
Self-Adapting Financial Agents: Evolution Through
Feedback-Driven Meta-Prompt Optimization

F. J. van der Harst

f.j.vander.harst@student.vu.nl

Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

Figure 1: Institutional affiliations

ABSTRACT

Traditional quantitative and deep-learning trading systems are brit-

tle under regime shifts, rely on homogeneous numerical inputs,

and often provide limited interpretability. Large Language Models

(LLMs) broaden the information scope, through multi-modality

capabilities, yet are usually deployed with static prompts, leav-

ing the adaptability problem unresolved. We propose a modular

framework for self-adapting LLM-powered agents that integrates

(1) a time-aware retrieval-augmented memory, (2) a structured bull-

bear debate for deliberative reasoning, and (3) Feedback-Driven

Meta-Prompt Optimization (FBPO) that evolves the agent policy

from quantitative and qualitative performance feedback through a

gradient-free reinforcement-learning approach. The trading task

is formalised as a partially observable Markov decision process

and evaluated on daily equity data for Apple (AAPL), Amazon

(AMZN), and Netflix (NFLX) from 2019 to 2025. Our backtesting

results reveal a critical trade-off between reasoning complexity and

trading performance. While the full, multi-component architecture

proved overly conservative, systematic ablation studies identified

the essential drivers of profitability. Disabling the FBPO feedback

loop caused performance to collapse (cumulative return of −8.83%),
confirming that learning from outcomes is fundamental. In con-

trast, removing the deliberative debate module produced the most

robust configuration, delivering positive alpha against a passive

benchmark on AMZN (6.54%) with a maximum drawdown of only

2.93%. This simplified adaptive agent also outperformed a non-

adaptive static-prompt baseline by nearly 6 percentage points in

cumulative return. Further proving the importance of the adaptive

components. The proposed framework provides a blueprint for

building robust, interpretable, and genuinely adaptive agents that

can navigate dynamic open-world environments by focusing on

targeted, feedback-driven learning.
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1 INTRODUCTION

The recent development of Large Language Models (LLMs) has

achieved remarkable results in various natural language process-

ing tasks. The transformer architecture models [1] excel at pattern

recognition in high-dimensional textual data and exhibit reasoning

capabilities that extend beyond their original training objectives

[2]. These models allow for the generation of coherent and con-

textually relevant text which has led to their use in translation,

summarization and question-answering tasks [3]. However, the so-

phisticated features of these models enable them to perform outside

natural language processing domains for decision-making applica-

tions. Complex reasoning and nuanced reasoning of these models,

now, as they experience increasing performance capabilities, enable

their application to solve complex real-world problems including

financial trading.

Traditional financial trading systems base their core founda-

tion on quantitative and rule-based approaches [4]. These systems

demonstrate inadequate adaptability as they fail to respond well to

changes in market conditions [5]. Machine learning (ML) models

try to improve their price forecasting abilities through historical

data analysis by training on a vast amount of data. However, these

models often struggle to generalize well to unseen data and fail to

adapt to new market conditions [6]. While online learning tech-

niques, such as Deep Reinforcement Learning (DRL), have been

proposed to address this issue, they often lack interpretability and

robustness. The complexity of these models makes it difficult to

understand their decision-making processes, which is crucial in

the financial domain where transparency and trust are key factors.

Lastly, traditional methods demonstrate an inability to effectively

combine multiple data types, including textual, sound and visual

data, which are relevant to model financial markets [6].

The recent emergence of LLM-powered agents shows strong

potential to solve these problems [7, 8]. The models achieve de-

tailed reasoning capabilities through their training on extensive

datasets [9]. The Transformer architecture built into these mod-

els [1] enables them to handle multiple data formats including,

numerical time-series as well as textual data feeds, which helps

them detect complex market dynamics that traditional numerical-

based methods cannot [10]. The initial deployment of LLMs for

autonomous financial trading, however, faces ongoing challenges

as the experience limited adaptability for the dynamic nature of

financial markets. Most LLM implementations lack the capabili-

ties of online learning as they use static prompts or rigid designs
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[8]. Retraining the models on new data is often computationally

expensive and time-consuming.

The research presents and evaluates an innovative modular and

self-adapting LLM-powered financial trading agents framework, as

depicted in Figure 2. The process begins with an environment state

update (𝑠𝑡+1), which provides the latest market and portfolio data

to the system. This information is processed by a multi-agent data

pipeline designed to enhance the adaptability of LLMs in dynamic

environments. The framework includes a Time-Aware Procedural

Memory module, a multi-agent debate protocol, and an innovative

Feedback-Driven Meta-Prompt Optimization (FBPO) strategy.

The Time-Aware Procedural Memory module functions as an

adaptive procedural memory system that maintains all historical

trading activities. Based on the synthesised information from the

data agent pipeline, a query (𝑞𝑡 ) is generated to retrieve relevant

past experiences from the procedural memory, resulting in the

output 𝑂𝑚𝑒𝑚,𝑡 . This time-decay retrieval method selects the most

crucial recent historical data to aid present decision-making.

The multi-agent debate protocol aims to improve reasoning ca-

pabilities by allowing agents to present opposing or supportive

positions for a specified number of rounds (𝑁𝑟𝑜𝑢𝑛𝑑𝑠 ). This method

performs extensive evaluations of potential strategies before select-

ing the final choice to detect both risks and opportunities.

Lastly, the Feedback-Driven Meta-Prompt Optimization (FBPO)

strategy is a novel approach that employs reinforced optimiza-

tion cycles to modify prompt templates. The system learns from

performance outcomes, which are evaluated by computing a feed-

back signal (𝐹𝑠𝑖𝑔𝑛𝑎𝑙,𝑘 ), and enhances its internal heuristics and

decision-making logic dynamically based on market fluctuations

and recognized biases. The research evaluates these components

in a simulated trading environment by measuring their individual

and combined performance.

The system reaches lifetime learning potential through feedback-

driven optimization and historical trading experience retrieval

which enables autonomous market condition adaptation. The sys-

tem is designed to excel in dynamic and complex environments

through its designed iterative adaptation process where stationary

approaches often prove to fail.

The FBPO mechanism is framed as implementing a policy search

[11] over the space of prompts within a hidden-markov decision

process [12], where performance feedback guides the evolutionary

search towards higher-reward prompt configurations. The con-

ceptual foundation enables our adaptive method to be positioned

among general optimization principles.

To understand the unique properties defined in this architecture,

this research addresses the following central question: To what ex-
tent do the architectural components of a novel, self-adapting
agent framework, specifically Feedback-DrivenMeta-Prompt
Optimization (FBPO), time-aware memory and multi-agent
debate, contribute to adaptive behavior and trading perfor-
mance in dynamic financial markets? To answer this question,

our research is guided by several sub-questions. First, we establish a

performance baseline against traditional rule-based, Deep Learning

(DL) and Deep Reinforcement Learning (DRL) approaches. Second,

we conduct extensive ablation studies to isolate and quantify the

individual contributions of the FBPO, Time-Aware Procedural Mem-

ory, and multi-agent debate components. Importantly, we address

the question of latent-space bias by evaluating the framework’s

performance across out-of-sample data beyond the training cut-off

date of the core Large Language Model (LLM), which is crucial for

assessing the adaptability of the agents in unseenmarket conditions.

Finally, and most critically, we investigate how the framework’s

performance generalizes across different underlying LLMs, reveal-

ing that the choice of model introduces a powerful, inherent bias

that can be a dominant factor in an agent’s success or failure.

The researchmakes three key contributions through (1) the devel-

opment of Feedback-Driven Meta-Prompt Optimization (FBPO) as

a gradient-free method which enables reinforced adaptation of LLM

trading agent behavior through performance feedback, (2) a modu-

lar framework that integrates Time-Aware Procedural Memory for

contextual memory functions with a multi-agent debate protocol

to boost reasoning capabilities for adaptive financial agents, and

(3) extensive empirical evidence shows that an LLM’s inherent "ar-

chitectural bias" is a dominant factor in agent performance which

often overrides the framework’s logic.

The research investigates daily frequency trading using numeri-

cal price and textual data yet the modular framework enables analy-

sis of different domains and data modalities. The framework demon-

strates its potential to solve complex decision-making problems in

open-domains, such as supply chain management and healthcare

resource allocation. The scalability of the system requires attention

to the computational costs of standard LLM calls particularly for

FBPO loop and multi-agent debate operations. The rapid progress

of state-of-the-art LLMs in efficiency and decreasing inference costs

during the last few years [13] makes adaptive systems more practi-

cal.

The remainder of this paper is organised as follows. Section 2 re-

views the evolution from traditional quantitative trading models to

modern LLM-based agents, identifying the research gaps our work

addresses. Section 3 details our proposed framework, including its

POMDP formulation, themulti-agent data pipeline, the Time-Aware

Procedural Memory module, the multi-agent debate protocol, and

the core FBPO mechanism. Section 4 describes the experimental

design, covering data sources, evaluation metrics, benchmark mod-

els, and the specific configurations used to test our hypotheses.

Section 5 presents the empirical findings, where we first establish

baseline performance against benchmarks, then conduct extensive

ablation studies to isolate the contributions of each architectural

component. We follow this with cross-asset and temporal bias tests

to assess robustness, and an analysis of how different underlying

LLMs affect agent behaviour. Section 6 synthesises these results,

discussing their implications and acknowledging the study’s lim-

itations. Finally, Section 7 summarises our key contributions and

suggests directions for future research.

2 LITERATURE REVIEW

The Transformer architecture, introduced by Vaswani et al. [1],

has been pivotal in advancing Large Language Models (LLMs) by

providing a more efficient mechanism for processing sequential
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Figure 2: An overview of the self-adapting agent framework. The system is designed as a closed-loop system that continuously
learns and adapts from its interactions with the environment. The framework is composed of several specialised agents that
work together to analyse data, make trading decisions, and reflect on their performance.

data. This innovative architecture outperformed Recurrent Neural

Networks (RNNs) [14] and Convolutional Neural Networks (CNNs)

[15]. It handles text dependencies more effectively and addresses

the vanishing gradient problem, which initially limited these net-

works’ ability to model long-range dependencies. The self-attention

mechanism, combined with parallelization, enabled more efficient

training on large datasets. This combination resulted in substantial

performance enhancements across various natural language pro-

cessing tasks. The introduction of scaling laws by Kaplan et al. [16]

demonstrated a positive correlation between increasing model size,

dataset volume, computational budget, and improved performance.

The discovery of these scaling laws has driven the development

of progressively larger and more capable models, beginning with

BERT’s 340 million parameters [17] and extending to Kimi K2’s 1

trillion parameters [18].

Subsequent developments focused on enhancing architectural

designs alongside training methodologies. The performance of the

model exhibited a clear relation with scale. However, changes in

architecture and enhancements in training efficiency also yielded

significant breakthroughs. The advancement of attention optimiza-

tions has led to the emergence of FlashAttention [19], Grouped-

Query Attention [20], Multi-Query Attention [21], Sliding Win-

dow Attention [22], and Rotary Positional Embeddings (RoPE) [23].

The advancements in attention optimizations facilitated the devel-

opment of larger, more efficient models that produced text with

improved accuracy and speed. Additionally, the introduction of Su-

pervised Fine-Tuning (SFT) of instruction datasets [24] has emerged

as a regular post-training procedure, since it improves the model’s

capacity to adhere to instructions and align with user intent. This

development signifies the start of LLM-powered assistants.

Reinforcement Learning from Human Feedback (RLHF) intro-

duced by Ouyang et al. [24] further improved the capabilities of

these models by allowing them to learn from human feedback

and improve their responses over time. However, despite the ap-

parent dominance of scaling laws driving towards increasingly

larger models, a significant counter-trend emerged, focusing on the

development of smaller, highly efficient models. This shift came

from several key factors. One being the prohibitive computational

cost and latency associated with deploying massive models am-

plified by the metrics tokens per second (TPS) and time to first

token (TTFT). Secondly the growing emphasis on task-specific op-

timization where smaller models can excel, and the realization that

sophisticated alignment techniques (like SFT and RLHF) combined

with high-quality datasets can enable smaller models to achieve

remarkable performance without massive parameter counts. This

shift is exemplified by the introduction of models like the Gemma-3

series [25]. Models employing these techniques demonstrate the

potential to achieve high performance with fewer parameters, of-

ten by emphasizing data quality over sheer quantity, making them

more accessible for a wider range of applications on less powerful

hardware.

The rapid development of LLMs required reliable evaluation

methods due to increasingly larger parameter counts and extensive

training datasets. The evaluation of diverse capabilities including,

natural language understanding and complex reasoning, as well

as knowledge recall, became possible through standardized bench-

marks such as GLUE [26], SuperGLUE [27], MMLU [28], and HELM

[29]. The performance of models on these benchmarks showed con-

tinuous improvement as they scaled up, while recent generations

even achieved better results on particular tasks within these suites

[30] than average human performance. The advancement went

beyond just scale increases as Mixture of Experts (MoE) [31, 32]

architectural innovations enabled a key breakthrough in efficient

scaling. The MoE system allows networks to scale computation

more efficiently by choosing which parts (the so-called experts) to

activate for each input, thus enabling larger effective parameter

counts without increasing inference computational cost propor-

tionally. The combination of breakthroughs with data curation and

scaling, led to LLMs achieving human-level performance across

an increasing number of standardized tests, which further demon-

strated their advancing capabilities in complex cognitive tasks.
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The advanced reasoning and in-context learning capabilities pre-

sented new possibilities for using LLMs on complex open-ended

problems that extend beyond traditional natural language process-

ing tasks. Agents, which operate in dynamic environments, are

entities that explore new skills through autonomous adaptation

without requiring human intervention. Voyager [33] shows this new

direction by showing an LLM-powered agent that demonstrates

lifelong learning in the open-ended Minecraft [34] environment.

Voyager uses autonomous exploration to develop a set of skills by in-

teracting with its environment and creating self-generated feedback

loops that include code execution to discover new information.

Financial markets, which is an example of an open-world envi-

ronment, have experienced substantial development in modeling

approaches by moving away from traditional quantitative models

and adopting more sophisticated machine learning techniques. Ac-

cording to the Efficient Market Hypothesis (EMH), which Fama

[35] proposed, financial markets function efficiently when asset

prices incorporate all accessible information. The theory has re-

sulted in the development of models that aim to predict future

price movements based on increasingly more diverse and large data

sources.

Traditionally, financial trading systems relied on quantitative

models, such as technical analysis systems, which use historical

price patterns and statistical models such as ARIMA and GARCH

[36–38] for time series forecasting. However, these traditional mod-

els face difficulties with non-stationarity and multiple data sources

which restricts their ability to easily adapt to market changes or

adhere to the Efficient Market Hypothesis. These models exhibit

therefore regidity which makes them less useful when dealing with

the dynamic and complex nature of financial markets. For exam-

ple, the ARIMA model assumes linearity and stationarity which

may not be true in real world financial data. Additionally, GARCH

models are limited by their dependence on historical volatility pat-

terns which can change rapidly in response to market events. These

limitations make it difficult for traditional models to capture the

complex relationships between different data sources and to adapt

to constantly changing market conditions.

The need to overcome these limitations led researchers to intro-

duce machine learning applications in finance through their work

with neural networks for forecasting, as demonstrated by noa [39].

Deep (reinforcement) learning (DL/DRL) models have been pro-

posed to improve price forecasting abilities by analyzing historical

data and learning patterns from large datasets. These models, such

as Long Short-Term Memory (LSTM) networks [40], have shown

promise in capturing complex relationships in financial data. How-

ever, they often struggle to generalize well to unseen data and fail

to adapt to new market conditions, which is crucial for effective

trading strategies. The complexity of these models also makes it

difficult to understand their decision-making processes, which is

essential in the financial domain where transparency and trust are

key factors.

Powerful LLMs have revolutionized the financial sector by lever-

aging their natural language processing (NLP) capabilities to extract

valuable features from text. One such model, FinBERT [41], was de-

veloped and trained specifically on financial corpora to enhance the

understanding of financial language, thereby improving sentiment

analysis of news articles, social media posts, and earnings reports.

The BloombergGPT model [42] demonstrated the versatility of

large-scale domain-specific models in financial NLP applications,

such as generating financial reports, summarizing complex docu-

ments, and answering financial questions. Initially, financial LLMs

were applied to extract structured information, such as sentiment

scores and key financial metrics, from unstructured media streams,

enabling analysts to gain essential insights more efficiently. The

extracted features, especially sentiment scores, were studied for

use as inputs by predictive models that forecast the stock market

[43]. The developers of FinGPT [44] created open-source models

to make financial LLMs accessible for developing applications like

sentiment analysis and financial forecasting.

The initial applications of Large Language Models (LLMs) in

financial trading encountered considerable obstacles, especially in

understanding complex financial terminology and the subtle dy-

namics of market activity during their development. The primary

problem emerged as general-purpose LLMs and initial finance LLMs

were unable to comprehend intricate financial language, market

dynamics, and regulatory frameworks, which are crucial for so-

phisticated market analysis. The text processing capabilities alone

failed to produce trustworthy trading signals from only sentiment

indicators using extracted text data. They neglected to consider

market volatility and the intricate interconnections among many

financial indicators. The first approaches lacked models capable

of direct reasoning and the incorporation of market data for trad-

ing decisions, leading to an inability to identify financial market

causation and temporal connections.

Prompt optimiziation emerged as a critical requirement to im-

prove LLMs’ performance in financial applications. The potential

for such optimization stems from the fundamental mechanism of

in-context learning, where the model adapts its behavior based

on the prompt’s content. Recent work suggests this is a form of

implicit fine-tuning [45]. The authors mathematically prove that

the standard Transformer architecture, through the interplay of

its self-attention and MLP layers, implicitly modifies its weights

in response to the provided context, effectively learning without

gradient updates. Building on this capability, the early work on

prompt engineering in financial applications focused on design-

ing prompts that could elicit more accurate market analysis and

trading signals from LLMs. Stock-Evol-Instruct [46] developed high-

quality instruction datasets for stock forecasting through market

data adaptation of instructions. SPELL [47] utilized Large Language

Models (LLMs) to systematically optimize prompts throughout

the entire system architecture. In contrast, EVOPROMPT [48] in-

tegrated LLMs with evolutionary algorithms to enhance discrete

prompt optimization, thereby illustrating the application of evo-

lutionary algorithms in the domain of prompt optimization. TEM-

PERA [49] conducted a comprehensive study on the utilization

of reinforcement learning techniques during the testing phase to

generate context-dependent prompts tailored to the specificities

of the current query. Self-reflection emerged as a popular concept,

which led to the development of systems that evaluate past actions

to modify internal behavior [50]. Implementing this self-reflection
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approach, Li et al. [51] developed a system that adjusted LLMs’ trad-

ing strategies by analyzing and learning from previous performance

data.

Retrieval-Augmented Generation (RAG) [52] proved essential to

address the inherent limitations of static LLMs as they exhibited

knowledge date-cutoffs and the tendency to produce hallucinations.

This online technology gained special importance in financial appli-

cations because accurate and current information stands essential

for such domains. RAG addresses the limitations of static LLMs by

using a retrieval-based generation mechanism that leverages exter-

nal knowledge vector databases and semantic similarity search to

provide accurate and current information. RAG provides relevant

text snippets to the LLM which results in more accurate and verifi-

able outputs that remain up-to-date. RAG’s observability feature

allows systems to detect and potentially counter hallucinations

by enabling the observation of retrieved sources. Standard RAG

implementations struggle in the dynamic financial trading domain

due to their inability to retrieve and prioritize time-sensitive in-

formation necessary for trading decisions. The standard approach

to retrieval through semantic similarity therefore fails to retrieve

the knowledge required for making trading decisions. Standard

RAG systems do not contain built-in functions to properly eval-

uate information based on its time-sensitive value. According to

Horowitz and Plonsky [53] LLMs including those with RAG tend to

show recency bias by prioritizing recent information over essential

historical data. Automated systems in the financial domain there-

fore need advanced retrieval methods that can handle time and

risk-dependent information to surpass basic semantic similarity

approaches.

Multi-Agent Systems (MAS) provide a potential solution to tackle

problems in dynamic environments through the distribution of spe-

cialized tasks and perspectives among multiple agents. An example

of such a system is StockAgent [54], which creates simulations

that replicates an investment firm roles, including sector-focused

analysts and portfolio managers, who combine insights with risk

managers which oversee the process. Another framework, FinCon

[8], demonstrated how to model a MAS to boost stock trading and

portfolio management in simulated environments, generalising

across a set of tasks including stock trading and portfolio manage-

ment. It utilises both a manager-analyst hierarchy and a dual-level

risk-control component to allow for a verbal reinforcement learning

approach. Literature concludes that diverse interaction dynamics

between MAS agents produce solutions which surpass what a soli-

tary agent could potentially accomplish.

MAS offers the potential of implementing structured interaction

protocols, through a debate or critique session. The implementation

of structured debate between LLMs [55] together with proposal

and critique cycles [56] has proven effective for enhancing rea-

soning quality and decreasing errors, while also improving the

interpretability of LLM outputs and limiting excessive fine-tuning.

Incorporating formal debate protocols between agents with dif-

ferent roles in a financial MAS could enhance the reliability and

robustness of trading strategies developed by LLMs. The potential

benefits and implementation strategies of formal debate protocols

between specialized financial LLM agents for real-time trading

analysis remain underexplored.

The development of autonomous trading agents based on LLMs

became an increasingly more popular research focus after estab-

lishing foundational NLP applications. One of those systems is

the Summarize-Explain-Predict (SEP) model [9] which fine-tunes

self-reflective agents to generate explainable stock predictions. Re-

searchers also investigated direct stock performance forecasting

from text sequences while open-source platforms like FinRobot

[57] appeared as testing environments. The StockAgent simulation

environment [54] was built to analyse realistic trading behaviours

of LLM systems. The development of self-reflection capabilities

allowed CryptoTrade [58] agents to review their previous actions

while improving their future crypto trading approaches. The multi-

modal systems FinAgent [7] and FinVision [59] combined textual

data analysis with visual information from K-Line charts to support

decision-making processes.

Research further focused on combining LLM insights with Deep

Reinforcement Learning (DRL) agents to utilise LLM reasoning and

knowledge while optimising market interaction policies through

DRL [60]. Wang et al. [61] introduced a framework with dual-loop

architectures which combined internal reasoning components with

external feedback mechanisms for autonomous improvement. The

development of autonomous trading systems faces significant hur-

dles despite recent progress [13]. Real-time market volatility con-

tinues to be a challenge for numerous systems which fail to adapt

continuously. The process of learning from market feedback proves

challenging because it contains limited and noisy information. The

proper management of memory through RAG mechanisms which

integrate historical context with recent events and past trading

experiences remains essential and complex [7, 8, 62–64]. Real-time

high-stakes financial decision-making requires robust reliable rea-

soning which multi-agent debate may help overcome [63].

Literature shows that development of LLMs and their applica-

tions in finance has made significant progress, but several chal-

lenges remain. Traditional quantitative models are limited by the

rigidity of their assumptions, while the application of Reinforce-

ment Learning and Evolutionary Algorithms in finance highlights

challenges in incorporating diverse data sources and ensuring in-

terpretability. Early adoptations of LLMs in financial trading, while

powerful in their language processing capabilities, often lack the

necessary adaptability and dynamic strategy refinement required

for real-time trading. Several multi-agent system approaches, like

FinVision [59], FinMem [62] and TradingGPT [63], have attempted

to address these issues, but they often fall short in integrating a

continuous feedback loop for prompt and strategy evolution, as

well as in providing robust memory management module. Despite

these challenges, the emergence of advanced prompting techniques,

RAG, and multi-agent systems provides promising avenues for en-

hancing LLM performance in complex environments. However, the

integration of these approaches into a cohesive framework that

addresses the unique challenges of financial trading remains an

open research question.
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3 FRAMEWORK ARCHITECTURE

This section introduces a novel framework featuring a self-adapting,

modular architecture tailored for LLM-based financial agents in

dynamic environments, highlighting its academic significance and

contribution to addressing key challenges in financial markets. The

framework addresses key challenges in dynamic financial markets,

such as data integration and decision-making, by providing spe-

cific solutions where existing LLM capabilities fall short. While

LLMs inherently possess reasoning capabilities and can process

textual information, our framework specifically contributes, (1)

structured multi-modal data integration for financial markets, (2)

time-aware memory retrieval that balances semantic relevance with

temporal decay, (3) collaborative multi-agent reasoning to mitigate

single-agent biases, and (4) automated meta-prompt optimization

for continuous adaptation to market dynamics. An overview of the

framework is presented in Figure 2.

To formally define the problem, depicted by Kabbani and Du-

man [65], we formulate the sequential decision-making task of the

trading agent as a Partially Observable Markov Decision Process

(POMDP), which is crucial for modeling the uncertainty in financial

markets. The state space encompasses both observable market data,

such as prices, indicators, and news summaries, as well as poten-

tially hidden states, including latent market factors. The agent’s

actions consist of executing trading decisions, namely taking a long,

short, or hold action, within the financial market context. The ob-

jective is to learn a policy, guided by the adaptable meta-prompt,

that maximizes a predefined financial objective function (e.g., risk-

adjusted return) over a given horizon, based on observations and

feedback.

3.1 POMDP Formulation

The POMDP is formally defined by the tuple (𝑆,𝐴,𝑇 , 𝑅,Ω,𝑂,𝛾),
where each element represents a critical component of the decision-

making process in our multi-agent system, which operates over

time based on incomplete information from a dynamic environ-

ment. Here, 𝑆 , is represented as the true state of the environment,

denoted as 𝑠𝑡 ∈ 𝑆 , at time step 𝑡 . It is important to note that the

explicit market state, 𝑠𝑚𝑎𝑟𝑘𝑒𝑡 , is not fully observable by the sys-

tem, which affects the decision-making process. The unobservable

market state may include elements such as real asset prices, order

book depths, and other market indicators. Latent factors like the

underlying market dynamics, investor sentiment, and macroeco-

nomic conditions are also included in the state space. This is due to

the inherent complexity and stochastic nature of financial markets,

which makes it impossible to fully observe the true state at any

given time.

Furthermore, the internal state of the system is part of 𝑠𝑡 . This

internal state is defined by the current meta-prompt, 𝑝𝑟𝑜𝑚𝑝𝑡𝑡 ,

which encapsulates the agent’s knowledge, strategies, and decision-

making heuristics at time 𝑡 , and the procedural memory𝑀𝑡 at time

𝑡 , representing the historical knowledge and past experiences of

the system. Thus, a state 𝑠𝑡 ∈ 𝑆 at time 𝑡 is a tuple composed of the

external market state and the system’s internal state:

𝑠𝑡 = (𝑠𝑚𝑎𝑟𝑘𝑒𝑡,𝑡 , 𝑝𝑟𝑜𝑚𝑝𝑡𝑡 , 𝑀𝑡 ) (1)

The action space, 𝐴, consists of the discrete set of possible trad-

ing decisions the system can take at time 𝑡 , which includes our

predefined actions 𝐴 = {long, short, hold}. These actions may be

seen as mutually exclusive, where the system can only take one

action at a time. There is no concept of partial actions or posi-

tion sizing, as the system is designed to make a single decision

at each time step. This makes 𝑎𝑡 the action taken at time step 𝑡 .

The transition function, denoted as 𝑇 (𝑠′ |𝑠, 𝑎), describes the prob-
ability 𝑃 (𝑠𝑡+1 = 𝑠′ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) of transitioning to a new state

𝑠′ given the current state 𝑠 and action 𝑎. This function is complex

and stochastic due to the nature of financial markets and is not

inherently known to the system. It consists of the unpredictable

market dynamics and internal dynamics of the system.

The reward function 𝑅(𝑠, 𝑎), which is defined as 𝑅(𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎),
quantifies the immediate reward received after taking action 𝑎 in

state 𝑠 . This reward function is a critical component of the POMDP,

as it guides the agent’s learning process, and is defined as a set of

performance metrics that guide the learning process. The obser-

vation space Ω represents all possible observations 𝑜𝑡 available to

the system at time step 𝑡 . These observations comprise the pro-

cessed information from the multi-agent data processing pipeline

(𝑂𝑑𝑎𝑡𝑎,𝑡 ) and the retrieved historical experiences from procedural

memory (𝑂𝑚𝑒𝑚,𝑡 ). Formally, we define 𝑜𝑡 = (𝑂𝑑𝑎𝑡𝑎,𝑡 ,𝑂𝑚𝑒𝑚,𝑡 ),
where𝑂𝑑𝑎𝑡𝑎,𝑡 = {𝑜𝑖,𝑡 |𝑖 ∈ {1, . . . , 𝑁𝑎𝑔𝑒𝑛𝑡𝑠 }} represents outputs from
𝑁𝑎𝑔𝑒𝑛𝑡𝑠 specialized data processing agents, and𝑂𝑚𝑒𝑚,𝑡 contains the

top 𝑁𝑚𝑒𝑚 memory entries ranked by the effective score 𝑆
eff
(𝑥𝑖 , 𝑞𝑡 ).

The observation function 𝑂 (𝑜 |𝑠′, 𝑎) represents the probability
𝑃 (𝑜𝑡 = 𝑜 |𝑠𝑡 = 𝑠′, 𝑎𝑡−1 = 𝑎) of observing 𝑜 given the true state

𝑠′ and previous action 𝑎𝑡−1. Crucially, the partial observations 𝑜𝑡
differ from the complete true state 𝑠𝑡 , as they represent processed

and filtered information rather than the full complexity of the mar-

ket environment. This observation function captures the inherent

information asymmetry in financial markets, where the system’s

perception of the environment is necessarily incomplete and de-

rived through its data processing pipeline and procedural memory

retrieval.

Finally, the discount factor 𝛾 represents the importance placed

on future rewards relative to immediate ones, though in our im-

plementation this is implicitly handled through the meta-prompt’s

strategic focus rather than as an explicit parameter. Given this

formal definition, the system operates based on belief state 𝑏 (𝑠𝑡 ),
which is an internal probability distribution over all the possible

true states 𝑠𝑡 . The agentic system’s actions are determined by a

policy 𝜋 (𝑎𝑡 |𝑏𝑡 , 𝑝𝑟𝑜𝑚𝑝𝑡𝑡 ), which is a mapping from the belief state

𝑏𝑡 and the current meta-prompt 𝑝𝑟𝑜𝑚𝑝𝑡𝑡 to the action space 𝐴.

This policy selects an action 𝑎𝑡 based on the current belief state

and the meta-prompt, which encapsulates the agent’s knowledge

and strategies, aiming to maximize expected cumulative rewards

over the trading horizon. In the framework, the LLM-based reason-

ing process through a multi-agent debate and aggregation module,

guided by the current meta-prompt 𝑝𝑟𝑜𝑚𝑝𝑡𝑡 , is used to determine

the action 𝑎𝑡 at each time step 𝑡 , conditioned on the observation 𝑜𝑡 .

The system’s adaptability is achieved through the feedback-driven

meta-prompt optimization (FBPO) process, which continuously
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refines the meta-prompt based on performance feedback and histor-

ical experiences stored in the procedural memory𝑀 . It forms the

basis for the system’s learning and adaptation over time, optimizing

the underlying policy over time by adapting the meta-prompt to

improve decision-making in the dynamic financial environment.

3.2 Multi-Agent Data Processing Pipeline

The first step of our framework consists of a pipeline designed to in-

gest, process, and synthesize heterogeneous financial data streams.

The pipeline is modular, allowing for the integration of various data

sources and types. For example, the pipeline includes specialized

agents for processing stock data, news articles, and other relevant

information. Each agent is responsible for a specific type of data,

ensuring that the information is processed consistently and effec-

tively. The observations of the multi-agent processing pipeline are

defined as a structured set, 𝑂𝑑𝑎𝑡𝑎,𝑡 = {𝑜𝑖,𝑡 |𝑖 ∈ {1, . . . , 𝑁𝑎𝑔𝑒𝑛𝑡𝑠 }},
where 𝑁𝑎𝑔𝑒𝑛𝑡𝑠 is the number of specialized agents in the pipeline.

The output of each agent is a structured text summary, which is

then passed to the next stage of the pipeline. The system uses Jinja2

[66] templates to provide the LLM with the necessary context and

information for each agent. The prompts are designed to be modu-

lar and adaptable, allowing for easy updates and modifications as

needed. This modularity allows for easy updates and modifications

to the prompts as needed, ensuring that the system can adapt to

changing requirements and data sources. Appendix A.4 provides

ethe prompts used in the pipeline, which consist of a structured

Markdown format. One should see the prompts as a key bias for

the system. It guides the agent’s reasoning process and ensures that

the information is processed consistently and effectively, acting as

a internal belief state of the system.

Our pipeline consists of three main agents, each responsible for

processing different types of data, the Technical Analysis Agent,

the Portfolio Analysis Agent, and the News Data Agent. Each agent

operates independently and in parallel, processing its respective

data streams and generating structured outputs that are then passed

to the next stage of the pipeline. This modular design allows for

flexibility and scalability, enabling the system to adapt to new data

sources and types as needed.

Technical Analysis Agent. This agent processes raw price and

volume data, computes technical indicators before summarizing

the market’s technical information into structured text. Literature

shows that LLMs can effectively process and analyze time series

data, making them suitable for this task [67, 68], even though there

exists a modality gap between numerical price data and the inher-

ent text-based nature of LLMs. The agent’s output is a structured

text summary that includes key indicators and trends, which is

then passed to the next stage of the pipeline. The exact data, such

as the exact time-window of the price data and technical indicators,

provided as input to the LLM is a key aspect of the agents design.

While we want the observations to be as informative as possible,

we also want to avoid overwhelming the LLM with too much in-

formation, inherently with noise, which could lead to performance

degradation as the context length increases.

Portfolio Analysis Agent. This agent assesses the system’s inter-

nal state, evaluating current portfolio health and any active posi-

tions. It analyses metrics such as equity performance, risk ratios

(Sharpe, CVaR), and unrealised profit or loss. THis introspective

analysis provides critical risk-management context, ensuring that

subsequent decisions are made with awareness of the current port-

folio’s status and risk exposure.

News Data Agent. This agent ingests news feeds and performs

sentiment analysis from a dataset of news articles. It extracts key

information and entities, summarizes the news into structured text,

and provides sentiment scores according to the prompt in Appen-

dix A.4. The agent is designed to handle the noise and variability in

news data, ensuring that the information is relevant and actionable.

Literature shows that combining price data with textual context,

like news headlines, can enhance the performance in task where

external factors influence the time series, such as financial markets

[69–71]. The agent’s output is then passed to the next stage of the

pipeline.

Additionally, the system can incorporate other specialized agents,

such as those for social media sentiment analysis or macroeconomic

data processing, enhancing its adaptability. This modularity ensures

that the framework can adapt to new data sources and types, en-

hancing its robustness and flexibility. Given the parallel nature

of the pipeline, the agents can operate concurrently, allowing for

efficient data processing and synthesis.

3.3 Time-Aware Procedural Memory Retrieval
(RAG)

In order to provide essential context and enable learning from histor-

ical performance, the framework incorporates a sophisticated proce-

dural memorymodule. This module is designed to store and retrieve

past experiences, allowing the system to learn from its interactions

with the environment. As standard Large Language Models (LLMs)

lack inherent long-term memory capabilities, which is required

for tracking past actions and outcomes over extended periods, the

procedural memory module is crucial for the system’s adaptability

and performance. Retrieval-Augmented Generation (RAG) offers a

potential solution by injecting external, online, knowledge into the

decision-making process based on a retrieval mechanism. This re-

trieval mechanism typically relies on semantic similarity to identify

relevant past experiences. This is computed as the cosine distance

between the query and the memory entries embeddings, and evalu-

ated based on the highest similarity score. However, this semantic

retrieval mechanism often falls short in the financial trading do-

main, as it typically overlooks the crucial dimension of temporal

decay (recency). Trade experiences and decisions are not only con-

textually relevant but also time-sensitive, as the financial markets

are highly dynamic and subject to rapid changes. A memory entry

that was relevant a week ago may no longer be applicable today

due to shifts in market conditions, making it essential to consider

the recency of past experiences in the retrieval process.

Consequently, simple semantic similarity is often insufficient

for providing the nuanced historical context needed for effective

financial decision-making. We therefore implement a Procedural
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Memory stored in a vector database, designed to maintain a com-

prehensive record of the agent’s past trading cycles. Each memory

entry 𝑥𝑖 encapsulates key information from a completed trading

cycle. A memory entry consists of the final trade decision, the con-

solidated reasoning, the prompt used, and any qualitative feedback.

Formally, a memory entry from a past time step 𝑡 ′ is defined as

𝑥𝑖 = {𝑎𝑡 ′ , 𝑟𝑒𝑎𝑠𝑜𝑛𝑡 ′ , 𝑝𝑟𝑜𝑚𝑝𝑡𝑡 ′ , 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑡 ′ }. The procedural memory

is updated after each trading cycle, ensuring that the system retains

a comprehensive history of its decisions and outcomes.

The retrieval from this memory utilizes a mechanism enhanced

with a scoring function designed to be time-sensitive and relevance-

aware. Given a query 𝑞𝑡 derived from the current processed data

outputs𝑂𝑑𝑎𝑡𝑎,𝑡 , the effective score 𝑆eff for retrieving a past memory

entry 𝑥𝑖 is calculated as a weighted linear combination of semantic

relevance and recency:

𝑆
eff
(𝑥𝑖 , 𝑞𝑡 ) = 𝑤sim · sim(𝑞𝑡 , 𝑥𝑖 )︸       ︷︷       ︸

Relevance

+(1 −𝑤sim) · exp(−𝛼Δ𝑡ℎ)︸         ︷︷         ︸
Recency

(2)

Here, sim(𝑞𝑡 , 𝑥𝑖 ) represents the semantic relevance score be-

tween the query embedding 𝑞𝑡 and the memory entry embedding

𝑥𝑖 , computed using a normalized cosine distance:

sim(𝑞𝑡 , 𝑥𝑖 ) =
1

2

(
1 + 𝑞𝑡 · 𝑥𝑖

∥𝑞𝑡 ∥∥𝑥𝑖 ∥

)
(3)

This equation normalizes the cosine similarity to lie within the

range [0,1], where 1 indicates maximum relevance (identical vec-

tors) and 0 indicates minimum relevance (opposite vectors). The

term Δ𝑡ℎ represents the time elapsed in hours since the memory

𝑥𝑖 was recorded. The weight𝑤sim ∈ [0, 1] determines the trade-off

between relevance and recency, with (1−𝑤sim) being the weight for
the recency component. The parameter 𝛼 is the recency decay rate.

The top 𝑁𝑚𝑒𝑚 memories, ranked by this 𝑆
eff

score, are retrieved to

provide context, according to:

𝑂𝑚𝑒𝑚,𝑡 = {𝑥𝑖 ∈ 𝑀𝑡 | rank(𝑆
eff
(𝑥𝑖 , 𝑞𝑡 )) ≤ 𝑁𝑚𝑒𝑚} (4)

The number of retrieved memories 𝑁𝑚𝑒𝑚 is a critical hyperpa-

rameter. This ensures the utilized historical information is relevant

and recent, with the balance determined by the chosen hyperparam-

eters. The query 𝑞𝑡 is typically formed by embedding the combined

outputs 𝑂𝑑𝑎𝑡𝑎,𝑡 from the data processing pipeline. Appendix A.5

provides the prompt used to generate the query 𝑞𝑡 from the pro-

cessed data outputs 𝑂𝑑𝑎𝑡𝑎,𝑡 as well as an example of the memory

entries 𝑥𝑖 stored in the procedural memory. Our approach allows

for the retrieval of memories that are not only semantically rele-

vant but also appropriately recent, enhancing the decision-making

process of the agents.

Both the embeddings of the query 𝑞𝑡 and the memory entries 𝑥𝑖
are computed using a pre-trained embedding model, such as Ope-

nAI’s text-embedding-3-small [72], which is designed to capture
semantic relationships in text. This embedding model is used to

transform the textual data into high-dimensional vectors, enabling

efficient similarity calculations. The embeddings are stored in a

PGVector [73] vector postgres [74] database, allowing for fast re-

trieval during the decision-making process. The retrieved memories

are then used to inform the current decision-making process, pro-

viding context and historical insights that can enhance the agent’s

performance. We set the chunk size of the memories to the max-

imum context length (𝐶𝑚𝑎𝑥 ) of the LLM, which is typically 8192

tokens text-embedding-3-small. The memories are chunked to

fit within the context window, and any entries that exceed this

length are truncated. This chunking process ensures that the re-

trieved memories are concise and relevant, while still providing

sufficient context for the decision-making process. The chunked

memories are concatenated on retrieval, ensuring that the retrieved

memories are presented to the LLM in a structured and coherent

manner. The procedural memory retrieval process is a key compo-

nent of the framework, enabling the system to learn from its past

experiences and adapt its decision-making strategies over time. It

allows for the integration of historical knowledge into the current

decision-making process, enhancing the agent’s performance and

adaptability in dynamic financial environments.

3.4 Multi-Agent Debate for Enhanced
Reasoning

LLMs are known for their impressive reasoning capabilities, but

they can also be prone to biases and limitations in their decision-

making processes. One of the challenges with single-agent reason-

ing is the risk of confirmation bias, where the agent may favor

information that supports its initial hypothesis while neglecting

alternative perspectives. This can lead to suboptimal decisions and

a lack of critical evaluation of risks. Confirmation bias particularly

problematic in complex decision-making scenarios where multiple

viewpoints and critiques are essential for robust conclusions. Fur-

thermore, the reasoning process of monolithic LLM systems can be

opaque, making it difficult to understand the rationale behind their

decisions. This lack of interpretability can hinder trust and analysis,

especially in high-stakes environments like financial trading.

To enhance the robustness, depth, and interpretability of the

trading decisions, the framework utilizes a collaborative reasoning

process structured as a debate. This multi-agent debate mechanism

is designed to improve the quality of decision-making by allowing

multiple agents to engage in a structured dialogue, critique each

other’s reasoning, and explore alternative perspectives which can

lead to more informed and balanced conclusions. In our framework,

the debate is structured around two distinct roles which we call the

Bull Agent and the Bear Agent. In the field of financial trading these

terms are commonly used to describe opposing market sentiments,

with bull means a positive outlook on the market, expecting prices

to rise, while bear refers to a negative outlook, expecting prices

to fall. Given the processed data and retrieved memories, these

agents engage in 𝑁𝑟𝑜𝑢𝑛𝑑𝑠 rounds of structured dialogue according

to the prompts present in Appendix A.4. The Bull Agent initiates the
debate by proposing a trading action and providing reasoning for

that action based on the current prompt (𝑝𝑟𝑜𝑚𝑝𝑡𝑡 ). The Bear Agent
then critiques the proposal, highlighting potential weaknesses or

alternative perspectives, and proposes a refined action and reason-

ing. This iterative process continues for 𝑁𝑟𝑜𝑢𝑛𝑑𝑠 rounds, allowing
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both agents to refine their arguments and explore different angles

of the decision-making process. The effectiveness of this approach

is supported by literature, which shows that multi-agent systems

can outperform single-agent systems in complex decision-making

tasks [55].

A dedicated Aggregator Agent receives the full debate transcript
and synthesizes the arguments presented by both agents. The Ag-

gregator resolves conflicts based on predefined criteria or through

LLM judgment, determining the key arguments. Ultimately, the

Decision Agent consolidates the final decision by selecting the most

appropriate trading action based on the aggregated reasoning. This

agent is responsible for formulating the final trading action (𝑎𝑡 ) and

generating a consolidated, interpretable reasoning (𝑟𝑒𝑎𝑠𝑜𝑛𝑡 ). The

action 𝑎𝑡 and its corresponding reasoning are direct results of the

multi-agent debate, which is guided by the meta-prompt 𝑝𝑟𝑜𝑚𝑝𝑡𝑡
and informed by the current portfolio state. This multi-agent debate

process not only enhances the reasoning capabilities of the system

but also provides a more transparent and interpretable decision-

making process, which is crucial in financial trading contexts where

understanding the rationale behind decisions is essential. The struc-

tured dialogue system allows for a more comprehensive exploration

of potential strategies, risks, and opportunities, leading to more

informed decisions.

3.5 Feedback-Driven Meta-Prompt
Optimization (FBPO)

Our central mechanism consists of the framework’s self-adaptation

and long-term learning process called Feedback-DrivenMeta-Prompt

Optimization (FBPO). This module is designed to dynamically re-

fine an agents’ guiding meta-prompt, which dictates its high-level

strategy and reasoning heuristics. Conceptually, FBPO operates a

search algorithm over a high-dimensional parameter state-space of

possible meta-prompts (P). Each point in this space represents a

unique natural language instruction set defining the agent’s policy.

The goal is to navigate this space to find prompts that yield superior

long-term trading performance.

The core of the FBPO process relies on a performance feedback

signal, generated after each complete trading cycle. This signal,

denoted 𝐹𝑠𝑖𝑔𝑛𝑎𝑙,𝑘 for the 𝑘-th cycle, is a vector of quantitative per-

formance metrics. This multi-faceted feedback allows for a more

nuanced assessment of the agent’s strategy. Formally, the feedback

signal is defined as:

𝐹𝑠𝑖𝑔𝑛𝑎𝑙,𝑘 = [𝑚
1,𝑘 ,𝑚2,𝑘 , . . . ,𝑚𝑁𝑚𝑒𝑡𝑟𝑖𝑐𝑠 ,𝑘 ] (5)

where each𝑚𝑖,𝑘 is a specific performance metric, such as the Sharpe

Ratio, Maximum Drawdown, or Cumulative Return, which is cal-

culated over the entire duration of the 𝑘-th trading cycle. This

quantitative vector is the foundation for the subsequent adapta-

tion step. Specifically, it is used by the Feedback Agent to generate

qualitative feedback, which translates the raw performance num-

bers into actionable, natural language insights for the Meta-Prompt
Adaptation Agent to use.

Financially markets exhibit significant non-stationarity and are

subject to rapid changes in dynamics. Setting static strategies en-

coded in fixed prompts can lead to suboptimal performance over

time. Explicitly modeling the relationship between prompt text

and trading performance is intractable. Therefore, adapting agent

behavior requires an effective method to search the vast prompt

space (P) using only sparse, delayed, and noisy performance feed-

back signals, without relying on gradients or explicit models of the

prompt-performance landscape. FBPO therefore employs a gradient-

free solution to this problem, which is a key novelty of our work.

The FBPO process implements an iterative search strategy, simi-

larly to an optimization algorithm, operating directly on the natural

language prompts. The objective is to find a prompt 𝑝𝑟𝑜𝑚𝑝𝑡∗ ∈ P
that leads to superior long-term performance. The conceptual goal

is to find a prompt that yields a desirable trade-off across these

metrics over time, which can be expressed as:

𝑝𝑟𝑜𝑚𝑝𝑡∗ = arg max

𝑝𝑟𝑜𝑚𝑝𝑡 ∈P
𝐸

[
𝑈

(∑︁
𝑘=0

𝛾𝑘𝐹𝑠𝑖𝑔𝑛𝑎𝑙,𝑘

)
| policy uses 𝑝𝑟𝑜𝑚𝑝𝑡

]
(6)

where𝑈 (·) is a utility function that maps the vector of cumulative

performance metrics to a scalar value, representing the agent’s

preferences over different objectives. The expectation 𝐸 [·] is taken
over the stochastic market dynamics. In this objective function,

the discount factor 𝛾 is a conceptual parameter representing the

importance of long-term performance. A value close to 1 priori-

tizes sustainable, future outcomes. While this equation grounds

the theoretical model, our practical implementation does not use

𝛾 as an explicit hyperparameter. Instead, the focus on long-term

performance is implicitly embedded within the prompt’s strate-

gic guidelines. The FBPO process approximates the search for this

objective through its iterative, feedback-driven cycle.

First, feedback collection occurs after each trading cycle 𝑘 , yield-

ing the performance vector 𝐹𝑠𝑖𝑔𝑛𝑎𝑙,𝑘 (defined in Equation 5). This

vector is then processed by the Feedback Agent to produce quali-

tative feedback, 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑘 . This qualitative summary interprets

the quantitative results, providing context for the observed perfor-

mance. Second, the Meta-Prompt Adaptation Agent (MPAA) uses
this qualitative feedback 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑘 to generate a new, adapted

meta-prompt, 𝑝𝑟𝑜𝑚𝑝𝑡𝑘+1. Here, the subscript denotes the trading
cycle, where the new prompt will be used for all time steps 𝑡 within

cycle 𝑘 + 1. This direct generation step serves as a computationally

feasible heuristic designed to iteratively move towards the ideal

objective defined in Equation 6, mimicking greedy optimization.

While this approach allows for continuous adaptation, it prioritizes

reactivity to recent feedback over the broader exploration inherent

in complex search algorithms. Appendix A.6 provides the specific

prompt used for both the direct generation step and the feedback

collection step, which guides the MPAA in generating the new

meta-prompt based on the performance feedback.

4 EXPERIMENTS

4.1 Data Collection

Our empirical evaluation leverages a comprehensive dataset sourced

from the financialdatasets.ai [75] platform, which provides exten-

sive financial market data across multiple assets and time horizons.

The dataset encompasses daily stock prices, trading volumes, and
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news data, thereby enabling our framework to process both numeri-

cal market signals and textual information sources that characterize

modern financial decision-making environments.

To rigorously assess the adaptive capabilities of our proposed

framework across varying market dynamics, we deliberately se-

lected a diverse portfolio of three publicly traded companies, tech-

nology leader Apple (AAPL), growth-oriented streaming firm Net-

flix (NFLX), and the diversified e-commerce and cloud computing

giant Amazon (AMZN). This selection provides a robust testbed for

our framework’s adaptability. For instance, AAPL’s performance

is heavily influenced by cyclical product releases and regulatory

news, testing the agent’s ability to interpret scheduled events. NFLX,

however, operates in the competitive streaming market, is highly

sensitive to subscriber revenue data and content performance, pre-

senting scenarios of high volatility and therefore sentiment-driven

price swings. Finally, AMZN is a multifaceted business, consisting

of e-commerce, cloud and advertising sections, which creates a

complex informational environment where the agent must disen-

tangle signals from different economic sectors. This variety ensures

our framework is evaluated against a realistic spectrum of mar-

ket behaviors. The preprocessing pipeline for each asset addresses

missing values and ensured temporal consistency across different

assets, while preserving the natural market characteristics essential

for realistic backtesting scenarios.

Our experimental design addresses four fundamental research

questions, as defined in Section 1 that collectively evaluate both

the performance superiority and mechanistic understanding of our

self-adapting framework:

• Sub-Research Question 1: Does our self-adapting agents out-

perform industry benchmarks and state-of-the-art trading

agents in single-stock trading in terms of cumulative return

(CR%), Sharpe ratio (SR) and maximum drawdown (MDD%)?

• Sub-Research Question 2: How do the different components

of the self-adapting agents, such as the Time-Aware Proce-

dural Memory Retrieval module, Multi-Agent Debate Proto-

col, and Feedback-Driven Meta-Prompt Optimization (FBPO)

mechanism, impact the overall performance of the agents?

• Sub-Research Question 3: Is there a bias within the selected

LLM latent space that influences the performance of the

self-adapting agents in stock trading?

• Sub-Research Question 4: How does the choice of LLM im-

pact the performance of the self-adapting agents in stock

trading?

4.2 Experimental Setup

Our experimental methodology employs a multi-faceted evaluation

strategy designed to comprehensively assess both the absolute per-

formance and adaptive mechanisms of our proposed framework.

The experimental design ensures rigorous comparison against es-

tablished benchmarks while maintaining controlled conditions that

enable meaningful attribution of performance differences to our

novel architectural components.

To establish the fundamental performance characteristics of our

self-adapting framework (addressing SQ1), we conducted an exten-

sive evaluation using Apple (AAPL) as our primary test asset, lever-

aging the Gemini 2.5 Flash Lite model as our base LLM architecture.

The training horizon spans three years (October 3, 2019 to October

4, 2022), providing sufficient historical context for the framework’s

adaptive mechanisms to learn market patterns while maintaining

computational feasibility our experimentation. The out-of-sample

evaluation period (October 5, 2022 to June 10, 2023) represents an

eight-month window that balances statistical significance with the

practical constraints of LLM inference costs, ensuring robust perfor-

mance assessment while enabling comprehensive ablation studies

across multiple configurations. The selection of Gemini 2.5 Flash

Lite reflects its demonstrated benchmark performance [76] while

offering favorable computational efficiency and cost, and therefore

scalability for our adaptive architecture.

To isolate the individual contributions of our framework’s core

components (addressing SQ2), we implemented a systematic ab-

lation study protocol that selectively disables each major mod-

ule while maintaining all other system characteristics. These con-

trolled experiments examine the Time-Aware Procedural Mem-

ory Retrieval module, the Multi-Agent Debate Protocol, and the

Feedback-Driven Meta-Prompt Optimization (FBPO) mechanism

in isolation. Alongside the isolations, we also evaluate the perfor-

mance of the non-adaptive baseline, which employs a static meta-

prompt template without the FBPO mechanism and no procedural

memory retrieval for online contextualization. This baseline serves

as a reference point for understanding the performance impact of

our adaptive components.

The ablation studies employ a more concentrated temporal win-

dow (January 3, 2022 to October 4, 2022 for training; October 5,

2022 to June 10, 2023 for evaluation) to ensure computational feasi-

bility while preserving the essential market dynamics necessary for

meaningful component assessment. This methodological approach

establishes a comprehensive baseline incorporating all components,

against which individual module contributions can be rigorously

quantified.

Our market regime analysis extends beyond single-asset eval-

uation to encompass the full spectrum of selected stocks (AAPL,

NFLX, and AMZN), thereby assessing the framework’s robustness

across heterogeneous market conditions and sector-specific dy-

namics. This cross-sectoral evaluation employs identical temporal

parameters (January 3, 2022 to October 4, 2022 for training; Oc-

tober 5, 2022 to testing) while utilizing the Gemini 2.5 Flash Lite

architecture to ensure consistency across experimental conditions.

To address potential temporal bias concerns inherent in LLM-

based financial applications (addressing SQ3), we designed a forward-

looking bias study that examines whether our framework’s per-

formance derives from inadvertent knowledge of future market

conditions embedded within the base model’s training corpus. This

investigation employs Apple (AAPL) as the test asset over a gen-

uinely out-of-sample period (January 31, 2025 to May 1, 2025), rep-

resenting market conditions that definitively post-date the LLM’s

knowledge cutoff. The framework utilizes identical training param-

eters (October 3, 2019 to October 4, 2022) while being evaluated
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against this future time horizon, thereby providing definitive ev-

idence regarding the framework’s reliance on genuine adaptive

capabilities versus pre-existing market knowledge.

Our architectural generalizability study (addressing SQ4) evalu-

ates the framework’s performance consistency across diverse LLM

architectures, including LLama 4Maverick [77] (accessed via Groq’s

optimized API [78]), Qwen3 235B A22B [79], and DeepSeek V3 0324

[80]. This comparative analysis employs the concentrated tempo-

ral window utilized in our ablation studies (January 3, 2022 to

October 4, 2022 for training; October 5, 2022 to June 10, 2023 for

evaluation), enabling systematic assessment of how architectural

differences in reasoning capabilities, parameter scaling, and train-

ing methodologies influence the framework’s adaptive performance

characteristics.

4.3 Feature Engineering

Our feature engineering methodology adopts a dynamic, context-

sensitive approach by incorporating real-timemarket signal produc-

tion directly into the decision-making process. This architectural

decision reflects our framework’s fundamental principle of adaptive

intelligence, where technical indicators function not solely as fixed

inputs but as dynamic contextual signals that augment the agents’

comprehension of the market structure and momentum dynamics.

The technical indicator suite encompasses a carefully curated

selection of complementary metrics designed to capture distinct

aspects of market behavior: the 20-day Simple Moving Average

(SMA20) and 20-day Exponential Moving Average (EMA20) provide

trend identification capabilities, while the Relative Strength Index

(RSI) quantifiesmomentum characteristics. The Average Directional

Index (ADX) measures trend strength independent of direction, and

the Commodity Channel Index (CCI) identifies cyclical turning

points, all originally introduced by [81]. This multi-dimensional

approach ensures that our agents receive comprehensive market

context spanning trend, momentum, volatility, and cyclical com-

ponents that collectively characterize price action across different

temporal horizons, hence enhancing their decision-making capabil-

ities. Appendix A.1 provides a detailed description of the indicators

used in our framework, including their mathematical definitions

and implementation details.

The environmental state representation integrates these tech-

nical indicators into a comprehensive information architecture,

structured into two primary components: market metrics and port-

folio metrics. The market metrics component provides a snapshot

of the asset’s current and historical state, including daily Open,

High, Low, and Close prices (OHLC), trading volume. It also in-

cludes the latest values and historical trajectories of the technical

indicators described previously. The portfolio metrics component

tracks the agent’s performance and risk exposure in real-time. This

includes key performance indicators such as the current equity

value, cumulative return, Sharpe Ratio, and maximum drawdown,

alongside historical data like daily returns and drawdown history.

By combining these two views, the state representation creates a

rich contextual foundation that enables our agents to synthesize

technical analysis with portfolio management considerations. The

resulting information structure ensures that decision-making pro-

cesses can leverage both immediate market signals and longer-term

strategic context, facilitating the nuanced reasoning capabilities.

Appendix A.2 provides a detailed description of the state represen-

tation used in our framework, including the specific features and

their roles and their implementation details.

4.4 Evaluation Metrics

Our evaluation framework employs a comprehensive suite of met-

rics to assess performance across three key dimensions: portfolio

performance, trade-level statistics, and behavioural diagnostics.

This multi-faceted approach enables a holistic understanding of the

agent’s capabilities, from absolute and risk-adjusted returns to the

underlying quality of its reasoning and decision-making processes.

4.4.1 Core Portfolio Performance Metrics. These metrics evaluate

the overall effectiveness of the strategy from a portfolio perspective.

• Cumulative Return (CR%) quantifies the total percentage
change in portfolio value over the evaluation period. It is

the primary measure of absolute profitability. We aim to

maximize this metric.

CR% =

(
𝑉𝑇

𝑉𝑡0
− 1

)
× 100

where 𝑉𝑡0 is the initial portfolio value and 𝑉𝑇 is the final

value at the end of the evaluation period.

• Annualised Sharpe Ratio (SR) [82] measures risk-adjusted

return by normalising the excess return (above the risk-free

rate) by the standard deviation of returns. A higher SR indi-

cates better performance for a given level of risk.

SRann =
E[𝑅𝑝 − 𝑅𝑓 ]

𝜎𝑝
×

√︁
𝑁𝑦

where 𝑅𝑝 is the portfolio’s daily return, 𝑅𝑓 is the daily risk-

free rate, 𝜎𝑝 is the standard deviation of the portfolio’s daily

returns, and 𝑁𝑦 is the number of trading days in a year

(typically 252).

• MaximumDrawdown (MDD%)measures the largest single

drop from a peak to a trough in portfolio value. It is a key

indicator of downside risk and portfolio resilience.

MDD = max

𝑡 ∈[𝑡0,𝑇 ]

(
max𝜏∈[𝑡0,𝑡 ] 𝑉𝜏 −𝑉𝑡

max𝜏∈[𝑡0,𝑡 ] 𝑉𝜏

)
× 100

where 𝑉𝑡 is the portfolio value at time 𝑡 .

• Alpha vs. Buy & Hold (𝛼BH) measures the excess return

of the agent’s strategy over a passive buy-and-hold strategy.

A positive alpha indicates outperformance.

𝛼BH = CRAgent − CRB&H

4.4.2 Trade-Level Metrics. These metrics provide insight into the

tactical execution and efficiency of the trading strategy.

• Number of Trades (𝑁𝑡𝑟 ) is the total count of complete trade

cycles during the evaluation period. A complete trade cycle

is defined as a long, or short, position that is opened and

subsequently closed.
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• Total Win Rate (%) measures the percentage of trades that

resulted in a positive profit.

Win Rate =
1

𝑁𝑡𝑟

𝑁𝑡𝑟∑︁
𝑖=1

I(𝑃𝑖 > 0) × 100

where 𝑃𝑖 is the profit of the 𝑖-th trade and I(·) is the indicator
function.

• Average Win (%) and Maximum Win (%) are the average
and maximum profit percentages, respectively, across all

winning trades.

• Average Loss (%) and Maximum Loss (%) are the average
andmaximum loss percentages, respectively, across all losing

trades.

4.4.3 Behavioural and Diagnostic Metrics. These metrics are de-

signed to understand the agent’s reasoning, decision-making logic,

and potential biases. They are crucial for understanding why an

agent performs as it does.

• Shadow Return (%) calculates the hypothetical cumulative

return if a trade were executed on every single directional

signal generated by the agent’s reasoning module, irrespec-

tive of the final decision mechanism.

• Gating Efficiency (Δ) quantifies the value added by the

agent’s final decision filter. It is the difference between the

realised portfolio return and the shadow return.

Δ = CRAgent − CR
Shadow

• Missed Opportunity P&L (%) is the cumulative profit or

loss from high-confidence trades that the agent’s reasoning

module identified but the model decided not to execute.

• Hit Ratio (%) measures the percentage of days where the

agent’s directional sentiment (bullish/bearish) correctly pre-

dicts the direction of the next day’s price movement. The

associated 𝑝-value tests the null hypothesis that the hit ra-

tio is no better than 50%, using a binomial test to assess

statistical significance.

• Sentiment-Price Correlation is the Pearson [83] correla-

tion coefficient between the agent’s daily sentiment score

and the market’s daily returns. It assesses the alignment be-

tween the agent’s reasoning and pricemovements. In optimal

conditions, the agent’s sentiment should be positively corre-

lated with the market’s returns, indicating that the agent’s

reasoning is aligned with the market’s direction.

• Utilisation Rate (%) is the percentage of trading days on

which the agent holds a non-neutral position (i.e., is long or

short the asset). It is a measure of the agent’s activity and

conviction.

• Reason-Action Alignment measures the consistency be-

tween the sentiment polarity of the agent’s natural-language

rationale and its final trading action (e.g., a bullish rationale

followed by a long position).

Through this multi-faceted set of evaluation metrics, we aim to

achieve a comprehensive understanding of our framework’s perfor-

mance across return generation, risk management, and operational

efficiency dimensions.

4.5 Benchmark Comparison

To evaluate our self-adapting framework, we compare it against a

diverse set of established trading approaches, including traditional

rule-based strategies, machine learning models, and reinforcement

learning agents.

The first class, rule-based heuristics, serves as a set of transpar-

ent, non-adaptive baselines. This category includes several models,

a passive buy-and-hold strategy, a Z-score mean reversion model, a

standardMovingAverage ConvergenceDivergence (MACD) crossover

strategy, and a KDJ-RSI composite model. The Z-score model initi-

ates trades when the price deviates by ±2 standard deviations from

a 30-day moving average, opening a long position below the lower

bound and a short position above it, then closing the position upon

reversion to ±0.5 standard deviations. The MACD strategy uses

conventional (12, 26, 9) parameters, opening a long position when

the MACD line crosses above the signal line and a short position

when it crosses below. Finally, the KDJ-RSI model combines a 9-day

KDJ oscillator with a 14-period Relative Strength Index (RSI), per-

mitting long entries only when the RSI is within the 30-70 range to

avoid overbought or oversold conditions.

The second class consists of supervised learning algorithms

trained to predict next-day returns. This set features a LightGBM

[84] model employing 5- and 10-day lagged returns as predictive

features, a Long Short-Term Memory (LSTM) [85] network config-

ured with a 20-day lookback window and 32 hidden units to capture

temporal dependencies, and a Transformer-based architecture, also

with a 20-day sequence length, composed of two encoder layers

and four attention heads to model complex patterns in price data.

They are trained to predict the next day’s return, and the predicted

return is used to determine the trading action. This means, opening

a long position if the predicted return is positive, a short position if

negative, and holding if zero.

The final category comprises deep reinforcement learning (DRL)

agents designed to learn an optimal trading policy directly from

market interactions. The state for these agents is represented by

a 20-day sequence of returns. This group includes an Advantage

Actor-Critic (A2C) [86] agent, a Deep Q-Network (DQN) [87] em-

ploying an epsilon-greedy exploration strategy with a decay rate of

0.995, and a Proximal Policy Optimization (PPO) [88] agent, which

uses a clipping parameter of 0.2 to ensure stable policy updates.

These agents all exhibit the same action space, which consists of the

actions long, short, and hold. The agents are trained to maximise

the cumulative return over the training period, and the trading

action is determined by the agent’s policy.

4.6 Configuration Variables

Our simulation environment is a back-testing regime where all

trades are executed under a 0% commission schedule, with 0% slip-

page and 0% borrowing costs, thereby isolating model performance

from exogenous frictions. This controlled setting, ensures that com-

parative results reflect the intrinsic capabilities of the adaptive

framework rather than real-world implementation artefacts.

The observation vector ingested by each agent comprises a

rolling 30-day window of OHLCV observations augmented by a
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20-day history of the engineered technical indicators introduced in

Section 4.3. News sentiment features are provided through a sliding

3-day window, preserving short-term informational shocks that

frequently catalyse price movements.

To guarantee reproducible language-model behaviour, we fix

the sampling temperature at 0.0 and cap the generation budget at

4, 096 tokens per interaction. The upstream data pipeline supports

a maximum input context of 128𝑘 tokens, ensuring that the agents

can assimilate extensive historical context when necessary.

Operational robustness is enforced by a structured retry protocol

that re-issues failed API calls or malformed responses up to ten and

five times respectively. The retry mechanism for API connection

errors include an exponentially increasing timeout beginning at 5

and bounded by a 60𝑠 ceiling; a 10 jitter mitigates synchronisation

effects. Secondly, malformed, or unparseable responses trigger a sub-

agent attempting to solve the issue by re-querying the LLM with

the malfunctioned response and its corresponding error message.

This sub-agent is designed to handle up to five retries, ensuring

that transient issues do not disrupt the overall decision-making

process. The full specification of this mechanism is provided in

Appendix A.3.

Procedural memory embeddings are produced via the text-

embedding 3 small model [72], yielding 1 536-dimensional vec-

tors that are persisted in a PGVector-enabled PostgreSQL store

[73, 74]. Documents are chunked in 8 191-token segments, which is

also the maximum input size for the embedding model. The time-

aware retriever employs a similarity function with 𝛼 = 0.1, 𝜏 = 0.0,

𝑁𝑚𝑒𝑚 = 5, and𝑤 = 0.5 as described in Section 3.3.

Finally, prompt templates governing each agent’s role are param-

eterised to expose current market context, historical performance

statistics, and news items. This design affords the FBPO mecha-

nism a rich action space while maintaining coherent task allocation

across the multi-agent pipeline. Detailed template schemas are

presented in Appendix A.4.

5 RESULTS

This section presents the empirical findings from our experiments,

structured to systematically address the research questions out-

lined in the introduction. We begin in Section 5.1 by establishing

a performance baseline. Section 5.2 then dissects the framework

through ablation studies to quantify component contributions. We

test the framework’s robustness across assets in Section 5.3 and for

temporal bias in Section 5.4. Finally, Section 5.5 provides a critical

analysis of model-inherent bias, revealing how the choice of LLM

fundamentally alters agent behavior.

5.1 Comparative Performance Analysis

This section addresses SQ1 by comparing our framework’s perfor-

mance against the comprehensive suite of benchmarks detailed in

Section 4.5. These models serve as a baseline to evaluate the frame-

work’s adaptive capabilities and its ability to outperform established

trading methodologies.

5.1.1 Key Findings. The cross-method benchmark in Table 1 re-

veals a foundational insight into our framework’s baseline behavior.

The most salient finding is the stark underperformance of the full

self-adapting agent in this configuration. It registers a compounded

loss of −4.15 % and a near-zero Sharpe ratio (−0.17), falling short of
the simple buy-and-hold benchmark by over 26 percentage points.

The cause is immediately apparent from its trading frequency, as

it only executed a single trade (𝑁𝑡𝑟 = 1). The agent exhibits an

extreme risk aversion that results in inaction.

The annualised Sharpe ratio, which measures risk-adjusted re-

turn, offers a more nuanced perspective. A value above 1.0 is gen-

erally considered strong, while negative values indicate that an in-

vestment failed to outperform a risk-free asset. Our agent’s Sharpe

ratio of −0.17 confirms that its returns did not justify the risk taken.

However, its underperformance is relatively small compared to the

deeply negative ratios of several rule-based and deep learning mod-

els (e.g., Z-score at −1.36, Transformer at −1.13), which suffered

significant losses relative to their volatility. In contrast, the LSTM

model achieved a Sharpe ratio of 1.15, slightly surpassing the buy-

and-hold benchmark (1.10) by generating superior risk-adjusted

returns.

This analysis clarifies that while our agent failed to capture mar-

ket upside, its performance was mixed when compared to other

active strategies. It successfully avoided the steep losses of the

rule-based methods (e.g., −15.79% CR for Z-score) and the worst-

performing ML models (e.g., −24.71 % for LightGBM). Our method

does signal effective risk management, as its maximum drawdown

of 4.15% is significantly lower than the worst-performing strate-

gies, which suffer drawdowns exceeding 30 % (e.g., Transformer at

32.41%). This suggests that while the agent’s ability to generate

profitable signals (alpha) is impaired, its internal risk-management

mechanisms are highly active, providing a safer floor than brittle

quantitative systems.

In summary, the baseline performance presents a stark paradox.

The framework is demonstrably safer than most traditional strate-

gies but is too conservative to be profitable in this market regime.

This initial result reframes our investigation away from pure per-

formance optimisation and towards understanding the source of

this emergent, risk-averse behavior. The following diagnostic anal-

ysis and ablation studies are therefore critical to disentangling the

components responsible for this complex outcome.

These findings must be interpreted cautiously. Each result stems

from a single seed per architecture, except for the full system which

is averaged over three independent runs. This minimal-seed analy-

sis limits our ability to draw statistically robust conclusions about

the framework’s performance variability and generalisability across

different market conditions. Future work should incorporate multi-

seed evaluations to quantify the variance in agent behavior and

performance stability [90].

5.1.2 Reasoning Diagnostics. Table 2 summarises key behavioural

diagnostics for three independent full -architecture runs (F0, F1,
F2) on AAPL. The metrics assess the alignment between the textual

sentiment of the final decision agent’s rationale, its recommended

action, and realised price dynamics.
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Table 1: Comparative performance of LLM agents against traditional quantitative strategies. Train metrics cover October 3,
2019-October 4, 2022; test metrics span October 5, 2022-June 10, 2023.

Category Strategy CR (%) Ann. Sharpe MDD (%) Avg. Win (%) Max Loss (%) Max Win (%) 𝑁𝑡𝑟 𝛼BH (%)

value (95% CI)
b

Benchmark Buy & Hold 22.74 1.10 (-1.17, 3.37) 19.81 22.74 – 22.74 1 0.00

Rule-based Z-score Mean Reversion -15.79 -1.36 (-3.83, 1.11) 17.34 2.69 -6.75 4.58 11 -37.28

MACD Crossover -7.68 -0.23 (-2.50, 2.04) 24.44 4.92 -4.65 20.09 20 -30.42

KDJ-RSI Filter -15.74 -1.29 (-3.56, 0.98) 18.77 2.19 -1.02 9.07 40 -38.48

Deep Learning LSTM 24.04 1.15 (-1.13, 3.42) 20.64 5.90 -4.01 16.91 9 0.41

Transformer -23.96 -1.13 (-3.40, 1.14) 32.41 0.00 -32.41 0.00 1 -47.59

LightGBM -24.71 -1.18 (-3.45, 1.09) 26.79 1.75 -7.33 9.38 48 -47.45

Deep Reinforcement Learning DQN 11.33 0.70 (-1.57, 2.97) 24.13 2.71 -6.82 15.51 38 -12.30

A2C 22.74 1.13 (-1.14, 3.40) 19.81 22.74 – 22.74 1 0.00

PPO 22.74 1.13 (-1.14, 3.40) 19.81 22.74 – 22.74 1 0.00

Self-Adapting Agents (ours)
a

Full System -4.15 -0.17 (-3.94, 3.59) 4.15 1.36 -5.51 1.36 1 -26.88

a
The "Full System" refers to our complete, self-adapting architecture, powered by the Gemini 2.5 Flash Lite LLM. Metrics represent the mean of three

independent runs.

b
The 95% Sharpe ratio confidence interval is from a non-parametric bootstrap, supplemented by the analytical approximation from Lo [89].

Table 2: Behavioural diagnostics of the full architecture across three independent runs on the AAPL ticker. The metrics assess
the alignment between the textual sentiment of the final decision agent’s rationale, its recommended action, and realised price
dynamics.

Metric F0 F1 F2 Mean

Sentiment Profile
Sentiment (𝜇, 𝜎) -0.043 (0.025) -0.061 (0.032) -0.046 (0.026) -0.050 (0.028)

Bullish / Bearish Days 8/180 4/184 9/179 7/181
Predictive Power
Sentiment-Price Corr.

a
0.182 0.086 0.110 0.126

Hit Ratio (1-day) 0.48 0.49 0.52 0.50

𝑝-value (Hit Ratio > 0.5)
d

0.75 0.64 0.36 0.58

Trading Activity & Performance
Trades Executed 1 1 1 1

Utilisation Rate
b

0.5 % 0.5 % 0.5 % 0.5 %

Missed Opportunities 84 86 91 87

Shadow Return (7-days)
c −81.0 % −87.2 % −84.5 % −84.2 %

a
Pearson correlation coefficient.

b
Percentage of trading days with a non-neutral position.

c
Cumulative return from acting on every high-confidence signal with a 7-day holding period.

d
The hit ratio 𝑝-value is from a one-sided exact binomial test [91] assessing if the observed accuracy is significantly greater than random

chance (50%).

We quantify the sentiment of the agent’s reasoning by embed-

ding its natural-language rationales and measuring their cosine

similarity to predefined ’bullish’ and ’bearish’ exemplar statements.

This produces a continuous sentiment score for each daily rationale.

As shown in Table 2, all three runs exhibit strongly negative average

sentiment, with fewer than ten bullish days out of 188. This bias

reflects an overly conservative prior that negates long exposure

even in an upward-trending market, which also explains the low

utilisation observed in Table 1.

Sentiment-price correlations remain low (0.09–0.25) and its lead

lag positively correlates one day after price moves, indicating that

the decision agent’s language reasoning reacts to price rather than

forecasts it.

The hit ratio measures the percentage of days where the sen-

timent of the agent’s rationale correctly predicts the direction of

the following day’s price movement, where positive sentiment is

followed by a positive return, or negative sentiment by a nega-

tive return. The 1-day hit ratio hovers near 50%, with 𝑝-values
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far from statistical significance, indicating performance no better

than chance. Across longer horizons, accuracy decays further, un-

derscoring the limited predictive content in the decision agent’s

rationales.

The framework demonstrates flawless internal consistency, with

a reason-action alignment score of 1.0 in every run. This metric

compares the sentiment polarity of the decision agent’s rationale

against the final trading action (long, short, hold). However, this

perfect score may be misleading. It arises due to the agent execution

of a single trade, which was consistent with its reasoning on that

specific day. On nearly all other days, the agent exhibited a strong

bearish sentiment, yet took a neutral (hold) position. This persistent

misalignment between a directional rationale and a non-committal

action reveals a critical failure that the agent is unable to act on its

own convictions, resulting in its internal reasoning being ineffective

for trading.

A shadow backtest, which simulates trading on every directional

sentiment signal (short for negative sentiment, long for positive),

reveals a crucial insight. This hypothetical strategy would have pro-

duced large negative returns (−81.0 to −87.2 %). The single executed
trade in each actual run resulted in a near-flat performance, but the

framework’s internal gating logic successfully shielded capital by

filtering out these poor signals. However, in doing so, it suppressed

nearly all activity, failing to act on 84 to 91 days where it generated

a directional profitable rationale.

Collectively, these diagnostics show a critical tension in the

framework. The multi-agent reasoning framework excels at reach-

ing consensus, but the final signals generated by the decision agent

are insufficiently informative or timely.

5.2 Ablation Analysis

To isolate the individual contributions of our framework’s core

components (addressing SQ2), we implemented a systematic ab-

lation study protocol that selectively disables each major module,

being Feedback-Driven Meta-Prompt Optimization (FBPO), Time-

Aware Procedural Memory, and the Multi-Agent Debate Protocol.

For computational feasibility, this intensive analysis was conducted

on a shorter, more volatile market period than the benchmark com-

parison in Section 5.1.

5.2.1 Key Findings. Our ablation study reveals several counterintu-

itive findings. Most notably, the full architecture (A0) executed only
one trade over six months, resulting in a minimal loss. In contrast,

the non-adaptive baseline (A4) delivered a more significant cum-

mulative return (CR) loss of −2.59%, demonstrating that a static

approach is detrimental in the tested market regime.

The critical importance of the feedback mechanism (FBPO) be-

comes apparent when examining variant A1, where its removal

triples the trade count but severely degrades performance. Its cum-

mulative return plummets to −8.83%, a result significantly worse

than any other variant, highlighting that a feedback mechanism is

essential for generating alpha.

The full system (A0) exhibits the most conservative behaviour,

executing only three trades and ending with a CR of −1.12 %. This

confirms that the combination of all modules leads to a highly

cautious agent that avoids most trading opportunities. The agent

without FBPO (A1) performs the worst, with a CR of −4.26 %, under-
scoring the critical importance of the feedback loop for adaptation.

Paradoxically, removing either the Time-Aware Procedural Mem-

ory Retrieval (A2) or the Multi-Agent Debate Protocol (A3) improves

realised performance relative to the full system. The memory-free

variant (A2) generates a modest positive return of 1.98 %. However,

the debate-free variant (A3) is the clear outperformer, producing

the study’s best cummulative return of 3.20% across eight trades.

This signifies that the debate protocol is the primary source of over-

cautiousness, suppressing not only bad trades but also the profitable

opportunities identified by the A3 variant. While all variants sig-

nificantly underperform the passive buy-and-hold benchmark’s

CR of 22.74 %, the relative performance differences provide crucial

engineering insights.

5.2.2 Behavioural and Shadow Backtest Diagnostics. To understand
the source of these performance differences, we conducted a shadow

backtest, simulating trades on every directional signal generated

by each agent’s reasoning module, regardless of whether the final

gating mechanism approved the trade. The results are summarised

in Table 4.

The analysis reveals a clear insight where only the debate-free

variant, A3, generated a fundamentally profitable signal. Its reason-

ing, if followed on every occasion, would have produced a 6.1%

return. This is supported by its statistically significant Binomial

test for the hit ratio, which shows a 60% accuracy rate in predict-

ing price movements, significantly better than chance (𝑝 = 0.003).

This variant also exhibits the highest sentiment-price correlation

(0.473), indicating that its rationales are closely aligned with market

movements. Its final realised return of 3.20% indicates its gating

mechanismwas overly conservative, leaving a further 5.2 % of profit

on the table. Its negative gating efficiency (−2.9 %) confirms that its

filter actively destroyed value by vetoing profitable signals.

In stark contrast, all other variants (A0, A1, A2) produced signals

that, in aggregate, were deeply unprofitable, with shadow returns

around −25%. Their hit ratios were indistinguishable from a coin

flip. This reframes the performance of the memory-free (A2) variant,
where its 1.98 % realised return is not due to good signals, but to an

exceptionally effective filtering mechanism. It achieved the highest

gating efficiency of the cohort, successfully turning a −25.3 % signal

into a positive gain by rejecting the vast majority of trades.

Collectively, the ablation studies clarifies the division of perfor-

mance among modules and frames the core challenge as a precision-

recall trade-off. The FBPO module is the indispensable engine of

adaptation, being necessary to generate any alpha. However, the

signals it generates are noisy. The Debate Protocol acts as a high-

precision filter, screening out almost all signals, which explains why

its removal in A3 unlocks the best performance. The memory mod-

ule seems to function as an additional filter, further enhancing the

overall gating efficiency of the complete system. The primary engi-

neering challenge is not simply to augment layers of reasoning, but

to fine-tune them to achieve balance, identifying a position on the
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Table 3: Performance and Trade Diagnostics for Ablation Variants. Key metrics are shown for each variant alongside the buy-
and-hold benchmark. 𝛼BH is the excess cummulative return versus buy-and-hold. Train metrics span January 3, 2022-October
4, 2022; test metrics span October 5, 2022-June 10, 2023.

Category Strategy CR (%) Ann. Sharpe MDD (%) Avg. Win (%) Max Loss (%) Max Win (%) 𝑁𝑡𝑟 𝛼BH (%)

value (95% CI)
c

Ablation

A0 (Full System) -0.55 -1.16 (n/a) -0.55 0.00 -0.55 -0.55 1 -23.28

A1 (w/o Feedback) -8.83 -1.03 (-1.59, 0.76) 11.20 2.67 -10.60 2.67 3 -31.50

A2 (w/o Memory) 1.98 0.69 (n/a) 0.67 2.67 -0.67 2.67 2 -20.76

A3 (w/o Debate) 3.20 0.86 (-0.45, 0.96) 1.51 1.02 -1.51 3.42 8 -19.58

A4 (Static) -2.59 -0.48 (-1.61, 0.75) 3.13 0.28 -3.13 0.55 3 -25.30

Benchmark Buy&Hold 22.74 1.10 (-0.07, 0.21) 19.81 n/a n/a n/a 1 0.00

a
‘n/a‘ intervals indicate fewer than three non-zero daily returns.

b
Trade statistics for Buy & Hold are not applicable.

c
The 95% Sharpe ratio confidence interval is from a non-parametric bootstrap, supplemented by the analytical approximation from Lo [89].

Table 4: Shadow Backtest Diagnostics for Ablation Variants. The metrics reveal the quality of the underlying signal before the
final trading decision filter is applied.

Metric A0 (Full) A1 (w/o FBPO) A2 (w/o Memory) A3 (w/o Debate)

Signal Quality
Shadow Return (1-day)

a −25.1 % −24.4 % −25.3 % 6.1 %

Sentiment-Price Corr. 0.121 0.214 0.211 0.473
Hit Ratio (1-day, 𝑝-value)d 49% (0.64) 51% (0.47) 48% (0.75) 60% (0.003)

Gating and Performance
Realised Return −0.55 % −8.83 % 1.98 % 3.20 %

Gating Efficiency (Δ)b 24.6 % 15.6 % 27.3 % −2.9 %
Missed Opportunity P&L

c −25.3 % −16.5 % −28.2 % 5.2 %

a
Cumulative return from acting on every directional sentiment signal with a 1-day holding period.

b
Gating Efficiency is the difference between Realised Return and Shadow Return, showing value added by filtering.

c
The P&L of trades the agent considered but did not execute.

d
The hit ratio 𝑝-value is from a one-sided exact binomial test [91] assessing if the observed accuracy is significantly greater than random chance (50%).

precision-recall plane that allows the transmission of high-quality

signals while effectively filtering out the bulk of lower-quality ones.

5.3 Cross-Asset Generalisation

To find out whether the behavioural patterns observed in the abla-

tion study (SQ2) generalise beyond a single ticker, we conducted a

pilot backtest on two additional assets, Netflix (NFLX) and Amazon

(AMZN). For computational efficiency, we tested only the full archi-

tecture and the best-performing, less conservative, ablation variant

(A3) without the debate protocol over one seed. Table 5 summarises

these results.

5.3.1 Key Findings. The cross-asset generalisation study validates

a pivotal finding from our ablation analysis, removing the debate

protocol results in a more robust and profitable trading system,

particularly in non-trending or volatile markets. The performance

of the variant without the debate protocol on Amazon (AMZN) pro-
vides the clearest evidence (see Figure 6 in Appendix B). It not only

generated a positive cummulative return (CR) of 7.71 % but also out-

performed its passive buy-and-hold benchmark, delivering an alpha

of 6.54%. Crucially, it achieved this with a maximum drawdown

(MDD) of only 2.93%, starkly contrasting with the benchmark’s

32.64 % drawdown. This demonstrates the architecture’s ability to

generate alpha while maintaining stringent risk control.

In stark contrast, the full system exhibits a systemic bearish bias

that proves highly detrimental in upward trending markets. On

both AAPL and AMZN, it posted negative returns, failing to capitalise

on bullish price trends. The performance on NFLX provides the most

compelling evidence of this failure. While the system generated

a positive return of 6.78%, it severely underperformed the buy-

and-hold benchmark’s return of 76.66%, resulting in an alpha of

nearly −70 %. This result powerfully illustrates the opportunity cost
imposed by the debate module’s overly conservative or short-biased

stance, which prevents the agent from participating in strong bull

markets.
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Table 5: Preliminary cross-asset performance of the full and debate-free systems. Train metrics span October 3, 2019-October 4,
2022; test metrics span October 5, 2022-June 10, 2023.

Ticker Variant CR (%) Ann. Sharpe MDD (%) Avg. Win (%) Max Loss (%) Max Win (%) 𝑁𝑡𝑟 𝛼BH (%)

value (95% CI)
b

AAPL Full
a

-4.15 -0.17 (-3.94, 3.59) 4.15 1.36 -5.51 1.36 1 -26.88

No Debate -2.15 -1.52 (-3.80, 0.75) 1.52 0.00 -1.52 0.00 2 -24.87

Buy & Hold 22.74 1.10 (-1.17, 3.37) 19.81 22.74 0.00 22.74 1 0.00

NFLX Full 6.78 1.73 (-0.55, 4.00) 0.00 2.24 0.00 5.51 3 -69.93

No Debate 1.28 1.16 (-1.11, 3.43) 0.00 1.28 0.00 1.28 1 -75.38

Buy & Hold 76.66 1.91 (-0.37, 4.19) 21.17 76.66 0.00 76.66 1 0.00

AMZN Full -1.46 -0.12 (-2.39, 2.15) 1.49 0.03 -1.49 0.03 2 -2.56

No Debate 7.71 1.13 (-1.14, 3.40) 2.93 5.63 -2.47 10.96 5 6.54

Buy & Hold 1.10 0.25 (-2.02, 2.52) 32.64 1.10 0.00 1.10 1 0.00

a
Results are the mean of three separate runs, detailed in Table 5. All other agent results are from single runs.

b
The 95% Sharpe ratio confidence interval is from a non-parametric bootstrap, supplemented by the analytical approximation from Lo [89].

The key insight is that architectural simplification, specifically,

the removal of the debate module, directly addresses the value-

destructive, over-conservative behaviour observed in the full sys-

tem. This finding allows us to isolate the debate protocol as a pri-

mary source of underperformance and validates the superiority of

the leaner configuration without the debate protocol.

Further diagnostic analysis on the AMZN runs reveals the source

of this performance difference. For the profitable variant without

the debate protocol (A3), the 7-day moving average of its reasoning

sentiment closely tracks the normalised asset price, as shown in

Figure 7 in Appendix B.1. The agent correctly adopts a negative

sentiment during price declines (Figure 8), demonstrating an ability

to reason in alignment with market trends. However, this align-

ment appears to be reactive rather than predictive, suggesting the

agent acts too late to fully capitalise on its insights. In contrast, the

full system exhibits a persistently negative sentiment bias through-

out the period, failing to recognise the upward price trend and

explaining its poor performance (Figure 9).

5.4 Analysis of Out-of-Sample Behaviour

To isolate the framework’s procedural reasoning from potentially

memorised training data in the latent space of the Large Language

Model, we conducted a forward-looking diagnostic test on AAPL

stock from January 31, 2025, to May 1, 2025. This potential bias is a

critical concern, as it can lead to overfitting and poor generalisation

in real-world applications. The test periodwas selected to be beyond

the knowledge cutoff of the LLM, which is set at end of 2024 for

the Gemini 2.5 models [76].

The objective is not to measure absolute performance, but to

diagnose the agent’s core behaviour when confronted with a truly

novel market environment.

5.4.1 Key Findings. The results from the temporal bias test provide

a clear, yet nuanced, answer to SQ3. The agent executed zero trades

throughout the entire 93-day period.

Table 6: Key behavioural and performance diagnostics from
the forward-looking bias test. The agent was evaluated on
market data that post-dates its knowledge cutoff.

Metric Value

Performance & Trading Activity
Compounded Return (CR%) 0.0% (NaN)

Annualised Sharpe Ratio 0.0 (NaN)

Trades Executed 0

Buy & Hold Return -13.39%

Actual Alpha vs. Buy & Hold +13.39%

Behavioural & Reasoning Diagnostics
Sentiment (𝜇, 𝜎 ) (-0.053, 0.028)

Bullish / Bearish Days 2 / 91

1-Day Hit Ratio (𝑝-value)a 0.52 (0.38)

Peak Sentiment-Price Correlation 0.23 (at lag of -2 days)

Shadow Return (7-day holding) +37.54%

a
The hit ratio 𝑝-value is from a one-sided exact binomial

test [91] assessing if the observed accuracy is signifi-

cantly greater than random chance (50%).

This inactivity is not due to a lack of market movement, the

buy-and-hold benchmark experienced a significant downturn of

−13.39% during this time. The agent’s decision to refrain from

trading resulted in a positive alpha of 13.39% compared to the

benchmark, but this outcome was purely coincidental, as it did not

actively participate in the market.

The behavioural diagnostics in Table 6 reveal the cause of this

inactivity. The agent exhibited an overwhelming bearish sentiment

on 91 out of 93 days, with very low variance in its conviction (𝜎 =

0.028), a bias evenmore pronounced than in previous tests. The peak
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positive correlation between its sentiment and price occurred with

a two-day lag (0.23), meaning its reasoning most strongly reflected

what had already happened. Even more revealing, the sentiment

showed its strongest negative correlation (-0.22) with prices two

days in the future, suggesting its signals were actively misleading.

The 1-day hit ratio of 52% was statistically indistinguishable from

a random coin flip. Taken together, these diagnostics imply that

short-term sentiment is noisy, while the cumulative direction over

multi-daywindows is informative. The current architecture assesses

signals daily and disregards immediately them if instant confidence

is absent, therefore preventing potentially profitable medium-term

trades.

This can also be concluded by the deep contradiction between the

agent’s raw signals and its actions. A shadow backtest, simulating

trades based on every high-confidence signal, reveals a dramatic

trend. The 1-day shadow return was −9.5%, confirming the poor

short-term timing of the agent’s signals. However, this performance

dramatically reverses as the holding period increases, reaching

37.5% at 7 days and a remarkable 383% at 14 days. This suggests

that while the agent’s timing was flawed, its persistent bearish

bias was the correct long-term macro call for this specific falling

market. The framework’s own internal gating mechanisms, likely

the same conservative debate protocol, completely suppressed these

profitable, longer-term signals, preventing any capital from being

deployed.

This diagnostic test does not rule out the possibility of temporal

bias in other backtests, but rather highlights a more immediate

architectural problem as the framework defaults to extreme risk

aversion when faced with true uncertainty, completely halting

the adaptation and learning mechanisms like the FBPO loop. This

finding aligns with the results from the ablation study (Section

5.2), where removing the conservative debate protocol led to more

robust performance.

5.5 LLM Architecture Generalizability

To evaluate the framework’s performance consistency across di-

verse LLM architectures (addressing SQ4), we benchmarked against

several state-of-the-art models. This comparative analysis assesses

how differences in reasoning capabilities, parameter scaling, and

training methodologies influence the framework’s adaptive perfor-

mance characteristics.

5.5.1 Key Findings. This experiment isolates the LLM as the sole

independent variable as all agents began with identical prompts, pa-

rameters, and framework configurations. The results, summarised

in Table 7, reveal that the choice of LLM introduces a powerful archi-

tectural bias that is the dominant factor in driving agent behaviour

and performance.

The analysis directly contradicts the assumption that larger,

more costly, or notionally smarter (higher AAI score) models yield

superior trading results. The best relative performance came from

Deepseek R1 0528 Qwen3 8B, one of the smallest and the most

cost-effective models, which, despite a small loss, demonstrated

exceptional risk management (MDD of 0.64%). In stark contrast,

the powerful and expensive LLama 4 Maverick (Groq) model

was the worst performer, generating catastrophic losses (−28.75 %
CR) and the highest drawdown (30.72%). This demonstrates that

performance is not a function of scale but of a model’s specific,

inherent reasoning style.

Each LLM exhibited a distinct personality, revealing a wide spec-

trum of risk aversion and activity that is an unpredictable, emergent

property of the model itself. This emergent personality likely stems

from a combination of the model’s pre-training data, its fine-tuning

alignment (e.g., the specific RLHF process used to make it a helpful

assistant), and fundamental architectural choices like Mixture-of-

Experts (MoE). Literature suggests that these factors create an in-

herent inductive bias that manifests as a distinct approach to risk

and uncertainty [93]. The results therefore suggest that the LLM’s

personality is a core bias that can determine an agent’s success or

failure before the first trade is ever made.

Most models, including Gemini 2.5 Flash Lite, Deepseek
R1 0528 Qwen3 8B, and Qwen3 235B A22B, displayed extreme

conservatism. Their personalities prioritized capital preservation

above all else, resulting in minimal drawdowns but also an almost

complete refusal to trade. This behaviour reached its optimal with

Qwen3 235B A22B, which was paralyzed into total inaction, ex-

ecuting zero trades. LLama 4 Maverick (Groq) represents the

opposite personality. It was the only model to overcome the frame-

work’s conservative tendencies, executing 12 trades. However, its

hyperactivity resulted in a significant loss, indicating that it was

generating a high volume of low-quality signals.

No agent, regardless of its personality, could effectively mitigate

the framework’s internal gating mechanism. This reveals a fun-

damental mismatch between the LLM’s signal generation and the

framework’s signal filtering. The debate protocol, which is designed

to enhance the agent’s reasoning capabilities, was simultaneously

too restrictive for the cautious models, filtering out the rare signals

they did produce, and too permissive for the hyperactive LLama 4
Maverick (Groq), allowing a stream of poor-quality trades to pass

through. The framework’s static filtering logic failed to adapt to

the unique architectural bias of any of the LLMs.

6 DISCUSSION

Our empirical investigation into a novel, self-adapting LLM frame-

work reveals a series of critical, often counterintuitive, insights

into the architectural dynamics of such systems. The results chal-

lenge common assumptions about agent design, highlighting a

paradoxical relationship between complexity and performance, the

indispensable role of feedback, and the overwhelming influence of

the underlying language model’s inherent bias.

The most salient and consistent finding is that increasing ar-

chitectural sophistication was value-destructive. The full, multi-

component system, equipped with advanced modules for memory

(Time-Aware Procedural Memory Retrieval) and reasoning (Multi-

Agent Debate Protocol), consistently defaulted to a state of extreme

risk aversion. This inaction led to severe underperformance against

passive benchmarks (Table 1), demonstrating that the system’s in-

ternal filters, while effective at preventing losses, also systematically

eliminated any potential for profit. The ablation studies (Section
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Table 7: Comparative performance across different Large Language Model architectures. The training period spans January 3,
2022, to October 4, 2022, and the evaluation period is from October 5, 2022, to June 10, 2023. All models were tested on the
AAPL ticker.

AAI CR Ann. Sharpe MDD 𝑁𝑡𝑟 𝛼BH

LLM Architecture Size Cost ($)
d

Index
e

(%) value (95% CI)
f

(%) (%)

Our Framework
Gemini 2.5 Flash Lite n/a

a ∼5.83 45.63 -4.15 -0.17 (-3.94, 3.59) 4.15 1 -26.88

Deepseek R1 0528 Qwen3 8B 8B ∼1.12 52.19 -0.64 -1.16 (-3.43, 1.11) 0.64 1 -23.38

LLama 4 Maverick (Groq) 17B/400B
b ∼5.28 50.53 -28.75 -1.92 (-4.20, 0.35) 30.72 12 -51.49

Qwen3 235B A22B 22B/235B
c ∼3.28 47.09 0.00 0.00 (n/a) 0.00 0 -22.74

Benchmark
Buy & Hold n/a n/a n/a 22.74 1.10 (-1.17, 3.37) 19.81 1 0.00

a
Not publicly available.

b
Active parameters are 17B, total model size is 400B.

c
Active parameters are 22B, total model size is 235B.

d
Cost is approximated for the full experimental run (train + test).

e
Artificial Analysis Intelligence Index [92].

Metrics for Gemini 2.5 Flash Lite represent the mean of three independent test runs, as reported in Table 1.

f
The 95% Sharpe ratio confidence interval is from a non-parametric bootstrap, supplemented by the analytical approximation from Lo

[89].

5.2) confirmed this directly. By removing the debate protocol (A3),
we discovered the single most important factor in unlocking a

profitable strategy. This simplified agent was the only variant to

generate inherently positive signals and deliver alpha in the cross-

asset tests (Table 5), confirming that the debate module, intended

to enhance reasoning, instead imposed a crippling and overly con-

servative bias, opposing the intended purpose from literature.

In contrast, the Feedback-Driven Meta-Prompt Optimization

(FBPO) mechanism proved to be the indispensable engine of adapta-

tion, providing us with a promising outlook for future research. The

ablation study (A1) showed that without FBPO, the agent’s perfor-

mance deteriorated significantly. This underscores that the ability

to learn from past performance is not just beneficial but essential for

an adaptive agent’s success in dynamic environments. The FBPO

mechanism allows the agent to refine its internal heuristics based

on both qualitative and quantitative feedback, enabling it to adapt

its reasoning and trading strategies over time. However, as demon-

strated in the temporal bias test (Section 5.4), the framework’s

conservative gating logic can inhibit the FBPO loop by preventing

any trades from being executed when faced with true uncertainty.

This highlights a critical area for future research, balancing risk

management with the need for exploration and adaptation.

Perhaps the most significant discovery is that the choice of LLM

is the dominant factor driving agent behavior, superseding the

framework’s own logic. Our comparative analysis (Section 5.5)

showed that each LLM exhibits a distinct "personality", an unpre-

dictable, emergent property that dictates its approach to risk and

uncertainty. This finding contradicts the assumption that larger

or notionally "smarter" models yield superior results. Performance

is instead a function of the alignment between an LLM’s intrinsic

reasoning style and the task. The framework’s static, one-size-fits-

all gating mechanisms were fundamentally mismatched to these

diverse personalities, failing to adapt to the unique strengths and

weaknesses of each model. This highlights that LLM selection itself

is a form of powerful, implicit bias that can determine an agent’s

success or failure before the first trade is ever made.

6.1 Limitations and Future Directions

The conclusions of this study must be viewed in light of several

limitations, many of which stem from the significant computa-

tional costs associated with large-scale LLM experiments. These

constraints, however, illuminate a clear path for future research.

First, our experiments were conducted on a limited set of assets

over a short out-of-sample window, with a single seed for most con-

figurations. This was a necessary concession to cost, but it means

our results lack the statistical power to be considered definitive.

The sparse trade counts in several variants made the calculation

of reliable confidence intervals impossible. While this is a com-

mon issue in the field, it is not fully addressed in related works

like FinAgent [7] or FinCon [8]. Future work must prioritize large-

scale long-term and multi-seed (≥ 30) backtests across a diversified

basket of assets (> 20) and varying market regimes to establish

robust, generalizable performance estimates to mitigate the impact

of potential stock selection bias.

Second, the framework’s current design suffers from architec-

tural brittleness. Key hyperparameters for the Time-Aware Proce-

dural Memory Retrieval (RAG) module and the multi-agent debate

protocol were not optimised, again due to computational cost con-

straints. The agent is also constrained by a "short-term memory"

effect, where limited context windows for numerical (30-day price,
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20-day indicators) and textual (3-day news) data may cause it to

neglect longer-term trends. Future work should explore more com-

pact and sophisticated state representations and calibrate memory

retrieval and debate hyperparameters through cross-validation or

online learning. To counter the observed conservative bias, the

framework could be enhanced with richer data modalities, such as

real-time macroeconomic indicators or social media sentiment.

Third, while FBPO proved essential, its current implementation

is a greedy, reactive process. As noted in Section 3.5, this "prioritizes

reactivity to recent feedback over the broader exploration inherent

in complex search algorithms." A significant avenue for future re-

search is to evolve FBPO into a more sophisticated search strategy.

This could involve using evolutionary algorithms to generate a

diverse pool of candidate meta-prompts. These candidates could be

evaluated not just on performance, but also on an alignment score

on the feedback from a separate evaluation agent, with a potential

search regularization based on embedding distance to the current

prompt, to balance exploration and exploitation. Additionally, the

FBPO reward signal itself could be refined to more explicitly em-

phasize forecasting accuracy, shifting the agent from descriptive to

predictive reasoning.

Finally, the core challenge identified is the tension between an

LLM’s inherent and emergent personality, and the framework’s

static logic. Our proposal to explore heterogeneous multi-LLM en-

sembles and hybrid systems with quantitative meta-models remains

a promising path. A crucial next step is to conduct experiments on

different LLMs without the debate protocol to isolate the model’s

raw signal-generation tendencies. The risk of "context rot" [94],

where performance degrades as input context grows, also remains a

critical, unmeasured concern requiring investigation for agents de-

signed for continuous, long-term operation. This is a newly emerg-

ing area of research and should be taken into account in future

work as complexity of the system and context length increase.

While our results indicate that a truly autonomous and consis-

tently profitable LLM-based trading agent is not yet a reality, they

map out a promising and clear direction for research. By addressing

these limitations and exploring these future directions, the path

toward building more robust, adaptive, and trustworthy financial

agents becomes clearer.

7 CONCLUSION AND CONTRIBUTIONS

This research set out to investigate the promise of a self-adapting,

multi-component framework for LLM-powered financial trading.

We sought to understand the extent to which architectural com-

ponents, specifically Feedback-Driven Meta-Prompt Optimization

(FBPO), Time-Aware Procedural Memory Retrieval, and a multi-

agent debate protocol, could contribute to adaptive and profitable

behavior in dynamic markets. Our findings, however, reveal a signif-

icant disconnect between architectural intent and empirical reality,

leading to three main contributions that reshape our understanding

of how to build autonomous self-adapting financial agents.

First, we introduced FBPO as a novel, gradient-free method for

reinforced adaptation. Our results confirmed its foundational im-

portance, as without it, the agent’s performance collapsed. This

validates the core hypothesis that learning from performance out-

comes is critical. However, our work also revealed its primary limi-

tation as FBPO is only as effective as the data it receives. When the

agent is paralyzed by its own risk-management logic, the feedback

loop breaks down, halting adaptation entirely, which is a weakness

that became evident as our low trade counts left the agent with

insufficient data to learn from.

Second, our modular framework, which combined FBPO with

sophisticated memory and reasoning modules, served as a powerful

diagnostic tool. Counter to our initial hypotheses, adding layers

of sophistication in the form of Time-Aware Procedural Memory

Retrieval and the multi-agent debate protocol proved to be value

destructive. These components induced a state of extreme conser-

vatism, causing the agent to leave nearly all trading opportunities.

The ablation studies were definitive, architectural simplification,

specifically the removal of the debate module, is the most effec-

tive step toward creating a robust and profitable agent. Yet this

insight, is something to be cautious with as it is drawn from a sin-

gle six-month evaluation window on a handful of equities, so its

generalizability remains to be explored as computational costs of

LLMs continue to decrease.

Third, and perhaps most critically, this study provides extensive

empirical evidence that an LLM’s inherent architectural bias is the

dominant factor in agent performance, overriding the explicit logic

of the framework it operates within. The choice of LLM is not a

simple implementation detail but rather the selection of a core com-

ponent with a distinct, emergent, and unpredictable personality.

Performance is not a function of a model’s scale or theoretical ca-

pability, but of the alignment between its intrinsic reasoning style

and the specific task. Although this conclusion emerged consis-

tently across the four models we tested, the limited breadth of the

LLM sweep in terms of assets and training and evaluation periods

means that further work is required to establish how universal this

personality effect truly is.

In answering our central research question, we found that the

architectural components contributed to adaptive behavior in unex-

pected and often contradictory ways. While FBPO provided the en-

gine for learning, the memory retrieval and debate modules halted

adaption, while the entire system was ultimately governed by the

unpredictable architectural bias of the underlying LLM.

The path forward, therefore, is more regiously testing the frame-

work’s components across a wider range of assets and market

conditions, as well as longer training evaluation periods and Monte

Carlo simulations with multiple seeds,to establish statistical sound-

ness as prices per token continue to fall. Future research should

look into heterogeneous multi-LLM ensembles that leverage model

personalities and hybrid systems that ground an LLM’s qualitative

reasoning with the quantitative rigor of high-performing traditional

forecasting models to enhance interpretability. By doing so, we can

begin to build a new generation of financial agents that are not only

intelligent and adaptive but also robust, reliable, and interpretable

in the complex and dynamic world of financial markets.
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A APPENDIX

A.1 Technical Indicators

This section details the technical indicators employed within the

self-adapting agents framework, especially those used within the

environment state accessible to the agents. The indicators are de-

signed to provide a comprehensive view of market conditions, en-

abling agents to make informed decisions based on both current

and historical data. The indicators are computed using the TA-Lib

library, which is widely used for technical analysis in financial

markets. The set is customisable, yet carefully selected to balance

complexity and interpretability, keeping the context length of the

underlying agents manageable.

A.1.1 Indicator Definitions. The following indicators are defined
to capture various aspects of market dynamics:

• SimpleMovingAverage (SMA): Averages the closing prices
over a specified period, smoothing out price fluctuations. It

gives insight into the overall trend by filtering out noise from

short-term price movements.

• Exponential Moving Average (EMA): Similar to SMA but

gives more weight to recent prices, making it more respon-

sive to new information.

• Relative Strength Index (RSI): Measures the speed and

change of price movements, indicating overbought or over-

sold conditions.

• Average Directional Index (ADX): Assesses the strength
of a trend, regardless of its direction.

• Commodity Channel Index (CCI): Evaluates the current
price level relative to an average price level over a specified

period, indicating potential reversals. Insightful for identify-

ing cyclical trends in the market.

Simple Moving Average (SMA). The Simple Moving Average

(SMA) is calculated as follows:

SMA(𝑡) = 1

𝑛

𝑛−1∑︁
𝑖=0

𝑃 (𝑡 − 𝑖) (7)

where 𝑃 (𝑡) is the price at time 𝑡 and 𝑛 is the number of periods

over which the average is calculated. For our implementation, we

use a 20-period SMA, which is computed using the closing prices

of the asset.

Exponential Moving Average (EMA). The Exponential Moving

Average (EMA) is calculated using the formula:

EMA(𝑡) = 𝛼 · 𝑃 (𝑡) + (1 − 𝛼) · EMA(𝑡 − 1) (8)

where 𝛼 = 2

𝑛+1 and 𝑛 is the number of periods. The EMA is more

sensitive to recent price changes compared to the SMA, making it

useful for identifying short-term trends. Again, we use a 20-period

EMA based on the closing prices.

Relative Strength Index (RSI). The Relative Strength Index (RSI)

is defined as:

RSI(𝑡) = 100 − 100

1 + 𝑅𝑆 (𝑡) (9)
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where 𝑅𝑆 (𝑡) = Average Gain

Average Loss
over a specified period (14 days in our

case). The RSI ranges from 0 to 100, with values above 70 typically

indicating overbought conditions and below 30 indicating oversold

conditions. This indicator helps agents identify potential reversal

points in the market.

Average Directional Index (ADX). The Average Directional Index
(ADX) is calculated to measure the strength of a trend:

ADX(𝑡) = 100 · Moving Average of |DI+ - DI-|

True Range

(10)

where 𝐷𝐼+ and 𝐷𝐼− are the directional indicators, and the True

Range is the greatest of the following:

• Current High - Current Low

• Current High - Previous Close

• Previous Close - Current Low

The ADX is in our experiments calculated over a 14-day period and

helps agents understand whether the market either has a strong

trend or is ranging. In practice, an ADX value above 25 typically

indicates a strong trend, while values below 20 suggest a weak

trend or ranging market.

Commodity Channel Index (CCI). Lastly, the Commodity Channel

Index (CCI) is computed as:

CCI(𝑡) = 𝑃 (𝑡) − SMA(𝑡)
0.015 ·Mean Deviation(𝑡) (11)

where 𝑃 (𝑡) is the price at time 𝑡 , and the Mean Deviation is

defined as,

Mean Deviation(𝑡) = 1

𝑛

𝑛−1∑︁
𝑖=0

|𝑃 (𝑡 − 𝑖) − SMA(𝑡) | (12)

where 𝑛 is the number of periods (14 in our case). The CCI

oscillates around zero, with values above 100 indicating overbought

conditions and below -100 indicating oversold conditions. This

indicator is particularly useful for identifying cyclical trends in the

market.

A.2 State Representation

The state representation of the environment for the self-adapting

agents in this project is designed to capture the essential features

of the market environment and the agent’s portfolio. Its represen-

tation is used to inform the agent’s decision-making process in

corresponding prompt templates. The state representation includes

the following components described in Listing A.1:
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1 {
2 "current_date ": "<ISO_8601_datetime >",
3 "current_day_index ": <int >,
4 "metrics ": {
5 "market ": {
6 "ticker ": "<string >",
7 "open": <float >,
8 "high": <float >,
9 "low": <float >,
10 "close": <float >,
11 "price": <float >,
12 "volume ": <int >,
13 "daily_change ": <float >,
14 "indicators ": {
15 "SMA20": <float >, "EMA20": <float >, "RSI": <float >, "ADX": <float >, "CCI": <float >
16 },
17 "indicator_history ": {
18 "SMA20": [<float >, ...], "EMA20": [<float >, ...], "RSI": [<float >, ...],
19 "ADX": [<float >, ...], "CCI": [<float >, ...]
20 },
21 "historical_data ": {
22 "daily_open_prices ": [<float >, ...], "daily_high_prices ": [<float >, ...],
23 "daily_low_prices ": [<float >, ...], "daily_close_prices ": [<float >, ...],
24 "daily_volumes ": [<int >, ...], "daily_news_history ": [<string >, ...]
25 }
26 },
27 "position ": {
28 "size": <int >, "entry_price ": <float >, "current_price ": <float >,
29 "unrealized_pl ": <float >, "is_long ": <bool >, "tag": "<string >"
30 },
31 "portfolio ": {
32 "equity ": <float >, "cash": <float >, "max_equity ": <float >,
33 "drawdown ": <float >, "drawdown_pct ": <float >, "equity_curve_pct ": <float >,
34 "return_1m ": <float >, "return_3m ": <float >, "return_1y ": <float|null >,
35 "volatility ": <float >, "max_drawdown ": <float >,
36 "sharpe_ratio ": <float >, "sortino_ratio ": <float|null >,
37 "cvar_1pct ": <float|null >, "cvar_5pct ": <float|null >,
38 "equity_history ": [<float >, ...], "drawdown_history ": [<float >, ...],
39 "cash_history ": [<float >, ...], "position_value_history ": [<float >, ...],
40 "daily_returns ": [<float >, ...], "cvar_1pct_history ": [<float|null >, ...],
41 "cvar_5pct_history ": [<float|null >, ...], "max_equity_history ": [<float >, ...],
42 "drawdown_value_history ": [<float >, ...], "equity_curve_pct_history ": [<float >, ...],
43 "return_1m_history ": [<float >, ...], "return_3m_history ": [<float >, ...],
44 "return_1y_history ": [<float|null >, ...], "volatility_history ": [<float >, ...],
45 "current_max_drawdown_pct_history ": [<float >, ...],
46 "sharpe_ratio_history ": [<float >, ...], "sortino_ratio_history ": [<float|null >, ...]
47 },
48 "trade": {
49 "total_trades ": <int >, "win_count ": <int >, "loss_count ": <int >,
50 "win_rate ": <float >, "avg_profit_pct ": <float >, "avg_win_pct ": <float >,
51 "avg_loss_pct ": <float|null >, "max_win_pct ": <float >, "max_loss_pct ": <float|null >,
52 "avg_trade_length_bars ": <float >, "avg_win_length_bars ": <float >,
53 "avg_loss_length_bars ": <float|null >, "profit_factor ": <float|null >,
54 "std_dev_pl_pct ": <float >,
55 "closed_trades_list ": [
56 {
57 "entry_price ": <float >, "exit_price ": <float >,
58 "entry_time ": "<ISO_8601_datetime >", "exit_time ": "<ISO_8601_datetime >",
59 "entry_bar ": <int >, "exit_bar ": <int >, "size": <int >, "value": <float >,
60 "is_long ": <bool >, "pl": <float >, "pl_pct ": <float >,
61 "trade_duration ": <int >, "days_in_position ": <int|null >,
62 "tag": "<string >", "mfe_pct ": <float >, "mae_pct ": <float >,
63 "realized_risk_reward ": <float >, "trade_volatility ": <float >
64 }, ...
65 ]
66 }
67 }
68 }

Listing A.1: Schema of the JSON state object at a single timestep. Generic placeholders indicate the expected data types for each
field.

A.3 Operational Robustness: Retry Protocol

Our agent’s retry mechanism consists of two main component, the

connection retry protocol and the JSON-fixer. The retry protocol

is designed to ensure that the agent can handle transient errors

gracefully, while the JSON-fixer addresses issues with malformed

responses from the LLM. Together, these components enhance the

robustness of the agent’s operations, allowing it to recover from

errors and maintain a high level of reliability, keeping the system

operational even in the face of unexpected issues.

A.3.1 Connection Retry Protocol. The connection retry protocol

is a crucial part of the agent’s operational robustness, designed to

handle transient errors that may occur during API calls to the LLM.

This protocol ensures that the agent can recover from temporary is-

sues such as network interruptions, rate limits, or timeouts without
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losing the context of its operations. When an error occurs when

calling the large language model API, the method enters a loop that

attempts to reissue the API call up to ten times, with an exponential

back-off strategy to avoid overwhelming the server. The timeout

starts at 5 seconds and increases exponentially with each retry, up

to a maximum of 300 seconds. Additionally, a jitter of 10% is applied

to the delay to prevent overwhelming the server with simultaneous

retries from multiple agents. This retry mechanism is essential for

maintaining the agent’s operational integrity, allowing it to handle

transient errors without manual intervention.

A.3.2 Fixing Malformed Responses. The JSON-fixer is a special-

ized component of the agent that addresses issues with malformed

responses from the LLM. Each agent is tasked to respond in a strict

JSON format, which is essential for us to be able to efficiently and

easily parse and utilize the response. In order to ensure that the

agent’s responses conform to a specific JSON schema, we dynami-

cally compute a JSON schema based on the agent’s response model.

This schema defines the expected structure of the response, includ-

ing required fields, data types, and formatting rules. The agent is

instructed to strictly adhere to this schema when generating its re-

sponse. To enforce this, we inject a system prompt into the agent’s

instructions that outlines the JSON formatting rules and provides

an example of the expected output. This prompt is designed to

guide the agent in producing valid JSON responses, ensuring that

it follows the specified schema and formatting conventions.

However, sometimes the LLMmay produce responses that do not

conform to the expected JSON schema, which can lead to parsing

errors and disrupt the agent’s operations. To mitigate this issue, the

JSON-fixer is invoked whenever a response is received that does

not match the expected schema. It attempts to repair the malformed

JSON by applying a set of predefined rules and heuristics, ensuring

that the response can be parsed correctly. If this repair process fails,

the agent will log the error and invoke a new agent specifically

designed to fix JSON issues. This agent will receive the malformed

response with its associated error message and will attempt to

correct the JSON format with the original prompt in mind. The

prompt for the JSON-fixer agent may be seen in Listing A.3.

This approach retries for up to five times, allowing the agent

to recover from transient issues while ensuring that the responses

remain valid and parsable.

A.4 Agent Prompts

This appendix provides examples of the prompts used in the pipeline.

They are stored as Jinja templates (.j2 files) and appear here exactly
as they are passed to the LLMs.

A.4.1 News-Analysis Prompt. Listing A.4 shows the prompt used

by the news analysis agent. It instructs the agent to analyze finan-

cial news for a specific stock ticker and date, reviewing the daily

news history to extract relevant insights that may impact trading

decisions.

A.4.2 Technical-Analysis Prompt. The technical analysis agent uses
the prompt shown in Listing A.5. It analyzes market metrics to pro-

vide insights on price trends, support and resistance levels, volume

analysis, key technical indicators, chart patterns, and trading sig-

nals.

A.4.3 Portfolio-Analysis Prompt. Next, the portfolio analysis agent
uses the prompt shown in Listing A.6. It evaluates the current

trading account health and the active position based on the portfolio

and position metrics provided in the environment state. The agent

provides insights on overall equity performance, risk ratios, cash vs.

invested value, unrealised P/L, and actionable insights on portfolio

health and potential adjustments.

A.4.4 Bull Debate Agent Prompt. The Listing A.7 shows the prompt

for the bull debate agent. This agent is tasked with presenting argu-

ments for why the price will move upward, focusing on the current

market analysis and previous debate points. It must evolve its ar-

guments based on the ongoing debate and provide a structured

response. It does so by reviewing the market analysis context, pre-

vious debate history, and specific instructions to build a compelling

case for a bullish position.

A.4.5 Bear Debate Agent Prompt. Subsequent to the bull debate

agent, the bear debate agent uses the prompt shown in Listing A.8.

This agent is tasked with presenting arguments for why the price

will move downward, focusing on the current market analysis and

previous debate points. It must evolve its arguments based on the

ongoing debate and provide a structured response. It does so by

reviewing the market analysis context, previous debate history,

and specific instructions to build a compelling case for a bearish

position.

A.4.6 Aggregator Prompt. The Aggregator agent uses the prompt

shown in Listing A.9. This agent summarizes the debate arguments

without making a final trading decision. It provides a balanced

overview of the discussion, highlighting the strongest bullish and

bearish arguments, and key insights that emerged during the debate

analysis. The response is structured into distinct sections for clarity.

A.4.7 Trading Decision Prompt. To make a final trading decision,

the trading decision agent uses the prompt shown in Listing A.10.

The agent uses the debate outcome, if available, to inform its decision-

making process. If no debate outcome is present, it relies on the

current market analysis and similar past experiences. The agent is
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1 Make sure to respond in JSON format within a code block starting with ```json and ending with ```, STRICTLY respond with the needs of the
response model with the following schema: {json_schema}

2

3 IMPORTANT JSON FORMATTING RULES:
4 1. Do NOT include trailing commas after the last property in an object or last item in an array
5 2. All property names must be enclosed in double quotes
6 3. String values must be enclosed in double quotes
7 4. Boolean values must be lowercase (true/false)
8 5. Numbers should not be quoted unless they are part of a string
9 6. Do not include any other text or formatting in your response
10 7. ONLY respond with the output needs of the response model and nothing else
11 EXAMPLE of correct formatting based on your schema: {example_json}

Listing A.2: Additional system prompt for the agent to respond in strict JSON format.

1 You are a JSON repair specialist. Fix the following JSON to make it valid according to the schema.
2

3 ORIGINAL PROMPT: \% \{ prompt \}
4

5 MALFORMED RESPONSE: \% \{ original\_response \}
6

7 ERROR MESSAGE: \% \{error\_message \}
8

9 Please provide ONLY a fixed JSON response that follows the schema and formatting rules. Do not include any explanations or additional text.

Listing A.3: Prompt for the JSON-fixer agent.

1 You are a financial news analyst. Your task is to analyze the provided news text for the stock ticker {{ ticker }} for the period up to
today {{ current_date }}.

2

3 The following is a history of news items:
4

5 News History:
6 {% if daily_news_history %}
7 {{ daily_news_history }}
8 {% else %}
9 No news history available.
10 {% endif %}

Listing A.4: Prompt for the news analysis agent. The agent analyzes the provided news text for a specific stock ticker and
current date. It reviews the daily news history to extract relevant insights that may impact trading decisions.

1 You are a technical analysis expert. Analyze the following market data and provide insights:
2

3 ## Market Metrics
4 {{ env_state.metrics.market }}
5

6 Based on this information , provide a comprehensive technical analysis including:
7 1. Price trend analysis
8 2. Support and resistance levels
9 3. Volume analysis
10 4. Key technical indicators
11 5. Chart patterns
12 6. Trading signals (bullish/bearish)

Listing A.5: Prompt for the technical analysis agent. The agent analyzes the market metrics provided in the environment state
and provides insights on price trends, support and resistance levels, volume analysis, key technical indicators, chart patterns,
and trading signals. This analysis informs the trading decision-making process.

tasked with making a single trading decision per day, adhering to

the simplified position management rules outlined in the prompt.

A.5 Procedural Memory and Query Generation

In this section, we provide the templates used for generating the

procedural memory documents and queries. The memory system

is designed to store and retrieve past trading experiences, which

include the trading decision, reasoning, and feedback on the out-

come. This allows the agent to learn from previous decisions and

improve its future performance.
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1 You are a portfolio analysis expert. Evaluate the current trading account health and the active position.
2

3 ## Portfolio Metrics
4 {{ env_state.metrics.portfolio }}
5

6 ## Position Metrics
7 {% if env_state.metrics.position %}{{ env_state.metrics.position }}{% else %}No active position .{% endif %}
8

9 Provide a concise analysis covering:
10 1. Overall equity performance (returns , drawdown , volatility).
11 2. Risk ratios (Sharpe , Sortino , CVaR).
12 3. Current cash vs. invested value.
13 4. If a position is open: unrealised P/L and risk -reward outlook.
14 5. Actionable insights on portfolio health and potential adjustments.

Listing A.6: Prompt for the portfolio analysis agent. The agent evaluates the current trading account health and the active
position based on the portfolio and position metrics provided in the environment state. It provides insights on overall equity
performance, risk ratios, cash vs. invested value, unrealised P/L, and actionable insights on portfolio health and potential
adjustments.

A.5.1 Document-Text Template. In Listing A.11, we present the

template used to format the trading decision experience documents

that are stored in the procedural memory system. Each document

captures the decision made, the reasoning behind it, and feedback

on the outcome.

A.5.2 Query Generation Prompt. The query generation prompt is

designed to create a query that retrieves relevant past trading expe-

riences based on the current market analysis. The template used for

generating the memory retrieval queries is shown in Listing A.12.

This prompt incorporates the current market analysis, including

technical, portfolio, and news analyses when present, along with

the current date to formulate a query that can fetch relevant past

trading experiences.

A.6 FBPO Prompts

This appendix provides the specific prompts used for the Feedback-

Driven Meta-prompt Optimization (FBPO) mechanism as part of

the self-adapting agent framework. The FBPO mechanism consists

of two main components, the feedback collection prompt and the

meta-prompt optimization prompt. These prompts are designed

to facilitate the collection of feedback on trading decisions and to

optimize the meta-prompt used for generating trading strategies.

A.6.1 Feedback Prompt. First, the feedback collection prompt is

used to evaluate past trading decisions based on their outcomes and

provide constructive feedback. The prompt present in Listing A.13

is designed to guide the feedback agent in analyzing the trading de-

cision, considering the simplified trading environment’s constraints

and rules, and focusing on decision timing and market direction

accuracy.

A.6.2 Meta-Prompt Optimiser. Next, the meta-prompt optimiza-

tion prompt is used to analyze past trading decisions, their out-

comes, and the feedback received. The prompt present in List-

ing A.14 is designed to guide the meta-prompt optimiser agent in

suggesting improvements to the original meta prompt used for mak-

ing trading decisions, focusing on enhancing the decision-making

process within the simplified trading environment’s constraints

and rules. It aims to achieve more profitable trades by providing

actionable recommendations for optimizing the meta prompt.
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1 # Market Analysis Context
2 {% if data.technical_analysis %}
3 Technical Analysis: {{ data.technical_analysis }}
4 {% endif %}
5 {% if data.portfolio_analysis %}
6 Portfolio Analysis: {{ data.portfolio_analysis }}
7 {% endif %}
8 {% if data.news_analysis %}
9 News Analysis: {{ data.news_analysis }}
10 {% endif %}
11

12 # Market Context
13 Ticker: {{ data.ticker }}
14 Date: {{ data.current_date }}
15

16 {% if data.env_state.metrics.position %}
17 ## Position Metrics
18 {{ data.env_state.metrics.position }}
19 {% else %}
20 No active position.
21 {% endif %}
22

23 ## Portfolio Metrics
24 {{ data.env_state.metrics.portfolio }}
25

26 # Trading Environment
27 IMPORTANT: Focus on directional arguments only:
28 - This is a simplified LONG/SHORT/HOLD environment
29 - SHORT = Short position (betting price goes DOWN)
30 - LONG = Long position (betting price goes UP)
31 - HOLD = Close position and stay flat (cash)
32 - No position sizing , stop losses , or profit targets available
33 - Your job: Argue why price will move UP (bullish direction)
34

35 # Previous Debate
36 {% if transcript %}
37 {{ transcript }}
38

39 IMPORTANT: Review the debate above and:
40 1. Address specific points raised by the bearish agent
41 2. Build upon your previous arguments (don 't just repeat them)
42 3. Introduce NEW evidence or perspectives that strengthen your bullish case
43 4. Counter the most compelling bearish arguments with fresh insights
44 {% else %}
45 No debate history yet. Present your opening bullish argument.
46 {% endif %}
47

48 # Your Role
49 You are a BULLISH trading agent arguing for LONG positions. Present compelling evidence for why price will move UPWARD based on the analysis

provided.
50

51 # Instructions
52 1. **If this is NOT the first round **: Reference and respond to the bearish agent 's latest points
53 2. **Avoid repetition **: Don 't just restate your previous arguments - evolve and strengthen them
54 3. Focus on indicators suggesting UPWARD price movement
55 4. Highlight factors supporting price appreciation
56 5. Emphasize catalysts that could drive price higher
57 6. Address bearish concerns with counter -arguments about upward momentum
58 7. Keep response focused and under 200 words
59 8. Be persuasive but factual about directional movement
60

61 # Response Format
62 Provide a clear , structured argument that includes:
63 1. ** Opening **: Brief acknowledgment of previous debate points (if any)
64 2. **Main thesis **: Your core argument for UPWARD price movement
65 3. ** Supporting evidence **: New or reinforced evidence for price appreciation
66 4. **Counter -arguments **: Address the strongest bearish concerns raised
67 5. ** Conclusion **: Reinforce the bullish directional call with conviction

Listing A.7: Prompt for the bull debate agent. The agent is tasked with presenting arguments for why the price will move
upward, focusing on the current market analysis and previous debate points. It must evolve its arguments based on the ongoing
debate and provide a structured response.

B SUPPLEMENTARY PERFORMANCE PLOTS

This appendix provides supplementary equity curves for key model

variants discussed in the main text. Each figure corresponds to a

specific backtest run, offering a visual representation of the agent’s

trading behavior and its impact on portfolio value over the test

period.

B.1 Cross-Asset Diagnostic Plots

This appendix provides detailed diagnostic plots for the cross-asset

runs on AMZN, comparing the A3 (w/o Debate) variant with the

full system.
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1 # Market Analysis Context
2 {% if data.technical_analysis is not none %}
3 Technical Analysis: {{ data.technical_analysis }}
4 {% endif %}
5 {% if data.portfolio_analysis is not none %}
6 Portfolio Analysis: {{ data.portfolio_analysis }}
7 {% endif %}
8 {% if data.news_analysis is not none %}
9 News Analysis: {{ data.news_analysis }}
10 {% endif %}
11

12 # Market Context
13 Ticker: {{ data.ticker }}
14 Date: {{ data.current_date }}
15

16 {% if data.env_state.metrics.position %}
17 ## Position Metrics
18 {{ data.env_state.metrics.position }}
19 {% else %}
20 No active position.
21 {% endif %}
22

23 ## Portfolio Metrics
24 {{ data.env_state.metrics.portfolio }}
25

26 # Trading Environment
27 IMPORTANT: Focus on directional arguments only:
28 - This is a simplified LONG/SHORT/HOLD environment
29 - SHORT = Short position (betting price goes DOWN)
30 - LONG = Long position (betting price goes UP)
31 - HOLD = Close position and stay flat (cash)
32 - No position sizing , stop losses , or profit targets available
33 - Your job: Argue why price will move DOWN (bearish direction)
34

35 # Previous Debate
36 {% if transcript %}
37 {{ transcript }}
38

39 IMPORTANT: Review the debate above and:
40 1. Address specific points raised by the bullish agent
41 2. Build upon your previous arguments (don 't just repeat them)
42 3. Introduce NEW evidence or perspectives that strengthen your bearish case
43 4. Counter the most compelling bullish arguments with fresh insights
44 {% else %}
45 No debate history yet. Present your opening bearish argument.
46 {% endif %}
47

48 # Your Role
49 You are a BEARISH trading agent arguing for SHORT positions. Present compelling evidence for why price will move DOWNWARD based on the

analysis provided.
50

51 # Instructions
52 1. **If this is NOT the first round **: Reference and respond to the bullish agent 's latest points
53 2. **Avoid repetition **: Don 't just restate your previous arguments - evolve and strengthen them
54 3. Focus on indicators suggesting DOWNWARD price movement
55 4. Highlight factors supporting price decline
56 5. Emphasize catalysts that could drive price lower
57 6. Address bullish concerns with counter -arguments about downward momentum
58 7. Keep response focused and under 200 words
59 8. Be persuasive but factual about directional movement
60

61 # Response Format
62 Provide a clear , structured argument that includes:
63 1. ** Opening **: Brief acknowledgment of previous debate points (if any)
64 2. **Main thesis **: Your core argument for DOWNWARD price movement
65 3. ** Supporting evidence **: New or reinforced evidence for price decline
66 4. **Counter -arguments **: Address the strongest bullish concerns raised
67 5. ** Conclusion **: Reinforce the bearish directional call with conviction

Listing A.8: Prompt for the bear debate agent. The agent is tasked with presenting arguments for why the price will move
downward, focusing on the current market analysis and previous debate points. It must evolve its arguments based on the
ongoing debate and provide a structured response.
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1 # Market Context
2 Ticker: {{ data.ticker }}
3 Date: {{ data.current_date }}
4

5 # Debate Transcript
6 {{ transcript }}
7

8 # Role
9 You are an impartial trading analyst summarizing a debate between bullish and bearish trading experts. Your role is to analyze and distill

the key points from both sides WITHOUT making a final trading decision.
10

11 # Task
12 Provide a comprehensive summary of the debate that includes:
13

14 1. A balanced overview of the discussion
15 2. The strongest bullish arguments presented
16 3. The strongest bearish arguments presented
17 4. Key insights or unique perspectives that emerged during the debate analysis.
18

19 # Response Format
20 Format your response with these exact sections:
21

22 ** Summary **: An objective overview of the entire debate , highlighting the main themes and areas of disagreement.
23

24 **Bull Arguments **: The strongest points made supporting a bullish position , including specific evidence cited.
25

26 **Bear Arguments **: The strongest points made supporting a bearish position , including specific risks highlighted.
27

28 **Key Insights **: Important observations , unique angles , or notable patterns that emerged from the debate analysis.
29

30 # Important Note
31 Do NOT provide a trading recommendation (LONG/SHORT/HOLD). Your role is only to summarize the debate arguments objectively , not to make a

decision.

Listing A.9: Prompt for the trading aggregator agent. The agent summarizes the debate arguments without making a final
trading decision. It provides a balanced overview of the discussion, highlighting the strongest bullish and bearish arguments,
and key insights that emerged during the debate analysis. The response is structured into distinct sections for clarity.
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1 {% if debate_outcome and debate_outcome != None %}
2 # Debate Summary
3 {{ debate_outcome }}
4 {% else %}
5 # Market Analysis Context
6 {% if technical_analysis %}
7 Technical Analysis: {{ technical_analysis }}
8 {% endif %}
9 {% if portfolio_analysis %}
10 Portfolio Analysis: {{ portfolio_analysis }}
11 {% endif %}
12 {% if news_analysis %}
13 News Analysis: {{ news_analysis }}
14 {% endif %}
15 {% endif %}
16

17 {% if similar_experiences and similar_experiences|length > 0 %}
18 # Similar Past Experiences
19

20 Based on analysis of {{ similar_experiences|length }} similar past trading experiences:
21

22 {% for experience in similar_experiences %}
23 ## Experience {{ loop.index }} (Importance Score: {{ "%.3f"| format(experience.score) }})
24 {{ experience.document }}
25

26 ---
27 {% endfor %}
28 {% endif %}
29

30 {% if env_state.metrics.position %}
31 ## Current Position Metrics
32 {{ env_state.metrics.position }}
33 {% else %}
34 No active position.
35 {% endif %}
36

37 ## Current Portfolio Metrics
38 {{ env_state.metrics.portfolio }}
39

40 # Role and Task
41 You are a sophisticated trading decision expert responsible for making the final trading decision.
42 Your task is to analyze the provided information to determine the optimal trading action.
43 You have the possibility to make a decision once per day. We 're not doing intraday trading!
44

45 # Position Management Rules
46 IMPORTANT: Understand how your trading decisions affect positions:
47

48 **LONG Decision :**
49 - Opens a LONG position (betting price will go up)
50 - If already in a SHORT position , closes the short and opens a long
51 - If already in a LONG position , maintains the long position
52

53 **SHORT Decision :**
54 - Opens a SHORT position (betting price will go down)
55 - If already in a LONG position , closes the long and opens a short
56 - If already in a SHORT position , maintains the short position
57

58 **HOLD Decision :**
59 - Closes any existing position and moves to cash (flat)
60 - If no position exists , remains in cash
61 - Does NOT open any new position
62

63 # Position Sizing & Risk Management
64 IMPORTANT: This is a simplified trading environment:
65

66 ** Position Size :**
67 - Position size equals 100% of current equity (all -in positions)
68 - No position sizing control available
69 - You cannot adjust the amount invested
70

71 **Risk Management :**
72 - No stop loss mechanisms available
73 - No profit target triggers available
74 - No partial position exits possible
75 - Your only controls are: LONG (enter/keep long), SHORT (enter/keep short), or HOLD (close position / stay flat) and you cannot change the

position size.
76

77 ** Decision Simplicity :**
78 - Focus purely on market direction (up/down/sideways)
79 - Do not consider position sizing in your analysis
80 - Risk management comes only from timing of entry/exit decisions
81

82 ** Positions :**
83 - You can only have one position at a time.
84 - By closing your position , you open a new position in the opposite direction.
85

86 # Instructions
87 1. Carefully review and analyze the provided information
88 2. Consider the position management rules above when making your decision
89 3. Make an independent trading decision based on the weight of evidence from both current analysis and historical context
90

91 <meta_prompt >
92 Your goal is to maximize the Cumulative Return of the equity curve.
93 </meta_prompt >

Listing A.10: Prompt for the trading decision agent. The agent uses the debate outcome, if available, to inform its decision-
making process. If no debate outcome is present, it relies on the current market analysis and similar past experiences. The
agent is tasked with making a single trading decision per day, adhering to the simplified position management rules outlined
in the prompt.
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1 Trading Decision Experience [BAR: {{ bar_index }}] [TIME: {{ decision_time }} on bar {{ bar_index }}]
2

3 DECISION [ACTION: {{ decision }}]:
4 {{ reasoning }}
5

6 OUTCOME FEEDBACK:
7 {{ feedback }}

Listing A.11: Template for formatting trading decision experience documents for procedural memory storage. This template
structures the decision-making experience, including the decision action, reasoning, and feedback on the outcome. It is used to
create documents that can be stored in the memory system for future retrieval and analysis.

1 {{ ticker }} trading analysis:
2 {% if technical_analysis is not none %}
3 Technical analysis: {{ technical_analysis }}
4 {% endif %}
5 {% if portfolio_analysis is not none %}
6 Portfolio analysis: {{ portfolio_analysis }}
7 {% endif %}
8 {% if news_analysis is not none %}
9 News analysis: {{ news_analysis }}
10 {% endif %}
11 Date: {{ current_date }}.

Listing A.12: Prompt for generating memory retrieval queries to retrieve similar trading experiences. The agent uses the current
market analysis, including technical, portfolio, and news analyses, along with the current date to formulate the query. This
query is then used to fetch relevant past trading experiences that can inform future decisions.
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1 You are a trading coach providing feedback on trading decisions. Your task is to evaluate a past trading decision based on its outcome and
provide constructive feedback.

2

3 ## Trading Environment Context
4 IMPORTANT: This is a simplified trading environment. Please respect the following constraints and rules for the decision making agent:
5

6 ### Position Management Rules
7 **LONG Decision :**
8 - Opens a LONG position (betting price will go up)
9 - If already in a SHORT position , closes the short and opens a long
10 - If already in a LONG position , maintains the long position
11

12 **SHORT Decision :**
13 - Opens a SHORT position (betting price will go down)
14 - If already in a LONG position , closes the long and opens a short
15 - If already in a SHORT position , maintains the short position
16

17 **HOLD Decision :**
18 - Closes any existing position and stays in cash (flat)
19 - If no position exists , remains in cash
20 - Does NOT open any new position
21

22 ### Position Sizing & Risk Management
23 ** Position Size :**
24 - Position size equals 100% of current equity (all -in positions)
25 - No position sizing control available
26 - No ability to adjust the amount invested
27

28 **Risk Management :**
29 - No stop loss mechanisms available
30 - No profit target triggers available
31 - No partial position exits possible
32 - The only controls are: LONG (enter/keep long), SHORT (enter/keep short), or HOLD (close position / stay flat); no ability to change the

position size.
33

34 ### Decision Simplicity
35 - Focus purely on market direction (up/down/sideways)
36 - Do not consider position sizing
37 - Risk management comes only from timing of entry/exit decisions
38

39 ### Positions
40 - Only have one position at a time.
41 - By closing the position , the agent opens a new position in the opposite direction.
42

43 ## Trade Details
44 - Ticker: {{ ticker }}
45 - Decision: {{ doc.decision }}
46 - Confidence: {{ doc.confidence }}
47 - Reasoning: {{ doc.reasoning }}
48

49 ## Trade Metrics
50 {{ trade }}
51

52 ## Portfolio Metrics
53 {{ env_state.metrics.portfolio }}
54

55 ## Market Metrics
56 {{ env_state.metrics.market }}
57

58 ## Your Task
59 Please provide detailed feedback on this trading decision. Consider the following , but not limited to:
60 1. Was the decision ({{ doc.decision }}) appropriate given the available information?
61 2. Was the timing of entry and exit optimal given the simplified action space?
62 3. What could have been done better within the constraints of LONG/SHORT/HOLD decisions?
63 4. What aspects of the decision -making process were effective?
64 5. What lessons can be learned from this trade for future directional calls?
65 6. How might market conditions have changed?
66 7. Focus on decision timing and market direction accuracy , not position sizing or risk management tools
67

68 Provide your feedback in a structured format with clear , actionable insights that can improve future trading decisions within this
simplified environment.

Listing A.13: Prompt for the feedback agent. The agent evaluates a past trading decision based on its outcome and provides
constructive feedback. It considers the simplified trading environment’s constraints and rules, focusing on decision timing and
market direction accuracy rather than position sizing or risk management tools.
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1 You are an AI prompt engineer specializing in optimizing prompts for trading decision systems. Your task is to analyze a past trading
decision , its outcome , and the feedback received , then suggest improvements to the ** original meta prompt ** used for making trading
decisions which results in more profitable trades.

2

3 ## Trading Environment Context
4 IMPORTANT: This is a simplified trading environment. Please respect the following constraints and rules for the decision making agent:
5

6 ### Position Management Rules
7 **LONG Decision :**
8 - Opens a LONG position (betting price will go up)
9 - If already in a SHORT position , closes the short and opens a long
10 - If already in a LONG position , maintains the long position
11

12 **SHORT Decision :**
13 - Opens a SHORT position (betting price will go down)
14 - If already in a LONG position , closes the long and opens a short
15 - If already in a SHORT position , maintains the short position
16

17 **HOLD Decision :**
18 - Closes any existing position and stays in cash (flat)
19 - If no position exists , remains in cash
20 - Does NOT open any new position
21

22 ### Position Sizing & Risk Management
23 ** Position Size :**
24 - Position size equals 100% of current equity (all -in positions)
25 - No position sizing control available
26 - No ability to adjust the amount invested
27

28 **Risk Management :**
29 - No stop loss mechanisms available
30 - No profit target triggers available
31 - No partial position exits possible
32 - The only controls are: LONG (enter/keep long), SHORT (enter/keep short), or HOLD (close position / stay flat); no ability to change the

position size.
33

34 ### Decision Simplicity
35 - Focus purely on market direction (up/down/sideways)
36 - Do not consider position sizing
37 - Risk management comes only from timing of entry/exit decisions
38

39 ### Positions
40 - Only have one position at a time.
41 - By closing the position , the agent opens a new position in the opposite direction.
42

43 ## Trade Details
44 - Ticker: {{ trade_document.ticker }}
45 - Decision: {{ trade_document.decision }}
46 - Confidence: {{ trade_document.confidence }}
47 - Reasoning: {{ trade_document.reasoning }}
48

49 ## Trade Metrics
50 {{ trade_document.trade }}
51

52 ## Portfolio Metrics
53 {{ env_state.metrics.portfolio }}
54

55 ## Market Metrics
56 {{ env_state.metrics.market }}
57

58 ## Feedback Summary
59 {{ trade_document.feedback }}
60

61 ## Your Task
62 Analyze the provided information and feedback to suggest improvements to the original meta prompt. Focus on enhancing the decision -making

process within the constraints of the simplified trading environment. Provide actionable recommendations for optimizing the meta prompt
to achieve more profitable trades.

Listing A.14: Prompt for the meta-prompt optimiser agent. The agent analyzes a past trading decision, its outcome, and the
feedback received, then suggests improvements to the original meta prompt used for making trading decisions. It focuses on
enhancing the decision-making process within the simplified trading environment’s constraints and rules.



Thesis ’25, August 16, 2025, VU University Amsterdam van der Harst

130

140

150

160

170

180

Pr
ice

Price & Equity
Long Entry
Long Exit
Short Entry
Short Exit
Equity (norm)

2022-10
2022-11

2022-12
2023-01

2023-02
2023-03

2023-04
2023-05

2023-06

0.2

0.0

Cu
m

ul
at

iv
e 

al
ph

a 0.10

-0.31

-0.31

0.94

0.96

0.98

1.00

1.02

Eq
ui

ty
 (n

or
m

)

1.03

0.94

0.94

Figure 3: Equity curve and performance metrics for the full system on AAPL (Run F0). The plot displays the price as OHLC
data, where green indicates an increasing price and red a decreasing price. The solid line represents the normalized equity,
highlighting the highest, lowest, and final values. Additionally, the cumulative alpha is shown over time, benchmarked against
a buy-and-hold strategy.
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Figure 4: Equity curve and performance metrics for the full system on AAPL (Run F1). The plot displays the price as OHLC
data, where green indicates an increasing price and red a decreasing price. The solid line represents the normalized equity,
highlighting the highest, lowest, and final values. Additionally, the cumulative alpha is shown over time, benchmarked against
a buy-and-hold strategy.
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Figure 5: Equity curve and performance metrics for the full system on AAPL (Run F2). The plot displays the price as OHLC
data, where green indicates an increasing price and red a decreasing price. The solid line represents the normalized equity,
highlighting the highest, lowest, and final values. Additionally, the cumulative alpha is shown over time, benchmarked against
a buy-and-hold strategy.
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Figure 6: Equity curve and performance metrics for the No Debate variant on AMZN. The plot displays the price as OHLC
data, where green indicates an increasing price and red a decreasing price. The solid line represents the normalized equity,
highlighting the highest, lowest, and final values. Additionally, the cumulative alpha is shown over time, benchmarked against
a buy-and-hold strategy.
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Figure 7: A visualisation of the agent’s behaviour on AMZN for the A3 variant. The plot shows the agent’s decisions (long, short,
hold) against the normalised close price. The plot shows the raw sentiment of the agent’s reasoning, with a 7-day moving
average that closely tracks the price trend.
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Figure 8: The agent’s daily reasoning sentiment plotted against the asset price for the AMZN A3 variant. The sentiment is
color-coded (green for bullish, red for bearish), showing a strong correlation where the agent correctly adopts a negative
sentiment during price declines and a positive sentiment during price increases. The sentiment gradient line indicates the
shadow backtest performance on a single day basis.
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Figure 9: The agent’s daily reasoning sentiment plotted against the asset price for the AMZN full system variant. The sentiment
is persistently negative, failing to capture the upward price trend and explaining the model’s poor performance.
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