EXPLAINABILITY-GUIDED ACTIVE LEARNING

for the detection of money laundering

Rens van Haasteren

Host supervisor VU supervisor
Drs. Menno Wiersma, Dr. Emma Beauxis-Aussalet,
Senior manager Assistant professor

Second reader
Prof. dr. Rob van der Mei,
Full professor

VU Amsterdam | Protiviti Netherlands

July 2025



PREFACE

This report is submitted as part of the requirements for the Master’s programme in Business Analytics at Vrije
Universiteit Amsterdam. Its purpose is to present research conducted on explainability-guided active learn-
ing techniques for Anti-Money Laundering (AML) detection systems. The research addresses the challenge of
improving transaction labeling strategies in AML systems by developing a transaction selection strategy based
on explainable Al to improve interpretability, while balancing performance.

This project was conducted at Protiviti Netherlands, within the Data Transformation team. I thank my host
organization supervisor at Protiviti Netherlands, Menno Wiersma, for his assistance and insights throughout
my research. I would also like to express my sincere gratitude to my university supervisor, Dr. Emma Beauxis-
Aussalet, for her guidance and support.
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0 ABSTRACT

ABSTRACT

Money laundering sustains criminal enterprises and poses a global threat to financial stability. In 2024, an es-
timated $3.1T in laundered money flowed through the global economy. Financial institutions are responsible
for detecting and reporting suspicious transactions to Financial Intelligence Units (FIUs), which are govern-
mental bodies tasked with identifying money laundering and terrorist financing. Due to limited and often
nonspecific feedback from FIUs, many banks have established internal Anti-Money Laundering (AML) teams
to manually assess transactions and label transactions as potentially illicit. This process is resource-intensive,
costly, and constrained by limited analyst capacity. As a result, supervised machine learning models are in-
creasingly used to monitor transactions, and are typically trained on labeled data covering less than 2% of all
transactions, making the selection of transactions for review a key component for effective money laundering
detection.

This study introduces a comprehensive active learning framework designed to detect money laundering
from limited labeled data. The framework accounts for the temporal structure of the transactions and dy-
namically adjusts the classification threshold during training at each iteration by maximizing a net value (NV)
objective on a validation set. The net value is defined as: NV = (b—c)-TP—c-FP— (b —c) - FN, where ¢
is the cost of investigating an alert and b represents the benefit of detecting an illicit transaction. Although
c is roughly estimated, b is varied to simulate different risk preferences of the financial institution; higher
values indicate a risk-averse preference, while lower values reflect a risk-seeking approach. The framework
evaluates both supervised and unsupervised query strategies, including a novel explainability-guided method,
referred to as SHAP-guided profiling, which prioritizes transactions that are most dissimilar to the average
SHAP feature importance profile of legitimate transactions. Throughout the active learning process, we ex-
plore how the interaction between the benefit per TP b and the query strategy influence recall, precision, and
true negative rate (TNR).

During active learning using only 2.08% of the labeled data on the synthetic dataset AMLworld, a perfor-
mance evaluated on the validation set is achieved that is comparable to passive learning (model trained on the
entire training dataset). After applying feature selection and hyperparameter optimization, active learning
continues to perform competitively across strategies, compared to passive learning, where query by com-
mittee achieves a higher recall and precision than passive learning. SHAP-guided profiling performs worse
than random sampling in both recall and precision. Due to the limited interpretability and poor performance
SHAP-guided profiling seems to not be suited for a high-risk domain such as money laundering detection,
where performance and accountability are critical.

Comparing different values for b while keeping the query strategy fixed reveals that a larger b increases
recall and decreases the TNR. This is in line with the risk preference framework. The results demonstrates the
feasibility of assigning an economic value to correctly identify illicit transactions based on the risk preference
of the financial institution.

The work concludes with a critical discussion on limitations and domain-specific challenges, such as syn-
thetic datasets, evolving criminal tactics, and severe class imbalance. Several directions for future work are
proposed to improve both the methodological approach and practical deployment of the detection model,
such as introducing nonlinearity in the net value equation, suggestions for additional explainability-guided
query strategies, and varying the number of labeled transactions.

Anti-Money Laundering - AML - Active learning - Passive learning - Explainable AI - XAI - SHAP - Explainability-
guided query strategy - Risk-preference



1 INTRODUCTION

INTRODUCTION

1.1 BACKGROUND

Crime is a tale as old as time, and traditionally, the proceeds of criminal activity were viewed as an unfor-
tunate but unavoidable consequence of the crimes. However, this perspective has evolved significantly with
advances in financial systems and digital technologies. The rise of electronic banking, transaction monitoring,
and record-keeping has made it increasingly possible to trace illicit financial flows back to their sources. In
response, criminals have developed sophisticated methods to “launder” money, disguising the origin of the
illegal activity by passing it through complex layers of financial transactions to make it appear legitimate. As a
result, money laundering has become a critical global challenge, which means that detecting and preventing
money laundering provides significant social benefits. In 2024, the estimated global volume of laundered
money reached $3.1 trillion [69], underscoring its scale and systemic impact. It enables and sustains a wide
range of criminal enterprises, such as drug trafficking, human trafficking, and terrorist financing, by injecting
illegally obtained funds into the formal economy. Launderers exploit a variety of financial channels, including
traditional bank transfers, payment processors, shell corporations, and, increasingly, cryptocurrencies.

Financial institutions play a central role in the fight against money laundering. They are legally obligated
to monitor financial activity and report suspicious transactions through Suspicious Activity Reports (SARs)
submitted to Financial Intelligence Units (FIUs). FIUs serve as national centers for the receipt, analysis, and
dissemination of financial intelligence. They compile SARs and combine them with other data sources, such
as information from other FIUs and Open Source Intelligence (OSINT) [73], to build cases on specific ac-
counts or entities. If suspicion is substantiated, the case is escalated to law enforcement for potential criminal
investigation. However, the effectiveness of this system is hampered by a lack of feedback from FIUs and the
problem that only reported transactions are reviewed, meaning many illicit transactions likely go undetected.
To address this, banks have developed internal AML teams that manually label transactions as suspicious or
legitimate. But these teams face capacity constraints, limiting review to just 1-2% of daily transactions [55].
Expanding capacity is difficult due to the specialized expertise required. Moreover, regulatory penalties and
reputational harm can result from failure to detect illicit activity. For example, according to an interview with
a model auditor at a major Dutch bank, the institution aims to detect around 8% of illicit activity in its test
data, reflecting practical constraints.

1.2 PROBLEM STATEMENT

Although machine learning has become central to AML systems, its effectiveness is limited by the scarcity of
labeled data. Supervised models require large annotated datasets, yet banks can only label a small fraction
of transactions. This label scarcity hinders model performance and slows iterative refinement.

Active learning offers a solution by selecting the most informative transactions for labeling, referred to as
query strategies. However, traditional query strategies focus primarily on statistical performance and offer
little interpretability. This lack of transparency reduces analyst trust and complicates regulatory compliance.
Providing reasons for which transactions to label is crucial for money laundering detection to support AML
teams during their investigations, and an interpretable reasoning why some transactions are picked helps
financial institutions during potential model audits. Moreover, incorrect classification does not have the same
consequence; false alerts (false positives) burden analyst teams unnecessarily, while missing illicit transac-
tions (false negatives) result in undetected financial crime. Without cost-sensitive optimization, models may
misalign with operational goals.



1.3 Research questions 1 INTRODUCTION

This thesis addresses these challenges by evaluating whether active learning can approximate fully super-
vised performance with far fewer labeled transactions, by introducing a novel SHAP-based query strategy that
identifies unusual transactions in terms of feature importance, and by incorporating a cost-sensitive threshold
optimization that reflects the risk preference of the financial institution. These contributions aim to enhance
both performance (recall, precision, true negative rate) and real-world deployment under a given labeling
budget.

1.3 RESEARCH QUESTIONS

To address these challenges, this thesis investigates the following research questions (RQ):

RQ1. How does active learning trained on 2.08% of the labeled data compare in performance (recall, precision,
and true negative rate) to supervised learning using the complete training set?

RQ2. To what extent can an explainability-guided query strategy informed by SHAP values (a widely adopted
XAI technique) effectively identify illicit transactions in a synthetic dataset, and how does its performance
compare to that of established query strategies in terms of precision, recall and true negative rate?

RQ3. How do varying risk preferences, reflected in the cost-sensitive optimization, impact the trade-off between
recall, precision, and true negative rate?

1.4 PROPOSED CONTRIBUTION

This thesis proposes a comprehensive solution that addresses the research questions and provides two ap-
proaches:

1. A novel SHAP-based query strategy that selects transactions whose feature importances differ most
from the average legitimate behavior, thereby selecting atypical transactions. This method provides
example-specific explanations that help analysts understand why each transaction was prioritized.

2. A net value-based optimization of the classification threshold during training that incorporates both the
benefit and cost associated with different detection outcomes (TN, FB FN, TP). The net value equation
consists of the value of correctly identifying illicit transactions, the cost of missing illicit transactions,
and the cost of investigating alerts. The benefit parameter b encapsulates the risk preference of the
financial institution; higher values reflect a risk-averse stance, while lower values represent a more
risk-seeking perspective.

Together, these approaches aim to improve both the detection performance and deployment of machine
learning models in money laundering detection, particularly under data scarcity and varying risk-preferences.

1.5 STRUCTURE

The remainder of this research is organized as follows. Section 2 provides the impact and structure of money
laundering, and the anti-money laundering framework. In Section 3 the most relevant research is presented
together. Section 4 describes the dataset and presents an initial analysis. Section 5 details the methodological
approach. The results are presented in Section 6. Sections 7 and 8 provide the discussion and a conclusion,
respectively. Finally, Section 9 lists the references and Section 10 includes the supplementary materials.
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BACKGROUND

The concept of money laundering is elegantly captured in a quote from the former president of Mexico in
June 2012. In this quote, he summarizes the essential role of money laundering in sustaining organized
crime:

“Money laundering is giving oxygen to organized crime.”
— Enrique Pefia Nieto

At its core, money laundering refers to disguising the source of money gained illegally. The goal is to
make the illicit funds appear as though they were obtained through lawful means, thus enabling criminals
to use the money without attracting suspicion. Without the ability to launder money, organized crime would
struggle to profit from its operations, effectively suffocating their own operation. Appendix 10.1 provides a
short history of money laundering, divided into the key time periods: 1920s, 1980s and present day.

Impact of money laundering The act of laundering money implies that the funds have been obtained
through illegal activities such as drug trafficking, human trafficking, fraud, corruption, or terrorist financing.
Disguising the origins of illicit funds not only enables criminal enterprises to continue operating but also
has far-reaching consequences for global economies, financial institutions, and society as a whole [44, 93].
It distorts fair competition as illicit businesses have hidden financial advantages. Gjoni, Gjoni, and Kora
[42] identifies several additional economic impacts. The higher demand and willingness to pay inflated
prices for high-value assets distort consumer spending. In addition, money laundering can impact economic
growth by diverting funds from legitimate activities to riskier ventures. It can also destabilize industries
when launderers abandon businesses that no longer serve their interests. To integrate illicit funds into the
economy, money launderers may also bribe accountants, bankers, and lawyers to facilitate their activities.
If they gain substantial economic influence, they may even attempt to corrupt law enforcement and lobby
political institutions for their benefit.

The $3.1T of laundered money is estimated by Nasdaq and Verafin [69], who developed an in-depth report
on global financial crime in 2024. This staggering amount highlights the scale of illicit financial activity and
its influence on financial stability. As shown in Table 1, the largest source of illicit funds originates from drug
trafficking, followed by human trafficking.

Crime | Mlicit funds
Drug trafficking $782.9B
Human trafficking $346.7B
Terrorist financing $11.5B
Other (corruption, fraud, organized crime, etc) | $1.9T

Total $3.1T

Table 1: Sources of estimated illicit funds in 2024.

Stages Financial Action Task Force (FATF) [35] identifies that money laundering is typically a three-stage
process, involving the introduction of the proceeds of crime into the economy, the layering of transactions by
money launderers to obscure its origins, and the final integration of the funds into the legal economy:

1. Placement: Criminal proceeds are introduced into the financial system, either in cash, through bank
accounts, or as virtual currency. Cash is typically handed to collectors who deposit it via cash-intensive
businesses, casinos, or cross-border transport. Bank-generated proceeds, such as those from fraud or
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tax crimes, may be moved via shell companies with accounts opened specifically for laundering. In
the case of virtual currencies, criminals use e-wallets or blockchain addresses to store and initiate the
laundering process.

2. Layering: The aim is to disguise the origin of the funds through a complex network of transactions.
Money launderers coordinate the movement of funds using trade-based money laundering, fictitious
trade, underground banking, or shell companies. Funds from multiple clients are often mixed in the
same accounts, and funds are spread across multiple accounts making tracing the origin difficult. In the
case of virtual currencies, funds pass through chains of wallets and money mule networks, increasing
opacity. An example of a money mule network is the network of money brokers in the Black Market
Peso Exchange mentioned in Appendix 10.1.

3. Integration: Finally, the laundered funds are returned to the client through investments in real estate,
luxury goods, businesses, or (cross-border) transactions. These investments serve to legitimize the illicit
funds by blending them in with legitimate economic activity, often in foreign jurisdictions or the origin
country.

Note that while commonly described in three distinct stages, in practice these stages can intertwine, depending
on the sophistication of the laundering scheme.

Anti-money laundering framework Establishing effective standards and guidelines for preventing, detect-
ing, and prosecuting illicit financial activities is essential to mitigate the major impact of money laundering.
The general structure of detecting and prosecuting money laundering is illustrated in Figure 1.

Figure 1: Simplified holistic anti-money laundering framework. Some FIUs do not provide financial institutions with
feedback, hence the arrow from FIU to financial institution is dashed.

Anti-money laundering (AML) frameworks have been developed and refined over time at both national
and international levels. They operate through the coordinated efforts of various entities, including financial
institutions, Financial Intelligence Units (FIUs), regulatory bodies, and law enforcement agencies.

— Financial institutions: These institutions are responsible for transaction monitoring. This includes both
pre-transaction, such as checks against sanction lists or politically exposed persons before the transac-
tion goes through, and post-transaction where transactions are analyzed on, for example, the suspicion
of money laundering. Analysts in AML teams investigate alerts created by the detection model. If they
deem a transaction or a bundle of transactions sufficiently suspicious, they are sent to the national FIU
in the form of a Suspicious Activity Report (SAR). These reports include detailed justifications for the
suspicion, as well as relevant transaction data and client information.



2 BACKGROUND

— Financial Intelligence Units (FIUs): FIUs are national agencies responsible for receiving, analyzing, and
disseminating financial information related to potential money laundering activities. FIUs consolidate
information from various financial institutions, Open Source Intelligence (OSINT) [73], and sometimes
even other FIUs into a single file called a case file. These cases expand with each transaction sent in and
are ultimately shared with law enforcement if the suspicion is grounded [36]. Every FIU works with
the fundamental condition that it is autonomous and operationally independent.

— Regulatory bodies: These bodies oversee the implementation and enforcement of AML legislation at
both national and international levels. Examples of national authorities are the Financial Conduct
Authority in the United Kingdom, the Netherlands Authority for the Financial Markets, and the U.S.
Securities and Exchange Commission. Their responsibilities include conducting inspections, reviewing
the effectiveness of internal controls, and imposing sanctions or penalties for non-compliance. These
bodies also issue guidance on best practices, helping institutions improve their AML frameworks over
time. The Financial Action Task Force (FATF) sets global standards for combating money laundering
and terrorist financing. The Egmont Group, comprising of more than 170 national Financial Intelli-
gence Units (FIUs), facilitates international information exchange and cooperation in financial crime
investigations.

— Law enforcement agencies: These agencies are responsible for investigating and prosecuting money
laundering offenses. They rely on intelligence provided by FIUs to identify potential criminal networks
and trace the movement of illicit funds. Once suspicious patterns are identified, agencies may deploy
a variety of investigative tools, including surveillance, undercover operations, and forensic accounting
techniques to build legal cases. For cross-border cases, collaboration with international organizations
such as Interpol and Europol is essential.

Each entity plays a unique role in identifying, analyzing, and prosecuting financial crimes, but their collec-
tive effort is what ensures the integrity of the financial system. Given the global nature of money laundering,
cross-border cooperation and data sharing between countries and institutions play a crucial role in detecting
and preventing illicit activities. By sharing information, refining detection methods, and enforcing compli-
ance, these organizations form a robust defense against the evolving money laundering techniques.
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RELATED WORK

This section reviews relevant literature on the key components of our research: machine learning appli-
cations in fraud detection, cost-sensitive learning, active learning, and the intersection of active learning and
XAI. We also discuss optimization techniques.

Machine learning Numerous studies and surveys [8, 16, 33, 44, 54, 90, 93] have explored the use of ma-
chine learning in fraud detection. Traditional supervised models, such as logistic regression, decision trees,
and support vector machines, have been widely applied. Ensemble methods like random forests and gradi-
ent boosting machines have gained prominence due to their robustness and strong predictive performance.
Deep learning models, including autoencoders and convolutional neural networks, show promise in capturing
complex and temporal fraud patterns, although their effectiveness is often limited by class imbalance and the
scarcity of labeled fraudulent cases.

To address scalability and imbalance challenges, Tertychnyi et al. [89] propose a two-staged architecture
combining a lightweight logistic regression filter with a gradient boosting machines classifier, optimizing fea-
ture extraction only for high-risk cases. Raghavan and El Gayar [76] conduct a comprehensive benchmarking
study of both traditional machine learning and deep learning methods across three financial datasets (Eu-
ropean, Australian, and German), evaluating performance using the area under the curve (AUC), Matthews
correlation coefficient (MCC), and cost of failure. They emphasize the evolving and unpredictable nature of
fraud, which complicates detection despite advances in modeling.

Cost-sensitive learning In fraud detection, the cost of misclassification is highly asymmetric: failing to
detect fraudulent transactions can result in substantial regulatory penalty and reputational damage, whereas
incorrectly flagging a legitimate transaction leads to operational costs and customer dissatisfaction. Cost-
sensitive learning addresses this imbalance by optimizing a loss function that accounts for the costs and
benefits associated for different classification outcomes [97].

Several studies have explored cost-sensitive approaches for credit card fraud detection [3, 76, 83], driven
by the direct financial impact of fraud, that is money lost on the account. Sahin, Bulkan, and Duman [83]
propose a cost-sensitive decision tree that minimizes misclassification costs at each split, outperforming tra-
ditional models in terms of accuracy, recall, and a custom cost-sensitive metric. They employ a 5:1 cost ratio,
where misclassifying a fraudulent transaction is considered five times more costly than misclassifying a legit-
imate one. Similarly, Raghavan and El Gayar [76] introduce a realistic cost-based metric, the cost of failure,
to evaluate three models for scenarios where the MCC and AUC are similar. They quantify the cost of false
negatives (undetected fraud) at $1,000 and false positives (legitimate transactions incorrectly flagged) at
$100.

Although cost-sensitive learning has been extensively studied in the context of credit card fraud, it is rarely
applied in the domain of money laundering detection. One notable exception is Tertychnyi et al. [89], who
penalize misclassification of customers previously reported to the FIU more heavily than others, although the
specific cost ratios are not published. Thus, despite its practical importances, cost-sensitive learning remains
underutilized in AML systems, largely due to the difficulty of precisely defining the cost of misclassifying illicit
transactions, which is often depended on the risk preference of the financial institution. This thesis addresses
that limitation by adopting an optimization approach to maximize the net value, allowing institutions to
encode their risk preferences directly into the learning process.

Active learning Active learning is a form of supervised learning that improves model efficiency by iteratively
selecting the most informative instances from an unlabeled pool % for expert labeling. The query strategy

10
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selects a subset 2 C %, which is labeled and added to the labeled set . The model is retrained on ., and
this process is repeated across iterations.

Active learning is particularly valuable in domains where labeled data is scarce or expensive to obtain.
In fraud detection, where annotation requires domain expertise and fraud patterns are rare, active learning
can help prioritize samples that contribute most to model improvement [19, 49, 55]. Cunha et al. [19]
evaluate unsupervised anomaly detectors, such as isolation forest and elliptic envelope, as initial selectors
in cryptocurrency markets under cold-start conditions (i.e., no initially labeled data). They find that these
methods often fail to provide informative fraud examples, highlighting the challenge of distinguishing illicit
activity from legitimate yet unusual behavior. Karlos et al. [49] apply active learning to the detection of
financial statement fraud and report improved performance over standard supervised learning. Labanca et
al. [55] propose novel query strategies that outperform traditional sampling techniques in a synthetic money
laundering dataset, demonstrating the potential of active learning for label-efficient fraud detection.

Active learning and XAI  Although many studies use XAl to interpret model predictions in the active learning
pipeline [40, 50, 75], few incorporate explainability into the sample selection process itself, which we refer
to as explainability-guided active learning.

Luo et al. [64] propose a framework in which ChatGPT-generated explanations are combined with model
uncertainty to rank samples for labeling. Kriznar et al. [53] introduce GradCAM,,,, a query strategy that
selects image samples most dissimilar to the average GradCAM activation of previously labeled data using
the structural similarity index (SSIM). However, they report that this approach underperforms compared to
uncertainty and random sampling, suggesting that interpretability signals alone may not suffice as a selection
criterion. This insight underscores the need for further research into how XAI signals can be effectively lever-
aged in active learning. Our proposed SHAP-guided strategy (detailed in Section 5.6) builds on this principle
by computing dissimilarity between SHAP explanations for tabular financial data, rather than images.

Optimization techniques Hyperparameter optimization plays a critical role in maximizing model perfor-
mance. Grid search, which exhaustively explores parameter combinations, is commonly used but becomes
inefficient in high-dimensional search spaces [96]. Random search improves efficiency by sampling configu-
rations at random, often achieving better coverage with fewer evaluations [6].

A more advanced approach is the Tree-structured Parzen Estimator (TPE), a Bayesian optimization algo-
rithm that searches the performance space and selects configurations based on expected improvement [7]. By
focusing on promising regions of the search space, it selects new parameters that are more likely to improve
performance, making the search more efficient than random or grid search.

Despite substantial progress in machine learning, active learning, and explainability, limited research has
explored the integration of explainability-guided query strategies into active learning, especially for tabu-
lar financial datasets and fraud detection. Cost-sensitive learning in money laundering detection remains
similarly unexplored. This thesis aims to bridge this gap by proposing and evaluating a novel SHAP-based
query strategy for explainability-guided transaction selection, in addition to adding a cost-sensitive threshold
optimization, which introduces a risk preference framework.

11
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DATA

Research on money laundering detection faces significant challenges due to the lack of publicly available
datasets, as privacy regulations prevent institutions from sharing their data [48]. Moreover, anonymized data
sharing is rare, making it difficult for researchers to access real-world transaction data. As a result, some
researchers partner with financial institutions to gain access to this data [9, 26, 39]. When collaboration with
an institution is not feasible, synthetic data offers a viable solution. However, simulating realistic financial
flows in an economy is complex, as it heavily depends on modeling choices.

For this research, the synthetic data simulator AMLworld was selected. AMLworld was developed by
Altman et al. [2] with three key motivations in mind:

1. Banks have a limited perspective, seeing only their own transactions without visibility into those at
other institutions.

2. Ground-truth labels in real-world datasets are often incomplete, leading to undetected illicit transac-
tions and false negatives.

3. Identifying intricate money laundering patterns in real data is a difficult task for individual banks with-
out additional resources.

AMLworld is a multi-agent virtual environment that simulates financial transactions, including illicit ac-
tivities. A substantial amount of research has been conducted using AMLworld [25, 27, 59, 63, 87, 86]. The
agents in this world represent entities such as households, companies, and, most importantly, criminals. The
behavior of agents is based on real-world data, such as the number of annual transactions per account from
the U.S. Federal Reserve [51] and the frequency of different payment formats based on Federal Reserve statis-
tics [43]. The simulator includes various currencies and payment formats, creating a diverse set of attributes
for analysis.

Criminal agents within AMLworld engage in money laundering, and the simulator tracks illicit funds by
assigning laundering tags to fund during the placement stage. This allows for detailed tracking of illicit money,
which is impossible to achieve in real-world scenarios. The illicit funds originate from various sources, such as
extortion, loan sharking, gambling, prostitution, kidnapping, robbery, embezzlement, drugs, and smuggling.
Once placed in the system, these funds are layered through layering attacks, which are controlled by the
criminals, who also decide when the money is integrated into the economy:.

The layering patterns are based on Suzumura and Kanezashi [88] which defined them for a different AML
transaction simulator, called AMLSim. These layering patterns are closely related to the patterns in Egressy
et al. [27] and include common real-world laundering techniques. The patterns are illustrated in Figure 2.

Figure 2: Layering patterns illustrated (Altman et al. [2])

In Chapter 4, Section 4.1 provides an explanation of the raw synthetic data. Section 4.2 discusses the
steps taken to prepare the data for exploration. The prepared data is explored in Section 4.3. Finally, Section
4.4 highlights the most valuable insights.
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4.1 DATASET

The authors of AMLworld have created six dataset, segmented into a small, medium, or large number of
transactions, and low (LI) or high (HI) illicit activity. LI - small, the small dataset with low illicit activity is
selected. The LI - small dataset strikes a balance by containing a manageable number of transactions while still
including enough instances of money laundering to allow for effective model training and testing. The small
dataset (6 million transactions) is selected primarily due to the computational intensity of the larger datasets
(medium with 32 million and large with 180 million transactions). Additionally, a smaller dataset with low
illicit activity reduces the risk of overfitting to fraudulent cases, which might result in a more generalizable
and robust detection model. The features of LI - small are shown in Table 2 and the first three rows are
displayed in Table 3.

Feature Description

Timestamp Moment at which the transaction was approved.

From Bank Unique identifier for the originating bank of the transaction.
Account Unique account number from which the transaction originated.

To Bank Unique identifier for the destination bank receiving the transaction.
Account.1 Unique account number receiving the transaction.

Amount Received Amount credited to the recipient in the receiving currency.
Receiving Currency  Currency in which the amount was received.

Amount Paid Amount debited from the sender in the payment currency.

Payment Currency Currency in which the amount was paid.

Payment Format Method used to process the transaction (e.g., ACH, Cheque).

Is Laundering Indicator of whether the transaction is part of a money laundering attempt (= 1) or not (= 0).

Table 2: Description of features of unprocessed AMLworld

Timestamp From Bank Paying Ac- | To Bank Receiving Amount Re- | Receiving Amount Paid | Payment Payment Is Laundering
count Account ceived Currency Currency Format

2022/09/01 11 8000ECA90 11 8000ECA90 3195403.00 US Dollar 3195403.00 US Dollar Reinvestment | 0

00:08

2022/09/01 3402 80021DADO 3402 80021DADO 1858.96 US Dollar 1858.96 US Dollar Reinvestment | O

00:21

2022/09/01 11 8000ECA90 1120 8006AA910 592571.00 US Dollar 592571.00 US Dollar Cheque 0

00:00

Table 3: First three lines of unprocessed AMLworld dataset

Besides the transaction data, the authors of AMLworld also provided a text file, referred to as the pattern
dataset, containing the layering attacks. This file lists which money illicit transactions are involved in one of
the established 8 layering patterns shown in Figure 2. The first two layering attacks are presented in Table 4.

Timestamp From Bank Paying Ac- | To Bank Receiving Amount Re- | Receiving Amount Paid | Payment Payment Is Laundering
count Account ceived Currency Currency Format

BEGIN LAUNDERING ATTEMPT - FAN-IN: Max 3-degree Fan-In

2022/09/01 001812 80279F810 0110 8000A94C0O 10154.74 Australian 10154.74 Australian ACH 1

02:38 Dollar Dollar

2022/09/02 022595 80279F8B0 0110 8000A94C0O 5326.79 Australian 5326.79 Australian ACH 1

14:36 Dollar Dollar

2022/09/03 001120 800E36A50 0110 8000A94CO 4634.81 Australian 4634.81 Australian ACH 1

14:09 Dollar Dollar

END LAUNDERING ATTEMPT - FAN-IN

BEGIN LAUNDERING ATTEMPT - FAN-IN: Max 8-degree Fan-In

2022/09/01 003671 801BF8E70 002557 8016B3750 8099.96 Euro 8099.96 Euro ACH 1

03:17

2022/09/01 015 80074C7E0 002557 8016B3750 10468.56 Euro 10468.56 Euro ACH 1

06:27

2022/09/01 002557 80107C9A0 002557 8016B3750 10270.07 Euro 10270.07 Euro ACH 1

10:04

2022/09/02 012 800A9B180 002557 8016B3750 15645.21 Euro 15645.21 Euro ACH 1

06:35

2022/09/03 021393 801271170 002557 8016B3750 14139.75 Euro 14139.75 Euro ACH 1

09:12

2022/09/03 002175 801E25F20 002557 8016B3750 6276.26 Euro 6276.26 Euro ACH 1

13:45

2022/09/03 020 800043BEO 002557 8016B3750 1042.63 Euro 1042.63 Euro ACH 1

16:17

2022/09/03 022124 8011D0180 002557 8016B3750 12795.57 Euro 12795.57 Euro ACH 1

23:09

END LAUNDERING ATTEMPT - FAN-IN

Table 4: First two layering attacks simulated in AMLworld
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4.2

DATA PREPARATION

In this section the AMLworld data is cleaned. Clean data, where each variable conveys a meaningful and
objective piece of information, is paramount to an effective and interpretable machine learning model. It
generally increases model performance, by mitigating the curse of dimensionality and noise reduction, and
allows for detection for biases and anomalies during training and deployment. The data is cleaned up in the
following way:

Merging: The pattern dataset merged into the transaction dataset.! This ensures that during data
exploration and performance validation the pattern types can be investigated.

Missing values: Merging the two datasets creates missing values because only some illicit transactions
are involved in a layering attack. These missing values are filled with empty strings.

Duplicates: Duplicates are removed as they are unrealistic; multiple transactions at the same date and
time with the same transaction amount are probably the result of a modeling error during the synthetic
data generation.

Self-loops: In the dataset, there are accounts that send money to themselves. An example is shown in
Table 5. While this could reflect legitimate behavior, such as transferring money from a checking to
a savings account, there is no corresponding transaction indicating that the account was debited. As
a result, it appears as though money is being created from nothing. This is likely due to a modeling
error, so these self-loop transactions are excluded from the dataset, removing around 800,000 entries,
of which 3 are illicit.

Datetime Paying Bank Paying Account Receiving Bank Receiving Account Amount (EUR)
2022-09-01 00:08:00 11 8000ECA90 11 8000ECA90 2.726861e+06
2022-09-01 00:07:00 11 8000ECA90 11 8000ECA90 1.960191e+01
2022-09-01 00:10:00 11 8000ECA90 11 8000ECA90 2.561314e+03
2022-09-01 00:16:00 11 8000ECA90 11 8000ECA90 3.125366e+03
2022-09-02 14:55:00 11 8000ECA90 11 8000ECA90 7.670815e+04

Table 5: Example of self-loops in data.

Currency conversion: The transaction discrepancy between the money sent and money received for
transactions with the same currency is zero everywhere (AMOUNT RECEIVED == AMOUNT PAID for each
intra-currency transaction). This indicates that there are no additional surcharges set by the bank for
intercurrency payments. Therefore it is assumed that the difference between money sent and money
received for different currencies is solely the exchange rate. Figure 3 shows the coefficient of variation
(CV), or normalized standard deviation, of the exchange rates of the 25 currency pairs with the highest
CV. One can see that the CV is non-zero for some currency pairs, meaning that the exchange rate changes
over time. Despite that, due the low CV mean across all currencies of 0.015 and no outliers for the top
currency pairs we will fix the exchange rate to its mean. This logic is necessary to standardize all
amounts to a single currency, selected to be Euros. The information of the currencies of both parties is
kept, only the amount is standardized to ensure fair comparison.

IThere is no unique identifier to track specific transactions, so the merge is done on a match between the pattern and transaction
dataset on features: DATETIME, PAYING BANK, PAYING ACCOUNT, RECEIVING BANK, RECEIVING ACCOUNT.
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Figure 3: Coefficient of variation for the top 25 currency pairs. The mean over all 210 currency pairs is 0.015.

4.3 DATA EXPLORATION

The exploratory analysis is structured in four levels: banks, accounts, transactions, and layering patterns.
Investigations on bank- and account-level revealed no clear signals or features indicative of laundering activity,
and are therefore kept in Appendix 10.2 for completeness. The analysis at the transaction and pattern levels
yielded more informative insights, which will be used for the data preparation in Chapter 5.

4.3.1 Transactions

The distribution of legitimate and illicit transactions is shown in Table 6. Some of the illicit transactions are
part of the layering attacks, which are identified with the pattern dataset. It is assumed that the remaining
illicit transactions correspond to either the placement and integration stages, but it remains unclear which of
the two stages these illicit transactions belong to, as the dataset does not specify this.

Label | Transactions  Share
Legitimate 6,116,002 99.942%
Money laundering 3,562 0.058%
- Layering 1,109 0.018%
- Placement and integration | 2,453 0.040%
Total transactions 6,119,564 100%

Table 6: Transaction breakdown. The number of placement and integration is the difference between the total number
of illicit transactions and the number of illicit transactions involved in a layering attack.

An informative starting point in understanding the dataset on transaction level is the distribution of trans-
action amounts, both across the entire set of transactions and within the subset of illicit transactions. Figure 4
presents histograms that illustrate these distributions. The histogram in Figure 4a, representing all transac-
tions, follows an expected pattern: lower transaction amounts occur more frequently, and their prevalence
gradually declines as the amount increases. In contrast, Figure 4b, which focuses on illicit transactions, re-
veals a notable concentration of transactions below €5,000. A sharp decline in frequency occurs just before
the €5,000 threshold, suggesting that money launderers may intentionally keep transaction amounts below
€5,000. However, typically the threshold is not €5,000 but it is set to around €10,000 [37] or $10,000 [48].
Additionally, a second significant drop is observed around €17,500. Similar to the drop near €5,000, this
discontinuity also does not align with recognized regulatory thresholds and cannot currently be explained
by domain knowledge. Moreover, note that due to the currency conversion described in Section 4.2, the ob-
served thresholds represent approximate values in Euros and are therefore not easily retraced to a recognized
threshold in the country representing that currency.

15



4.3 Data exploration 4 DATA

(a) The 90%-quantile histogram of transaction amount, highlight- (b) The 95%-quantile histogram of illicit amount. The average
ing the concentration of transactions within lower amounts. The amount across all illicit transactions is 1.95M.

overlaid decay function: yowoy is fitted with parameters ¢ =

72.5B and ¢ = 1.53. The average transaction amount across all

transactions is 3.06M.

Figure 4: Comparison of transaction amount distributions: (a) overall 90%-quantile distribution and (b) 95%-quantile
of illicit transactions. The vertical dashed line represents the average transaction amount of the quantile.

There may be a relation between the illicit activity and time; criminals might launder more money during
the day to blend in. Figure 5 shows the hourly total transactions and total illicit transactions over time.
Interestingly, on the first hour of the first day 471,153 transactions were processed, significantly higher than
the rest of the observed time frame. Afterwards, the total transactions remain stable, with some periodic
spikes, which might be due to scheduled payments. It is quite interesting that the total transactions are stable,
as it might be a further indication that the banks are located all over the world. First, due to the diversity
of currencies that are being traded (shown in Figure 8). Secondly, the total transactions across all banks is
stable even though the transaction demand is typically higher during daytime and during the nightcycle of
the automated clearing house (ACH) [46], implying that the banks are located in several different timezones.
The total illicit transactions shows random behavior, with a sharp decline in total transactions at 11-09, which
corresponds to the drop of the total transactions to almost zero. These days with near-zero transactions might
be an indication of instability of the synthetic data generator, as the number of transactions should mimic those
of a large economy with many banks.

Figure 5: The hourly total transactions (blue) and total illicit transactions (orange).

We do not have access to the true creation dates of accounts, as the synthetic dataset only contains trans-
actions within a fixed time frame (from 01-09 to 15-09) and no customer metadata is provided. Nonetheless,
we can still analyze how long each account was active during the observation period. The distribution of ac-
tive days helps assess whether money laundering is more likely to occur early or late in an account’s observed
activity history. Figure 6 shows the number of days each account was active, considering both paying and
receiving roles. Notably, there is a sharp discrepancy in the laundering rate: transactions involving accounts
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active for more than 10 days exhibit an extremely high laundering rate. This phenomenon is likely connected
to the reduced number of transactions after 11-09, as shown in Figure 5.2

Figure 6: Distribution of the number of days accounts were active.

Figure 7 shows six aggregations of the payment format. Wire and reinvestment do not have illicit trans-
actions with a total of almost million transactions. Automated clearing house (ACH) has the most illicit
activity. Card and cash have relatively low illicit amounts compared to their transactions, mainly because the
transaction amount per transaction is low.

Figure 7: Transaction analysis by payment format. Both for the transactions and amount the total, the illicit transactions
and the rate are displayed.

Figure 8 shows the non-zero illicit transaction rates for each currency pair. Surprisingly, no illicit activ-
ity has been observed between different currencies, which is unexpected given that money laundering often
occurs cross-country and involves the exchange of different currencies to obscure the origin of illicit funds
[1]. This suggests that the dataset may not fully capture the cross-border money laundering activities. Fur-
thermore, Figure 8 shows that the majority of illicit transactions are between US Dollar - US Dollar and Euro
- Euro, indicating that the criminals are active on these currencies. The sharp drop-off just before €5K and
€17.5K in Figure 4b becomes more substantiated given that many transactions are in euros or dollars, and
the exchange rate between the Euro and US Dollar is close to 1. However, since these thresholds are not em-
ployed in real-world regulation (and may vary significantly across jurisdictions), the pattern of the threshold
will not be used during feature engineering. Information about the currencies of the transaction is kept for
further exploitation.

2 Accounts that are active for more than 10 days must have participated in transactions on or after 11-09, since the dataset begins on
01-09.
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Figure 8: The non-zero total illicit transactions for each currency pair, with the illicit transactions rate (Equation 22)
indicated as a percentage label next to each bar.

4.3.2 Layering

In the pattern file accompanying the transactions, the authors specify which of the eight layering patterns
from Figure 2 each layering attack corresponds to. Figure 9 shows the occurrences of each pattern type
separately to get an idea of the shape and frequency of these patterns in the data. It is noteworthy that
all pattern attacks are disconnected graphs, whereas in practice money laundering will intertwine multiple
pattern attacks to obscure the path further [15]. Looking at the stack and bipartite attacks, it shows that these
patterns might not be implemented correctly, as the attacks do not exhibit the same structure that the pattern
types of Figure 2 refer to. For example, the layering attacks of ’'bipartite’ shows that each attack contains
transactions from multiple accounts but Figure 9 shows that the transactions are not linked together.
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Fan-in. Fan-out. Cycle.

Stack. Bipartite. Random.

Gather-scatter. Scatter-gather.

Figure 9: Graph of pattern attacks, where each node represents an account. The blue nodes send money to other nodes,
red are on the receiving side and black nodes are both sending and receiving transactions involved in the layering attack.

Layering patterns vary in the number of connected accounts and transactions, as reflected in the neighbor
count of the ’gather-scatter’ pattern (Figure ??). Figure 10a provides insight into total transactions per layering
attack. The ’scatter-gather’ and ’gather-scatter’ patterns exhibit high variance and ’stack’ has several outliers
with high values. The low values in the graph (see the several patterns with a single transaction) suggest
that the dataset captures a snapshot in time where some patterns are evolving (instead of each attack being
complete), which mimics the real world where it is also unknown when a specific pattern stops evolving.
The time frame of the attacks in Figure 10b shows that the majority of the attacks last about four days. The
"gather-scatter’ shows high variance, and ’bipartite’ has a span of typically 1 to 2 days.
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(a) Layering attack sizes. (b) Layering attack time spans.

Figure 10: Distributions of the layering attack sizes and time spans across the 8 different patterns. The boxplots show
the spread and a blue "x" indicates the mean.

The number of layering attacks occurring over time is shown in Figure 11. Each pattern is approximately
equally likely, and no relationship is exhibited by the different pattern types.

Figure 11: The cumulative number of pattern attacks identified over time. Each line represents a different pattern, with
the cumulative count of occurrences increasing the moment a new attack is initiated.

4.4 SUMMARY

The data exploration showed a diverse exposition of information. Key insights, which will be important for
the preparation in Section 5, are:

The transactions are stable over time (Figure 5).

The number of days the paying and receiving account are active has influence on the laundering rate
(Figure 6).

The payment format has influence on the money laundering rate (Figure 7).

The currency of the transaction has influence on the laundering rate (Figure 8).

The layering attacks typically last four days (Figure 10b).
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METHODOLOGY

This chapter details each method used: the model selection, data preparation, training, and model evalu-
ation. The general model architecture is depicted in Figure 12. The dataset is prepared for input into the
model by combining the pattern dataset with the transaction dataset from the AMLworld synthetic data gen-
erator, engineering features, and splitting the data into training, validation, and test datasets. The training
data forms the basis of the active learning environment and is used as the unlabeled pool. In the first iter-
ation, some instances from the unlabeled pool % are labeled and added to the labeled pool . The model
is trained on & for the first time and the classification threshold is optimized. In the following iteration, the
model selects new instances to label, based on the a predefined query strategy. These labeled transactions
are added to ¥ and the model is retrained from scratch on . When the training is finished, top features are
selected and the hyperparameters of the model are optimized on the validation set to evaluate the model on
the test data.

Figure 12: Model architecture.

Chapter 5 starts with the model selection in Section 5.1. Afterwards, the data is discussed in Section 5.2.
Section 5.3 describes the training of the model. Section 5.4 describes the evaluation metrics, of which some
are used in the optimization, discussed in Section 5.5. Section 5.6 details the query strategies.

5.1 MODEL SELECTION

In active learning, traditional machine learning models such as decision trees and ensemble methods are still
widely used, especially when interpretability and training efficiency are priorities. One of the most prominent
models in this category is the random forest algorithm, an ensemble learning method based on decision trees
that performs well on structured, tabular datasets.

Random forests are well-suited for practical tasks like money laundering detection, where both perfor-
mance and explainability are important. They are among the best-performing traditional models, as demon-
strated in the active learning framework by Labanca et al. [55]. Compared to neural networks, random
forests have fewer parameters, require less tuning, and are easier to interpret. Although neural networks
build smooth decision boundaries and require lots of tuning, random forests create sharp, step-like bound-
aries [82]. This helps them to pick up patterns in tabular data more easily [77].
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Decision tree A random forest is an ensemble of decision trees. Each decision tree recursively splits the
feature space using rules of the form x; < t, where x; is the value of the j-th feature and t € R is a threshold.
This process forms a binary tree, where each internal node corresponds to a split, and each leaf node represents
a prediction.

For classification, the class label of a leaf node is made by majority vote among the training samples that
fall into that leaf. Let Nj.,s be the number of such samples, and let y; € {1,...,K} be the class label of the i-th
sample in that leaf. The predicted class yP™? is then:

Nieaf

pred _ — 1, _ 1
y argmax py = argmax (yi=k}> M

leaf =1

where p; is the proportion of samples in the leaf that belong to class k, and 1, _, is the indicator function
equal to 1 when y; =k, and O otherwise.

Random forest. A random forest builds an ensemble of T decision trees, denoted as {ht(x)}thl. Each tree is
trained on a bootstrap sample of the training data, created by randomly drawing N instances with replacement
from the original dataset of size N. Furthermore, at each split, a random subset of m features is considered,
which introduces randomness and helps to decorrelate the trees, such that each tree makes different errors
and learns different patterns.
For classification, the random forest predicts the class y of an input x by taking a majority vote among the
predictions of all trees:
§ = mode (h;(x), hy(x),...,hs(x)). 2)

This ensemble mechanism reduces variance significantly compared to a single decision tree, while main-
taining low bias. It is particularly effective in handling high-dimensional, nonlinear, and categorical data
with limited preprocessing. One key limitation of random forests in the context of active learning is that
they do not support incremental learning. Once trained, the model cannot be updated with new labeled data
without retraining the entire forest from scratch. This contrasts with incremental learning models, such as
neural networks, which can be refined iteratively with new batches of labeled data. Despite this, their training
speed, stability, and high baseline performance make random forests an attractive choice for active learning
frameworks.

In summary, random forests provide a strong balance between performance and robustness, making them
well-suited for money laundering detection in an active learning setting. Although individual decision trees
are easy to interpret, the ensemble of many trees in a random forest can be more challenging to explain.
Nonetheless, various tools and techniques exist to improve the interpretability of random forest models. For
instance, random forests are not only compatible with the explainable AI (XAI) technique SHAB but Yang [95]
proposed the FastTreeSHAP v2 algorithm, which exploits the structure of the tree-based model to optimize
the SHAP calculation without sacrificing accuracy.

5.2 DATA PREPARATION

The processing of the data requires special attention to feature engineering, class imbalance, and split of the
dataset. The feature engineering addresses feature encoding, high-cardinality features, feature addition, and
feature scaling.

5.2.1 Low cardinality features

Low cardinality categorical features are commonly encoded using one-hot encoding, which is simple and
interpretable. However, as noted by Roam Analytics [79], this encoding introduces sparsity in the feature
space for tree-based models, which can bias the tree-building process. Specifically, because one-hot encoding
expands a single categorical feature into multiple binary features, continuous variables tend to have more
consistent and informative splits. As a result, trees often prefer to split on continuous features in early stages,
while one-hot encoded categorical features may be less likely to be selected initially due to their sparse repre-
sentation. This phenomenon may affect how the model prioritizes features, but does not necessarily degrade
overall model performance. The tree can still achieve good predictive accuracy by splitting on relevant fea-
tures later in the hierarchy. Nonetheless, the reduced early selection of categorical features may impact the
importance attributed to these features.
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Due to the lack of sufficient alternatives, the features PAYMENT FORMAT and CURRENCY are one-hot en-
coded. For currency-related data, a single unified feature is constructed by combining PAYING CURRENCY
and RECEIVING CURRENCY into a single indicator for each currency type. This binary feature is set to 1 if a
given currency appears on both the paying and receiving side of the transaction. This consolidation is chosen
due to the significant overlap between the two original currency columns. Encoding them separately would
unnecessarily increase dataset sparsity, potentially degrading model performance.

5.2.2 High cardinality features

The AMLworld dataset contains PAYING BANK, RECEIVING BANK, PAYING ACCOUNT, and RECEIVING ACCOUNT,
which are features with extremely high cardinality. Collectively, the banks account for 41,815 unique values,
and the accounts for 705,903. While high-cardinality features can enhance model performance when han-
dled appropriately [66], their inclusion poses significant challenges in this setting. Carneiro et al. [11] list
various techniques to address high cardinality variables in fraud detection, such as target encoding, frequency
encoding, and embeddings.

However, in this particular case, these methods are either computationally too expensive, introduce unac-
ceptable risks of overfitting, or do not provide sufficient explanatory power. For example, dummy encoding
leads to an unmanageable number of dimensions and sparsity, invoking the ’curse of dimensionality’ [5].
Target encoding, while effective, uses the target label multiple times, leading to label leakage and increased
overfitting risk. Frequency encoding oversimplifies complex behaviors, potentially grouping entities with sim-
ilar volumes but vastly different money laundering risk profiles together. Lastly, although embedding layers
could provide a more elegant solution, they introduce additional model complexity and require substantial
training data to learn useful representations, resources that may not be available or justifiable in this context.

Given these trade-offs, all high-cardinality variables were removed from the dataset.

5.2.3 Feature addition

The insights gathered in the data exploration in Chapter 4 show that apart from the structure of the layering
patterns, there is not much separability between legitimate and illicit transactions. To capture these layering
patterns, the following features have been constructed based on the pattern architecture shown in Figure 2
and the specific time and size characteristics from Figure 10:

— Fan-in and fan-out: For fan-in and fan-out the number of unique receiving and sending accounts, re-
spectively, of the last four days might be a good indicator of a pattern attack. A time frame of four
days is chosen as a fan-in/fan-out attack typically lasts no more than four days. Eddin et al. [24] also
implemented these features in their research and called them degree features.

— Gather-scatter and scatter-gather: These patterns involve a sequence of fan-in followed by fan-out
(gather-scatter) or fan-out followed by fan-in (scatter-gather). Therefore, it is expected that model
can also capture these patterns using the features added for the fan-in and fan-out patterns. Some
gather-scatter attacks span more than four days, so additional features that compute the number of
unique receiving and sending accounts with an eight-day time frame are included to capture these
longer-lasting patterns.

— Bipartite and stack: These patterns are combinations of multiple fan-in and fan-out attacks, based on
Figure 2. A stack pattern consists of several fan-out patterns followed by several fan-in patterns, whereas
a bipartite pattern is composed of multiple fan-out patterns stacked on top of each other. So again, we
expect that the model can capture these patterns with the previously added features. However, as seen
by Graphs ?? and ??, the actual structures in AMLworld do not correspond with Figure 2, indicating
that these structures can not be exploited for feature addition.

— Cycle: Cycles typically last no more than four days and show a length of at most 17 steps. While crim-
inals could theoretically create arbitrarily long cycles, the diminishing returns of longer cycles likely
discourage them. To balance computational efficiency® and practical relevance, cycle detection is lim-
ited to a maximum length of 15. A binary feature indicates whether a cycle occurred within 15 steps or
not.

3Cycle detection is performed using Depth-First Search (DFS), which has a time complexity of & (V+E). In the worst case, the number
of nodes explored grows exponentially with the maximum cycle length due to the branching factor of the graph.
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— Random: Since random attacks exhibit no discernible pattern by design, no specific feature is designed
to capture them.

Criminals tend to operate within networks, so accounts involved in money laundering are likely to have
a higher probability of being connected to other accounts engaged in money laundering. Inspired by the
GuiltyWalker feature from Eddin et al. [24], a simplified version is created, referred to as CRIMINALS IN
NETWORK. The CRIMINALS IN NETWORK feature keeps track of the number of illicit transactions each account
has been involved in during training. Specifically, each time an illicit transaction is observed, the count for
both the sender and the receiver accounts is incremented by 1. Then, for any new transaction, the feature
value is computed by summing the counts for the sender and receiver accounts. For example, the feature value
is 1 if only one of the accounts has been involved in a single illicit transaction before. Similarly, the feature
value is 2 if both accounts have been part of a single illicit transaction before or one of the two accounts has
taken part in 2 illicit transactions. This feature quantifies the combined suspicious activity connected to the
accounts involved in the current transaction.

Additionally, DAYS ACTIVE PAYING ACCOUNT and DAYS ACTIVE RECEIVING ACCOUNT are included, features
containing the number of days since the paying and receiving account’s first transaction. This follows Figure 6
where a large discrepancy in laundering rate is shown between different numbers of days active. An intra-
currency transaction flag is also added, which complements the encoding of currency such that all information
about the currencies is kept and the importance of a transaction being intra-currency can be measured.

Some researchers introduce aggregations that summarize transaction data by specific fields within defined
time windows [10, 55, 24]. These aggregations include metrics such as the sum, mean, median, standard
deviation, minimum, maximum, and count of the amount sent or received. However, no noticeable separation
between legitimate and illicit transactions based on aggregations. To maintain a small, yet rich feature space,
these aggregations are therefore not included in the model.

A complete overview of all features, including their descriptions, types, and pairwise correlations, can be
found in Section 10.3 of the appendix.

5.2.4 Feature scaling

Random forests are tree-based models that partition the feature space based on thresholds and thus are inher-
ently insensitive to the scale of input variables. Consequently, they do not require feature scaling, unlike many
distance- or gradient-based methods. Similarly, the cosine similarity metric employed in SHAP-guided profil-
ing measures the angle between two vectors and normalizes by their magnitude. As a result, cosine similarity
is scale-invariant at the vector level and does not necessitate feature scaling. In contrast, the Mahalanobis
distance used by the elliptic envelope strategy is sensitive to feature scales, as it relies on the covariance ma-
trix of the data. While this matrix inherently adjusts for variance and correlation among features, extreme
scale differences can destabilize covariance estimation, leading to unreliable distance calculations.

Despite this practical benefit, feature scaling comes with notable downsides. Scaling can reduce the inter-
pretability of features by transforming them, making direct domain understanding more challenging. Addi-
tionally, many scaling methods, such as min-max normalization and standardization, are sensitive to outliers,
which can distort the scaling parameters. Based on these considerations, we choose not to apply feature
scaling. The inherent scale insensitivity of random forests and cosine similarity reduces the necessity for
normalization, while the potential downsides, loss of interpretability and sensitivity to outliers, outweigh the
benefits in our context.

5.2.5 Class imbalance

In money laundering detection, class imbalance is a significant challenge due to the vast disparity between
legitimate and illicit transactions. The minority class (illicit transactions) can be as rare as 1 in 1,000 to 1 in
100,000 instances. Such imbalance often leads to models that struggle to identify illicit activities, resulting
in high false alert rates.

Common strategies to address class imbalance include resampling techniques such as oversampling and
undersampling. Oversampling methods, like SMOTE, increase the representation of the minority class by
generating synthetic samples, but they risk overfitting by repeatedly presenting similar or artificially created
instances to the model. As noted by Carvalho, Pinho, and Brés [12], oversampling may cause overfitting while
undersampling can discard important data. but this can cause the loss of valuable information. These issues
are especially pronounced in active learning contexts, where training occurs on small, imbalanced batches.
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Maintaining consistent class proportions across validation and test sets is important for reliable evaluation.
When the class distribution matches the target distribution, performance metrics better reflect the model’s
true effectiveness. This alignment ensures that tuning decisions made on the validation set generalize appro-
priately to the test set and, ultimately, to deployment scenarios.

During training, instead of relying heavily on resampling, active learning helps to alleviate imbalance by
focusing labeling efforts on the most informative or uncertain instances. This targeted selection allows the
model to learn efficiently even from highly imbalanced pools. Additionally, balanced class weights are used
during training to counteract imbalance by assigning greater importance to errors on minority class samples.
This weighting encourages the model to better recognize illicit transactions without altering the underlying
class distributions.

5.2.6 Data split

The dataset is first chronologically ordered and then divided in 80% training set, a 10% validation set, and a
10% test set. Chronologically ordering the dataset avoids temporal leakage. Temporal leakage occurs when
temporal data is not carefully split, which allows the model to learn information from the future. If the test
set contains instances that are earlier in time than the instances that the model has trained on, this effect
propagates through to the test set. In these scenarios, it can heavily inflate model performance.

To align the class imbalance of the test set with that of the validation set, a controlled undersampling
procedure was applied. Specifically, a number of illicit transactions are removed from the test set and an
equal number of legitimate transactions were randomly removed from the validation set.* This adjustment
ensures the reliability of model evaluation metrics by reducing the disparity in class distributions. Importantly,
undersampling was performed instead of oversampling, as with oversampling illicit transactions from the
validation set would be used multiple times during optimization, which may result overfitting on those specific
illicit transactions.

As shown in Figure 5, almost zero transactions occur after 11/09, which means that training, validation,
and testing are primarily conducted on transactions between 01/09 and 11/09. The distribution of the dataset
is presented in Table 7.

Transactions Transaction Illicit Laundering Time frame
split transactions rate
Training dataset 4,895,651 80.01% 2,724 0.056% 01-09; 08-09
Validation dataset 611,632 9.995% 257 0.042% 08-09; 09-09
Test dataset 611,633 9.995% 257 0.042% 09-09; 17-09
Total 6,118,916 100% 3,238 0.053% 01-09; 17-09

Table 7: Dataset split for model training, validation, and testing. The laundering rate for each dataset is provided to
show the equal laundering rate between the validation and test datasets.

5.3 TRAINING PROCEDURE

The active learning setup uses an expanding window on the chronologically ordered training set, as outlined in
Algorithm 1. In each iteration, a batch of transactions is selected and labeled of size B, and subsequently used
to retrain the model. This process ensures that the labeled dataset evolves to include the most informative
transactions over time. While the training dataset is incrementally labeled and used for model updates, the
validation set is used to optimize the classification threshold and evaluate performance at each iteration.

Whereas some previous research define iterations using fixed temporal windows (e.g., daily batches) [55],
our dataset spans only seven days that contain a significant number of transactions (Figure 5). Therefore,
we partition the training data into 1% percentiles of transaction volume; each "chunk” consists of 48,956
transactions.

To provide a strong warm start, iteration 1 begins by randomly labeling 4,895 transactions (10%) of Chunk
1 and training the initial model on this subset. In subsequent iterations, a batch of B = 979 transactions (2%
of each chunk) is selected from the next chronological chunk using a query strategy. For supervised query
strategies, predictions (or the prediction probabilities) are required to rank unlabeled instances; in contrast,

“The original validation set contained 257 illicit transactions, and the test set contained 581. So 324 illicit transactions were removed
from the test set and 324 legitimate transactions were removed from the validation set.
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unsupervised strategies are model-independent and do not rely on prediction scores. The model is retrained
from scratch at every iteration using all labeled data available at that iteration.

Labanca et al. [55] report that the financial institution they worked with considered it feasible for analysts
to manually inspect between 1% and 2% of daily transactions. Based on this, our batch size B is fixed at 2% of
each chunk. After labeling 10% of Chunk 1 and 2% of Chunks 2 to 100, approximately 2.08% of the training
data has been labeled.

Algorithm 1 Training procedure

1: Initialize the unlabeled dataset % as the entire training dataset, ordered chronologically and split in 100
chunks of 1% of the transactions.
. Initialize the labeled dataset £ = (.
: Select Chunk 1 of %, denoted as %, (short-hand notation of %y, 19%,))-
: Label 10% of %, at random, store it as .&.
: Train model M on the labeled dataset &.
fori=1to 99 do
if query strategy is supervised then
Predict all transactions in %;
end if
Apply query strategy to select and label B transactions from %;, denoted as 2;.
Expand ¥ «— 2 U 2;.
Remove % «— % \ 2;.
Retrain model M on the updated labeled dataset £.
14: Optimize the classification threshold based on the validation set.
15: end for
16: Return the trained model M, the unlabeled dataset %, and the labeled dataset Z.

e e
o> el =4

The labeled dataset is used for model training, hyperparameter tuning, and final evaluation. The unla-
beled data is not used after training. The iterative approach dictated by Algorithm 1 ensures that the model
continuously improves by learning from the most informative samples, while adhering to realistic labeling
constraints.

5.4 EVALUATION APPROACH

Evaluation metrics are essential to assess model performance, serving as aggregated indicators of its effec-
tiveness. Researchers often rely on a handful of well-established metrics, which will be discussed in this
section.

In money laundering detection, a true positive (TP) occurs when the model correctly identifies an illicit
transaction, while a true negative (TN) refers to correctly classifying a legitimate transaction. In contrast, a
false positive (FP) arises when a legitimate transaction is misclassified as illicit, and a false negative (FN) oc-
curs when an illicit transaction is mistakenly classified as legitimate. These four outcomes can be summarized
in a confusion matrix, shown in Table 8.

Predicted
| Legitimate (negative) Mlicit (positive)
Legitimate True Negative (TN) False Positive (FP)

=
5
2 Ilicit False Negative (FN) True Positive (TP)

Table 8: Confusion matrix for money laundering detection.

Several metrics help assess a model’s overall effectiveness in classification models, namely accuracy, recall,
precision, and the F; score are commonly used. However, as Lu and Wang [63] also states, accuracy is not
suitable for the evaluation of highly imbalanced data, as the number of FN far outweighs the number of TP
Even though, some research in money laundering still base their key metrics on accuracy [41, 48]. The ROC
curve and precision-recall curve are also commonly used to assess model performance [48].
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True negative rate The true negative rate (TNR) quantifies the proportion of legitimate transactions cor-

rectly classified as legitimate:
TN
TNR= ——. (3
TN + FP
In fraud and money laundering detection, TNR reflects the system’s ability to avoid raising false alarms, thus
reducing unnecessary manual reviews and preserving operational efficiency. The false positive rate (FPR) is
its complement, defined as 1 — TNR. Due to the typically high volume of legitimate transactions, the TNR in

practice tends to be close to 1, which can mask the impact of even modest increases in FPR.

Recall Also known as the true positive rate (TPR), recall measures the proportion of illicit transactions
correctly identified out of all actual illicit transactions:

TP

TP + FN’ )

Recall / TPR =

In the context of money laundering detection, recall is of paramount importance: failing to detect illicit activity
undermines the purpose of the system, with potential regulatory, financial, and reputational consequences.
Similar to the FPR, the false negative rate (FNR) is defined as 1 — TPR, highlighting the complementarity
between missed detections and successful ones. However, a high recall alone may come at the cost of increased
false positives, making it necessary to consider precision and false positive rates in parallel.

Precision Precision addresses this concern by measuring how many transactions flagged as illicit are gen-
uinely illicit. However, optimizing solely on precision might lead to the model missing a significant portion
of illicit transactions. The precision is computed the following:

TP

Precision = ——— (5
TP + FP

F, score The F; score is a widely used metric to evaluate classification model performance, especially in
scenarios where balancing false positives and false negatives is crucial. It represents the harmonic mean of
precision and recall, providing a single score that captures both aspects:

2 x Precision x Recall 2
=— —- (6)

Recall + Precision

F; score = —
Precision + Recall

Although the F; score assumes equal importance of precision and recall, the more generalized F score
allows weighting one more heavily than the other. However, the F; score remains a standard baseline metric
due to its interpretability and balanced nature. Many recent studies in fraud detection and AML incorporate
the F; score alongside other metrics such as precision, recall, and accuracy to evaluate model effectiveness [ 2,
27,59, 63, 81, 87]. Because the F; score offers a balanced combination of precision and recall, it collapses two
distinct metrics into a single value, obscuring important trade-offs between them. Moreover, in the context of
anti-money laundering, recall is often more critical than precision. For this reason, the more flexible Fy score
is preferred, as it allows recall to be weighted more heavily than precision. However, this approach requires
careful selection of an appropriate 3 that reflects the relative importance of recall in the application context,
which is outside the scope of this research. In this work, the F; and Fp scores are therefore not used.

Precision-recall curve The precision-recall (PR) curve plots the recall on the x-axis and the precision on
the y-axis, and shows the outcomes for different classification thresholds. Davis and Goadrich [21] stated
in 2006 that for highly skewed data, PR curves provide a more accurate performance evaluation than the
ROC curve. This is because the ROC curve can indicate that the algorithm is close to being optimal while that
might not be the case. In these situations PR curves show room for improvement, meaning that they provide a
more realistic metric. Furthermore, PR curves can accentuate differences between different algorithms better,
which ROC curves struggle with. The Area Under the Precision-Recall Curve (AUC-PR) is computed as:

1
AUC-PR = J Precision(Recall) dRecall. (7
0

The AUC-PR of a random classifier is the proportion of illicit transactions in the dataset. A perfect classifier
has an AUC-PR equal to 1.
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Jaccard index Jaccard [47]independently developed the coefficient of community, which is now considered
the Jaccard index. It is commonly used in various fields, including informatics, meteorology, and botany, to
evaluate the overlap between two sets of data. This metric is particularly useful for comparing the similarity
of selected transaction in the active learning process, where different strategies and configurations may select
varying subsets of data. The Jaccard index of set A and set B is computed as:

|AN B|

J(AB) = AUB|’

®

where |AN B| is the size of the intersection, representing the number of elements that are common to both
sets and |A U B is the size of the union, representing the total number of unique elements in both sets. A
Jaccard index value close to 1 suggests that the selected sets share a significant amount of overlap, meaning
that the strategies are selecting similar sets of data. In contrast, a value close to 0 indicates that strategies
are selecting very different sets of data. The Jaccard index can visualize the similarity between the labeled
datasets developed during training of different model configurations. The Jaccard index will also be used to
visualize the similarity of the sets of remaining features after feature selection.

5.5 OPTIMIZATION

To enhance model performance, optimization is applied at multiple stages of model development. During
training, the focus is on adjusting the classification threshold to maximize the net value on the validation set.
Post-training, feature selection followed by hyperparameter tuning based on the validation set are performed
to improve generalizability.

5.5.1 During training

The standard classification threshold of 0.5 is often ineffective in transaction monitoring due to extreme class
imbalance. At this threshold, models tend to predict almost all transactions as legitimate, resulting in missed
detections. Applying balanced weights to the model mitigates some of this issue, but the threshold must be
refined for further model performance. Prior studies, such as Bakhshinejad et al. [4], found improved recall
with thresholds as low as 0.32, maintaining a false alert rate below 95%. Similarly, Chen et al. [17] proposed
a Recall-First approach, optimizing the threshold to maximize recall at acceptable precision levels.

Asbanks are driven by the cost of investigating alerts, risk of regulatory penalties and impact on reputation,
a more practical setting than solely optimizing on statistical metrics is introduced. Investigating alerts is
expensive, and scaling analyst teams is slow due to the deep domain expertise required. To address these
trade-offs, a cost-sensitive classification threshold optimization strategy is adopted. After each iteration, the
threshold that maximizes the net value is selected:

NV=(b—c)-TP—c-FP—(b—c)-FN, 9

where c is the cost of investigating an alert, and b the monetary value for catching an illicit transaction. The
”(b—c)-TP” term is the net value of catching illicit transactions, the ”—c-FP” term represents the costs incurred
due to false alerts, and "—(b —c) - FN” is the net value from missing illicit transactions. Although b will be
varied, the cost of investigating an alert c is set at €31.73, according to a rough approximation detailed in
Appendix 10.4.

The optimization is done on the validation set using TPE over 100 trials, with a step size of 0.01 in the
interval [0,1]. If multiple thresholds yield the same net value, the largest threshold is selected to reduce the
randomness that TPE might otherwise introduce. Note that this optimization only influences query strategies
that rely on model predictions. Unsupervised or random strategies remain unaffected. Nevertheless, optimiz-
ing the threshold during training is critical for allowing the model to meaningfully identify illicit activity and
improve validation and test performance.

Optimizing based on net value This cost-sensitive threshold optimization allows institutions to align model
behavior with their specific risk preference and operational constraints. The benefit of a true positive, indi-
cated by b, is inherently difficult to quantify due to the intangible outcomes of detecting illicit transactions.
Consequently, we assume that b is institution-dependent. Banks that prioritize operational efficiency may
assign a relatively low value to b, reflecting a more risk-seeking profile. In contrast, banks that emphasize
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regulatory compliance and reputation management are likely to assign a higher value to b, indicating greater
risk aversion.

To illustrate the impact of risk preferences, consider Bank A and Bank B. Bank A assigns a monetary
value of b = €1 million, while Bank B assigns b = €1K. Bank A is risk-averse: their net value, computed
using Equation 9, heavily prioritizes catching illicit transactions, even at the cost of generating a high number
of false alerts. In contrast, Bank B is risk-seeking, placing more weight on minimizing false alerts than on
detecting illicit activity. This preference may be driven by practical budget constraints and limited investigative
capacity, as Bank B may not have the resources to handle a large volume of alerts.

5.5.2  Post-training

After training, the model is optimized based on the validation set. The primary goal of post-training optimiza-
tion is to adapt the model to newly labeled data by increasing generalizability. Starting with feature selection
alleviates computational burden as the hyperparameter search is done on fewer features. This is the main
reason for performing hyperparameter optimization after feature selection. Note that this choice does come
at the risk of prematurely discarding potentially informative features.

Feature selection The dataset consists out of 46 features derived from domain expertise and feature engi-
neering. Although a large feature space can improve performance for the training data, excessive or redundant
features risk overfitting, increased computational cost, and reduced interpretability [22]. Feature selection
mitigates these issues by retaining only the most informative features.

Adopting the terminology of [71], passive learning refers to the standard supervised learning in which a
model is trained on the full labeled dataset. In passive learning, feature selection typically relies on:

1. Filter methods based on statistical criteria (e.g., correlation, mutual information).
2. Recursive feature elimination.
3. Embedded methods for integrating selection into training (e.g., LASSO, tree-based importance).

However, active learning complicates this process. The iterative selection of data to label means early
feature selection based on the small, biased sample can prematurely exclude features that become relevant
later in training. Moreover, query strategies often rely on model uncertainty or data distribution; altering
the feature space mid-process can destabilize these mechanisms. For this reason, feature selection is deferred
until after training.

To preserve interpretability, PCA and similar dimensionality reduction methods are avoided. Instead,
SHAP is employed on the validation set to quantify feature contributions. The SHAP-based selection after
training enhances robustness without compromising the active learning process.

Hyperparameter optimization Following feature selection, hyperparameter optimization is conducted on
the reduced feature set by maximizing the net value defined in Equation 9, evaluated on the validation set.
To efficiently explore the hyperparameter space, TPE is employed again. However, passive learning imposes
a significant computational burden: each hyperparameter configuration requires retraining the model on ap-
proximately 5 million transactions. Consequently, the number of optimization trials is constrained to 10. This
limited budget has two implications. First, the classification threshold is not included in the optimization pro-
cess but fixed to the threshold from the final iteration of the training phase. Jointly optimizing the threshold
with other parameters under a small number of trails leads to instability in the parameters and unreliable
outcomes, as interactions between parameters cannot be properly explored. Second, the search space must
be compact to prevent ineffective exploration. A large space relative to the number of trials increases the
likelihood of suboptimal configurations due to insufficient sampling.

To ensure a fair comparison, all active learning strategies are subjected to the same optimization con-
straints: the same number of trials (10), the same hyperparameter ranges, and no re-optimization of thresh-
olds. Only two parameters are tuned, number of estimators (T) and maximum tree depth (D), with their
respective ranges and step-size detailed in Table 9. Importantly, optimization is conducted exclusively on the
labeled dataset obtained during training. The full active learning process is not repeated per hyperparameter
configuration, to avoid overfitting to the validation set.
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Hyperparameter Symbol Range Step
Number of estimators T [50, 300] 50
Maximum tree depth D [2, 16] 2

Table 9: Hyperparameters and their optimization ranges

5.6 QUERY STRATEGIES

The query strategy in active learning determines which instances should be labeled to maximize the model’s
performance with minimal labeled data. For money laundering detection the instances are the transactions.
The choice of instances to label significantly impacts the effectiveness of the learning process. The selection
of query strategies is based on Lorenz et al. [62] and Cunha et al. [19]; a randomness-driven baseline, two
supervised query strategies (uncertainty sampling and query by committee), and two unsupervised query
strategies (isolation forest and elliptic envelope). The novelty of this work is an explainability-guided query
strategy based on the explainable AI (XAI) technique SHAB referred to as SHAP-guided profiling.

An overview of the query strategies considered is provided in Table 10. Following the terminology of Li
et al. [57] and Du et al. [23], the query strategies that we use can be broadly categorized by their focus on
informativeness or anomalousness. Informativeness-based methods aim to reduce model uncertainty, typi-
cally by selecting instances near the decision boundary (uncertainty sampling) or those with high predictive
disagreement (query by committee). Most anomalous sampling identifies outliers, i.e. instances that deviate
significantly from the bulk of the data, as informative signals, particularly in unsupervised/semi-supervised
settings (isolation forest and elliptic envelope). SHAP-guided profiling also falls under the anomaly focused
strategies, however, it explicitly leverages model explainability during its selection process.

Query strategy Supervision type Selection focus Selection principle Dependencies

Random sampling Unsupervised Baseline Uniform random selection Model-agnostic

Uncertainty sampling Supervised Informativeness Distance to decision thresh- ~ Requires probabilistic
old model output

Query by committee Supervised Informativeness Disagreement among en- Ensemble-based classi-
semble members fiers

Isolation forest Unsupervised Most anomalous Anomaly score via isolation ~ Unsupervised tree-based
paths anomaly model

Elliptic envelope Unsupervised Most anomalous Mahalanobis distance from  Assumes that the data fol-
Gaussian fit lows a Gaussian distribu-

tion
SHAP-guided profiling  Semi-supervised Most anomalous Dissimilarity to vector of Requires a SHAP-

average legitimate feature compatible model
importance profile

Table 10: Comparison of query strategies used for active learning. Each strategy is categorized by its supervision type,
selection focus, principle of selection, and model dependencies.

5.6.1 Random sampling

The baseline query strategy is to randomly select B instances. This approach serves as a control to compare
the performance of more targeted strategies to simply random sampling instances.

5.6.2 Uncertainty sampling

Uncertainty sampling selects instances for which the model is most uncertain about its prediction. For random
forest classifiers, instead of relying solely on the majority vote (as described in Section 5.1), we estimate the
probability that an instance x; is being labeled as the positive class (y = 1) by averaging the predictions
across all T trees:

1 T
Py =11x) =2 > Mh(x)=1), (10)
t=1

where h,(x;) is the prediction of tree t for instance x;, and I is the indicator function.
The model’s uncertainty is defined as the absolute difference between this estimated prediction probability
and the current classification threshold © € [0,1]. For each iteration i, the query strategy selects the B
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instances in the i-th chunk %; := %o, (i+1)%) With the smallest distance to the threshold:

2; =argmin® |p(y =1 x;) — 7| (11)
2,

XjE

where argmin® is a practical notation adopted for this research to denote the B elements with the smallest
values, and x; are the individual instances in %;.

5.6.3 Query by committee

Query by committee, introduced by Seung, Opper, and Sompolinsky [85], selects instances for labeling by
identifying those that lead to the most disagreement among a committee of models. For random forests, a
common way to measure disagreement is to evaluate the variance of the predicted class labels between the
trees in the forest. The disagreement measure D(x;) can be defined as the variance in the predictions of the

committee: )
1w 1w
D(x)) == D | b)) = D holx) | - (12)
t=1 t’'=1

This variance reflects the level of disagreement among the trees regarding the classification of instance x;.
The query set £; is then formed by selecting the B instances with the highest disagreement values:

2; = argmax”D(x;). (13)

X €U

5.6.4 Isolation forest

The isolation forest selects instances based on their anomaly score, which quantifies how isolated or unusual
an instance is compared to the rest of the data [60]. The anomaly score for a given instance x;, denoted as
s(x;,n), is defined as:
E(h(x)

s(xj,n)=2""", 14
where E(h(x;)) is the average path length of x; across all isolation trees, h(x;) is the number of edges traversed
by x; from the root to a leaf node in a single tree, and c(n) is the average path length of a random binary
search tree with n instances. This normalizes the score between different dataset sizes. The top B instances
with the highest anomaly scores are then selected:

2; = argmax” s(x;,n). (15)

X; €%,

5.6.5 Elliptic envelope

The elliptic envelope models the central data distribution by fitting a multivariate Gaussian distribution to
a subset of data that represents the core structure, typically the labeled dataset in active learning contexts
[80]. This fitting estimates a mean vector T, and covariance matrix S, defining an ellipsoidal boundary that
approximates the main data mass. The Mahalanobis distance of an instance x;, which measures how far the
point deviates from this distribution, is calculated as:

MD(x;) = 4/(x; — Tp)TSy  (x; — T). (16)
Instances with the largest Mahalanobis distances are selected:

2; = argmax” MD(x;). an

X €U

5.6.6 SHAP-guided profiling

SHAP-guided profiling uses the XAI technique known as SHAP to guide sample selection for labeling. This
query strategy based on XAl in the context of money laundering detection is a new strategy, unique to this
work. At the start of training, after fitting the model to the initial labeled set, SHAP values are computed
for each transaction in the labeled set, forming vectors that capture feature contributions of the transactions.
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Because the model is trained on these transactions, the feature importances are highly confident. These
feature contributions reflect how much changing a feature impacts the model’s predictions and form the basis
to develop the profiles. The average vector for the transactions with the legitimate ground-truth tegiimate i
a vector that is computed component-wise, referred to as the legitimate profile:

! SHAP(x;), (18)

nu‘legitimate =

Sy
| 1eg1t1rnate| X; €S egitimate

where Sjegitimare 1S the set of transactions with ground-truth legitimate, |Segitimate| the number of transactions
in that set, and SHAP(x;) € R? is the SHAP vector of transaction x;. For each unlabeled transaction x; (in the
next chunk), the SHAP vector s; is compared to the legitimate profile using cosine similarity:

S;j * Wegitimate

. (19)
||Sj|| : ”Au'legitimate”

Similarity(s;, Wegitimate) = €08(0) =
SHAP-guided profiling assumes that illicit transactions do not have explanations similar to that of the

average legitimate profile. By selecting the B transactions that are least similar to the legitimate profile,
outliers to the legitimate class in terms of feature importances are searched:

2; = argmin” Similarity(s;, Wegitimate)- (20)
X €U
To incrementally update the legitimate profile, a weighted average of the previous legitimate profile and

. L O]
the SHAP vectors of the newly labeled ground-truth legitimate transactions is computed. Let Nlegitirrlate be the
(i+1)

number of ground-truth legitimate transactions labeled up to iteration i, and S fegitimate the set of ground-truth
legitimate transactions labeled in iteration i + 1. The updated profile becomes:

(0 (1) .
Nlegitimate ’ 'u'legitimate + ijes““) SHAP(XJ)

(i+1) legitimate
‘u’legitimate - 0 4 |S(i+1) I . 2D
legitimate legitimate

This update reflects both the quantity and characteristics of newly labeled ground-truth legitimate trans-
actions. When few ground-truth legitimate transactions are added, the profile remains similar. In contrast, if
many are added, especially with extreme feature importances, the legitimate profile shifts more noticeably.

Computing SHAP values is computationally heavy. Due to this high computational burden, the FastTreeSHAP
library is used, which optimizes the SHAP calculation without sacrificing accuracy. Execution time can be fur-
ther reduced by applying the FastTreeSHAP v2 algorithm proposed in [95], which reduces the time complexity
from @(MTLD?) to 0(TL2°D + MTLD), with M the number of samples to be explained, T the number of
trees, L the maximum number of leafs of any tree, and D the maximum depth of any tree. The computational
advantage of algorithm v2 is achieved for large M, however simultaneously, D is upper-bounded according to
a memory-constraint.”> Due to the memory constraint and exponential complexity on D, the maximum depth
that we consider is 8.

SFastTreeSHAP v2 is preferred when M > 2P*1/D. For example for D = 8, this means M > 64 transactions. The accompanying
memory constraint is #(L2P) < memory tolerance [95]. For a completely balanced tree (L = 2P) with maximum depth D = 8 the
memory tolerance is 0.5GB, however for larger D it is harder to construct a completely balanced tree, implying that L < 2P.
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RESULTS

6.1 COMPUTATIONAL INTENSITY

As the dataset contains a large volume of transactions, loading in the data and the feature engineering require
significant memory and processing power. Additionally, training machine learning models is demanding,
especially with active learning, where models are trained numerous times for different configurations and
predict large volumes of transactions. Moreover, passive learning needs to retrain the model several times on
5 million transactions.

The experiments were conducted on a Lenovo ThinkPad T490s laptop, equipped with Intel(R) Core(TM)
i7-8665U CPU @ 1.90GHz 2.11 GHz, and 16 GB RAM. To assess the computational efficiency, Table 11 pro-
vides an overview of execution times for key processes.

Process | Active learning  Passive learning
Data preparation 08h 13m 08h 40m
Training 112h 31lm
Validation 32h 27m 25h 16m

— Feature selection — 7h 28m — 1h 03m

— Hyperparameter optimization — 24h 59m — 24h 13m
Testing 19m 4m
Total 152h 59m 34h 31m

Table 11: Execution times for key computational processes for the active and passive learning. The data preparation time
of passive learning is 27m longer because the CRIMINALS IN NETWORK feature must be pre-computed for all transactions
in the training data.

6.2 TRAINING RESULTS

Training is performed across multiple configurations of query strategy and benefit per TP (denoted b). The
training data is chronologically split in 100 chunks. As a reminder, the first is labeled for 10% at random,
thereafter 2% of the transactions in each chunk is selected according to the query strategy and labeled. After
this step in each iteration, the classification threshold is optimized to maximize the net value (Equation 9),
where ¢ = €31.73 (Appendix 10.4).

6.2.1 Training behavior

We conducted preliminary experiments to determine a suitable domain for the benefit parameter b. These
early results revealed that for b < c, the classification threshold converges to 1. This behavior is expected,
since in this range the term '—(b — ¢) - FN’ in the objective (Equation 9) becomes increasingly positive as
false negatives accumulate. In other words, missing illicit transactions imposes a net gain rather than a cost,
incentivizing extremely conservative predictions. In contrast, for extremely high values of b (that is, b >
€1M), the threshold converges to 0, as the net value is maximized by detecting as many true positives as
possible. Based on these insights, we designed the domain of b to span a wide range of plausible benefit
values. We began with two low-risk-seeking values: €50 and €100, followed by medium-scale increments:
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€500 and €1K. Beyond this, we used steps of €2.5K up to €20K, then switched to €5K intervals up to €50K.
Finally, we included €100K, €500K, and €1M to capture behavior under extreme risk aversion.®

Figure 13 shows recall, precision, and true negative rate across the six query strategies, evaluated at various
b values. These metrics are computed at each training iteration using predictions on the validation set. As
expected, recall remains near 0 and true negative rate near 1 throughout training for the extremely risk-
seeking scenario (b = €50). The opposite occurs for the risk-averse extreme (b = €1M), where recall is
consistently 1 and true negative rate is O.

Between these extremes, the trade-offs become more nuanced. Recall gradually increases for b < €1K,
though this trend becomes less visually distinct for larger b due to sharp spikes in recall approaching 1. True
negative rate remains relatively stable up to b = €30K, after which it drops intermittently to 0. Precision
values are generally too small to yield visually meaningful distinctions.

SHAP-guided profiling performs competitively in terms of recall, with the exception of b = €15K, €20K,
and €50K. Uncertainty sampling performs poorly at several benefit levels, particularly at b = €30K and €40K.

Figure 13 includes the passive learning baseline, also evaluated on the validation set. The performance
gap between the passive learning model and the active learning strategies (trained on only 2.08% of the
data) is remarkably small across all evaluation metrics. This modest decrease in performance demonstrates
the effectiveness of active learning in resource-constrained environments. It also highlights the importance
of well-designed query strategies for achieving strong performance with significantly fewer labeled samples.
Nonetheless, it should be noted that the performance of the passive baseline could be further improved during
feature selection and hyperparameter optimization.

6The full set of evaluated benefit values is: €50; €100; €500; €1K; €2.5K; €5K; €7.5K; €10K; €12.5K; €15K; €17.5K; €20K; €25K;
€30K; €35K; €40K; €45K; €50K; €100K; €500K; €1M.
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Figure 13: Validation performance metrics (recall, precision, and true negative rate) plotted across different values of
benefit per true positive b. Each curve in the plot corresponds to a distinct query strategy. For clarity, only a representative
subset of b values is shown.
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Similarly to Figure 13, Figure 14 presents the recall, precision, and true negative rate on the validation
set across varying benefit values b, this time organized per query strategy. Each line in a plot corresponds
to a different value of b. With the exception of the uncertainty and SHAP-guided strategies, most methods
exhibit an increasing recall with larger b values, which is visually seen in the gradient of the line colors. The
observed spikes in precision across some strategies are largely driven by lower b values, where the threshold
optimization becomes unstable due to the prioritization of minimizing false positives.

Figure 14: Validation performance (recall, precision, and true negative rate) for each query strategy (rows), evaluated
across varying benefit per true positive values (b). Lines represent different values of b, as indicated in the legend. Only
a representative subset of b values is shown for clarity.

Figure 15 illustrates the evolution of the classification threshold throughout active learning, optimized
at each iteration as described in Section 5.5. The figure confirms that increasing b leads to lower threshold
values across all strategies. This behavior reflects the model’s prioritization of capturing true positives as
the perceived value of detecting illicit transactions increases. Importantly, this threshold adjustment is more
interpretable and stable as a result of the use of class-balanced weighting. Without balanced weighting,
thresholds would drop toward zero due to the severe class imbalance, complicating optimization and requiring
high precision (i.e. very small step-size) in threshold tuning.
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Figure 15: Evolution of the classification threshold across iterations for different values of b across query strategies.

6.2.2 Jaccard similarity

Figure 16 presents the Jaccard similarity index between the labeled training sets (when the training is finished)
across all combinations of query strategies and benefit values b. By design, the diagonal elements of the matrix
are equal to 1, as they represent comparisons between identical configurations. The off-diagonal values
generally lie between 0 and 0.2, indicating minimal overlap between the labeled training sets across different
configurations. This low overlap suggests that the specific query strategy and risk preference (reflected by b)
strongly influence which transactions are selected for labeling during active learning.

Interestingly, when comparing only within a single query strategy (that is, along the blocks of the matrix
corresponding to a fixed strategy), the Jaccard index still varies depending on the value of b. This pattern
is especially evident for strategies such as uncertainty sampling and query by committee. In contrast, for the
isolation forest strategy, the Jaccard index remains high across all b values, indicating that the same data
points are consistently selected. The elliptic envelope strategy exhibits a moderate Jaccard index of around
0.5 across its internal comparisons, revealing a dependence on the specific transactions labeled in the initial
chunk. Since the elliptic envelope models the distribution of the initial labeled points and computes distances
relative to this distribution, the initial sample has a strong influence on subsequent query selections. This
makes the strategy more sensitive to the randomness of the first chunk and introduces greater variation in
the labeled datasets.

There is no strong relationship found between different query strategies, so each strategy has their unique
way of selecting transactions. However, there is some overlap between combinations of uncertainty sampling
and query by committee, both of which utilize disagreement/uncertainty in their selection process. A similar
weak relationship is seen between isolation forest and elliptic envelope, which are both unsupervised anomaly
detection models.
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Figure 16: Jaccard index between labeled transaction set of all configurations. The query strategy rectangles are dis-
tributed on the grid in the ascending order of the b domain (€50; €100; ... ; €500K; €1M), starting from the top vertically,
and horizontally on the left.

6.2.3 Class Imbalance

Differences in selected transaction sets between configurations (query strategy and benefit) do not necessarily
reflect the quality of those selections. To assess how well each configuration identifies illicit transactions,
Figure 17 shows the proportion of the minority class (that is, the proportion of illicit transactions in the
labeled transactions) among the labeled transactions.

As expected, random sampling results in a class distribution similar to the passive baseline. Uncertainty
sampling shows unstable behavior across benefit values. Query by committee stands out with a substan-
tially higher minority class proportion, up to 14 times greater than passive, indicating strong enrichment
of illicit transactions. The isolation forest exhibits nearly identical class proportions across benefits due to
near-identical labeled sets (see Figure 16). SHAP-guided selection performs marginally better than passive,
meaning that SHAP-guided profiling does not substantially improve minority class detection relative to the
overall distribution.
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Figure 17: Proportion of the minority class in the labeled data for each combination of query strategy and benefit. The
baseline passive strategy is included for comparison.

While the overall class imbalance provides a high-level indication of how effectively each query strategy
identifies illicit transactions, it does not reveal which specific behavioral patterns are being prioritized. Fig-
ure 18 offers a more granular breakdown by showing the minority class proportion within the labeled data
for each laundering pattern type and query strategy. Illicit transactions without an associated pattern are
categorized as “no pattern” and generally correspond to the placement or integration stages of money laun-
dering, as the patterns are associated with the layering stage. Although the minority class proportions shown
are averaged over all benefit per TP values, similar trends hold consistently across individual benefit settings.

In the figure, the minority class proportion is calculated as the number of illicit transactions within a
given pattern type, divided by the total number of transactions selected for labeling. The "no pattern” cat-
egory consistently shows the highest minority class proportion across all query strategies, indicating that a
substantial portion of selected illicit transactions fall outside the pattern types. Notably, the high overall class
imbalance achieved by query by committee (as shown in Figure 17) is largely driven by its ability to identify
illicit cases in the "no pattern” category. Nevertheless, both uncertainty sampling and query by committee
also effectively enrich the labeled dataset with illicit transactions from known laundering patterns. In con-
trast, random sampling, isolation forest, and SHAP-guided profiling exhibit only marginal improvements in
pattern-specific minority class proportions.

Figure 18: Proportion of the minority class in the labeled data for different pattern types, as well as "no pattern” and all
query strategies.
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6.2.4 SHAP-guided profiling

As part of the SHAP-guided profiling strategy, SHAP values are computed each iteration for all transactions
in the next chunk. These values quantify the contribution of individual features to the model’s prediction,
showcasing an interpretable view of the model’s decision process. Positive SHAP values push the model’s
output toward predicting the transactions as illicit. Figure 19 displays a comparative analysis of SHAP values
for selected legitimate transactions (left) and selected illicit transactions (right). This visualization reveals
how the model relies on different feature sets depending on the transaction class, and offers insights into the
model’s selection logic with respect to ground-truth labels. Several patterns emerge from this comparison.

First, with respect to overall feature importance: the feature CRIMINALS IN NETWORK consistently shows
the highest importance for both types of transactions. The feature HOUR exhibits higher overall importance
in illicit transactions than in legitimate ones. Furthermore, the features DAYS ACTIVE (for both the receiving
and the paying accounts) demonstrate moderate importance in both cases.

Second, when examining specific feature values in relation to their corresponding SHAP values, several
notable trends appear. For illicit transactions, high SHAP values are rarely associated with the feature PAYMENT
FORMAT CREDIT CARD, suggesting that such transactions are generally not classified as illicit. Similarly, when
the feature PAYMENT FORMAT CHEQUE receives a high SHAP attribution and the transaction is a cheque, it tends
to be classified as legitimate. In contrast, ACH transactions tend to be associated with high SHAP values for
the feature PAYMENT FORMAT ACH, particularly when the transaction is actually an ACH transactions. These
findings are consistent with the empirical distribution of the payment formats presented in Figure 7.

Third, higher transaction amounts are more strongly linked to illicit classifications compared to the legiti-
mate profile, indicating that transaction size is a distinguishing factor, whereas this was not seen during data
exploration.

In general, these SHAP profiles enhance the interpretability of the SHAP-based query strategy and serve
as a diagnostic tool to evaluate whether the model is learning from informative and representative examples.
Differences in feature contributions between classes suggest that the strategy successfully identifies distinct
patterns associated with illicit behavior.

Legitimate transactions. Illicit transactions.

Figure 19: Comparison of SHAP profiles for selected legitimate and illicit transactions. Each point represents a selected
transaction, with feature contributions visualized as SHAP values. The SHAP-guided profiling query strategy is shown for
b = €10K.

To illustrate how SHAP-guided profiling differentiates typical (legitimate) from atypical (potentially il-
licit) transactions, Table 12 presents an explanation report. The transaction with the highest SHAP profile
dissimilarity from the legitimate profile at iteration 50 for b = €10K is showcased. The table highlights the
10 features with the largest absolute deviation in SHAP values, calculated as the SHAP value in the legitimate
profile minus that of the selected transaction. Negative deviations indicate features that push the model more
toward an illicit classification in the transaction, while positive deviations suggest a shift toward legitimacy.

In particular, while the legitimate profile assigns a slightly negative SHAP value to AMOUNT (EUR), indi-
cating low risk, the positive SHAP value of the inspected transaction suggests the amount raises suspicion. A
similar pattern emerges for PAYMENT FORMAT CASH, which shifts from a mildly legitimate influence (—0.0116)
to one indicating increased illicit risk (+0.0054), resulting in a positive deviation of 0.0171. These changes
suggest an atypical use of cash and an unusually small transaction amount relative to the legitimate baseline.
In contrast, features such as PAYMENT FORMAT ACH and PAYMENT FORMAT CREDIT CARD show negative SHAP
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deviations, indicating that the inspected transaction exhibits stronger illicit signals in these channels. For
example, the SHAP value for PAYMENT FORMAT CREDIT CARD drops from —0.0090 to —0.0566, reflecting a
higher illicit contribution.

Despite a high overall cosine similarity (0.9449), these SHAP deviations reveal subtle but important diver-
gences from the normative pattern. This contrast enables analysts to pinpoint key behavioral discrepancies,
such as anomalous payment channels, timing, or network relationships, that justify further investigation and
potentially explain the alert.

Feature Avg. legitimate  Selected Feature dev. SHAP legit. SHAP selected = SHAP dev.
Payment formant ACH 0.275 0 -0.275 -0.0223 -0.0767 -0.0544
Payment format credit card 0.273 1 0.727 -0.0090 -0.0566 -0.0476
Amount (EUR) €1,365,379.72 €2871.90 €-1,362,507.82  -0.0340 0.0046 0.0386
Criminals in network 27.243 1 -26.243 -0.2247 -0.2567 -0.0320
Payment format cash 0.262 0 -0.262 -0.0116 0.0054 0.0171
Days active paying account 1.609 5 3.391 -0.0073 -0.0228 -0.0155
Days active receiving account  1.677 5 3.323 -0.0060 -0.0188 -0.0128
Weekday 3.868 0 -3.868 -0.0013 -0.0136 -0.0123
Dawn 0.384 1 0.616 -0.0018 -0.0120 -0.0102
Unique origins 8d 4.904 3.000 -1.904 -0.0087 0.0012 0.0099

Table 12: Explanation report. Top 10 features with the largest SHAP deviation between the legitimate profile and the
most dissimilar transaction (cosine similarity = 0.9449). Deviation is defined as: legitimate SHAP — transaction SHAP
Negative values indicate stronger illicit contribution in the transaction compared to the legitimate profile.

6.3 VALIDATION RESULTS

Feature selection is performed to select important features, and then the hyperparameters are optimized.
Both procedures are conducted on the labeled transactions and are evaluated using the validation set.

6.3.1 Feature selection

Figure 20 shows the mean absolute SHAP value for all features across all configurations, providing global
insight into overall feature importance prior to feature selection.

Figure 20: Mean absolute SHAP value across all query strategies and benefit per TP combinations.

Feature selection is applied to reduce the risk of overfitting on the validation set. As shown in Figure 20,
the lower half of features contribute minimally to the model’s predictions. As a result, only the 20 features
with the highest average importance are included in the model. This approach not only reduces noise, but
also highlights consistently important features across configurations. The ordering of the features in Figure 20
represents a global average, but specific rankings vary by configuration.

To assess the consistency of selected features across configurations, the Jaccard index is computed. As
shown in Figure 21, the selected feature sets are largely consistent, although there is some variation depend-
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ing on the query strategy and b configuration. These differences occur primarily among the lower-ranking
features. The order of the feature importances between two configurations can not be captured by Figure 21,
however they vary between different configurations, even when two configurations select the same top 20
features.

Figure 21: Jaccard index for features selected during feature selection across all query strategy and b configurations.

6.3.2 Hyperparameter optimization

Model refinement is conducted by evaluating a range of hyperparameter configurations, selecting the one that
achieves the highest net value score on the validation set. The search space used during the TPE optimization
procedure is summarized in Table 9, while the optimal hyperparameters for each configuration are provided
in Appendix 10.5. Note that the classification threshold 7 refers to the final threshold used during training,
as visualized in Figure 15.

Several patterns emerge from the optimized configurations shown in Table 18. A maximum tree depth D of
approximately 6 appears to be optimal for most non-extreme risk preference scenarios, except for uncertainty
sampling at b = €30K. One surprising outcome is the threshold T = 0.26 for the elliptic envelope strategy
at b = €50, despite the dominance of false positive costs in this setting, which would typically push the
threshold closer to 1, as seen with the other query strategies. A similar selection is seen for b = €1M, where
all thresholds are 0, emphasizing a strong preference for recall over precision.

6.4 TEST RESULTS

Each configuration is evaluated on an unseen test set consisting of 611,957 transactions, of which 581 are
labeled as illicit. Before interpreting the raw test results, it is important to assess whether the optimiza-
tion, consisting of feature selection and hyperparameter optimization, yielded performance improvements. A
structural decrease in performance would warrant a more critical examination of the methodology and its as-
sumptions. Figure 37 in Appendix 10.6 displays the average change in key metrics (A-metrics), computed as
the difference between post- and pre-optimization scores. On average, the A recall is slightly positive across
the various strategies. However, the optimization also led to large drops in the true negative rates, especially
for large values of b. Since the increase in recall across most configurations is did have an associated sharp
decline in TNR, the optimization is kept.
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A detailed breakdown of confusion matrix components, recall, precision, true negative rate for the evalu-
ated configurations is provided in Table 13.

Query strategy Benefit | N FP FN TP Recall Precision True negative rate
€50 611,376 0 581 0 0.000 0.000 1.000
€500 611,376 0 581 0O 0.000 0.000 1.000
€1K 610,740 636 524 57 0.098 0.082 0.999
Random €10K 580,054 31,322 152 429 0.738 0.014 0.949
€25K 504,411 106,965 55 526 0.905 0.005 0.825
€50K 497,797 113,579 21 560 0.964 0.005 0.814
€100K [ 463,945 147,431 22 559 0.962 0.004 0.759
€50 611,376 0 581 0 0.000 0.000 1.000
€500 611,376 0 581 0 0.000 0.000 1.000
€1K 609,616 1,760 448 133 0.229 0.070 0.997
. €10K 586,442 24,934 233 348 0.599 0.014 0.959
Uncertainty

€25K 547,267 64,109 468 113 0.194 0.002 0.895
€50K 519,906 91,470 93 488 0.840 0.005 0.850
€100K |0 611,376 0 581 1.000 0.001 0.000

€50 611,368 8 571 10 0.017 0.556 1.000
€500 610,349 1,027 485 96 0.165 0.085 0.998
€1K 605,660 5,716 349 232 0.399 0.039 0.991
€10K 588,236 23,140 173 408 0.702 0.017 0.962
€25K 568,547 42,829 146 435 0.749 0.010 0.930
€50K 340,063 271,313 5 576 0.991 0.002 0.556
€100K | 406,940 204,436 54 527 0.907 0.003 0.666

Query by committee

€50 611,376 0 581 0 0.000 0.000 1.000
€500 611,376 0 581 0 0.000 0.000 1.000
€1K 611,376 0 581 0 0.000 0.000 1.000

€10K 561,701 49,675 137 444 0.764 0.009 0.919
€25K 604,698 6,678 375 206 0.355 0.030 0.989
€50K 496,494 114,882 69 512 0.881 0.004 0.812
€100K | 338,130 273,246 7 574 0.988 0.002 0.553

Isolation forest

€50 611,376 0 581 0 0.000 0.000 1.000
€500 611,376 0 581 0 0.000 0.000 1.000
€1K 611,372 4 576 5 0.009 0.556 1.000

€10K 553,287 58,089 117 464 0.799 0.008 0.905
€25K 569,951 41,425 211 370 0.637 0.009 0.932
€50K 241,087 370,289 19 562 0.967 0.002 0.394
€100K | 440,697 170,679 37 544 0.936 0.003 0.721

Elliptic envelope

€50 611,376 0 581 0 0.000 0.000 1.000

€500 611,376 0 581 0 0.000 0.000 1.000

€1K 611,376 0 581 0 0.000 0.000 1.000

. €10K 574,559 36,817 147 434 0.747 0.012 0.940
SHAP-guided

€25K 503,230 108,146 80 501 0.862 0.005 0.823

€50K 409,112 202,264 21 560 0.964 0.003 0.669

€100K | 284,635 326,741 19 562 0.967 0.002 0.466

€50 611,376 0 581 0 0.000 0.000 1.000

€500 611,376 0 581 0 0.000 0.000 1.000

€1K 611,376 0 581 0 0.000 0.000 1.000

. €10K 496,419 114,957 14 567 0.976 0.005 0.812

Passive

€25K 494,301 117,075 12 569 0.979 0.005 0.809
€50K 497,850 113,526 7 574 0.988 0.005 0.814
€100K [ 503,108 108,268 16 565 0.972 0.005 0.823

Table 13: Comparison of metrics (TN, FB FN, TP recall, precision, true negative rate) for each query strategy across
different b values.

Although Table 13 provides detailed metrics, it may be difficult to interpret trends between different
strategies. A classee plot, commonly employed to illustrate confusion matrix components across thresholds,
is used in Figure 22 to visualize the classification performance. In this case, b implicitly drives the classification
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threshold, so it is used as the x-axis. Instances with illicit ground-truth labels are displayed above the zero
line, showing the trade-off between recall and false negative rate (FNR), which sum to 100%. Below the zero
line, ground-truth legitimate instances are used to illustrate the trade-off between true negative rate (TNR)
and false positive rate (FPR), which also sum to 100%.

For most b values, the FPR remains near zero, but becomes noticeable at higher b, except for passive
learning where the FPR remains around 20%. Given the severe class imbalance, even these seemingly small
increases in FPR translate to a large number of false positives, as seen in Table 13. In all query strategies,
recall and FPR typically increase with for configurations with higher b, supporting the expected trend: opti-
mizing the threshold for higher values of b yields more true positives but as the cost of false positives. Query
by committee shows a very stable increase, whereas uncertainty sampling and passive learning have more
variability in performance across different b values. Some configurations have particularly poor performance.
Examples are random at b = €15K, elliptic envelope with b = €30K, and SHAP-guided at b = €20K. Ran-
dom at b = €15K coincides with the performance drop shown in Appendix 10.6. However, the other poor
performances do not, indicating that the hyperparameter optimization did not increase performance for the
other two configurations.

Figure 22: Classee plot showing the recall, false negative rate, true negative rate, and false positive rate for varying b,
across all query strategies.

The fundamental challenge of detecting money laundering is further highlighted in the precision-recall
(PR) curves shown in Figure 23. These curves reveal a steep trade-off: improving recall often comes at a
substantial cost to precision. This behavior is typical in highly imbalanced classification tasks, where the
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minority class (illicit transactions) is exceedingly rare. Each line in the plot represents a model’s performance
(recall, precision) across a range of classification thresholds.

Although the risk preference parameter b influences the threshold selected during training, the PR curves
themselves are computed by sweeping over all possible thresholds. As a result, the direct effect of b is limited
to only how it formed the labeled dataset under each query strategy, but is otherwise neutralized in the
plot. Despite this, a consistent trend emerges: pushing recall higher leads to steep drops in precision. This
indicates that the model finds it increasingly difficult to separate illicit from legitimate transactions at scale,
underscoring the inherent challenge of minimizing false positives while maximizing detection.

Figure 23: PR curves with varying b values, across all query strategies.

To show this trade-off in terms of false alerts and missed illicit transactions, Figure 24 is made. The non-
linear shape of the datapoints reflects diminishing returns: at low b values, only high-confidence cases are
flagged, resulting in few false positives. For higher b values, under the same query strategy, lower-confidence
cases are also flagged. This reduces false negatives but introduces disproportionately more false positives,
because less certain predictions are also included in the illicit classifications. Due to the unstable datapoints
of uncertainty sampling and passive learning, the fitted curve does not follow the datapoints well.

Figure 24: False positives plotted against false negatives for each query strategy. Each datapoint corresponds to a
different risk preference, parameterized by b. A decaying exponential function of the form a - exp(—f - FP) + y is fitted
over the datapoints.”
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6.5 PATTERN RECOGNITION

To assess how well the models detect specific money laundering patterns, performance is analyzed per pattern
type (Figure 2). Figure 25 reports the average recall and precision per pattern, aggregated across all benefit
levels for each query strategy. Recall is defined as the proportion of correctly identified illicit transactions of
a given pattern, and precision as the fraction of those predictions that are indeed illicit.

The results reveal little variation in pattern detectability. Most patterns are more detectable than "no
pattern”, but the severity depends on the query strategy. Query by committee consistently yields the highest
recall across patterns and outperforms passive learning in both recall and precision. SHAP-guided profiling has
outperforms uncertainty sampling and has similar performance to isolation forest. However, it underperforms
relative to random sampling in both metrics, suggesting that its profiling approach does not generalize well to
the test data. While it does not correspond to a high minority class proportion (shown in Figure 18), random
sampling achieves high precision on gather-scatter despite obtaining moderate recall.

Figure 25: Average recall and precision per money laundering pattern (including ”no pattern”) across all benefit values,
shown per query strategy.

To further quantify the model’s effectiveness in identifying patterned behavior, Figure 26 presents the
difference in recall between illicit transactions that follow a known pattern and those that do not ("no pat-
tern”). For each query strategy and benefit level, the average recall difference (A recall = pattern recall minus
no-pattern recall) is shown. All averages are positive, indicating that the models associated detect illicit trans-
actions more effectively when they are part of a layering pattern. A more uniform observation holds for query
by committee, elliptic envelope and passive learning, where the model is better at pattern detection for all b.
In contrast, the strategies random sampling, uncertainty sampling and SHAP-guided profiling detect patterns
worse than illicit transactions associated with no pattern for some b.

’Fitted parameters (a, f8,y) for each query strategy: random sampling: (570.7, 2.484e-05, 9.569); uncertainty sampling: (546.2,
8.53e-06, 19.98); query by committee: (479.5, 5.876e-05, 78.31); isolation forest: (528.6, 4.021e-05, 52.47); elliptic envelope: (539,
2.737e-05, 30.08); SHAP-guided profiling: (476, 3.963e-05, 102); passive learning: (593.3, 2.557e-05, -12.28).
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Figure 26: A Recall: the difference between recall on patterned illicit transactions and not associated with a pattern
("no pattern”), shown per query strategy and benefit level.
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DISCUSSION

The discussion begins with an interpretation of the results (7.1) regarding the research questions. The dis-
cussion also addresses limitations of the current work (7.2) and broader challenges (7.3).

7.1 INTERPRETATIONS

Active learning vs. passive learning (RQ1) How does active learning trained on 2.08% of the labeled data
compare in performance (recall, precision, and true negative rate) to supervised learning using the complete
training set?

Our experiments demonstrate that active learning, using only 2.08% of the labeled data, can achieve per-
formance that approaches that of fully supervised learning on the entire training dataset (passive learning).
As shown in Figure 13, passive learning generally achieves higher recall across all benefit levels b on the
validation set. However, the performance gap is modest, and both precision and true negative rate (TNR) re-
main of similar magnitude across approaches. Considering that passive learning uses approximately 50 times
more labeled data, the relative performance of active learning is notable. A key explanation lies in the class
imbalance dynamics observed during training (Figure 17). All active learning strategies disproportionately
sample illicit transactions (with the exception of random sampling), with query by committee identifying up
to 14 times more illicit cases than their overall prevalence in the dataset. It should be noted that the main
contributor of the inflated minority class proportions of the query strategies is due to the selection of illicit
transactions with no associated pattern, as shown in Figure 18. Nonetheless, this targeted selection likely
enhances learning efficiency, compensating for the limited label budget.

After feature selection and hyperparameter tuning, active learning strategies such as query by commit-
tee, isolation forest, and elliptic envelope achieve high recall on the test set (Figure 25). Notably, query
by committee surpasses passive learning in both recall and precision across all pattern types, including “no
pattern”.

These findings suggest that active learning offers a viable approach for reducing alert investigation costs
in AML pipelines, provided that an appropriate query strategy is used.

Effectiveness of SHAP-guided querying (RQ2) To what extent can an explainability-guided query strategy
informed by SHAP values (a widely adopted XAI technique) effectively identify illicit transactions in a synthetic
dataset, and how does its performance compare to that of established query strategies in terms of precision, recall
and true negative rate?

SHAP-guided profiling was designed to select transactions whose feature importance profiles are most
dissimilar to the average profile of legitimate transactions, referred to as the legitimate profile. This selection
mechanism aims to flag transactions that deviate from legitimate feature importance behavior and was eval-
uated against established strategies including random sampling, uncertainty sampling, query by committee,
isolation forest, and elliptic envelope.

During training (Figure 13), SHAP-guided profiling achieves recall roughly in line with other strategies,
but shows instability across certain benefit per true positive values (notably at €1; €15K; €20K; and €50K).
True negative rates were generally comparable, though precision was not reliably comparable due to the
severe class imbalance. Further analysis reveals that SHAP-guided profiling consistently selects a distinct
subset of transactions compared to other strategies (Figure 16), suggesting it captures a different, possibly
narrower, part of the decision space®. However, results on the test set (Figure 25) highlight critical limita-
tions: SHAP-guided profiling underperforms random sampling in both recall and precision across all layering

8The decision space refers to the range of possible inputs and how a model distinguishes between classes based on those inputs.
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patterns, including illicit transactions with no associated pattern. This indicates a structural flaw, as by focus-
ing on transactions that deviate from the legitimate profile, the strategy overemphasizes obvious cases and
fails to detect more ambiguous or subtle laundering behavior that are essential for improving recall. This
limited scope is also reflected in class imbalance outcomes (Figure 17): while SHAP-guided profiling selects a
slightly higher proportion of illicit transactions than random or passive sampling, the difference is marginal.
The assumption that strong deviation from the legitimate profile correlates with illicitness does not hold up
empirically.

The interpretability advantage of SHAP-guided profiling also proves overstated. While Table 12 provides
an explanation report for a selected transaction which is generated due to the inherent interpretability aspect
of the strategy. In contrast, black-box strategies like query by committee or uncertainty sampling need post
hoc application of XAI methods to explain decisions made by the model. In a high-risk setting like money
laundering detection, where decisions require both accuracy and accountability, the embedded interpretability
of SHAP-guided profiling may appear transparent but it lacks diagnostic depth, especially when coupled with
underwhelming performance.

Taken together, these findings indicate that SHAP-guided profiling is not suitable as a standalone query
strategy for AML applications. It fails to deliver adequate detection performance and does not provide inter-
pretability benefits strong enough to justify that shortfall. A more viable approach would decouple selection
and explanation, using a high-performing strategy such as query by committee for selecting transactions, and
applying SHAP post hoc to generate explanations aligned with the decision. This layered setup supports both
performance and trust, something SHAP-guided profiling cannot achieve as a standalone strategy.

Trade-off for different risk-preferences (RQ3) How do varying risk preferences, reflected in the cost-sensitive
optimization, impact the trade-off between recall, precision, and true negative rate?

We investigated how variations in the benefit per TP parameter b within our cost-sensitive classification
threshold optimization influence the trade-off between recall, precision, and true negative rate (TNR). Larger
values for b, which assigns greater importance to identifying true positives, results in lower classification
thresholds, thereby favoring recall at the expense of both precision and TNR. This dynamic is clearly demon-
strated in the thresholds evolution during training in Figure 15, where larger b values push the model toward
more aggressive flagging of potentially illicit transactions. Similarly, Figure 14 shows that while recall im-
proves at larger b values, it also incurs an increase in false positives, a critical consideration in AML systems
with high transaction volumes and limited analyst capacity. This trade-off persists during testing, as tabulated
for the test results in Table 13.

It is important to note that these interpretations rely on the design of the net value function (Equation 9).
The general applicability of these conclusions would benefit from further validation by domain experts and
regulators to ensure that they are in line with institutional risk tolerances and compliance constraints.

7.2 LIMITATIONS

This study faces several limitations stemming from the used dataset, design choices and practical limitations.
These limitations may affect the generalizability and practical application of the results.

AMLworld Various limitations originate from the nature of the AMLworld dataset, which is synthetic and
relatively compact in terms of feature space.

— Limited feature space: The dataset lacks a variety of contextual and supplementary data types that
are critical in operational AML systems, most notably customer metadata and multi-dimensional data
sources. Attributes such as company structure, Ultimate Beneficial Ownership (UBO), industry classifi-
cation, and geographic risk exposure are essential for recognizing atypical financial behavior. Further-
more, the absence of multi-source data (e.g. FIU trend reports, device fingerprinting and behavioral
analytics) limits the model’s ability to identify nuanced laundering tactics [18]. As highlighted by Li,
Ranbaduge, and Ng [58], effective AML detection relies on more than transaction data alone. The
absence of such enriched feature sets restricts the realism for detection modeling.

— Limited transaction history: The LI-small subset used in this study contains approximately 5 million
transactions over a 10-day span (Figure 5). This narrow time frame restricts the model’s capacity to
learn and exploit long-term behavioral dynamics, which are crucial for detecting sophisticated launder-
ing strategies that evolve gradually over time.

49



7.3 Challenges 7 DISCUSSION

— Simplified and isolated laundering patterns: In AMLworld, laundering strategies are implemented as
static and independent patterns (Figure 9), whereas real-world money laundering operations are typi-
cally adaptive and involve the dynamic combination of multiple tactics [15]. This simplification limits
the realism of the simulated behavior and increases the risk of model overfitting to simulation-specific
regularities. As a result, models trained on AMLworld may struggle to generalize when deployed in
operational settings that involve more complex, layered, and evolving laundering schemes.

— Simulation instability: According to AMLworld documentation, small changes in simulation parameters
can result in large and sometimes erratic variations in the data [2]. Found instabilities include self-
looping transactions (Table 5), liquidity imbalances across banks (Table 28b), and sudden drops in
transaction activity near the end of the simulation period (Figure 5). These instabilities undermine the
model’s capacity to generalize to real-world AML detection scenarios.

Absence of human-in-the-loop A major limitation of this study is the absence of human-in-the-loop valida-
tion. In operational AML settings, domain experts are central to interpreting flagged transactions, assessing
risk, and refining detection strategies. The current framework assumes perfect label quality and does not
incorporate expert feedback in evaluating model decisions or SHAP-based explanations. For example, while
SHAP-guided explanations may appear informative from a model-centric view, it remains unclear whether
AML analysts find them actionable or trustworthy. Moreover, active learning strategies that prioritize uncer-
tainty or explanation diversity may produce different results when guided by human judgment, potentially
leading to a more effective or interpretable query strategy.

Computational load The proposed active learning framework imposes a significant computational burden.
This is further compounded by the SHAP-based feature selection and hyperparameter optimization. As re-
ported in Table 11, the total runtime for training, validation, and testing exceeds 150 hours for the active
learning pipeline, while the passive learning took over 34 hours. The contributors to this overhead are pri-
marily the repeated retraining of models and the computation of SHAP values. Due to these constraints, it
was not feasible to explore the full range of budget values (b), and several promising research directions were
deferred to future work (Section 8.2).

Limited robustness evaluation This study does not evaluate the model’s robustness to adversarial scenarios
[68] such as concept drift, adversarial evasion, or noisy labels, each of which is prevalent in real-world AML
systems. Since laundering techniques and financial patterns evolve over time, models must maintain stability
under shifts of the underlying distribution for illicit transactions. While robustness testing (e.g., through
detecting adversarial examples or drift detection [68]) could offer valuable insights, the short time horizon
of the AMLworld dataset and due to the computational overhead of the research, robustness is left for future
studies.

Benchmarking A notable limitation of this work is the absence of benchmarking across a wide range of ma-
chine learning models. While such comparisons are standard in academic research and useful for establishing
performance baselines, they can distract from the core practical challenges in AML, such as extreme class
imbalance, limited labeling budgets, and the need for interpretability. Moreover, benchmarking would signif-
icantly increase computational and design complexity, especially when considering multiple query strategies,
risk-preferences and evaluation metrics. As a result, this research opts for a focused methodological approach
rather than exhaustive model comparison. However, this choice does limit the ability to generalize findings
across different models or to position results within broader state-of-the-art performance benchmarks.

7.3 CHALLENGES

Developing effective AML models involves navigating a range of structural and technical challenges. These
challenges are largely external and reflect the nature of the domain, its data limitations, and institutional
constraints.

Data access, privacy, and fragmentation One of the most pressing challenges in AML research is the
lack of access to real, labeled transaction data. Financial institutions operate under strict legal, privacy,
and regulatory constraints, such as GDPR and banking secrecy laws, which severely limit the sharing of
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sensitive customer and transaction information. As a result, most publicly available datasets are synthetic or
heavily anonymized. While synthetic data supports controlled experimentation, it often reflects predefined
laundering typologies and lacks the complexity, subtlety, and unpredictability of real-world money laundering
behavior. This reliance on fixed templates, as noted by Lute [65], can cause models to overfit to dataset-
specific patterns, thereby reducing generalizability.

Compounding this challenge is the fragmented nature of the financial ecosystem: banks, payment proces-
sors, and regulators typically operate in silos, each with only a partial view of the broader financial network.
This hampers the detection of cross-institution or transnational laundering patterns. AMLworld, for instance,
assumes global visibility across all banks, a highly unrealistic scenario. In practice, constrained observability
remains a significant challenge, although emerging techniques in federated and privacy-preserving machine
learning offer potential solutions [25, 26, 58, 61].

Severe class imbalance Money laundering is an inherently rare phenomenon, leading to highly imbalanced
datasets where illicit transactions make up a tiny fraction of the total. This extreme skew challenges standard
machine learning methods, which tend to overfit to the majority class, resulting in high apparent accuracy
but poor performance on the minority class. Addressing this imbalance is critical for effective detection,
particularly when annotation resources are limited.

Evolving criminal tactics Money laundering methods are constantly evolving in response to changes in
detection systems, regulatory environments, and enforcement strategies. Launderers adapt by varying trans-
action patterns, exploiting new technologies, or shifting across jurisdictions. This creates a moving target
for AML systems, which must detect not only known patterns of money laundering but also novel and sub-
tle behaviors. Developing models that can generalize across different patterns or adapt to new laundering
strategies remains a significant research challenge.

Label scarcity and imperfection Supervised AML models rely heavily on labeled examples of legitimate
and illicit transactions, yet obtaining such labels is a significant challenge. Labeling is labor-intensive, costly,
and inherently subjective, requiring AML teams to investigate transaction histories, customer profiles, and
external intelligence before assigning a label. As a result, labeled datasets tend to be small, imbalanced, and
noisy. Compounding this issue, the experimental setups often assume a perfect labeling oracle that provides
accurate and certain labels for every selected transaction. In reality, AML teams face uncertainty due to lim-
ited evidence, evolving typologies, and the potential for delayed or incorrect labels. This discrepancy between
idealized labeling and practical constraints oversimplifies the problem and may lead to overly optimistic esti-
mates of model performance.

Limited feedback Another structural challenge is the limited feedback loop between financial institutions
and FIUs. FIUs do offer general feedback through blogs, industry conferences, and periodic reports, informing
financial institutions about trends in financial crime, typologies of money laundering, and emerging threats.
However, the extent to which they provide case-specific feedback is a double-edged sword. Informing financial
institutions about which transactions were linked to illicit activities allows them to refine their detection
models, but this comes at the cost of tipping-off risks. This occurs when the account and their accomplices
are alerted when financial institutions close or block their accounts mentioned by FIUs. This enables suspects
to relocate operations before law enforcement can complete their investigations.

Lack of explainability Although the recently adopted EU Al Act [72] clarifies that transaction monitoring
systems used solely for administrative purposes (such as filing SARs) are not classified as high-risk, the issue
of explainability remains central. The 2019 Ethics Guidelines for Trustworthy Al call for transparency and
interpretability as foundational principles [72]. Yet, many machine learning models used in AML operate
as black boxes, making it difficult to provide human-understandable justifications for alerts. In a regulated
domain where trust, accountability, and oversight are essential, this lack of transparency hinders adoption of
state-of-the-art machine learning models and techniques.
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8 CONCLUSION

CONCLUSION

The conclusion starts with a summary of the research in Section 8.1. Possible future work directions are
discussed in Section 8.2.

8.1 SUMMARY

This research introduced a cost-sensitive active learning framework for anti-money laundering (AML) detec-
tion, evaluating its performance under a limited labeling budget and investigating whether a query strat-
egy guided by the explainable Al technique SHAP can effectively identify illicit transactions while providing
meaningful interpretability. Across three research questions, the findings reveal a nuanced interplay between
learning efficiency, interpretability, and institutional risk preferences in designing AML systems.

First, we demonstrated that active learning using only 2.08% of labeled data can closely approximate
the recall, precision, and true negative rate of fully supervised learning. This efficiency is largely driven by
the selection behavior of the strategies, as they some are selecting more illicit transactions than the overall
proportion in the training data. An example is query by committee, which identify illicit transactions at
rates far exceeding their minority class prevalence (14 time more), thereby accelerating model learning while
maintaining relatively low investigation costs.

Second, we found that SHAP-guided profiling, despite its intuitive appeal for inherent interpretability,
underperforms on recall and precision as it struggles to detect subtle laundering patterns. While it prioritizes
highly anomalous transactions and offers built-in explanations, this comes at the cost of narrow coverage
and reduced recall. The assumption that deviation from the average feature importance profile of legitimate
transactions indicates illicitness does not hold up, and its apparent transparency lacks the diagnostic depth
provided by techniques that apply explainability post hoc. These findings suggest SHAP is more effective as
a post hoc explanation tool than as an explainability-guided query strategy.

Finally, by varying the benefit per true positive parameter in the cost-sensitive classification threshold, we
revealed clear trade-offs between recall, precision, and true negative rate. Higher benefit values correspond to
risk-averse behavior, favoring broad detection at the expense of false positives, whereas lower values indicate
risk-seeking behavior, emphasizing precision and reduced false alarms. This tunable thresholding mechanism
enables alignment with institutional risk tolerances but depends critically on domain-informed calibration of
the net value function.

In summary, this work shows that active learning can substantially reduce labeling effort without sacrific-
ing detection performance, but the choice of query strategy must balance detection coverage, interpretability,
and operational risk. Effective AML systems require query strategies evaluated not only on accuracy but also
on their practical fit within the constraints of real-world workflows.

8.2 FUTURE WORK

The practical deployment of active learning in AML contexts remains constrained by limited involvement of
human analysts. Future research should integrate AML experts into the loop to evaluate SHAP explanations,
assess the actionability of query selections, and benchmark strategies based on their operational impact. Such
collaboration would yield valuable insights into how expert feedback influences label accuracy and model
trustworthiness.

Our research assumed a perfect labeling oracle, which overlooks real-world labeling uncertainty. Future
studies should simulate noisy labels by introducing probabilistic error models based on analyst uncertainty
or disagreement. This would allow for a more realistic assessment of robustness in active learning under
imperfect supervision.
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Further exploration is needed into explainability-guided query strategies. Techniques such as counter-
factual explanations, especially near decision boundaries, and contrastive explanations, where samples are
selected based on dissimilarity to neighbors in the feature or explanation space, may enhance interpretability
during transaction selection. Coupling these approaches with human-in-the-loop evaluation and noisy labels
will clarify the true value added by explainability in guiding data acquisition.

While SHAP-guided profiling offers a way to select anomalous instances based on model explanations, it
may benefit from integration with informativeness-based strategies. As Kirsch, Amersfoort, and Gal [52] and
Du et al. [23] suggest, combining selection criteria such as informativeness and representativeness within a
single query strategy can outperform methods focusing on only one aspect. Following this idea, future work
could explore hybrid SHAP-guided strategies that combine profiling with informativeness scores. Alternatively,
as Cunha et al. [19] propose, anomaly detection methods like SHAP-based profiling could be used at early
training stages, followed by informativeness-driven querying later.

Another promising direction is to extend cost-sensitive threshold optimization beyond its current linear
formulation in terms of true positives (TP), false positives (FP), and false negatives (FN). A non-linear objec-
tive, such as a concave reward function TP* with 0 < a < 1, could better reflect the diminishing marginal
utility of detecting additional true positives. This adjustment would capture real-world considerations, in-
cluding regulatory expectations that penalize low TP rates, where the incremental value of each detected true
positive decreases as the model improves.

Finally, varying the size of the labeling budget instead of fixing it at 2.08% of the training data would
provide insight into the trade-offs between annotation effort and performance. This would be particularly
valuable to operations teams in banks seeking to optimize resource allocation and capacity.
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APPENDIX

10.1 HISTORY OF MONEY LAUNDERING

Historian Sterling Seagrave, in his book ”Lords of the Rim” [84], describes how merchants in ancient China,
over 3,000 years ago, took steps to conceal their wealth from rulers seeking to seize it. The merchants
devised clever methods to convert their profits and evade regional trade restrictions [67]. While not exactly
the same as modern money laundering, these early examples of wealth concealment because of restrictions
set a historical precedent for the practices that would later emerge in the global economy. The practice of
money laundering has evolved significantly over time. Its progression can be broken down into three key
periods: the 1920s, the 1980s, and the present day.

10.1.1 1920s

The origins of money laundering as a recognized concept can be traced back to the rise of organized crime.
Historically, it was not perceived as a distinct offense but rather as a secondary consequence of criminal activ-
ity. This perspective began shifting in the 1920s, linked to the rise of criminal organizations in America due
to the Prohibition era. The Prohibition Era began in 1920 when the 18th Amendment to the U.S. Constitution
went into effect. This amendment banned the manufacture, transportation, and sale of liquors with more
than 0.5% alcohol. The law was also known as the Volstead Act, named after Congressman Andrew John
Volstead of Minnesota. Organized crime boomed as the demand for alcohol rose. These organizations, led by
figures such as Al Capone, amassed immense fortunes through bootlegging (the illegal production and sale of
goods) [94]. However, depositing large amounts of illicit cash into banks without raising suspicion became
increasingly difficult, necessitating money laundering strategies.

A landmark case illustrating this evolving legal stance is United States v. Sullivan [91] in 1927. The U.S.
Supreme Court ruled that illicit income from bootlegging was subject to federal income tax. Manley Sullivan,
a South Carolina bootlegger, argued that his earnings were not taxable since they were derived from illegal
activities. The Court’s decision established a precedent that all income, regardless of its source, must be
reported for taxation. This ruling later played a pivotal role in the prosecution of Al Capone, whose initial
conviction was not for bootlegging, but instead for evasion of federal taxes [94].

10.1.2 1980s

During the 1980s, Colombian drug cartels such as the Medellin and Cali cartels generated large profits from
cocaine trafficking, necessitating increasingly sophisticated methods to launder billions of dollars annually.
PBS Frontline [74] states in a report about the war of drugs that traffickers initially relied on direct and un-
sophisticated means. Large amounts of U.S. dollars were simply flown back to Colombia aboard the same
planes used to smuggle cocaine into the United States. The cash was either converted into pesos through
willing Colombian banks or buried on private estates. Some locals even claimed that rivers occasionally be-
came clogged with U.S. dollars after heavy rain revealed hidden caches. Enforcement of the Bank Secrecy Act,
which required reporting deposits over $10,000, was widely neglected. In some cases, individuals deposited
over $250 million annually into accounts without raising any alarms.

When the law enforcement caught on to the problem and pressured banks to comply with the laws, traf-
fickers conceived different strategies. Smurfing, also known as structuring, in which large sums are broken
up into smaller deposits and distributing them across multiple accounts and financial institutions. Simulta-
neously, traffickers turned to trade-based money laundering. By manipulating invoices and using phantom
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shipments (shipments happening only on paper), they could move value internationally under the guise of
legitimate trade. Offshore banking was another method that gained popularity in the mid-1980s. Cash was
flown to tax havens such as the Bahamas, Aruba, the Cayman Islands, and the British Virgin Islands, where
it was deposited with limited oversight. However, as international enforcement intensified, traffickers sought
more robust and covert systems.

The most sophisticated method was the Black Market Peso Exchange (BMPE), a laundering system that
remains active today. The BMPE evolved as traffickers moved away from traditional banking and took ad-
vantage of an existing black market currency exchange used by Colombian businesses to circumvent strict
currency controls. Under this system, U.S.-based traffickers hand over dirty drug money to money brokers
who take full responsibility for laundering the U.S. dollars. In return, the traffickers receive payment in laun-
dered Colombian pesos. On the Colombian side, legitimate businessmen seeking to purchase American goods
pay these money brokers in pesos. The brokers then use the laundered U.S. dollars to pay for the goods,
effectively completing the cycle [74].

10.1.3 Present

In the modern era, money laundering has evolved alongside financial and technological advancements. While
traditional methods such as trade-based laundering and offshore accounts remain prevalent, new digital tools
have made illicit financial flows more sophisticated and harder to trace.

Europol [31] report that cryptocurrencies, initially adopted by cybercriminals, have become a prominent
tool for laundering illicit proceeds. However, blockchain analysis on Bitcoin quickly revealed that activity
can be traced, prompting criminals to adopt specialized services that enhance anonymity, such as tumblers,
which are crypto mixing services to obscure the origin of funds. These services have significantly lowered the
technical barriers to entry, enabling broader use among various criminal networks. Although cryptocurrency
offers pseudonymity, speed, and borderless transactions, the volume of illicit activity conducted via crypto
remains smaller compared to traditional financial crime [13].

Another major revelation in recent years was the Panama Papers scandal of 2016, which exposed how
politicians, business leaders, and criminals used offshore accounts and shell companies to hide wealth and
evade taxes. The Panamanian law firm Mossack Fonseca, one of the world’s leading creators of hard-to-
trace companies, trusts, and foundations, provided an unprecedented look into the global scale of financial
secrecy. This leak revealed how legal structures were exploited to launder money [45]. While this scandal
led to increased regulatory scrutiny and reforms, offshore laundering continues to be a significant issue, as
demonstrated by the subsequent Paradise Papers (2017) and Pandora Papers (2021) [45, 70].

The art and antiquities market presents a unique and persistent vulnerability to money laundering and
terrorist financing and will be the last driver of money laundering that will be discussed. Due to the high
value, subjective pricing, and limited transparency of transactions, art objects can serve as effective vehicles
for moving and concealing illicit funds. As the Financial Action Task Force (FATF) [34] highlights, criminals
exploit this sector by purchasing high-value artwork with illicit proceeds and subsequently reselling them,
often through private sales or intermediaries, to legitimize the gains.

10.2 SUPPLEMENTARY DATA EXPLORATION

Section 10.2.1 provides the data exploration on the bank-level. The subsequent Section 10.2.2 provides a
similar exploration on account-level.

10.2.1 Banks

As banks facilitate the money laundering of criminals, there might be a relationship between a characteristic
of the bank and the illicit activity inside it. This section is dedicated to understanding the behavior of different
types of banks.

Some initial terminology is required to get a clear picture of the activity of different types of banks. Banks
involved in non-zero transactions as the paying party are referred to as paying banks, while those on the
receiving end with non-zero transactions are called receiving banks. Banks with exclusively internal trans-
actions have no exchanges with other banks, whereas exclusively external banks conduct transactions only
with other banks and none within themselves. Table 14 shows the number of banks and illicit activity of each
of these types. Receiving banks, which there are about twice as few of as paying banks, exhibit a relatively
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high proportion of illicit activity. Interestingly, any bank that is exclusive in one of the types (paying, receiv-
ing, internal, external) has no illicit activity, which is unexpected since they count for about 75% of the total
number of banks. While the number of banks with illicit activity is the same for paying and receiving banks,
it should be noted that there are 968 sending banks that have sent an illicit transaction and 1,187 receiving
banks that have received an illicit transaction.

Bank type Banks  Banks with Laundering
illicit activity = share

Paying banks 41,814 1,474 3.525%

— Exclusively paying banks 20,227 0 0%
Receiving banks 21,588 1,474 6.828%

— Exclusively receiving banks | 1 0 0%
All banks 41,815 1,474 3.525%

— Exclusively internal 9,642 0 0%

- Exclusively external 1,878 0 0%

Table 14: Unique number of banks and money laundering activity for different types of banks.

To understand the major banks more, the 10 banks with the most amount sent, amount received, trans-
actions sent, and transactions received are shown in Figure 27a. Bank ’70’ has a significant share in amount
sent, however the amount is not shown in the amount received, which is reason to investigate if there is
a relationship between money laundering and bank. Figure 27b illustrates the top 10 banks based on the
money illicit activity. Also for money laundering it is the case that there exist dominant banks. Bank 224’
sends more than a quarter of the total illicit funds, and Bank 4308’ receives about the same amount. Bank
’70” sends more than 800 illicit transactions, but on average they contain small transactions amounts, as this
equates to about 4.5% of the amount sent.

(a) Total transactions (legitimate and illicit). (b) Illicit transactions.

Figure 27: Top 10 banks by total amount and total transactions (a), with total amount sent (top-left), amount received
(top-right), transactions sent (bottom-left), and transactions received (bottom-right). Similarly, top 10 banks based on
illicit amount and illicit transactions (b). Percentages relative to the total across all banks are shown at the end of the
bars.

The discrepancy between the money going in and out of the banks is shown in Figure 28. Outliers are
distorting the scale of Figure 28a, making it harder to visualize the data effectively, necessitating a trim of
extreme values. This is illustrated by the large net amounts in Table 28b. These outliers could potentially
raise concerns regarding the liquidity management of the banks in the virtual world. Interestingly, Figure 28a
shows a smooth histogram for negative net amounts, while no such histogram exists for positive net amounts.
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Top 10 | Bottom 10
Bank Net amount (€) | Bank Net amount (€)
22297 30.1B | 41720 -171B
33687 23.6B | 23 -33.3B
21479 14.1B | 901 -26.4B
147006 11.9B | 1606 -23.2B
25526 11.4B | 1246 -16.8B
126631 11.3B | 12 -15.7B
16 9.78B | 1200 -14.5B
22435 8.36B | 1339 -11.9B
119699 8.06B | 1489 -10.7B
2 7.90B | 842 -9.77B

(a) Distribution of net amounts across banks over total time
span. A cut between 5% and 95% is made to hide outliers; the
mean of the lower 5% quantile is -9.45B and the upper 95%
quantile is 4.53B. As expected, the average across all banks is
0 since all money sent is received in a closed economic system.

(b) Top and bottom 10 net amounts by bank.

Figure 28: Visualization of net amounts across banks (a) and top/bottom 10 net amounts (b).

Banks exhibiting large net discrepancies (such as Bank ‘22297’ and Bank ’41720’ in Table 28b) may process
a higher absolute number of illicit transactions than smaller institutions. However, this does not necessarily
imply a greater relative involvement in illicit activity. For meaningful comparison, it is essential to consider
illicit activity in proportion to overall transaction volume or amount. Two banks with the same number or
value of illicit transactions may differ substantially in risk profile if their total transaction volumes differ.
To capture this, we define two normalized metrics: the Illicit Transaction Rate (ITR) and the Illicit Amount
Rate (IAR). These quantify the proportion of a bank’s transactions or transaction value that is illicit, and are
calculated as follows:’

.. . Illicit transactions
Illicit transaction rate (ITR) =

—, 22)
Total transactions

Mlicit amount

Illicit amount rate (IAR) = (23)

Total amount
Figure 29 plots the net amount against the ITR for banks sending and receiving illicit transactions, but shows
no clear pattern based on the amount going in and out of the bank and the ITR. It does show that the net
amounts for banks that are involved in money laundering are more symmetrically distributed than Figure 28a.
Additionally, it is shown that most banks have an illicit transaction rate between 0.00% and 0.0025%.

Figure 29: Distribution of net amounts and non-zero ITR across banks. A cut for the net amounts between the 5%
and 95% quantiles is done and only banks with ITR between 0 and 5% is shown to improve clarity. The datapoints are
categorized into the laundering rates of banks for both sending and receiving illicit transactions. Note that if bank received
and send illicit transactions, a single bank is represented as two labels with the same net amount.

°Note that ITR and IAR differ from the "illicit share" in Table 14, which indicates the proportion of banks with any non-zero illicit
activity.
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Investigating the relationship between banks and illicit activity further, it is interesting to see how the
number of transactions and amount impacts the laundering rate. Figure 30 indicates that there is a notice-
able pattern in the number of transactions 30a, in contrast with the transaction amount 30b. The number
of transactions exhibits an inverse relationship with the laundering rate, suggesting that banks with higher
number of transactions tend to have lower rates. Moreover, there appears to be approximately five distinct
categories, independent of whether the banks are paying or receiving banks, expressed by the discrete laun-
dering rate levels corresponding to different transaction totals. This distinction becomes less apparent for
low and high transactions totals, where the levels are tighter together and possess fewer data points. How-
ever, recalling Equation 22, one can see that Figure 30a shows distinct levels because the illicit transactions
numerator takes integer values. Figure 30b does not show such a leveled pattern as transaction amounts can
also take decimal values.

(a) licit activity based on total transactions. (b) llicit activity based on amount.

Figure 30: Scatter plot (a) shows the relationship between the transaction total and non-zero laundering rates. Scatter
plot (b) shows the relationship between transaction amount and non-zero laundering rates. For both plots apply: each
dot represents a bank, red for banks sending illicit transactions and blue for banks receiving illicit transactions and a
95%-quantile exclusion is applied to remove outliers (the outliers do not show unusual behavior, only change the scale).

10.2.2 Accounts

Criminals exploit banks during their activities, so it is interesting to understand the typical behavior of ac-
counts, and even more to investigate their suspicious activities.

Table 15 shows the overall behavior of accounts based on their type. Similar to the banks, accounts in-
volved in non-zero transactions as the paying party are referred to as paying accounts, while those on the
receiving end with non-zero transactions are called receiving accounts. Accounts with only internal transac-
tions have no exchanges with other accounts, whereas exclusively external accounts conduct transactions only
with other accounts and none within themselves. In the synthetic dataset there exist also no transactions that
debit the internal transactions, so it is as if money is generated out of nothing for these internal transactions.

Account type Accounts  Accounts with  Laundering
illicit activity share

Paying accounts 681,281 5,139 0.754%

- Exclusively paying accounts 129,727 90 0.069%
Receiving accounts 576,176 5,214 0.905%

- Exclusively receiving accounts | 24,622 165 0.670%
All accounts 705,903 5,304 0.751%

- Exclusively internal 129,126 0 0%

— Exclusively external 44,878 62 0.138%

Table 15: Unique number of accounts and money illicit activity for different types of accounts.

Figure 31 presents the top 10 accounts by total and illicit transaction volume and amount, both sent and
received. Notably, there is no clear correspondence between the rankings in total activity (Figure 31a) and
illicit activity (Figure 31b). For example, while Account ’10042B660’ ranks first in total amount sent, it does
not occupy such a position in illicit amount sent. In terms of total transactions sent, Accounts '10042B660’
and "10042B6A8’ stand out, sending a combined 350K transactions. These two accounts also rank highest
in total transactions received, though with substantially lower volumes. When focusing on illicit amounts,
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the dynamic shifts. Account ’800C5DA30’ is responsible for originating over 25% of the total illicit amount
sent, while Account '801A6F250’ receives more than 25% of the illicit funds, indicating a concentration of
suspicious activity among a few key accounts.

(a) Total transactions (legitimate and illicit). (b) Ilicit transactions.

Figure 31: Top 10 banks by total amount and total transactions (a), with total amount sent (top-left), amount received
(top-right), total transactions sent (bottom-left), and total transactions received (bottom-right). Similarly, top 10 banks
based on illicit amount and total transactions (b). Percentages relative to the total across all banks are shown at the end
of the horizontal bars.

To visualize interactions between criminal accounts, a graph is constructed with paying accounts as
sources, receiving accounts as sinks, and transactions as directed edges, shown in Graph 32. The two domi-
nant Accounts ’10042B660’ and "10042B6A8’ stand out based on the total number of illicit transactions send,
accounting for over 10% of all illicit transactions. Interestingly, a large number of illicit transactions involve
only two accounts and remain disconnected from the rest of the network.

Figure 32: Network of illicit transactions. Nodes represent accounts, while edges depict the flow of illicit transactions
between accounts. The dominant 2 Accounts ’10042B660’ and ’10042B6A8’ have 314 (8.81% of total) and 196 (5.50%
of total) illicit transactions, respectively.

To have more insight in the distribution of illicit transactions, Figure 33a shows the number of accounts
with a certain range of number of transactions. Most accounts (515K) have 0-5 transactions in the 16 days
time span. A small number of accounts (12) have more than 10,000 transactions, suggesting that these
accounts may be corporate accounts or payment processing accounts. Figure 33b demonstrates that most
money laundering does not happen in a short time span and/or is done by multiple accounts. The bulk of
transactions comes from the 2.27K accounts that only made a single illicit transaction in that time, which
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are also seen in the coupled transactions in Figure 32. As expected, the two accounts with over 100 illicit
transactions are the same dominant entities mentioned earlier.

(a) All accounts. (b) Accounts involved in illicit transactions.

Figure 33: The number of accounts for different ranges of total transactions, based on all accounts (a) and criminal
accounts (b).

Figure 34 shows similar behavior as the banks, where Figure 34a shows a leveled pattern due to the integer
nature of total transactions. Figure 34b again shows no relationship between the amount send/received and
laundering rate.

(a) llicit activity based on total transactions. (b) Tilicit activity based on amount.

Figure 34: Scatter plot (a) showing the relationship between total transactions and non-zero laundering rates. Scatter
plot (b) showing the relationship between transaction amount and non-zero laundering rates. For both plots apply: each
dot represents an account, red for paying accounts and blue for receiving accounts and a 99%-quantile exclusion is applied
to remove outliers (the outliers do not show unusual behavior, only change the scale).

The marginal distribution of accounts based on the ITR from Figure 34 shows distinct behavior, as the
laundering rates seem to cluster around specific values. Figure 35 zooms into that distribution, and indeed
some laundering rates are disproportionately common. Interestingly, both accounts sending and receiving
illicit transactions exhibit this behavior. However, due to the undefined bulk between 0% and 10% ITR, this
is not an exploitable pattern for feature engineering.
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Figure 35: Distribution of illicit transaction rates for the number of accounts sending and receiving illicit transactions.

10.3 FEATURES

Feature Name Description Feature Description
IS LAUNDERING Whether the transaction is Hour Hour of the day the transaction occurred
money laundering (1) or DAy Day of the month
not (0) MONTH Month of the year
PAYING BANK Bank initiating the payment YEAR Year
PAYING ACCOUNT Account sending the money WEEKDAY Day of the week
RECEIVING BANK Bank receiving the payment IS WEEKEND Whether the transaction happened on a
RECEIVING ACCOUNT Account  receiving  the weekend
money DAWN Transaction occurred during dawn hours
CYCLE DETECTED A cycle back to account (hour 0-5)
within 15 transactions is de- MORNING Transaction occurred during morning
tected hours (6-11)
DAYS ACTIVE PAYING ACCOUNT Active days for the paying MIDDAY Transaction occurred during midday (12—
account 17)
DAYS ACTIVE RECEIVING ACCOUNT  Active days for the receiving EVENING Transaction occurred during

UNIQUE DESTINATIONS 4D
UNIQUE DESTINATIONS 8D
UNIQUE ORIGINS 4D
UNIQUE ORIGINS 8D

CRIMINALS IN NETWORK

PAYMENT FORMAT ACH

PAYMENT FORMAT BITCOIN
PAYMENT FORMAT CASH
PAYMENT FORMAT CHEQUE
PAYMENT FORMAT CREDIT CARD

PAYMENT FORMAT WIRE

account

Unique recipients from the
sender in the last 4 days
Unique recipients from the
sender in the last 8 days
Unique senders to the re-
ceiver in the last 4 days
Unique senders to the re-
ceiver in the last 8 days
Number of unique accounts
that the paying and receiv-
ing account have had illicit
transactions with
Transaction used the auto-
mated clearing house
Transaction used Bitcoin
Transaction used cash
Transaction used a cheque
Transaction used a credit
card

Transaction used a wire
transfer

AMOUNT (EUR)
UK POUND

MEXICAN PESO
SAUDI RIYAL
RUPEE

EURO

YUAN

CANADIAN DOLLAR
BRAZIL REAL

US DOLLAR
SHEKEL

SWISS FRANC

YEN

RUBLE
AUSTRALIAN DOLLAR
BITCOIN
INTRA-CURRENCY

evening/night (18-23)

Transaction amount in Euros

Binary variable for currency indicating
if sender and/or receiver used British
Pounds

Indicator for Mexican Pesos

Indicator for Saudi Riyals

Indicator for Indian Rupees

Indicator for Euros

Indicator for Chinese Yuan

Indicator for Canadian Dollars

Indicator for Brazilian Real

Indicator for US Dollars

Indicator for Israeli Shekel

Indicator for Swiss Francs

Indicator for Japanese Yen

Indicator for Russian Ruble

Indicator for Australian Dollars

Indicator for Bitcoin

Binary variable indicating if sender and
receiver used same currencies

Table 16: Features and their descriptions. The IS LAUNDERING feature is the target variable.
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Figure 36: Correlation matrix of all features before training. The CRIMINALS IN NETWORK feature updates its values
during training.

10.4 COST OF ALERT INVESTIGATION

Investigating an alert costs a certain amount due to the time analysts are investigating. The cost can be
estimated by first understanding the operational profile of an average bank. This includes the distribution of
alerts, their classification outcomes.

10.4.1 Profile of average bank

The calculation of the cost starts with estimating the distribution of confusion matrix elements is considered
the profile of the bank, as they describe the cost and (implicit) benefit gained from transaction monitoring.

The number of transactions handled by an average bank is estimated first. According to the European
Banking Federation [29], there were 5,075 credit institutions in the EU-27 in 2022, including commercial and
savings banks. In the same year, European Central Bank [30] reports 29.4 billion retail payment transactions
worth €23.5 trillion across the EU-27. Assuming that the transactions are done by these 5,075 institutions,
this yields an average of approximately 5.8 million transactions per bank annually.

Vedrenne [92] shows that in 2021 there were about 1,590,000 SARs filed. Since an individual illicit trans-
action rarely signals a complete laundering scheme, SARs typically bundle contextually related transactions.
FIU-Nederland [36] reports an average of ~4.5 transactions per SAR (80,578 transactions from 17,848 SARs
in 2023). For the sake of estimation, we assume each SAR represents 10 distinct illicit transactions, although
in reality not all bundled transactions may be independently illicit. This leads to an estimated 15.9 million
reported illicit transactions. Spread across 5,075 banks, this yields an average of 3,133 transactions flagged
as illicit per bank annually.

Chau and Dijck Nemcsik [14] notes that the false positive rates often exceed 90%, implying 28,197 false
positives. From these values an alert rate of 0.54% can be computed. This substantiates the claim from Red-
head [78] who explain that the conversion rate of transactions to SAR drops below 0.005%, or approximately
0.5% with 10 transactions per SAR and a true positive rate of 10%.
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The number of missed illicit transactions is inherently unknown due to the concealed nature of money
laundering schemes. But based on an interview with a model auditor of a large Dutch bank, where it is stated
that the bank aims to catch about 8% of the illicit transactions of the test dataset. With the assumption that
this goal is the same for an average bank, the total number of illicit transactions computes to 39,163 and the
number of missed illicit transactions to 36,030.

Europol [32] reports that only about 10% of SARs are further investigated, a trend that has persisted
since 2006. Moreover, they state that only 1% of criminal proceeds are successfully confiscated. Assuming
that the 1% of criminal proceeds confiscated corresponds to 1% of all money laundering activity, and that
these are discovered through the 10% of SARs that are actually investigated, we infer that only 1% of true
illicit transactions are caught. This implies a 99% miss rate, and for 313 detected true positives, this yields
an estimated total of 31,300 illicit transactions, meaning 30,987 go undetected.

A confusion matrix can be constructed for an average bank from the perspective of the bank and also from
the perspective of a FIU, which renders only 10% of the SARs illicit/useful.

5,732,640 (98.84%) | 28,197 (0.49%) 5,737,683 (98.93%) | 31,017 (0.53%)
36,030 (0.62%) | 3,133 (0.05%) 30,987 (0.53%) | 313 (0.005%)
(a) Confusion matrix of an average bank from the perspective (b) Confusion matrix of an average bank from the perspective
of the bank. of the FIU.

Table 17: Confusion matrices based on different perspectives of a true positive. TP as seen by banks are transactions
reported in a SAR, TP as seen by the FIU are transactions that are further investigated by the FIU.

The similar values for FN of both matrices indicates that the recall goal of 8% of the test set makes sense
with the 1% actually detected illicit transactions by the FIU. This can be checked with the approximation that
8% of transactions is caught by the bank, and 10% of these caught transactions are further investigated as
seen by the FIU, resulting in 0.8% of the illicit activity being caught by banks. The banks perspective will be
used throughout this research, as the FIU does not give feedback to the bank about which SARs are further
used and which are not.

10.4.2 Cost of alert investigation

A well defined indicator of the average cost of alert investigation is not well-established in the literature.
DataRobot [20] states that about $30 ~ $70 to investigate one alert, however the source of this range is not
clear. Rather than relying on potentially opaque estimates, a more defensible approach is to derive the cost
per alert by dividing the total financial crime compliance (FCC) expenditures by the total number of alerts
an average bank handles annually. This approach hinges on two main components: the number of alerts a
bank receives annually and the overall costs for investigating these alerts. Following the logic to determine
the profile of an average bank, the former is estimated to 28,197 FP and 3,133 TP (Table 17). To estimate
the cost of alert investigation, the average FCC expenditure per bank in the EEA is considered and comes
down to approximately €14 million annually, as reported by European Banking Authority [28]. A 2024 study
by LexisNexis Risk Solutions [56], which surveyed 254 compliance professionals, found that 7.1% of FCC
budgets are allocated to alert investigation and decision-making. This translates to around €994K spent per
bank each year specifically on alert investigation. The cost of handling a single alert is therefore approximately
€31.73. This approximation coincides with the $30 ~ $70 range DataRobot [20] estimated.
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10.5 OPTIMAL HYPERPARAMETERS

Query strategy Parameter €50 €1K €5K €10K €20K €30K €40K €50K <€100K <€1M
T 1.00 0.17 0.14 0.06 0.05 0.04 0.04 0.02 0.02  0.00
Random T 250 100 50 250 150 100 100 200 50 200
D 8 10 8 6 6 6 6 6 6 2
T 1.00 0.22 0.15 0.14 0.03 0.02 0.05 0.13 0.00  0.00
Uncertainty T 100 200 250 100 200 100 200 50 200 200
D 16 8 6 6 6 14 6 4 4 4
T 1.00 0.23 0.15 0.11 0.11 0.10 0.11 0.09 0.10  0.00
Query by committee T 300 200 300 150 200 50 100 250 300 100
D 2 6 6 6 6 6 6 8 2 16
T 1.00 0.22 0.15 0.15 0.07 0.06 0.05 0.07 0.04  0.00
Isolation forest T 150 150 300 150 50 50 100 250 50 50
D 8 8 6 6 6 6 6 2 6 16
T 0.26 1.00 0.12 0.18 0.08 0.09 0.12 0.07 0.03 0.00
Elliptic envelope T 150 200 200 200 50 200 200 150 200 100
D 10 2 8 4 8 6 2 6 6 12
T 1.00 1.00 0.10 0.10 0.01 0.02 0.05 0.01 0.01 0.00
SHAP-guided T 50 150 250 300 50 300 150 250 250 100
D 10 8 6 6 8 6 6 6 6 16
T 1.00 1.00 0.22 0.20 0.15 0.15 0.15 0.15 0.11 0.04
Passive T 50 100 100 150 50 250 50 250 150 300
D 2 8 16 6 6 4 6 6 4 8

Table 18: Optimal hyperparameters for each query strategy and several b values. Not all b values are shown for clarity.

10.6 PERFORMANCE COMPARISON

Figure 37 presents the changes in recall, precision, and true negative rate (A metrics) due to model optimiza-
tion, evaluated across the query strategies and various benefit values. Optimization was performed using the
validation set and includes both feature selection and hyperparameter tuning. The A metrics are computed
as the difference between the performance of the optimized model and that of the non-optimized model. All
reported values are based on the test set to ensure unbiased performance estimation.
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Figure 37: Improvement in recall, precision, and true negative rate for each query strategy and selected values of benefit
per TR
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