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and reviewing this thesis.

A lot of brainstorming occurred during the entire internship with other

interns at Sentient, the importance of these sessions cannot be overlooked.

I would like to thank Andrea Casati, Marijn Lems, Koen Pasman and again

Jan Lasek for their creative input.

Last but definitely not least, I would like to thank my parents for their

continuous support during my years at the university (and previous years).

Amsterdam, 31-10-2012

Vincent Hoekstra

i



ii Acknowledgments



Abstract

In this research a new type of prediction model is introduced, where an en-

semble of k-nn prediction models is created with the help of an evolutionary

algorithm. This approach is thought to be effective because of the impor-

tance of diversity in both ensemble models and evolutionary algorithms.

This model consists of two stages, where the first tries to find those models

that work well together within an ensemble and the second tries to learn the

optimal weights of these individuals. Both of these stages are evolutionary

algorithms, where the first stage uses deterministic crowding to find diverse

prediction models. This model is then trained and tested by predicting

games in the Dutch Eredivisie. The base two stage model is tested, together

with some additional features. Of these features only weighted voting im-

proved the performance of the model. The effect of the size of the ensemble

and the number of variables on the performance was also tested. The ensem-

ble created by the first stage is consistently better than that created by the

second stage and these predictions are comparable but slightly worse than

that of the best benchmarks. However, another ensemble model trained on

the same dataset was beaten by the evolutionary ensemble model.

Keywords: evolutionary algorithms, genetic algorithms, nearest neigh-

bor, football, deterministic crowding, ensemble, prediction, bookmaker, weighted

voting, diversity
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Abstract

In dit onderzoek wordt een nieuw voorspellingsmodel gëıntroduceerd, waar-

bij een ensemble van k-nn voorspellingsmodellen wordt gecreëerd door mid-

del van een evolutionair algoritme. De motivatie voor deze aanpak is dat

bij zowel evolutionaire algoritmes als ensemble modellen de diversiteit van

individuen een grote invloed heeft. Dit voorspellingsmodel bestaat uit twee

onderdelen, waarbij het eerste onderdeel de verschillende individuele mod-

ellen probeert te vinden die goed met elkaar samen werken en het tweede on-

derdeel probeert de optimale gewichten te vinden voor deze individuen. Deze

beide onderdelen zijn evolutionaire algoritmes, waarbij de eerste determin-

istic crowding gebruikt om verschillende individuele voorspellingsmodellen

te vinden. Dit model wordt getraind en getest door middel van het voor-

spellen van voetbaluitslagen in de Nederlandse Eredivisie. Het standaard

model wordt getest, samen met enkele toevoegingen. Van deze toevoeg-

ingen verbetert alleen weighted voting de kwaliteit van de voorspellingen.

Daarnaast wordt ook het effect van zowel de grootte van de ensembles en

het aantal variabelen getest. Het ensemble dat voortkomt uit de eerste

stap van het totale model is consistent beter dan dat van het tweede on-

derdeel en de voorspellingen van het model zijn vergelijkbaar, maar net iets

slechter, dan die van de beste benchmarks. Maar daarentegen doet het

model wel betere voorspellingen dan een andere ensemble techniek getraind

met dezelfde dataset.

Keywords: evolutionaire algoritmes, genetische algoritmes, nearest neigh-

bor, voetbal, deterministic crowding, ensemble, voorspelling, bookmaker, di-

versiteit
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Chapter 1

Introduction

1.1 Problem description

In data mining, ensemble models are powerful prediction tools. Ensemble

models make a decision based upon multiple underlying prediction models

that work together as a team. Already in 1997, Thomas Dietterich stated

that ensemble models would be one of the four main directions for data

mining, when he showed that these models outperform the single classifiers

that they consist of [9]. An indication of the power of these kind of models

was given by the teams that won the NetFlix grand prize, when they used

an ensemble model to win a price of a million dollars by predicting the

preferences of people who watch films, [51]. This research will capitalize

on the strong advantages of ensemble models and will do so in a novel and

intuitive way.

In traditional ensemble methods, like boosting, individual predictors are

trained separately. Instead, during this research base classifiers are de-

veloped simultaneously with the help of an evolutionary algorithm. This

approach is assumed to be effective, because there is a key factor that de-

termines both the success of evolutionary algorithms and the success of

ensemble models. This crucial success factor is the diversity of individuals.

The power of ensemble models lies in the fact that uncorrelated errors

between their members can be eliminated by using individual classifiers that

are both as good and as different as possible. Likewise, evolutionary algo-

rithms need population diversity so that they do not get stuck at less optimal

solutions. This similarity is a fundamental motivation for this research.

Sentient’s main application DataDetective has a fuzzy matching system,

that finds those instances in a dataset that deviate the least from certain

criteria. The core of this mechanism is a nearest neighbor algorithm. Sen-

1



2 Chapter 1. Introduction

tient is interested in using this core algorithm for prediction tasks. Since

DataDetective is used in combination with a lot of different datasets and

end-users are not necessarily data mining experts, it is important that such

a prediction functionality is able to make robust predictions without much

preprocessing or without much prior information about the dataset. The

evolutionary ensemble method was chosen because it is thought that such a

model can provide these robust predictions.

A suitable problem to test this evolutionary model on, is the prediction of

football matches. Football is the most popular sport in the world and a lot of

betting agencies exist that want to profit from this popularity. Bookmakers

make predictions on football matches and allow people to wager against

those odds. Being able to make better predictions than bookmakers should

result in a profit in the long run. Besides the practical value of being able to

predict football matches, there is another reason why football is suitable to

test such a model. The outcome of a football match is very hard to predict,

the few amount goals is one of the reasons why a lot of surprise outcomes

occur. Predicting football is a hard problem, that will provide a challenge

to any data mining application.

1.2 Goal of the thesis

The goal of the thesis is to create a robust prediction model based on an

ensemble predictor that is trained with an evolutionary algorithm. This

prediction model will be applied to the football domain, it should be able

to predict the outcome of football matches. Key aspect here is that this

prediction model should be able to make robust predictions without too

much preprocessing or focus on parameter settings. Therefore, while this

model is trained on football data, it should be able to be applied in any other

field relatively easy. The goal is to investigate how this type of modeling

can get good and robust results, rather than focusing on how to beat the

bookmaker predictions or making a profit from bets. It has to be stated that

in the original plan of this research the goal was to add sentiment data to the

dataset and investigate how useful this would be for prediction. This way, a

diverse dataset could be created where this type of modeling could be even

more effective. This research was later dropped in favor of the research into

ensemble models, because of time limitations and the fact that preliminary

analysis by Sentient showed that public sentiment is not very useful for the

prediction of football matches.
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1.3 Structure of the thesis

This thesis is structured in the following way. Chapter 2 will start with an

explanation of the domain in which this research takes place. The main aim

of this chapter is to bring the reader up to speed concerning the three most

important factors of this research, which are ensemble models, evolutionary

algorithms and football prediction. Chapter 3 focuses on the dataset that

was constructed for this research. Chapter 4 explains the base algorithm

that is used for creating the ensemble prediction model. Chapter 5 explains

and motivates how the evaluation of the models is done. Chapter 6 describes

the setup of the experiments that were performed during this research, while

chapter 7 presents the results of these experiments. Chapter 8 will then

discuss these results and chapter 9 will conclude the thesis.
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Chapter 2

Background & Related work

This chapter will be used to describe the domains that are relevant to this

research. It will start by describing current models that are used to create

ensembles and why ensemble models are so effective. Secondly, the general

structure of the evolutionary algorithm will be explained. Finally, the foot-

ball domain will be discussed. This includes which models are used in the

literature to predict the outcome of games and how bookmakers profit from

these predictions.

2.1 Ensemble models

An ensemble model is a model that creates multiple single prediction mod-

els and then aggregates these predictions somehow into a single prediction.

Ensemble techniques are known to perform well on a variety of problems,

and they tend to outperform the single classifiers that they are constructed

from. The reason for this is given by [9], independent errors on the test set

are diversified when using an ensemble. A prerequisite for this behavior is

that the individual members in the ensemble are diverse, which means that

they are able to produce better predictions on different test instances.

There are multiple ways of creating an ensemble classifier. In [5], Brown

et. al. give a taxonomy of diversity creation in ensembles. In the paper,

diversity creating methods are separated according to two distinctions. The

first distinction is between implicit and explicit methods. Explicit methods

use or try to optimise some measure of diversity when the ensemble is con-

structed, implicit methods create diversity in another way, without using

a clear diversity measure. The second distinction made by the author is

a lower level distinction between methods. The underlying models in the

ensemble can be diverse by involving:

5



6 Chapter 2. Background & Related work

• A different starting point.

• A different set of accessible models.

• A different way of optimizing the model.

The first ensemble method is particulary useful with unstable algorithms.

Unstable algorithms are algorithms that produce different results on mul-

tiple runs, often when slightly different training data is used. Examples of

unstable algorithms are decision tree induction, [54] page 317, and Genetic

programming [24]. In general, unstable algorithms are quite suitable for

ensemble strategies. In [24], Johansson et. al. create ensembles of nearest

neighbor algorithms with the help of genetic programming. The main fo-

cus in that research was to create ensembles based on this instability of the

underlying models.

Some of the more popular ensemble creating strategies are the following

algorithms.

• Bagging

• Boosting

• Random Forest

• Stacking

Bagging, or Bootstrap Aggregating [3], is an implicit ensemble method that

uses a different starting point for constructing each ensemble member. For

each individual predictor in the ensemble, a bootstrap selection is performed

on the dataset. When applying one iteration of a bootstrap selection, the

training data of the current model is constructed by sampling from the

dataset until a training set is constructed that is the same size as the original

data set. Because sampling is done with replacement, duplicates can occur

in this training set. On average, the number of distinct instances in such a

bootstrap training set is 63% of the original dataset. Those instances that

are not in the training set will encompass the test set for that iteration. This

way a different dataset is used for each iteration of the Bagging algorithm

and each of these iterations produces one individual model for the ensemble.

The final prediction of the ensemble is done by majority voting among the

individual predictors.

Boosting is a similar technique, in that it is an implicit ensemble method

using a different starting point for each creation of an individual model. But

where in Bagging the central theme is the bootstrap selection, in Boosting
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Algorithm 2.1 Boosting Algorithm.

Given a dataset of size N and k iterations (individual prediction models).

1. Initialize the weights at 1/N

2. For 1 : k

3. Create a bootstrap sample using the weights as a probability distribution.

4. train and test the model given de bootstrap training and test set.

5. calculate the error measure for this base classifier.

6. recompute the weights.

end for

7. Aggregate the predictions of the classifiers 1 : k to get an ensemble

predicion.

the key feature is that the relative importance of instances in the dataset

changes. Usually, for the first iteration each instance in the dataset has the

same weight, but in following iterations the weights of misclassified instances

increase and the weights of correctly classified instances decreases. These

weights can then be used for two purposes [49] page 286 :

• They can be used as a sampling distribution for the bootstrap selection

for the training set.

• They can be used by the base classifier for a weighted error measure

on the test set.

The Boosting algorithm is specified in Algorithm 2.1. Aside from how the

weights are used, different Boosting algorithms differ in the way the weights

are recomputed and in the way the predictions are combined into an ensem-

ble, [49] page 288. The most popular boosting algorithm is AdaBoost [12].

Boosting is effective because it forces underlying models to specialize on

different instances in the training set, which leads immediately to a diverse

ensemble.

Random Forests [4] are ensembles constructed from multiple decision

trees. A Random Forest is a typical example of an ensemble method where

the amount of accessible models is limited for each individual classifier. For

each base classifier, again a bootstrap sample of the dataset is taken. Then

for each node in the tree, a variable is necessary to split the node. This

variable is selected by taking a random sample from all the available variables

and choosing the best variable to split the node, among those that are in

the sample. This imposes a limit on the way the tree can be constructed.

Generally, trees in a Random Forest are not pruned, this creates even more
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diverse trees. A limit on the number of nodes or a limit on the depth of

trees is used instead.

Stacking, [55], is a different model compared to the others, in the sense

that it does not necessarily construct the base models itself. Instead, stack-

ing might perform the best given a set of predictors that are entirely different

models. Stacking is performed by first training multiple base models on the

dataset and then adding these predictions to the original dataset. Other

models can then try to make predictions based on this improved dataset.

This procedure can be repeated multiple times.

Aside from these popular models, some research has been done in creat-

ing ensembles with evolution. In [48], Sylvester and Chawla, create ensem-

bles of neural networks with the help of evolutionary algorithms. However

the research described in [48] is different compared to the current research

because, in [48] individual classifiers within the ensemble are not created by

the evolutionary algorithm but only the weights of already existing classifiers

are optimized with an evolutionary algorithm. In [13], Gagné et. al. provide

another way of creating ensembles with evolution, where they incorporate a

diversity measure directly in the fitness evaluation.

2.2 Evolutionary algorithms

Evolutionary algorithms, First introduced by Holland [23], are a special

kind of trial-and-error problem solving algorithms. They use the concepts

that are characteristic for biological evolution, namely natural selection and

recombination of genetic material [46], but apply it to problem solving. To

explain how evolutionary computing works, it is best to start with explaining

biological evolution.

In nature, species compete for the limited amount of resources that are

available. The individual that is able to compete for these resources the

best, has the biggest chance for survival, and therefore has a bigger chance

of producing offspring. Due to genetics, this individual can pass along those

specific traits, that made him the fittest member of the species, to his off-

spring. This mechanism ensures that entire species become generally more

“fit” as generations continue. An important factor is that two members of a

certain species combine their traits in their offspring. This creates entirely

new members in the population, which keeps the population diverse.

This scheme can be translated into a problem solving algorithm. In-

stead of species competing for resources, individuals in a population depict

solutions to a problem. The fitness of individuals of this population is de-

termined by how good they solve the particular problem. Their chances of
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advancing to the next generation depends on their fitness level. To keep

the population from becoming exterminated, individuals should be able to

combine themselve into offspring. This leads to one of the most challenging

problems when designing an evolutionary algorithm. How should candidate

solutions be able to pass along their traits to their offspring?

Each individual solution in the population is made up by two representa-

tions. The phenotype representation is the actual solution which is tested on

the problem. The genotype representation is the equivalent of the chromo-

some of the solution, it is a piece of code that describes the phenotype of the

solution. Designing a good genotype representation of individual solutions

is the biggest challenge when applying an evolutionary algorithm. Another

challenge is how to combine two parent genotypes to create offspring that

have similar characteristics as their parents. How to design this genome and

this recombination is often very specific to the problem that needs to be

solved by the evolutionary algorithm.

The main scheme of an evolutionary algorithm is given by Algorithm 2.2.

This scheme is roughly the same for each evolutionary algorithm. This gen-

eral scheme immediately leads to those features of an evolutionary algorithm

that still need to be designed. These are:

• Genotype representation - The encoding of the solution, used for re-

combination.

• Recombination - The operator that defines how parent genotypes are

combined into offspring.

• Mutation - The operator that defines changes on a single genotype

when it is created.

• Parent selection - The operator that decides which individuals in the

population are selected for creating offspring.

• Survivor selection - The operator that decides which individuals survive

to the next generation.

In general, an evolutionary algorithm can be described by describing the

above features and applying algorithm 2.2.

The recombination and mutation operators have different roles within

the evolutionary algorithm. The goal of the recombination is to take big

leaps through the solution space while mutation is used for the finer search

through the solution space. The selection operators are used to steer the

population in the direction of fitter solutions.
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Algorithm 2.2 General evolutionary algorithm scheme. Source: [11], page

17

BEGIN

INITIALIZE population with random candidate solutions;

EVALUATE each candidate;

REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO

1. SELECT parents;

2. RECOMBINE pairs of parents;

3. MUTATE the resulting offspring;

4. EVALUATE new candidates;

5. SELECT individuals for the next generation;

OD

END

Normally, due to genetic drift [44], evolutionary algorithms tend to con-

verge to just one optimal solution. But, as mentioned before, diversity is

very important when considering evolutionary algorithms. The quality of

the search that the algorithm performs depends on the amount of diversity

within the population. The more diverse the population is, the more solu-

tions are represented in the population. Because of this relation, a lot of

evolutionary algorithms have been designed that try to maintain as much

diversity within their population as possible. A special class of these, is the

class of multi-modal evolutionary algorithms. With this type of algorithm,

the goal of an evolutionary algorithm is not to find just the global optimum,

but to find all local optima. When such an algorithm is applied, individu-

als in a population converge to different optima in the search space. Some

popular multi-modal evolutionary algorithms are:

• Clearing [38, 44]

• Crowding [35]

• Species conserving genetic algorithm. [31]

• Restricted tournament selection [19]

In [44], the authors compare the above and other multi-modal evolution-

ary algorithms extensively. They conclude that among the best models are

restricted tournament selection, a modified clearing approach, and deter-

ministic crowding. These models are able to find most of the peaks in the

fitness landscape. The difference between them is that the modified clearing

approach could find all peaks, but was slow. Deterministic crowding found
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less peaks compared to the modified clearing approach, but needed the least

amount of computation time.

2.3 Football

2.3.1 Football betting

Bookmakers are companies who offer bets to customers. In sports, book-

makers offer bets on certain events during a game. This can range from

the most common bet on the outcome of the game, to the number of yellow

cards in a football match or the first player to perform a corner kick. The

outcomes of these bets are highly unpredictable and this section will give a

short description on how bookmakers make a profit on these kind of bets,

despite the uncertainty.

At the heart of every bet lies a prediction made by the bookmaker. A

bookmaker assigns a certain probability to every possible outcome of the

bet. If a bookmaker is not interested in making a profit, it would allow

people to make bets against these probabilities. Consider the example that

people could bet on the match of Manchester United against Ajax and the

bookmaker assigns probabilities of 75% and 10% respectively for the team to

win. The profit that should be gained on a successful bet on these outcomes

should be respectively 1.33 and 10 times the initial money at stake. These

numbers are called the odds of a bet and when the bookmaker does not use

a profit margin, these are called the fair odds.

Bookmakers like to make a profit and that is why they usually use a

profit margin, this is a slight decrease in all the odds so that the pay offs

are always slightly lower. This way, the expected value of a bet, based on

the bookmaker predictions, is always slightly lower than the initial outlay.

Aside from this mechanism, bookmakers tend to increase and decrease the

odds of a particular outcome based on past betting behavior. Consider the

previous example of Manchester United versus Ajax, as soon as a lot of

people start to bet on Ajax, the bookmaker will start to decrease the odds

of this outcome en slightly increase the odds of the other outcomes. This

way, a bookmaker diversifies the risk and this almost always guarantees a

profit roughly equal to the profit margin the bookmaker uses.

Coming up with a profitable betting strategy against bookmakers is a

difficult task. The most common approach is that of value betting, which

means betting on those outcomes where the probability estimated by the

bookmaker is lower than predicted by the person who wants to place a bet.

This essentially means that the better thinks that the bookmaker made a
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mistake in assessing the probabilities of the outcome of a game.

Coming up with a viable betting strategy comes down to one of two

options. The first one is to be able to make better predictions than the

bookmaker, however, if this is the case than becoming a bookmaker might

be a more profitable strategy. The other option is to spot those games and

those outcomes of games where bookmakers tend to make mistakes and bet

on those outcomes if such a mistake is perceived.

2.3.2 Predicting football

Match outcome predictions have been studied for multiple decades now.

Maher [34] was one of the first to use a statistical approach to model the

outcome of a football match. He modeled the amount of goals scored by

both teams with a Poisson distribution. In [10, 41], the authors provide

extensions to this model, so that it can be used for prediction.

The previous method predicts the amount of goals for each team and

infers the actual winner of the game from this result. A more recent approach

is to determine the outcome (win, draw, loss) of the game directly. Koning,

[28], used this in his research about balance in the Dutch national football

league and Goddard, [15], implemented a similar model in a comparative

study. Both use an ordered regression model to predict the outcome of

the game. According to Goddard, Poisson models and ordered regression

models are the most used methods for predicting football, in his comparative

research he concludes that these methods have a very similar performance.

Both types of models use a similar approach, in that they use ratings to

measure the current strength of both of the teams and predict the result

based on this difference in strength. These ratings might be influenced by

home advantage or, for example, the fact that the team can still win the

competition and is therefore more motivated. In these models, the ratings of

both teams are compared and predictions are inferred from this comparison.

In other studies about football prediction, Leitner et. al. [30] try to pre-

dict the outcome of the 2008 European championship based on Elo ratings

and bookmaker odds. Luckner et. al. [33], try to predict football outcomes

with the help of prediction markets. An artificial Intelligence technique was

used by Constantinou et. al. [8] in the form of a Bayesian network, when the

authors tried to incorporate expert opinions in their model. Evolutionary

algorithms where also used for football predictions on few occasions. Rot-

shtein et. al. [39] used a genetic algorithm and fuzzy model to predict the

outcome of games. Rowan, [40], evolved betting strategies for betting on

the outcome of football games, and was able to get a profit with this model.



Chapter 3

Data Description

This chapter will explain how the data was retrieved and how the dataset

was created that was used during this research.

3.1 Data retrieval

Data about football is scattered all over the internet. However, football-

data.co.uk provides a complete dataset about fixtures and betting odds that

were invaluable during this research. It enabled variables that reflected past

performance and provided a clear benchmark to the problem, the predic-

tions based on bookmaker odds. Other data had to be retrieved from other

sources. In [16], Goddard used multiple variables for the prediction of foot-

ball matches. Among these variables were: whether or not one of the teams

was eliminated from the cup, and the distance between stadiums. Aside

from these variables, each pairing of team i and team j has been given a

rivalry score, depicting the rivalry of team i towards team j. This way each

match has two rivalry scores.

Sources:

• League data: football-data.co.uk

• Betting odds: football-data.co.uk

• European cup games: statto.com

• Domestic cup: fcupdate.nl

• Stadium distance: Google maps

The data was retrieved with Selenium, which can be found here: http://seleniumhq.org.

13
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3.2 Data preparation

After the data is retrieved, it needs to be processed to a format suitable for

nearest neighbor algorithms. Since individual matches need to be predicted,

each instance in the dataset should depict one match. This way, a match

can be predicted by looking at the most similar instances. The distance

between different football matches is then calculated by comparing variables

within the dataset. The main topic of this section is how these variables are

constructed.

To start, each match consists of two teams competing at the grounds of

one both teams. This way, each match in the dataset has a hometeam and

an awayteam, both have scored an amount of goals from which the result

of the match is derived: {Home win (H), Away win (A), Draw (D)}. This

result is the variable that has to be predicted by the algorithm, for a given

football match.

The goal here is to create a vast dataset with a lot of variables, the

selection of the useful variables for prediction is done by the evolutionary

algorithm. Therefore, no prior knowledge is necessary about the usefulness

of these variables. Variables can roughly be separated in two categories:

Variables that reflect past performance of teams and miscellaneous variables.

In the dataset that is used in this research, the variables that do not depict

past performances are:

• Team names.

• Rivalry from one of the teams to the other.

• Whether a team plays in a cup next week.

• whether a team played in a cup last week.

• Geographical distance between stadiums.

This is a short list, while the original intention was to create a diverse

dataset about football, this proved to be harder than expected. Lots of data

is available about football, for example grades given by experts to players,

information about the lineups or sentiment data. However, this data only

goes back a small period of time. Most information is only stored for the

current season. This posed a lot of restrictions on the type of data that

could be used during this research.

Because of this reason, most of the variables in the dataset are vari-

ables that reflect the past performance of one of the teams, or the relative

performance of one team compared to the other. These are variables that
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depict, for example, the number of goals or the number of points scored by

a particular team. When considering such variables, some dimensions play

an important role. These dimensions are characteristics about a variable,

where each variable must be about:

• A team - Home team, away team, or the difference between both.

• A location - At home, away, or in total.

• A time interval - For example, the last 1,3,10, or 34 games.

• A quantity - Points, goals, goals conceded, or goal difference.

All the above distinctions are important when considering football, informa-

tion about both of the teams is relevant, but the difference in past perfor-

mance of both teams might be more related to the actual chances of winning.

A reason why the information about the individual teams is relevant as well,

is that if, for example, both teams scored a lot of goals in recent matches,

the difference between them is still around zero. However, the probability

of a draw happening is decreased in this scenario, because goals are likely

to be scored and the probability of a draw decreases when a lot of goals

are expected. Whether or not the goals where scored at home, away or in

total is also relevant because some teams have a bigger advantage of playing

at home and this should be reflected in past performances at their home

ground. Whether or not these performances are long term or short term

might also make a difference, that is why a time frame is considered. For

this research, looking back 1, 3, 10 and 34 matches was considered a good

selection to capture any short term and long term behavior.

There are a couple of variables in the dataset that are obtained with an

ordered regression model [15, 28]. With this model, a rating can be given to

both the home and the away team. This rating depicts the current strength

of the team and outcome probabilities can be inferred from these ratings.

In this dataset, ratings were constructed by using: all the previous matches,

the last 30 matches, or the last 10 matches. these three sets of ratings were

used to calculate outcome probabilities, which were also put in the dataset.

These ratings were provided by Sentient. For more information about them

see [29].

When combining all the possibilities for the dimensions, mentioned ear-

lier, there are a lot of variables to consider. For example one of these vari-

ables could be the points scored by the home team at home and away in the

last 3 games. The total amount of variables that can be created from these

combinations are 144. However, a few were dropped because they are not
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considered to be relevant. These variables were variables that computed the

difference in performance of the away team while playing at home and the

home team playing away.

The dataset consists of seven seasons, because some variables could only

be retrieved for that time span. From this set of matches, the first two

weeks had missing data, so they were removed as well. The total dataset is

comprised of 2124 matches with a total of 149 variables.



Chapter 4

Model description

This section will describe the basic version of the evolutionary ensemble

model that has been developed during this research. It will start with a

basic description of the underlying nearest neighbor mechanic and explains

the evolutionary model afterwards. The training of the model has been

split into two stages, the models for both stages will be explained in greater

detail.

4.1 k-nearest neighbor

Nearest neighbor algorithms belong to the lazy class of models. A lazy

model is not trained on training data, but classification is done by modeling

the training data each time a classification needs to be made, [49] page

223. Because there is no model trained beforehand, no computation time

is necessary at that time to compute such a model. Instead, computing

predictions for a test instance can become quite expensive, because all the

distances between the test instance and all the training instances need to be

calculated.

Nearest neighbor algorithms need an extensive amount of preprocessing

before they can be used. For example, all numeric values should be nor-

malized to assure that all variables are equally important. Fortunately, in

this research this normalization and preprocessing is managed by DataDe-

tective. Within the DataDetective framework, given a dataset, it is enough

to provide a new instance and the variables that need to be considered for

the matching algorithm and DataDetective will return the k nearest neigh-

bors according to those variables. This is very useful when considering an

evolutionary algorithm, because the only thing that separates two different

nearest neighbor algorithms from each other is which variables are used for

17
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prediction.

These k neighbors are used to make a prediction. The match outcome

of all these neighbors is known. To give a prediction for the match that

needs to be predicted, a probability distribution can easily be derived by

taking the frequency of each outcome among the neighbors and dividing

this number by k.

4.2 Two-stage model

The evolutionary ensemble model consists of two stages, where the result

of the first stage is used by the second stage. Both of these stages are

evolutionary algorithms and both are able to provide an ensemble prediction

model based on individual k-nn predictors. The first stage is the most

important stage, this is the stage where the individual k-nn predictors are

found that are useful when working together. Logically, the individuals in

the population of this evolutionary algorithm are k-nn predictors. The final

population of this stage is provided as input for the second stage.

The second stage tries to find the optimal ensemble, given the individual

predictors provided by the first stage. Individuals in the population of this

evolutionary algorithm consist of ensembles, where each base k-nn predictor

in such an ensemble has a weight that determines the relative importance

of that predictor within the ensemble. The last population of this second

stage is used to provide a prediction based on the optimized ensembles.

The main difference between the result provided by the first stage and

second stage is that the first stage simply uses all the k-nn models that are

provided with equal weight. The second stage, on the other hand, makes a

selection from all the classifiers and provides prediction based on a weighted

average on these selected individual k-nn models.

4.3 First stage

The goal of this stage is to find as much diverse predictors as possible. As

stated in chapter 2, there is a specific class of evolutionary algorithms that

deals with this type of problems where multiple optima need to be found.

These multi-modal evolutionary algorithms are ideal when creating base

classifiers for an ensemble model. Deterministic crowding is chosen as a

suitable algorithm for this problem, because of its speed and performance,

[44].

One iteration of the deterministic crowding algorithm is specified in al-



4.3. First stage 19

Algorithm 4.1 Deterministic crowding, source: [44]

1. Select two parents, p1 and p2, randomly with no replacement.

2. Perform crossover between them , yielding c1 and c2.

3. Apply mutation/other operators, yielding c1’ and c2’.

4. if [d(p1, c
′
1) + d(p2, c

′
2) ≤ d(p1, c

′
2) + d(p2, c

′
1)]

- if f(c
′
1) ≥ f(p1) replace p1 by c1’

- if f(c
′
2) ≥ f(p2) replace p2 by c2’

else

- if f(c
′
2) ≥ f(p1) replace p1 by c2’

- if f(c
′
1) ≥ f(p2) replace p2 by c1’

gorithm 4.1. During each generation of the evolutionary algorithm, this

algorithm is applied until each member in the population is used exactly

once for recombination. This ensemble creation scheme creates diversity

in an explicit way, since deterministic crowding needs an explicit diversity

measure, which is specified by the value d(a,b) in the algorithm.

The deterministic crowding algorithm is first introduced in [35], and it

ensures population diversity by the fact that new members are only added

to the population if they have a better fitness than their most similar parent.

The evolutionary operators, for example for parent recombination, are not

specified by the algorithm. These modeling choices for the evolutionary

operators for the first stage are specified in table 4.1 and motivated below.

Operator Description

Phenotype k-nearest neighbor classifier

Genotype encoding Bit string

Recombination 3-point crossover

mutation bit flipping

selection Based on deterministic crowding

diversity measure Hamming distance

Table 4.1: Operators for the first stage of the algorithm.

Genotype encoding – each nearest neighbor model only differs in which

variables it uses for the prediction, for the encoding it is enough to specify

this difference. The encoding of a model consists of a bit (either 0 or 1) for

every variable, where a ‘1’ means that the variable is used to calculate the

difference to neighbors in the training set. The encoding of one individual

prediction model then becomes a bit string. The motivation behind this

approach is that there is a structure in the ordering of the variables in
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Figure 4.1: 3-point crossover.

the dataset and by using a bit string, the genome takes this ordering into

account. For example a part of the genome could be 01110, meaning that

the three variables in the middle are switched on because they might work

good together.

N-point crossover is chosen for the recombination of these individuals.

N-point crossover is done by taking the two parents and selecting n points

randomly in the genome. All of the segments between those points are either

given to child 1 or to child 2. The number of crossover points that is used by

the algorithm is three. Picture 4.1 shows an example of 3-point crossover.

The motivation for 3-point crossover is that many variables in the encod-

ing are somehow linked to adjacent variables. For example “goals scored by

the away team” and “goals conceded by the away team” could be stored next

to each other in the genome. 3-point crossover ensures that these structural

properties are not constantly broken up during crossover.

Mutation is done by simply flipping a bit from ‘0’ to ‘1’ or vice versa.

Each bit in the genome has a probability p, which is the probability that

the bit will flip when it is created. This probability is set so that on average

one bit will be mutated for every creation of a child.

Deterministic crowding also needs a diversity measure to check which

parent should be compared to which child. The Hamming distance is used

as a measure for the diversity, which is simply the number of bits in the

string that are not equal. When considering the phenotype representation,
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Operator Description

Phenotype Ensemble of classifiers

Genotype Vector of indexes and weights

Recombination Uniform

Mutation Random Resetting

Parent Selection Ranking based selection

Survivor Selection Tournament selection

Table 4.2: Evolutionary operators for the second stage.

the Hamming distance describes the amount of variables that are not shared

by both individuals.

4.3.1 Initialization

The initialization of the algorithm deserves special attention. Initialization

in evolutionary algorithms is generally random to create a diverse initial

population. The most straightforward way to create randomness with this

encoding is to have a 50/50 chance for each bit to be either a 1 or a 0.

However, this results in a population where each individual had around 50%

of its variables switched on at initialization. This situation is unwanted,

because it is not sure if this is the best amount of variables to use. By

changing the probability of a 1 to occur at initialization, the average number

of variables switched on can be manipulated. This way, multiple tests can

be performed to check what kind number of variables performs the best.

4.4 Second stage

For the second stage, the goal is to use the individual models provided by

the first stage and combine some of these in an ensemble that should be able

to predict the outcome of football matches better than the single classifiers.

Table 4.2 shows the evolutionary operators for this part of the algorithm.

Each of these ensembles consists of a predetermined number N of single

predictors. These N classifiers are chosen from those given by the first stage.

Each of these classifiers within the ensemble has a weight. This weight

determines how heavy the prediction of this individual counts compared to

the others in the ensemble, these weights sum up to 1 for convenience. Each

of the classifiers returned by the first stage gets a unique index number. The

genotype then consists of N pairings of this index number and a weight. The

motivation why this method is preferred over simply using all the available
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k-nn predictors for each ensemble is that deterministic crowding divides its

population evenly over all the peaks in the fitness landscape. This means

that, while the entire population is diverse, there are some similar individuals

in the population of the first stage. By taking a maximum of N predictors,

these redundant prediction models should be eliminated from the ensemble.

Another reason is that it allows more control over the algorithm, to check

which ensemble size performs the best.

The recombination operator is explained in picture 4.2, it resembles uni-

form crossover, where each pairing, of a weight and index, in the genotype

has a 50% chance to belong to child1 or child2. For mutation, each index

has a chance of resetting on creation, which means that the index changes

to another that was not yet in the ensemble. Each weight has a probability

of changing, when this happens, the weight resets and all the weights are

normalized again. Parent selection is done by favoring individuals that have

a higher fitness ranking. Ranking based selection is preferred over the most

well-known fitness proportionate selection. Fitness proportionate selection

tends to converge faster, and therefore has a higher risk of premature con-

vergence. Ranking based selection is done based on formula 4.1, source:

[11]. In formula 4.1, i is the rank of the individual, given that the fittest

individual has rank µ− 1 and the lowest has rank 0. S is a parameter that

specifies the skewness of the distribution towards the fittest member. This

parameter should be between 1.0 and 2.0 and in this implementation 1.6 is

chosen. The number of children created is kept at 50% of the total popula-

tion size. Survivor selection is then performed by tournament selection [11].

The size of the tournaments is 20% of the total population size.

pselection(i) =
2− s
µ

+
2i(s− 1)

µ(µ− 1)
(4.1)

The final prediction of the second stage is given by averaging all the

predictions of the ensembles in the final population.
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Figure 4.2: Recombination operator for the second stage.
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Chapter 5

Model evaluation

Correct performance evaluation is crucial in both data mining and evolu-

tionary algorithms. In data mining the actual performance of a model can

only be adequately tested when a test set is used that is not applied in any

way during the training of the model, [54] page 146. When that model is

an evolutionary algorithm this issue is even more important, because eval-

uations occur during the learning process in the form of fitness evaluations.

This chapter will specify two important choices regarding the model evalua-

tion. The first part of the document will consider the choice for the training

and test set. The second part will discuss the choice for an appropriate

performance measure for a football result prediction model.

5.1 Choice of training and test set

The dataset consists of seven seasons, all of which contain 306 matches.

This is divided into a training set, a fitness calculation set, and a set to

estimate the actual performance of the entire model, a test set. During a

generation in the evolutionary process, fitness scores are used to determine

survival chances. To make sure that differences in fitness between members

in a population are reliable, the same test set is used for each individual in

a population. This approach has a drawback, the evolutionary process will

evaluate each generation on the same sequence of matches and will tend to

overfit on those matches. Chapter 6 introduces a couple of strategies that

try to counter this behavior. In the original model the dataset is split in the

following way:

• Training set: first 4 seasons.

• Fitness evaluation set: 5th and 6th season.

25
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• Test set: last season.

The choice to make the fitness evaluation set bigger than the actual test set

was because overfitting is done on this fitness evaluation set and it should

be as big as possible to counter this overfitting problem. When the actual

performance of the model is tested, all the previous instances are used as a

training set, including the previous fitness calculation set. This ensures that

matches are predicted by using the most recent information but never predict

based on the future. Strategies like bootstrapping and cross validation were

not used because matches would be predicted based on future data, which

could be considered an unfair advantage.

5.2 Performance measures

The goal of the model is to come up with predictions that are better than

those of the bookmakers. Therefore, a classification of the most likely result

is not enough. Bookmakers give their predictions in the form of probability

distributions. The prediction of the model has to be in the form of a prob-

ability distribution on the outcome of the game {P(h), P(a), P(d)} as well.

Evaluating a predicted probability distribution on a given match is difficult,

because the only information that can be used is the actual outcome of the

game.

Intuitively, one of the first measures that comes to mind is the proba-

bility assigned to the actual outcome. However, that this measure is not

appropriate can easily be shown by an example. If the correct probabil-

ity distribution for a match is {0.5,0.3,0.2}, than the expected reward for

predicting {1,0,0} is higher than for predicting the actual probability dis-

tribution. Using this measure is equivalent to predicting the most likely

outcome, because on average this will score better.

There are, however, some measures that are more appropriate when try-

ing to predict probabilities. These are the log-likelihood (or the equivalent

information loss function), depicted in eq. 5.1 , the quadratic loss function,

eq. 5.2, and the rank probability score in eq. 5.3.

log − likelihood = loge(pr) (5.1)

quadratic loss =
∑
j

(pj − aj)2 (5.2)

Rank Probability Score =
1

k − 1

k∑
j=1

(cdf(pj)− cdf(aj)
2 (5.3)
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Where pj is the estimated probability of class j, aj is the actual outcome

of class j, which is 1 or 0, k is the number of classes, which is three, pr is

the probability that was attributed to the actual result, and cdf is the

cumulative distribution function of that variable.

The first two are common approaches, [54] section 5.6, for predicting

outcome probabilities, but the log-likelihood has the nice property that it

is similar to the return from bets, [54], which is appropriate in this case.

The rank probability score is suggested in [7], by Constantinou and Fenton,

as a good alternative for the prediction of football outcomes. The authors

state that other measures are not appropriate, because the results in football

are from an ordinal scale. They state that predicting a draw, instead of an

away win, should be rewarded more if a home win happens. In principle this

seems correct, but it has been observed that for teams of similar strength,

a draw is often the least likely outcome. Because of this reason, penalizing

away win predictions in this case seems unfair. The rank probability score

can be useful in another situation. For the fitness evaluation, it might be

useful to predict the goal difference instead of the outcome of the game, this

might result in some different nearest neighbor classifiers that can be used

in the second stage of the algorithm. The rank probability score is suitable

in this case, because the goal difference definitely has an ordinal scale.

Another option, since bookmaker data is available, would be to calculate

the money gained from bets directly. The advantage here is that this gives a

result that is easier to interpret than the measures mentioned above. There

are, however, a couple of drawbacks. In [53], the author concludes that

there is only a weak relation between predicting profit and predicting actual

outcomes in finance. The best model to predict profit does not necessarily

have to be the best prediction model. Aside from this, the two main reasons

not to predict profit is that such a model is trained with the goal to find

faults in the predicting system of a bookmaker, which might perform worse

if the bookmaker starts to use a different model. The other reason is that

profits depend a lot on the betting strategy that is applied, results might be

more dependent on this strategy than on the actual prediction capabilities

of the model.

To conclude, the model will predict matches based on a {P(h),P(a),P(d)}
probability distribution. The fitness of an individual in a population will be

the average log-likelihood performance on the fitness calculation set, because

the log-likelihood is an appropriate measure when considering bets. For

the final result, not only the log-likelihood will be presented but also the

percentage of correctly classified instance and the quadratic loss function.

The percentage correct is useful to present because it is easy to interpret
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and the quadratic loss function is added because it takes into account the

entire outcome probability distribution, and might therefore give some extra

information.



Chapter 6

Experimental setup

This chapter will describe the experiments that are performed to check the

performance of the evolutionary ensemble model. The first section describes

the setup for a test that should give an overview of the general performance

of the base model, described in chapter 4. The second section of this chapter

will describe tests that involve changes to this base model. The third part

will describe a couple of tests that have been performed to check what the

effect is of both the size of the ensemble and the number of variables used

for prediction.

6.1 Base model performance

Evolutionary algorithms optimize a model based on an iterative procedure.

To check whether this procedure is successful, it needs to be checked if the

performance of the model increases as the number of iterations increases.

This check will be performed by running the first stage of the base model

for 36 generations, for each generation the following performance indicators

will be presented:

• The average log-likelihood performance of the individuals in the pop-

ulation on the test set.

• The average log-likelihood performance of the individuals in the pop-

ulation on the training set.

• The log-likelihood performance of the ensemble, constructed from the

individuals, on the test set.

• The log-likelihood performance of the ensemble, constructed from the

individuals, on the training set.
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Table 6.1: Feature test settings.

Description Value

1st stage population size 250

1st stage # generations 10

2nd stage population size 700

2nd stage # generations 20

k 30

ensemble size 40

# k-nn variables at initialization 30

The goal of this experiment is to check whether the performance of the

model increases during the evolutionary algorithm and to check how much

the model overfits on the training data.

6.2 Model feature testing

The goal of this research was to create a model which is able to give robust

predictions without the need for parameter optimization. For example, the

value for k in k-nearest neighbor algorithms is considered an important

variable. However, the value of k depends heavily on the context of the

problem. For this reason, these tests are performed with a fixed value for k

with no knowledge about the suitability of this value, simulating a situation

where no information is known about the problem. The settings that were

used during these tests are depicted in table 6.1.

Instead of finding those parameters that will beat the benchmarks, the

focus of these experiments will be on testing multiple added features or

changes to the algorithm that might change the behavior of the algorithm.

The results of these tests will be compared to the results of the base model.

The main two questions that have to be answered by these experiments are:

• How does the performance of the ensemble model change because of

these added features?

• How robust is the model?

6.2.1 Goal difference

A fitness measure is often very problem specific and very important for the

success of an evolutionary algorithm. It was decided in chapter 5 that the
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fitness would be calculated based on the log-likelihood of the outcome prob-

abilities, where these outcomes are home win, away win, or a draw. It would

be interesting to see how the performance changes if a completely different

fitness measure would be used to create individual ensemble members.

Instead of trying to predict the winner of the game, the fitness of indi-

viduals will be calculated based on how good they are able to predict the

goal difference. The goal difference of a match ranges from -5 to 5, where

extreme results are put in the class of -5 or 5 depending if the home team or

the away team won. This prediction will then be rated by the rank probabil-

ity score, eq. 5.3. The ensemble models that are created will be tested again

by trying to predict the winner of the game instead of the goal difference.

This will test how good the ensemble model is able to handle changes in the

fitness evaluation procedure.

6.2.2 Prediction based diversity

To create diverse individuals during the first stage, deterministic crowding

uses a diversity measure. The current diversity measure is the Hamming

distance, which measures the absolute difference in variables used by in-

dividual k-nn classifiers. As was mentioned in chapter 2, the diversity in

ensembles is measured by the difference in instances that can be predicted

correctly by the individual predictors. Instead of using the Hamming dis-

tance, another diversity measure might be more appropriate. The difference

in prediction can be measured by the correlation between predictions made

by two individuals. The diversity measure suggested here is the inverse of

the pearson-correlation coëfficient, based on the predictions made by two

different classifiers. This should be more closely related to diversity within

ensembles than the Hamming distance.

6.2.3 Different mutation operator

The current mutation operator for the first stage is bit-flipping, where each

bit in the genotype representation has the same chance of flipping to the

other value. When the ratio of ones compared to zeros starts to differ from

50/50, bit flipping will favor going back to a ratio of 50/50. In this case it

might be preferable to change the flip-probabilities, so that the probability of

mutating an extra one is equally likely as mutating an extra zero. This way,

mutation in the genome means either increasing or decreasing the complexity

of individual k-nn prediction model with equal probability, which seems more

appropriate. This type of mutation is even more applicable when considering



32 Chapter 6. Experimental setup

the fact that individual k-nn prediction models are initialized with a specific

expected number of ones in the genome.

6.2.4 Subset fitness evaluation

Currently, individuals within a population are tested on the same set of

matches, this ensures a fair evolutionary process. The problem that occurs

is that the individuals within this population tend to specialize on this entire

fitness evaluation set. A solution to this problem might be to create an

’unfair’ evolutionary process where, during each generation, each individual

is tested on a different subset of matches. While this process might favor

some individuals during one generation of the evolutionary algorithm, it

might provide steady longterm results. In the long run, each individual in

the population will be expected to have the same amount of ’luck’. This type

of evolutionary algorithm mimics evolution in nature, where individuals also

have a specific amount of luck during their lifetime. Since this scheme does

not focus on a specific set of matches, it might provide more robust classifiers

and result in less overfitting. This strategy will be used on both stages of

the algorithm, since both have a tendency to overfit.

6.2.5 Different test set second stage

This feature introduces another approach to counter overfitting behavior.

The current model trains both stages on the same fitness evaluation set. It

might perform better if one season is used for evaluation during the first

stage and another for evaluation during the second stage. This might result

in more general models.

6.2.6 Weighted voting

In [56], Zavrel states that k-nearest neighbor algorithms with weighted vot-

ing are more robust regarding the choice for k, which means that weighted

voting should provide better results if a less suitable amount of neighbors

is chosen. In the base model, each of the neighbors has an equal vote in

constructing the outcome probability distribution. With weighted voting,

the influence of each neighbor on this probability distribution is weighted

by the distance to the instance that needs to predicted. Since the goal is to

create a robust algorithm, independent of the choice of k, weighted voting

will be tested to see whether it has a better performance than the standard

model.



6.3. Other tests 33

6.3 Other tests

6.3.1 Initial number of variables

As stated in chapter 4, the model allows a control over the number of vari-

ables the individual predictors use at the initialization of the evolutionary

algorithm. This test is designed to check what the effects are if this amount

is varied. This gives useful information about the robustness of the algo-

rithm. Moreover, reducing the amount of variables reduces the complexity

of the model, which might result in less overfitting and a faster algorithm.

To perform these tests, all the features, mentioned in section 6.2, that

perform better than the standard model will be applied. Then the amount

of initial variables will be varied to get an understanding of the effects of

the number of variables, used by single k-nn classifiers, in the model. Again,

the goal of this experiment is to assess the quality and robustness of the

ensemble model.

6.3.2 Ensemble size

It was explicitly chosen in chapter 4 to limit the ensemble size. This provides

an opportunity to vary this size and check the effects of this change. A

slightly different test was used for this test. To make the difference more

clear between the different sizes of the ensemble, the second stage is run for

40 generations instead of 20, and the average performance is taken from all

the ensembles in the final generation. This test is performed twice and the

results of both tests are presented. The goal of this experiment is to check

whether this bound to the ensemble size is a useful feature.
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Chapter 7

Results

This chapter will present the results of the experiments that were performed.

These results will provide a clear understanding of the performance of this

type of prediction models on the football domain. Figure 7.1 shows the

results of the base model. This figure shows four graphs, the performance

of both the average individual models and the ensembles on both the test

set and the training set. This graph shows the error measure based on the

log-likelihood, which decreases for all four graphs. Figure REF shows only

the performance of the ensembles on the test set, to get more detailed view

of the performance.

Table 7.1 shows the results of the experiments that were explained in

section 6.2. Each set of two rows in this table corresponds to one of the

performed tests, the first row states the performance of the ensemble based

on the results of the first stage and the second row states those of the second

stage. For each of these tests one of the features was switched on. This table

provides information about which features enhance the performance of the

model. The best performance for each measure are presented in bold. The

performance of the standard model is depicted in the first two rows of this

table. The tables in this chapter provide the percentage of games that the

correct outcome was predicted, the log-likelihood and the quadratic loss

function. For the latter two 90% confidence intervals are also presented. It

is important to note that for the percentage of correct outcomes the highest

figure is the best, while for the other two the lowest is the best score.
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Figure 7.1: Performance base model.
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Figure 7.2: Ensemble performance.
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Table 7.1: Results algorithm features.

Feature % correct outcome Log-likelihood Quadratic loss

standard - 1st stage 56.86 0.9328 (0.8881, 0.9774) 0.5521 (0.5207, 0.5835)

standard - 2nd stage 57.52 -0.9336 (-0.8885, -0.9788) 0.5528 (0.5211, 0.5845)

goal difference - 1st stage 56.21 0.9328 (0.8875, 0.9781) 0.5517 (0.5200, 0.5834)

goal difference - 2nd stage 56.54 0.9352 (0.8891, 0.9814) 0.5531 (0.5210, 0.5851)

modified mutation - 1st stage 55.88 0.9330 (0.8888, 0.9773) 0.5521 (0.5210, 0.5831)

modified mutation - 2nd stage 56.54 0.9339 (0.8891, 0.9788) 0.5529 (0.5214, 0.5845)

prediction correlation - 1st stage 55.56 0.9332 (0.8892, 0.9772) 0.5522 (0.5211, 0.5832)

prediction correlation - 2nd stage 56.54 0.9364 (0.8912, 0.9816) 0.5537 (0.5220, 0.5854)

weighted voting - 1st stage 56.54 0.9315 (0.8870, 0.9761) 0.5520 (0.5207, 0.5834)

weighted voting - 2nd stage 56.54 0.9315 (0.8865, 0.9765) 0.5519 (0.5203, 0.5835)

different set 2nd stage - 1st stage 55.56 0.9349 (0.8908, 0.9790) 0.5535 (0.5224, 0.5845)

different set 2nd stage - 2nd stage 56.21 0.9346 (0.8901, 0.9792) 0.5534 (0.5221, 0.5847)

subset fitness evaluation - 1st stage 55.56 0.9362 (0.8934, 0.9790) 0.5545 (0.5242, 0.5848)

subset fitness evaluation - 2nd stage 55.56 0.9371 (0.8943, 0.9798) 0.5550 (0.5248, 0.5853)

As explained in section 6.3.1, those features that perform better than

the standard model are combined for the next test. The only feature that

increased the performance of the base model was weighted voting. The tests

that were performed with this model are shown in table 7.2. In this table,

the results are shown of the tests where the number of variables is varied.

This number of variables is the expected amount of variables used by the

individual k-nn prediction models upon initialization of the evolutionary

algorithm. These results can be compared to those of benchmarks in table

7.3. For an explanation of these benchmarks, see [29].

Figure 7.3 shows the average performance of the ensembles after 40 gen-

erations of the second stage. It shows the result for an ensemble size of 2

up until 49. Two tests where performed and both are shown in this figure.
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Table 7.2: Variable initialization.

average # variables % correct outcome Log-likelihood Quadratic loss

2 - first stage 57.52 0.9332 (0.8900, 0.9765) 0.5514 (0.5206, 0.5821)

2 - second stage 57.19 0.9355 (0.8929, 0.9781) 0.5527 (0.5224, 0.5831)

5 - first stage 56.86 0.9307 (0.8868, 0.9747) 0.5497 (0.5185, 0.5808)

5 - second stage 56.86 0.9308 (0.8872, 0.9744) 0.5497 (0.5187, 0.5806)

10 - first stage 55.88 0.9328 (0.8887, 0.9769) 0.5509 (0.5199, 0.5820)

10 - second stage 56.54 0.9347 (0.8893, 0.9800) 0.5518 (0.5202, 0.5834)

20 - first stage 56.21 0.9340 (0.8892, 0.9787) 0.5523 (0.5209, 0.5837)

20 - second stage 55.88 0.9337 (0.8891, 0.9783) 0.5521 (0.5208, 0.5834)

30 - first stage 56.54 0.9315 (0.8870, 0.9761) 0.5520 (0.5207, 0.5834)

30 - second stage 56.54 0.9315 (0.8865, 0.9765) 0.5519 (0.5203, 0.5835)

Table 7.3: Benchmarks, source: [29]

Model % correct outcome Log-likelihood Quadratic loss

Poisson (ratings) 58.82% 0.9172 (0.8577, 0.9768) 0.5420 (0.4999, 0.5840)

OLR (ratings) 58.47% 0.9222 (0.8625, 0.9820) 0.5453 (0.5032, 0.5874)

OLR (forecast) 57.52% 0.9332 (0.8760, 0.9904) 0.5506 (0.5106, 0.5905)

Random Forest 57.19% 0.9509 (0.8877, 1.0141) 0.5619 (0.5198, 0.6039)

Bookmaker 59.80% 0.9209 (0.8628, 0.9790) 0.5424 (0.5015, 0.5835)

Class frequency 50.65% 1.0292 (0.9910, 1.0674) 0.6188 (0.5917, 0.6459)

Home team 50.65% 3.4092 (3.0217, 3.7968) 0.9869 (0.8747, 1.0991)

Figure 7.3: Ensemble size performance.
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Chapter 8

Discussion & Future work

8.1 Discussion

8.1.1 Overall performance & beating the benchmark

What can be seen from figures 7.1 and 7.2 is that the performance of the

ensemble model improves as the algorithm advances, which is an indication

that the algorithm is working appropriately. Another nice observation is that

the ensemble models clearly outperform the single k-nn prediction models.

Although it was not the primary goal of this research, it is still important

to consider how good the model did compared to the predictions given by

the benchmarks. When taking a look at the the performance of both the

bookmakers and the evolutionary ensemble model, it is clear that football

match outcomes are hard to predict. Not even 60% of the games can be

predicted, which is few given the fact that the home team wins roughly 50%

of the time. What can be seen from the results in table 7.1 and figure 7.1,

when comparing them to table 7.3, is that the standard model performs

worse than the best benchmarks available. The best benchmarks available

are the Poisson model and the odds provided by the bookmaker. It has to

be stated, however, that these performances are incredibly close and all of

the better models are well within each others 90% confidence interval.

The question remains why the model performed worse, albeit not by

that much, than the best benchmarks. There are couple of facts that could

be the cause of this, the first is the fact that the model tends to overfit on

training data, the second might be that the better benchmarks are models

that are specialized models for the football domain, while the evolutionary

ensemble classifier is not.
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8.1.1.1 Model overfitting

During the evolutionary algorithm, when the number of generations in-

creases, the individuals within the population get better at predicting the

fitness evaluation set. As can be seen in figure 7.1, ensembles get a per-

formance on this set of around 0.90. Apparently, these are the models

that are exceptionally good at predicting that specific set of matches. The

performance of the ensembles is worse on the test set. Generally, a score

slightly above 0.93 is achieved on this collection of matches. This means that

the model does not necessarily find the optimal general football prediction

model, but finds a model that is good at predicting the fitness evaluation set.

The performance on the test set starts to deteriorate after approximately 20

generations of the evolutionary algorithm. A limitation to this type of mod-

eling could be that it simply needs more data than the benchmark models,

so that it is able to find a more general football prediction model.

8.1.1.2 Specialized benchmark models

Another reason for the fact that the evolutionary ensemble model was not

able to beat the benchmark might be because of the dataset and the fact

that those benchmarks use an inherently different approach, that might

be more appropriate for football. The best benchmarks, aside from the

unknown bookmaker model, are models that use ratings. Both the Poisson

model and the ordered logistic regression model are well founded in the

football literature and use a rating based approach. These models did not

use the same dataset as the evolutionary ensemble model, but only used

ratings based on the performance of the teams on previous games. It is a

difficult task to perform better than such a model, that specializes on using

past result information, with an unspecialized model. Especially considering

the fact that the dataset used by the evolutionary model is made up out

of past result information as well. For comparison, the models that used

the same dataset as the evolutionary ensemble model, the random forest

and the forecast ordered regression model, both performed worse than the

evolutionary ensemble model. This last fact indicates that the performance

of the evolutionary ensemble model was good, given the current dataset.

During the research, the dataset might have been limiting the performance

of the evolutionary model, instead of the model itself.
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8.1.2 Model comparison

8.1.2.1 First stage vs. second stage

When looking at the log-likelihood, a surprising result is the fact that the

performance after the first stage consistently beats the performance of the

second stage. The only exception is when the fitness evaluation set is split

into a set for the first stage and a set for the second stage. The fact that

the first stage beats the second stage consistently can be explained by two

reasons. The first reason is that the ensemble created by the first stage

had an ensemble size of 250, because that is the size of the final population.

Figure 7.3 shows that, at least until an ensemble size of 50, bigger ensembles

tend to do better. For the ensembles in the second stage, a size of 40 was

chosen. This could be the reason why these ensembles performed worse.

This would mean that the initial modeling choice to have an upper bound

to the number of individuals in the ensembles of the second stage might

be wrong. Apparently, using all the possible individual k-nn predictors in

each ensemble is better. The second reason for the worse performance of

the second stage might be that this stage simply continues to overfit on the

fitness evaluation set and therefore does not give any improvements on the

actual test set. The test to split the fitness evaluation set into two separate

evaluation sets was done to counter this effect. It does not improve the

overall performance of the model, but the second stage seems to perform

slightly better than the first stage by using this technique. However, the

performances of both stages are hard to compare, since they use different

training data.

8.1.2.2 Added features

Changing the fitness evaluation to the prediction of the goal difference did

not change the performance of the model. On the contrary, the performance

of this model compared to the standard model is almost identical. The

conclusion that can be drawn from this result is that the model is robust

despite the change in the fitness measure. The fact that those performances

are so identical, can considered to be an indication of the stability of the

algorithm. The use of the prediction correlation was expected to provide

an improved performance over the standard model. This was not the case,

the models have a similar performance, with the standard model performing

slightly better. The same can be said for the modified mutation approach.

Weighted voting does seem to perform better than the original model, as

was predicted by the literature [56].
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In an attempt to counter the overfitting problem, individuals were tested

on random subsets of the fitness evaluation set. The goal here was to create

individuals that would specialize less on the total fitness evaluation set. The

observed behavior here was that this countered the deterministic crowding

algorithm, since individuals in the entire generation would converge to the

same point in the solution space.

Changing the amount of variables used by the k-nn classifiers changed

the performance of the model. The model has the highest performance when

it uses only five variables for the k-nn algorithm. Although using 10 and

20 performed worse than the standard test with 30 variables, so there is

no clear relation observed between this amount of variables and the actual

performance of the model.

8.2 Future work

This type of evolutionary ensemble model shows promise, although there are

a couple of points that could still be further developed. The most important

of these points is the fact that the performance of the model seemed limited

by the availability and type of data. When a bigger dataset would be used,

with most importantly more diversity in the type of variables, this type

of prediction model might give better predictions. This type of modeling

might just need more data than the rating models that are more commonly

applied when predicting football. Applying this kind of prediction model on

completely different datasets could also give invaluable information about

the quality of the model.

Other work could be done in improving the performance of the second

stage of the algorithm. According to the tests, bigger ensembles seem to

have better results. The initial assumption, that the size of the ensemble

would have a relatively low upper bound, was not proven by the tests. The

genotype of the second stage was constructed in such a way that this max-

imum ensemble size was made possible. Maybe another type of encoding

would be more appropriate where each individual is immediately placed in

the ensemble, but only the weights of the individuals are optimized. Future

work could be directed into different types of encoding for the second stage

of the algorithm.

Last but not least, due to the time constraint in this research, there is

still a lot of room where tests where not fully conclusive. When more time

is available, more effort could be put into more extensive tests to create

a complete overview of the performance of this new brand of prediction

models.



Chapter 9

Conclusion

In this thesis, a research is described about a novel method for the creation of

ensemble prediction models. Ensembles are constructed with the help of an

evolutionary algorithm. This new method is motivated by the key feature

that both ensemble methods and evolutionary algorithms share, which is

that the success of both techniques is highly dependent on the diversity of

the individuals that the system is build around. This evolutionary ensemble

model constructs an ensemble of nearest neighbor models, based on the fuzzy

matching system of Sentient’s DataDetective. This model is then used to

predict the outcomes of football games in the Dutch Eredivisie, although it

is not specifically designed to predict football and could be easily applied in

any field.

This evolutionary ensemble model consists of two stages. The first stage

uses a multi-modal evolutionary algorithm, called deterministic crowding, to

find those individual prediction models that work best together. The second

stage of the algorithm uses an evolutionary algorithm to optimize the weights

of these individuals within the ensemble. This model is tested, along with a

couple of added features. The performance of the prediction model is better

when fewer variables are used by the nearest neighbor algorithms and when

weighted voting is applied.

The model performs only slightly worse than predictions made by book-

makers and other well known football prediction models, but was better than

another ensemble method trained with the same dataset. This provides an

indication that the evolutionary ensemble model gives robust predictions

despite the fact that it is not a specialized football prediction model.
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[33] Stefan Luckner, Jan Schröder, and Christian Slamka. On the forecast

accuracy of sports prediction markets. In Negotiation, Auctions, and

Market Engineering, volume 2 of Lecture Notes in Business Information

Processing, pages 227–234. Springer Berlin Heidelberg, 2008.

[34] M. J. Maher. Modelling association football scores. Statistica Neer-

landica, 36(3):109–118, 1982.

[35] R. Manner and Samir W. Mahfoud. Crowding and preselection re-

visited. In Proceedings of the Parallel Problem Solving from Nature

Conference, pages 27–36. North-Holland, 1992.

[36] Byungho Min, Jinhyuck Kim, Chongyoun Choe, Hyeonsang Eom, and

R.I. (Bob) McKay. A compound framework for sports results prediction:

A football case study. Knowledge-Based Systems, 21(7):551 – 562, 2008.

[37] Andrew James Moore. Predicting football results, 2006.

[38] A. Petrowski. A clearing procedure as a niching method for genetic

algorithms. In Evolutionary Computation, 1996., Proceedings of IEEE

International Conference on, pages 798 –803, may 1996.

[39] A. Rotshtein, M. Posner, and A. Rakityanskaya. Football predictions

based on a fuzzy model with genetic and neural tuning. Cybernetics

and Systems Analysis, 41:619–630, 2005.

[40] Mark Rowan. Evolving strategies for predicition of sporting fixtures,

April 2007.

[41] Havard Rue and Oyvind Salvesen. Prediction and retrospective analysis

of soccer matches in a league. Journal of the Royal Statistical Society:

Series D (The Statistician), 49(3):399–418, 2000.

[42] Robert E. Schapire. The strength of weak learnability. Machine Learn-

ing, 5:197–227, 1990.

[43] Benjamin Scheibehenne and Arndt Bröder. Predicting wimbledon 2005
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