS6. Consequently, stations
without TS4 or TS6 cannot respond to these incidents under the old dispatch rule. In the
current deployment, Stations 5, 9, and 17 fall into this category. Use of external support
for indoor fires is minimal: across all scenarios, fewer than 0.01% of incidents required
external assistance (full counts are in Appendix A.4, Table A.4.0.2).

In the new deployment scenarios, MOTO, TS2, TS4, and TS6 units were redistributed
across stations (see Appendix A); not all stations have every vehicle type. The relocation
algorithm currently applies only to TS6 units. Under the old dispatch rule (Scenarios 5
and 7), stations without TS4/TS6 could not dispatch for indoor fires. The new dispatch
rule, however, allows smaller units (MOTO, TS2) to cooperate across stations, enabling
previously limited stations (e.g., 5, 9, 17) to participate in indoor-fire responses in Scenar-
ios 6 and 8.

Figure 7.4 shows FOTA curves for indoor fires under all scenarios. The new dispatch rule
(Scenarios 2, 4, 6, 8) clearly improves performance compared to the old rule (Scenarios 1, 3,
5, 7). In the old-deployment setting (Scenarios 1 vs 2, 3 vs 4), the improvement is roughly
28–30%; in the new-deployment setting (Scenarios 5 vs 6, 7 vs 8), the gain is about 15–
17%. These differences are supported by the pairwise scenario tests in Figure 7.5, which
consistently show an upward shift in the FOTA curve when the new dispatch rule is used.

Relocation under the current triggering rules performs poorly in some comparisons
(e.g., Scenario 3 vs 1, Scenario 7 vs 5). This is likely due to overly frequent triggering: the
algorithm activates immediately when a major or very-major indoor fire is detected and
executes relocation if an optimal solution is found, without further evaluation. In practice,
a commander would likely review the plan before execution. Frequent vehicle movements
and returns in the simulator can inadvertently increase overall response times. This does
not mean the algorithm is ineffective; rather, its triggering and usage policy need careful
tuning. Further investigation into adaptive triggers and decision policies is recommended.
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Figure 7.4: FOTA curves for Indoor fire across all scenarios (normal arrival rate).

Figure 7.5: Pairwise scenario comparisons for Indoor fire at normal arrival rate.
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7.2.1.4 Resuscitation (Reanimatie)

Resuscitation incidents require rapid intervention. In this study, we assume that a single
responder carrying an AED is sufficient to handle such incidents, meaning that a TS6 with
only one crew member may respond under the new dispatch rule. MOTO or other small
units can also assist by transporting personnel or providing support. External support is
negligible for this category at normal arrival rates (see Appendix A.4, Table A.4.0.3).

Figure 7.6: FOTA curves for Resuscitation across all scenarios (normal arrival rate).

Figure 7.6 shows that, under the old deployment (Scenarios 1–4), the new dispatch
rule improves performance for resuscitation. Allowing single-crew TS6 dispatch increases
FOTA by about 15% (Scenario 2 vs 1 and Scenario 4 vs 3). These gains are confirmed by
the pairwise statistical tests in Figure 7.7.

In the new deployment (Scenarios 5–8), however, the new rule can slightly reduce
resuscitation performance (Scenario 6 vs 5, Scenario 8 vs 7). The main reason is MOTO
use: in our configuration, each station has only one MOTO. Under the old rule, MOTOs
were used almost exclusively for resuscitation, ensuring availability. The new rule allows
MOTOs to support other incidents, which lowers their availability for resuscitation and
can reduce performance.

Nevertheless, comparing the deployments without changing the dispatch rule shows
that the new vehicle mix itself provides a substantial benefit: FOTA for resuscitation rises
from 22.8% in Scenario 1 to 51.0% in Scenario 5, an increase of roughly 124%, highlighting
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(a) Scenario 1 vs Scenario 2 (b) Scenario 3 vs Scenario 4

Figure 7.7: Pairwise comparisons of old deployment scenarios under normal arrival rate
(Resuscitation).

the strong positive effect of the updated station-level vehicle allocation.

From an operational view, if new vehicle types are introduced, it may be worth con-
sidering whether MOTOs should remain dedicated to resuscitation, rather than being
dispatched more broadly.

7.2.2 High-Demand Experiments (Arrival Rates ×2)

To model extreme operational stress we double the incident arrival rates (i.e., the rates
estimated by the Prophet forecaster are multiplied by 2). The resulting event counts are
approximately twice the normal case.

7.2.2.1 Relocation Algorithm Execution (Scaled Arrival)

• Old deployment scenarios (TS6 only)

– Scenario 3: Relocation_activated = 5427, Relocation_performed = 4882 (89.96%)

– Scenario 4: Relocation_activated = 5462, Relocation_performed = 5128 (93.89%)

• New deployment scenarios (new vehicles)

– Scenario 7: Relocation_activated = 5665, Relocation_performed = 3524 (62.21%)

– Scenario 8: Relocation_activated = 5575, Relocation_performed = 1048 (18.80%)

Because the arrival rates are doubled, the number of incidents also increases by roughly a
factor of two. The relocation patterns, however, remain broadly similar to the normal-rate
case. Relocation is more readily executed in the old-deployment scenarios, whereas under
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higher demand and a fixed fleet size, the number of situations without available vehicles
increases, lowering the share of successful relocations. This effect is most pronounced in the
new-deployment scenarios, particularly in Scenario 8, where fewer than 20% of relocation
triggers could be carried out.

7.2.2.2 All Periods: All Incidents (Scaled Arrival)

Figure 7.8: FOTA comparisons for all incidents under scaled arrival scenarios.

External support for All incidents is minimal: across all scaled-arrival scenarios, fewer
than 0.01% of incidents required external assistance. These values are aggregated over the
entire incident set; for rare incident types the proportion may be higher (see Appendix A.4,
Table A.4.0.4).

FOTA comparisons for all incidents under scaled-arrival scenarios are presented in Fig-
ure 7.8. Comparing the scaled-arrival results with the baseline (normal arrival), FOTA
performance in the old-deployment scenarios (1–4) decreases by approximately 8–9% (ab-
solute drop), whereas in the new-deployment scenarios (5–8) the decrease is only about
3–4.5%. In other words, the new-deployment variants show greater resilience to increased
demand.

Relative to the baseline (normal arrival), FOTA performance in the old-deployment
scenarios (1–4) declines by about 8–9% , while in the new-deployment scenarios (5–8) the
decline is limited to –4.5%. The new deployment is therefore more resilient to increased
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demand.

Within the old-deployment set, the current operational method (Scenario 1) performs
worst. Introducing the new dispatch rule produces marked gains, as shown by the pairwise
comparisons Scenario 2 vs Scenario 1 and Scenario 4 vs Scenario 3 (Figure 7.9).

(a) Scenario 1 vs Scenario 2 (b) Scenario 3 vs Scenario 4

Figure 7.9: Pairwise comparisons of old-deployment scenarios under scaled arrival for all
incidents.

Even with roughly twice as many incidents, FOTA values in the new-deployment scenar-
ios still exceed those of the old deployment under normal arrival. For instance, Figure 7.10
shows that Scenario 5 (new deployment, scaled arrival) outperforms Scenario 1 (old de-
ployment, normal arrival), underscoring the greater robustness of the new deployment.

Figure 7.10: Comparison of Scenario 1 (normal arrival, old deployment) vs Scenario 5 (scaled
arrival, new deployment) for all incidents.
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Figure 7.11: FOTA comparisons for Indoor fire under scaled arrival scenarios.

7.2.2.3 Indoor Fire (Scaled Arrival)

External support for Indoor fires is very limited under scaled arrival: across all scenarios, no
more than 0.05% of incidents required external assistance. Absolute counts rise compared
with the normal-arrival case, but the proportions remain negligible (see Appendix A.4,
Table A.4.0.5).

Relative to the normal-arrival experiments, Indoor-fire FOTA in the old-deployment
scenarios falls by about 8–10%. In the new-deployment scenarios the decline is smaller:
roughly 2% under the new dispatch rule and 7–8% under the old rule. The new dispatch
rule therefore provides a consistent gain for Indoor fires.

Figures 7.11 and 7.12 show that the new dispatch rule improves Indoor-fire FOTA across
both deployment settings, with the largest gains in the new-deployment scenarios.

7.2.2.4 Resuscitation (Scaled Arrival)

External support for Resuscitation is virtually absent under scaled arrival. In the new-
deployment scenarios (5–8), no external-support events are observed, while in the old-
deployment scenarios (1–4) the share of incidents requiring external assistance does not
exceed 0.01%. Under normal arrival rates, Resuscitation incidents never required exter-
nal help; the small number of cases appearing under higher demand suggests that, when
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(a) Scenario 1 vs Scenario 2 (b) Scenario 3 vs Scenario 4

(c) Scenario 5 vs Scenario 6 (d) Scenario 7 vs Scenario 8

Figure 7.12: Pairwise comparisons under scaled arrival for Indoor fire.

incidents occur very frequently without changes to the deployment pattern, saturation ef-
fects may arise. Such cases could delay treatment and increase fatality risk, although the
proportions remain negligible (see Appendix A.4, Table A.4.0.6).

Compared with the normal-arrival experiments, Resuscitation FOTA in the old-deployment
scenarios drops by about 11% under scaled arrival. By contrast, the new-deployment sce-
narios show stable FOTA with the new dispatch rule and only a minor decline with the
old rule. The combination of the new deployment and the new dispatch rule therefore
maintains performance even under high incident frequency.

Figures 7.13 and 7.14 show that high FOTA values are preserved in the new-deployment
scenarios, even when incident frequency is doubled.
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Figure 7.13: FOTA comparisons for Resuscitation under scaled arrival scenarios.

(a) Scenario 1 vs Scenario 2 (b) Scenario 3 vs Scenario 4

Figure 7.14: Pairwise comparisons of old-deployment scenarios under scaled arrival for Re-
suscitation.

7.2.3 Big-Incident Periods

We define Big-incident periods as intervals during which at least one major or very-major
indoor fire is active. An interval ends once all large indoor fires within it are cleared.
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7.2.3.1 Normal Arrival: Big-Incident Periods

All incidents (Big incident periods, normal arrival) External support use during
Big-incident periods is rare, ranging from 0.00% to 0.02% across scenarios (Appendix A.4,
Table A.4.0.7).

As shown in Figure 7.15, new-deployment scenarios (5–8) consistently achieve higher
FOTA values than old-deployment scenarios (1–4), showing that the new layout maintains
stronger coverage even during concentrated demand.

Figure 7.15: FOTA comparisons for all incidents during Big-incident periods under normal
arrival rate.
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Figure 7.16: FOTA comparisons for Indoor fire during Big-incident periods under normal
arrival rate.

Indoor fire (Big incident periods, normal arrival) For Indoor fire, external-support
fractions remain low (0.00%–0.10%; see Appendix A.4, Table A.4.0.8).

Figure 7.16 shows FOTA comparisons for Indoor fire during Big-incident periods. Under
the old deployment, relocation applied more often during Big-incident periods brings small
gains (Scenario 1 vs Scenario 3), though these are not statistically significant, as illustrated
in Figure 7.17. The new dispatch rule demonstrates clearer benefits in both deployment
settings (Scenarios 2, 4, 6, and 8).

Figure 7.17: Scenario 1 vs Scenario 3 comparison for Indoor fire during Big-incident periods
(normal arrival rate).
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Resuscitation (Big incident periods, normal arrival) For Resuscitation, no external-
support cases occur in any scenario during Big-incident periods (Appendix A.4, Table A.4.0.9).

Figure 7.18 shows FOTA comparisons for Resuscitation during Big-incident periods.
Overall, new-deployment scenarios outperform old ones. Within the old deployment, the
new dispatch rule generally improves results, whereas in the new deployment the old rule
can sometimes yield higher FOTA values.

Figure 7.18: FOTA comparisons for Resuscitation during Big-incident periods under normal
arrival rate.

7.2.3.2 Scaled Arrival: Big-Incident Periods

All incidents (Big incident periods, scaled arrival) External support during Big-
incident periods under scaled arrivals remains uncommon, ranging from 0.02% to 0.28%
(Appendix A.4, Table A.4.0.10).

Figure 7.19 presents FOTA comparisons for all incidents during Big-incident periods
under scaled arrival scenarios. Compared with normal arrivals, old-deployment scenarios
(1–4) show clear declines in FOTA (e.g. Scenario 2 drops about 7.5% relative to baseline).
New-deployment scenarios show mixed patterns, with small increases in some cases and
stability in others.

Interestingly, under scaled arrivals the share of Indoor fires during Big-incident periods
falls from roughly one quarter to about one seventh of incidents. Since Indoor fires last
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Figure 7.19: FOTA comparisons during Big-incident periods under scaled arrival rate.
External-support occurrences increase overall, but remain low in absolute proportion.

longer and tie up vehicles, this shift frees more units for shorter calls, which can improve
FOTA for those incidents. This effect appears consistently in our simulations, though
the exact mechanism behind the change in incident composition under simple doubling of
arrivals remains unclear.

Indoor fire (Big incident periods, scaled arrival) External-support fractions for
Indoor fires during Big-incident periods under scaled arrivals range from 0.00% to 0.38%
(Table A.4.0.11).

Figure 7.20 shows Indoor-fire FOTA under scaled arrival rates. Indoor-fire FOTA gen-
erally improves under scaled arrivals. In old-deployment scenarios, gains range from +1%
to +21% across Scenarios 1–4; in new-deployment scenarios, some exceed +35% (Scenarios
5–8). These gains likely reflect the shift in incident-type composition together with effec-
tive relocations, especially in old-deployment Scenario 3, where relocation was executed in
about 90% of triggers (Figure 7.21).
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Figure 7.20: Indoor fire FOTA during Big-incident periods under scaled arrival rate. Many
scenarios show marked increases compared to normal arrival rates.

Figure 7.21: Comparison of response times between Scenario 1 and Scenario 3 during Big
incident periods under scaled arrival. Scenario 3 shows significantly lower response times than
Scenario 1.

Resuscitation (Big incident periods, scaled arrival) External-support fractions for
Resuscitation remain very low (0.00%–0.22%; Appendix A.4, Table A.4.0.12). About half
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Figure 7.22: Resuscitation FOTA during Big incident periods under scaled arrival rate.
New-deployment scenarios are generally more stable compared to old deployment.

of all such cases occur during Big-incident periods.

Figure 7.22 presents Resuscitation FOTA during Big-incident periods under scaled ar-
rival rates. Compared with normal arrivals, Resuscitation FOTA during Big-incident pe-
riods under scaled arrivals declines by about 11%–20% in old-deployment scenarios (1–4).
In new-deployment scenarios (5–8), the changes are smaller: –3.24%, +1.86%, –4.36%, and
–1.50% respectively. The relative ranking between scenarios remains consistent with the
normal-arrival case: new deployment generally outperforms old. For Resuscitation, the
new dispatch rule gives better results under old deployment, while the old dispatch rule
does better under the new deployment.

7.2.4 Overall Observations

This section summarizes the main insights derived from the simulation experiments across
all incident types, deployment scenarios, and arrival conditions. The following points
highlight key patterns and performance differences observed in the results:

• The new vehicle mix (Scenarios 5–8) generally outperforms the old deployment (Sce-
narios 1–4), even though the modeled crew numbers required to operate these vehicles
are lower at several stations. This reflects more effective utilization of personnel.
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• In most cases the new dispatch rule improves performance compared with the old
rule, with the clearest gains observed for Indoor fire and All-incident FOTA.

• Resuscitation performance depends strongly on MOTO policy: reserving MOTOs at
stations, rather than dispatching them broadly, yields better results in our simula-
tions.

• The relocation algorithm requires refinement. Under the current simple trigger rule
(activated by major/very-major indoor fires with immediate execution), frequent re-
locations can increase travel and return movements, worsening average response time.
This points to the need for improved triggers (e.g., coverage thresholds, concurrency-
based rules) and possibly a human-in-the-loop step for deciding relocations.
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Conclusion

This research investigated how operational efficiency at the FDAA can be improved through
more flexible deployment models. In particular, it examined the potential benefits of
introducing variable unit compositions, including two- and four-person pumpers (TS2,
TS4) and single-responder motorcycles (MOTO), and assessed the impact of adaptive
dispatch rules and relocation strategies on response performance.

Given the impracticality and safety concerns of real-world experimentation, the study
relied on an enhanced simulation framework. An existing simulator was extended to sup-
port flexible crew and vehicle configurations, composite units, and empirically grounded in-
cident escalation. Adaptive dispatch rules and upgraded relocation algorithms—including
adaptations of the MCRP and the LBAP—enabled more efficient allocation of resources
under both routine and high-demand conditions. Additionally, the SDOM, a MILP-based
approach, was introduced to optimize vehicle and crew allocation at the station level,
considering personnel availability, vehicle capacity, and deployment constraints.

Simulation experiments demonstrated that adopting the new deployment model signif-
icantly improves performance. In this study, the main performance metric is the Fraction
of On-Time Arrivals (FOTA), which captures both response speed and effective cover-
age. FOTA measures the proportion of incidents reached within legally defined response-
time thresholds; a higher FOTA indicates faster intervention and, indirectly, that incidents
occur within adequately covered areas.

Without changing dispatch rules or using relocation algorithms, the introduction of
smaller, faster units increased overall FOTA by 41.2% across all incidents. Applying the
new dispatch rule alone, while keeping the current deployment, yielded an 11–13% im-
provement. For Indoor fire incidents, the new deployment outperformed the old, and the
new dispatch rule further increased FOTA: 28–30% under the existing deployment and
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15–17% under the new deployment. Notably, for Resuscitation incidents, the new deploy-
ment alone raised FOTA from 22.8% to 51.0%, a 124% relative improvement. The new
dispatch rule improved performance by about 15% under the old deployment, but in the
new deployment, careful MOTO allocation is necessary to avoid delays.

These improvements were consistent across high-demand scenarios and during major
incidents. Even when incident frequency doubled, the new deployment maintained FOTA
levels exceeding those of the current deployment under normal conditions, highlighting its
resilience and efficiency.

Overall, the study shows that flexible deployment, combined with adaptive dispatch
rules can substantially enhance emergency response performance. Optimized relocation
strategies helped maintain geographic coverage, though their effectiveness depends on well-
calibrated triggers to avoid unnecessary movements. Implementing these changes in prac-
tice would require adjustments to vehicle fleet composition, station-level allocation policies,
and dispatch procedures. Future research could explore further tuning of relocation trig-
gers, integration of dynamic traffic data, and real-time decision support to maximize the
benefits of flexible deployment in operational settings.
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Discussion and Recommendations

9.1 Discussion

The simulation framework developed in this study enabled systematic testing of new de-
ployment models, dispatch rules, and relocation strategies. Several assumptions, however,
limit its realism. Incident durations were adjusted mechanically once response times ex-
ceeded thresholds, which only approximates the consequences of late arrivals. Response
time was also defined as the arrival of the first unit, even if this was a partially staffed
vehicle. Such units may perform preparatory tasks, but their impact remains limited until
larger crews arrive. A more refined model would assess the contribution of early arrivals
in stabilizing incidents and their interaction with follow-up teams.

Travel speeds and relocation dynamics also require improvement. Current travel time
factors are based on expert judgment rather than measured data. For TS-series trucks and
buses, travel times are simple ratios of OSRM estimates, while drones are assumed much
faster; for drones, future work could compute travel times based on straight-line distances
and actual speed, as they are not constrained by roads. Relocation is determined solely
by coverage gaps and routing distances. Differences in turnout times between professional
and volunteer stations are ignored, which likely exaggerates relocation effectiveness in
volunteer-based areas. Similarly, the dispatch algorithm evaluates stations in fixed order
and treats all crews alike, overlooking turnout delays that can affect real performance.
Incorporating differentiated turnout times into both relocation and dispatch would bring
the model closer to operational practice.

The relocation algorithm is based on an optimization framework designed to improve
coverage and resource allocation. Its practical implementation, however, requires careful
consideration of operational factors beyond the model. For instance, staff scheduling,
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station familiarity, and training can influence the feasibility and effectiveness of dynamic
relocation. Future work could explore integration with human-centered planning, ensuring
that relocation strategies are compatible with routine operations and personnel readiness.

Challenges also arise when the fleet includes more diverse vehicle types. Introduc-
ing smaller units while reducing the number of high-capacity trucks makes it harder for
relocation algorithms to maintain balanced coverage. Although the functionality is im-
plemented, performance is constrained by vehicle availability and composition. Adaptive
strategies that explicitly account for fleet mix and dynamic demand could better address
this issue.

It is important to note that this study does not focus on reducing staff numbers. The fact
that the new deployment configuration achieves better performance with fewer required
crew does not imply downsizing, but rather a more effective use of available personnel.
In practice, the department employs several times more firefighters than those directly
matched to vehicles, and the results here should be seen as guidance for designing more
efficient deployment schemes within existing resource constraints.

Finally, incident generation and escalation in the simulator depend on a limited dataset,
risking underestimation of rare or emerging events. Continued data collection on escalation
timings and spatial patterns would allow more robust modeling. A particular concern is
cardiac arrest response. The present framework assumes that the immediate arrival of
an AED-equipped motorcycle ensures survival, which is unrealistic. In practice, outcomes
often rely on a two-stage sequence: rapid AED arrival followed by a crew capable of
sustained resuscitation. Capturing this sequence is essential to evaluate the true role of
motorcycle deployment.

9.2 Recommendation

Despite these limitations, the results show that flexible deployment models and adaptive
dispatch rules can deliver meaningful improvements in response performance. For practice,
it is recommended that the fire department continues to explore alternative fleet compo-
sitions, in particular the targeted use of AED-equipped motorcycles for cardiac arrests,
where the performance gains are most evident. More flexible dispatch rules should also be
adopted, as they can enhance efficiency with little additional cost.

Equally important is systematic data collection. Detailed records of escalation timings,
turnout delays by station type, and resource utilization are needed to refine simulation
models and support evidence-based decision making. By combining innovative deployment
strategies with stronger data foundations, the fire department can further strengthen both

91



9. DISCUSSION AND RECOMMENDATIONS

the efficiency and resilience of its emergency response system, thereby enhancing safety
and benefiting the public.
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Appendix A

Appendix: Full Tables

A.1 Dispatch Rule Table

Incident Type RV HV WO TS2 TS4 TS6 TS6_P MOTO DRONE
General assistance 1 1
Police assistance 1
Alarm 1 1
Ambulance assistance 1
Fire alarm 1 1
Animal assistance 1 1
Outdoor fire 1
Resuscitation
Elevator entrapment
Person in water 1 1
Hazardous substances 1
Indoor fire 1
Extreme weather 1 1
Other fire 1
Vehicle in water 1 1
Water rescue 1 1
Animal in water 1 1
Aviation rescue 1
Unknown 1

Table A.1: Vehicle dispatch table for Medium incident types
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A. APPENDIX: FULL TABLES

Incident Type RV HV WO TS2 TS4 TS6 TS6_P MOTO DRONE
General assistance 1 1
Police assistance 1
Alarm 1 1
Ambulance assistance 1
Fire alarm 1 1
Animal assistance 1 1
Outdoor fire 1
Resuscitation
Elevator entrapment
Person in water 1 1
Hazardous substances 1
Indoor fire 1 1
Extreme weather 1 1
Other fire 1
Vehicle in water 1 1 1
Water rescue 1 1
Animal in water 1 1
Aviation rescue 1 1
Unknown 1

Table A.2: Vehicle dispatch table for Major incident types
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A.2 Legacy Deployment Configuration

Incident Type RV HV WO TS2 TS4 TS6 TS6_P MOTO DRONE
General assistance 1
Police assistance 1
Alarm 1
Ambulance assistance 1
Fire alarm 1
Animal assistance 1 1
Outdoor fire 1
Resuscitation
Elevator entrapment
Person in water 1 1
Hazardous substances 1
Indoor fire 1
Extreme weather 1 1
Other fire 1
Vehicle in water 1 1
Water rescue 1 1
Animal in water 1 1
Aviation rescue 1
Unknown 1

Table A.3: Vehicle dispatch table for Very Major incident types

A.2 Legacy Deployment Configuration

Table A.4: Legacy deployment configuration: Only TS6 vehicles, with current staffing pat-
terns.
Station BUS MOTO TS2 TS4 TS6 TS_crew_ft TS_crew_pt
A 1 0 0 0 2 6 6
B 1 0 0 0 1 6 0
C 1 0 0 0 1 6 0
D 1 0 0 0 1 6 0
E 1 0 0 0 1 6 0
F 1 0 0 0 1 6 0
G 1 0 0 0 2 0 12
H 1 0 0 0 1 6 0
I 1 0 0 0 1 6 0
J 1 0 0 0 1 0 6
K 1 0 0 0 1 6 0
L 1 0 0 0 1 6 0
M 1 0 0 0 1 6 0
N 1 0 0 0 1 6 0
O 1 0 0 0 2 0 12
P 1 0 0 0 2 6 6
Q 1 0 0 0 1 0 6
R 1 0 0 0 1 6 0
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A.3 New Deployment Configuration

Table A.5: New deployment configuration: Incorporating MOTO, TS2, and TS4 vehicles
with reduced staffing.
Station BUS MOTO TS2 TS4 TS6 TS_crew_ft TS_crew_pt
A 1 1 1 1 2 8 6
B 1 1 1 1 0 6 0
C 1 1 0 1 0 4 0
D 1 1 0 1 1 7 0
E 1 1 1 1 1 8 0
F 1 1 1 0 1 8 0
G 1 1 1 1 0 0 6
H 1 1 1 0 1 8 0
I 1 1 0 1 0 4 0
J 1 1 1 0 0 0 3
K 1 1 1 0 1 6 0
L 1 1 0 1 0 4 0
M 1 1 0 1 0 4 0
N 1 1 1 0 0 3 0
O 1 1 0 1 1 0 6
P 1 1 1 0 0 3 3
Q 1 1 0 1 0 0 4
R 1 1 0 1 1 7 0

A.4 External-Support Fractions (Full Listing)

Below we reproduce the exact external-support fraction rows as they were computed in
the experiments. These are grouped by experiment (normal / scaled arrival rates) and by
period (All periods / Big-incident periods) and by incident type (All incidents / Indoor
fire / Resuscitation). Use these tables for auditing and reproducibility.

A.4.0.1 Normal Arrival Rate — All Periods

All incidents (All periods, normal arrival rate):

Scenario_1: All Incidents EXTERNAL fraction = 0 / 864172 = 0.00%

Scenario_2: All Incidents EXTERNAL fraction = 2 / 853961 = 0.00%

Scenario_3: All Incidents EXTERNAL fraction = 1 / 865343 = 0.00%

Scenario_4: All Incidents EXTERNAL fraction = 1 / 853606 = 0.00%

Scenario_5: All Incidents EXTERNAL fraction = 1 / 852541 = 0.00%

Scenario_6: All Incidents EXTERNAL fraction = 2 / 858787 = 0.00%
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A.4 External-Support Fractions (Full Listing)

Scenario_7: All Incidents EXTERNAL fraction = 3 / 855151 = 0.00%

Scenario_8: All Incidents EXTERNAL fraction = 2 / 857282 = 0.00%

A.4.0.2 Normal Arrival Rate — Indoor Fire

Scenario_1: Indoor Fire EXTERNAL fraction = 0 / 43612 = 0.00%

Scenario_2: Indoor Fire EXTERNAL fraction = 0 / 33204 = 0.00%

Scenario_3: Indoor Fire EXTERNAL fraction = 1 / 43394 = 0.00%

Scenario_4: Indoor Fire EXTERNAL fraction = 0 / 33063 = 0.00%

Scenario_5: Indoor Fire EXTERNAL fraction = 1 / 33147 = 0.00%

Scenario_6: Indoor Fire EXTERNAL fraction = 2 / 36896 = 0.01%

Scenario_7: Indoor Fire EXTERNAL fraction = 3 / 32940 = 0.01%

Scenario_8: Indoor Fire EXTERNAL fraction = 1 / 36826 = 0.00%

A.4.0.3 Normal Arrival Rate — Resuscitation

Scenario_1: Resuscitation EXTERNAL fraction = 0 / 45804 = 0.00%

Scenario_2: Resuscitation EXTERNAL fraction = 0 / 45866 = 0.00%

Scenario_3: Resuscitation EXTERNAL fraction = 0 / 45706 = 0.00%

Scenario_4: Resuscitation EXTERNAL fraction = 0 / 46146 = 0.00%

Scenario_5: Resuscitation EXTERNAL fraction = 0 / 45614 = 0.00%

Scenario_6: Resuscitation EXTERNAL fraction = 0 / 46017 = 0.00%

Scenario_7: Resuscitation EXTERNAL fraction = 0 / 46389 = 0.00%

Scenario_8: Resuscitation EXTERNAL fraction = 0 / 46390 = 0.00%

A.4.0.4 Scaled Arrival Rate — All Periods

Scenario_1: All Incidents EXTERNAL fraction = 26 / 1721681 = 0.00%

Scenario_2: All Incidents EXTERNAL fraction = 242 / 1700589 = 0.01%

Scenario_3: All Incidents EXTERNAL fraction = 53 / 1720425 = 0.00%

Scenario_4: All Incidents EXTERNAL fraction = 149 / 1700058 = 0.01%

Scenario_5: All Incidents EXTERNAL fraction = 53 / 1707184 = 0.00%

Scenario_6: All Incidents EXTERNAL fraction = 96 / 1716668 = 0.01%

Scenario_7: All Incidents EXTERNAL fraction = 55 / 1705651 = 0.00%

Scenario_8: All Incidents EXTERNAL fraction = 73 / 1717256 = 0.00%
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A.4.0.5 Scaled Arrival Rate — Indoor Fire

Scenario_1: Indoor Fire EXTERNAL fraction = 3 / 86724 = 0.00%

Scenario_2: Indoor Fire EXTERNAL fraction = 28 / 66664 = 0.04%

Scenario_3: Indoor Fire EXTERNAL fraction = 13 / 86512 = 0.02%

Scenario_4: Indoor Fire EXTERNAL fraction = 32 / 66571 = 0.05%

Scenario_5: Indoor Fire EXTERNAL fraction = 24 / 65790 = 0.04%

Scenario_6: Indoor Fire EXTERNAL fraction = 36 / 75015 = 0.05%

Scenario_7: Indoor Fire EXTERNAL fraction = 32 / 66313 = 0.05%

Scenario_8: Indoor Fire EXTERNAL fraction = 32 / 75164 = 0.04%

A.4.0.6 Scaled Arrival Rate — Resuscitation

Scenario_1: Resuscitation EXTERNAL fraction = 0 / 91420 = 0.00%

Scenario_2: Resuscitation EXTERNAL fraction = 11 / 91224 = 0.01%

Scenario_3: Resuscitation EXTERNAL fraction = 3 / 90756 = 0.00%

Scenario_4: Resuscitation EXTERNAL fraction = 10 / 91860 = 0.01%

Scenario_5: Resuscitation EXTERNAL fraction = 0 / 92257 = 0.00%

Scenario_6: Resuscitation EXTERNAL fraction = 0 / 91717 = 0.00%

Scenario_7: Resuscitation EXTERNAL fraction = 0 / 92711 = 0.00%

Scenario_8: Resuscitation EXTERNAL fraction = 0 / 91706 = 0.00%

A.4.0.7 Big-Incident Periods — All Incidents (Normal Arrival)

Scenario_1: 0 / 13123 = 0.00%

Scenario_2: 1 / 14407 = 0.01%

Scenario_3: 1 / 13636 = 0.01%

Scenario_4: 1 / 14692 = 0.01%

Scenario_5: 1 / 13136 = 0.01%

Scenario_6: 2 / 13931 = 0.01%

Scenario_7: 3 / 13007 = 0.02%

Scenario_8: 1 / 13922 = 0.01%

A.4.0.8 Big-Incident Periods — Indoor Fire (Normal Arrival)

Scenario_1: 0 / 3101 = 0.00%

Scenario_2: 0 / 3148 = 0.00%

Scenario_3: 1 / 3158 = 0.03%
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Scenario_4: 0 / 3135 = 0.00%

Scenario_5: 1 / 2856 = 0.04%

Scenario_6: 2 / 3282 = 0.06%

Scenario_7: 3 / 2888 = 0.10%

Scenario_8: 1 / 3182 = 0.03%

A.4.0.9 Big-Incident Periods — Resuscitation (Normal Arrival)

Scenario_1: 0 / 556 = 0.00%

Scenario_2: 0 / 630 = 0.00%

Scenario_3: 0 / 605 = 0.00%

Scenario_4: 0 / 616 = 0.00%

Scenario_5: 0 / 553 = 0.00%

Scenario_6: 0 / 648 = 0.00%

Scenario_7: 0 / 586 = 0.00%

Scenario_8: 0 / 612 = 0.00%

A.4.0.10 Big-Incident Periods — All Incidents (Scaled Arrival)

Scenario_1: 10 / 46277 = 0.02%

Scenario_2: 139 / 49023 = 0.28%

Scenario_3: 32 / 50121 = 0.06%

Scenario_4: 79 / 52847 = 0.15%

Scenario_5: 26 / 50099 = 0.05%

Scenario_6: 49 / 53818 = 0.09%

Scenario_7: 30 / 51732 = 0.06%

Scenario_8: 45 / 53976 = 0.08%

A.4.0.11 Big-Incident Periods — Indoor Fire (Scaled Arrival)

Scenario_1: 0 / 7116 = 0.00%

Scenario_2: 17 / 6985 = 0.24%

Scenario_3: 10 / 7347 = 0.14%

Scenario_4: 27 / 7190 = 0.38%

Scenario_5: 18 / 6459 = 0.28%

Scenario_6: 21 / 7534 = 0.28%

Scenario_7: 22 / 6785 = 0.32%

Scenario_8: 25 / 7596 = 0.33%
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A.4.0.12 Big-Incident Periods — Resuscitation (Scaled Arrival)

Scenario_1: 0 / 2225 = 0.00%

Scenario_2: 5 / 2313 = 0.22%

Scenario_3: 1 / 2391 = 0.04%

Scenario_4: 5 / 2571 = 0.19%

Scenario_5: 0 / 2332 = 0.00%

Scenario_6: 0 / 2634 = 0.00%

Scenario_7: 0 / 2544 = 0.00%

Scenario_8: 0 / 2604 = 0.00%
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