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Preface 
 
The final part of the study program of Business Mathematics and Informatics (BMI) at 
the VU in Amsterdam consists of a working period. The purpose of such a working 
period is to gain experience in a business area and to solve a real business problem 
by using the knowledge acquired over the years. The problem needs to contain 
economical, mathematical and IT aspects.  
 
This master thesis describes my master project within Corporate IT (CIT), a staff 
department of the de ING Group in Amsterdam. I have been working within the sub-
group that is responsible for IT performance and investment management (ITPM). 
Their main activities are the collection and analysis of IT data and subsequently 
deliver management report to the higher management.  These main activities take 
place from November till April; in the remaining months, the data collection process is 
assessed and improved. Furthermore research for new metrics is conducted in this 
period. 
 
My project started in May and aimed at developing quantitative models to assess risk 
of IT development projects. It includes IT aspects, statistical data analysis and 
economical analysis of the models. The research was a challenging, but also long 
and winding road due to the unavailability of data, the closure of the department 
during August and September and a little writing block of the author in the closing 
stage. 
 
I would like to thank John Spangenberg, my manager in corporate IT, who gave me 
the opportunity to gain experience in the field and also showed a lot of confidence in 
me during my internship. I should also offer my gratitude to my supervisor at the VU, 
Chris Verhoef. His article on IT portfolio management triggered my attention to this 
research field and his expertise and guidance helped me a lot in writing this thesis.  
I would also show my special appreciation to Rob Peters, who showed me the way 
after a difficult start of this project and provided me with a lot of useful feedback 
during our several meetings.  Last but not least I would like to thank Bert Kersten for 
reviewing my thesis and his useful comments during my end presentation.   
 
I have enjoyed working at ITPM and would also like to thank my colleagues for a 
valuable working experience. I would especially like to thank Steven Raekelboom for 
sharing his experience on predictive modelling and his help on the final presentation. 
Another word of appreciation is to Wilmar Hassoldt for his help on the IT audit issues 
in this thesis. 
 

Amsterdam 28 June 2004 
 

     Joeri van Hoeve 
       
  
 



 
 

   



                                                                                                           
 

In search of quantitative risk prediction models iii  

Executive Summary 
 
This master thesis describes the research towards an Information Technology (IT) 
project risk assessment within ING Corporate IT (CIT). The goal of this research is 
the development of a formal and objective methodology that can be used as a 
quantitative and objective risk prediction tool of starting IT projects. CIT collects the 
top five of completed IT-enabled business investments from business units (BU) 
throughout ING. These investments are considered as business projects for which at 
least 25% of the budget is spent on IT. The actual performance of a project is 
measured by three high-level success criteria. Is the project delivered on time, on 
budget and with the desired business functionality? The research focuses on the 
risks on budget overrun, time overrun and less delivered functionality separately.  
 
Our main conclusion is that logistic regression is the most appropriate modelling 
technique with respect to the collected data. Logistic regression is a frequently used 
model in medical studies. The main merit of logistic regression in these medical 
studies was the prediction of a certain risk by using a simple and straightforward 
formula of risk drivers, which enabled a clinical interpretation of these risk drivers. 
Risk drivers are risk factors that can be influenced before or in the early stages of a 
project. We developed logistic regression models for all three risks and assessed the 
quality of these models.  The relatively large response errors (difference between 
predicted and observed risks) point out that our models do not provide exact risk 
probabilities for individual projects. We therefore use our models as a classification 
technique; the projects are classified into risky projects and not risky projects at the 
hand of the predicted risk probabilities. Another important model quality issue is the 
statistical significance of the risk drivers in the logistic regression equation. The best 
regression equation consists of uncorrelated risk drivers with a significant positive or 
negative impact.   
The budget and functionality models show much better classification performances 
than the duration model.  The budget model has the most stable regression equation 
with also the least correlations between the risk drivers.  This budget model is thus 
considered as the best logistic model and we assume that the main focus in project 
management within ING is on meeting the original budget of the project.  
The most important risk driver is the development department size (DDS), which 
increases the budget risk. Our model also indicates that good project management 
decreases the risk on budget overrun. Another finding was the relation between the 
budget risk of projects and the various CMM levels.   
 
This master thesis introduces a formal methodology that enables us to develop 
predictive models for our risky projects.  Although we only had a small amount of 
available projects and risk drivers, we have developed a logistic model that predicts 
the budget risk and that is useful as project selection tool in the IT audit department. 
We notice that this audit tool is only valid for a general group of projects. This model 
is for example not useful for a set of only projects from EC Americas.  We conclude 
this summary with our recommendations to improve the current logistic models. The 
current data collection process should be expanded. We can first of all improve our 
logistic models by collecting data on more projects and on a more frequent base. 
Secondly we should expand our set of risk drivers with specific IT–enabled project 
characteristics, such as the size of the IT component of a project or the amount of 
staff used for a project.  We expect that more collected data leads to models that are 
up-to-date and valid for specific groups of projects as EC Europe projects. We will 
then also be capable to develop good duration and functionality models.   
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1 Introduction 
 
Within the ING Group IT projects are no longer viewed as a cost centre, but as an 
investment centre that drives value creation. ING has paid special attention to 
develop metrics to follow-up IT projects and has come to view IT projects as IT-
enabled business investments.  IT-enabled business investments are business 
projects for which at least 25% of the project budget is spent on IT.  
 
Financial transparency and risk/return metrics of these projects are essential in order 
to make sound decisions about these IT projects. The decision process on IT 
projects and proposals is currently supported by qualitative risk assessments. The 
wish of ING is to obtain more objective quantitative risk assessment methods.  
 
The goals of this master project are to investigate the risk impact of IT project 
features and to develop a predictive early warning system for high-risk projects. 
Project failures are defined by three main project success criteria, e.g. project is 
within time, within budget and delivered 95% functionality.  
 
The benefits for ING will be two-fold. First, critical insights are gained into their 
current risky IT projects. Secondly, the predictive model is a more objective manner 
of risk assessment than the deployed qualitative models and provides extra 
information to the decision process on IT project proposals.  
 
Sections 1.1 and 1.2 describe the ING Group and its IT governance in general to 
place the research in a business context. The research is conducted within a sub-
group IT Performance and Investment Management (ITPM) of the staff department 
Corporate IT. In Section 1.3 the work of this group will be summarised. In the last 
section we will present the outlook of this master thesis.  

1.1 ING Group 
 
ING Group is a global financial services institution of Dutch origin offering banking, 
insurance and asset management to 60 million private, corporate and institutional 
clients worldwide. It is a multi-product, multi-distribution company, approaching the 
customer through his or her channel of choice. ING group is very much a multi-brand 
company as well. So much so that ING companies realized only a minority of our 
revenues. That is changing rapidly, however. A lot has been going on to build the 
global awareness of the ING brand. Well-known local brands as Mercantile Mutual, 
Reliastar, Seguros Comercial Americas, Bank Slaski, BHF and BBL have been or are 
being replaced by the ING lion brand.  
 
ING employs over 112,000 people and 70% of its stock is held outside the 
Netherlands. In today’s depressed financial markets it has a current market 
capitalization of 36 billion euros. Total assets amount to over 700 billion Euros. The 
asset management business has 450 billion euros of assets under management. 
 
By all measures ING is a large global and diverse business, which has grown very 
significantly in recent years through a combination of autonomous growth and 
targeted acquisitions.  Like all global financial services organizations ING is totally 
dependent on IT, not just to support and enhance the business, but also increasingly 
to enable it. Without IT the ING Group has no business. 
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1.2 IT governance 
 
The IT governance structure meshes with the overall corporate governance structure 
of ING. This IT structure aims at ensuring the strategic alignment of IT with the 
business. This structure is meant not only to improve the quality of the IT functions 
but also to speed up decision-making. The ING IT governance structure is depicted 
in Figure 1.1 and is necessary for the executive company board of ING in their quest 
for answers to important IT-related questions; e.g. How often do IT projects fail to 
deliver what they promised? How does IT add value to the business? 
 

 
 

Figure 1.1: global ING IT governance model 
 
The IT policy board is responsible for the global IT procedures. This board consists of 
three executive board members and the Operations / IT (OPS/IT) portfolio keepers of 
the three Executive Centers (Europe, Asia Pacific and Americas). ING defines 
Operations as the management of the process itself. Operations involve all activities 
after the sales to the client until final settlement. This can encompass, for example, 
the processing of domestic and international payments, securities, mortgages, 
insurance products, claims, and data processing.  These activities are mainly 
supported by IT, hence OPS/IT. The director of the staff department Corporate IT 
also sits in the IT policy board. This Group staff department is responsible for IT 
policy preparation, the provision of IT advice to the businesses and monitoring the IT 
activity within the entire organization. The IT Leadership Council includes mainly 
business CIOs and provides advice to the Policy Board.  It has three sub-groups, 
dealing with respectively IT standards, IT architecture and IT infrastructure. In line 
with the importance of information security the separate Information Security Steering 
Committee reports directly on this subject to the IT policy board. Within the ECs the 
Application Forums and Infrastructure Groups are responsible for standardization of 
application areas and for integration of systems and infrastructure.  
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1.3 IT Performance and Investment Management 
 
The IT Performance and Investment Management Team (ITPM) main task is to 
monitor the IT activity within the entire organization. Their main operational activity is 
the deliverance of management reports on IT performance to the Executive and IT 
Policy Board and to the Executive and Management Centres. These reports deliver 
valuable information to support decision-making with respect to the IT policy.   
 
The underlying data for these reports is collected by means of the IT section-
reporting template as part of the yearly MTP (Middle Term Planning) reporting cycle. 
This template has been providing general IT cost and staff data and other IT-related 
features from all Business Units (BU) for the past few years. IT performance 
indicators were developed that provided valuable insights into the effectiveness and 
efficiency of the use of IT within the organisation. Benchmarking studies offered 
similar indicators for competitors in the same lines of businesses as the BUs of ING. 
The comparisons provided a good overview of the IT position of ING with respect to 
its main competitors. 
 
The IT investment approach was the follow-up and broadened the focus from general 
IT performance to IT project performance and the IT section template was expanded 
in 2001 with a section with data on the top five of completed and running IT projects 
(IT-enabled Business investments).  In 2001 the transparency of this project data 
was not high, which means a lot of missing or unreliable data was reported. The BUs 
were clearly not ready to deliver this kind of data. The IT section template of the MTP 
report in November 2002 already provided a lot more project data. The management 
reports were enriched with project performance information, such as the percentage 
of total reported projects that were delivered on budget, on time and with 95% 
functionality. These three criteria can be seen as the main management risks of a 
project in the development phase. 
 
The research towards new IT performance metrics and the continuous improvement 
of the whole data collection process are thus also important activities within ITPM.  

1.4 Outline of the master thesis 
 
After having introduced the general purpose of this research briefly and having given 
a description of the research environment, the goal of this master project is described 
based on the research questions in the next chapter.  
The rest of the thesis consists of three main parts. In Chapter 3 we will discuss the 
data collection process and quality topics concerned with the collected project risk 
drivers and project risks. Chapter 4 represents the mathematical part of the master 
thesis and describes the steps from the rough data from Chapter 3 to a risk 
prediction model. The reader who has no interest in the math can proceed with 
Chapter 5.  In Chapter 5 the results of the research as well as the practical purposes 
of the models for ING are presented. The final conclusions of our report are 
summarised in Chapter 6. 
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2 Research Questions 
 
The research toward project risk assessment metrics is an important research topic 
within ITPM. Qualitative risk assessments methods are used that are based on 
questionnaires completed by a project manager. This master thesis addresses the 
need for a more objective and quantitatively based risk assessment method. The 
three main risks of budget overrun, time overrun and less functionality can be 
quantified using the main project success criteria: 
 
- Completing the project within the agreed budget. 
- Completing the project within the agreed duration. 
- Delivering more than 95% of the agreed functionality. 
 
The research aims at answering the following general research questions: 
 
- Can we develop a formal mathematical methodology that generates early 

warning signals for not meeting the three main project success criteria? 
 
- Which project and BU characteristics can be considered as important risk 

drivers? 
 
- What is the alignment of the outcome of the mathematical models with the real 

ING business situation? 
 
These questions are reflected throughout the research by the research objectives. 
These objectives represent a classical modelling approach. In the first stage the input 
data of the model is checked. These data should represent the real situation well, 
because otherwise no model has meaning.  In the following phase, a model is build 
that reflects the real business problem. Finally the outcomes of the mathematical 
model should be transformed and into practical results.       
 
The research objectives therefore are: 
 
- Determine and assess project and BU characteristics, which are measurable in 

an early project phase, as possible risk drivers. 
 
- Develop a mathematical model that is intuitively easy to interpret and predicts a 

project risk based on related risk drivers.  
 
- Translate the outcome of the models into the business context (ING). 
 
Even if the developed predictive models turn out to be rather indicative, the outcome 
of the research will provide valuable insights into the current data collection process 
and the possibilities of predictive risk assessment. This master thesis is not only 
written for members of Corporate IT, but also for project managers throughout ING. 
They are responsible for the deliverance of reliable project data and this master 
thesis will show them the importance a sound reporting on this project data.   
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3 Data collection 
 
Within Corporate IT project features and general BU features are collected and these 
features represent the possible input data for the predictive modelling. This chapter 
deals with the search and assessment of possible risk drivers that can be assessed 
in an early project phase. 
 
In Section 3.1 an overview of important risk drivers according to the literature is 
presented.  Section 3.2 discusses the data collection process within ITPM. The 
collected ING data is summarised and compared with ideal risk drivers. The quality 
issues concerning the research data are presented in Section 3.3.  

3.1 Perfect situation  
 
In a perfect situation a data analyst is involved in all phases of the research. In this 
research the project data have already been collected and the scope of the projects 
is confined to the development phase. We have to focus on the risks of budget and 
time overrun and less delivered functionality. What kind of possible risk drivers would 
we ideally have collected with respect to these risks in the development phase?  
 
The search for risk drivers in the literature for our specific projects was not 
straightforward. The reported risk factors in most studies are not necessarily risk 
drivers because several reported risk factors cannot be influenced before or in the 
early stages of a project.  We conclude this section by summarising the risk factors 
that can be considered as pure risk drivers. 
 
Another obstacle is that most risk factors that are mentioned in the literature refer to 
software development projects. Our projects under study are no pure IT projects, but 
IT-enabled business projects. The IT component plays an important role, however, 
and the found software risk factors could therefore be well used.   
 
The risk factors were derived from the findings of empirical studies in the field.  
We note the important risk factors as well as the research method of the study. 
 
In their CHAOS reports the Standish group [6,7,8] does report on important failure 
and success factors of certain types of projects. 
 
- Successful project 

The project is completed on time and on budget, with all features and functions 
as initially specified. 

 
- Challenged project 

The project is completed and operational, but over budget, over the time 
estimate, and offers fewer features and functions than originally specified.  

 
- Cancelled project 

 The project is cancelled at a certain point during the development cycle. 
 
In their CHAOS Report from 1994 [8], a top ten of success factors was presented for 
the successful projects and consequently two top tens of risk factors were given for 
the challenged and cancelled projects.    
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The list of success factors and risk factors were very similar and in the CHAOS report 
in 1999 and 2001 [6,7] only the top ten of success criteria was reported. We mention 
the top ten of success factors in the latest Chaos report [6]. 
 

1. Executive Support (18 Points) 
2. User Involvement (16 Points) 
3. Experienced Project Manager (15 Points) 
4. Clear Business Objectives (12 Points) 
5. Minimised Scope (10 Points) 
6. Standard Software Infrastructure (8 Points) 
7. Firm Basic Requirements (6 Points) 
8. Formal Methodology (6 Points) 
9. Reliable Estimates (5) 
10. Other (5) 

 
The number between the brackets shows the weight, which has to be attached to 
each available success factor. The total score of a project can sum up to 100 and 
gives an indication of its successfulness. A low score thus means that the project is 
potentially risky and the success factors are easily transformed into risk factors.    
 
The Standish Group research is done through focus groups, in-depth surveys and 
extensive interviews with Fortune 500 companies. The research focuses on mission-
critical software applications, management techniques and technologies. 
 
The Standish Group CHAOS research is the largest body of primary research in the 
IT community according to their own website.  An important source of information for 
the CHAOS is a yearly web questionnaire filled in by the so-called SURF members. 
Standish User Research Forum (SURF) is a collection of IT executives from various 
user organizations throughout the world. These executives represent a cross section 
of the IT community from different industries, organization sizes, and geographic 
locations.  
 
In [17] three Delphi surveys (Figure 3.1 on page 9) were deployed to identify a 
ranked list of project risk factors. These surveys were conducted in three different 
countries: Hong Kong (HK), Finland (FIN) and the United States (US). The three 
panels (one for each country) consisted of experienced project managers.  
The Delphi Survey process in this study consisted of three phases. In the first phase 
of brainstorming each panelist made a list of possible risk factors (at least six). The 
collected risk factors were compared with each other and combined into an extensive 
list of risk factors (without exact doubles and similar risk factors). In the next step 
each panel, independently of the others, narrowed this list down into a more 
manageable list.  Each panelist chose the most important factors (at least ten) from a 
random set of risk factors based the previous extensive list. Each factor that was 
picked by at least 50% of the participant was taken into account in the final phase. 
The initial list of more than 150 items was now reduced into three smaller lists (HKG 
– 15,  FIN – 23, USA – 17).In the last stage each panellist ranks the remaining risk 
factors for their panel in order of importance, which results in an overall project risk-
ranking list per separate panel.  
In order to get an international ranking, a composite ranking was made. All eleven 
risk factors that were present in all three ranked lists were ordered by their average 
relative ranks.  An important risk factor that is left out of this composite ranking was 
the lack of effective project management skills. This factor was high-ranked in FIN (1) 
and USA (5), but was not selected at all.       
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Phase 1: 
Brainstorming 

- risk items are solicited from all 3 panels (yielding > 150 items) 
- exact duplicates are removed (leaving 150 remaining items) 
- remaining items are combined and grouped (yielding 53 unique factors) 
- list of grouped factors is validated by panelists 

 
 
Phase 2: 
Narrowing  
Down 

- each panel, operating independently of the others, pares the list down 
- each panelist selects his/her most important risk factors 
- risk factors selected by a majority of the panelists are retained 
- thus, each panel reduces the list of 53 factors to a more manageable size 
- HKG panel retains 15 factors; FIN panel 23; and USA panel 17 

 
 

Phase 3: 
Ranking 

- each panel, operating independently of the others, produces a ranked list 
- each panelist selects his/her most important risk factors 
- a mean rank is calculated for each item 
- degree of consensus within the panel is assessed using Kendall’s W 
- feedback is shared with panelists who again are asked to rank the risks 
- process continues until strong consensus is reached or consensus plateaus  

 
Figure 3.1: Description of Delphi Survey Process Used in [17] 

 
The composite top eleven of most important risk factors from [17]. 
 

1. Lack of top management commitment to the project 
2. Failure to gain user commitment 
3. Misunderstanding the requirements 
4. Lack of adequate user involvement 
5. Lack of required knowledge/skills in the project personnel 
6. Lack of frozen requirements 
7. Changing scope/objectives 
8. Introduction of new technology 
9. Failure to manage end user expectations 
10. Insufficient / inappropriate staffing 
11. Conflict between user departments 

 
All mentioned risk factors were so far assessed on a high management level and 
thus represent software project management issues. We also looked at operational 
software risk factors. 
 
In his book Jones [10, p 115] stated that software projects are influenced by as many 
as 250 different factors that can affect schedule, cost, quality and user satisfaction, 
but only ten to twenty major issues usually affect individual projects.  
 
Jones furthermore recognised 36 key data factors that should be included in all 
assessment and benchmark studies and illustrate the kinds if things that can 
influence whether software projects will be successful or unsuccessful. These key 
factors are divided into six main categories of software factors: 
 
- Classification factors: represent the specific nature of the software project. 
- Project Specific factors: depict characteristics of individual projects. 
- Technology factors: record specific tool and methodologies utilized. 
- Sociological factors: indicate sociological and experience factors. 
- Ergonomic factors: indicate the working circumstances. 
- International factors: are of importance to large global software projects. 
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We summarise a set of key factors from [10]. 
 
- Classification:  a project can be a high-risk strategic project with high impact on 

the business or a low risk informational project. 
- Project Specific: Size, complexity, constraints, class and type and scope of the 

software applications.  An example of a constraint of a software application is a 
staffing or team size limitation. 

- Sociological: experience level of the development team and the project 
managers or the capability maturity level of the development organisation.  

- Technology: Any formal development methodology used, Project management 
and development tool suites used on the project. 

- Ergonomic: Size of the office space, availability of meeting spaces. 
- International: Local laws that affect international projects, variations in 

compensation levels for the different countries involved. 
 
Our research focus is on quantifiable risk drivers in an early stage of an individual 
project. Risk drivers can be regarded as risk factors that can be influenced before or 
in the early stage of a project. The classification of a project into a software type 
cannot be influenced and is not viewed a possible risk driver. The commitment of top 
management can be influenced, but is very hard to quantify in the initial stage of a 
project and is thus not suited as risk driver for our research.  
 
The following factors are considered as quantifiable risk drivers in an early project 
phase of our IT-enabled Business investments.  
 
- Size of the pure IT part of the project, e.g. function points, lines of code or 

number of applications. 
 
- Staffing essentials, e.g. number of FTEs working on the project, ideally broken up 

into activities.  
 
- Project constraints, e.g. Does the project have a fixed date or a fixed price 

contract?  
 
- Is a formal development or project management methodology used? 
 
- The capability maturity level of the software development organization, which is 

more generally know as the CMM level. 
 
The following risk drivers are mentioned in the previous section, but the added 
quantifiable measures are recommendations from the author.   
 
- Scope of the project, e.g. the number of milestones in the project or the number 

of changes in the user requirements. 
 
- The experience level of the project team, which can be measured by total years 

of experience or by percentage of successful projects. 
 
- The experience level of the project manager, which can be measured by the 

percentage of successful projects or total years of experience. 
 
- The experience level of the user, percentage of successful projects done for a 

certain user. 
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3.2 Available data within ING  
 
This section is not published due to confidential information. 

3.3 Data completeness     
 
This section is not published due to confidential information. 
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4 Data analysis 
 
Statistical data analysis consists of collecting, analysing and interpreting data. The 
collection process and the available research data have already been described in 
the previous chapter. This chapter thus describes the mathematical part of this 
master thesis and focuses on the statistical data analysis of the research data and 
the development of predictive modelling.  The first section contains a brief and 
general introduction to frequently used statistical terms and methods. We explain our 
choice for logistic modelling and also discuss our specific approach of the data 
analysis in Section 4.2. Section 4.3 demonstrates the practical data analysis model 
building issues based on the used statistical software package Splus.  

4.1 Introduction to statistics 
 
We introduce a few basic statistical terms. Instead of data we use the term variable, 
which represents a certain characteristic of a project, e.g. the planned budget.   
 
The variables can be classified into several pairs: 
 
- Response variable: is the actual object of the research and is often called a 

dependent variable.  
- Explanatory variable: is also called an independent variable and the goal of the 

analysis is to determine its influence on the dependent variable.      
 
- Quantitative variable:  measured on a numeric or quantitative scale. 
- Qualitative variable: no natural sense of ordering (also: categorical variable). 
 
- Continuous variable:  with a quantitative scale, having a continuous and infinite 

range of values.  
- Discrete variable: having a finite number of values. A variable with enough 

discrete values can be considered as continuous for practical purposes. 
 
We should note that all qualitative variables are discrete, but that quantitative 
variables can be discrete. An example is the CMM level that is rated as 1,2,3,4,5.  
 
We can further categorise the variables according to their measure level (Table 4.1). 
These measure levels are classified from high to low (one to four). The higher the 
level, the more mathematical operations on the variables are allowed.  
 
Class Measure 

level 
Description Example in 

our data set 
1 Ratio Variable on a quantitative scale with an 

absolute zero point. 
Planned 
Budget 

2 Interval Variable on a quantitative scale with an 
arbitrary zero point. 

Budget  
Deviation (+/-) 

3 Ordinal Variable on an ordered, but not truly 
quantitative scale.  

CMM  
Level 

4 Nominal Variable on a scale that consists of non-
ordered labels. 

Project 
Category 

 
Table 4.1: Different Measure levels 
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The purpose of a proper statistical analysis is to examine and summarise certain 
aspects of each variable.  We need to know how a certain variable is distributed and 
need to check if certain observations are abnormal. This step is very important since 
the distribution of variable determines which statistical methods are more or less 
suited to use. Another important step in the exploratory analysis is to determine the 
relation between pairs of variables, which is necessary to determine a set of 
independent variables that can be used in the predictive modelling phase. 
 
This exploratory phase of checking distributions and simple relations can be done in 
several ways by looking at graphical plots and numerical summary statistics. 
 
The plots and summaries provide indications of our assumptions concerning the 
variables. In order to take a more formalised decision we verify our assumptions with 
statistical tests. 
 
These tests use a statistical model to either reject or accept a certain assumption, 
which is called the null hypothesis.  The main objective of each test is to reject this 
null hypothesis and accept the alternative hypothesis, which is considered as a 
strong conclusion. The other situation of not rejecting, but also not accepting the null 
hypothesis cannot be regarded as an actual conclusion. The error of incorrectly 
rejecting the null hypothesis should be as small as possible. 
 
The choice of the right test is very important since the test is based on certain 
assumptions. The use of an improper test will lead to wrong conclusions about the 
tested hypothesis.  
 
The next phase is the development of statistical model in which we look at more 
complex relations between variables. In this modelling phase a response variable is 
related to a certain function of independent explanatory variables.  The objective of 
the modelling phase is to determine the best function of variables that predicts the 
response with the lowest error.   
 
All assumptions concerning distributions and relations, statistical tests and graphical 
plots are meant to support us in the modelling phase.   
 
With this background information on statistics the following sections should be easier 
to read.  
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4.2 Preliminary analysis  
 
In this section we first of all explain the choice for an appropriate modelling technique 
and subsequently explain our limitations with respect to the exploratory data analysis. 
This section concludes with an assessment whether the overall research sample is 
representative or not.  

4.2.1 Modelling techniques  
 
We recall the objective of this section from Chapter 2. 
 
- Develop a mathematical model that is intuitively easy to interpret and predicts a 

project risk based on related risk drivers.  
 
The choice of the modelling technique depends on the outlook and type of variables. 
In Chapter 3 we have already discussed the data collection and formulated a set of 
possible research risk drivers. These risk drivers are the explanatory variables in our 
model.  The only uncertainty in the objective is the choice of how to represent the 
project risk in our model. We will therefore first focus on the determination of the risk 
response variables.  
 
As stated in Chapter 2 the goal of our research is to predict the risk that a certain 
project does not meet one of the project success criteria. ING identifies three main 
project success criteria:  
 
- Completing the project within the agreed budget 
- Completing the project within the agreed duration 
- Delivering more than 95% of the agreed functionality 
 
These criteria suggest the use of binary categorical variables as response variables; 
a project is classified into a budget failure (BF), a duration failure (DF), a functionality 
failure (FF) and an overall failure (OF).   
 

 

 

 

 

 

 

 

 
Another possibility is to look at the actual overruns with respect to budget, duration 
and functionality (BO,DO,FO). These are continuous response variables, which can 
be turned in to risk variables by using a certain calculation, e.g. the risk is the 
percentage relative expected budget overrun with respect to the largest overrun.  

î
í
ì

=
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criteriumsuccessbudgetthemeetnotdidprojectThe
BF

0
1

î
í
ì

=
criteriumsuccessdurationthemeetdidprojectThe
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0
1

î
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ì
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criteriumsuccessityfunctionalthemeetnotdidprojectThe
FF

0
1
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=
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We considered the following three modelling techniques, which could be executed by 
our statistical package Splus. 
 
Multiple Linear Regression 
 
The simplest model that enables the prediction of the amount of risk using a set of 
continuous or categorical variables is a multiple linear regression model. This 
technique assumes in general a continuous and normally distributed response 
variable that is expected to be linearly dependent on a set of explanatory variables.  
 
Generalised Linear Models (GLM) 
 
In 1972 Nelder and Wedderburn [13] introduced a generalised class of linear models 
that enables us to fit a model to a response variable that depends on a function of a 
linear model. The response does not have to be normally distributed variable or a 
continuous variable.    
 
Logistic regression 
 
A popular example of a generalised model is the logistic regression model, that is a 
frequently used model in medical studies. In [2] logistic regression is used in a clinical 
research to determine the influence of certain characteristics as gestational age on 
the mortality risk of babies. 
This technique thus expands the possibilities of the normal linear regression. The use 
of logistic regression in medical studies started in 1962 according to [3], although a 
framework for the generalised linear models was not provided until 1972 (Nelder and 
Wedderburn).  
 
Logistic regression provides the possibility to predict the outcome of a categorical 
(binary) response variable. Logistic regression does this by taking a certain 
transformation of the binary response variable (Logit transformation: see Appendix B 
for the exact mathematical notation) and then by fitting a linear relation of explanatory 
variables to this transformed response variable. In our study the output of the model 
is a formula from which the probability of the failure of a project can be predicted by 
using the values of a set of risk drivers.  
 
Tree modelling 
 
We explain tree-based modelling using [11].  We make a distinction between a 
classification tree to predict categorical response variables and a regression tree to 
predict continuous response variables. The response variable is predicted by a set of 
rules. We thus distinguish two types of rules: 
 
1 Classification rule with a categorical response variable (failure, no failure).  
2 Regression rule with a continuous response variable.   
 
We illustrate these two types of rules with imaginary examples:  
 
1. If  BP (budget – planned) < 2  and EC is Europe, then project fails (BF = 1). 
2. If  BP < 2  and EC is Europe, then  BO = 25%.  
 
The rules are categorised in a tree like fashion, in which each node contains a rule, 
which leads to maximal two new rules (branches) or solutions.   
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4.2.2 Choice of the modelling technique 
 
The most appropriate technique for our specific data set and research questions 
turned out to be logistic regression.  We explain our choice based on our research 
objective as stated earlier in this chapter, which delivers us two guidelines: 

 
1. The response variable should represent the risk on a certain project failure 
2. The set of explanatory or predictor variables should be insightful. 
 
This first guideline enables us to make a choice between linear and logistic 
regression. We prefer logistic regression based on the following arguments:   
  
- A multi-linear regression model has a continuous response variable, which for 

example can predict the actual overrun in budget. The risk of each project is then 
derived from the difference between planned and actual. This model nevertheless 
is not preferred, since our continuous response (overrun) variables are not 
normally distributed. This assumption of normality is a basic requirement for a 
multi-linear regression model.   

 
- Logistic regression requires a categorical response variable and turns out to be 

more suitable for the purposes of the early warning system, while this response 
variable represent the probability of failure of a project directly.   

 
- Moreover the approach with categorical risk responses enables us to look at the 

overall risk of a project, which is not possible with continuous response variables.  
 
Classification tree modelling and logistic regression are the two remaining techniques 
with a categorical response. The desire for a more insightful formula again leads to a 
preference of logistic regression. 
 
- Tree modelling leads to more complex models and to a less transparent overview 

of the risk drivers. The models can be complex combinations of binary trees, 
which lead to ambiguous combination of decision rules.  

 
- The logistic regression models are far more intuitive. The linear formula of 

explanatory risk drivers with corresponding coefficients directly indicates the 
influence of the risk drivers according to [2]. The choice of logistic regression to 
determine the mortality risk was mainly because the parameters in a logistic 
equation had a simple and direct clinical interpretation [2]. 

 
- Trees tend to over-fit the model more than logistic regression models do.    
 
In the light of the both guidelines for the risk response and the outlook of the formula 
of explanatory variable, logistic regression turns out to be the best choice for our 
modelling technique.
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4.2.3 Analysis approach  
 
The choice of a proper modelling technique is only an initial step. The model has to 
be meaningful and representative for ING because the outcomes of the model have 
to be placed into the ING business context. 
 
The main condition for developing a meaningful model is a representative data set.  
The famous quotation garbage in - garbage out describes the truism danger of a lack 
of representative data. A model based on unreliable data will provide unreliable 
predictions.  
 
 In the ideal situation we should have checked the following data issues before the 
actual logistic model building starts. 
 
1. Is the data sample representative for ING? 
 

The collected project data should be a decent reflection of all project data within 
ING in order to avoid developing models without any practical meaning.  

 
2. Is the collected data homogeneous? 
 

The data should be homogeneous, which means the quality of being similar or 
comparable in kind or nature.  An inhomogeneous dataset threatens the validity 
of our model.   
 

3. Are the explanatory variables independent?      
 

The set of explanatory variables included in the modelling phase should not be 
mutually dependent. These dependencies cause multicollinearity between the 
explanatory variables, which among others lead to less reliable estimates of the 
coefficients in the logistic equation.   

 
The rest of this section contains confidential information. 
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4.3 Logistic modelling  
 
This section describes the mathematical modelling in this master thesis. We start 
with a general explanation of unsettled data topics in our specific situation and 
discuss the consequences for the modelling approach. The development of the 
logistic models is discussed by using a few examples. This demonstration is backed 
up by the used commands in Splus, which is the statistical package used for our data 
analysis. We conclude with a discussion on the validity of the developed models.   

4.3.1 Overall Model building approach 
 
This logistic modelling was not a straightforward process, but was an iterative 
process of trial and error to find the most appropriate model.  The undone issues in 
the previous section were the checks for homogeneity and independence in the set 
of risk drivers. Clustering analysis is a proper research method to determine sets of 
homogeneous data, but this technique is inappropriate when we consider our small 
data set and presence of a lot of categorical variables. Simple outlier detection for all 
continuous research variables is more suited in our situation.  
 
We note that the overall data set consists of so-called pooled data. The original data 
is collected from various different samples (different Bus or ECs). We cannot develop 
individual models on these small samples and therefore take all data together; all 
data is pooled into an overall set. We are aware of the danger of looking at all data 
together and therefore also look at smaller subsets. Possible subsets can be derived 
from the classification factors in Chapter 3. We depict the subsets with their 
subtotals.  

 
Executive Centre (EC): Europe (x), Americas (x), Asia/Pacific (x) 

 
Line of Business (LOB): Banking (x), Insurance (x), Asset management (x) 

 
Project category  (PC): Transactional projects (x), Informational projects (x), 

Strategic projects (x), Infrastructure projects (x) 
 
In theory we should develop logistic models for each subset and compare them with 
the models of the overall set. Most subsets are simply too small for the proper 
development of a logistic model, so we choose the following approach:  
 
A. We analyse the risk drivers of the overall set and depict the most obvious outliers 

(extreme values) and also research the dependencies between the pairs of risk 
drivers.   

 
B. We build risk models for the four risk responses on the overall data set and select 

the models with a reasonable fit for further analysis.  
 
C. The influence of outliers (as found in step A) is checked by looking at the 

predictive performance of best models on large subsets of data.  
 
D. We choose the best model with the most general predictive performance and the 

simplest and most stable regression equation. We can assess the stability of this 
equation by examining the dependencies between the risk drivers and by looking 
at the change in equations of sub models (based on same subsets as in Step C).   
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4.3.2 Overall data summary (Step A) 
 
This section is not published due to confidential information. 
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4.3.3 Splus modeling (Step B) 
 
The statistical package Splus was used to estimate the unknown coefficients of the 
logistic models. We explain the automated part of the logistic model building using 
the used Splus commands.  We use the budget risk models based on the overall 
data set to demonstrate this initial part of the modelling. The underlying math of this 
section is summarised in Appendix B3. 
 
The Splus command to fit a logistic model is the general linear model fit (glm) with a 
binomial probability family. We show the null model with only a fixed intercept and 
without any variables included. 
    
>  nullmodel_glm(formula = br ~ 1,family = binomial(link = logit), data = dataset) 
 
We can use the glm function to fit models with all possible combinations of variables 
and then select the best model. This approach is time-consuming and the use of the 
Splus step function is much more convenient.  This function searches the optimal 
model with two algorithms. 
 
Forward step algorithm 
Variables are sequentially added to a certain small model, based on their added 
value according to the so-called Akaike Information Criterion (AIC). A variable ads 
value if the decrease in deviance (depicting the size of the error of the model) is 
greater than the increase in complexity (the number of variables in the model). In 
Appendix B3 more detailed information can be found on this AIC. 
 
Backward step algorithm 
Variables are sequentially deleted from a certain large model based on the AIC.   
 
Our initial thought was to start from the null model and use the forward algorithm to 
sequentially add all variables and interactions between variables. This forward step 
function is depicted by the following command.   
 
> step(nullmodel, list(upper = ~.^2, lower = ~ 1), direction = "forward",trace = F) 
 
The upper scope of the model (.^2) states that all variables and interactions should 
be included in algorithm, but Splus simply cannot handle all these possibilities.  
 
Our other option would have been to apply a backward algorithm to a full model with 
all variables and mutual interaction included.  
 
>  fullmodel_glm(formula = br ~ .^2,family = binomial(link = logit), data = dataset) 
 
Splus is unable to fit the full model since the iterative algorithm that estimates all 
coefficients cannot handle the amount of variables and interactions. We thus cannot 
use the backward step function with a full model as starting point. 
 
We have seen so far that we cannot simply apply the step function on either a null or 
full model. We have to choose sensible upper and lower bounds for the step function 
and also have to develop a suitable full model. We therefore fit an approximate full 
model by using a forward step function that includes interactions to the model with all 
continuous variables. 
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> allmodel_glm(formula = br ~ bp + dp + pp + io + cmm + bs + pmm + dds + ids + 
rqf,family = binomial(link = logit),data = dataset) 
> fullmodel.approx_step(allmodel, list(upper = ~.^2 , lower = ~ 1), direction = 
"forward",trace = F) 
 
This full model includes all variables in the regression equation and also four 
interactions. The regression equation is thus hard to interpret and we therefore 
choose to develop sub models.  We depict these models in order of complexity.  
 
- model1: only continuous variables are investigated. 

 
- model2: all continuous and categorical variables were examined, but interactions 

between the pairs of variables are ignored. 
 
- model3: all variables included in model2 and all interactions between these 

variables were considered. 
 
The omission of the interactions enables us to fit full models for model1 and model2 
in Splus. 
 
>fullmodel1_glm(formula = br ~ bp + dp + pp + bs + dds + ids,family = binomial 
(link = logit), data = dataset) 
 
>fullmodel2_glm(formula = br ~ bp + dp + pp + io + cmm + bs + pmm + dds + ids + 
rqf,family = binomial(link = logit),data = dataset) 
 
We are now able to use the step function in a forward and backward direction.   
 
>forwardmodel1_step(nullmodel, list(upper = ~ bp + dp + pp + bs + dds + ids, lower = 
~ 1), direction = "forward") 
>backwardmodel1_step(fullmodel1, list(upper = ~ bp + dp + pp + bs + dds + ids, 
lower = ~ 1), direction = "backward") 
>forwardmodel2_step(nullmodel, list(upper = ~ bp + dp + pp + io +cmm + bs + pmm 
+ dds + ids + rqf, lower = ~ 1), direction = "forward") 
>backwardmodel2_step(fullmodel2, list(upper = ~ bp + dp + pp + io +cmm + bs + 
pmm + dds + ids + rqf, lower = ~ 1), direction = "backward") 
 
The forward and backward modelling can lead to different models. Remember that 
each model is characterised by its deviance (error measure) and its complexity (the 
number of variables included). We distinguish a set of decision rules that are used to 
decide when the deviance and complexity of the two models are not exactly equal. 
 
- If both models have the same deviance then the simplest model is taken as the 

best model     
- If both models are equally complex then the model with the lowest deviance is 

taken as the best model.  
- If one model is less complex and also has a lower deviance, then this model is 

obviously better.  
- If one model is more complex and has a lower deviance, then a likelihood ratio 

test is necessary to determine the best. The outcome of this test shows whether 
the decrease in deviance is large enough to compensate for the increased 
complexity. The likelihood ratio test is described in more detail in Appendix B3. 
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We have written a function in Splus that applies all these rules.  We will not depict 
this whole function, but consider the situation of a more complex backward model 
with lower deviance than the simpler forward model. In this case we thus have to 
apply the following statistical test. 
 
> # apply ratio test with chi-squared test-statistic  
> p.value_anova(forwardmodel,backwardmodel,test="Chisq")[2,7],4) 
> # the nullhypothesis that the simple forward model is appopriate is rejected if the  
> # p.value (unreliability) is less than 0.05 (the general unreliability level of a test)  
> if(p.value <= 0.05) { 
> # choose backward model: more complex, but with a significant lower deviance 
> model_backwardmodel 
> } 
> else{ 
> # choose forward model: backward model has no significant lower deviance  
> model_forwardmodel 
> } 
 
We now include interactions in the model by using a forward step function that 
expands model2 with all possible mutual interactions. 
 
>model3_step(model2, list(upper = ~.^2 , lower = ~ 1), direction = "forward") 
 
By building these general logistic models we have assumed a binomial distribution 
for the response variable. In that case the so-called scale or dispersion parameter in 
the variance function is supposed to be one. This assumption does not always hold, 
but the collection method does not allow us to check whether the dispersion in the 
variance of the response variable is smaller or larger than one.   
 
Our only possibility is to fit a quasi-likelihood model that estimates this dispersion 
parameter.  This parameter is used in the AIC of the step function and can thus 
probably lead to a different model. This model is then compared with the general 
model and the best model is chosen. 
 
In order to check the assumption we use quasi-likelihood estimation in the model 
building by changing the family parameter within the glm() function for all three sub 
models. 
 
> glm(formula =  br ~….., family = quasi(link = "logit", var = "mu(1-mu)"), data = 
dataset) 
 
The full models and the null model are changed and the best quasi-models are found 
analogously as the general models.  Each quasi model is now compared with the 
general model by looking at the balance between complexity and deviance. We thus 
do not pay much attention to the estimated dispersion parameter, but look at the 
change in models. 
 
Table 4.10 depicts which of the two estimation methods is preferred for all sub 
models of our four risks. Model4 represents the approximate full model, which is the 
most complex model according to included variables and interactions. 
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Comparison between estimation methods 

Budget model1 No difference between quasi- and log-likelihood estimation 
Budget model2 No difference between quasi- and log-likelihood estimation 
Budget model3  Quasi-likelihood estimation leads to less complex model 
Budget model4 No difference between quasi- and log-likelihood estimation 
Duration model1 No difference between quasi- and log-likelihood estimation 
Duration model2 No difference between quasi- and log-likelihood estimation 
Duration model3 No difference between quasi- and log-likelihood estimation 
Duration model4 No difference between quasi- and log-likelihood estimation 
Func. model1 No difference between quasi- and log-likelihood estimation 
Func. model2 No difference between quasi- and log-likelihood estimation 
Func. model3 Log-likelihood estimation leads to less complex model 
Func. model4 No difference between quasi- and log-likelihood estimation 
Overall model1  Quasi-likelihood estimation leads to less complex model 
Overall model2  Quasi-likelihood estimation leads to less complex model 
Overall model3  Quasi-likelihood estimation leads to less complex model 
Overall model4 Log-likelihood estimation leads to a significantly better model  
 

Table 4.10: Preferred estimation method per risk model 
 
Table 4.10 shows that log-likelihood estimation often leads to the same models as 
quasi-likelihood estimation does. In only one case (overall model4) we have been 
able to take a strong conclusion that log-likelihood estimation is significantly better 
than quasi-likelihood estimation. For other models with differences between both 
estimation methods, we cannot take a strong conclusion, which of both methods is 
preferred. If we for example look at the budget model3, we notice that log-likelihood 
estimation is not significantly better than quasi estimation. We thus prefer the quasi 
estimation for budget model 3, since this method leads to a less complex model than 
the log-likelihood estimation. 
  
Goodness-of-fit of the models  
 
We now introduce a few goodness-of-fit metrics that depict the quality of the logistic 
model like the R2 does for linear regression models. These metrics are used to 
identify the best models for further analysis. The small data set prevents a sensible 
division in a test and a training set. The goodness-of-fit metrics thus also depict the 
quality of the predictions.   
 
 The McFadden Pseudo R2 depicts the amount of reduced deviance by the estimated 
model as a percentage of the deviance of the null model. A similar measure is the 
LRFC statistic, which also depicts the quality of the fit of the estimated deviance. This 
metric uses the exponent of the difference in log-likelihood between null model and 
the estimated model. The original formulas of McFadden R2 and the LRFC statistic 
use a null model with an intercept included according to [23] and [4]. In Appendix B3 
the reader can find the mathematical equations of both statistics. Each null model 
with an intercept has a different null deviance, while this intercept is different for each 
risk response, which makes it hard to compare between the different risk models. 
We therefore prefer to use a null model without an intercept since this null model has 
similar null deviances for all four risks. We compare the so-called Mcfadden R2 (0) 
and LRFC (0) of all four models for each risk in Table 4.11 on the next page.    
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Budget risk model1 model2 model3 model4 

McFadden R2 (0)  0.192 0.259 0.343 0.373 
LRFC statistic (0) 0.142 0.197 0.269 0.295 
Functionality risk model1 model2 model3 model4 
McFadden R2 (0) 0.302 0.324 0.380 0.644 
LRFC statistic (0) 0.233 0.252 0.301 0.563 

Duration risk model1 model2 model3 model4 
McFadden R2 (0) 0.065 0.065 0.065 0.346 
LRFC statistic (0) 0.046 0.046 0.046 0.332 

Overall risk model1 model2 model3 model4 
McFadden R2 (0) 0.117 0.117 0.155 0.359 
LRFC statistic (0) 0.084 0.084 0.113 0.282 

 
Table 4.11: Goodness-of-fit metrics of the best possible overall models 

 
These statistics show that the simpler models for budget and functionality risks 
outperform those for overall and duration risks. The approximate full model4 is the 
best for the functionality risk, but this model includes all variables and several 
interactions between these variables, which makes the model harder to interpret. 
This model4 depicts the model with the lowest possible deviance as calculated by 
Splus with the AIC. We adapt the McFadden R2 (0) of the simpler models (1,2,3) of 
Table 4.11 by dividing them by the McFadden R2 (0) of model4.  
  
Relative R2 (based on R2 model4) Model1  model2  model3 

Budget risk models  0.515 0.694 0.920 
Functionality risk models 0.469 0.503 0.590 

Duration risk models 0.188 0.188 0.188 
Overall risk models 0.326 0.326 0.432 

 
These relative R2 also demonstrate that the budget and functionality models perform 
better than the overall and duration models. We will thus focus on these two models 
for further analysis.
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4.3.4 Generality of the models (Step C) 
 
We have noticed that the budget and functionality models show the best predictive 
potential using their Mcfadden R2 metrics in the previous subsection. We first of all 
search for the most consistent model with respect to its predictive performance.  
 
Our data analysis showed obvious outliers and also demonstrated that our data 
mainly consists of relatively small projects based on the project size indicators and 
BU size indicators. We therefore consider the following large subsets that we can use 
as test sets to explore the overall predictive performance of the models. 
      
- Outlier set: subset without the obvious outliers in the overall data set. This data 

set contains data of projects with a budget smaller than x millions of euros, 
duration smaller than x months, project power smaller than x million a month. 
Also the projects from one extremely large BU are left out. This subset is still 
considered as an overall representation of ING and contains x projects. 

 
- BP set: subset that represents all projects with a budget smaller than or equal to 

x millions of euros. This set contains x projects. 
 
- DP set: subset that represents all projects with a duration smaller than or equal 

to x months. This set contains x projects. 
 
- PP set: subset that represents all projects with a project power smaller than or 

equal to x million per month. This set contains x projects. 
 
- BS set: subset that represents all projects from BUs that have a size smaller than 

or equal to x millions of euros. This set contains x projects. 
 
We compare the predictive quality of the overall models (based on all research data) 
with the performance of these models on the different subsets.  The predictive quality 
is depicted by the Mean Minus Log-Likelihood (MML), which shows the deviation of 
the predictions with the original response variable. The perfect prediction has a MML 
of zero. We consider a model as reasonable when its MML is smaller than –0.5. 
Table 4.12 obviously shows that the overall predictive budget model1 and model2 
perform equally well or even better on the subsets. These models can be considered 
as the best performing models, because they show the most stable predictive quality. 
 

MML All data Outlier 
 Set 

BP set DP set PP set BS set 

Budget model1 -0.56 -0.559 -0.534 -0.526 -0.556 0.532 
Budget model2 -0.514 -0.513 -0.517 -0.512 -0.528 -0.515 
Budget model3 -0.455 -0.463 -0.500 -0.48 -0.513 -0.488 
Func. model1 -0.484 -0.505 -0.509 -0.516 -0.5 -0.494 
Func. model2 -0.469 -0.489 -0.504 -0.505 -0.5 -0.499 
Func. model3 -0.43 -0.45 -0.491 -0.468 -0.49 -0.462 

 
Table 4.12: Performance of overall models on the different subsets  

 
We have shown that the budget model2 is the best general model for predictive use 
within ING. The rest of this section contains confidential information. 
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4.3.5 Stability of the models  (Step D) 
 
The predictive ability of both the functionality and budget models is very reasonable 
and the models are valid to do general predictions within ING. The second part of the 
research objective was to assess the influence of the risk drivers, which can be done 
by examining the coefficients of the variables in the regression equation. 
 
The rest of this section contains confidential information. 
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5 Results 
 
This section describes the practical results of our research for ING. The practical 
meaning of the observed influences of the risk drivers on the risks will be presented 
in Section 5.1. The practical meaning of prediction is explained based on our most 
stable and budget model, which is also the most general model. Section 5.2 will 
discuss the predictive ability use of this model based on ING management issues.  
The practical use of this budget model is demonstrated in Section 5.3.  

5.1 Risk drivers of the models 
 
This section is not published due to confidential information. 

5.2 Predictive ability of the budget model 
 
This section is not published due to confidential information. 

5.3 Practical use of the budget model 
 
This section is not published due to confidential information. 
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6 Conclusions  
 
Section 6.1 contains the answers to our research questions. We depict a few factors 
that have limited our research in the next section. The developments for the MTP 
2004-2006 reporting period are mentioned in Section 6.3 and finally the possibilities 
for future research are depicted in the last section.  

6.1 Research conclusions 
 
This section is not published due to confidential information. 

6.2 Limitations of the research 
 
This section is not published due to confidential information. 

6.3 Current Developments  
 
This section is not published due to confidential information. 

6.4 Future Research 
 
This section is not published due to confidential information. 
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Appendix A: Data definitions 
 

A1: Description of collected data  
 
This section is not published due to confidential information. 

A2: Description of research data   
 
This section is not published due to confidential information. 
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Appendix B: Mathematical methods used 

B1: Summary statistics 
 
We introduce general summary statistics from a general textbook on data analysis 
[18]. We first denote that x(i) stands for the so-called order statistic of the original 
sample with observations (x1,…………,xn). So x(1)  refers to  the smallest observation 
of the n observations, x(2) represents the second smallest observation and so on, with 
x(n) as largest observation.  
                                                   

Mean:    

 

Median:  

 

Standard deviation:   

 

Correlation coefficient:  

 

1st quartile:     

 

3rd quartile:    
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B2: General theory on hypothesis testing 
 
This section contains a general explanation of hypothesis testing from [16] as well as 
the theory of specific test statistics used in our research. We substantiate these tests 
with examples. 
 
The testing theory is based on a statistical model. An observation X belongs to a 
probability distribution with parameter q. This parameter either is part of a set Q0 or a 
disjunctive set Q1 = Q - Q0.   We distinguish two hypotheses. 
 

 

 
A statistical test for these hypotheses can lead to two conclusions. 
 
- Reject H0 (and accept H1 as correct).  
- Do not reject H0 (but also do not accept H1 as correct).  
 
The first conclusion is a strong conclusion and the second is not an actual 
conclusion. The alternative hypothesis represents the strong conclusion and the goal 
of each statistical test should be to draw this strong conclusion. We notice two types 
of errors.    
 
- Error Type 1: reject H0 when it is in fact correct. 
- Error Type 2: do not reject H0 when it is in fact incorrect. 
 
The first error is very undesirable and represents the unreliability of the test. In 
general the threshold of unreliability is a = 0.05 (5%). A conclusion with a £ 5% is 
considered as statistically significant.      
 
Kolmogorov-smirnov distribution test 
 
We considered this test to compare if two samples of data are similar. The test 
considers the following hypotheses concerning distributions F and G of both 
samples. In case of the one-sample test, the G distribution represents a certain 
known probability distribution as the normal or exponential distribution. 
 

 

  
The Kolmogorov-smirnov test is very suited, because the used distribution-free test 
statistic makes no assumptions concerning a distribution. The test uses empirical 
distribution functions. 

 

The test statistic for the one-sample test is: 
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The test statistic for the two-sample test is: 
 

 

 
The null hypothesis is rejected when Dm,n has a larger value than expected by the 
empirical distribution. This value can be derived from a table and depends on the 
sample size and the unreliability of the test (in general a = 0.05).  An example of this 
one-sample test is to test whether variable DDS in the overall data set is normally 
distributed (See Section 4.3.2). We then use the following command in Splus to 
perform the test and also show the outcome of this one–sample test.  
 
> ks.gof(dds, distribution = "normal", mean = mean(dds), sd= stdev(dds)) 
ks = 0.1125, p-value = 0.0308  
alternative hypothesis: True cdf is not the normal distn. with the specified parameters 
 
We thus test whether the values of variable DDS are normally distributed with as 
distribution parameters the mean and standard deviation (sd) of this variable. The 
outcome of this test is a p-value of 0.03. This p-value means that the test statistic 
Dm,n (ks = 0.11) is greater than the expected values for each a > 0.03  We have 
assumed that a test with a = 0.05 is still significant. Our p-value is thus smaller than 
this 0.05 and we can reject the null hypothesis and can assume that DDS is not 
normally distributed with the specified parameters.  
 
The two-sample Kolmogorov-Smirnov test to compare the distribution of all BUs 
within ING with those of all Bus in the research data set (See Section 4.2.2) is done 
by the same command ks.gof: 
 
> ks.gof(BUsample, Overallsample) 
 ks = 0.129, p-value = 0.6784 
 
We have a p-value that is much larger than 0.05 and we thus cannot reject the null 
hypothesis and have to conclude that the two samples are not significantly different 
but we also have no prove that they are equal. 
 
Dependency tests 
 
These tests use the following hypotheses: 
 

 

 
The Spearman rank correlation test is a distribution-free dependency test and is used 
for detecting dependencies between pairs of continuous variables and pairs of a 
continuous and a categorical variable. The test uses rank numbers R and S of the 
ordered values of X and Y. The test statistic is: 

      

 
The null hypothesis is rejected for values of l close to –1 or 1 
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We show an example of this test using the continuous variables BP and DP in the 
following Splus command. 
 
> cor.test (BP, DP, method ="s") 
rho = 0.612, p-value = 0 
alternative hypothesis: true rho is not equal to 0 
 
The p-value of zero is obviously smaller than 0.05 and we thus reject the H0 and can 
thus assume that BP and DP are dependent. 
 
A test for dependencies between a pair of categorical variables is based on a 
contingency table.  We look at a general form of a contingency table based on [5]. 
We have two factors A en B that will be tested against each other.  
 

Factor A  
(levels:  I = 1, .. , k) 

Factor B (levels: j = 1, .. , r) 
B1 . Bj . Br Row Total 

A1 N11 . . . N1r N1. 
. . . . . . . 
Ai . . Nij . . Ni. 
. . . . . . . 

Ak N1k . . . Nkr Nk. 
Column total N.1 . N.j . N.r n =  N.. 

 
- Ai and Bj are the different levels of the factor.   
- Nij is the actual number of observations that meet both levels of the factors Ai and 

Bj.     
- N.j stands for the column total, in other words the number of observations that 

meets factor Bj. 
- Ni.stands for the row total, in other word the total of projects that meets factor Ai. 
- n = N.. stands for the total size of the sample of observations.  
 
We can use these contingency tables to investigate the relation between each pair of 
factors.  Each cell of this contingency table has a probability pij. These probabilities 
have to fulfil the following condition. 
 

 

 
The dependence of this data can be tested against the following null hypothesis of 
independence. 

 

     

 
Our next job is to test the null hypothesis and the difficulty is the absence of the exact  
(expected) probabilities.  We can solve this problem by using a so-called maximum 
likelihood estimator (MLE) in order to calculate these probabilities. In our case this is 
the MLE based on the distribution under the null hypothesis. Our estimated pij should 
thus be equal to the probability of factor A (pi.) * the probability of factor B (p.j.).  
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Under the H0 we thus use the so-called Chi-squared (C2) test statistic. This test 
statistic has approximately a C2 –distribution with (k-1)(r-1) degrees of freedom (df). 
 

 with MLE:  

 
 This approximation is reasonable when the following rule of thumb is satisfied: 
 

     

 
We now have to compare the test statistic with the C2–distribution with (k-1)(r-1) for a 
certain level of unreliability (a = 0.05 is the common value of this level). We can 
reject the null hypothesis for higher values than the C2– distribution and then can 
conclude that the variables are certainly not independent, but are likely to be 
dependent on each other.     
 
We illustrate the use of the Chi-squared test using an example. We investigate the 
possible dependency between the type of Executive Centre (EC) and the project 
source (IO). Table B2.1 depicts the observed number of projects for each 
combination of the levels of EC and IO.  

 
Executive Centres (EC)  Project source (IO) 

In house Outsourced Row total 
Americas 22 3  25 

Asia/Pacific 11  18  29 
Europe 80  31  111 

Column total 113 52 165 
 

Table B2.1: Contingency table with actual # of projects in levels of EC and IO  
 
In this example the rows consist of all four levels of EC and the columns depict the 
levels of IO (the project is either developed in-house or outsourced).  
The numbers in the cell stand for the actual number of projects, which meet the 
belonging levels of both variables. Table B2.2 provides the expected numbers of 
projects assuming these two variables are independent.  
 

EC level (EC) Project source (IO) 
In house Outsourced Row total 

Americas 17.1 7.9 25 
Asia/Pacific 19.9 9.1 29 

Europe 76.0 35.0 102 
Column total 113 52 165 

 
Table B2.2: Contingency table with expected # of projects in levels of EC and IO  

 
We indeed see in Table B2.2 that none of the cells has an expected number smaller 
than five. We can thus use the C2–test by using Splus since more than 80% of the 
cells has thus an expected value of five or more. 
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> chisq.test (EC, IO) 
X-square = 17.6165, df = 2, p-value = 0.0001 
 
Our calculated p-value is smaller than 0.05 and we reject the hypothesis that the type 
of EC has influence on whether a project was developed in-house or was largely 
outsourced. We thus have to assume that both variables are dependent on each 
other.  
 
We also consider a pair of variables for which we cannot apply the C2–test.  
Tables B2.3 and B2.4 depict the actual and expected number of this pair of variables.  
 

Executive Centres (EC)  CMM level 
1 2 3 Row total 

Americas 20 5 0 25  
Asia/Pacific 24 0 5 29  

Europe 78 24 9 111  
Column total 122 29 14 165 

 
Table B2.3: Contingency table with actual # of projects in levels of EC and CMM  

 
Executive Centres (EC)  CMM level 

1 2 3 Row total 
Americas 18.5 4.4 2.1 25  

Asia/Pacific 21.4 5.1 2.5 29  
Europe 82.1 19.5 9.4 111  

Column total 122 29 14 165 
 

Table B2.4: Contingency table with expected # of projects in levels of EC and CMM 
 
We now only see 66.7% (3/9) of the cells in Table B2.4 with an expected value larger 
than five. The C2–test is not suitable and we use the Fisher exact test. This Fisher 
exact test calculates the probabilities of all similar tables (with the same row and 
column totals) of a certain contingency table. This probability is calculated with the 
formula depicted below: 
 

         

 
The Fisher test thus calculates the probabilities on all possible similar tables. The 
probability of the tested contingency table is taken as upper limit and all probabilities 
that are smaller or equal than this limit are summed up. This summation leads to the 
exact estimated p-value. In Splus this test is simply the following command: 
 
 > fisher.test(ec, cmm) 
p-value = 0.0062 
 
We can thus assume that CMM and EC are dependent (0.0062 < 0.05). The 
interested reader can find more information on this Fisher test in [15].
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B3: Logistic Regression 
 
The first part provides a general description of logistic regression. The second part 
focuses more on model building and the third part on the quality issues of the model.  
 
General theory 
 
We have a set of observations (X1,Y1) …, (Xn,Yn) with the binary response variable Yi  
(with thus possible values of 0 or 1)  and a number corresponding explanatory 
variables Xi = (xi1,….,xim). With logistic regression we study the dependence of the 
expected response E(YI) on the set of covariates (read: explanatory variables). We 
introduce the generalized linear model (GLM) since logistic regression is a special 
case of this GLM. 
 

   
 
h is called the link function. To ensure that the probabilities are always between zero 
and one, the logit link function is used for h, which maps (0,1) onto R (real numbers). 
 

 

 
The variance function for the response variable of the logistic regression model is 
defined as: 

 

In general f is assumed to be one for a logistic regression problem. This assumption 
will result in underestimating of the standard errors of the parameter estimates when 
f is smaller or greater than one (under- or over-dispersion). Yi is said to be over 
(under)-dispersed if the sampling variance of a response variable Yi is significantly 
greater (smaller) than the sampling variance expected by probability distribution 
(which is in this case the binomial distribution). In [11] the use of the quasi family for 
quasi-likelihood estimation is proposed as solution for the problem of over- or under-
dispersion. The reader who is interested in the exact theory behind quasi-likelihood 
estimation is referred to McCullagh and Nelder [12]. 
 
The coefficients b = (b0, b1, …… , bm) of the logistic regression equation need to be 
estimated. A GLM uses the maximum likelihood estimates. These values are 
obtained by maximising the log-likelihood l(b) with respect to b. 
 

 

The statistical package Splus which we used to analyse the data maximised l(b) 
numerically by solving score equations. This method is known as Fisher Scoring 
proposed by Nelder and Wedderburn [13]. The method comes down to an iterative 
reweighted least-squares (IRLS) procedure that iteratively obtains updated estimates 
of bs based on prior estimates of b. We show the principle of the method using the 
core equation that calculated the working response vector z0 from [13]. 
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This working response is reweighted at every iterative step, which leads to a new 
estimate of b.  This updating is repeated until bn - bn-1 is small enough. A more 
extensive overview can be found in [12,13].   
 
Model building 
 
An important measure in model building is the deviance, which measures the 
difference between a model and the largest possible or saturated model. A saturated 
model has included one parameter for each observation and thus fits perfectly. In the 
logistic regression case the deviance is defined in [12] as the scaled log-likelihood 
ratio statistic: 
 

  
In the logistic regression case the log-likelihood of the saturated model is zero, which 
leads to a simple formula for the deviance:   
 

 
 
The deviance is used in the likelihood ratio test, which tests the null hypothesis that the 
smaller of two nested models is adequate. Two models are nested if the simpler model 
is a part of the more complex model. The difference in deviance between both models 
is tested with a Chi-square statistic. This test can be used to manually build a model by 
testing each more complex model against the previous model.    
 
A standard method that is used in most statistical packages is the stepwise model 
building function. This function adds (or deletes) stepwise variables to (from) a 
certain model. The stepwise model building method in Splus uses the Akaike 
Information Criterion (AIC) to stop the iterative step function. This criterion is defined 
in [11]: 
 
AIC = Deviance (D) + 2*scale (f)*df.resid 
 
The reader should take into account that the residual degrees of freedom (df.resid) 
are simply the number of parameters in our model and that scale represents the 
dispersion parameter. The AIC could thus as well be written (with n the number of 
parameters in the model) as: 
 

   
 
The stepwise function stops when the AIC is not getting bigger. Like the likelihood 
ratio-test, this AIC only includes variables to make the model more complex if these 
variables significantly decrease the deviance.  
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Model quality measures 
 
In this part we explain measures that represent the goodness of fit of the model and 
also consider the quality of the estimates of the individual model coefficients. 
 
A measure that is in line with the well-known R2 for linear regression is the Darlington 
LRFC statistic from [4]. This statistic compares the log-likelihood of the null model 
(with all coefficients of the variables zero) with those of the current model.  
 

 

   
The McFadden Pseudo R2 is a similar qualitative measure. The original definition 
from [23] defines the null model as the model with intercept, which is the same null 
model as for the LRFC statistic.  
 

 

 
The quality of the estimates b can be assessed by a confidence interval. An 
approximate (1-a)*100% confidence interval for bi:  
 

 
 
Remember that the n stands for the total number of observations, p represents the 
number of included variables (without the intercept) in the model and st.error stands 
for the observed error of the estimate. 
  
The intervals with 0 included indicate that the influence of the coefficient is not that 
significant in the model. The coefficient can either be larger or smaller than zero, 
which means either a positive or negative influence on the response. The variables 
with this type of coefficients are not important. The intervals, which do not include 
zero, thus depict the statistical significant variables.  
 
Predictive quality measure 
 
The accuracy of the predictions of the model is the main concern in order to 
determine the predictive quality. The following measure determines the predictive 
quality of the model. 
  
The mean minus log-likelihood error (MML) is used to assess the quality of the p-
value itself. The value zero of MML stands for the perfect model and a big negative 
value stands for the worst model. This MML should ideally be calculated based on a 
set of projects that are not used in the model-building phase. If the model predicts on 
a set that is equal to the training set then MML cannot be interpreted as a predictive 
quality measure, but only as a goodness of fit metric. The MML definition from [3] is:   
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Appendix C: Research plots and results 

C1: Exploratory analysis plots     
 
We depict in this appendix plots that are very helpful to visualize the shape of the 
possible distribution and outliers.  We have used these plots in our exploratory data 
analysis (Chapter 4.3.2). We have examined four plots for each continuous variable. 
 
Histogram  
displays the frequency of a variable in certain value classes, which gives us a rough 
indication of the distribution. 
 
Box plot  
represents a graphical sketch of the numerical statistics. The solid box depicts the 
data between the 1st and the 3rd quartile (the inter-quartile range), displaying 50% of 
the data. The white line within the box stands for the median. The so-called whiskers 
embody the boundaries of the box plot; data points outside these limits are often 
considered as outliers.  
 
Density plot 
depicts a smooth estimate of the distribution or density. This estimate is based on 
sub parts of the values of variables. We have used two times the inter-quartile range 
as cut off points, which leads to a fairly smooth estimate.  
 
QQ plot 
tests the points of the variable against the normal distribution. If this plot indicates a 
straight line, then we have an indication of a normal distribution.  
 
The rest of this section contains confidential information. 
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C2: Logistic modelling results 
 
This section is not published due to confidential information. 
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C3: Quality measures of logistic models 
 
Classification statistics 
 
This section summarises numerical statistics that depict the classification quality of 
our logistic models. We refer to Chapter 4.3.4 for an extensive explanation on these 
statistics. Tables C3.1 and C3.2 show us that more complex models perform better 
and budget and functionality models perform as best.  We also see that the budget 
models are the most stable models. These models perform equal or even better on 
subsets than on all data according to Tables C3.3 and C3.4 (See bold values).  
 
Classification statistics 
 

 Model1 Model2 Model3 Model4 Random 
Budget  53.8% 60.1% 69.6% 71.7% 30.9% 
Duration  58.5% 58.5% 58.5% 80.9% 41.2% 
Functionality 60.4% 64.0% 69.9% 87.9% 27.3% 
Overall 78.2% 78.2% 81.4% 91.0% 66.1% 
 

Table C3.1: Eleven-point average recall of risk models on all data   
 

 Model1 Model2 Model3 Model4 
Budget 1.74 1.94 2.25 2.32 

Duration 1.42 1.42 1.42 1.96 
Functionality 2.21 2.34 2.56 3.22 

Overall 1.18 1.18 1.23 1.38 
 

Table C3.2: Relative lift factor (recall / random) of risk models on all data 
 

 All data Outlier Set BP set DP set PP set BS set 
Budget model1 53.80% 50.10% 59.60% 52.60% 56.30% 50.10% 
Budget model2 60.10% 58.10% 56.50% 50.40% 61.10% 48.00% 
Budget model3 69.60% 66.00% 59.40% 56.40% 58.90% 49.90% 
Budget Random 30.90% 29.94% 30.00% 26.77% 30.77% 26.23% 
Func. model1 60.40% 58.20% 53.30% 49.61% 62.00% 60.70% 
Func. model2 64.00% 60.90% 54.00% 50.20% 62.10% 58.40% 
Func. model3 69.90% 66.70% 59.20% 59.40% 63.60% 66.00% 
Func. Random 27.30% 27.39% 26.15% 25.20% 28.46% 27.05% 

 
Table C3.3: Eleven-point average recall of the budget and func. models on subsets   

 
 All data Outlier Set BP set DP set PP set BS set 

Budget model1 1.74 1.67 1.99 1.96 1.83 1.91 
Budget model2 1.94 1.94 1.88 1.88 1.99 1.83 
Budget model3 2.25 2.20 1.98 2.11 1.91 1.90 
Func. model1 2.21 2.12 2.04 1.97 2.18 2.24 
Func. model2 2.34 2.22 2.06 1.99 2.18 2.16 
Func. model3 2.56 2.44 2.26 2.36 2.23 2.44 

 
Table C3.4: Relative lift factors of the budget and func. models on subsets 
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Lift charts 
We can visualise the classification quality of our models with so-called lift charts. We 
again refer to Chapter 4.3.4 for a general explanation on these lift charts.    

 
Figure C3.5: Lift charts of different budget risk models 

 
 

Figure C3.6: Lift charts of different duration risk models 
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Figure C3.7: Lift charts of different functionality risk models 

 
 

 
Figure C3.8: Lift charts of different overall risk models 



                                                                                                           

   

 


