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Abstract

Hospitals often face challenges with managing patient care efficiently. Healthcare is a domain
where many decisions need to be made daily, and data can be helpful here. This is also true
for oncology, where there are different treatment options and patient responses to treatment
can vary. The aim of this study is to optimize treatment pathways for cancer patients in
the gynecology department of a Dutch hospital by using process mining and reinforcement
learning.

The initial plan was to combine process mining with reinforcement learning, but due to
some limitations, the methods were applied separately. Using process mining, treatment
pathways were visualized in process models at the department level and specifically for the
radiotherapy department. The process model on department level provides insight into how
patients flow through the hospital departments during their treatment period, including which
departments are central points during treatment and which departments are closely connected.
This gives information about how the departments are involved in the treatment process. For
the radiotherapy department, the main treatment trajectory became clear, where patients
receive teletherapy, brachytherapy and hyperthermia or a combination of these therapies.

Reinforcement learning was then applied to optimize chemotherapy dosing for cancer patients,
where different reward functions and algorithms were compared. For simulating the data, a
mathematical model based on ordinary differential equations was used. The results showed
that the reward function plays an important role in the reinforcement learning algorithm.
A reward function that also includes information about the patient’s well-being succeeds in
reducing the tumor while providing a more careful treatment approach. In contrast, a reward
function that only focuses on reducing tumor cells also succeeds in reducing the tumor but can
be too aggressive. Additionally, Deep Q-Networks outperformed Q-learning by succeeding in
reducing the tumor with less drugs.
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1

Introduction

Hospitals face numerous complex challenges, such as managing high patient volumes, allocating resources,
and providing timely care. Decisions need to be made quickly and effectively on a daily basis, often with
limited information. Data becomes valuable as it can provide insights into patient flows, resource us-
age, and potential inefficiencies. This data can be analyzed resulting in giving the ability for hospitals to
make informed decisions, improving operations, enhance patient care, and reduce costs. In a high-pressure
healthcare environment, where decisions must be made quickly and accurately, data-driven insights can
play a crucial role in improving efficiency and care.

An important domain in this context is oncology, which is the medical branch dedicated to the diagnosis,
treatment, and prevention of cancer [3]. Cancer remains a major cause of mortality. Among people aged
between 30 and 69 years old, cancer is one of the three leading causes of death in 177 of 183 countries [4].
Oncologists must remain informed about newly approved therapeutics, at the same time they are required
to evaluate the advantages and disadvantages of various treatment regimens to determine the most suit-
able option for their patients [5]. Costs of cancer treatment are increasing due to factors such as rising
drug prices, increased use of advanced therapies, and population changes, leading to substantial financial
burdens on patients and healthcare systems [6, 7]. The diversity of cancer types and the variable patient
responses to treatments, coupled with the dynamic nature of cancer progression, makes this a challenging
problem [3].

That is why data is becoming increasingly valuable in this sector. Artificial intelligence (AI) has the
potential to help doctors in improving medical decisions or even substituting human judgement in spe-
cific areas of healthcare. AI techniques have the capability to uncover information hidden in the large
amount of data, thereby assisting in the clinical decision-making processes. Moreover, AI can support
physicians in making a diagnosis, predicting the spread of diseases and customizing treatment paths [8, 9].

One approach to improving cancer treatment is the analysis of observational data to optimize treatment
pathways. A treatment pathway represents the sequence of diagnoses and treatments a patient under-
goes throughout their care. Given the complexity of oncology treatments, structuring and refining these
pathways can enhance both patient outcomes and hospital efficiency. By analyzing past treatment deci-
sions and their outcomes, effective strategies can be identified that may reduce costs while maintaining
high-quality care [10].

1.1 Problem description

The goal of this study is to optimize the treatment pathways for cancer patients in the gynecology de-
partment of a Dutch hospital. A treatment pathway is the process a patient goes through and it consists
of diagnoses and treatments. Efficient management of clinical pathways is crucial to ensure timely and
effective care. In this study, this problem is addressed using process mining and reinforcement learning
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1.2 Relevance Accenture

(RL). Applying process mining in healthcare can help physicians understand the actual execution of pro-
cesses, discovering new processes, and finding improvement opportunities [11]. RL offers a solution for
optimal decision-making in healthcare, addressing challenges like noisy, multi-dimensional, incomplete
data, complex dynamics, and sequential decisions with delayed feedback [12].

In this study, process mining will be applied to analyze the flow of patients through the departments,
where useful insights of the treatment process will be identified. Then with the knowledge of that, re-
inforcement learning is applied to support the dynamic decision making of these treatment pathways,
making them more efficient and reducing unnecessary procedures. In particular, reinforcement learning
is used to optimize drug dosing of chemotherapy, with the aim of improving dosing precision, reducing
side effects, and enhancing overall treatment efficacy.

The purpose of this study is to investigate how process mining and reinforcement learning can be leveraged
to enhance the efficiency of treatment pathways for cancer patients and improve the quality of patient
care. The research question addressed in this study is:

How can process mining and reinforcement learning be applied to optimize the treatment path-
ways of cancer patients in the gynecology department of a Dutch hospital, with a focus on
improving efficiency and patient outcomes?

By addressing this question, this study will contribute to the development of data-driven decision support
systems in oncology, improving personalized treatment strategies.

1.2 Relevance Accenture

Accenture is a global consultancy firm working across different industries, including healthcare and public
services. This study aligns with Accenture’s focus on innovation and social impact. The company helps
many healthcare clients improve their processes using data-driven solutions. By applying advanced AI
techniques, this study supports the company’s goal of using technology to improve healthcare.

The development of innovative solutions for optimizing cancer treatment pathways using process mining
and reinforcement learning will provide valuable insights into how these technologies can be applied in
the healthcare sector to improve efficiency, reduce costs, and enhance patient outcomes. Additionally, the
findings could strengthen Accenture’s position in healthcare consulting by offering data-driven solutions
that evolve with new developments in AI, thus supporting Accenture’s focus on innovation. Optimizing
cancer treatment pathways not only makes healthcare more efficient but also helps provide better care
for patients, strengthening Accenture’s role in driving positive change in the health sector.

1.3 Thesis outline

Chapter 2 provides an introduction to process mining and reinforcement learning, with related work
about the application of these methodologies in healthcare. Chapter 3 describes the data used in this
study, including a real-world dataset and a mathematical model to simulate data. Chapter 4 outlines
the methodology, detailing the use of the heuristic miner algorithm, Q-learning, and Deep Q-Networks.
Chapter 5 presents the experimental setup. Chapter 6 discusses the results of both process mining and
reinforcement learning models. Finally, Chapters 7 and 8 conclude the thesis with findings, limitations,
and future research directions.
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2

Literature review

This chapter provides an introduction to process mining and reinforcement learning and reviews the
relevant literature for this study. Section 2.1 will focus on process mining, and Section 2.2 on reinforcement
learning.

2.1 Process mining in healthcare

This section will give an introduction to process mining and related work where process mining is applied
in the healthcare sector will be discussed.

2.1.1 Introduction to process mining

Process mining is a technique used to analyze and improve business processes by extracting insights from
data generated by information systems during process execution. The data used in process mining is
stored in an event log. An event log consist of traces, a trace is a sequence of activities. These activities
are the events. Each event represents a step in the process. A unique identifier for the case, the specific
activity, and a reference for the execution time are documented for every event. Table 2.1 illustrates a
simple representation of an event log. Additional information can also be included such as costs, resources
or the type of the event [13, 14].

Case id Activity Timestamp

. . . . . . . . .
Case 1 Activity A 04-01-2025 11:30:40
Case 1 Activity B 04-01-2025 12:10:30
Case 1 Activity C 04-01-2025 12:34:50
Case 2 Activity A 07-01-2025 09:11:43
Case 2 Activity C 07-01-2025 10:51:45

. . . . . . . . .

Table 2.1: Example of a simple event log data.

There are three basic types of process mining: discovery, conformance checking, and enhancement. In
process discovery, the goal is to develop a process model from the event log, without relying on any a
priori model. The aim is to create a model that accurately reflects the observed behavior in the data while
avoiding overfitting or underfitting, which can either misrepresent or simplify the actual process dynamics.
In contrast, both conformance checking and enhancement start with an existing model. Conformance
checking involves comparing the recorded behavior in the event log with the expected behavior defined in
the model. This comparison can highlight deviations and bottlenecks. Enhancement, on the other hand,
seeks to improve or extend the existing model based on insights derived from the event data [13, 15].
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2.2 Reinforcement learning in healthcare

2.1.2 Related work about process mining in healthcare

Process mining is a valuable tool in healthcare, offering insights into complex clinical workflows and
enabling data-driven improvements in patient care. The event log represents the real-life process, and
analyzing this and making it interpretable for clinicians or doctors can support them in decision mak-
ing [14].

There are various studies who applied process mining within the healthcare domain. Rojas et al.[11]
provided a comprehensive review of how process mining has been applied in healthcare, demonstrating
different approaches for process mining. It reviewed current work in this field, and gives insights in the
most used algorithms, tools, and the medical fields of healthcare where process mining is applied. For
example, many of the reviewed studies employed control flow discovery techniques, such as the heuristics
miner algorithm, to derive the actual flow of activities of the process. Oncology is one of the medical
fields where process mining has been applied to the most.

Muñoz-Gama et al. [14] also conducted a literature review, focusing on key characteristics and chal-
lenges in the field. Healthcare continues to evolve, yet it remains bounded by numerous protocols and
guidelines that must be strictly followed. Additionally, the healthcare domain typically adopts a patient-
centered view, whereas process mining generally aims to identify and analyze recurring process patterns.
Moreover, since healthcare involves highly sensitive data, issues related to data access and quality can
significantly limit the effectiveness and reliability of process mining outcomes.

Rabbi et al. [16] applied different process mining algorithms to a healthcare dataset. They evaluated
four distinct algorithms that can be implemented in Python: the alpha miner, directly-follows graph,
heuristic miner, and inductive miner. The alpha miner discovers process models from event logs but
struggles with noise, incomplete data, and loops. The directly-follows graph represents activities as they
occur in sequence, though it can lead to complex models that are difficult to interpret. The heuristic
miner improves on this by handling incomplete data and mining more complex behavior, although it may
introduce many dependencies. The inductive miner aims to build structured and stable models, but it
depends on identifying recurring patterns, which can be a limiting factor. The researchers of this study
investigated the process of the installation of Central Venous Catheter procedures of students. Through
process mining, insights were gained into potential issues of the process, offering assistance to medical
students. For example, many students encountered difficulties in all the steps from tool preparation to
probe location, as this phase consistently required more time than others in the procedure.

Applying process mining in healthcare comes with several important challenges. Clinical processes
are often complex and show high variability, as each patient may follow a different path. This makes it
difficult to create clear and structured process models. In addition, hospital data comes from different
sources, which can make data preparation and integration difficult. The knowledge of domain experts is
essential for applying process mining correctly, as they help choose the right methods and interpret the
results. The models that are discovered are often complex and less structured, which makes them harder
to visualize and understand, especially in the healthcare domain. Another challenge is that healthcare
processes change over time, so models need to be updated regularly. Finally, patient data is sensitive and
must be handled carefully to ensure privacy and security [11, 14].

2.2 Reinforcement learning in healthcare

This section provides an introduction to reinforcement learning and reviews existing research on its
application in chemotherapy drug dosing.
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2.2 Reinforcement learning in healthcare

2.2.1 Introduction to reinforcement learning

Reinforcement learning (RL) is a branch of machine learning where an agent learns to make decisions
by interacting with an environment to maximize the reward. RL stands apart from supervised learning,
where during the training process of the model knowledge of the correct output is available. In RL
this is not the case, which introduces a fundamental challenge, the trade-off between exploration and
exploitation. The agent has to exploit its current knowledge to gain rewards, but also explore new
possibilities to discover better actions for the future [17, 18].

In RL problems, an agent and environment interact with each other. The agent can be seen as the
decision-maker, and the environment is everything the agent can interact with. The interaction between
the agent and the environment is visualized in Figure 2.1. In this loop, the agent interacts with the
environment by selecting actions according to a policy. These actions move the system from one state to
another, while the agent simultaneously receives observations and reward signals that guide its learning
process [17].

Figure 2.1: Interaction between the agent and the environment in reinforcement learning [1].

A reinforcement learning problem can be modeled as a Markov decision process (MDP). A MDP captures
the dynamics of the problem and consist of a state space S, action space A, transition function P :

S × A × S → [0, 1] between states, i.e. the probability of going from state s ∈ S to state s′ ∈ S after
choosing action a ∈ A, and a reward function R : S×A→ R [18].

At each discrete time step t, the agent observes the current state st ∈ S and selects an action at ∈ A.
Subsequently, based on the selected action it transitions to the following state, and based on the next
state the agent receives a reward rt ∈ R. The reward quantifies how good the selected action is. This
allows the agent to adjust the decision making process to learn the best policy π [17].

Reinforcement learning methods can be broadly categorized into model-based and model-free approaches.
In model-based reinforcement learning, the agent learns or is provided with a model of the environment’s
dynamics, allowing it to plan and predict future states and rewards. In contrast, model-free reinforcement
learning does not use an explicit model of the environment’s transition dynamics. Instead it learns optimal
behavior directly from interactions, typically through trial and error. This makes model-free methods
computationally efficient but less flexible, while model-based methods offer greater flexibility at the cost
of higher computational complexity. [19, 20].

Furthermore, RL algorithms can be divided into value-based and policy-based methods. Value-based
methods focus on estimating a state-value function V π(s) or action-value function Qπ(s, a) that represents
the expected return of states or state-action pairs when starting in s and following policy π. That means
how good it is to be in a given state or how good a given action is after being in a given state.

Discounting is often used to calculate the return in RL. Discounting reduces the contribution of future
rewards compared to immediate rewards. In Equation 2.1 the expected discounted return is expressed.
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2.2 Reinforcement learning in healthcare

Rt = rt+1 + γ · rt+2 + γ2 · rt+3 + · · · =
∞∑
k=0

γkrt+k+1, (2.1)

where rt is the reward at time t and γ ∈ [0, 1] is the discount rate, which lowers the value of future
rewards compared to immediate ones.

The expected discounted return Rt at time step t is the sum of all future rewards multiplied by
powers of a discount factor γ ∈ [0, 1]. This ensures that the total return remains finite even for infinite-
horizon problems and allows the agent to prioritize immediate rewards while still considering long-term
outcomes [17, 18]. The state-value function V π(s) then uses the expected discounted return Rt to quantify
how favorable it is for an agent to be in state s when following policy π. For MDPs, the state-value function
is defined as:

V π(s) = Eπ {Rt | st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣ st = s

}
, (2.2)

where Eπ is the expected value when the agent follows policy π, Rt is the expected discounted return at
time t, γ ∈ [0, 1] is the discount rate and st is the state at time t.

Similarly, the expected return of taking action a starting in state s under policy π, which is the
action-value function Qπ(s, a) can be defined as:

Qπ(s, a) = Eπ {Rt | st = s, at = a} = Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣ st = s, at = a

}
, (2.3)

here, Eπ, Rt, γ and st are the same as in the value function V π(s), and at is the action at time t [17].

Policy-based methods, on the other hand, directly learn a policy that maps states to actions without
relying on value function estimation. These methods are especially useful in high-dimensional or con-
tinuous action spaces [21]. A lot of policy-based methods use a policy gradient technique to optimize a
performance objective. The agent makes decisions based on policy π(s, a, θ), where s ∈ S is the state,
a ∈ A is the action and θ is the parameter vector. In policy gradient techniques, the parameterized policy
is adjusted according to the gradient of the performance. The performance objective is defined as the
expected return under policy π and can be formulated as:

J(π) = Eπ{R0} (2.4)

where R0 is the expected discounted reward with start state s0. This objective cares about the long-term
reward that is obtained. Using the gradient ∇θJ(π), the parameter vector θ is computed, by:

∇θJ(π) =
∑
s

dπ(s)
∑
a

Qπ(s, a)∇θπ(s, a), (2.5)

here dπ(s) =
∑∞

t=0 γ
t Pr(st = s | π) is defined as the discounted weighting of states encountered starting

at s0 and Qπ(s, a) is the action-value function under policy π [22].
Additionally, actor-critic methods combine the strengths of both approaches by using a value function

(critic) to evaluate the policy (actor), achieving greater stability and efficiency in learning [23].
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2.2 Reinforcement learning in healthcare

2.2.2 Related work about RL in healthcare

Reinforcement learning has become increasingly valuable in healthcare, addressing a wide range of ap-
plication domains such as automated medical diagnosis, health management, resource allocation, and
scheduling. Among these, dynamic treatment regimes (DTRs) have emerged as a promising approach for
adjusting treatment decisions over time based on a patient’s evolving health status and history. In most
cases, treatment isn’t just a single decision but involves making choices at several points as the patient’s
condition develops. RL is well-suited for this problem, as it can learn policies that optimize long-term
outcomes by taking into account both immediate and future consequences of each treatment decision.

DTRs are particularly relevant for chronic or complex diseases where treatment needs to be continu-
ously adapted. Examples include cancer, diabetes, anemia, and HIV, where the progression of the disease
and patient response to therapy vary significantly over time [12].

Numerous academic studies have explored the use of RL in optimizing medical treatments. One area
of particular focus is chemotherapy dosing, where treatment decisions must be adapted over time to
balance effectiveness and side effects. These studies highlight how RL can support personalized, sequential
decision-making in real-world clinical settings, demonstrating its value in developing more effective and
individualized care strategies.

Yang et al. [24] provided a literature review about the strategies of RL for chemotherapy treatments.
It gives insights about how reinforcement learning methods can be applied to optimize DTRs, and about
existing mathematical models used to simulate patient responses following chemotherapy. They emphasize
the relevance of adaptive control in treatment personalization, and examine how offline and supervised
RL approaches have been leveraged to improve the understanding of dose adjustment strategies.

There are different studies who have employed mathematical models to develop reinforcement learning
frameworks for chemotherapy dosing. Zhao et al. [25] used a mathematical model where only the tumor
size and toxicity of the tumor are included. They applied Q-learning, where the Q-function is approxi-
mated by using support vector regression and extremely randomized trees. With taking into account the
toxicity of cancer, their method is able to reduce the burden of the tumor.

Q-learning is also utilized in a study by Padmanabhan et al. [1], where they employed a mathematical
model to simulate three different patient scenarios and trained the RL model accordingly. Their proposed
algorithm does not require prior knowledge of the system’s dynamics. However, the model must be
retrained for each new scenario.

A study by Mashayekhi et al. [26] proposed a deep reinforcement learning approach and compared its
performance with the results of Padmanabhan et al. [1]. Their method utilizes an algorithm capable of
handling continuous state and action spaces, leading to a reduction in both drug intake and treatment
duration, while also increasing the rate of tumor cell reduction.

While the results are encouraging, applying RL to cancer treatment presents several challenges. As
noted by Mashayekhi et al. [26], accurately modeling tumor dynamics and treatment response in contin-
uous state and action spaces is complex. Another difficulty is designing reward functions that effectively
balance treatment effectiveness with potential side effects. Padmanabhan et al. [1] also highlight the
importance of ensuring that the learned treatment strategies are robust and clinically meaningful, which
can be difficult when working with limited or noisy data. Furthermore, translating these models from
simulation to real clinical settings requires careful validation and attention to ethical and safety consid-
erations [24].
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3

Data

Section 3.1 of this chapter describes the data used for process mining. In Section 3.2 the tumor growth
model utilized for optimizing chemotherapy dosages is explained.

3.1 Description of the hospital data

The dataset used in this study is publicly available and originates from an initial BPI challenge [27].
This data is a real-life event log obtained from a Dutch academic hospital. The log captures detailed
information on when specific activities occurred and relevant attributes related to the treatment process.
While some anonymization has been applied, the data remains largely as it was recorded in the hospital’s
systems. Certain attributes appear multiple times for the same patient, indicating that they went through
different, and sometimes overlapping, phases of care.

The dataset is an event log and consist of 1143 traces, each corresponding to a single patient. Each trace
represents the treatment pathway of a patient, expressed as a sequence of events. For every event, both
the activity and the corresponding department in which it occurred are recorded. In total, there are 43
departments represented. The event log covers a time period from January 2005 to March 2008.

Each trace includes various attributes per event, such as the activity, department, timestamp, number of
executions, specialism code, hospital section, and activity code. Additionally, general information about
the patient’s overall treatment process is included, such as diagnosis, start date, age, and treatment code.

Patients can be diagnosed with different diagnoses over time. In the data, the diagnosis is stored both
as text and as a diagnosis code. There are 11 unique diagnosis codes in total, but the description of the
diagnosis can differ when the code remains the same. Table 3.1 provides an overview of the diagnosis
codes, the corresponding regions of diagnosis, and the frequency of each code in the dataset. While the
dataset also includes a treatment code, it does not provide any description explaining what the treatment
entails.

Diagnosis code Region Count

M11 vulva 176
M12 vagina 22
M13 cervix uteri 368
M14 corpus uteri 145
M15 corpus uteri 17
M16 ovary 235
106 vulva, vagina, corpus uteri, cervix uteri 301
821 ovary 49
822 cervix uteri 132
823 ovary, corpus uteri 16
839 ovary, vulva 21

Table 3.1: Diagnoses in the event log [2].
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3.2 Data simulation

3.2 Data simulation

To simulate a patient’s response to chemotherapy, a mathematical model is employed. There are sev-
eral models available that describe tumor growth and shrinkage, many of them are based on ordinary
differential equations (ODEs). The model used in this work was originally proposed by de Pillis and
Radunskaya [28]. It is a four-state model that tracks the number of tumor cells T , immune cells I, nor-
mal cells N , and the concentration of the drug in the bloodstream C. It should be mentioned that this
tumor growth model is not specific for one cancer type. This four-state model is described by Equations
(3.1)–(3.4), where N(t) = x1(t), T (t) = x2(t), I(t) = x3(t) and C(t) = x4(t).

ẋ1(t) = r2x1(t) (1− b2x1(t))− c4x1(t)x2(t)− a3x1(t)
(
1− e−x4(t)

)
(3.1)

ẋ2(t) = r1x2(t) (1− b1x2(t))− c2x3(t)x2(t)− c3x1(t)x2(t)− a2x2(t)
(
1− e−x4(t)

)
(3.2)

ẋ3(t) = s+
ρx3(t)x2(t)

β + x2(t)
− c1x3(t)x2(t)− d1x3(t)− a1x3(t)

(
1− e−x4(t)

)
(3.3)

ẋ4(t) = −d2x4(t) + u(t) (3.4)

Here, u(t) represents the drug infusion rate at time t. In this model, normal and tumor cells grow
logistically, while tumor cells are also reduced by immune attack and interaction with healthy tissue.
Immune cells are produced at a constant rate and are activated by the tumor, but they are also weakened
by the tumor itself.

The treatment affects all three cell types through similar terms involving −(1− e−x4(t)), which reflect
the drug’s toxic effects that increase with concentration. This term reduces normal cells, kills tumor cells,
and suppresses immune cells. The drug concentration x4(t) decreases naturally over time and increases
with the input u(t) [23].

The maximum value of drug dosage umax is 1. Table 3.2 gives a description of the parameters of the
model, and the values used in this study, original from [28].

Parameter Parameter description Value Unit

a1 Fractional immune cell kill rate 0.2 mg−1 day−1

a2 Fractional tumor cell kill rate 0.3 mg−1 day−1

a3 Fractional normal cell kill rate 0.1 mg−1 day−1

b1 Reciprocal carrying capacity of tumor cells 1 cell−1

b2 Reciprocal carrying capacity of normal cells 1 cell−1

c1 Immune cell competition term (competition between tumor cells and immune cells) 1 cell−1day−1

c2 Tumor cell competition term (competition between tumor cells and immune cells) 0.5 cell−1day−1

c3 Tumor cell competition term (competition between normal cells and tumor cells) 1 cell−1day−1

c4 Normal cell competition term (competition between normal cells and tumor cells) 1 cell−1day−1

d1 Immune cell death rate 0.2 day−1

d2 Decay rate of injected drug 1 day−1

r1 Per unit growth rate of tumor cells 1.5 day−1

r2 Per unit growth rate of normal cells 1 day−1

s Immune cell influx rate 0.33 cell day−1

α Immune threshold rate 0.3 cell
ρ Immune response rate 0.01 day−1

Table 3.2: Model parameters, their descriptions, values, and units [1].
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3.2 Data simulation

Figure 3.1: Response of the patient to zero
drugs over time.

Figure 3.2: Response of the patient to maximum
dose of drugs for 25 days.

To provide a deeper understanding of the tumor growth model, Figures 3.1 and 3.2 illustrate the dynamics
of normal, tumor, and immune cells in absence of drugs and when full doses of drugs are administered
for 25 days, respectively.

Figure 3.1 shows that without drugs, the number of normal cells gradually decreases, while tumor cells
keep growing until they reach a stable level. The immune cells initially react and grow in number, but
over time their effect fades, and they begin to decline. This underscores the inability of the immune
system to completely suppress tumor development by itself.

In contrast, Figure 3.2 illustrates that with 25 days of drug treatment, tumor cells shrink rapidly and
almost disappear. Normal cells recover and stabilize, while immune cells continue to rise, indicating that
the therapy reduces the tumor burden and strengthens the immune system of the patient.
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4

Methodology

In this chapter the methods are discussed. In Section 4.1 an algorithm for process mining will be discussed,
the heuristic miner algorithm. Section 4.2 focuses on the reinforcement learning methods.

4.1 Process mining

With process mining, the goal is to analyze the treatment pathways of the patients. Data is stored as an
event log, where from different patients the sequence of activities in the hospital are recorded. Various
algorithms exist to discover process models from such data. This section focuses on the heuristic miner
algorithm. This algorithm is one of the most widely used techniques for extracting process models from
real-life, often noisy, event logs.

4.1.1 Heuristic miner algorithm

The heuristic miner is a process discovery algorithm in the field of process mining, designed to construct
process models from event logs. It is particularly effective in handling real-life event logs, which often
contain noise, incomplete traces, and complex behaviors. The heuristic miner takes frequent patterns
into account and focuses on dominant behavior [29].

The algorithm follows a step-by-step approach to derive a process model from the event log. It starts
by creating a dependency graph which forms a foundation for the model. For each pair of activities a

and b, it calculates a dependency measure a ⇒ b, which expresses the likelihood that b follows a in the
process. This is formalized in Equation 4.1.

a⇒ b =
|a > b| − |b > a|
|a > b|+ |b > a|+ 1

(4.1)

Here, |a > b| denotes the number of times activity b directly follows activity a in the event log. The
resulting value ranges between −1 and 1, where values closer to 1 indicate a strong dependency from a

to b, while values closer to 0 or negative indicate weak relationships [29].
To filter out noise and weak patterns, the algorithm uses several thresholds. These thresholds help

retain only the most relevant relations:

• Dependency threshold: Minimum value for the dependency measure a ⇒ b required for a relation
to be included in the model.

• Positive observations threshold: Minimum number of times a direct relation must occur to be
considered.

• Relative-to-best threshold: Ensures that only relations whose dependency measures are within a
certain percentage of the strongest observed dependency are included.
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4.2 Reinforcement learning

• Length-one loops threshold: Determines the minimum frequency with which an activity must directly
follow itself (a→ a) in order to be considered relevant.

• Length-two loops threshold: Specifies the minimum frequency for detecting alternating loop patterns
of the form a→ b→ a [29, 30].

Once the significant relations have been identified, the algorithm proceeds to construct the control-flow
structure of the model. This involves determining whether activities occur in sequence, in parallel, or as
part of a decision point. For this, additional measures are computed to detect split and join patterns.

One important measure used at this stage is shown in Equation 4.2, which helps assess whether two
activities b and c can occur in parallel after an activity a.

a⇒ (b ∧ c) =
|b > c|+ |c > b|
|a > b|+ |a > c|+ 1

(4.2)

A higher value suggests that activities b and c can occur concurrently after a, rather than one strictly
following the other. Based on this, the algorithm determines whether an activity has a parallel, sequential,
or exclusive relation to its successor.

Finally, the result is translated into a process model, often represented as a directed graph or a Petri
net. This model captures the dominant paths through the process as observed in the event log, while
filtering out infrequent or noisy behaviors [29].

In summary, the heuristic miner algorithm builds a process model by first evaluating the relations, fol-
lowed by calculating dependency measures. It then filters out weak or noisy connections using predefined
thresholds. After that, it identifies the control-flow structure of the process, such as sequences, loops,
and splits. Finally, the most significant and frequently observed behaviors are assembled into the final
process model.

4.2 Reinforcement learning

This study explores the use of reinforcement learning to optimize chemotherapy drug dosage where
different reward functions are investigated to guide the agent’s behavior effectively. As a starting point,
Q-learning is implemented due to its simplicity and clarity. The algorithm estimates the value of different
actions in each state using a lookup table, which makes it easy to interpret and analyze. This makes
Q-learning well-suited for understanding the dynamics of the environment and evaluating initial agent
performance. Next, another method is implemented, Deep Q-Networks.

4.2.1 Q-learning

Q-learning is a model-free, value-based reinforcement learning algorithm that operates in environments
with discrete state and action spaces. The goal of the Q-learning agent is to learn the optimal policy
through direct interaction with the environment, without initial knowledge about the policy [31]. The
learning process is centered around maintaining a Q-table, where each entry Q(s, a) estimates the expected
cumulative reward for taking action a in state s and thereafter following the optimal policy. The agent
interacts with the environment over discrete time steps, observing a sequence of state-action-reward
transitions. After each transition, the Q-value is updated according to the rule:

Q(st, at)← Q(st, at) + αt

[
rt + γmax

a′∈A
Qt(st+1, a

′)−Qt(st, at)

]
(4.3)

Here, γ ∈ [0, 1] is the discount factor and αt is the learning rate at time t, determining how strongly
new information overrides existing estimates. It is assumed that all initial Q-values are given. Over time,
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the agent learns by updating the Q-table based on experience. Under standard assumptions, including a
decaying learning rate and sufficient exploration, Q-learning is proven to converge to the optimal action-
value function with probability one [31, 32].

At the end of the learning process, the final Q-table represents the optimal action-value function. The
agent can derive the optimal policy π∗ by selecting the action that maximizes the Q-value in each state:

π∗(s) = argmax
a∈A

Q(s, a) (4.4)

This policy is guaranteed to be optimal in the limit, provided the learning process has converged [17, 31].

4.2.2 Deep Q-Networks

The Q-learning algorithm has several drawbacks. While it is simple and easy to interpret, it may not be
suitable for more complex problems. First of all, Q-learning is not optimal for large spaces. It can be
very time-consuming for Q-learning to fill the Q-table [26]. Another known drawback of the Q-learning
algorithm is that it overestimates the action-values. Because of the maximization step in the algorithm
it prefers overestimation over underestimation. As a result, the algorithm ends up learning action values
that are unrealistically high [33].

Q-learning can also suffer from slow convergence because it learns in an environment without initial
knowledge [34]. It is shown that Q-learning converges to optimal action-values, but that requires that
all actions are sampled multiple times during training in all states. But this requires a lot of exploration
and time, especially in environments with large state and action spaces [31]. Therefore, in this study, a
second methodology is explored to address these issues, Deep Q-Networks (DQN) in particular.

DQN extends Q-learning by approximating the action-value function Q(s, a; θ) using a deep neural net-
work, whose behavior is determined by its weights θ, rather than storing Q-values in a table. This makes
DQN more suitable for environments with large or continuous state spaces, where maintaining an explicit
Q-table is impractical [26, 35].

The DQN trains a neural network to approximate the optimal action-value function Q∗(s, a). The
agent’s experiences at each time step t are stored as tuples et = (st, at, rt, st+1) in a replay memory
Dt = {e1, . . . , et}. During training, Q-learning updates are applied on minibatches sampled uniformly at
random from this memory. At each iteration i, the network parameters θi are updated by minimizing
the loss function:

Li(θi) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q(s′, a′; θ−i )−Q(s, a; θi)

)2]
Here, s and s′ denote the current and next states, a and a′ are the current and next actions, r is the reward,
γ is the discount factor, θi represents the current network parameters, and θ−i denotes the target network
parameters used to compute the target Q-values. The target network parameters θ−i are updated with
the Q-network parameters θi every C steps and remain fixed between updates. This approach stabilizes
training and improves learning efficiency [35].
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5

Experimental implementation

This section presents the details of the experimental implementation of this study. First, the reasons
for the change in scope during the research are explained. Next, the reinforcement learning setup is
introduced, including the different reward functions. Finally, the parameter optimization process is
discussed.

5.1 Change of the scope

Initially, the aim of this study was to combine process mining with reinforcement learning. However,
after exploring the dataset and applying process mining, several challenges emerged. First, the dataset
described in Section 3.1 is highly complex, with almost every patient following a unique treatment path.
In addition, some important information needed for reinforcement learning was missing.

Second, medical knowledge is necessary to interpret treatment decisions. Reinforcement learning can
suggest actions based on patterns in the data, but it cannot judge whether a treatment is actually good
or harmful for a patient. Understanding what is beneficial depends on factors such as the patient’s
condition, tumor size, and possible side effects. Without medical guidance, it is difficult to know if the
recommended actions are safe or meaningful.

Therefore, it was decided to apply reinforcement learning to optimize cancer treatment independently,
without using the results from process mining. Nevertheless, combining process mining with reinforcement
learning remains a promising approach. Process mining provides a detailed view of real patient pathways,
identifies common pathways and bottlenecks, and can reveal which sequences of treatments lead to better
outcomes. If more specific information about the patients were available, integrating these insights with
reinforcement learning could help the algorithm make decisions that are not only statistically optimal
but also clinically meaningful, improving both safety and effectiveness.

5.2 Chemotherapy dosing optimization

RL is applied to the chemotherapy dosing problem. Figure 5.1 illustrates how reinforcement learning can
guide dosing decisions for the four-state tumor model. At each time step t, a dose Dt is administered
based on the current state (Nt, Tt, It, Ct). The patient’s response is captured in the outcome state Qt,
and the agent receives a reward rt based on treatment effectiveness. This process repeats over time,
allowing the agent to learn an optimal dosing policy [24].

The state space is defined by all possible combinations of the four variables in the tumor growth model.
For every simulated patient, the initial state is set to (1.0, 0.2, 0.15, 0.0). The action space corresponds to
the drug dosage. Dosages range from 0 (no drug) to 1 (maximum dosage). To keep the problem discrete,
20 values within this range are considered.
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Figure 5.1: Reinforcement learning treatment plan for chemotherapy dosing with the four-state mathemat-
ical model.

The resulting finite action space is A ∈ {0.0, 0.05, 0.11, 0.16, 0.21, 0.26, 0.32, 0.37, 0.42, 0.47, 0.53, 0.58, 0.63,
0.68, 0.74, 0.79, 0.84, 0.90, 0.95, 1.0}.

In this study, different reward functions are used to examine their effect on the agent’s behavior. The
first reward function is expressed in Equation 5.1, originally from [1]. The reward uses an error term
e(t) = x2(t) which represents the number of tumor cells at time t. This reward function evaluates the
change in tumor cell count between two consecutive time steps.

rk+1 =

{
e(kT )−e((k+1)T )

e(kT ) , e((k + 1)T ) < e(kT ),

0, e((k + 1)T ) ≥ e(kT ),
(5.1)

The reward is only positive when the number of tumor cells decreases between time steps kT and (k+1)T ,
and is zero otherwise. This encourages actions that lead to a reduction in tumor cells.

The second reward function is given in Equation 5.2, based on [23]. This reward function takes all four
states of the mathematical model into account. It encourages the normal and immune cells to increase,
and the tumor cells and drug doses to decrease.

rk = N(k)− T (k) + I(k)− w · u(k) (5.2)

In this reward function, a parameter w is introduced as a multiplier for the drug infusion rate. This pa-
rameter influences the amount of drug the agent administers. A higher value of w increases the penalty
for prescribing drugs, thereby discouraging excessive administration. The purpose of including this pa-
rameter is to achieve a balance between drug usage and the patient’s well-being.

The goal of the treatment is to reduce the number of tumor cells. For the implementation, a goal state
of 10−4 tumor cells is defined. When the number of tumor cells falls below this threshold, the patient is
considered recovered.

To reach this goal, the agent must learn to select appropriate actions during training. For this purpose,
an ϵ-greedy policy is applied for action selection. With probability ϵ, a random action is taken, while
with probability 1 − ϵ, the action suggested by the agent is chosen. This approach ensures a balance
between exploration and exploitation during learning [26].

5.2.1 Parameter selection

To select appropriate values for the parameters, different values are analyzed and the best are selected
in a grid search. Because the goal is to reduce the number of tumor cells completely, the number of
days it takes to reduce the number of tumor cells below the goal state (T < 10−4) is used for selecting
parameters. This is based on a study by Mashayekhi et al. [26], where they took the average number of
steps it took to reach the goal state in their actor-critic approach.
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The grid search is performed using reward function 2 for training the agent. This choice is made
because the action value w can be included, and initial exploration showed that parameter variations
have a stronger impact on agents trained with reward function 2.

Q-learning grid search A grid search for Q-learning is conducted to optimize the reinforcement
learning agent’s parameters. The search space included four learning rates (α ∈ {0.1, 0.2, 0.3, 0.5}), three
discount factors (γ ∈ {0.7, 0.8, 0.95}), one exploration rate (ϵ = 0.2), and three action value multipliers
(w ∈ {1.3, 1.5, 1.7}), resulting in 36 unique combinations. Lower values for the learning rate and higher
values for the discount factor are selected, as that focuses on the long-term results [32].

For each combination the recovery time, total drug use, and last day of drug administered is stored.
The combinations are evaluated on the recovery time. Table 5.1 presents the best four performing
combinations based on the recovery time.

α γ w Recovery Time Total Drugs Last Drug Day

0.2 0.95 1.7 78 16.105 43
0.3 0.95 1.7 82 13.053 43
0.5 0.95 1.7 83 15.053 43
0.1 0.95 1.7 90 10.474 42

Table 5.1: Top 4 parameter combinations for Q-learning (using reward function 2) with the lowest recovery
time.

The best-performing combination of parameters is found at α = 0.2, γ = 0.95, ϵ = 0.2, and w = 1.7,
achieving a minimum recovery time of 78 days. In this setting the drug use is also low. Generally, lower
values of α such as 0.1 lead to slower or unstable learning, while α = 0.2 and 0.3 offer better and more
consistent results. Higher discount factors, particularly γ = 0.95, significantly improve performance,
indicating that long-term reward planning is crucial. An action value of w = 1.7 consistently leads to
faster recovery and reduced drug administration compared to lower values. All results of the grid search
for Q-learning can be found in the appendix, specifically in Table 8.1.

DQN grid search A grid search for the DQN algorithm is also conducted to obtain the best parameters
and minimize recovery time. This grid search includes 96 parameter combinations. The DQN algorithm
introduces additional parameters compared to Q-learning. In particular, it uses a batch size and a neural
network learning rate. Also an epsilon decay rate is included. While in Q-learning ϵ was fixed at 0.2, in
DQN it is set to 1 at the start of training and is gradually decreased each episode according to ϵdecay.
The memory size is also a parameter and is set to 10,000, and after every 10 episodes the Q-network
parameters are updated. The parameters explored in the grid search are: discount factor γ ∈ {0.95, 0.99},
epsilon decay ϵdecay ∈ {0.99, 0.995}, batch size ∈ {32, 64}, learning rate ∈ {0.001, 0.0005}, episodes
∈ {200, 500, 1000}, and action value w ∈ {1.0, 1.3}.

γ ϵdecay Batch Size Learning Rate Episodes w Recovery Time Total Drugs Last Day
0.95 0.995 32 0.0005 500 1.0 70 8.42 70
0.95 0.995 64 0.0005 200 1.0 76 13.47 75
0.99 0.990 32 0.001 200 1.0 71 25.26 71
0.99 0.990 32 0.0005 200 1.0 71 32.42 71

Table 5.2: Top 4 parameter combinations for DQN (using reward function 2) with the lowest recovery time.
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The experiments show that the best results are achieved with γ = 0.95, ϵdecay = 0.995, a batch size of 32,
a learning rate of 0.0005, 500 training episodes, and an action value of w = 1.0. This combination leads
to a recovery time of 70 days. Overall, a lower learning rate and smaller batch sizes improve performance.
In addition, a slower epsilon decay of 0.995 gives better exploration during training. Finally, lower action
values consistently outperformed higher values for w. In Tables 8.2–8.4 in the appendix, all the result of
the grid search for DQN can be found.
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6

Results

In this chapter, the results are presented and discussed. The analysis begins with the outcomes of process
mining, followed by the results of the reinforcement learning approaches. Q-learning and DQN are applied
to optimize chemotherapy dosing, with a focus on the effect of the different reward functions.

6.1 Process mining

The heuristic miner algorithm is applied to the event log dataset from the hospital. Process mining
is applied on department level and for one specific department, the radiotherapy department. The
application of process mining to the radiotherapy department provides insights into the treatment journey
of patients in this department.

Department level. Applying process mining at the department level gave a general view of patient
movements between departments. There is filtered on one diagnosis to make the structure less complex.
Even though filtering, the process in the hospital is very complex. The heuristic miner algorithm was
used with adjusted threshold values (shown in Table 6.1) to reduce noise and focus on the main structure
of the process.

The resulting process model, as visualized in Figure 6.1, reveals a complex but structured flow of
interactions between various hospital departments. Important departments like the Nursing ward, General
Lab Clinical Chemistry, and the Obstetrics & Gynaecology clinic stand out as central points in the
process. The Nursing ward appears to be the most central and highly connected node, suggesting it
plays a crucial role in the patient flow. Similarly, the Obstetrics & Gynaecology clinic and General Lab
Clinical Chemistry are very active and closely connected to other departments, indicating their significant
involvement in clinical processes. There are also some cycles visible in the process. These cycles may
indicate that patients undergo multiple rounds of diagnostics or treatment.

Parameter Default value
Value used

at department level
Value used

in radiotherapy department

Dependency threshold 0.5 0.6 0.5
Positive Observations threshold 1 5 5

Length-two loops threshold 0.5 0.7 0.5

Table 6.1: Parameters of the heuristic miner algorithm.

Radiotherapy. In addition to the department level analysis, process mining was also applied specifically
to the radiotherapy department. Table 6.1 also provides the parameter values used in this model. This
made it easier to focus on the treatment steps within one department, resulting in a less complex process
model.
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6.1 Process mining

Figure 6.1: Process model at department level.

The process model in Figure 6.2 illustrates the flow of patients through various stages of consulta-
tion and treatment. The bottom part of the graph focuses on the main treatment trajectory, beginning
with Behandeltijd (treatment time), which acts as a central point. From there, patients typically pro-
ceed to teletherapy the most common treatment pathway, or alternatively to brachytherapy or the less
frequent hyperthermia. Teletherapy also serves as a transitional step, directing some patients further
to brachytherapy or hyperthermia, while others complete their treatment journey at this stage. Both
hyperthermia and brachytherapy eventually lead to the terminal node, representing the end of treatment.

The process mining analysis shows that the hospital workflow is complex, especially at the department
level. Even when filtering for a single diagnosis, many different patient paths are visible. Some depart-
ments, like the Nursing ward and General Lab Clinical Chemistry, play a critical role and are involved in
many patient journeys. In contrast, the radiotherapy department shows a clearer and more structured
treatment pathway. Most patients follow a main route, with options for teletherapy, brachytherapy, or
hyperthermia. This provides a clearer view of the treatment flow and helps identify areas that may
benefit from further analysis or optimization.
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Figure 6.2: Process model of the radiotherapy department.

6.2 Reinforcement learning

In this section, the results obtained using reinforcement learning methods are presented. The performance
of the Q-learning algorithm is reported first, followed by the results from DQN. A comparison is then
provided between the two methods as well as the two reward functions used to train the agent.

6.2.1 Q-learning results

Q-learning is applied to investigate how chemotherapy drug dosing strategies can be optimized, with two
agents trained for 50,000 episodes using different reward functions. The parameters are obtained using
the grid search. In Figures 6.3 and 6.4 the response of a patient to the drug schedule trained by reward
function 1 and 2, respectively, is visualized. It illustrates how the normal cells (N), tumor cells (T ), and
immune cells (I) respond to the drug doses over time. In the upper plots the dynamics of the cells can
be seen, and in the lower plot the recommended drug dosage by the agent (the policy) for every time step t.
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Figure 6.3: Simulated patient response to drug
administration learned by a Q-learning agent us-
ing reward function 1.

Figure 6.4: Simulated patient response to drug
administration learned by a Q-learning agent us-
ing reward function 2.

The policy learned with reward function 1 uses a fluctuating dosing schedule with generally high drug
doses. In contrast, reward function 2 uses fewer drugs and stops treatment earlier, even though the
number of tumor cells has not reached the goal state (10−4). However, because of the dynamics of the
tumor growth model, the immune cells are at a level where they can still reduce the tumor cells completely
on their own.

Table 6.2 summarizes the numerical results. Reward function 1 leads to recovery in 78 days but requires
a substantially higher drug dosage. Reward function 2 extends recovery time to 89 days, but with a much
lower total dosage.

Metric Reward Function 1 Reward Function 2

Total drugs administered 46.63 15.21
Recovery time (days) 78 89
Last drug administration day 78 51

Table 6.2: Performance of Q-learning agents trained with two different reward functions.

Overall, the Q-learning results show a trade-off between treatment intensity and recovery time. Reward
function 1 focuses on fast tumor reduction but uses more drugs, while reward function 2 gives a more
balanced approach, using fewer drugs while still achieving recovery.

6.2.2 DQN results

Two DQN agents are trained with the two different reward functions using the parameters obtained from
the grid search. Figures 6.5 and 6.6 show the patient responses to the drug schedule trained by the two
reward functions. Similar to Q-learning, reward function 1 leads to fast tumor reduction, while reward
function 2 preserves immune cells better. Unlike Q-learning, DQN policies are more stable and produce
consistent outcomes without large fluctuations in drug dosing.
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Figure 6.5: Simulated patient response to drug
administration learned by a DQN agent using re-
ward function 1.

Figure 6.6: Simulated patient response to drug
administration learned by a DQN agent using re-
ward function 2.

Table 6.3 presents the numerical results. Reward function 1 achieves recovery in 68 days but requires a
higher total drug dosage. Reward function 2 takes 70 days to reach recovery, using less drugs overall.

Metric Reward Function 1 Reward Function 2

Total drugs administered 37.95 8.42
Recovery time (days) 68 70
Last drug administration day 68 70

Table 6.3: Performance of DQN agents trained with two different reward functions.

In summary, the DQN results confirm the same trade-off seen in Q-learning. Faster recovery requires
more drugs given to the patient, while a slower approach can also succeed in reducing the tumor.

6.2.3 Comparison

Comparing the results of the different reward functions shows that the choice of reward strongly affects
how the RL agent behaves. Reward function 1 gives more drugs and focuses on reducing the tumor
quickly. Reward function 2 considers other aspects of the tumor growth model and encourages nor-
mal and immune cells to stay healthy, which leads to less drug use. As a result, reward function 1
achieves faster tumor reduction but at the cost of higher drug exposure, while reward function 2 takes
longer to reach recovery but may reduce side effects. Lower drug doses may be preferable for patients
because they reduce toxicity and harmful side effects, while still being able to reduce the tumor effectively.

For Q-learning and DQN, reward function 2 uses different action values: w = 1.7 for Q-learning and
w = 1.0 for DQN. Even though Q-learning is penalized more for giving drugs, the Q-learning agent
still administers more medication than the DQN agent. In addition, Q-learning policies tend to fluctu-
ate more in their drug dosing, while DQN policies produce smoother and more stable treatment schedules.

The results from the trained Q-learning and DQN agents also differ. This is is due to the way each
method represents the learned policy and how it learns. In Q-learning, the policy is stored as a Q-table,
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where for every state–action pair encountered during training the corresponding Q-value is recorded. The
best action for any given state is then determined by selecting the action with the highest Q-value in the
table. DQN, on the other hand, represents the policy using a neural network that approximates the Q-
function. Instead of storing individual Q-values for each state–action pair, the network generalizes across
states, allowing it to estimate Q-values for previously unseen states. This makes the DQN approach more
robust, particularly in environments with large or continuous state spaces, because it can generalize and
make informed decisions even for states that were not explicitly visited during training.
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Conclusion

In this study, the original idea was to combine process mining with reinforcement learning for optimizing
treatment pathways. Along the way it became clear that this approach wasn’t feasible within the current
scope due some limitations, so both methods were applied separately. Even though, the methods still
gave valuable insights.

Process mining revealed how treatment pathways actually work in practice for the gynecology department
of a Dutch hospital. It showed how patients flow through various departments during their treatment pe-
riod, and for the radiotherapy department the flow of specific treatments and their sequence are identified.
These insights are valuable because they show the complexity of workflows in hospitals.

At the department level, the process model showed central departments like the Nursing ward, General
Lab Clinical Chemistry, and the Obstetrics & Gynecology clinic, highlighting their important roles in
patient flow. The analysis also showed cycles indicating repeated rounds of diagnostics or treatments.
For the radiotherapy department, the analysis provided a clearer view of patient care, with a structured
treatment trajectory centered around Behandeltijd, and typical pathways through teletherapy, brachyther-
apy, or hyperthermia.

Reinforcement learning was then used to optimize chemotherapy dosing for cancer patients. Two different
reward functions were tested to see how they affect the agent’s behavior. The first reward function focused
only on reducing tumor cells as fast as possible. Only the number of tumor cells is included in this reward
function. The higher the reduction in tumor cells, the higher the reward. The second reward function
also considered the immune cell and normal cell levels of the patient and the drug infusion rate. Which
makes this function more focused on the patient’s overall well-being, not just tumor elimination.

The choice of reward function had a big impact on the treatment strategies. Reward function 1 used
high drug doses in the policy, achieving fast tumor reduction but potentially causing more toxicity for
patients. Reward function 2 produced more balanced treatment schedules that used fewer drugs and
preserved immune cells better. This approach took longer to reduce the tumor but is for patients a safer
option, as is it reduces side effects, while still being able to eliminate the tumor completely.

Comparing Q-learning and Deep Q-Networks showed that the algorithm also matters. Q-learning uses
a Q-table which limits its ability to handle complex situations. Deep Q-Networks can generalize better
and consistently outperformed Q-learning in the experiments. The Deep Q-Networks agent with reward
function 2 achieved the best results. It successfully reduced the tumor while using the least amount of
drugs, making it the most suitable approach for patient care.

These findings show that both the reward function design and the choice of algorithm are important in
medical RL problems. Even small changes can lead to very different treatment recommendations, and
consequently, different patient outcomes. In practice, this study suggests that reinforcement learning
could be a valuable tool to support oncologists in personalizing treatment strategies. If this approach
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were combined with process mining, efficiency and patient safety in cancer care could be improved, as
real-world treatment data would then be incorporated into the decision-making process.
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Discussion

While the results of this study provide useful insights, several limitations and considerations should
be highlighted. First, reinforcement learning models are naturally sensitive to randomness. Factors like
weight initialization, exploration strategies, and random changes in the environment can all affect training
outcomes. This means the agents’ performance may vary between runs, and reported results should be
seen as indicative rather than definitive.

Another limitation is the absence of medical input. The models here are purely data-driven and have
not been validated by medical experts. While the simulated environments approximate patient responses,
real-world treatment decisions require careful judgment, patient preferences, and other factors. Including
medical expertise would make the models more realistic and safer to use in practice.

The initial idea of combining process mining with reinforcement learning is still promising, even though
it was not possible in this study. Process mining could provide a clear picture of actual patient flows, which
could guide the design of RL environments, limit action choices, or suggest policies. Combining these
methods in future work could improve both understanding and applicability of RL treatment strategies.

Parameter tuning is another area to consider. Here, a grid search was used to select DQN parameters,
but this method may not find the best possible settings. More advanced techniques could produce stronger
and more reliable results.

The mathematical model for simulating patients for RL is a simplified version of the real-world. It
cannot fully represent the biological differences between patients, possible side effects of treatment, or
toxicity. Future work could include more realistic patient models to better reflect these complexities.

The choice of reward functions also limits the results. Only two reward functions were tested, focusing
mainly on tumor reduction and a simple measure of patient well-being. Real clinical priorities are more
complex, including toxicity, quality of life, and long-term outcomes. Expanding the reward functions
with multiple objectives, for example by adding or adjusting weights in reward function 2, could give
more realistic and clinically useful strategies.

Looking forward, several directions could improve this research. Developing more complex, clinically-
informed reward functions, exploring other RL algorithms, modeling patient responses more realistically,
and including medical experts in design and validation are all promising. Together with process mining,
these improvements could lead to safer, more effective, and personalized treatment strategies.
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Appendix

α γ ε w Recover Time Last Drug Day Total Drugs
0.1 0.7 0.2 1.3 107 110 45.947
0.1 0.7 0.2 1.5 107 36 8.947
0.1 0.7 0.2 1.7 89 47 15.158
0.1 0.8 0.2 1.3 99 100 46.000
0.1 0.8 0.2 1.5 111 111 49.105
0.1 0.8 0.2 1.7 ∞ 22 4.211
0.1 0.95 0.2 1.3 95 99 43.790
0.1 0.95 0.2 1.5 99 99 40.263
0.1 0.95 0.2 1.7 90 42 10.474
0.2 0.7 0.2 1.3 109 109 46.368
0.2 0.7 0.2 1.5 103 33 8.579
0.2 0.7 0.2 1.7 ∞ 38 7.579
0.2 0.8 0.2 1.3 110 110 45.842
0.2 0.8 0.2 1.5 92 46 14.474
0.2 0.8 0.2 1.7 ∞ 39 8.789
0.2 0.95 0.2 1.3 99 101 44.579
0.2 0.95 0.2 1.5 98 98 49.789
0.2 0.95 0.2 1.7 78 43 16.105
0.3 0.7 0.2 1.3 107 114 45.316
0.3 0.7 0.2 1.5 ∞ 32 7.158
0.3 0.7 0.2 1.7 120 43 10.105
0.3 0.8 0.2 1.3 106 105 43.947
0.3 0.8 0.2 1.5 101 34 9.474
0.3 0.8 0.2 1.7 99 41 11.105
0.3 0.95 0.2 1.3 92 92 38.842
0.3 0.95 0.2 1.5 113 107 45.737
0.3 0.95 0.2 1.7 82 43 13.053
0.5 0.7 0.2 1.3 109 112 48.263
0.5 0.7 0.2 1.5 107 52 13.474
0.5 0.7 0.2 1.7 117 45 10.000
0.5 0.8 0.2 1.3 107 96 40.211
0.5 0.8 0.2 1.5 94 55 17.368
0.5 0.8 0.2 1.7 ∞ 37 7.421
0.5 0.95 0.2 1.3 96 96 40.579
0.5 0.95 0.2 1.5 105 96 43.211
0.5 0.95 0.2 1.7 83 43 15.053

Table 8.1: Grid search results of the Q-learning algorithm trained with reward function 2.
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γ ϵdecay Batch Size Learning Rate Episodes w Recovery Time Total Drugs Last Drug Day
0.95 0.99 32 0.001 200 1.0 ∞ 25.4211 148
0.95 0.99 32 0.001 200 1.3 ∞ 24.9474 149
0.95 0.99 32 0.0005 200 1.0 ∞ 28.6316 149
0.95 0.99 32 0.0005 200 1.3 ∞ 21.0526 150
0.95 0.99 64 0.001 200 1.0 ∞ 27.6842 149
0.95 0.99 64 0.001 200 1.3 85 11.7895 85
0.95 0.99 64 0.0005 200 1.0 76 13.4737 75
0.95 0.99 64 0.0005 200 1.3 ∞ 24.7368 150
0.95 0.995 32 0.001 200 1.0 ∞ 27.3158 148
0.95 0.995 32 0.001 200 1.3 ∞ 12.4737 150
0.95 0.995 32 0.0005 200 1.0 ∞ 19.5789 124
0.95 0.995 32 0.0005 200 1.3 122 21.4737 122
0.95 0.995 64 0.001 200 1.0 ∞ 28.6842 149
0.95 0.995 64 0.001 200 1.3 ∞ 9.6316 150
0.95 0.995 64 0.0005 200 1.0 89 46.2105 89
0.95 0.995 64 0.0005 200 1.3 ∞ 24.7368 150
0.99 0.99 32 0.001 200 1.0 71 25.2632 71
0.99 0.99 32 0.001 200 1.3 ∞ 23.5263 149
0.99 0.99 32 0.0005 200 1.0 71 32.4211 71
0.99 0.99 32 0.0005 200 1.3 94 29.8947 94
0.99 0.99 64 0.001 200 1.0 87 53.2105 87
0.99 0.99 64 0.001 200 1.3 ∞ 26.0526 150
0.99 0.99 64 0.0005 200 1.0 ∞ 16.6842 150
0.99 0.99 64 0.0005 200 1.3 87 32.5263 87
0.99 0.995 32 0.001 200 1.0 88 47.0000 88
0.99 0.995 32 0.001 200 1.3 112 26.4737 112
0.99 0.995 32 0.0005 200 1.0 107 18.7368 107
0.99 0.995 32 0.0005 200 1.3 74 31.5789 74
0.99 0.995 64 0.001 200 1.0 82 27.1053 82
0.99 0.995 64 0.001 200 1.3 ∞ 27.6316 150
0.99 0.995 64 0.0005 200 1.0 75 26.8947 75
0.99 0.995 64 0.0005 200 1.3 100 26.7895 100

Table 8.2: Grid search results of the DQN algorithm for 200 episodes trained with reward function 2.
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γ ϵdecay Batch Size Learning Rate Episodes w Recovery Time Total Drugs Last Drug Day
0.95 0.99 32 0.001 500 1.0 90 36.9474 90
0.95 0.99 32 0.001 500 1.3 93 9.1579 93
0.95 0.99 32 0.0005 500 1.0 ∞ 19.7368 150
0.95 0.99 32 0.0005 500 1.3 75 32.4737 75
0.95 0.99 64 0.001 500 1.0 87 23.2632 87
0.95 0.99 64 0.001 500 1.3 100 26.3158 100
0.95 0.99 64 0.0005 500 1.0 80 33.4737 80
0.95 0.99 64 0.0005 500 1.3 84 20.7368 84
0.95 0.995 32 0.001 500 1.0 94 7.6316 93
0.95 0.995 32 0.001 500 1.3 93 15.6316 93
0.95 0.995 32 0.0005 500 1.0 70 8.4211 70
0.95 0.995 32 0.0005 500 1.3 101 39.2105 101
0.95 0.995 64 0.001 500 1.0 84 15.4737 84
0.95 0.995 64 0.001 500 1.3 83 17.5263 83
0.95 0.995 64 0.0005 500 1.0 118 23.5263 118
0.95 0.995 64 0.0005 500 1.3 92 16.1579 92
0.99 0.99 32 0.001 500 1.0 93 30.8421 93
0.99 0.99 32 0.001 500 1.3 85 43.8421 85
0.99 0.99 32 0.0005 500 1.0 79 35.3684 79
0.99 0.99 32 0.0005 500 1.3 80 38.3158 80
0.99 0.99 64 0.001 500 1.0 111 33.6316 111
0.99 0.99 64 0.001 500 1.3 85 19.1053 85
0.99 0.99 64 0.0005 500 1.0 ∞ 16.6842 150
0.99 0.995 32 0.001 500 1.0 90 45.2631 90
0.99 0.995 32 0.001 500 1.3 85 42.2632 85
0.99 0.995 32 0.0005 500 1.0 89 56.5263 89
0.99 0.995 32 0.0005 500 1.3 80 19.8421 80
0.99 0.995 64 0.001 500 1.0 96 39.7895 96
0.99 0.995 64 0.001 500 1.3 87 22.4211 87
0.99 0.995 64 0.0005 500 1.0 84 39.7895 84
0.99 0.995 64 0.0005 500 1.3 108 54.0000 108

Table 8.3: Grid search results of the DQN algorithm for 500 episodes trained with reward function 2.
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γ ϵdecay Batch Size Learning Rate Episodes w Recovery Time Last Drug Day Total Drugs
0.99 0.99 32 0.0010 1000 1.0 ∞ 149 15.105
0.99 0.99 32 0.0010 1000 1.3 ∞ 149 10.421
0.99 0.99 32 0.0005 1000 1.0 ∞ 150 15.158
0.99 0.99 32 0.0005 1000 1.3 ∞ 150 18.263
0.99 0.99 64 0.0010 1000 1.0 142 142 45.684
0.99 0.99 64 0.0010 1000 1.3 95 95 27.579
0.99 0.99 64 0.0005 1000 1.0 ∞ 150 11.053
0.99 0.99 64 0.0005 1000 1.3 ∞ 150 13.579
0.99 0.995 32 0.0010 1000 1.0 123 123 63.158
0.99 0.995 32 0.0010 1000 1.3 135 135 51.895
0.99 0.995 32 0.0005 1000 1.0 ∞ 150 23.421
0.99 0.995 32 0.0005 1000 1.3 ∞ 150 23.684
0.99 0.995 64 0.0010 1000 1.0 127 127 38.737
0.99 0.995 64 0.0010 1000 1.3 100 100 13.895
0.99 0.995 64 0.0005 1000 1.0 ∞ 147 11.000
0.99 0.995 64 0.0005 1000 1.3 ∞ 150 13.316
0.95 0.99 32 0.0010 1000 1.0 86 51 6.053
0.95 0.99 32 0.0010 1000 1.3 83 83 7.579
0.95 0.99 32 0.0005 1000 1.0 82 82 20.579
0.95 0.99 32 0.0005 1000 1.3 104 104 7.789
0.95 0.99 64 0.0010 1000 1.0 73 73 9.684
0.95 0.99 64 0.0010 1000 1.3 87 87 5.316
0.95 0.99 64 0.0005 1000 1.0 77 77 24.632
0.95 0.99 64 0.0005 1000 1.3 ∞ 150 22.421
0.95 0.995 32 0.0010 1000 1.0 94 94 9.526
0.95 0.995 32 0.0010 1000 1.3 78 78 20.421
0.95 0.995 32 0.0005 1000 1.0 ∞ 150 23.053
0.95 0.995 32 0.0005 1000 1.3 89 89 10.632
0.95 0.995 64 0.0010 1000 1.0 76 76 9.737
0.95 0.995 64 0.0010 1000 1.3 79 79 12.368
0.95 0.995 64 0.0005 1000 1.0 105 105 10.579
0.95 0.995 64 0.0005 1000 1.3 108 108 11.947

Table 8.4: Grid search results of the DQN algorithm for 1000 episodes trained with reward function 2.
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