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�Machines take me by surprise with great frequency�

from Computing Machinery and Intelligence (1950), by Alan Turing
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Abstract

Context. The Dutch mortgage market generates a lot of unstructured data. Stater N.V.

is a large administration company which manages the mortgage administration of several

moneylenders. A lot of unstructured data is stored in digital archives, such as documents,

photos and e-mails. Stater N.V., and its clients, aim to bring more structure to the data in

these digital archives. The aim of this thesis is to research methods for splitting and classi-

fying Dutch multi-document mortgage �les. This will contribute to structuring the archive.

The data consists of PDF �les. Since not every �le can be read out by a PDF reader, e.g.

because they consist of scanned pages, an Optical Character Recognition (OCR) engine

is used. To select a �tting OCR model for the provided data, several o�-the-shelf OCR

models are tested on benchmark document data sets.

Goal. The intermediate goal is to select a �tting OCR model which works well on (scanned)

documents to extract the textual data. The main goal is to develop a model which can

split a �le, of any given length, into multiple documents. Each extracted sub-document is

also classi�ed with a document type.

Methods. Two types of models are used. Firstly, a Support Vector Machine (SVM), which

makes page-wise classi�cations using solely textual data. These classi�cations are then

used for determining the splits in a �le. The second type of approach is to use neural

network architectures (Time Distributed Convolutional and Recurrent Neural Networks)

which directly optimise where to split from textual and graphical context information, and

classify each page with a page type. The di�erence in approach is that the SVM only uses

the textual data, while the neural networks use textual and graphical data, i.e. multimodal-

ity. Also, the split is indirectly optimised by the SVM, in contrast to the networks, which

optimise it directly. The �les are split into three sets for training, validation and testing

purposes. For each set, documents are (pseudo)randomly merged together and used to

train and validate the models. Since the primary interest is to see what the performance of

a model is on a �le, three metrics are used on the evaluation sets: (1) the mean percentage

of correctly made splits/no splits per �le, (2) the mean percentage of correctly classi�ed

pages per �le and (3) the mean percentage of fully correctly extracted sub-documents per

�le.
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Results. The results show that the SVM model works best on the classi�cation (2) and

sub-document extraction (3), with scores of 92.14% and 85.09% on the test evaluation sets,

respectively. The neural network models only perform slightly worse on these metrics: the

TDCNN-RNN(2:2) got 91.68% on the classi�cation task and a the RNN(1:1) got 84.33% on

the sub-document extraction. However, the TDCNN-RNN(3:3) does perform best on the

splitting (1) with a 96.87%. The SVM splits 93.06% correctly. In general, the networks

which only have access to the graphical features have the lowest performance. Also, adding

more context, in terms of graphical and textual page information, does not seem to have a

positive e�ect on the performance of the models. The error analysis shows that the SVM

and TDCNN-RNN(3:3) model seem to have the most confusion between the gold label No

split and predicted label Split. This is surprising, since most multi-document �les have

more pages than sub-documents, thus require more No split than Split. So while the mod-

els are trained, and evaluated, on data sets with a majority class of No split, they do tend

to split �les more often than necessary.

Conclusions. Based on the results and error analysis, it seems that using textual features

with a SVM does work best. Although the neural network models do not outperform the

SVM on all metrics, there are indicators that directly optimising the split classi�cation

works better than indirectly optimising. The neural networks, with a vision part, do seem

to look at visually rich areas (in the �rst convolutional layer) such as company logos and

emblems. In future work, the scalability of a solution should be investigated, since the

archive contains billions of pages which all need to be processed.
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1

Introduction

1.1 Research questions

The main research question is as follows,

To what extent can Convolutional and Recurrent Neural Networks be used to partition Dutch

mortgage �les based on their graphical and textual content into separate logical mortgage

documents?

To answer this research question, �ve sub-questions are formulated, namely,

� How can this problem be formulated as a general solvable problem?

The problem and data as provided are not that common in similar research, so

one needs to formulate it as a more general and traditional solvable problem, i.e.

categorical classi�cation problems. The problem is mathematically formulated in

Chapter 3.

� What Optical Character Recognition methods can be used to gather text from non-

readable �les?

The original data are stored as PDFs, for a large portion of these �les one can simply

use a PDF text reader to extract the textual data. For a smaller portion of the �les

a reader is not su�cient to extract the textual data (i.e. a document is scanned

or consists of images). One type of method to extract these textual data is called

Optical Character Recognition (OCR). To research which OCR method performs

best (from a selection of chosen models), a benchmark is done with benchmark data

sets in Chapter 4.

1



1. INTRODUCTION

� What e�ect does the synthetic data have on the model performance?

As explained in Chapter 5, documents are (conditionally) randomly merged together

to create synthetic evaluation sets. To see what e�ect this random merging has on the

performance of the model, the results (Chapter 6) are averaged over the evaluation

sets. The standard deviations of these results show if the model is robust against

randomly merged sets.

� What type of Deep Learning architectures can be used for this problem?

There are several types of Deep Learning layers and units (i.e. dense, convolutional

and recurrent) which can be used to process data. To see what type and variants of

these layers are e�ective for this particular problem, several architectures are tried.

The chosen architectures are discussed and experimented with in Chapter 3 and 6.

� Which parts of the input data does the model base its decisions on?

Deep Learning models are so-called black box models, meaning that it is not (pre-

cisely) known how a model inferred a particular outcome from the input. To make

a model less black box, a qualitative analysis is done on the model output to see if

logical parts of the input are used to make decisions. This is done with Grad-CAM

[52] in Chapter 3.

The answers to the main research question and sub-questions are discussed in Chapter

7.

2



2

Related work

In this chapter, the relevant literature is discussed. The relevant �elds for this research

report are neural networks, computer vision and document understanding.

2.1 Arti�cial Neural Networks

Arti�cial Neural Networks (ANNs) can be described as a combination of simple connected

processing units (neurons) which communicate by sending signals to each other and which

can collectively learn from an environment (e.g. a data set) using some learning process

[26, 57]. The ANN tries to minimise an error function (e.g. crossentropy, mean squared

error) by adjusting the weights inside the network, which is usually done incrementally.

This type of learning is done with backpropagation, i.e. the error made by the ANN goes

back through the network to let the model learn from its mistakes. Neural networks are

mainly used for classi�cation, regression and clustering. There are several types of ANN

layers, such as dense / fully connected, transformer, convolutional and recurrent layers.

The last two mentioned are explained in more detail in the next paragraphs.

2.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are neural networks which are specialised in pro-

cessing grid-like data, such as time-series and images [23]. A CNN consists of convolutions,

also called �lters, which usually map the input (e.g. a 2D image) into a smaller sized out-

put, as shown in Figure 2.1 (a). The output of each �lter applied to the input is also called

a feature map. These �lters contain trainable parameters, denoted as w in Figure 2.1 (a).

In practice, one uses multiple �lters simultaneously which is referred to as a convolutional

layer. A convolutional layer (or group of convolutional layers) is usually followed by a max,

3
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(b) Pooling �lter

Figure 2.1: An abstract example of a convolutional �lter (kernel size: 2 x 2, stride: 1) and

a pooling �lter (kernel size: 2 x 2, stride: 2)

min or average pooling layer. This pooling layer selects or computes a value from a grid of

candidate values (i.e. a pool) which make up a new, and usually smaller, grid. As one can

see in Figure 2.1 (b), a pooling with a 2 by 2 grid and a stride of 2 is applied on a 4 by 4

input. This results in a 2 by 2 output. After a convolutional or pooling layer, a non-linear

activation function, such as the ReLU or tanh, is commonly used. These non-linearities

allow the network to make a non-linear decision space. These convolutional layer - pooling

layer - activation layer blocks are usually stacked to allow the model to learn more abstract

relationships and dependencies. Examples of well known network architectures are ResNet

[29], VGG-16 [56], MobileNet (v3) [32] and Inception (v2) [35].

2.1.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are models which are able to selectively pass informa-

tion over (variable) sequence steps [41]. An RNN takes in a sequence (e.g. a timeseries)

and produces a sequence. A sequence contains one or more values, for both the input

and produced output of an RNN. Thus, an RNN can be seen as a loop where each input

(and/or produced output) is inserted into the RNN. This means that an RNN shares its

parameters with each step in the sequence, instead of assigning separate parameters for

each step in the sequence. This means that the model has relatively fewer parameters to

learn. In contrast to a CNN, which can backpropagate the errors in parallel, an RNN needs

to backpropagate the error using the same loop as the forward propagation, resulting in a

relatively longer learning time. One of the �rst RNN units was the Simple RNN or Elman

RNN [20], this type of network takes the output of the previous step and the input of the

current step. Then an activation function, such as the ReLU or tanh, is used to produce

4
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xt
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(c) Long Short-Term Memory Unit

Figure 2.2: Examples of three Recurrent Neural Network Units: (a) Simple Recurrent Unit

/ Elman Recurrent Unit, (b) Gated Recurrent Unit and (c) Long Short-Term Memory Unit.

an output. This output is used as input for the next layer or next time step. An example

of the Elman RNN unit is shown in Figure 2.2 (a). The main problems with this type

of RNN are the vanishing and exploding gradients when learning long term dependencies

in a sequence [13]. To counter this problem, a new family of RNN units was developed,

namely, the Gated Recurrent Neural Networks. One of these units is the Long Short-Term

Memory (LSTM) [25, 31], the internal structure of an LSTM unit is shown in Figure 2.2

(c). An LSTM is able to �lter or select information using its internal gates, thus is able to

detect and keep information of long range dependencies [13]. Another type of gated unit

is the Gated Recurrent Unit (GRU) [12, 13]. This unit also contains several gates to select

and �lter information as can be seen in Figure 2.2 (b).

2.2 Computer Vision

Computer Vision is the computer science �eld of automatically processing, seeing and

understanding the visual world by machines [21]. The tasks in this �eld include, image

classi�cation, object recognition, object detection and image retrieval. More recently, deep

learning has a large presence on the development of computer vision algorithms [59]. This
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can also be seen in the current state-of-the-art computer vision models, such as [4, 42, 66],

on benchmark data sets such as MNIST[16], COCO[40] and SIDD[1]. A special case of

computer vision is Optical Character Recognition, this case of computer vision is a science

which researches how to translate text on an image (i.e. pixel-ed symbols) to real text (i.e.

typed symbols).

2.2.1 Optical Character Recognition

Optical Character Recognition (OCR) is the �eld where symbols (i.e. text) is extracted

from an image. These images can be natural images, also referred to as images in the

wild/camera-based, or scanned document pages (e.g. PDF). There are some di�erences

between these two types of images, discussed by [11, 51], such as text density, complexity

of the background and noise level, size, colour and rotation of the characters. An end-

to-end OCR application has usually two main components, namely, text detection and

text recognition [18, 33, 38, 43]. Text detection is the study about detecting text (i.e.

characters and symbols) in an image. This �eld is part of the larger object detection

research landscape, but has several di�erent characteristics and therefore needing its own

custom solutions and methods [43]. Text recognition is the �eld of extracting text from an

image. Thus, the text detection algorithm passes the isolated potential text regions to the

text recognition algorithm, which converts the images to plain text.

2.3 Document Understanding

Document Understanding, or Document Intelligence, is a relatively new �eld of research

which aims to analyse, recognise, extract, classify and structuralise information from dig-

ital unstructured documents [2, 46]. Optical Character Recognition methods can be seen

as part of the document understanding �eld. Documents which contain a noticeable lay-

out are typically mentioned in literature as Visual Rich Documents (VRDs). Document

understanding also leverages the document layout instead of using only the (text) con-

tent. Thus based on the graphical and textual features, an algorithm tries to understand

a document [5, 63]. Next, pre-trained transformer models and transfer learning are widely

used in NLP. Most of these pre-trained models, such as BERT [17] or BERT like models,

are purely text based and discard or ignore layout and style features, while these can be

very useful to represent text semantics [64]. The LayoutLM [64], LayoutLMv2 [63], Lay-

outLMv3 [34] and LayoutXLM [65] models use the text but also the text positions (i.e.
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2.3 Document Understanding

layout) and visual information from VRDs. These models contain some form of transform-

ers (e.g. BERT backbone) and are trained on millions of documents. Next, the models

are �netuned on a downstream document understanding task such as Form Understand-

ing, Document Classi�cation and Receipt Understanding with benchmark data sets. The

results from [63, 64, 65] show that textual and layout based models perform better than

purely textual based models on several tasks.

2.3.1 Page Stream Segmentation

A task in document understanding is Page Stream Segmentation (PSS). PSS aims to

segmentate, i.e. split, a multipage document into logical sub-documents. In literature

[14, 24], page text and layout features are used to e�ectively segmentate documents. Ex-

amples of these features are the page number of a page, words, line spacing/indentation and

header/footer information. The authors from [14] use a bottom-up clustering approach;

each page is in its own cluster and clusters are merged together based on a distance met-

ric. Using these clusters, one could segmentate the original document in sub-documents.

Another method is presented by [15], the authors used regular expressions to gather spe-

ci�c textual information of administrative documents pages. These regular expressions

extracted features such as the date, hour, telephone number, page number and postcode.

Using these extracted features, they compared two successive pages and made a new type

of feature vector based on the similarity of previously extracted features. This way they

engineered features representing relationships between two successive pages. Next, the

authors of [3] engineered features based on (binary) page images, such as the pixel col-

umn/row standard deviations and pixel transition intensities. Also, they used a Bag of

Visual Words (BoVW) model. A BoVW consists of "visual words", these type of words

are usually presented as vectorized patches of an image. A well-known method to vectorize

these patches is Scale-Invariant Feature Transform (SIFT) [45], each patch is represented

by 128 values. Next, similar vectors are grouped by a clustering method and a representa-

tive vector is computed (e.g. cluster mean). So, the vocabulary of a BoVW model consists

of cluster representative vectors. As with the NLP Bag of Words model, one counts the

number "visual words" in an image and present it as a (sparse) vector. Using these features,

the authors of [3] use Support Vector Machines (SVMs), Random Decision Forests (RDFs)

and Multilayer Perceptrons (MLPs) to classify if two pages are of the same document or

not.
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2.3.2 Document classi�cation

Another task of document understanding is Document Classi�cation (DC). This task aims

to predict the type of a document with an algorithm using the document pages, represented

as images and/or text, as input. Several types of methods are mentioned in literature, such

as CNN architectures [27, 37], Decision Trees [6, 54, 60] and K-Nearest Neighbour [7, 30].

From [10], it is clear that there are three main types of features used in this kind of research,

namely,

� Image features

These features are using the document represented as an image (i.e. pixels). Ex-

amples of these type of features are the density of black pixels in a region and the

number of horizontal lines and column/row gaps.

� Layout features

A page is segmented into di�erent regions. These extracted regions can have some

structural relationship which can be leveraged by an algorithm.

� Textual features

Textual features are usually extracted using an OCR engine or text reader. After

the text extraction, the text of each document or page is vectorized using the Term

Frequency - Inverse Document Frequency or other counting methods.

Each of these feature types capture di�erent information from a document page, the

importance of a feature type di�ers per document type. For example, layout features work

fairly well for forms or cheques. This is because these type of documents are restricted

to certain templates or conventions, thus the physical layout is a good predictor for these

types of documents.
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3

Methodology

In this chapter the (mathematical) problem statement, objectives, solution methods and

evaluation methods are discussed.

3.1 Problem statement

The problem at hand is to split a given �le (of any length) into logical sub-documents. A

logical sub-document is a document which consists of pages with similar textual and/or

graphical information and thus belonging to the same document type. The pages of each

sub-document are in a consecutive order in the original �le i.e. a sub-document is a subset

of sequential pages from the original �le. In the remainder of this thesis, a �le is de�ned as

a sequence of pages of which the page type can, but does not necessarily have to, di�er. A

(sub-)document is de�ned as a sequence of pages of which the page types are all the same.

In general, a document page usually refers to the content (i.e. textual representation)

and layout (i.e. graphical representation) of that page. The research question states two

objectives, namely, partitioning a �le (i.e. split) into logical mortgage documents (i.e.

classi�cation). There are few approaches on how to split (and classify sub-documents of)

a �le based on graphical and textual page representations. Two methods are discussed in

this section.

3.1.1 Formulation I

Firstly, the variables, (hyper)parameters and data are de�ned and described using the

notation below, to start with the data set.

D∗ : = the original data set
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The scalar variables are de�ned as,

N∗ : = the total number of documents

n∗
i : = the number of pages of document i

H : = the number of words in the vocabulary

C : = the number of page types

w : = the page width (in pixel values) of the graphical representation

h : = the page height (in pixel values) of the graphical representation

Parts of the data are de�ned as,

V : = the vocabulary (unique words) of the data set

X∗
i : = the graphical representations of the pages of document i

Y∗
i : = the textual representations of the pages of document i

T∗
i : = the pages types of document i

xj∗i : = the graphical representation of page j of document i

yj∗i : = the textual representation of page j of document i

tj∗i : = the class of page j of document i

with j ∈ {1, ..., n∗
i }, i ∈ {1, 2, 3, ..., N∗}

The dimensions and values of the previously mentioned variables and data are,

N∗ = |D∗|

H = |V|

xj∗i ∈ Rw×h×3

yj∗i ∈ RH

D∗ = {X∗
i ,Y

∗
i ,T

∗
i |∀i ∈ {1, 2, 3, ..., N∗}}

The problem can be categorised as a multiclass-multioutput classi�cation or multitask

classi�cation [50] problem with multimodal sequential ordered data, i.e. page images and

text, as input. This multiclass-multioutput classi�cation problem formulation expects all

the pages of a �le as input, and outputs for every page if a certain document type ends

10



3.1 Problem statement

(i.e. split) or if no split is is needed. Thus, for every page, the model should output C + 1

values, one for each document type and the no split class. In total, n∗
i · (C + 1) output

values need to be provided by the model. It is important to mention a few aspects of this

modelling approach:

� The data consists of N∗ �les, these �les do not necessarily contain one document

type but can contain several document types.

� The document types can be wildly di�erent. For example, an identi�cation card

usually consists of one page while a notary document can contain up to 40 pages.

Another example is that some (parts of the) �les can be digital and others are scanned

in.

� Based on the two points above one can conclude that the �les in the original data,

D∗, are also of very di�erent lengths, i.e. n∗
i can be wildly di�erent.

So, with this modelling approach, one would take nmax = maxi(n
∗
i ) as an upper bound

for the number of pages a document can have, and train a model which outputs nmax·(C+1)

values. This also means that for each document nmax decisions are made per document,

while n∗
i might be (a lot) smaller than nmax. That means that the model would output

values for pages which do not exist. A solution to this problem could be to use white images

as padding for the graphical data and 0 vectors as padding for the textual (vectorized)

data, for xji and yji where n
∗
i ≤ nmax. The current problem formulation has three problems,

namely,

1. Firstly, very large and sparse inputs and outputs are now used and produced. Since

most of the documents would have fewer pages than the maximum, a lot of afore-

mentioned padding is required. This increases the size of inputs, which require more

resources in terms of computation.

2. Secondly, the input and output is of �xed size causing a constraint on the model's

generalisability, i.e. if a sample outside D∗ contains more than nmax pages the model

could not process the sample as done in its training phase.

3. Thirdly, it is very much possible that some positional bias are in the data, meaning

that some pages of certain document types are more likely to be on speci�c page

indices. This bias is not wanted since it could be possible that in another (unknown)

data set the positional distributions of the pages are di�erent, which can result in

faulty decisions by the model. This can also be seen as a generalisation problem.
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In the next paragraph, the problem is formulated di�erently to tackle the mentioned prob-

lems.

3.1.2 Formulation II

As previously mentioned, the problem is reformulated to tackle input/output sparsity,

generalisability and positional bias. First, the intermediate data set, D∗∗ set is shown in

Figure 3.1 (b). This data set contains the same data as D∗, except now each �le contains

only one document type. So, each sub-document of the original �les in D∗ is now a separate

instance. Next, a new synthetic data set, Dsynth, is made by (pseudo)randomly merging

documents of D∗. This is done to counter the generalisability and positional bias problems.

(a) D∗ (original data set) (b) D∗∗ (intermediate data set)

(c) Dsynth (synthetically merged data set)

m1

k - m1 k

m2

k + 1 k + m2

(d) Dsliced
synth (sliced synthetically merged

data set)

Figure 3.1: Visualisations of D∗, D∗∗, Dsynth and Dsliced
synth. Each icon represents a page

(textual and graphical) and its colour a document type.
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The following data and variables are introduced,

Xsynth
i : = the graphical representations of the pages of document i

Ysynth
i : = the textual representations of the pages of document i

Tsynth
i : = the document type of document i

with j ∈ {1, ..., nsynth
i }, i ∈ {1, 2, 3, ..., N synth}

nsynth
i : = the number of pages of document i

N synth : = the total number of documents after the original documents are

indexed per document type

Dsynth = {(Xsynth
i ,Ysynth

i ,Tsynth
i ) ∀ i ∈ {1, 2, 3, ..., Nsynth}

By slicing the instances of Dsynth with a window, a new data set, Dsynth
sliced, is formed. A

few new parameters are de�ned for Dsynth
sliced, namely,

k : = the index of the page after which the model decides for a split

m1 : = the number of pages before, and including, page k

m2 : = the number of pages after page k

window = m1 +m2

Since it is known which documents were merged together, the page types and split points

in the synthetic �les are automatically annotated during the slicing procedure. Training

a model on the samples of Dsynth
sliced allows it to parse documents of any length, since each

new document can be sliced into chunks and fed into the model. This lowers the model

complexity compared to the �rst approach. The model only decides after page k if a certain

document type ends or if no split is needed. To know which sub-document ends after a

split decision, the model is trained to classify page k. This transforms the problem from

a multiclass-multilabel problem to a binary classi�cation problem (i.e. split or no split

between page k and k+1) and a multiclass classi�cation problem (i.e. classifying page k).

To summarise, a �le is sliced into chunks which are fed into the model, that outputs if a

split is needed and what page type page k is, for each given chunk. After all the chunks

of a �le are processed, one has all the split decisions between consecutive pages and the

predicted page types for every page in that �le. The number of padding pages is reduced

(compared to the �rst approach), since a window rolls over the document instead of giving

the model the whole document. This means that there is no need to pad every document

to a �xed length, reducing the sparsity of the input and output.
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Assumptions

The described modelling approach (II) has a few assumptions, namely,

� Firstly, to train the model a data set is created using the following steps: 1) a

data set is created by randomly merging documents from D∗∗, 2) sliding over these

samples using a window of size m1 +m2, which generates Dsynth
sliced. Since one knows

which documents are merged, the annotation is done automatically. This modelling

approach assumes that only nearby context and information, i.e. pages which are

close to the split decision point, are su�cient to make a decision.

� Secondly, it is assumed that positional bias is reduced because of randomly merging

documents. Thus, it is assumed that the model does not correlate a page index with

a page type.

For this problem there are two direct optimised objectives and two indirect optimised

objectives, discussed in the next paragraphs.

Direct optimised objectives

As explained in the modelling approach (II), there are two types of decisions the model

makes, namely, the split decisions and the page classi�cations. The neural network will

be optimised by directly minimising the categorical crossentropy loss function for the page

classi�cations,

lossclass = −
∑
i=1

yi · log(ŷi) (3.1)

yij , ŷij ∈ {1, ..., C}

Next, the network will also be optimised by minimising the binary crossentropy loss

function for the splitting part,

losssplit = −
∑
i=1

yi · log(ŷi) (3.2)

yij , ŷij ∈ {0, 1}

The total loss is a weighted sum of both losses,

losstotal = β1 · lossclass + β2 · losssplit (3.3)

This loss is used by the backpropagation algorithm or optimiser (i.e. AdamW [44]) to lower

the errors.
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Primary indirect objective

The primary indirectly optimised objective is splitting a �le into unnamed sub-documents.

This objective is quanti�ed by determining the proportion of the correctly made split or

no split decisions by the model per �le,

ounnamed
doc =

1

N

∑
i=1

1

ni − 1

ni−1∑
j=1

I(yij , ŷij) (3.4)

I(a, b) =

{
0, if a ̸= b

1, if a = b

yij , ŷij ∈ {0, 1}

Each �le needs ni - 1 splitting decisions, since no decision needs to be made after the last

page, hence the minus 1.

Secondary indirect objective

The secondary indirectly optimised objective by the model are the page classi�cations per

�le,

onamed
doc =

1

N

∑
i=1

1

ni

∑
j=1

I(yij , ŷij) (3.5)

I(a, b) =

{
0, if a ̸= b

1, if a = b

yij , ŷij ∈ {1, ..., C}

3.2 Baseline method: Support Vector Machine

As a baseline method, the Support Vector Machine (SVM) algorithm is used to classify

�le pages based on textual unigram features. This is also done by the authors of [61],

except they also extract page topic features and used information of preceding pages. The

Term Frequency - Inverse Document Frequency (TF-IDF) is used to represent the unigram

features of a page as a real-valued vector. Based on the page classi�cations, the splits are

inferred where each consecutive predicted page type ends.

3.3 Proposed methods

As discussed earlier, there are two directly optimised objectives, the total loss is quanti�ed

by Formula 3.3. To compute the losses, Formula 3.1 and 3.2, the model needs to output
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two groups of prediction values, namely, the page classi�cation and the split classi�cation

values. The proposed network architecture to compute these prediction values is shown

in Figure 3.2. As one can see, there are two �ows within this architecture, namely, the

page classi�cation and the split classi�cation. The feature extractor converts the graphical

and/or textual data into abstract features, which are then used to compute the two groups

of prediction values.

Feature extractor

k-m1 k k+1 k+m2

FC(32, 28)

ReLU + Dropout

FC(page k, 32)

Classification page k

FC(16, 2)

ReLU + Dropout

FC(all pages, 16)

Split page k / k+1

Figure 3.2: A diagram of the general architecture for classifying pages and splitting docu-

ments.

Both classi�cation networks contain two fully connected layers and a Recti�ed Linear

Unit (ReLU). At last, both networks compute the predictions using the softmax function.

During the trial runs, several other classi�cation networks are tried (e.g. more/fewer

layers, more/fewer nodes, tanh activation function) but the proposed networks seem to be

the most stable and best performing during training. In the next paragraphs, three types

of feature extractors are discussed, namely, the Time Distributed Convolutional Neural

Network (TDCNN), the Recurrent Neural Network (RNN) and a combination of both.

3.3.1 Time Distributed Convolutional Neural Network

From the literature discussed in Chapter 2, a lot of image based features are handmade or

extracted by a separate algorithm [3, 45]. There is published work by [61], where two net-
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works are trained separately (as feature extractors) and used by a Multilayer Perceptron

(MLP) classi�er. The main interest in this thesis is to let the model decide which parts

of the input are used to contribute to the decision-making, instead of (semi-)manually

engineering features. To automatically extract (abstract) features from a number of con-

secutive images, the Time Distributed Convolutional Neural Network (TDCNN) is used.

Since one of the goals is to make a decision if a split is needed for a given input, multi-

ple pages are needed as input for the model. Each page, represented as an image, goes

through a CNN and is then represented by a vector (of �xed size). The time distributed

part of this feature extractor means that each page of an input is represented by the same

CNN. Say one uses four input images to decide if a split is needed between page 2 and 3,

there does not seem to be any reason why each page should be represented by a di�erent

feature extractor (CNN). The assumption behind this method is that extracting features

from a page should not be conditioned on the place of a page in the input order. This time

distributed part is also done to limit the number of parameters in a model, i.e. parameter

sharing between page images.

The feature extractor consists of several stacked TDCNN blocks. Each TDCNN block

has a convolutional layer with a prede�ned kernel size and number of �lters, a max pooling

layer with a prede�ned kernel size and a ReLU activation function. From the early trials, it

is observed that max pooling performs better compared to average pooling. Also, the tanh

activation function is used in the early trials, the results of the tanh activation function do

not di�er much compared to ReLU activation, but the networks trained with the ReLU

activations seem to be more stable during training. Thus, the ReLU activation function

is chosen. Next, the representations of all the pages of an input are concatenated and are

then used as input for the split classi�cation network. The representation of page k is used

as input for the page classi�cation network. This is shown in Figure 3.3.

A note on LayoutLMv2

In extension to Chapter 2, the LayoutLMv2 (and LayoutXLM) model uses a visual encoder,

with ResNeXt-FPN [62] as a backbone, and is trained a large document data set. During

this research, the pretrained visual encoder of the LayoutLMv2 model is used as a (time

distributed) feature extractor for the page images. Since the visual encoder has seen a lot

of documents, it is assumed that it could also work as a feature extractor for this particular

problem. From the trial runs, it seems that the classi�cation networks could not e�ectively

learn how to use the representations given by the pretrained visual encoder.
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xi
k-m1 xi

k xi
k+1 xi

k+m2

TDCNN TDCNN TDCNN TDCNN

hk-m1 hk hk+1 hk+m2

Concatenate

. . . . . .

. . . . . .

. . .. . .

Figure 3.3: The TDCNN feature extractor for page images. Each page image is represented

by the same TDCNN feature extractor. All of the �nal TDCNN outputs are used by the split

classi�cation network. Only the TDCNN output of page k is used for the page classi�cation

network (dotted line).

3.3.2 Recurrent Neural Network

To extract features from the textual content of a page, a Recurrent Neural Network is

used to process text. Each page is represented by a �xed sized vector of size H. Several

types of recurrent units can be used as feature extractors, as shown in Figure 2.2. From

the trial runs, all recurrent units perform well on the data. The Elman Recurrent Unit is

chosen since it is less complex compared to the other recurrent units. As one can see in

Figure 3.4, the �rst hidden vector, h0, is initialised as a 0 vector. Next, each time that the

textual content of a page is processed by the unit, the hidden vectors are given as output.

Furthermore, the hidden output of all the pages are concatenated and used by the split

classi�cation network. Also, the hidden output of page k is used as input for the page

classi�cation network.

3.3.3 Hybrid

The hybrid feature extractor is a hybrid between the TDCNN and RNN feature extrac-

tors. As shown in Figure 3.5, the page images and textual content are processed by the

TDCNN and Elman RNN, respectively. Next, the TDCNN and RNN outputs are all con-

catenated and are used as input for the split classi�cation network. The TDCNN and RNN

representations of page k are concatenated and used as input for the page classi�cation

network.
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yi
k-m1 yi

k yi
k+1 yi

k+m2

Elman Elman Elman Elman

hk-m1 hk hk+1 hk+m2

Concatenate

. . . . . .

. . .. . .

. . . . . .

h0

Figure 3.4: The Elman RNN feature extractor for textural data. The split classi�cation

network uses all the hidden outputs and the page classi�cation network only uses the hidden

outputs of page k (dotted line).

yi
k-m1

Elman Elman Elman Elman

Concatenate

Concatenate

h0

Concatenate Concatenate Concatenate

TDCNN TDCNN TDCNN TDCNN
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k
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k
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k+1
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k+1
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k+m2
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. . . . . .

. . .. . .

. . . . . .

Figure 3.5: The hybrid feature extractor contains a TDCNN and RNN feature extractor to

process images and textual content, respectively. The split classi�cation network uses all the

hidden outputs and the page classi�cation network only uses the hidden outputs of page k

(dotted line).
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3.4 Evaluation methods

To understand how the models are performing, they are evaluated using quantitative and

qualitative methods.

3.4.1 Quantitative evaluation

To evaluate the models in quantitative way, the previously mentioned indirect objective

Formulas (3.4) and (3.5) are used as metrics. Formula (3.4) can be interpreted as the mean

percentage of correct splitting decisions per �le. Formula (3.5) can be interpreted as the

mean percentage of correct page classi�cations per �le. In extension to these objectives, a

metric is used to see if the model correctly identi�es whole sub-documents in a �le,

osub-document
doc =

1

N

∑
i=1

1

nsub
i

∑
j=1

1identi�ed sub-document j (3.6)

nsub
i : = number of sub-documents in �le i

The de�nition of a fully correctly identi�ed sub-document consist of two parts, namely,

a sub-document contains the expected number of pages and is classi�ed as its expected

document type. Since the page types are known, the expected number of pages and sub-

document type can be inferred. Since the SVM uses page type predictions to indirectly infer

the �le splits, a sub-document cannot be ambiguous (it is either correctly identi�ed or not).

The neural networks do not infer the �le splits from the page classi�cations but directly

use the input to make the splitting decisions. Given that a sub-document is correctly

extracted (using the split classi�cation network), one can use the page classi�cation network

to predict the sub-document type. Since the splits are already decided, one can use a

threshold value (e.g. 50%) to decide which document type the extracted sub-document

is, based on the page type predictions of that sub-document. In contrast to the SVM,

if a page classi�cation is wrong, it is still possible to infer the right sub-document type.

This means that the length of a sub-document is not important in (3.6), either the whole

sub-document is correctly identi�ed or not.

3.4.2 Qualitative evaluation

To give insight why the model decides to split between page k and k+1 and classify page k

with a certain page type, the Gradient-weighted Class Activation Mapping (Grad-CAM)

[52] is used to display the importance of certain parts of the visual input used by a CNN.

Grad-CAM uses the target(s) and gradients to produce a heatmap which is laid over the

input images. A customized implementation of [22] is used.
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4

Optical Character Recognition

In this Chapter several OCR engines, and their performance, are discussed. In this thesis

two modalities, the textual and graphical data, are used. To get the graphical data from

a PDF page, one simply converts the page to pixels using software. To extract the text

from a PDF page, a text extraction tool is used. Although this text extraction tooling is

su�cient for most PDFs, a (small) portion cannot be read due to text encoding/decoding

issues or a document contains scanned pages. For these cases, one can use OCR models

to extract text from a page. In the next paragraphs, o�-the-shelf OCR models are tested

to see which are suitable for the data used in this thesis. As explained in Chapter 2,

an end-to-end OCR application consist of text detection and text recognition components

[18, 33, 38, 43]. Text detection models isolate and extract the part(s) of an image which

(probably) contain text. Text recognition models use those extracted parts to convert the

image to a character sequence. i.e. words/sentences.

OCR methods

To test which OCR method is suitable for the given data, a few requirements are set,

� The OCR method is already implemented, usable and practical. To implement a

novel OCR method from scratch is out-of-scope during this project.

� The OCR engine is capable of extracting text based on the Latin alphabet (Chinese

and Arabic symbols are not a requirement).

The following combinations of text detection and recognition models are used for the

benchmark, implemented by [47],
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4. OPTICAL CHARACTER RECOGNITION

� Text Detection: Di�erentiable Binarization (DB) with Resnet50 and DB with MobileNetV3-

Large [32, 39, 47]

� Text Recognition: CRNN with VGG16, CRNN with MobileNetV3-Small and CRNN

with MobileNetV3-Large [32, 53, 56]

Apart from these combinations of deep learning models, the Tesseract Engine (v5.0.0)

[58] is used. This OCR engine is an open source end-to-end OCR application developed

originally by HP and sponsored by Google. This is also the OCR engine used by [34, 63,

64, 65] and can be considered as a practical industry standard open source OCR tool.

Benchmark data sets

Two public benchmark data sets are used to test the di�erent models, namely, the FUNSD

[36] and CORD [49] data set.

Form Understanding in Noisy Scanned Documents (FUNSD)

This data set, by [36], contains in total 199 scanned documents such as letters, e-mails,

magazines and other forms from the 1980s-1990s. This data set is a subset from the Ryerson

Vision Lab Complex Document Information Processing (RVL-CDIP) [28]. The documents

are 1-channel grayscalled images, each page has text and bounding boxes annotations.

Consolidated Receipt Dataset (CORD)

This data set, by [49], contains in total 11,000 scanned receipts. The receipts are 3-

channel RGB images originating from Indonesia and gathered through crowd-sourcing.

These images also have text and bounding boxes annotations. In this thesis, the images

of the �rst release of the training data set (800 images) and test data set (100 images) are

used to evaluate the OCR models.

Metrics

To evaluate and compare the methods in a quanti�ed manner, the recall, precision, Intersection-

over-Union (IoU) and computation time are used.

As explained, OCR has two main modules: detecting where the text is and what type of

characters are in the found text areas. The outcome of both parts are integrated into the
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recall and precision. To understand how these metrics are computed, the de�nitions, based

on the documentation of [47], are given below,

B : = the set of possible bounding boxes

L : = the set of possible character sequences

S : = the total number of images in the set

Gk : = the number of ground truths of image k ∈ {1, 2, ..., S}

Pk : = the number of predictions of image k ∈ {1, 2, ..., S}

t : = the IoU threshold for accepting the assignation of predicted
bounding box and ground truth bounding box

Gk, Pk ∈ Z+

t ∈ [0, 1]

Given the above values and sets, the metrics per image are de�ned as follows,

∀(B,L) ∈ BGk × LGk

∀(B̂, L̂) ∈ BPk × LPk

Recallk : R(B,L, B̂, L̂)k =
1

G

G∑
i=1

hB,L(B̂i, L̂i)

Precisionk : P (B,L, B̂, L̂)k =
1

P

P∑
i=1

hB,L(B̂i, L̂i)

Intersection over Union : IoU(A,B) =
A ∩B

A ∪B

∀(b, l) ∈ B× L , hB,L(b, l) =


1, if b has been assigned to a given Bj

with an IoU ≥ t and that l = Lj

0, otherwise.

k ∈ {1, 2, ..., S}

To evaluate the whole set, one simply takes the mean of the metrics over all images,

Recall : R =
1

S

S∑
k=1

Rk

Precision : P =
1

S

S∑
k=1

Pk
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4. OPTICAL CHARACTER RECOGNITION

In words, for each image k a golden set of bounding boxes (B) with each a character

sequence (L), i.e. text, is given. The OCR model also returns all the predicted bounding

boxes and their characters sequences. To check if the model found the right text, the

golden and predicted bounding boxes need to be matched. Since an exact match of the

bounding boxes is nearly impossible, the IoU is used as a match indicator. The IoU is a

metric commonly used in the object detection �eld [48]. If the IoU of a pair golden and

predicted bounding boxes is larger than the threshold value t, than it is assumed that the

pair is a match. Next, the text of the matched bounding boxes need to be the same, i.e.

l = Lj . In this thesis, a strict character matching method is used, one could also use a

more loose character matching method. If these two requirements are met, the indicator

function (hB,L) will return 1, otherwise 0. For each image k, the indicator function can be

used to determine the recall and precision of the OCR engine. To calculate the recall and

precision over the whole set, one simply takes the mean based on the metric values per

image k.

Results OCR methods

The results on the benchmark marks data sets, FUNSD and CORD, are shown in Table 4.1.

As one can see, there is a di�erence in performance between the models. Based on results

of the model combinations in Table 4.1, it seems that the ResNet50 model outperforms the

MobileNetV3 (Large) model on the CORD data set, the performance on the FUNSD data

set is almost the same. Next, the performance or the recognition models are almost the

same, there are only some minor di�erences. A small note on the Tesseract OCR engine,

it performs quite poorly on the benchmark, but it is still an interesting option since it runs

on a CPU device, while the other models require a GPU device (for an acceptable inference

time). To conclude, the ResNet50 model is chosen as the text detection model. The CRNN

MobileNetV3 (Small) is chosen since the performance of the recognition models are almost

the same, except that this model has the least parameters.
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5

Data

The data (D∗), as provided by the organisation, consists in total of 32,142 PDF �les.

These �les are originally annotated by a rule based algorithm which looks at particular

key-words to classify the document type. By sampling random �les and visually inspecting

them, it can be said that this algorithm does not perform well. This algorithm has two

main problems, namely,

1. Due to the key-word based approach, ambiguous annotations are given to �les where

the text could not be (entirely) extracted. This is expected since no OCR software

was originally used to get the text from the PDF, only a PDF text extractor was

used to get the text. The PDF reader might be su�cient for most digital �les, such

as auto-generated �les or standardised forms, but �les can contain scanned pages or

images which cannot be read by a PDF text extractor.

2. The algorithm assumes that each �le can only contain one document type, this is

not true for �les in D∗. This also causes ambiguous classi�cations.

Since these problems could signi�cantly a�ect the performance of a model, the data is

annotated by hand. The annotation is done using self-made annotation software which

converted each page of a �le into an image and asked the annotator what class the page

belonged to. The document types are provided by sources from within the company. A

distilled and customised version of the original list is used to annotate the pages since a

lot of the documents could be grouped into a more general class or could not be directly

mapped to a category in the list. In total, 28 document types are used in the annotation

scheme, including a rest category. Since each �le is page-wise annotated, all the original

�les are split (if applicable) and categorised into their document class. This can be seen as

the intermediate data set (D∗∗), a few examples of these documents are shown in Figure
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5. DATA

(a) Deed of transfer (b) Energy saving report

(c) Mortgage �nancial report (d) Income tax report

(e) Property information (f) Bank account statement

Figure 5.1: Multi-page document examples of six document types. All shown examples are

cropped and blurred since the data is personal and private.

5.1. During the annotation phase it seemed that there were two types of �les, namely, �les

which only contain one document type and �les which contain more than one document

type. To leverage the information of the �les containing only one document type and to

generalise the problem and solution methods, the decision is made to synthetically generate

(pseudo-)randomly data sets using the document �les in D∗∗ (which is discussed in a later

section). Furthermore, as one can see in Figure ?? (red bars), the page type distribution

is heavily imbalanced. Next, to remove any double instances, each page was converted to

an image and was encoded to a character sequence using the Secure Hashing Algorithm

1 (SHA-1) [19]. If an exact character sequence match was found, the �rst instance was

kept and any other instances with that particular encoding were removed. The page type

distribution after the duplicates were removed can be seen in Figure ?? (blue bars). As one

can see, some documents types contain a lot of double instances. Also, the mean number

of pages for each document type are wildly di�erent, as shown in Figure ??.

5.1 Sets

The intermediate data set is split into three parts: the train, validation and test set. The

train set contains 60% of the data, the validation and test set each contain 20%. The split
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5.2 Processing data

is done in a strati�ed way. This split is made on the intermediate data set since no data

leakage, i.e. (parts of) documents are not in multiple sets, between sets is possible. Since

the aim of this research is to split �les into logical sub-documents, the documents in each

set are merged with a merging method. This merging method generates synthetic data

sets (Dsynth), for training, validating and testing.

5.2 Processing data

To use the graphical and textual data for the model and/or OCR engine, one needs to

prepare and process the data. In the next few paragraphs the data processing is discussed.

5.2.1 Model image processing

As explained, there seems to be an imbalance in the number of documents between doc-

ument types. To increase the number of samples for the smaller document types, data

augmentation methods are used. Data augmentation methods are methods to increase the

sample size and quality of a (train) data set [55]. There are numerous methods which can

be used for data augmentation, such as General Adversarial Networks (GANs) for gener-

ating new training instances. It is shown in other �elds (e.g. medical [8], public data sets

[67]) the model performance does increase when using this type of synthetic data. In the

case of the current data, document pages, there is a lot of contrast between neighbouring

pixels (i.e. black symbols and white background), the document is also used for the OCR

engine which requires (Dutch) visible placed words on the document and the document

pages need to resemble each other in terms of textual and graphical content. Given these

data characteristics and current accessible technology, it is out of scope to use these GAN

type of methods for document generation, although it is possible to generate binary images

to some extent [9]. What can be used are the following, more traditional, augmentation

methods from [55],

� Colour space

Each graphical representation of page j of document i (x∗ji ) is a tensor of (height

× width × colour channels). A page can be augmented by randomly changing the

values in the colour channels.

� Resizing

A page can be resized with di�erent scale values, e.g. 0.8, 0.5, etc., centered and

padded with white pixels to the required input shape of the model.
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5. DATA

� Rotation

Document pages in the provided data set (D) are sometimes scanned, and thus a bit

rotated. So, rotating pages is a natural augmentation choice for this type of data,

although the rotation will be at max 5◦ to the right or left.

� Translation

A document page can be shifted left, right, up and down with a random amount of

pixels. The limit is set to 150 pixels.

� Noise injection

Random noise is added to the document page. Two types of noise are used, namely,

salt and pepper noise or Gaussian noise.

The number of augmentations per newly generated instance is randomly chosen from

a Uniform(1,3) distribution. Since each augmentation cannot be read by a PDF reader

but needs to be processed by an OCR engine, the number of augmentations is limited

due to computational and storage resources. The minimal number of pages per document

type is set to 500 and based on this threshold the number of copies per document type is

calculated. The augmentations are only done on the documents in the training data set.

Each page is resized to a width of 60 pixels and a height of 90 pixels and has three channels

(RGB). Next, each pixel value is divided by the maximum pixel value, 255, to normalise

the input.

5.2.2 OCR image processing

If the reader cannot read more than 30 words (i.e. separate character sequences divided by

a whitespace) of a page, the page is �agged and will go through the OCR engine. The (two

stage) OCR engine is chosen based on the results of the benchmarks in Chapter 4. The DB

ResNet50 model is chosen for the text detection stage and the CRNN-MobileNetV3 (Small)

is chosen for the text recognition stage. This combination is chosen since it performed quite

well on the benchmark data sets in general. In total, including the augmented pages in

the training data, 62,031 out of 154,675 pages (roughly 40%) require the OCR engine.

5.2.3 Processing textual data

The text processing is simple and straightforward. A tokenizer with a vocabulary of 1,500

words together with a Term Frequency - Inverse Document Frequency (TF-IDF) vectorizer
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5.3 Merging documents

is �tted on the training data. Thus, the textual content of each page is converted to a

vector with a length of 1,500.

5.3 Merging documents

By (pseudo)randomly merging documents, multi-document �les are generated. Next, a

window of size m1 + m2 slides over the �les making samples which can be used as input

for the model. Since the document types and their place inside the �les are known, the page

types and sub-documents endings are automatically annotated during the sliding process.

As can be seen in Figure ??, there is a heavy imbalance in the number of documents

per document type. It is assumed that if a pure random merging method is used, i.e.

randomly select documents and merge them into one �le, this imbalance will also be in the

multi-document �les and can in�uence the generalisability of the model. To make sure the

in�uence of the imbalance is limited during optimisation, a conditional merging procedure

is developed.

5.3.1 Model data

The procedure takes a random document of each document type and merges it in a random

order, this is a sample of Dsynth, i.e. (Xsynth
i ,Ysynth

i ,Tsynth
i ). So, a sample does not

contain multiple documents of the same document type. Each document which is picked

is not replaced, unless there are no documents left of that document type. In this case the

whole set of that particular document type is added to the data set again. This means

that document types which are relatively large are being undersampled, while document

types which are relatively small are being oversampled (since they are replenished when

empty). Using this approach, another data imbalance problem occurs, namely, the number

of 'No split' labels is much larger than the number of the 'Split' labels. This is because

multipage �les need less splits since the number of pages is larger than the number of sub-

documents in that �le. To counter this, 10% of the total 'No split' labels is randomly kept

during this procedure. At last, since it is hard to generate the same number of samples

for each document type, only a lower bound can be set on the number of samples (since

each document type is selected per sample). Although the document imbalance is reduced,

there is still an imbalance in the new data set, Dsynth
sliced. This is because document types

which have more pages per document are now (slightly) being overrepresented.
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5. DATA

5.3.2 Evaluation data

To evaluate a model properly, one is mainly interested on how a model performs on multi-

document �les, and not just chunks of those �les. To make those multi-document �les, one

needs to sample documents and merge them. Ten documents are randomly chosen (each

with a di�erent document type) and randomly merged together, without replacement. This

is done a hundred times, if a document type is not available any more in the set, it is not

replenished, otherwise a document would be evaluated multiple times and bias the score.

This is called an evaluation set. Since it is possible that one could cherry-pick documents

which work well with the model and/or the randomness generates a particular good or

bad evaluation set, this is done again a hundred times. Thus, the resulting scores are �rst

averaged per evaluation set, and then again averaged over all evaluation sets. This is done

to give a more general insight into the performance of the model.
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6

Experiments

In this chapter the model architectures, experimental details and results are discussed.

6.1 Architectures

In the next paragraphs the SVM hyperparameter settings and several feature extractors

for the network are discussed.

6.1.1 Support Vector Machine

The SVM model is used as a baseline by classifying each page of a document separately.

The SVM uses a linear kernel, C is set to 1, L2 penalisation is used and is optimised using

the squared hinge loss. The model is trained on the training data set without the synthetic

data samples.

6.1.2 Time Distributed Convolutional Neural Network

The TDCNN feature extractor consists of four stacked TDCNN blocks. As explained in

Chapter 3, each block consists of a convolutional layer, a max pooling layer and ReLU

activation function. The kernel size of the convolutional and max pooling layers are set on

(2,2). The number of �lters in the TDCNN blocks are set to 30, 60, 90 and 120. From the

trial runs, adding more layers and/or �lters does not give a better result. This feature ex-

tractor maps each input image to a vector of size 360. Three models containing this feature

extractor are trained and tested, namely, TDCNN(1:1), TDCNN(2:2) and TDCNN(3:3). The

number of front and back context pages are denoted as (m1:m2). The number of trained

parameters are approximately 187k, 200k and 211k, respectively.
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6. EXPERIMENTS

6.1.3 Recurrent Neural Network

The textual data of each page is vectorized to a vector of size 1,500, using the TF-IDF

vectorization method. The Recurrent Neural Network has a (small) hidden layer of size

75 and uses the ReLU as a non-linearity. From the trial runs, it seems that compressing

the data with one hidden layer containing 75 nodes works well and limits the number of

parameters in the model. Thus, the textual content of each page is represented by a vector

of size 75. This feature extractor is used by three models, namely, RNN(1:1), RNN(2:2) and

RNN(3:3). The number of trainable parameters are approximately 125k, 127k and 129k,

respectively.

6.1.4 Hybrid

The hybrid model uses the TDCNN and RNN feature extractors. The textual and graphical

content of each page are represented by a vector of size (360+75=)435. The three mod-

els which are trained and tested are TDCNN-RNN(1:1), TDCNN-RNN(2:2) and TDCNN-

RNN(3:3), containing 311k, 325k and 339k parameters, respectively.

6.1.5 Experimental details

To train the discussed models some hyperparameters are estimated, this is done using trial

runs. The following hyperparameters, and their values, are used:

� The learning rate is set to 1e-3.

� The batch size is set to di�erent values, depending on the architecture of the model.

The used batch size per trained model is mentioned in Appendix A.

� The weight decay rate is set to 1e-2.

� The number of epochs is set to di�erent values. Each model is trained �ve times for

six epochs, as shown in Appendix A. Based on the divergence between the training

and validation losses, the number of epochs is chosen per model.

� The dense dropout rate is set to 5e-1. This rate is used for the dense layers after the

convolutions and/or recurrent units. This a relatively high dropout rate. From the

trial runs, it seems that a lower rate makes the model over�t and a higher rate does

not let the model learn properly.

34



6.2 Evaluation

� The feature map dropout rate (i.e. 2D-dropout) is set to 1e-1. This rate is used for

the feature maps (i.e. channels) produced by the convolutional �lters. From the trial

runs, a lower rate makes the model over�t in some cases, a higher rate does let the

model learn.

� The number of context pages, m1 and m2, are set to di�erent values. When more

context pages are added, the number of parameters in the model also increase. From

the trial runs, it seems that adding more pages can cause to the model to over�t and

training the models with more pages requires more resources (in terms of memory

and storage). It is decided that 0 < m1, m2 ≤ 3 and that m1 = m2, because this

limits the scope of the project, is in bounds of the available resources and there is no

reason to assume that m1 ̸= m2.

� The vocabulary size, H, is set to 1,500 words.

� The width of a page (in terms of pixels), w, is set to 60.

� The height of a page (in terms of pixels), h, is set to 90.

� The number of channels is set to 3. From the trial runs, it seems that binarization

(i.e. 1 black and white channel) removes too much (colour) information to let the

model learn properly.

� The page classi�cation output nodes are set to 28, as discussed in Chapter 5.

� The loss weights, β1 and β2, are set to 1 and 3, respectively. During the trial runs,

β1 was kept at 1 and β2 was tuned until a good value was found.

Furthermore, the results on the training and validation data set are made with the models

which are only trained on the training data (including the augmented data). The results

on test data set are made with the models which are trained on the training (including the

augmented data) and validation data set.

6.2 Evaluation

The evaluation is done using quantitative and qualitative methods.
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Table 6.1: The ounnamed
doc

scores of the models on the training, validation and test data in

terms of means and standard deviations (in %). The context (i.e. pages before and after the

split decision), if applicable, is denoted as (m1 : m2). The average and standard deviations

are computed based on the means of the evaluation sets (100 in total).

Model / Data set Train Validation Test

SVM 98.81 ± 2.69 94.03 ± 9.09 93.06 ± 9.29

RNN(1:1) 98.07 ± 3.12 95.93 ± 5.29 95.13 ± 7.20

TDCNN(1:1) 92.87 ± 3.25 90.45 ± 10.00 91.72 ± 8.32

TDCNN-RNN(1:1) 97.73 ± 7.12 95.42 ± 5.32 95.95 ± 5.24

RNN(2:2) 97.39 ± 3.55 95.08 ± 5.47 95.65 ± 5.22

TDCNN(2:2) 93.41 ± 6.41 90.95 ± 9.38 94.20 ± 6.44

TDCNN-RNN(2:2) 97.79 ± 3.06 94.62 ± 5.91 96.00 ± 4.77

RNN(3:3) 95.98 ± 4.99 93.43 ± 8.34 95.01 ± 6.23

TDCNN(3:3) 93.24 ± 6.38 90.57 ± 9.73 92.08 ± 8.08

TDCNN-RNN(3:3) 97.10 ± 3.81 94.72 ± 5.64 96.87 ± 3.80

6.2.1 Quantitative results

The results, in terms of the evaluation metrics mentioned in Chapter 6, of the models are

shown in Table 6.1, 6.2 and 6.3. As one can see in Table 6.1, the SVM model is best with

the splitting classi�cation on the training data set, but the RNN(1:1) and TDCNN-RNN(3:3)

are best at splitting on the validation and test data sets, respectively. Next, the standard

deviations of the TDCNN models are in most cases relatively higher than that of the other

models. This means that the splitting performance of this model is not consistent over all

evaluation sets, compared to the other models.

Next, as can be seen in Table 6.2, the SVM is best at classifying correctly the pages in

a �le, on all the data sets. It is noticeable that the test score is sometimes higher than the

validation and/or training score, this is probably because the test scores are made with the

model trained on the training and validation data (instead of just the training set). Again,

the TDCNN models have relatively large standard deviations. Thus, the model is not that

consistent in its page classi�cation performance over the evaluation sets. The recall and

precision of the ounnamed
doc and onamed

doc metrics are shown in Appendix B.

At last, Table 6.3 shows the average and standard deviation of the mean percentage of

fully extracted sub-documents in an evaluation set. Again, the SVM outperforms the other

models on every data set. The standard deviations seem to be high for every model on all
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Table 6.2: The onamed
doc

scores of the models on the training, validation and test data in

terms of means and standard deviations (in %). The context (i.e. pages before and after the

split decision), if applicable, is denoted as (m1 : m2). The average and standard deviations

are computed based on the means of the evaluation sets (100 in total).

Model / Data set Train Validation Test

SVM 98.23 ± 3.76 91.77 ± 12.01 92.14 ± 9.92

RNN(1:1) 91.46 ± 9.55 87.59 ± 13.40 90.19 ± 10.79

TDCNN(1:1) 75.05 ± 17.75 68.36 ± 21.72 74.25 ± 20.05

TDCNN-RNN(1:1) 92.70 ± 9.16 86.66 ± 14.54 90.12 ± 10.94

RNN(2:2) 87.71 ± 11.62 84.91 ± 14.47 89.15 ± 12.37

TDCNN(2:2) 80.05 ± 15.86 71.05 ± 21.11 73.97 ± 19.77

TDCNN-RNN(2:2) 94.46 ± 7.80 88.71 ± 14.05 91.68 ± 9.94

RNN(3:3) 91.11 ± 9.57 88.74 ± 13.17 91.53 ± 9.82

TDCNN(3:3) 76.49 ± 17.00 68.98 ± 21.51 73.82 ± 20.33

TDCNN-RNN(3:3) 88.30 ± 11.45 80.53 ± 16.94 91.29 ± 10.50

the data sets. This means that, in general, the models are not consistent in fully correctly

extracting all the sub-documents in an evaluation set.

6.2.2 Qualitative results

To investigate if the models with an integrated vision part actually look at visually in-

teresting areas of a page (e.g. recurring symbols/logos, text alignments, colourful areas,

table layouts), the gradients and the output of each convolutional layer are used to make a

heatmap, which is projected on the original input image. This is done with the Grad-CAM

method and is shown in Figure 6.1 for the models that use (m1 = m2 =)3 context pages.

As one can see, the �rst convolutional layer (a) highlights some parts of the textual areas

and logos. From inspecting other samples, it seems that the models also pick up visually

interesting areas in other types of documents. The heatmaps of the second convolutional

layer (b) consist of relative small heated areas, which seem to be randomly distributed

across the pages. Although some samples show horizontal heated lines, which seem not

to be related to the layout of a page (e.g. the second row and �rst page of Figure 6.1

(b)). The third convolutional layer (c) outputs relatively larger heated areas, also these

seem to be random distributed on the pages. At last, the heatmaps of the fourth and �nal

convolutional layer (d) consists of somewhat smoother and large heated areas. These also

seem to be non-related to visually interesting areas and some pages seem to have very few
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Table 6.3: The osub-document
doc

scores of the models on the training, validation and test data

in terms of means and standard deviations (in %). The context (i.e. pages before and after the

split decision), if applicable, is denoted as (m1 : m2). The average and standard deviations

are computed based on the means of the evaluation sets (100 in total).

Model / Data set Train Validation Test

SVM 92.94 ± 8.10 86.25 ± 12.11 85.99 ± 11.88

RNN(1:1) 87.40 ± 10.22 82.58 ± 13.36 84.33 ± 12.53

TDCNN(1:1) 69.05 ± 13.91 67.08 ± 16.54 71.02 ± 15.69

TDCNN-RNN(1:1) 87.51 ± 10.52 78.79 ± 15.22 84.16 ± 13.01

RNN(2:2) 81.96 ± 12.17 77.10 ± 15.48 79.94 ± 14.55

TDCNN(2:2) 74.18 ± 13.12 70.48 ± 15.58 73.19 ± 15.30

TDCNN-RNN(2:2) 87.62 ± 10.27 78.61 ± 14.70 81.66 ± 14.38

RNN(3:3) 81.53 ± 12.23 77.95 ± 14.82 80.64 ± 14.25

TDCNN(3:3) 70.35 ± 13.97 67.28 ± 16.38 71.36 ± 15.36

TDCNN-RNN(3:3) 82.87 ± 11.95 73.84 ± 15.98 82.50 ± 13.94

heated areas. The heatmaps of TDCNN-RNN(1:1), TDCNN(1:1), TDCNN-RNN(2:2) and

TDCNN(2:2) are shown in Appendix C.

6.3 Error analysis

The error analysis looks at the di�erent types of error the SVM and deep learning archi-

tectures make. The analysis consists of three parts, namely, the page classi�cation error,

the �le splitting error and the document extraction error.

6.3.1 Page classi�cation error

The mean percentages of correctly classi�ed pages per page type for the SVM and TDCNN-

RNN(3:3) model are shown in Figure ??. As one can see, it seems that the SVM model

outperforms the TDCNN-RNN(3:3) model slightly for some page types. It is noticeable

that the TDCNN-RNN(3:3) model is better than the SVM model when it comes to the

'Additional information' page type. Also, the page types for which the models almost have

a perfect score are also the ones which are highly represented in the data (see Figure ??)

The TDCNN-RNN(3:3) uses the text as input. The quality of the text is therefore im-

portant for the quality of the prediction. From the error analysis, the mean number of

correctly predicted page types per �le (averaged over all evaluation sets) using OCR text
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(a) Deed of Purchase - Split (conv1) (b) Income Tax Statement - Split (conv2)

(c) Bank account Statement - No split

(conv3)

(d) UWV insurance Statement - No split

(conv4)

Figure 6.1: The Grad-CAM heatmap results of the four TDCNN blocks on di�erent docu-

ment type and split/no split combinations. The �rst row shows the input images, the second

row are the heatmaps maps of the vision part of the TDCNN-RNN(3:3) model and the last are

the heatmaps of the TDCNN(3:3) model.
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is 85.64% (± 0.49%). The mean number of correctly predicted page types per �le using

the PDF reader is 91.06% (± 0.32%).

6.3.2 File splitting error

To see what type of splitting errors the SVM and TDCNN-RNN(3:3) models make, the

confusion matrices are shown in Table 6.4. The results are computed by averaging the

confusion matrices of each set (in total 100), producing the means and standard deviations.

As one can see, the SVM model has a relatively large confusion between the golden 'No

split' and predicted 'Split'. The SVM rarely makes a mistake between the golden 'Split'

and predicted 'No split'. The TDCNN-RNN(3:3) seems to be better in predicting a 'No

split' correctly than the SVM model. Also, the model makes fewer mistakes between the

'No split' and predicted 'Split'. It does make more mistakes between the golden 'Split' and

predicted 'No split' than the SVM model.

Table 6.4: The split and no split error matrix of the SVM and TDCNN-RNN(3:3) models on

the 100 randomly merged multi-document based on the test data set.

Predicted (SVM) Predicted (TDCNN-RNN(3:3))

No split Split No split Split

Golden
No split 2660.10 ± 76.59 329.10 ± 5.53 2883.49 ± 75.72 105.82 ± 6.51

Split 4.40 ± 2.25 806.89 ± 5.53 19.76 ± 3.75 791.53 ± 6.30

6.3.3 Document extraction error

As one can see in Figure ??, the average (and standard deviation) number of times a

document type got fully extracted from a multi-document �le by SVM and the RNN(1:1)

model. The SVM outperforms the RNN(1:1) model in most cases, in particular the 'REST'

and 'Deed of transfer' document types. The RNN(1:1) model does extract the 'Registry

map' a lot better than the SVM. Also, the standard deviation of the RNN(1:1) model is

sometimes a bit larger than that of the SVM. This means that the performance of the

RNN(1:1) model depends more on the multi-document �les that are in a set, relatively to

the SVM model.
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7

Discussion & conclusion

This chapter contains a discussion about certain aspects of the research and a conclusion

where the research question, and its sub-questions, are answered.

7.1 Discussion

The discussion is divided into three parts, namely, the methods, results and business

applications.

7.1.1 Methods

Firstly, the data methods. To get the textual data from scanned documents OCR tooling

is used which consists of a model combination that is chosen based on the benchmark

results. However, the benchmark data sets are di�erent from the data set provided by the

company, in terms of content, language, form types and (lack of) colour. So the decision

about which model to use, based on the results of these data sets, should therefore be taken

with a grain of salt. Next, the data is generated by (pseudo)randomly merge documents

together and partitioning those into chunks. The procedure that is used to generate these

multi-document �les has in�uence on the learning of the model. The procedure itself

has some constraints, e.g. two consecutive documents of the same document type are

not allowed. Although this procedure seems to let the model learn well from this data,

other procedures might let the model learn and generalise better. Next, the modelling

methods. The models described in this thesis are combinations of �xed architectures,

such as the feature extractors (e.g. number of layers, activation functions) and the two

classifying networks. It is very much possible that other types of feature extractors or

classi�cation networks can be used to solve the problem. Although the RNN feature
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extractors performed well, a less complex feature extractor could also work in this case,

e.g. a time distributed dense network/multi layer perceptron (MLP). Also, as shown in

Figure 3.4 and 3.5, the textual information �ow for the page classi�cation network is not

solely based on page k itself. There is a �ow of information from page k-1. This can help

the model since page k-1 and page k can be of the same page type or confuse it since it

might wrongly use the information of page k-1. Furthermore, directly optimising a model

to make split decisions does seem to work better than indirectly optimising a model, as

with the SVM. Although the SVM and text works better in general than the other models,

it is still useful to investigate how layout features can be incorporated into a model. This

is because sometimes the OCR fails to extract words properly, returning no text, which

leads to ambiguous decision-making by the model.

7.1.2 Results

The metrics which are used in this research are focused on three aspects, namely, correctly

classifying document pages, correctly splitting in a document and a combination of these

two. The assumption with these metrics is that each document/page/split type is equally

important, which might not be the case in more real world situation. Furthermore, the

error analysis shows that the models tend to over-split, in contrast to the imbalance. A

reason for this could be that the (textual) content of a page can be signi�cantly di�erent,

while belonging to the same document.

7.1.3 Business applications

7.2 Research questions

Firstly, the sub-questions are answered,

� How can this problem be formulated as a general solvable problem?

Based on Chapter 3, the problem is �rst described as a multiclass-multioutput clas-

si�cation problem where the whole document is given as input. The output would

be multiple decisions about whether a certain document type ends after each page or

continues. The model needed for such decision-making would be fairly large, since all

the information is given to the model at once. The second mathematical formulation

of the problem assumes that a model can make su�cient decisions using only a part

of the whole document. The results show that increasing context does not increase

the performance of the model, which suggest that the assumption is reasonable. This
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formulation transforms the problem into two, more mainstream, problems, namely, a

binary classi�cation problem to determine if a split is needed or not and a multiclass

classi�cation problem to determine the page type of a page. By sliding over the whole

document, each page gets classi�ed and after each page a decision if a split is needed

or not is made.

� What Optical Character Recognition methods can be used to gather text from non-

readable �les?

To get the textual data from each page one can simply use a PDF reading tool to

extract it. However, old and scanned documents are seen as just images by such a

PDF reading tool. To get the textual data from these type of �les, one uses OCR

to convert these pages into text. In Chapter 4, several o�-the-shelf OCR models

are tested on benchmark data sets. From the results shown in Table 4.1, the GPU

accelerated deep learning models perform best. Furthermore, selecting a good text

detection model seems to have a larger in�uence on the performance than choosing

a good text recognition model.

� What e�ect does the synthetic data have on the model performance?

As explained, each metric is the average over all the synthetically generated multi-

document �le sets. The standard deviation gives insight into the variety of the

model performance on these sets. It is noticeable that these standard deviations can

be quite large, which can mean two things, the variety of the selected documents

is quite large and/or some combinations of documents are relatively hard/easy to

distinguish. Also, from Table 6.4 it is clear that the splitting performance of both

models depends a bit on the content of an evaluation set. So, the e�ect of the

synthetically generated evaluation sets is that the models (SVM and deep learning

models) can have a di�erent performance, in terms of the metrics used in this thesis.

� What type of Deep Learning architectures can be used for this problem?

To solve this problem, several types of architectures are described and tested, as

explained in Chapter 3 and 6. The general concept is to use context and automat-

ically extract features from the graphical representations (CNN based) and textual

representations (TF-IDF and RNN based), which are then used to classify a page

and make a split decision. The main assumption with this modelling method is that

close context (i.e. neighbouring pages) are enough to make a decision. From the

results in Table 6.1, 6.2 and 6.3, it seems that adding more context does not increase
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the score by much and does in some cases cause more confusion, resulting in a lower

score.

� Which parts of the input data does the model base its decisions on?

From the heatmaps shown in Figure 6.1, it seems that the �rst convolutional block

does pick up on certain logos, stamps and other logical visually rich areas. The other

convolutional blocks show a rather more abstract type of vision. It is interesting to

see that, in the given examples, all pages contribute to the models decision-making,

instead of a few pages contributing a lot. It is hard to determine if the models always

look at logical visually rich areas, and use those information bits to determine if pages

are from the same (sub)document.

Answering the main research question,

To what extent can Convolutional and Recurrent Neural Networks be used to partition

Dutch mortgage �les based on their graphical and textual content into separate logical mort-

gage documents?

From the experiments in Chapter 6, it is clear that the SVM baseline, using only textual

data, is a good contender to solve this problem. Also, from testing several combinations

of CNN and/or RNN architectures it seems that adding extra context does not necessarily

increase performance. It is clear from Table 6.1, 6.2 and 6.3 that solely using the graphical

data is not su�cient to solve this problem. When looking at the sub-document extraction

test scores, osub-document
doc , it is clear that it is in general hard to fully correct extract all

the sub-documents in a given �le. The best sub-document extraction score is on average

(over all evaluation sets) 85.99%, meaning that on average 85.99% of the sub-documents

in a �le are correctly fully extracted. Thus, it is certainly possible to split �les and classify

the sub-documents using the methods described in this thesis. Although, there is room for

improvement.

7.3 Future research
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Appendix A

Loss curves

The training and validation loss curves shown in Figure A.1, A.2 and A.3 are based on

�ve runs. Note that each validation point is made by evaluating the model with the whole

validation set after each epoch (apart from epoch '0'). The losses shown for the training

data are made during the training phase and are based on a batch of data and not the whole

training data set (in contrast to the computation of the validation losses). As one can see

in Figure A.1, the classi�cation losses for the RNN(1:1) start to diverge after epoch 5. The

validation split loss is stable after the second epoch and the training split loss decreases a

bit but also stabilises. The classi�cation losses for the TDCNN(1:1) seem to diverge after

the third epoch. The validation split loss does not decrease after the �rst epoch. Since

the training split loss does decrease, a small diverge can be seen between the validation

and training split loss. The TDCNN-RNN(1:1) seems to minimise the loss the fastest. The

validation classi�cation loss seems to be at its lowest at the third epoch, the classi�cation

losses start to diverge (more) after this epoch. Figure A.2 shows the classi�cation and split

losses for the RNN(2:2), TDCNN(2:2) and TDCNN-RNN(2:2). The training and validation

classi�cation loss of the RNN(2:2) diverge after the �fth epoch. The split loss di�erence of

the training and validation increases after the �rst epoch. The TDCNN(2:2) seems to get

over�t after the second epoch, for both the splitting and classi�cation. The splitting loss

of the TDCNN-RNN(2:2) diverges after the �rst epoch and the classi�cation loss diverges

after the second epoch. At last, Figure A.3 shows the classi�cation and split losses for

the RNN(3:3), TDCNN(3:3) and TDCNN-RNN(3:3). The same observations can be made as

with the RNN(2:2), TDCNN(2:2) and TDCNN-RNN(2:2).
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A. LOSS CURVES
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Figure A.1: The means and standard deviations of the splitting (blue) and classi�cation

(red) loss curves of the Language, Vision and Hybrid models. Note that the classi�cation and

splitting loss curves shown in the �gures are multiplied by β1(= 1) and β2(= 3), respectively.

All models are trained �ve times from scratch (random initialisation), using one front and

one back context page as input. A learning rate of 1e-3 and a weight decay rate of 1e-1

are used together with batchsizes 1,500, 1,000 and 800 for the Language (RNN(1:1)), Vision

(TDCNN(1:1)) and Hybrid (TDCNN-RNN(1:1)) models, respectively.
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Figure A.2: The means and standard deviations of the splitting (blue) and classi�cation

(red) loss curves of the Language, Vision and Hybrid models. Note that the splitting and

classi�cation loss curves shown in the �gures are multiplied by β1(= 1) and β2(= 3), respec-

tively. All models are trained �ve times from scratch (random initialization), using two front

and two back context pages as input. A learning rate of 1e-3 and a weight decay rate of 1e-1

are used together with batchsizes 1,200, 700 and 500 for the Language (RNN(2:2)), Vision

(TDCNN(2:2)) and Hybrid (TDCNN-RNN(2:2)) models, respectively.
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Figure A.3: The means and standard deviations of the splitting (blue) and classi�cation

(red) loss curves of the Language, Vision and Hybrid models. Note that the classi�cation and

splitting loss curves shown in the �gures are multiplied by β1(= 1) and β2(= 3), respectively.

All models are trained �ve times from scratch (random initialization), using three front and

three back context pages as input. A learning rate of 1e-3 and a weight decay rate of 1e-1

are used together with batchsizes 1,000, 800 and 600 for the Language (RNN(3:3)), Vision

(TDCNN(3:3)) and Hybrid (TDCNN-RNN(3:3)) models, respectively.
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Appendix B

Recall and Precision

The recall and precision of the ounnamed
doc and onamed

doc evaluation metrics are shown in Table

B.1, B.2, B.3 and B.4. As one can see in Table B.1, the ounnamed
doc recall scores for the SVM

model indicate over�tting. The TDCNN-RNN(3:3) model has the best score on the test

data set. Table B.2 shows that the TDCNN-RNN(3:3) model has the highest precision on

the test data set but the other models are only slightly worse. The SVM model has the

highest recall and precision score for the onamed
doc evaluation metric, as can be seen in Table

B.3 and B.4.

Table B.1: The ounnamed
doc

macro recall scores of the models on the training, validation and

test data in terms of means and standard deviations (in %). The context (i.e. pages before

and after the split decision), if applicable, is denoted as (m1 : m2). The average and standard

deviations are computed based on the means of the evaluation set (100 in total).

Model / Data set Train Validation Test

SVM 97.89 ± 4.27 91.79 ± 10.49 90.46 ± 11.02

RNN(1:1) 96.58 ± 5.27 93.26 ± 7.86 92.61 ± 9.28

TDCNN(1:1) 90.08 ± 8.02 87.63 ± 10.54 88.55 ± 9.78

TDCNN-RNN(1:1) 96.20 ± 4.86 92.85 ± 7.57 93.37 ± 7.83

RNN(2:2) 95.83 ± 4.83 92.32 ± 7.70 93.17 ± 7.58

TDCNN(2:2) 90.53 ± 7.63 87.98 ± 10.21 91.31 ± 8.37

TDCNN-RNN(2:2) 96.31 ± 4.49 91.63 ± 8.10 93.53 ± 6.94

RNN(3:3) 93.91 ± 6.06 90.69 ± 9.20 92.43 ± 8.26

TDCNN(3:3) 90.45 ± 7.12 87.67 ± 10.50 88.98 ± 9.37

TDCNN-RNN(3:3) 95.56 ± 4.98 91.90 ± 7.67 94.82 ± 5.99
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Table B.2: The ounnamed
doc

macro precision scores of the models on the training, validation

and test data in terms of means and standard deviations (in %). The context (i.e. pages

before and after the split decision), if applicable, is denoted as (m1 : m2). The average and

standard deviations are computed based on the means of the evaluation set (100 in total).

Model / Data set Train Validation Test

SVM 99.10 ± 2.20 96.02 ± 5.86 95.37 ± 6.15

RNN(1:1) 98.60 ± 2.54 96.91 ± 4.11 96.55 ± 5.02

TDCNN(1:1) 94.77 ± 5.63 93.04 ± 7.12 93.76 ± 6.26

TDCNN-RNN(1:1) 98.27 ± 2.85 96.04 ± 4.66 96.80 ± 4.35

RNN(2:2) 97.92 ± 3.33 95.73 ± 4.87 96.11 ± 4.76

TDCNN(2:2) 95.20 ± 5.09 93.56 ± 6.66 95.41 ± 5.29

TDCNN-RNN(2:2) 98.33 ± 2.76 95.73 ± 4.80 96.41 ± 4.59

RNN(3:3) 96.97 ± 4.24 95.04 ± 5.94 95.94 ± 5.02

TDCNN(3:3) 94.70 ± 5.44 92.78 ± 7.12 94.18 ± 6.06

TDCNN-RNN(3:3) 97.66 ± 3.47 95.34 ± 5.08 97.06 ± 3.91

Table B.3: The onamed
doc

macro recall scores of the models on the training, validation and

test data in terms of means and standard deviations (in %). The context (i.e. pages before

and after the split decision), if applicable, is denoted as (m1 : m2). The average and standard

deviations are computed based on the means of the evaluation set (100 in total).

Model / Data set Train Validation Test

SVM 96.83 ± 4.88 90.29 ± 10.44 89.11 ± 11.31

RNN(1:1) 88.01 ± 9.90 85.46 ± 12.06 86.27 ± 12.50

TDCNN(1:1) 77.94 ± 11.02 74.96 ± 13.44 77.32 ± 15.89

TDCNN-RNN(1:1) 90.31 ± 7.99 86.18 ± 10.50 87.19 ± 11.11

RNN(2:2) 84.23 ± 10.16 83.28 ± 12.95 88.41 ± 9.93

TDCNN(2:2) 78.81 ± 13.08 73.71 ± 16.66 77.52 ± 14.72

TDCNN-RNN(2:2) 91.54 ± 8.19 87.35 ± 11.52 88.93 ± 10.59

RNN(3:3) 86.70 ± 9.17 86.74 ± 11.37 88.40 ± 10.73

TDCNN(3:3) 76.43 ± 12.46 72.26 ± 16.62 76.21 ± 15.47

TDCNN-RNN(3:3) 85.31 ± 10.64 79.51 ± 13.65 88.14 ± 10.38
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Table B.4: The onamed
doc

macro precision scores of the models on the training, validation and

test data in terms of means and standard deviations (in %). The context (i.e. pages before

and after the split decision), if applicable, is denoted as (m1 : m2). The average and standard

deviations are computed based on the means of the evaluation set (100 in total).

Model / Data set Train Validation Test

SVM 97.95 ± 3.80 94.77 ± 6.09 95.19 ± 5.44

RNN(1:1) 94.40 ± 5.30 93.35 ± 6.12 94.35 ± 5.58

TDCNN(1:1) 85.02 ± 7.55 83.03 ± 9.24 88.19 ± 7.66

TDCNN-RNN(1:1) 95.98 ± 4.36 92.69 ± 6.72 94.61 ± 5.57

RNN(2:2) 91.74 ± 6.19 92.09 ± 6.65 93.49 ± 6.15

TDCNN(2:2) 90.20 ± 5.95 86.96 ± 7.83 87.59 ± 7.73

TDCNN-RNN(2:2) 96.39 ± 4.37 93.54 ± 6.44 94.75 ± 5.70

RNN(3:3) 93.05 ± 6.02 93.44 ± 6.35 94.16 ± 5.89

TDCNN(3:3) 87.92 ± 6.58 85.07 ± 8.18 88.10 ± 7.50

TDCNN-RNN(3:3) 93.68 ± 5.11 89.74 ± 7.40 94.19 ± 5.90
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Appendix C

Heatmaps

The heatmaps in Figure C.2 and C.1 show the Grad-CAM for the TDCNN-RNN(1:1),

TDCNN(1:1), TDCNN-RNN(2:2) and TDCNN(2:2) models.

(a) Deed

of transfer

- No Split

(b) Energy

saving

report - No

Split

(c) Mort-

gage �nan-

cial report -

Split

(d) Reg-

istry map -

Split

Figure C.1: The Grad-CAM heatmap results of the four TDCNN blocks on di�erent docu-

ment type and split/no split combinations. The �rst row shows the input images, the second

row are the (overlying) heatmaps maps of the vision part of the TDCNN-RNN(1:1) model and

the last are the (overlying) heatmaps of the TDCNN(1:1) model.
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(a) Bankaccount state-

ments - No Split

(b) Loan contract - No Split

(c) Map - Split (d) Test income - Split

Figure C.2: The Grad-CAM heatmap results of the four TDCNN blocks on di�erent docu-

ment type and split/no split combinations. The �rst row shows the input images, the second

row are the (overlying) heatmaps maps of the vision part of the TDCNN-RNN(2:2) model and

the last are the (overlying) heatmaps of the TDCNN(2:2) model.
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