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Executive summary 
 
 
 
 
 
 

Pressure p is defined as the force of a weight W that is exerted on the surface of a medium 
(denoted by area A) and can be measured with a pressure balance. The fundamental part of a 
pressure balance is the piston-cylinder combination (PCC), which consists of a piston that 
closely fits in a cylinder. To compute the pressure the weight W has to be divided by an area A. 
In a PCC A refers to the surface of the piston that would be needed to counterbalance the weight 
W that consists of the weight of the piston and the applied weights.   

Due to imperfections in the geometry of the piston and cylinder, there is a small gap between 
the two components in which a small amount of fluid is pressed upward. This leads to a 
frictional force F exerted by the fluid to the flanks of the piston that contributes to 
counterbalancing the weight of the piston, causing it to increase. If the weight increases, the area 
A also has to increase to maintain the same pressure, causing the piston to behave as if its area is 
larger than it really is. This larger area is called the effective area or neutral surface of the PCC 
and is denoted by .  

There are two ways of determining the effective area of a PCC: through length measurements 
and through calibration. Calibration is the process of referring a device that has to be calibrated 
to a known accurate pressure balance, called a  primary pressure balance, so that the deflection 
of the device can be determined. A requirement for calibration is that the effective area of the  
primary pressure balance has to be known, which makes it a dependent method. The second 
one, length measurements, determines the effective area through a function of the measurements 
and goniometry of both piston and cylinder.   

The European organization of national metrology institutes in the EU, came with the idea to 
compare the effective area calculation methods and its estimated uncertainties of six European 
National Measurement Institutes (NMIs). Among them was NMi, whose method and results 
were quite different from the other five institutes and also has a higher uncertainty. Another 
finding was that four out of the six participating NMIs basically used the same method. This 
method is described in based on Dadson’s theory. That is why the Mass and Related Quantities 
department of the NMi would like to implement a new measurement method that leads to a 
better estimate of the effective area with considerable lower uncertainties. The objective of this 
work has been described as: 

‘Studying Dadson’s theory and the method used by the NMi to determine which method should 
be used to calculate the effective area in order to obtain a more accurate estimate and develop 
the corresponding uncertainty model’ 

effA
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In modeling assumptions have to be made to simplify a problem so that it is possible to have it 
modeled while it is still comprehendible. The trick is to find a balance between keeping the 
model comprehendible without losing its connection to reality. The model that is used by NMi 
is based on the assumptions that the piston and cylinder are perfectly straight and straight and 
thereby assumes that there is no extra frictional component F. The radius of the effective area 
can therefore be computed by taking the average value of the piston and cylinder radius. In 
reality both piston and cylinder are not perfectly round or straight, which leads to deviations in 
the input parameters of the model and thereby in its output. 

The main differences between the NMi model and the model based on Dadson’s theory is that 
Dadson does not assume that the piston and cylinder are perfectly straight. In Dadson’s model 
this results in the piston and cylinder radii being dependent of an index that represents the height 
of the measured point and thereby reckons with the imperfections in the PCC. In the NMi model 
one radius is calculated that is the average of the piston and cylinder radius.  

The proposed model is based on Dadson’s theory. In the corresponding uncertainty model the 
straightness component is dropped, because straightness is not assumed anymore. Added to the 
model is uncertainty due to the use of the Trapezium Rule that is used to approximate the 
integrals in Dadson’s formula. In both models it is assumed that the length measurements are 
independent of each other when according to the SWI this is not true. In Appendix B an 
uncertainty model is developed through the use of uncertainty propagation under the assumption 
that the measurements are dependent.  

Both models were implemented in C and the results were compared with the results of the PTB, 
the NMI of Germany, which are in line with those of the SMU, LNE and IMGC. In contrast to 
the results of NMi the results of the proposed model correspond to those of the PTB model. 
Therefore it can be concluded that not only is the proposed model a good application of 
Dadson’s theory, but the proposed model is also more credible than the current NMi model. 

 



    
 
 

 7 

Contents 
 
 
 
 
 
 
 
Preface ........................................................................................................................................... 4 
Executive summary ....................................................................................................................... 5 
Contents ......................................................................................................................................... 7 
Symbols ......................................................................................................................................... 9 
Chapter 1 Introduction ......................................................................................................... 12 

1.1 Nederlands Meetinstituut ............................................................................................. 12 
1.2 Background .................................................................................................................. 12 
1.3 Objective and Scope .................................................................................................... 13 
1.4 Structure of the thesis .................................................................................................. 14 

Chapter 2 Pressure measurement ......................................................................................... 16 
2.1 Introduction ................................................................................................................. 16 
2.2 The effective area of a PCC ......................................................................................... 16 
2.3 Measurement uncertainty ............................................................................................ 18 
2.4 Calibration ................................................................................................................... 20 

2.4.1 The Pressure-generate Method ............................................................................ 20 
2.4.2 The p-method ....................................................................................................... 21 
2.4.3 Effective Area Determination .............................................................................. 21 

Chapter 3 Length Measurements .......................................................................................... 23 
3.1 Introduction ................................................................................................................. 23 
3.2 Length, roundness and straightness ............................................................................. 23 
3.3 The mathematical model ............................................................................................. 25 
3.4 Uncertainties ................................................................................................................ 27 

3.4.1 Straightness .......................................................................................................... 27 
3.4.2 Roundness ............................................................................................................ 28 
3.4.3 Diameter measurements ...................................................................................... 28 
3.4.4 Uncertainty of the effective area computation .................................................... 29 

3.5 Application on NMi dataset ......................................................................................... 30 
3.5.1 Effective area calculation .................................................................................... 30 
3.5.2 Uncertainty calculation ........................................................................................ 30 

Chapter 4 Dadson’s theory ................................................................................................... 32 
4.1 Introduction ................................................................................................................. 32 
4.2 The effective area of a ideal PCC ................................................................................ 32 

4.2.1 The virtual piston model ...................................................................................... 33 
4.2.2 Location of the neutral surface ............................................................................ 34 

4.3 The effective area for a simple PCC ............................................................................ 35 



    
 
 

 8 

Chapter 5 Proposed model ................................................................................................... 38 
5.1 Introduction ................................................................................................................. 38 
5.2 Perfectly straight or not? .............................................................................................. 38 
5.3 The trapezium rule ....................................................................................................... 39 
5.4 Uncertainty .................................................................................................................. 40 

5.4.1 Uncertainties due to numerical procedures ......................................................... 41 
5.4.2 Systematic and random errors affecting the uncertainty ..................................... 42 

Chapter 6 Results ................................................................................................................. 45 
6.1 Introduction ................................................................................................................. 45 
6.2 Datasets ........................................................................................................................ 45 
6.3 Effective area calculations ........................................................................................... 45 

Conclusion ................................................................................................................................... 48 
Appendix A NMi Measurement .................................................................................................. 50 

A.1 The measurement model for the diameter ........................................................................ 51 
Appendix B Uncertainty model ................................................................................................... 52 

B.1 Uncertainty propagation .................................................................................................... 52 
B.2 Example ............................................................................................................................ 53 
B.3 Propagation Model ............................................................................................................ 54 

References ................................................................................................................................... 57 
 
 
 



    
 
 

 9 

Symbols 
 
 
 
 
 
 

 Effective area m2 
 Effective area at pressure  = 0 Pa       m2 

 Effective area at pressure  = 0 Pa en reference temperature  = 20 ºC  m2 

 Force          N 
 Gravitational acceleration or gravity      N/kg 
 Space between piston and cylinder      m 
 Space between piston and cylinder at height     m 

 Coverage factor - 
 Mass          kg 
 Pressure         Pa 
 Initial value of reference pressure      Pa 

 Distance to the outside of the piston      m 
 Distance to the outside of the piston at height     m 

 Distance to the neutral surface       m 
 Distance to the neutral surface at height      m 

 Distance to the inside of the cylinder      m 
 Distance to the inside of the cylinder at height     m 

 Temperature         ºC 
 Shape deviation of the piston       m 
 Combined shape deviation of the piston and cylinder    m 
 Shape deviation of the cylinder       m 
 Weight of applied masses incl. the mass of the piston     N 
 Weight of the annular cross-section between the piston- and neutral surface N 
 Downward gravitational force on W      N 
 Downward gravitational force on w      N 

 Height level of the piston en cylinder      m 
 Thermal expansions coefficient       K-1 

 Small value defined as   

 Elastic deforming coefficient       Pa-1 
 Density          kg/m3 

 Air density               kg/m3 
 Density of the weights and piston      kg/m3 

 External pressure at level x       Pa 
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Acronyms: 
 
PCC  Piston-cylinder combination 
NMi  Nederlands Meetinstituut 
NMI  National  Metrological Institute 
EUROMET European organization of national metrology institutes 
SWI  Studiegroep Wiskunde met de Industrie 
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Chapter 1 Introduction 
 
 
 
 
 
 
 
1.1 Nederlands Meetinstituut 

During my internship I worked at the Mass and Related Quantities Department of the NMi 
(“Nederlands Meetinstituut”). NMi maintains the Dutch measurement standards and develops 
new measurement standards and reference materials. NMi is a full subsidiary of Holland 
Metrology N.V., which in turn is owned by TNO. The institute was established after the 
privatization of the former Dutch Legal Metrology Service (Dienst van het IJkwezen) on the 1st 
of May 1989. As of 21 February 2001, the company became part of the Dutch Organization for 
Applied Scientific Research TNO. NMi B.V. is the holding company of three subsidiaries: NMi 
Van Swinden Laboratorium B.V., NMi Certin B.V., and Verispect B.V. NMi van Swinden 
Laboratory B.V. is the Dutch national standard institute. 

Mass and Related Quantities is a department of NMi van Swinden Laboratorium and is 
responsible for the maintenance and development of measurement standards for mass, pressure, 
force and viscosity measurements. My internship assignment concerned the field of pressure 
measurement. Pressure is realized using weights and pressure balances. They use their own 
accurate pressure balance to calibrate the pressure balances of clients. The pressure balance 
consists of a piston-cylinder combination of which the surface needs to be accurately 
determined.  

 
1.2 Background 

The pressure p is defined as the magnitude of a force F that is exerted on the surface of a 
medium denoted by area A (force per unit area). This leads to the following equation: 

 (1)  

In a piston-cylinder combination (PCC) A refers to the surface of the piston that would be 
needed in an ideal situation to counterbalance the weight W of the piston just from the pressure 
force F.  The problem is that  can differ from the actual surface of the piston, which can lead 
to inaccurate pressure measurements. Due to irregularities of the PCC and other effects the 
piston behaves as if its area were slightly larger than it actually is. This area is referred to as the 
effective area and is denoted by .  

The question remains how to calculate this slightly larger area. National Measurement Institutes 
(NMIs) all over the world struggle with this problem. EUROMET, the organization of NMIs in 

A
Fp =

A

effA
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Western Europe, came up with the idea to compare the effective area calculation methods and 
the estimated uncertainties of six European NMIs. This comparison was carried out as 
EUROMET Project 740 [1]. 

Six sets of measurement data were run through the models of each of the six participating 
institutes. The zero line (Figure 1.1) is the average of the results of the six institutes. The 
distance from the zero line to the squares represents the deviation of one institute from the 
average.  

 
 

The bars on both sides of the squares indicate the standard uncertainty obtained by 
each institute. Among them was NMi, whose method and results were quite different from the 
other five institutes. 

 
1.3 Objective and Scope 

In comparison with the methods of other European institutes, the method used by NMi to 
calculate the effective area is quite simple. NMi calculates the effective area by using average 
values of the piston and cylinder radii at different heights. Figure 1.1 shows that this approach 
leads to different results and a higher uncertainty in comparison with the other institutions. In a 
review of the methods used in EUROMET Project 740, it was concluded that four out of six 
NMIs basically used the same method [2]. This method is described in [3] and in this work this 
method will be referred to as Dadson’s theory.  

Given the importance of accurate measurements, the demand for accurate measurement methods 
has increased. That is why the Mass and Related Quantities department of the NMi would like 
to implement a new calculation method that leads to a better estimate of the effective area. 

( ) 00 AAu

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1: Piston-cylinder unit / Institutes [1] 
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"Better" should be understood in terms of a smaller bias as well as lower uncertainties. The 
objective of this work can therefore be defined as: 

‘Studying Dadson’s theory and the method used by the NMi to determine which method should 
be used to calculate the effective area in order to obtain a more accurate estimate and develop 
the corresponding uncertainty model’ 

The following questions can be derived from the aforementioned objective: 

- What is a pressure balance and what has its structure to do with the determination of the 
effective area? 

- What is uncertainty and why does it play such an important role in the recommendation 
of a model?  

- How is Dadson’s theory constructed and to what extend does it differ from the current 
method used by the NMi?  

 
 
1.4 Structure of the thesis 

In chapter 2 the first question will be covered. Besides definitions for pressure, pressure 
balances and calibration, the main processes in pressure measurement will be discussed. It is 
necessary to cover these subjects to obtain a better understanding of the main subject: the 
effective area. Furthermore, the concepts of measurement uncertainty and metrological 
traceability are briefly introduced. 

In chapter 3 length measurements and the currently used method of the NMi will be discussed. 
This method calculates the effective area as the average of all the dimensional data to determine 
the neutral surface as an average of the piston and cylinder radius.  

After going through the current NMi model, Dadson’s theory will be covered in chapter 4. Four 
out of the six models used by the National Measurement Institutes participating in EUROMET 
Project 740 are based on this theory.  

Now that the basic principles of both types of models have been outlined, they can be compared 
to each other. Considering the strengths and weaknesses of both types of models, a new model 
will be recommended and implemented. The modeling work is covered in chapter 5 and the 
results obtained with the new model in chapter 6.   
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Figure 1.2: Graphical representation of the report structure 
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Chapter 2 Pressure measurement 
 
 
 
 
 
 
 
2.1 Introduction 

The Mass and Related Quantities Department of NMi is active in pressure measurement and in 
the calibration, testing and certification of pressure balances. This chapter starts with explaining 
the basic structure of a pressure balance and gives a detailed description of the piston-cylinder 
combination (PCC), which is part of a pressure balance, and its relevance to the effective area. 
The last two sections will cover calibration and uncertainty and their importance for accurate 
estimation of the effective area. 

 
2.2 The effective area of a PCC 

The pressure balance (see Figure 2.1), also referred to as "deadweight tester" or "pressure 
gauge", is an instrument that instantly measures the pressure in terms of force and mass. The 
Britannica Concise encyclopedia [4] gives the following definition for pressure: 

“Pressure is a perpendicular force per unit area, or stress at a point within a confined fluid. A 
solid object exerts pressure on a floor equal to its weight divided by the area of contact.”  

Thus the pressure is determined by dividing the weight W of the downward gravitational force 
due to the applied masses by an area A and can be represented by the following equation: 

 (2)

  
p   = pressure [Pa] 
W = weight [N] 
A = area [ ] 

Sometimes the weight W in equation (2) is denoted by the force F, but we will use the symbol W 
because later on in this report we will introduce a frictional component that will be denoted by 
F. The weight can be expressed as a mass m on which a gravitational force g works. This leads 
to the following equation:  

 (3) 
m   = mass [kg] 
g = gravitational constant [N/kg] 

A
Wp =

2m

gmW ×=
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The main components of a pressure balance are the manometer from which one can read the 
pressure, the tube system that contains a fluid1 on which the pressure will be exerted and the 
piston-cylinder combination. By turning the screw the amount of fluid that is pressed into the 
reservoir by the weight W on the piston is determined. It works by loading the piston (of cross 
sectional area A), with the amount of weight (W) that corresponds to the desired pressure that is 
calculated according to equation (2). Note that the weight W includes the weight of the piston. 
The piston then pressurizes the whole system by pressing more fluid into the tube system, until 
the dead weight lifts off its support. 

 

When a measurement is carried out, a mass will be placed on the piston that is spinning in the 
closefitting cylinder (see Figure 2.1), this is done to keep the friction between them as small as 
possible.  The absolute pressure is then given by:   

  (4)

  
  = pressure on top of the piston [Pa] 

m   = mass [kg] 
g = gravity [N/kg] 
A = area  [m2] 

The equilibrium of the piston cylinder combination is achieved when the piston and the mass 
pieces placed above descent in a constant manner. The rate of descent of a piston is dependent 
on the pressure, temperature and the goniometry of the piston cylinder combination.        

 
1 Gas, vapour or liquid 

( )
A
gmpp ×

+= 2

2p

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 The pressure balance 
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Figure 2.2: Cross-section of a Piston-cylinder combination 

In Figure 2.2 a cross section of a PCC is shown. In the center of the PCC there is a constriction 
in the cylinder to keep the fluid in the tube system from leaking into the space above the 
constriction. But this constriction should not be too tight, because the piston still has to be able 
to spin in the cylinder, which requires a small gap between the piston and cylinder. With the 
naked eye, the surface of the piston and cylinder in the gap seem perfectly straight, but on a 
microscopic level this is not the case. In the gap a small amount of fluid is pressed upwards, 
which leads, in combination with the imperfections in the PCC, to a frictional force exerted by 
the fluid to the flanks of the piston. This force F contributes to counterbalancing the weight of 
the piston: 
 

 

Because of this frictional force F that is exerted on the flanks of the piston, the weight W 
effectively increases. In chapter three we will go deeper into the mathematical aspect of the 
weight increase. Through equation (2) it can be seen that if the weight increases, the area A also 
has to increase to maintain the same pressure. Thus the force F causes the piston to behave as if 
its area is larger than it in reality is. This larger area is called the effective area of the PCC and is 
denoted by . In chapters 3 and 4 two models will be discussed that use different calculation 
methods to provide an estimate for the effective area.  

 
2.3 Measurement uncertainty  

No measurement is perfect. If a measurement is repeated several times, a distribution of results 
will be obtained. The dispersion in these results can be described in terms of uncertainty of 
measurement. Measurement instruments, measurement standards, environmental factors, among 
others, contribute to the overall uncertainty of measurement [5]. Depending on the model 
defining the quantity to be measured (measurand) [5] and the uncertainty associated with each 
of these factors, some influencing factors contribute more than others to the overall uncertainty. 

effA
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The mathematical model of the measurand of a pressure balance is given by [6]:     

 (5)          

 
ms = Mass 
As = Effective area of the PCC 

gl = Gravitational acceleration or gravity 
α = Temperature coefficient      
tpcu = Temperature of the PCC       
 

In this equation, the factor 0.99985 comes from the buoyancy correction of weightweights with 
known masses. This correction corresponds to the exerted upward force as a result of the 
amount of displaced air of which the volume is equal to the volume of the weightweights and is 
calculated by (1 - ρamb  / ρm) [6], where ρamb denotes the air density (1.2 kg/m3) and ρm the 
density of the weights (8000 kg/m3):  

  (6) 

Every variable in equation (5) contributes to the uncertainty of a pressure measurement. Such a 
model is often explicit, that is, of the form  

ps = f (ms, As, gl, α, tpcu)  

For convenience we rename the input quantities ms, As, gl, α and tpcu to x1 x2 x3 x4 and x5. If the 
uncertainty associated with the input quantities are known, the uncertainty associated with y 
(ps) can be expressed as follows using the uncertainty propagation formula, 

   (7)  

 
where  denotes the sensitivity coefficient. The sensitivity coefficient is the partial derivative 
of the measurement model f with respect to one of the input quantities . It expresses the 
sensitivity of the uncertainty in y for the uncertainty in .  

The uncertainty propagation formula can be written in matrix form as follows [4]:  

, (8) 

where cT denotes the transpose of the row vector c and denotes the uncertainty matrix of the 
input variables.  

In Table 2.1 the columns show the input variables (xi [xI]), the estimate (value), the uncertainty 
associated with the measured values (U(xi)), the standard uncertainty (u(xi)), the contribution 
factor (partial derivative ci) and the uncertainty contribution (ci u(xi)). By taking the partial 
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derivative of every influence factor its uncertainty contribution can be computed. In the last 
column of Table 2.1 it can be seen that the effective area has the largest uncertainty contribution 
in the uncertainty of a pressure measurement. 

xi [xI] Value U(xi) u(xi) ci ci u(xi) 

ms [kg] 10.000 42 0.000 01 0.000 005 10000 0.05 

As [m2] 9.804 854 10-4 0.000 29 10-4 0.000 15 10-4 1.0 108 1.53 

gl [N/kg] 9.812 42 0.000 02 0.000 01 10 204 0.10 

a [1/°C] 1.10-5 0.1 10-5 0.05 10-5 130000 0.07 

tpcu [°t] 21.3 0.2 0.1 1 0.10 
Table 2.1 Uncertainty contributions 

 
2.4 Calibration 

Calibration is the process of referring a device that has to be calibrated to a known accurate 
pressure balance, called a primer pressure balance, so that the deflection of the device can be 
determined.  

There are three generally known methods to calibrate a deadweight tester:  

- pressure generate-method,  
- p-method and  
- most fundamental method where the effective area of a PCC is determined.  

With each method so called “cross-float”-measurements are carried out. During these cross-float 
measurements two pressure balances are connected and balanced out by tuning both balances so 
that they will generate precisely the same pressure (see Figure 2.3). If both PCCs are in balance 
with each other, it holds that the pressure pR generated by the referential combination and the 
pressure pX are equal. Usually the accuracy of a primary pressure balance is at least four times 
greater than the equipment being calibrated.   

2.4.1 The Pressure-generate Method 

The pressure-generate method calibrates an unknown pressure balance by determining if the 
pressure that is generated by standard weights resembles the pressure that is mentioned on the 
weights. For every measure point a “cross-float”-measurement must be executed with the 
unknown and primary pressure balance. According to the measurement results it can be 
determined if the pressure balance meets its specifications.  

 

An advantage of this method is that the calculations are relatively simple. There is no need to 
deal with different kinds of corrections. The drawback of this method is the fact that the 
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Figure 2.3 Principle of a cross-float-measurements set-up 

pressure balance is calibrated on a fixed number of points where the combination of the weights 
is also fixed. This means that the calibration is only valid if the same combinations of the 
weights are used.  

2.4.2 The p-method 

The p-method determines the sensitivity and the starting pressure of the reference pressure 
balance. The sensitivity of a PCC expresses the pressure (kPa) that is generated per kilogram 
mass and therefore has the unit kPa/kg. The sensitivity of a PCC is immediately calculated from 
the observations without knowledge of the starting mass and the location of the bottom of the 
piston in floating condition. The starting mass is the mass of the piston. For every measured 
point i the pressure on the reference level is calculated. This is done because the reference levels 
of the referential and primary pressure balance are equal to each other: pR = pX. On every 
measure point the sum of the mass of the used weights excluding the mass of the piston on the 
pressure balance are known. If the sensitivity is accurately known, the pressure that is generated 
by the piston, which is called the starting pressure, can be calculated. 

The advantage of this method is that the PCC does not have to be disassembled and that several 
corrections like the difference in the reference levels are included in the sensitivity. In contrast 
to the “pressure generate”-method the mass of the weights have to be determined. The drawback 
of this method is that the uncertainty in the calculated start value of the starting pressure is 
relatively high. 

2.4.3 Effective Area Determination 

The third method is based on the determination of the effective area, the mass of the 
accompanying weights and the mass of the piston. Furthermore the reference level of the 
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pressure balance is calculated according to the goniometry of the piston. In a balanced situation 
of two pressure balances R and X the following equation holds:  

pR = pX  ® (mR · g)/AR  =  (mX · g)/AX ® mR/AR  =  mX/AX (9) 

Where p stands for pressure, m for mass and A for the effective area. The advantage of this 
method is that the pressure balance is fully characterized and that the results are obtained with 
the smallest possible uncertainty. On the other hand the calculations, measurements and the 
determination of correction factors are rather complex. 
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Chapter 3 Length Measurements 
 
 
 
 
 
 
 
3.1 Introduction 

After introducing the concept effective area in section 2.2, now its computation can be 
addressed. There are two ways of determining the effective area of a PCC.  

The first method, calibration, was covered in the last section of chapter 2. A requirement for 
calibration is that the effective area of the primer pressure balance has to be known, which 
makes it a dependent method.  

The second and independent method is from geometric measurements. The area on which the 
applied pressure is generated is no longer the area of the cross section of the piston, but a 
function of the measurements and geometry of both piston and cylinder. This chapter deals with 
the geometric measurements and how these are used to calculate the effective area of a PCC. 
The uncertainty of this method will be covered in section 3.4.   

 
3.2 Length, roundness and straightness 

The basic assumption when characterizing a PCC is that both cylinder and piston are 
cylindrical. In the mathematical sense, this means that, e.g., 

each cross-section is a circle with a constant radius 
the principal axes of the cylinder and piston coincide and can be represented by a straight line 

To compute the effective area, information about the geometry of the PCC is needed. To obtain 
values of the length measurements of the piston and cylinder, the PCC is measured by the 
Length Department of NMi at several levels on the vertical axis. At every level the diameter is 
measured more then once. The diameter at level l is determined by taking the average of those 
measurements. In Table 3.1 the radius values for a PCC are given, which are calculated by 
dividing the average diameter by two. 



    
 
 

 24 

  

  
      
 
 
 
 
 
 
 
 
 
 
 
 
                Table 3.1: Average radius of the PCC at height h [7] 

When a set of numbers is extended with values that lie outside the range of the measured values, 
it is called extrapolation. When a set of numbers is extended with values that lie within the range 
of the measured values it is called interpolation. In Table 3.1 the diameters of the piston and 
cylinder on the top and the bottom of the narrowing are specified by gray numbers and are 
acquired by extrapolation. The reason for this lies in the fact that at the top and bottom shape 
deviations occur, which obstructs accurate measurement of the diameter at these heights. At 
every height, except those of which the radius values are obtained by extrapolation, the diameter 
is measured several times. The diameter values in Table 3.1 are average values. 

(h) mm        Roundness (mm)        Straightness (mm) 
Height Piston Cylinder Piston Cylinder 
0.0 no data no data  0.00001  0.00055 
0.4 no data no data  0.00001  0.00050 
1.5 0.000143 0.000058  0.00001  0.00049 
5.5 0.000137 0.000049  0.00003 -0.00012 
10.5 0.000114 0.000068  0.00001 -0.00029 
15.5 0.000084 0.000040  0.00001 -0.00035 
20.5 0.000063 0.000044  0.00000 -0.00038 
25.5 0.000082 0.000042 -0.00001 -0.00034 
30.5 0.000079 0.000043 -0.00001 -0.00031 
35.5 0.000126 0.000064 -0.00002 -0.00020 
39.0 0.000151 0.000055 -0.00001 0.00019 
39.6 no data no data -0.00001 0.00012 
40.0 no data no data -0.00001 0.00014 

Table 3.2 Roundness and straightness deviation [7] 

In Table 3.2 the roundness and straightness deviations on height h are given. The piston and 
cylinder have a nominal radius, but in reality both piston and cylinder are not perfectly round, 
which leads to deviations in the roundness. The Length Department has equipment that 

Height (l) Piston (r) Cylinder (R) r-R 
mm mm mm mm 
0,0 17,66634 17,66786 0,00153 
0,4 17,66634 17,66782 0,00148 
1,5 17,66634 17,66781 0,00147 
5,5 17,66636 17,66720 0,00084 
10,5 17,66634 17,66703 0,00068 
15,5 17,66634 17,66697 0,00063 
20,5 17,66633 17,66694 0,00061 
25,5 17,66632 17,66698 0,00066 
30,5 17,66632 17,66701 0,00069 
35,5 17,66631 17,66712 0,00080 
39,0 17,66632 17,66751 0,00119 
39,6 17,66632 17,66743 0,00111 
40,0 17,66632 17,66745 0,00113 
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measures the deviation between the nominal radius and the true radius of the circle on height h. 
At every height the maximum deviation is computed and represented in Table 3.2. 

The straightness deviations in Table 3.2 are not measurements, but are computed by subtracting 
the radii values of the piston and cylinder series (see Table 3.1) by its mean. In Figure 3.2 a 
schematic drawing of the cross-section of a piston is shown (red line).  

 
 
3.3 The mathematical model 

The model used by NMi is rather simple in comparison to the models used by the other 
participants of the EUROMET project 740 and is based on the following assumptions for both 
piston and cylinder: 

- The midpoint is the same on every height 
- They share the same midpoint.  
- They are perfectly round at every height.  
- They are perfectly straight at every height.  

The first two assumptions are crucial, because developing a model will become quite 
complicated without them. The second assumption deals with the fact that the piston may move 
within the cylinder while it is spinning.  

If the assumption were made that both piston and cylinder are perfectly round, it would hold 
that the piston and cylinder would have a radius on every height that fits the cross-section 
perfectly.  If then the assumption were made that both piston and cylinder are perfectly straight, 
it would mean that their radius is the same on every height. The radius of the piston and cylinder 
on level i will be denoted by respectively  and , where n stands for the number of 
measurement points. 

  The piston radii of point i, where i = 1,.. n. 
 The cylinder radii of point i, where i = 1,.. n. 

ir iR

( )nrrr ,...,1=
( )nRRR ,...,1=

 
 
Figure 3.2 Roundness of a piston in nm. 
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The radius for the effective area  is computed by taking the average of the average piston and 
cylinder radii. This can be modeled as:  

, with  (10) 

 
 The average of the piston radii 
 The average of the cylinder radii 

 

From the second assumption, it can be derived that the surfaces of the piston and cylinder are 
perfectly straight and for that reason no friction component has to be modeled. But the 
assumptions that lead to the biggest simplification of the ‘real world’ into the model are “the 
midpoint is the same on every height” and ‘they share the same midpoint’. In reality the 
midpoints do not necessarily lie on the vertical axis of both piston and cylinder. In fact they can 
be shaped as a corkscrew. The last assumption which states that the piston and the cylinder 
share the same midpoint has to be made because in reality the piston rotates within the cylinder 
and could therefore change position, which will lead to a shift of midpoint of the piston.  
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3.4 Uncertainties 

The goal of the modeling is to develop a model that describes reality as close as possible. In 
many cases this leads to very complex models and more often it happens that it is not possible 
to build a model that is a 100% replica of real situation. That is why assumptions have to be 
made that simplify the problem so that it is possible to have it modeled and still 
comprehendible. The consequence of assumptions and the occurrence of imperfections during 
the length measurements will lead to an uncertainty of the models input and thereby of the 
models output. 

According to the NMi method the uncertainty of their models output, the effective area, consists 
of two main components: shape deviations and length measurements [7]. The first component is 
a result of the assumptions that are made in the mathematical model, namely that the piston and 
cylinder are perfectly straight and round. The uncertainty due to these assumptions can be 
expressed in the shape deviation parameters  and respectively . The error that is 
made during the measure process of the radii expressed in the length measurement 
parameter .  

3.4.1 Straightness 
 
The uncertainty caused by shape deviations in the piston and cylinder  can be split in 

 (piston) and  (cylinder). The radius data in Table 3.1 are assumed to be normally 
distributed and consist of 15 points. If that is the case, the standard deviation of the piston and 
cylinder radii can be defined as: 
 

  (11) 

 
and likewise, 

 (12) 

 
Assuming mutual independence of the ri and Ri respectively, the standard uncertainties 
associated with  and  can be determined  by dividing the standard deviations of the piston 
and cylinder radius by the square root of the number of measured points: 
 

  (13) 

 
and likewise, 

 (14) 

 
The combined standard uncertainty can be computed by taking the square root of the sum 
of squares of  and : 
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 (15) 
 

 
3.4.2 Roundness 

The uncertainty caused by deviations in the roundness of the piston and cylinder will be denoted 
by and roundness . They are calculated by dividing the maximum roundness 
deviation of Table 3.2 by because the roundness deviations are assumed to be Rectangular 
distributed. 

  (16)  

and likewise, 

 (17) 

 The roundness deviation on the height of point I 
 
The combined standard uncertainty can be computed by taking the square root of the sum 
of squares of  and : 
 

 (18) 
 
3.4.3 Diameter measurements 

The uncertainty due to the diameter measurements of the piston and cylinder are respectively 
represented by  and . During the length measurements process of the diameters of 
the PCC different elements, like for example the expansion coefficient of the PCC, influence the 
measurement and its result has to be corrected accordingly. For more information about the 
measurement process of NMi see Appendix A. To obtain the radius values of the PCC, the 
diameter is divided by two. The mathematical model [10] for the length measurement is:   

 where i = 1,..,n (19)     
 

 diameter measurement after corrections 
 laser reading in + and – direction 
 correction for laser wavelength  

 temperature of the piston and cylinder 
e expansion coefficient 

 correction for the probe constant 

 correction for the levelness of the mirror 
 alignment of the piston and cylinder 
 dead path error 
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The combined standard uncertainty can be computed by taking the square root of the sum 
of squares of  and : 
 

 (20) 
 

3.4.4 Uncertainty of the effective area computation 

The total uncertainty is computed by multiplying the combined standard uncertainty with the 
coverage factor k. The coverage factor is usually set on two. When k = 2 the coverage 
probability for a Normal distribution is approximately 95%. 

First the combined standard uncertainty of the three before mentioned components need to be 
computed by multiplying the square root of the sum of squares of , and  by the 
partial derivative of equation (10).   
 
To determine the total uncertainty of the effective area the combined standard uncertainty has 
to be multiplied by the coverage factor k.  

 

The value of the coverage factor is based on the desired level of confidence to be associated 
with the interval defined by . When the normal distribution applies k = 2 defines 
an interval with a level of confidence of approximately 95 %, and k = 3 defines an interval with 
level of confidence of approximately 99 % (see Figure 3.3).   

The derivative of the function  that is used to calculate the effective area is 
 

 

 (21) 
 
k Coverage factor 

  Uncertainty due to the shape deviation of the PCC 
  Uncertainty due to the roundness deviation of the PCC 
  Uncertainty due to the error in the length measurement of the PCC 
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Figure 3.3 The Coverage factor 
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3.5 Application on NMi dataset  

In this section the effective area and the corresponding uncertainty will be computed. The 
dataset of the NMi that can be seen in Table 3.1 will be used. 

3.5.1 Effective area calculation 
 

 = 17.6663 mm 
 = 17.6673 mm 

 

 

 mm  
 
The effective area of the DH350 PCC of the NMi is 980.5434 mm  
 
3.5.2 Uncertainty calculation 

The uncertainty of the effective area consists of three components: straightness, roundness and 
length measurements. 

Straightness:  

 

 

The NMi-DH350 dataset contains 15 points (n = 15). The standard uncertainties  and 
 will therefore become: 

  

 

The combined standard uncertainty  is computed by, 

.  

 
Roundness 

In Table 3.2 can be seen that the maximal roundness deviation of the piston ( ) is 
0,000151 mm and of the cylinder ( ) is 0,000068 mm. The standard uncertainties  
and  will therefore become: 
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The combined standard uncertainty can then be computed by,  

. 

 
Length measurements 

The combined standard uncertainty can be computed by taking the square root of the sum 
of squares of  and , where  (50 nm) and  (75 nm) are given by the 
Length Department of  NMi. 

 
 
Uncertainty of the effective area 

 

The derivative of the function  that is used to calculate the effective area is: 

  
With  will become: 111.0039. 
 
The coverage factor is usually set to two: k = 2 
 
Filling this in the equation above: 
  
 
Thus the effective area of NMI-DH350 is 980.5434 ± 0.0305 mm . 
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Chapter 4 Dadson’s theory 
 
 
 
 
 
 
 
4.1 Introduction 

In the previous chapter the model used by NMi to calculate the effective area of a PCC was 
discussed. Through the EUROMET project 740 the NMi was introduced to new models based 
on a theory described in “The Pressure Balance, Theory and Practice.” [3]. For convenience we 
will refer to this method as Dadson’s theory. Four (out of six) NMIs that participated in the 
before mentioned  project have based their models on Dadson’s theory and their results had a 
considerably lower uncertainty. Reason enough to discuss the theory in this chapter. Dadson 
starts with determining the effective area of an ideal PCC and slowly expands to a more 
complex model that calculates the effective area for a simple PCC.  

 
4.2 The effective area of a ideal PCC 

An ideal PCC is a PCC where the piston and cylinder have perfectly straight and straight 
cylindrical surfaces. The assumptions made in this model correspond to the ones made for the 
model used by the NMi, namely: 

1. The midpoint is the same on every height 
2. They share the same midpoint. 
3. They are perfectly round at every height.  
4. They are perfectly straight at every height.  

       

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1: Schematic diagram of a PCC [3] 
 



    
 
 

 33 

 

An schematic representation of the ideal PCC is shown in Figure 4.1. The fluid pressure  is 
measured at the bottom of the piston at the level x = 0, while the top of the piston (level x = l) 
will be exposed to the ambient pressure . The measurement process consists of balancing the 
upward force arising from the difference between the two pressures ( ) against a 
downward gravitational force which is applied to the piston by a group of calibrated masses 
including that of the piston itself. The radii of the piston, cylinder and effective area are given 
respectively by r, R and r*. 

4.2.1 The virtual piston model 

The upward force on the piston has besides the pressure difference also an frictional part F. 
Because of the pressure difference the fluid in the PCC is forced to move upwards and thereby 
exerts pressure on the flanks of the piston. Let  denote the true value of the corrected 
downward gravitational force due to the applied masses including that of the piston. Then  
can be determined by equilibrating the forces acting on the piston by the equation:  

 (22) 
 

     = Downward gravitational force on W 
r     = Radius of the piston 
F     = Frictional force 

    = Pressure difference 
 

The cylindrical surface of radius is often termed the ‘neutral surface’ [3] which is the same as 
the effective area and is shown by the broken line in Figure 4.1. In the case of plane-parallel 
surfaces the neutral surface would be a plane situated precisely midway between the two 
boundaries, which is assumed by NMi.  

The weight of the ring shaped cross-section that is contained between the surfaces of the piston 
and the neutral surface is referred to by w and the downward gravitational force due to its mass 
is denoted by w’. When you include the force F that is exerted on the flanks of the piston by the 
fluid that is pressed upwards, the following equation is obtained: 

 
  (23) 

 
     = Downward gravitational force on w 
     = Radius of the neutral surface 

 
Equation (22) and (23) combined give 
 

, (24) 
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which can be reduced to the form W = A p. The effective area of the assembly is therefore 
given very simply by 
 

, (25) 

 

so the effective area is equal to the cross-sectional area of the PCC whose boundary is the 
neutral surface. This causes the load on the piston to increase due to the mass of the ring shaped 
column of fluid between this surface and that of the piston (w’).  In other words, the actual 
piston could be replaced by a ‘virtual piston’, which surface is determined by the radius of the 
neutral surface. That is why it is called the virtual piston model.  

4.2.2 Location of the neutral surface 

The real question is what the value of r* should be. In the last paragraph it was mentioned that 
with the small gap in the PCC it is usually a close enough approximation to treat the neutral 
surface as if it is lying halfway in between the piston and cylinder (plane-parallel surfaces). 
However, it turns out that slightly differing approximations have been used in literature, and 
therefore this is further examined in [3]. 

It is shown that the exact result follows from the classical theory of viscous flow between 
cylindrical surfaces, where it may be shown that: 

. (26) 

 
Since the fields R and r are approximately equal the following equation is obtained [3] 
 

 (27) 
 

with  

Here  is a very small number and terms  may be neglected. If the logarithmic term is 
expanded to the second order in , we find 

. (28) 

In the case of pressure-balance assemblies  is not likely to be greater than , i.e.  is not 
likely to be greater than , and will often be much less. Later in [3] the third form of 
approximation  has been used with the main concern of avoiding the unnecessary 
complication in the further on mentioned formulas for effective areas. Equation (25) can then be 
reduced to 
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Figure 4.2: Schematic diagram of a PCC with x-dependent radii [3] 
 

, (29) 

where h is the radial clearance (R - r) between the two surfaces. The crucial assumption here is 
that both R and r have small variations and that their difference h is small compared to the radii. 

 
4.3 The effective area for a simple PCC 

The next step is to extend the virtual piston model given above by considering assemblies in 
which the radii of the piston and cylinder may vary on different heights but in which there is 
still circular symmetry.  

 

 

A cross-section of this model can be seen in Figure 4.2, where u and U stands for deviations in r 
and R, using 0 for values of the dimensions at the reference level x = 0. The upward force on the 
piston is built up from [3]: 

1. a force equal to due to the actual pressures acting on the ends of 
the piston; 

2. a frictional force F, exerted on the flanks of the piston by the fluid which is being 
forced to move upwards under the influence of the pressure gradient; 

3. a force equal to  due to the vertical component of the fluid 

pressure acting on those parts of the flanks of the piston which are inclined to the 
vertical axis. 

 
Equation (22) now becomes, after some reduction 
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 (30) 

If you compare equation (30) with (22) of the virtual piston model, it can be seen that (28) 
considers the extra frictional component described by 3. 

Balancing the forces acting on the ring shaped column of fluid between the surface of the piston 
and the neutral surface, equation (24) becomes, 

 (31) 

 
By the addition of equation (24) and (25) equation (32) is obtained:  
 

. (32) 

 

Where  is a force equal to the vertical component of the fluid pressure.  

If you divide both parts of equation (32) by  the expression for the effective area, 
corresponding to equation (25), will become 
 

 (33) 

 
In most cases it would be unnecessary to include terms of the second order in , and therefore 
the expression can be reduce to 
 

 (34) 

 
which is the generalization of equation (29). 
 

Now the distribution of the pressure p as a function of x has to be determined, which will 
depend on the distribution of the radial deviation u and U. Next to the radial deviations the main 
parameters, density and viscosity of the fluid in the small space between the piston and cylinder, 
are expressed as functions of the pressure. In the case of PCCs that use incompressible fluids, 
[3] regards that the density and viscosity of a pressure transmitting liquid as oil is independent 
of pressure. Equation (34) then becomes: 
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However we will not go deeper into this matter and for further information on this subject the 
reader is referred to ‘The Pressure Balance, Theory and Practice’. For PCCs that use 
compressible fluids and where the applied pressure tends to zero the expression for effective 
area is identical to (35).  
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Chapter 5 Proposed model 
 
 
 
 
 
 
 
5.1 Introduction 

In the last two chapters, two models were discussed: the model based on Dadson’s theory and 
the model used by NMi. The main difference between both models is that NMi’s model, ignores 
the extra friction component F discussed in chapter 4, in contrast to the model based on 
Dadson’s theory. In this chapter a new model is proposed. In the next section we will discuss 
why the “straight assumption” should be dropped.   

 
5.2 Perfectly straight or not? 

In modelling, assumptions have to be made to reduce a problem so that it is possible to have it 
modelled given the data available. The challenge is to find a model that describes reality as 
accurate as possible, again given the data available.  

The main difference between the NMi model and the model based on Dadson’s theory is that 
Dadson does not assume that the piston and cylinder are perfectly straight, which means that 
they do not assume that the radius is the same on every height. In Dadson’s model this results in 
the piston and cylinder radii being dependent of an index that represents the height of the 
measured point and thereby reckons the imperfections in the PCC. In the NMi model, two radii 
are calculated for characterising the piston and cylinder respectively.  

Another effect from leaving the straightness assumption out is the acknowledgement of the 
frictional force F. This force is a result of the friction that is caused by the movement of the 
fluid in the small gap between the piston and cylinder. So if the NMi would drop this 
assumption, it would make their model more credible. 

Now that the perfectly straight assumption is dropped a new model is needed. As discussed in 
chapter four, the following equation is the basis of Dadson’s model for effective area 
calculations [3]: 

, (35) 
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 Radius of the piston at height x = 0 
 Radius of the cylinder at height x = 0 
 Radial clearance between and   

 Difference between and  for x = 1, .. n 
 Difference between and  for x = 1, .. n 

 Radial clearance between and  for x = 1, .. n 
 

Equation (34) contains two integrals  and , where U, u and h are discrete 

series (see Table 5.1).  A way to calculate these integrals is through the use of algorithms that 
can approximate integrals, like the trapezium rule, which will be discussed in the next section.  
 

x u U u + U h 
0 0.00000  0.00000  0.00000 0.00153 
0.4 0.00000 -0.00004 -0.00004 0.00148 
1.5 0.00000 -0.00006 -0.00006 0.00147 
5.5 0.00002 -0.00066 -0.00064 0.00084 
10.5 0.00000 -0.00084 -0.00084 0.00068 
15.5 0.00000 -0.00090 -0.00090 0.00063 
20.5 -0.00001 -0.00092 -0.00093 0.00061 
25.5 -0.00002 -0.00089 -0.00091 0.00066 
30.5 -0.00002 -0.00085 -0.00087 0.00069 
35.5 -0.00003 -0.00075 -0.00078 0.00080 
39 -0.00002 -0.00035 -0.00037 0.00119 
39.6 -0.00002 -0.00043 -0.00045 0.00111 
40 -0.00002 -0.00041 -0.00043 0.00113 

Table 5.1 Series that are derived from the radius measurements r and R 
 
In Table 5.1 the values for u, U and h are given on height x where all the values are given in 
millimetres. 
 
 
5.3 The trapezium rule 

The trapezium rule or trapezoid rule is one of a family of formulas for numerical integration 
called Newton-Cotes formulas and is a way to approximately calculate the definite integral [7]: 

 . (36) 

The trapezium rule works by approximating the region under the graph of the function f(x) by a 
trapezium and calculating its area.  It follows that 
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 . (37) 

To calculate this integral more accurately, one first splits the interval of integration [a,b] into n 
smaller subintervals, and then applies the trapezium rule on each of them. One then obtains the 
composite trapezium rule: 

. (38) 

where xi denotes the radius measurement at level i with i = 1, …, n. The integration in equation 
(38) can be approximated by the following summation:  

, (39) 

 
which is of the form:  

, (40)   

 
where Xi is a quantity that stands for the radius of the PCC and  is the i-th realization 
obtained through diameter measurements of the PCC. The trapezium rule is used to 

approximate the integrals   and . 

 
Note that the Trapezium Rule can only be uses on datasets were the distance between every 

 is the same. The new dataset of NMi (Table 5.3) meets this requirement. 
 
 
5.4 Uncertainty 

In the uncertainty model of the proposed model the straightness component has been dropped, 
because straightness is not assumed anymore. An uncertainty component that makes its entry is 
uncertainty due to the use of the Trapezium Rule, which will be discussed in section 5.4.1.  

The uncertainty due to the length measurements is determined by the combined uncertainty of 
the diameter measurements and the roundness deviation (see sections 3.4.2 and 3.4.3): 

  
 

 
 

The -uncertainty due to uncertainty of the length measurement is calculated by varying the 
piston and cylinder radii by their uncertainties. This method is more practical then determining 
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the partial derivative for every uncertainty component, because equation (35) is rather complex. 
In Table 5.2 the contributions to  of the uncertainty due to the length measurements for the 
IMGC-100NNct PCC can be seen. 

 Variation   
  0.000010746  
  -0.000010713  
  0.000010133  
  -0.000010101  
 Total effect 0.00002086  

Table 5.2 Uncertainty contribution to  

The uncertainty due to the measurements of the piston and cylinder  are both 26.3 
nm. To calculate the total effect the sum of squares is calculated of the values in Table 5.2. 

 
5.4.1 Uncertainties due to numerical procedures 
 

Next is the determination of the uncertainty due to the use of the trapezium rule. Because it  is 
assumed that the length measurement uncertainties are mutually independent we can use 
equation (42) to compute the uncertainty due to the use of the trapezium rule:  

  (42) 

For quadrate rules that can be written in the form of (40) and that are linear in the measured 
quantities Xi, the law of propagation of uncertainty based on a first-order Taylor series 
expansion can be applied, making no further approximation, to evaluate the uncertainty 
associated with the measurement result y. Such application gives: 

, (43) 

where  and is the uncertainty matrix associated with the estimates x. In the 
case of mutually independent Xi, the result reduces to 

  (44) 

Equation (42) can be written in the form of (44) with weights, 
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5.4.2 Systematic and random errors affecting the uncertainty  

It is inconvenient that the obtained measurements r and R, which were used to calculate u, U 
and h, are not mutually independent. In the article “SWI Measure under pressure” [1] the 
following observation was made: 

‘The piston diameter was measured at 13 different heights (ξ-coordinates), with a standard 
uncertainty of 50 nm, which is determined by the standard uncertainty of the measuring 
equipment. However, the sample standard deviation of these 13 measurements is only 14 nm.’ 

In cases where the data are assumed to be normally distributed the standard deviation is a good 
estimate for the uncertainty of a quantity. The quantity is a length measurement that has to be 
corrected for several influence factors, which are therefore also included in the uncertainty of 
the length measurement in model (19).  

The length measurements are done with a laser and are denoted by l. In Table 5.3 the results of 
the laser readings on twenty different heights of a cylinder are shown. The minimum number of  
measurements at one height is three, but at four heights five measurements are taken. From  
these measurements the standard deviation is calculated. The standard deviations differ at every 
height. Apart from the first value all the standard deviations are smaller than 17 nm. To 
calculate the uncertainty of a radius measurement the standard deviation has to be divided by 
two. The other part of the uncertainty is determined by the influencing factors form the length 
measurement model.  

These influencing factors are the same for every position. In the paper of SWI [1] it is 
concluded: 

‘We conclude that the standard uncertainties of both piston and cylinder measurements must 
have a systematic and a random component. Both components are unknown, but the systematic 
component is always the same for all measurements, whereas the random components are 
independent from one another’.  
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x 
Measurement number 

σ u(R) 
1 2 3 4 5 

38.1 35.33471 35.33475 35.33480 35.33478 35.33478 0.000035 17.2701 
36.2 35.33435 35.33437 35.33437 35.33438 35.33438 0.000013 6.6885 
34.3 35.33417 35.33417 35.33419 - - 0.000016 7.8098 
32.4 35.33406 35.33407 35.33405 - - 0.000007 3.6079 
30.5 35.33398 35.33402 35.33400 - - 0.000017 8.5499 
28.6 35.33394 35.33391 35.33395 - - 0.000018 8.8857 
26.7 35.33390 35.33391 35.33390 - - 0.000009 4.3507 
24.8 35.33385 35.33388 35.33386 - - 0.000016 7.7697 
22.9 35.33382 35.33382 35.33381 - - 0.000003 1.5079 
21 35.33379 35.33380 35.33380 - - 0.000004 2.0230 
19.1 35.33376 35.33378 35.33379 35.33377 35.33377 0.000009 4.3245 
17.2 35.33378 35.33377 35.33378 - - 0.000005 2.5119 
15.3 35.33379 35.33379 35.33378 - - 0.000008 4.0108 
13.4 35.33382 35.33380 35.33381 - - 0.000006 3.0439 
11.5 35.33385 35.33388 35.33385 - - 0.000017 8.6622 
9.6 35.33387 35.33384 35.33386 - - 0.000015 7.5432 
7.7 35.33388 35.33391 35.33391 - - 0.000015 7.3640 
5.8 35.33400 35.33402 35.33402 - - 0.000011 5.2884 
3.9 35.33430 35.33429 35.33430 - - 0.000007 3.6158 
2 35.33471 35.33469 35.33471 35.33473 35.33472 0.000013 6.4901 
Table 5.3 Length measurements of a cylinder in mm 
 

The laser readings are assumed to be independent. One laser reading does not influence another 
one and its uncertainty can therefore be called random. The influence factors are the same for 
one measurement session and the uncertainty due to the influence factors can therefore be called 
systematic. Because the results of the measurements are not fully independent the propagation 
formula, 

 , (45)  

 
has to be used. Where  denotes the sensitivity coefficient. The sensitivity coefficient is the 
partial derivative of the measurement model f with respect to one of the input quantities . It 
expresses the sensitivity of the uncertainty in y for the uncertainty in .  

The uncertainty propagation formula can be written in matrix form as follows [2]:  

, (46) 

( ) ( ) ( )ji

n

i

n

ij
ji

i
ii xxuccxucyu ,

1

1 1

222 ååå
-

= +=

+=

ic

ix

ix

( ) Tcc xVyu =2



    
 
 

 44 

where cT denotes the transpose of the row vector c and denotes the uncertainty matrix of the 
input variables.  

In Appendix B will be shown how the propagation rule can be applied to the length 
measurement uncertainty model of the NMi. 
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Chapter 6 Results 
 
 
 
 
 
 
 
6.1 Introduction 

In the previous chapters different models were discussed that led to the proposed model in 
chapter 5. To test the results of these models they were implemented in C. A short description of 
the different calculation methods of the effective area are given in the first paragraph. Finally 
we will compare these results with those of the PTB, the NMI of Germany, whose model is also 
based on Dadson’s theory. The results of the PTB are almost similar to those of the SMU, LNE 
and IMGC.  

 
6.2 Datasets  

The input for the program consists of the height of the measurements, piston and cylinder radii 
and the difference between the latter two. The following datasets of six different PCCs were 
used: PTB-DH7594, IMGC-DH20L, IMGC-100NN, IMGC-DH500, NMi-DH350 and SMU-
PG04. A graphical representation of the IMGC-100NN dataset can be seen in Figure 6.1. 

 

In Figure 6.1 it is clearly visible that at both the top of the cylinder and the bottom of the piston 
there is a matter of deformation, which is a common occurrence near the edge of an object. 

 
6.3 Effective area calculations 

In Figure 6.2 you can see how the program determines the input and output of the NMi model. 
The diagram speaks for itself. First the input file, containing the dataset with values of r, R and 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1 dataset of the IMGC-100NN PCC 
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h is read and their averages are computed. The next step is to determine the radius of the neutral 
surface r*, which then is used to calculate the effective area. 

 

 
 
 
 
 
 
In Figure 6.3 a diagram of the calculation process of the implemented proposed model can be 

seen.  Equation (34) contains two integrals  and , where the variables U, 

u and h (see Table 4.1) are used. 
 

 

When values of the input variables r, R and h are read from the dataset, the first step in 
calculating the effective area is to compute the variables u and U. When u, U and h are known 
the function values of the integrals have to be calculated, which results in two vectors: integral1 
and integral2. Through the use of the Trapezium rule (section 5.3) both integrals are computed 
and their value is saved in the variables trap1 and trap2. In the last step trap1 and trap 2 are 
filled in equation (34) and the effective area is calculated. 

 

 Dataset PTB mm  Proposed mm  NMi mm   

 PTB-DH7594 4.90213920 4.90214000 4.90245400  
 IMGC-DH20L 49.02506600 49.02508000 49.02649000  
 IMGC-100NN 20.00056700 20.00057000 20.00049000  
 IMGC-DH500 1.96104360 1.96105200 1.96113700  
 Nmi-DH350 9.80527120 9.80530000 9.80543300  
 SMU-PG04 9.82330880 9.82338600 9.82321500  

  Table 6.1 Effective area values of three different methods 
 

For six PCC’s the effective area is calculated by the proposed model and the NMi model. The 
results of the program can be seen in Table 6.1. In [2], it was concluded that four out of six 
NMIs based their method on Dadson’s theory. For that reason the results of these four NMIs 
were in line with each other. To verify the implementation of Dadson’s theory, the results of the 
proposed and NMi model were compared with those of the PTB [9], the NMI of Germany. The 
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Figure 6.2 Input-output NMi model  

 
 
 
 
Figure 6.3 Input-output proposed model 
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results seem not that different form each other, for that reason the difference between the two  
models and the PTB values will be compared in terms of percentage (Table 6.2). 

 
 Dataset Proposed % NMi %  
 PTB-DH7594 0.00002 0.00642  
 IMGC-DH20L 0.00003 0.00290  
 IMGC-100NN 0.00001 -0.00038  
 IMGC-DH500 0.00043 0.00476  
 NMi-DH350 0.00029 0.00165  
 SMU-PG04 0.00079 -0.00095  

   Table 6.2 Difference of both models to the PTB in terms of percentage 
 

A better representation of the values in Table 6.2 can be seen in Figure 6.4. The values of the 
effective area calculations of the PTB are represented by the dark blue cubes on the zero-line. It 
is clearly visible that the values of the proposed model lie in line with the PTB values, in 
contrast to the results of the NMi model. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4 Difference of both models to the PTB in terms of percentage 
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Conclusion 
 
 
 
 
 
 

The effective area of a PCC is the area on which the applied pressure is a function of the 
measurements and goniometry of both piston and cylinder. After the EUROMET Project 740 it 
became clear that NMi’s approach to calculate the effective area leads to a different result and a 
higher uncertainty in comparison to the other participating institutions who based their models 
on Dadson’s theory. The objective of this work has therefore been defined as: 

‘Studying Dadson’s theory and the method used by the NMi to determine which method should 
be used to calculate the effective area in order to obtain a more accurate estimate and develop 
the corresponding uncertainty model’ 

In modeling assumptions have to be made to simplify a problem so that it is possible to have it 
modeled while it is still comprehendible and reliable. The main differences between the NMi 
model and the model based on Dadson’s Theory is that Dadson does not assume that the piston 
and cylinder are perfectly straight. In Dadson’s model this results in the piston and cylinder radii 
being dependent of an index that represents the height of the measured point and thereby 
reckons with the imperfections in the PCC.  

As for the uncertainty of the effective area - due to the fact that the assumption that both piston 
and cylinder are perfectly straight is dropped, the corresponding uncertainty contribution is 
dropped as well. Another consequence of leaving the straightness assumption out is the 
acknowledgement of the extra frictional force F. This effect is included in the proposed model 
for the NMi.  

Both models were implemented in C and their results were compared with the results of the 
PTB, the NMI of Germany, which are almost similar to those of the other participants of the 
EUROMET project. In contrast to the results of the NMi the results of the proposed model 
correspond to those of the PTB model which verifies the validity of the application of Dadson’s 
theory in the proposed model. Therefore it can be concluded that the proposed model is more 
credible then the current NMi model, and that it’s result are in line with the results of the other 
participating NMI’s. 
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Appendix A NMi Measurement 
 
 
 
 
 
 

The measurement of the piston or cylinder is performed with a coordinate measuring machine 
(CMM). First the probe constant is determined by measurements of an interferomic-calibrated 
end measure. Then the centre of the cylinder is determined and finally its diameter. The non-
roundness is determined by two measurements with the help of roundness measuring machine 
and thereupon with the help of a software program the values are calculated.  

The modeling of the cylinder measurement is revisited in order to determine the structure in the 
data. The radii at various heights have been reported with a standard uncertainty of 50 nm, 
whereas the standard deviation of the same radii is 14 nm, which makes it very unlikely that the 
data are independent [1]. In order to apply the law of propagation of uncertainty in as correct 
way, the correlations between the radii need be determined. 

The objective of characterizing a piston is to determine its radius as a function of the height x. 
The characterization of a piston provides an estimate of the diameter (d), which is related to the 
radius as follows 

 

and hence 

 

 
If a series of n diameters is determined by 

 

then the relationship with the radii is given by 

 

 
The associated uncertainty matrix Vr can be computed from the uncertainty matrix associated 
with d, 
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Furthermore, it is important to note that, apart from the uncertainty associated with the 
measurement of di, there is another component of uncertainty to be take into account, namely 
the non-roundness. The model for the radius becomes 
 

 

 
where the non-roundness is different at every height x (that is, for every index i). The value of 
�dnr is zero for all i, and its associated uncertainty is determined from the roundness 
measurement. 
 
The measurement of the radius R of the cylinder is performed in exactly the same way. The 
radius of the cylinder is given by  

 

where D is the diameter measured by the CMM. 
 
A.1 The measurement model for the diameter 
 
The measurement of both the diameter of the cylinder and piston can be modeled as follows 
  

 (2)     

 
 reading of the diameter. 

 laser reading in + and – direction 

 correction for laser wavelength  
 temperature of the piston and cylinder 

e expansion coefficient 
 correction for the probe constant 

 correction for the levelness of the mirror 
 alignment of the piston and cylinder 
 dead path error 

i index of the measure level 
 
The laser reading  can be expressed as , where  is the laser reading in the + 

direction and  is the laser reading in the – direction. It is assumed that the readings are 
normally distributed. The laser readings in + and – direction are done 5 times. The result is 
defined as the average of the 5 readings  

  

and  
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Appendix B Uncertainty model 
 
 
 
 
 
 
B.1 Uncertainty propagation 
 
Many measurements are done indirectly, that is, several (input) quantities are measured and the 
quantity to be measured is subsequently calculated using a measurement model. Such a model 
is often explicit, that is, of the form  
 

.  
 
If the uncertainty associated with the n input quantities xi are known, the uncertainty associated 
with y can be expressed as follows using the uncertainty propagation formula, 
 

   (1) 

 
Where  denotes the sensitivity coefficient. The sensitivity coefficient is the partial derivative 
of the measurement model f with respect to one of the input quantities . It expresses the 
sensitivity of the uncertainty in y for the uncertainty in .  
 
The uncertainty propagation formula can be written in matrix form as follows []:  
 

, 
 
where cT denotes the transpose of the row vector c and denotes the uncertainty matrix of the 
input variables.  
 
If the xi are mutually independent and identically distributed, then the uncertainty matrix can be 
expressed as 
 

 
 
where u denotes the standard uncertainty of one of the xi and I the identity matrix. If the xi are 
mutually independent, then the uncertainty matrix can be written as 
 

 
 
The matrix notation becomes in particular useful then the measurement model is of the form 
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where on row i of C the sensitivity coefficients appear belonging to element yi.  
 
 
B.2 Example 
 
Let the measurement model be  
 

,  
 
with index 1,2 and uncertainty  
 

.  
 
Then the uncertainty matrix becomes  
 

.   
 
Output:   
Input:   
 

Where         

  

 
The variable is determined by the variables and , and is composed as , 

where  and are constants. The uncertainty matrix . 
 
Output:   
Input:   
 

Where         

 
Where  is a 2 by 2 matrix with on the diagonal  and . 
 
 

T
xy CCVV =

iii yx +=Dl

=i

( ) ( ) ( )iii yuxuu 222 +=Dl

TCVCV ××=Dl

lD
( )Tyx,

ú
û

ù
ê
ë

é
=

y

x

V
V

V
0

0

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

DDDD

DDDD

=

2

2

1

2

2

2

1

2

2

1

1

1

2

1

1

1

yyxx

yyxxC

d
ld

d
ld

d
ld

d
ld

d
ld

d
ld

d
ld

d
ld

ú
û

ù
ê
ë

é
=

1010
0101

C

ix ba, iz bzax ii +×=

a b T
x CVCV ××=

x
( )Tba z,,

( )
( )

ú
ú
ú

û

ù

ê
ê
ê

ë

é

=

zV
bu

au
V

00
00
00

2

2

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

2

2

1

222

2

1

1

111

z
x

z
x

b
x

a
x

z
x

z
x

b
x

a
x

C

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

ú
û

ù
ê
ë

é
=

az
az

C
01
01

2

1

zV ( )12 zu ( )22 zu



    
 
 

 54 

B.3 Propagation Model 
 
Suppose that there are two diameter measurements, that is 

   

The input variables follow from equation (1)   
 

 (4) 

 

 
Let V be the uncertainty matrix associated with the vector  and 
the sensitivity matrix C the matrix that consists of sub matrices with the partial derivatives of 
the different variables.  
 
Output:  d 
Input:   
 

 

 

 

 
The variables  and are not related to any of the other variables and thereby 
have partial derivates that are equal to the vector 1. The sensitivity matrix becomes: 
 

 

 

The uncertainty matrix of the laser reading is calculated as  with input . 
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Where    

  
The values of the parameters and are on every level (i) the same and are 
thereby systematic. The uncertainty matrixes for these parameters are equal to their combined 
uncertainty that is constructed as . 
 
The uncertainty matrix of the laser wavelength  is calculated as . With 

and the associated uncertainty matrix  
 

V = .  

 
 Then the expression for the sensitivity matrix associated with l becomes 
 

 
 
The laser wavelength has a combined standard uncertainty of: 

 
 
The uncertainty matrix of the alignment is equal to . Where  , with the 
alignment of the piston or cylinder and the alignment of the laser. That leads to 

 
 
Where and   
 
The uncertainty matrices of the temperature, expansion coefficient, probe constant and 
levelness of the mirror are respectively , , 

 and . 
  
The uncertainty associated with the deadpath error ( ) is a function of the ambient 

temperature, ( ), pressure ( ), humidity ( ) and CO2 proportion ( ). 
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 and the associated uncertainty matrix  where  

 

V = .  

 
Then the expression for the sensitivity matrix C associated with  becomes 
 

 
 

 
  
So finally the uncertainty matrix V and the sensitivity matrix C become: 
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