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Abstract

The Dutch passenger railway operator NS (Netherlands Railways) aims to offer the
best possible train schedule to their passengers. To achieve this, NS uses passenger
number forecasts for each train that is deployed. However, these forecasts are uncer-
tain as these numbers are rarely fully correct. In order to capture this uncertainty, NS
has developed two prediction methods that determine the probability distribution of
the expected number of passengers. Yet, NS thinks that these prediction methods can
be improved. In this study we investigate how the probabilistic passenger forecast
distribution can be improved.

We first discuss when we consider a probabilistic prediction good and we suggest
evaluation methods for this. Because good predictions for higher passenger numbers
and/or route travel time are important factors to NS, these are included in the eval-
uation. In addition to the two prediction methods used by NS, the current method
and the 2.0-prognoseverdeling method, we propose two new prediction methods:
the 3.0-prognoseverdeling method and quantile regression.

The results show that the 2.0-prognoseverdeling method, the 3.0-prognoseverde-
ling method and quantile regression perform significantly better than the current
method. Considering the importance of higher passenger numbers and/or route
travel times, quantile regression achieves the best prediction of the probabilistic dis-
tribution. Therefore we can conclude that quantile regression is the best prediction
method of the examined methods.

This study shows that there is room for improvement in the current prediction of the
probabilistic passenger forecast distribution. Therefore, we recommend to further
investigate the researched methods in this study, predominantly quantile regression
since it shows the most promising results.
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Chapter 1

Introduction

NS (Netherlands Railways) is the biggest passenger railway operator in the Nether-
lands. NS runs about 4,800 scheduled domestic trains a day, serving over one million
passengers a day. Besides being the largest railway operator in The Netherlands, NS
also enables traveling abroad to many European countries via NS International. The
goal of NS is to transport passengers to their destination, as fast and as comfortable
as possible, whilst being as sustainable as possible for the environment. To realise
this, a timetable is constructed with a daily schedule of employed trains across the
country. The timetable is updated annually and in the timetable the rolling stock
plan is often assessed and optimised. This includes changes due to maintenance,
disruptions or other issues.

Generally speaking, timetable planning at NS works as follows: a timetable is drawn
up a year in advance for an entire year, followed by rolling stock planning and staff
planning. After this, a “Basisdagen” (BD) plan is made about ten months in advance
and sent to ProRail (the railway manager of the Netherlands) for approval. Once
ProRail has determined the timetable, transport operators and ProRail can still make
changes. This is done by means of the “Basisdagen Update” (BDu) six months in
advance. The last planned update of the rolling stock plan is done by means of a
plan for specific days (SD), five weeks in advance. The standard week is converted to
specific dates. On those days, all kinds of changes can be defined, such as incidental
maintenance, extra trains due to events and trains for ad hoc transport. The whole
timeline for all NS passenger forecast types is shown in Figure 1. This plot shows
that NS also makes long term and medium-long term forecasts, which are made even
earlier than a year in advance. This study focuses on the passenger forecasts made
six months in advance, the BDu.

Figure 1: NS passenger forecast types including a timeline.
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Chapter 1. Introduction

In order to make the best timetable and rolling stock deployment plan for a BDu,
accurate predictions of the number of passengers are required. NS has plenty of
data on the daily offer of train rides in the national train network of the Nether-
lands including day and time of train rides, the amount of seats and the amount of
passengers. The path from data to passenger forecasts is shown in Figure 2.

Figure 2: The path from data to passenger forecasts.

NS uses mainly check-in-check-out (CiCo) data to draw up Origin-Destination ma-
trices per day, which represent the past number of passengers between each pair of
train stations for that day. A factor for the expected growth in passenger numbers
for the following year is applied to this. The passengers are then allocated to all
trains in the schedule of that day using the traffic planning software ‘VISUM’, which
is the only professional traffic planning software that provides a highly detailed rep-
resentation of all modes of public transport according to PTV Group (2021). The
result is a matrix containing a number of expected passengers for each combination
of train number, day of the week and stop-stop (which is a part of the route of a
train, described by an origin and a destination station) for each day in the BDu. So
if a BDu covers two months, a specific combination of train number, day of the week
and stop-stop will have the same train length for about eight days, and therefore the
same passenger forecast is used for these days.

In this study, we will call a combination of train number, day of the week and stop-
stop a “stop-stop prognose”. The prediction of the number of passengers for a stop-
stop prognose in a BDu will be called the “P50”, which is the median.

The prediction of the number of passengers for each stop-stop prognose is given by
a probability distribution, which is created in two steps: first, a prediction of the
number of passengers is made (point 8 in Figure 2), which is the P50, and then the
distribution of this prediction is determined (point 9 in Figure 2). The reason why
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Chapter 1. Introduction

the prediction of the number of passengers is determined separately is because of
the new timetable for the to be predicted BDu period. It is likely that there will be
new combinations of train number, day of the week and route that did not exist in
the past. On top of that, there are also no properties that allow you to use data on
similar stop-stop prognoses in the past. After all, it does not depend on the properties
of that stop-stop prognose, but on the overall coherence of the timetable. As a result,
the data at that level can no longer be used, making it necessary to use an allocation
model for the Origin-Destination passengers. It may not be statistically correct to
use a different model for the distribution, but this ensures that it is very robust to
timetable changes.

This research will not focus on predicting the P50 of the number of passengers, but
on its distribution, represented by percentiles Pτ with τ ∈ (0, 100). In order to
create the best train schedule for the passengers, it is not only important to know
the mean or median expected number of passengers, but also the other possible
numbers of passengers and the probability of those. A train schedule that accurately
fits passenger demand is very important to NS: if too few rolling stock units are used,
passengers would have to travel without a seat, possibly resulting in complaints. Yet,
if too many rolling stock units are deployed, this will lead to unnecessarily high costs.
Of course, both are undesirable.

NS has provided two methods for determining the percentiles for the P50 of a stop-
stop prognose: the “current method” and the “2.0-prognoseverdeling method” (2.0-
forecast distribution method). The current method to determine the desired per-
centiles for a given P50 does not take the uncertainty in this P50 into account and
does not perform well enough as we will see in this study, resulting in inaccurate
passenger forecasts. The 2.0-prognoseverdeling method was developed later than
the period of the data we use and does take the uncertainty in the P50 into account.
It determines the percentiles in a different way than the current method and will
also be compared with the current method and the newly introduced methods. All
of the above motivates the research question of this thesis: “How can the estimation
of certain percentile values in the probability distribution of a predicted number of
passengers for a combination of train number, day of the week and route in a BDu
be improved?”

Two new methods are introduced in this study: the “3.0-prognoseverdeling method”,
which is an extension of the 2.0-prognoseverdeling method, and “quantile regres-
sion”. Quantile regression is a method specifically developed for determining per-
centiles for some dependent variable and one or more independent variables as pre-
dictors (Koenker and Hallock, 2001).

The methods are evaluated in several ways. The first evaluation method is by deter-
mining the percentage of some test data that is less than or equal to the percentiles.
The closer the percentages are to the percentile ranks, the better the method has es-
timated them. The percentile rank of the 25th percentile (τ = 25), for example, is 25
(Glen, 2021). NS has used this evaluation method before, but found that this does
not capture well enough whether the predictions of the percentiles were correct as
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Chapter 1. Introduction

this only says something about the average of the forecasts. If a prediction method
performs well on average, it does not necessarily mean that the method predicts
individual stop-stop prognoses well.

In order to have a better error measurement for the prediction methods, a more
suitable evaluation method is also sought in this study. We look for an evaluation
method that also takes into account the forecast errors for individual stop-stop prog-
noses. On top of that, for NS it is less important to predict the distribution perfectly
for lower passenger numbers since the least number of seats a train can have is about
150 seats. Therefore, the planned train will be the same regardless of whether the
distribution is predicted well or not. In addition to passenger numbers, route travel
time is also an important factor, because for a passenger it is more annoying to have
to stand for a longer amount of time. So we are also looking for an evaluation
method that favours good predictions of higher passenger numbers and/or route
travel times.

The remainder of the report is organised as follows. In Chapter 2 the datasets for
this research are explained, along with some added variable transformations. The
methods used to answer the research question are described in Chapter 3, with its
results in Chapter 4. Lastly, the discussion of the results will be presented in Chap-
ter 5, followed by the conclusion including recommendations for future research in
Chapter 6.
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Chapter 2

Data Analysis

In this section the datasets that are used for this research will be explained and
explored, along with a number of descriptive graphs. After this, the data transfor-
mations that are used will be described, followed by how the data is split into a
training set, validation set and test set.

2.1 Datasets

This research focuses on the data from the month of April in 2019 because starting
from the BDu in that period (starting on 7 April), NS has carried out a model change
to the model that determined the percentiles. As a result, the percentiles of the pe-
riod before this BDu are not representative. The reason we do not choose a month in
2020 or 2021 is because of the coronavirus, as passenger numbers in this period are
not representative of normal conditions. In order not to make the calculation time
of the methods too long due to the limited time of the study, we decide to only look
at the available data for the month of April 2019 (i.e., from 7 to 30 April). On top of
that, we only considered weekdays, not weekend days. We did this because the dis-
tribution for these days is the most important for NS to predict. The variables for the
methods are extracted from different datasets, which will be explained individually
below.

2.1.1 SOFA dataset

The first dataset is called the “SOFA dataset”, containing 619,687 stop-stop prog-
noses for the month of April. For each of these stop-stop prognoses, the dataset
contains the exact departure and arrival times and the realised number of passen-
gers. This realised number of passengers is the best estimate NS has at the moment.
For the purpose of this study, the SOFA data are taken as truth.

We extract two additional variables from the date: the “Weekday” and the “Daypart”.
The variable Weekday has five levels: Monday to Friday. The variable Daypart has
three levels: morning rush hour, off-peak hours and evening rush hour. Morning
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2.1. DATASETS Chapter 2. Data Analysis

rush hour is from 7:00 to 9:00, evening rush hour from 16:00 to 18:00, and off-peak
hours are all remaining hours of a day.

Instead of dividing a day into dayparts, making it a factor variable, we could also
use the exact departure time of a train, making it a temporal variable. The reason
is that in the off-peak hours, the trains with departure times just before or after the
rush hours are probably more similar to the rush hours than to the off-peak hours
themselves. It might also be that the peaks in passenger numbers could be more
accurately captured when using the exact times. To do this, the departure times
have to be transformed in order to become useful to include in the methods. This
transformation is explained in detail in Section 2.2.

2.1.2 Passenger forecast dataset

We merged a second dataset with the SOFA dataset containing all desired percentiles
of the passenger forecast for 641,151 stop-stop prognoses. This dataset also contains
the passenger predictions per stop-stop prognose, the P50. The number of observa-
tions in this dataset and the SOFA dataset may differ, as it is possible that a planned
train will not run for some reason. In this case, there is data from one or more
stop-stop prognoses in the passenger forecast dataset missing in the SOFA dataset.
It could also be that a train has to run a different route due to a timetable change.
In this case, there is data on realised passengers for which there was no prediction.
The exact differences in numbers of stop-stop prognoses can be seen in Appendix
A. The datasets are linked in such a way that both the percentiles of the passenger
forecasts as well as the realised number of passengers are present for all stop-stop
prognoses, resulting in a dataset containing 600,637 stop-stop prognoses. So, for
this study, stop-stop prognoses where either the realised number of passengers or
the predictions for the percentiles are missing have been discarded.

We created two new variables using the P50 forecast, dividing the data into different
P50 groups. This is done to change the P50 forecast from a numerical variable to
a factor variable, which is needed for two of the prediction methods. On top of
that, we make the groups to aggregate similar stop-stop prognoses. Because for an
individual stop-stop prognose, there are only about eight observations for a BDu of,
say, two months, which is far too few observations to give a reliable prediction of the
distribution. The first P50 group is used in the 2.0-prognoseverdeling method and
divides the P50 forecasts into groups of 100 passengers up to 600 passengers and
one group of 600+ passengers, i.e. [100(n− 1), 100n) for n ∈ {1, . . . , 6} or [600,∞).
This grouping variable will be called the Static size P50 group. Figure 3 shows the
number of stop-stop prognoses in each of these groups.

Figure 3 shows that the distribution of the number of stop-stop prognoses between
the groups is very positively skewed. The ratio of the highest to the lowest number
of stop-stop prognoses is over 90:1. It might be more useful to make P50 groups with
an approximately equal number of stop-stop prognoses per group in order to have a
sufficient amount of stop-stop prognoses in each group to make reliable predictions.
Figure 4 shows a plot of more evenly distributed P50 groups.
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Figure 3: Number of stop-stop prognoses per static size P50 group.

Figure 4: Number of stop-stop prognoses per variable size P50 group.

Figure 4 shows that using these variable size P50 groups, the number of stop-stop
prognoses per group is much more evenly distributed. The ratio of the highest- to the
lowest number of stop-stop prognoses in these groups is about 14:1. Having a more
equal number of stop-stop prognoses per group and the fact that this variable has
more groups (ten instead of seven) means that we are likely to have more accurate
predictions for most groups. The variable Variable size P50 group is used in the
3.0-prognoseverdeling method.
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2.1. DATASETS Chapter 2. Data Analysis

2.1.3 Additional datasets

We merged three additional datasets with the passenger forecast dataset to add ad-
ditional predictive variables. These datasets are discussed separately below.

The first additional dataset contains the train type per train number. It describes
three train types: Intercity trains (IC), Sprinter trains (SPR) and international trains
(e.g., ICE). As the number of realised passengers in 2019 is not reliable enough
for international trains, these trains are not considered in this study. Adding the
train types could be useful in determining the percentiles as it could be that the
distribution of Intercity trains is different from that of Sprinter trains. From now on
we will refer to the train type as Rolling stock.

The second additional dataset divides all NS train stations in the Netherlands into
three global areas: “Randstad”, “invloedsgebied” and “periferie”. Randstad consists
of the largest cities in the Netherlands, located in the mid-west of the Netherlands.
Invloedsgebied refers to the area of influence of the Randstad as introduced by Gov-
ers (2011). It denotes the area immediately surrounding the Randstad. The re-
mainder of the Netherlands is classified as periferie. The exact distribution of the
three areas is shown in Figure 5. Adding the global areas could be useful as well
when determining the percentiles since the distribution of passengers for Randstad,
invloedsgebied and periferie could differ from each other.

Figure 5: The distribution of areas in RIP, where areas with a Roman numeral are
Randstad, areas with a letter are invloedsgebied and areas with a digit are periferie.
(Source: Govers (2011))

The last additional dataset also contains areas in which the train stations are di-
vided. This dataset contains 27 areas that are more specific than the areas of the
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Chapter 2. Data Analysis 2.2. DATA TRANSFORMATIONS

previous dataset, dividing the Netherlands on a provincial or big city level. Some
provinces have fewer or no major cities and therefore fall into a provincial level.
Other provinces do contain large cities that are assigned their own level, such as
Amsterdam in North Holland. All details concerning this dataset can be found in
Appendix B. It could be that the more specific areas than the three global areas are
better areas to add in terms of properly estimating the percentiles.

2.2 Data transformations

The variable for which we want to predict the distribution is the realised number of
passengers for each stop-stop prognose. The fact that it is per stop-stop prognose
entails a number of things. For instance, many passengers travel several stop-stop
prognoses on the same train route, which means that the same passenger is counted
for several stop-stop prognoses and that the stop-stop prognoses of a train route
therefore depend on each other. It also means that Sprinter trains count more heav-
ily than Intercity trains because they generally have more stop-stop prognoses per
complete train run, and therefore more data points. The left histogram in Figure 6
shows the distribution of the number of stop-stop prognoses per realised number of
passengers.

Figure 6: Histograms of the number of stop-stop prognoses per realised number of
passengers (left), its square root (middle) and its logarithm (right).

The left histogram in Figure 6 shows that about 80% of the data of the response
variable is between 0 and 200 passengers and is therefore not very spread out. This
can make it difficult to fit a regression line. Because there is such a large number of
stop-stop prognoses with a low realised number of passengers, this will weigh heav-
ily in determining the best regression line. However, for NS it is less important to
predict the distribution perfectly for lower passenger numbers since the least num-
ber of seats a train can have is about 150 seats. Therefore, the planned train will be
the same regardless of whether the distribution is predicted well or not.

To make the variance of the realised number of passengers no longer dependent on
the number of passengers itself, we use a variance stabilising transformation (Foi,

9



2.2. DATA TRANSFORMATIONS Chapter 2. Data Analysis

2009). Using a transformation of the data also spreads out the data, which makes
creating a linear model easier. Two transformations are applied to the realised num-
ber of passengers and are added to the dataset: the square root and the logarithm,
respectively the middle and right histogram in Figure 6.

The P50 forecast variable shows approximately the same distribution as the number
of realised passengers, where about 80% of the data is between 0 and 200 passen-
gers. For this variable, the square root and logarithm transformations are added to
the dataset as well. Histograms of the P50 forecast, its square root and its logarithm
are shown in Figure 7.

Figure 7: Histograms of the number of stop-stop prognoses per P50 forecast (left), its
square root (middle) and its logarithm (right).

The independent temporal variable concerning the exact departure time of the trains
requires some attention as this is a cyclic variable. To include the departure time
as a numerical variable, we choose to represent it as the total number of seconds
after midnight s, as is done by London (2016). As a result, the distance between
the seconds is correctly represented. However, the times 00.00 (0 seconds after
midnight) and 23.59.59 (86,399 seconds after midnight) are very close in terms of
time, but are as far apart as can be in this numerical representation. In order to
make variable s cyclical, it is split into two variables, namely:

ssin = sin
(
2π

s

S

)
, (2.1)

and

scos = cos
(
2π

s

S

)
, (2.2)

where S = 86, 400 seconds is the maximum number of seconds in a day (24 hours ×
60 minutes × 60 seconds = 86,400 seconds). Using this cyclic transformation, the
distance between all seconds is correctly represented.
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2.3 Data split

The data is split at random into a training set and a test set. This is done with an
80/20 ratio at train number level to keep all routes in a complete train run in the
same set. This is important because passenger numbers in consecutive routes of
the same train run are dependent on each other, as many passengers travel several
routes in one journey. The distribution of all levels within all factor variables is kept
approximately equal. For the numerical variables, the distribution of low and high
values is kept roughly equal as well.

To assess the generalisation capability of predictive models and to prevent overfit-
ting, k-fold cross-validation is performed on the training set (Berrar, 2019). This is
used to determine the precision of the prediction methods. In k-fold cross-validation,
the training set is partitioned into k subsets of approximately equal size (Berrar,
2019). The methods are trained using k − 1 subsets, which represent the training
set. Then the method is evaluated using the WMAPE(τ) values (which will be ex-
plained in detail in Section 3.1.2 in the Methodology), on the remaining subset,
which represents the validation set. This procedure is repeated k times until each
subset has served as validation set. To measure the robustness of a method, the mean
of the WMAPE(τ) values of the k repetitions and corresponding standard deviation
are then calculated. The smaller this deviation is, the more robust the method is.

We decided to use k = 5 subsets (dividing the training set into five subsets, each
containing approximately 20% of the training set data) in order to keep enough
repetitions to get an estimate of the robustness of the methods, but at the same time
not to increase the execution time too much.
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Chapter 3

Methodology

In this section, the evaluation methods and the methods used to predict the per-
centiles are presented. First, the evaluation methods are described in detail. After
this, the two NS methods are described: the current method and the 2.0-prognose-
verdeling method. Lastly, the two newly introduced methods are explained: the 3.0-
prognoseverdeling method and quantile regression. Quantile regression is divided
into two versions, one is trained without observation weights and one is trained with
observation weights.

3.1 Evaluation method

Comparing the methods is a difficult issue as we are looking for a single measure
for thousands of stop-stop prognoses, each with its own distribution of passenger
numbers. Three ways to compare methods are explained in this section. The reason
why we first explain the evaluation methods and only then the prediction methods is
because we first want to answer the question of when we consider a forecast good.
We need to know this before we can create models to make good predictions of the
percentiles.

3.1.1 Percentages of stop-stop prognoses

The first evaluation method we use is a very basic method previously used by NS.
For each percentile separately, we determine the percentage of stop-stop prognoses
in a given data set that is less than or equal to its percentile prediction. We then
compare this percentage to the percentile rank of the specific τ ∈ {0.01, 5, 10, 25, 75,
90, 95, 99.99}. For τ = 25, for example, the closer the percentage of stop-stop prog-
noses is to 25, the better the method has predicted this percentile of the realised
number of passengers on average.

In addition to the direct comparison between the percentages and percentile ranks,
we also look at the factor (percentage − percentile rank) / percentile rank. This
allows us to take a better look at the relative difference between percentage and
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Chapter 3. Methodology 3.1. EVALUATION METHOD

percentile rank. The closer this factor is to zero, the better the method has deter-
mined the percentile on average.

This method provides a first impression of how well the method performs on av-
erage. However, its disadvantage is that it only says something about the average
forecast, and not about how good the stop-stop prognose predictions are individu-
ally. For example, if a method overestimates the percentiles for one stop-stop prog-
nose and underestimates for another stop-stop prognose, then the prediction is good
on average, but bad for both stop-stop prognoses individually. This means that if a
prediction method performs well according to this evaluation method, it does not
necessarily mean that it is a good predictor per stop-stop prognose. However, if a
method does perform poorly according to this evaluation method, then it performs
already poorly on average, let alone per stop-stop prognose.

3.1.2 WMAPE(τ) values

The main method used in this study to evaluate the prediction methods is an ex-
tension of the Weighted Mean Absolute Percentage Error (WMAPE). According to
Chockalingam (2007), WMAPE is the sum of absolute errors divided by the sum of
the actuals as follows:

WMAPE =

∑n
t=1 |At − Ft|∑n

t=1At
, (3.1)

where n is the number of observations, At is the actual value and Ft is the predicted
value. This measure is volume weighted, meaning that it is not skewed by very
small passenger numbers (Kolassa et al., 2007). So in essence, in this measure, a
10% deviation for 1,000 passengers has a much larger impact on the total error than
a 10% deviation for 10 passengers. In order to also take the percentile ranks into
account, we modify WMAPE to

WMAPE(τ) =

∑n
t=1 ρτ (At − Ft)∑n

t=1At
. (3.2)

In this function ρτ has been added, which is a function that assigns asymmetric
weights to the error depending on the quantile τ and the overall sign of the error
according to Koenker and Bassett Jr (1978). It has the following form:

ρτ (u) = u(τ − 1(u < 0)). (3.3)

In this function, 1 is the indicator function, which is one if the condition is true and
zero if it is false. For example, for the P90, this function multiplies positive errors
by 0.9 and negative errors by −0.1 This also eliminates the need for the absolute
values in Equation 3.1 as the result of this multiplication will always be positive.
This evaluation method allows the total error of a method for a certain percentile
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rank to be represented very specifically, while also being weighted by the total size
of passenger numbers.

In addition to the WMAPE(τ) values, we also used a modified version of the local
goodness of fit measure that Koenker and Machado (1999) introduced, the R1(τ)
value. Koenker and Machado (1999) state that this measure is motivated by the R2

goodness of fit for classical least squares regression. Unlike R2, which provides a
global measure of goodness of fit, R1(τ) constitutes a local measure of goodness of
fit for a particular quantile τ . This implies that the R1(τ) values cannot be compared
between different τs. The equation for R1(τ) is

R1(τ) = 1− V̂ (τ)

Ṽ (τ)
, (3.4)

where V̂ (τ) is the error of the method to be tested and Ṽ (τ) is the error of some
baseline method. If the method to be tested obtained a lower error than the baseline
method, R1(τ) lies between zero and one. The closer R1(τ) is to one, the greater the
difference between the methods. However, the version we will use is

R1(τ) =
V̂ (τ)

Ṽ (τ)
− 1, (3.5)

which is the opposite of Equation 3.4. We do this because in this study we are not
maximising something, but minimising the total error. So in this case, it makes more
sense to flip the sign. The closer this R1(τ) value is to −1, the better the method
performs compared to the baseline method.

3.1.3 WMAPEP50×t(τ) values

NS can only use complete rolling stock units with a fixed number of seats. It is
not possible to use half a unit, for example. The smallest train that NS can deploy
has about 150 seats. This means that the forecast for lower passenger numbers
is less important. For example, if the distribution around 60 passengers is slightly
inaccurate, it will not affect which train is scheduled. It will matter for higher P50s,
where perhaps other rolling stock units are scheduled if the distribution is more
accurate.

In addition to the number of passengers, the route travel time of a stop-stop prognose
is also an important factor. After all, it is more annoying for a passenger to have to
stand for a long period of time than for a short period of time. We also do not want
passengers who travel several shorter stop-stops to be weighted more heavily than
passengers who travel few longer stop-stops. For NS, it is therefore more important
to predict the distribution of passenger numbers at a stop-stop prognose with higher
passenger numbers and/or longer route travel times more accurately than at other
stop-stop prognoses. To achieve this, we add observation weights to Equation 3.2 to
get a value weighted WMAPE(τ):
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WMAPEP50×t(τ) =

∑n
t=1wtρτ (At − Ft)∑n

t=1wtAt
, (3.6)

where wt are the weights for stop-stop prognose t in P50 forecast times stop-stop
prognose route travel time (in minutes). Also for this method, the R1(τ) values of
Equation 3.5 can be used to compare the prediction methods with a baseline method.

3.2 Current method of NS

THIS SECTION HAS BEEN REMOVED BECAUSE IT CONTAINS CONFIDENTIAL IN-
FORMATION.

3.3 2.0-prognoseverdeling method

The current method uses only the realised number of passengers of the past data to
predict the desired percentiles and not the P50 forecast itself as well. As a result, it
does not take into account the uncertainty in the P50 forecast itself, but assumes it
to be 100% correct. NS has developed a second method for determining the desired
percentiles that does take this uncertainty into account: the 2.0-prognoseverdeling
method. This method calculates a new distribution based on the medians of the
passenger forecast and the realised number of passengers. By doing this, the method
also takes the uncertainty in the realised P50 into account.

For this method, we start by computing the multiplication factor between the re-
alised number of passengers ri and the passenger forecast (P50)i for all i stop-stop
prognoses in a specific reference year and BDu combination as follows:

αi =
ri

(P50)i
. (3.7)

In this equation, αi is the multiplication factor that is needed to get from the P50

forecast to the actual number of passengers for the past reference data. In this
method we try to estimate the percentiles of the multiplication factors for grouped
parts of the data. The reference data is grouped as follows:

• Weekday (Monday - Friday)

• Daypart (morning rush hour, evening rush hour, off-peak hours)

• Static size P50 group ([100(n− 1), 100n) for n ∈ {1, . . . , 6} or [600,∞))
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The percentiles that NS wants to calculate for the P50s of the stop-stop prognoses in
each of these groups are Pτ , with τ ∈ {min, 5, 10, 25, 75, 90, 95,max}. The multipli-
cation factors for the percentiles other than Pmin and Pmax are calculated following
Hyndman and Fan (1996). They define sample quantiles as follows:

Q(p) = (1− γ)x[j] + γx[j + 1], (3.8)

where j+p−1
n
≤ p < j+p

n
, x[j] is the jth order statistic, n is the sample size and the

value of γ is p(n − 1) − j + 1. The sample quantiles can then be obtained by linear
interpolation between the points (p[k], x[k]), where p[k] = k−1

n−1 and x[k] is the kth
order statistic. The result is then used as multiplication factor α̃τ .

The multiplication factors for Pmin and Pmax are calculated in a different way. For
Pmin, the multiplication factor α̃min of a given group is defined as the minimum factor
in the group.

For the multiplication factors for percentiles between P95 and Pmax NS assumes a
linear interpolation. If we take the maximum for Pmax, this can lead to problems
as it is very sensitive to outliers. To avoid this, NS wants a lower Pmax to make the
linear interpolation somewhat reliable, using the following equation:

α̃max = 2α̃99.5 − α̃99. (3.9)

The estimation of the multiplication factor for Pmax is thus a linear extrapolation
of the 99th and 99.5th percentile. Using the approximation of the percentiles for
the multiplication factors for all combinations of groups, the new percentiles of the
expected number of passengers can be calculated with the following equation:

Pτ = α̃τP50. (3.10)

3.4 3.0-prognoseverdeling method

The 3.0-prognoseverdeling method focuses on finding a better combination of vari-
ables to split the reference data than the combination of variables used in the 2.0-
prognoseverdeling method. The combination of variables that is used in the 2.0-
prognoseverdeling method for the reference data in a BDu are: Weekday, Daypart
and Static size P50 group (groups of 100 passengers). For the variables Weekday and
Daypart, the percentage of the dataset and the five-number summary for the realised
number of passengers per weekday/daypart in April 2019 is shown in Table 1 and
Table 2 respectively.

A number of characteristics of the distribution of passengers per weekday and day-
part can be extracted from the five-number summary: the location, the spread and
the shape. According to Heckert et al. (2002), the location is the expected value of
the output being measured. The spread is the amount of variation associated with
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the output. This tells us the range of possible values that we would expect to see.
The shape shows how the variation is distributed about the location. For all vari-
ables in this dataset, the shape is very positively skewed and will therefore not be
investigated further. The location will be indicated by the median and the spread
by the inter-quartile range (IQR), which is the difference between the third and first
quartile.

Table 1: The percentage of the dataset and the five-number summary of the realised
number of passengers per weekday.

Table 1 shows that there is an approximately equal ratio of the number of stop-stop
prognoses between the five weekdays in April 2019. It also shows that Monday
has the lowest location and spread and Thursday the highest location and spread in
terms of the number of realised passengers. Therefore, there are some differences in
the distribution of the number of passengers between the weekdays and it is probably
useful to split the data on this.

Table 2: The percentage of the dataset and the five-number summary of the realised
number of passengers per daypart.

As shown in Table 2, the differences in number of passengers between dayparts
are considerably larger than between weekdays. The off-peak hours differ greatly
from the morning and evening rush hours as the location and spread of the number
of passengers are about twice as small. There is also a difference in location and
spread between the two rush hours, but this difference is much smaller.

Since both variables Weekday and Daypart show considerable differences between
their factor levels, we choose to include both variables in the 3.0-prognoseverdeling
method.

Regarding the Static size P50 groups of the 2.0-prognoseverdeling method, we looked
at the ratio between the number of stop-stop prognoses in each P50 group. In these
groups, we see that the ratio between the groups is very positively skewed, with
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468,820 stop-stop prognoses in P50 group [0, 100] and only 5,130 stop-stop prognoses
in P50 group (500, 600]. To make the ratio between the number of stop-stop prognoses
in the P50 groups more equal, we choose to use the Variable size P50 groups in the
3.0-prognoseverdeling method. As explained in Section 2.1.2, this variable splits the
P50 forecasts into groups of variable sizes to make the number of stop-stop prognoses
in each group more equal.

The 2.0-prognoseverdeling method does not take the area in which a stop-stop prog-
nose is located into account. Adding a variable concerning this could be of great
value as there could be a difference in distribution of passengers between different
parts of the Netherlands. Two variables about the location of a departure station
of a stop-stop prognose are available: RIP and Area. The variable RIP divides the
stop-stop prognoses into three regions: Randstad, invloedsgebied and periferie. The
variable Area divides the stop-stop prognoses into 27 areas at province or large city
level. To find out which of these variables is best for splitting the data, we look at all
areas of variable Area within invloedsgebied of variable RIP. The full name, in which
RIP area it is located, the percentage of the dataset and the five-number summaries
of these areas is shown in Table 3.

Table 3: The full name, RIP, percentage of the dataset and five-number summary of the
realised number of passengers per area in invloedsgebied.

Table 3 shows that there is already a substantial difference between the areas in in-
vloedsgebied itself, let alone between areas of different RIPs. The biggest difference
in these areas can be seen between Area 9 and Area 23, where the median and the
IQR are about twice as high for Area 23. Because the differences between the areas
within one RIP area are already so large, we choose to include only the variable
Area in the 3.0-prognoseverdeling method. The full name, in which RIP area it is
located, the percentage of the dataset and the five-number summary of all 27 areas
in variable Area can be found in Appendix B.

The last variable in the data set that might be interesting to split the data on is
the Rolling stock. The percentage of the dataset and the five-number summary of
Intercity trains and Sprinter trains is shown in Table 4.

Table 4 shows that about two-thirds of the data consists of Sprinter trains. It can
also be seen that the median and IQR for Sprinter trains is about twice as small as
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Table 4: The percentage of the dataset and the five-number summary of the realised
number of passengers per rolling stock.

for Intercity trains. As a large number of stop-stop prognoses with low passenger
numbers are Sprinter trains, it is probably helpful to the method to split the data on
Rolling stock.

The combination of variables that will be used in the final 3.0-prognoseverdeling
method is: Weekday, Daypart, Variable size P50 group, Area and Rolling stock. With
this combination of variables, it is possible that there are no stop-stop prognoses in
a specific combination of factor levels in the training set, but that there are stop-stop
prognoses of this combination in the test set. In this study, we choose to use the
average of all other stop-stop prognoses as the prediction if this is the case.

3.5 Quantile Regression

Since we are looking for percentiles (quantiles), it makes sense to investigate the
method of quantile regression. Quantile regression is a type of linear regression
analysis, which is a statistical method to summarise the linear relationship between
a dependent variable and a set of independent variables. Where standard linear
regression techniques do this based on the conditional mean, quantile regression
does this based on any quantile.

Quantile regression has some advantages over ordinary least squares (OLS) regres-
sion. One benefit of quantile regression is that it makes no assumptions about the
distribution of the residuals. It also drops the assumption that the variance of the
variable must remain constant. On top of that, quantile regression is much more
robust against outliers in the dependent variable compared to OLS.

The equation of the quantile regression model for the τ th percentile is described by
the following equation:

yi = x>i b+ ei, i = 1, . . . , n (3.11)

where x>i represents a vector of predictors, b = β(τ) is the vector of coefficients
associated with the τ th percentile, n is the number of data points and ei are the
residuals of the model and are assumed to make the τ th quantile equal to zero
(Koenker and Hallock, 2001). Based on Equation 3.11, we also make the assumption
that the τ th percentile is given as a linear function of independent variables. To find
the best estimate for percentile τ , b is estimated by solving the minimisation function
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min
b∈Rp

n∑
i=1

ρτ
(
yi − x>i b

)
, (3.12)

where p is the number of independent variables used in the model and ρτ is the same
function as in Equation 3.3. If a method underestimates, then the error is positive,
which means that the error receives a penalty of τ . If a method overestimates, then
the error is negative, so the error receives a penalty of (1−τ). The ρτ function ensures
that the minimum in the minimisation function is exactly at the right percentile of
the data, where the ratio of positive errors to negative errors is 1−τ : τ . For example,
for the P90 the function ensures that it searches for the line for which the ratio of
positive errors to negative errors is exactly 0.1 : 0.9.

Solving Equation 3.12 reduces to solving a linear program as this is a problem that
seeks to optimise a linear function subject to linear constraints (Koenker and Hallock,
2001).

Variable selection
We want to determine the distribution of the number of passengers for stop-stop
prognoses. To spread out the observations more, making it easier for quantile re-
gression, we try to predict the logarithm of the number of passengers. Then, to go
from this prediction back to a prediction of the number of passengers, we take the
exponential. To select the most important explanatory variables for this, the step-up
method is used. In this method, we start with an empty model and step by step add
the variable that yields the minimum error (calculated as in Equation 3.12, repre-
sented by β̂(τ)). A restriction for adding the variable to the model is that the model
contains only variables where at least one level is significantly different from zero.
This is important, because if a variable is not significantly different from zero, it
might as well not be included in the model. A second restriction is that we make
sure that the model is a significant improvement on the previous model.

To determine whether or not there is a statistically significant difference between
the model with an added variable and the previous model (which did not include
the added variable), a partial F -test is used, following Pardoe et al. (2021). This
tests whether the variable that is not in the full model is actually useful and should
therefore be included. The null and alternative hypothesis for this test are as follows:

Hypothesis H0: All coefficients removed from the full model are zero.

Hypothesis H1: At least one of the coefficients removed from the full model is
non-zero.

The significance level used is α = 0.05 and the F test-statistic that this test calculates
is as follows:

F =

RSSreduced−RSSfull
p

RSSfull
n−k

, (3.13)

20



Chapter 3. Methodology 3.5. QUANTILE REGRESSION

where RSSreduced is the residual sum of squares of the reduced model, RSSfull is the
residual sum of squares of the full model, p is the number of predictors removed
from the full model, n is the total observations in the dataset and k is the number of
coefficients (including the intercept) in the full model (Pardoe et al., 2021).

As the P90 is the most important percentile for NS, we choose this percentile for the
variable selection for the quantile regression model. Table 5 shows the results of all
quantile regression models with a single explanatory variable.

Table 5: The β̂(0.9) values (in number of passengers) and significance of factor levels
for a model with each explanatory variable separately.

Explanatory variable β̂(0.9) All variables significant?

log(P50) 33,206.71 Yes
P50 group (100) 43,176.39 Yes

P50 group (variable) 34,979.62 Yes
Weekday 77,703.46 Yes
Daypart 71,782.92 Yes

Time (sin& cos) 76,969.30 Yes
RIP 76,178.70 Yes
Area 74,703.64 Yes

Material 72,127.63 Yes

As can be seen in Table 5, the P50 forecast seems to be the most important variable to
predict the P90 of a stop-stop prognose as its errors are about half as small compared
to the other variables. In this study, we have also created a quantile regression model
without the P50 as a predictor. However, the error for the P90 that is then obtained is
more than twice as much. Therefore, there is no need to present the results of this
model if the difference is so obvious.

The logarithm of the P50 forecast achieves the lowest error value and therefore forms
the basis of the model. Step by step, the variable that achieves the smallest error is
then added to the model until no smaller error is achieved or there are variables that
are not significantly different from zero. The interaction between the different factor
variables is also included, which allows for even better results. The only variable for
which no interaction is included, is Area. This is due to the fact that if the interaction
is included, this will result in many variables that are not significantly different from
zero.

The intermediate steps of the step-up method are shown in Appendix C. The best
model found with all variables significantly different from zero is shown in Table 6.
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Table 6: The β̂(0.9) values (in passengers) and significance of factor levels for a model
with log(P50), area, daypart and one remaining explanatory variable.

Explanatory variables β̂(0.9) All variables significant?

log(P50), Area, Daypart, Weekday 31,624.88 Yes
log(P50), Area, Daypart, RIP 31,695.95 Yes

log(P50), Area, Daypart, Rolling stock 31,683.04 Yes

As can be seen in Table 6, the model that obtains the lowest error for the P90 in-
cludes the log(P50), Area, Daypart, Weekday and the interaction between Weekday
and Daypart. To see whether this model performs significantly better than the pre-
vious model (without Weekday), the F -test is performed, resulting in an F value of
123.18, with a corresponding p-value of < 10−15. This p-value is much smaller than
the chosen significance level of α = 0.05, indicating that the null hypothesis can be
rejected. This means that there is sufficient evidence that the variable Weekday is
statistically significant to the model. Therefore, the best model for the P90 found is
as follows:

log(#passengersP90
) = 0.74 + 0.87 log(P50) + 0.14A2 + 0.13A3 + 0.33A4 + 0.05A5

+ 0.10A6 + 0.15A7 + 0.14A9 + 0.12A10 + 0.37A11 + 0.21A12 + 0.15A13
+ 0.35A14 + 0.32A15 + 0.43A16 + 0.51A17 + 0.33A18 + 0.24A19 + 0.29A20
+ 0.19A21 + 0.11A22 + 0.16A23 + 0.17A24 + 0.03A25 + 0.09A26− 0.03O
− 0.02M + 0.04Tu + 0.05We + 0.08Th− 0.01Fr− 0.05Tu/O− 0.03Tu/M

− 0.08We/O− 0.03We/M− 0.09Th/O− 0.05Th/M + 0.04Fr/O− 0.12Fr/M, (3.14)

where A2, . . . ,A26 are the different areas, O and M are off-peak hours and morning
rush hour respectively, Tu, . . . , Fr are Tuesday to Friday and Tu/O, . . . , Fr/M are the
interaction terms between variables Weekday and Daypart.

To be able to provide some interpretation on how big the influence of the variables
in this model is, we can use the natural exponential function on both sides of the
equation, resulting in

#passengersP90
= e0.74 × e0.87 log(P50) × e0.14A2 × · · · × e0.04Fr/O ÷ e0.12Fr/M. (3.15)

Since the factor levels can only be one or zero, the exponential functions for the
factor levels depend only on the size of the coefficients. Most of these coefficients are
smaller than 0.2, and can therefore be approximated by 1+x, which is a linearisation
of ex, For x ≤ 0.2 the maximum error that can be made with this linearisation is
e0.2 − (1 + 0.2) ≈ 0.021.
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Taking Area 2 as an example, we see that the influence on the prediction of the
number of passengers by this variable is described by e0.14A2 and can be approximated
by 1 + 0.14× 1 = 1.14. This effectively means that in the multiplications in Equation
3.15, the prediction of the number of passengers is increased by approximately 14%
if the stop-stop prognose is in Area 2.

3.6 Quantile Regression with weights

Due to the fact that the smallest train NS can deploy contains about 150 seats, a
good prediction of the percentiles for smaller P50s has less priority than higher P50s.
It might therefore be advantageous to assign weights to the stop-stop prognoses in
order to indicate the importance of their percentile estimation. NS also considers
it important to make a good prediction for stop-stop prognoses with longer route
travel times. For this reason, we choose to take as observation weights the P50

forecast times the route travel time in minutes (P50 × t), which are the same as in
the evaluation method with observation weights. Following Huang and Rat (2017),
these weights can be added to the objective function in Equation 3.12 to obtain a
weighted loss function. To find the best estimate for percentile Pτ , b is estimated by
solving the minimisation function

min
b∈Rp

n∑
i=1

wiρτ
(
yi − x>i b

)
, (3.16)

where wi is the weight for stop-stop prognose i, defined as P50 forecast times route
travel time in minutes. By adding weights to the stop-stop prognoses, we now have
better control over where the method will perform better or worse. Despite the
weights, the function will still look for the correct percentile. However, the method
will make compromises somewhere in the stop-stop prognoses with lower weights
to better predict the percentiles for stop-stop prognoses with larger weights.

The same step-up method as before is used to select the best explanatory variables
for the quantile regression model trained with observation weights. We again search
for the best combination of variables for the P90. The results for all models with a
single explanatory variable are shown in Table 7.

Again, the most important variable to predict the P90 seems to be some form of the
P50 forecast, more specifically its logarithm. The intermediate steps can be found in
Appendix D, with the final step shown in Table 8.

Table 8 shows that again variable Weekday achieves the lowest error value, with
β̂P50×t = 32, 115.50. To examine whether the variable Weekday should be included in
the final model, a partial F -test is performed. The hypotheses and significance level
are as before. The test results in an F test-statistic of 63.98, with a corresponding p-
value of < 10−15, indicating that the null hypothesis can be rejected and that there is
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Table 7: The β̂P50×t(0.9) (in passengers2 minutes) and significance of factor levels for a
model with each explanatory variable separately.

Explanatory variable β̂P50×t(0.9) All variables significant?
log(P50) 33,566.84 Yes

P50 group (100) 43,678.33 Yes
P50 group (variable) 35,063.00 Yes

Weekday 95,131.80 Yes
Daypart 82,977.94 Yes

Time (sin& cos) 97,751.11 Yes
RIP 93,300.24 Yes
Area 91,491.07 Yes

Material 82,296.87 Yes

Table 8: The β̂P50×t(0.9) (in passengers2 minutes) and significance of factor levels for a
model with log(P50), area, daypart and one remaining explanatory variable.

Explanatory variables β̂P50×t(0.9) All variables significant?
log(P50), Area, Daypart, Weekday 32,115.50 Yes

log(P50), Area, Daypart, RIP 32,167.54 Yes
log(P50), Area, Daypart, Material 32,225.84 Yes

sufficient evidence that the variable Weekday is statistically significant to the model.
The best found model for the weighted observations using quantile regression is as
follows:

log(#passengersP90
) = 0.68 + 0.90 log(P50) + 0.07A2 + 0.07A3 + 0.12A4 + 0.01A5

+ 0.06A6 + 0.10A7 + 0.11A9 + 0.10A10 + 0.23A11 + 0.14A12 + 0.12A13
+ 0.24A14 + 0.23A15 + 0.35A16 + 0.31A17 + 0.21A18 + 0.19A19 + 0.20A20
+ 0.17A21 + 0.04A22 + 0.09A23 + 0.13A24− 0.04A25 + 0.04A26− 0.02O
− 0.02M + 0.03Tu + 0.04We + 0.06Th− 0.04Fr− 0.03Tu/O− 0.001Tu/M
− 0.07We/O− 0.01We/M− 0.08Th/O− 0.02Th/M + 0.003Fr/O− 0.06Fr/M.

(3.17)

The difference between the quantile regression model trained with weights versus
without weights is mainly reflected in the fact that the coefficient of the log(P50) is
higher and the coefficients of all factor variables are lower. This implies that the P50

plays an even higher role, compared to the other variables, in predicting the more
important stop-stop prognoses in terms of P50 forecast size and/or route travel time
length.
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Chapter 4

Results

This chapter shows the results. First, the methods are evaluated by comparing the
percentages to the percentile ranks. Then, the robustness of the methods is tested
using the WMAPE(τ) values without and with observation weights. Afterwards, the
methods are compared with each other by testing them on the test set. Lastly, the
errors are broken down by factor variable to see which factor levels contribute most
to the total error.

4.1 Evaluation method: percentages

The first evaluation method of the various forecasting methods is to determine the
percentage of stop-stop prognoses in the test set that are smaller than or equal to
the percentiles. The closer these percentages are to the percentile ranks, the bet-
ter the method reflects the distribution of the number of passengers per stop-stop
prognose on average. A plot of this for the five methods (the current method,
2.0-prognoseverdeling, 3.0-prognoseverdeling, quantile regression trained without
weights and quantile regression trained with weights) is shown in Figure 8.

Figure 8 shows that even on average the distribution of the realised number of pas-
sengers is not captured well by the current method. For the percentiles lower than
P50, the percentages are much higher than expected and for the percentiles higher
than P50, they are much lower than expected.

We can also see that for all methods other than the current method, the graphs
form almost a straight line, indicating that all methods seem to perform well for
all percentiles on average. To examine this in more detail, we determine the ratio
(percentage of stop-stop prognoses where number of passengers ≤ percentile − per-
centile rank) / percentile rank for all methods and percentile ranks. The result is
shown in Figure 9.
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Figure 8: The percentage of stop-stop prognoses where the number of realised passen-
gers ≤ Pτ versus the percentile ranks for the five prediction methods.

Figure 9: A zoomed-in (left) and normal (right) plot of the ratios (percentage of stop-
stop prognoses where the number of realised passengers ≤ Pτ − percentile rank) /
percentile rank versus the percentile ranks for the five prediction methods.

As can be seen in Figure 9, the ratio does not have much meaning for the P0.01, which
makes sense since the percentages are divided by 0.01. So if the percentage of pas-
sengers at all stop-stop prognoses less than or equal to the P0.01 is for example 0.1%,
then the ratio already blows up. The figure shows again that the current method
does not perform well as for all percentile ranks the ratio is far from zero. It can
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also be seen that the 2.0-prognoseverdeling method seems to outperform the other
methods on average for the lower percentiles. For the higher percentiles, quantile
regression seems to be closest to a ratio of zero on average, but the differences be-
tween the methods other than the current method are very small (i.e., a difference
of less than 2%).

The figure also shows that for the percentiles lower than P50 quantile regression
trained without observation weights achieves on average better results than trained
with observation weights. However, for the higher percentiles this is the other way
around. It could be that because of the observation weights, the focus for a good
prediction lies more on higher P50 forecasts, so that the distribution is determined
better there and worse for lower P50 forecasts. It could be that for the lower per-
centiles this change happens to be worse than quantile regression trained without
observation weights and for the higher percentiles to be better. There probably are
more factors that influence this, such as the route travel time (which is also part
of the observation weights) that cannot be observed if only these percentages of
stop-stop prognoses are considered.

The fact that a method predicts well on average does not necessarily mean that
it predicts well for each individual stop-stop prognose. Therefore, this evaluation
method is only used to filter out the prediction methods that do not perform well on
average, which in this case is just the current method.

4.2 Evaluation method: WMAPE(τ) values

The main evaluation method uses the WMAPE(τ) values for evaluating the predic-
tion methods. This method assigns asymmetric weights to positive and negative
errors for a certain percentile, allowing the total error of a method for a given per-
centile to be represented very specific for that percentile. It is also not skewed by
very small passenger numbers as it provides a weighted mean of absolute percent
errors, where it is weighted by the size of the passenger numbers (Kolassa et al.,
2007). For this evaluation method, we do not include the current method as it al-
ready does not perform well on average. The 2.0-prognoseverdeling method will be
used as the baseline method that the other methods will have to beat.

To assess the generalisation capability of predictive models and to prevent overfit-
ting, 5-fold cross-validation was performed (Berrar, 2019). This is used to deter-
mine the precision of a method. The WMAPE(τ) values are then determined for
each fold, of which a mean with corresponding standard deviation per percentile is
calculated. In addition, the R1(τ) values are calculated, allowing for better compar-
ison of the 3.0-prognoseverdeling method and the quantile regression method with
the 2.0-prognoseverdeling method.

After this, the methods are trained on the entire training set and tested on the test
set. To compare the methods with each other, the WMAPE(τ) values and R1(τ)
values are determined again, but this time for the test set.
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4.2.1 Without observation weights

We first look at the WMAPE(τ) values for the cross-validation without observa-
tion weights. These are shown in Figure 10. The figure shows that both the 3.0-
prognoseverdeling method and quantile regression (both trained without and with
observation weights) seem to achieve lower errors than the 2.0-prognoseverdeling
method for all percentiles (except the 3.0-prognoseverdeling for P0.01 and P99.99).
The percentiles cannot be compared with each other as each percentile has its own
minimum. An example of this is shown in Appendix E. In addition to the differences
in errors, it can be seen that the standard deviations of all methods for all percentiles
are reasonably small, indicating that the methods are robust and can handle small
changes in the data well.

Figure 10: Mean WMAPE(τ) values with corresponding standard deviation of the 5-fold
cross-validation per prediction method.

Because the differences between the methods are quite close, we also make the
comparison in a more detailed way, using an adaptation of Koenker and Machado
(1999)’s goodness-of-fit value, the R1(τ) value. When calculating this value, we take
the 2.0-prognoseverdeling as the baseline method and compare the other methods
to it. The R1(τ) values can be seen in Figure 11.

In Figure 11, the closer the R1(τ) value is to −1, the greater the difference in er-
ror value compared to the 2.0-prognoseverdeling method. The figure shows that
for most percentiles the 3.0-prognoseverdeling method performs best compared to
the 2-0-prognoseverdeling method. For some percentiles quantile regression trained
with observation weights performs best. We can also see that for none of the per-
centiles quantile regression trained without observation weights performs best. We
can see that the lower percentiles can be improved by about 2% and the higher
percentiles by about 4 to 5% when using the 3.0-prognoseverdeling method.
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Figure 11: Zoomed-in (left) and normal (right) plot of the mean R1(τ) values with
corresponding standard deviation of the 5-fold cross-validation per prediction method.

4.2.2 With observation weights

Because NS finds it more important to achieve better results for stop-stop prognoses
with higher P50 forecasts and/or route travel times, we add the observation weights
to the evaluation. The WMAPEP50×t(τ) values of the different prediction methods are
shown in Figure 12.

Figure 12: Mean WMAPEP50×t(τ) values with corresponding standard deviation of the
5-fold cross-validation per prediction method.
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Figure 12 shows that the methods again seem to be very robust, as evidenced by the
small standard deviations. Also, the WMAPEP50×t(τ) values of the methods are very
similar between the 3.0-prognoseverdeling method and quantile regression trained
with observation weights. Quantile regression trained without observation weights
seems to not outperform the 2.0-prognoseverdeling method. To better examine the
differences, the R1(τ) values are shown in Figure 13.

Figure 13: Zoomed-in (left) and normal (right) plot of the mean R1(τ) values with
corresponding standard deviation of the 5-fold cross-validation per prediction method.

In this case, quantile regression trained with observation weights performs best for
all percentiles. This is only a small reduction in average error of about 1% for
the lower percentiles compared to the 2.0-prognoseverdeling method, but rises to
about 4% to 5% for the higher percentiles (excluding the P0.01 and P99.99, where the
reduction in error is substantially higher).

4.2.3 Results test set

After cross-validation, the methods are trained on the entire training set and tested
on the, so far unseen, test set. The WMAPE(τ) values of the methods for all per-
centiles are shown in Figure 14.

Figure 14 shows that, for the test set, the 3.0-prognoseverdeling method and both
quantile regression methods outperform the 2.0-prognoseverdeling method for all
percentiles (except for the 3.0-prognoseverdeling method for P0.01 and P99.99). Since
the WMAPE(τ) values of the methods are very close to each other, we also look at
the R1(τ) values, where we compare the 3.0-prognoseverdeling method and quantile
regression methods to the 2.0-prognoseverdeling. These R1(τ) values are shown in
Figure 15.
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Figure 14: WMAPE(τ) values for the prediction methods, tested on the test set and
evaluated without observation weights.

Figure 15: Zoomed-in (left) and normal (right) plot of the R1(τ) values for the predic-
tion methods, evaluated without observation weights.

Figure 15 shows that the 3.0-prognoseverdeling method again achieves the best
results for all percentiles other than P0.01 and P99.99. For the P5, both the 3.0-
prognoseverdeling method and quantile regression trained with observation weights
perform about equally well. We also see that quantile regression seems to perform
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better for all percentiles except P95 when trained with observation weights instead
of trained without observation weights.

If we look at the WMAPEP50×t(τ) values of the methods with the weighted observa-
tions included, we see something different. These values are shown in Figure 16.

Figure 16: WMAPEP50×t(τ) values for the prediction methods, tested on the test set and
evaluated with observation weights.

This time we see that the quantile regression trained with observation weights seems
to perform best on all desired percentiles other than P10, P25 and P50, and thus
outperforms the 3.0-prognoseverdeling method on the higher percentiles. We can
also see that quantile regression trained without observation weights performs even
worse than the 2.0-prognoseverdeling method for most percentiles. The R1(τ) values
are shown in Figure 17 for a more detailed comparison.

Figure 17 shows that quantile regression trained with observation weights outper-
forms the other methods for the higher percentiles. It does not outperform the
3.0-prognoseverdeling method for the P10, P25 and P50, which was the case for the
5-fold cross-validation. But for the other percentiles, the biggest gain seems to be
available in the higher percentiles with about 5% to 7.5% improvement for the P90

and P95 respectively compared to the 2.0-prognoseverdeling method.
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Figure 17: Zoomed-in (left) and normal (right) plot of the R1(τ) values for the predic-
tion methods, evaluated with observation weights.

4.3 Error contribution per factor level

This section will zoom in on the difference in contribution to the error per level of
each of the factor variables. These comparisons between factor levels are done using
quantile regression trained with observation weights as predictor for the Pτ , but the
same patterns can be found when using the other methods. In the final quantile
regression model, both without and with observation weights, there are three vari-
ables for which this applies: Weekday, Daypart and Area. The difference between
the levels in each of these factor variables will be discussed separately below.

4.3.1 Weekday

The ratio between the number of stop-stop prognoses for each weekday in the data
set is: 21.9% Monday, 23.9% Tuesday, 18.1% Wednesday, 18.0% Thursday and
18.2% Friday, so the number of stop-stop prognoses per level is approximately equal.
Figure 18 shows the WMAPE(τ) values per weekday for quantile regression trained
with observation weights.

Figure 18 shows that Monday, followed by Friday, contributes most to the total er-
ror, as it has the highest average over- or underestimation of true values for all
percentiles. The peak of this is at P50, where the average over- or underestimation
for Monday is about 16% and for the other percentiles about 10%. It can also be
seen that, of all other weekdays, Thursday has the lowest average over- or underes-
timation for all percentiles, closely followed by Wednesday and Tuesday.
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Figure 18: WMAPE(τ) values per percentile rank for the weekdays using quantile re-
gression trained with observation weights, evaluated on test set.

Figure 19 shows the WMAPEP50×t(τ) values when evaluating the method. The figure
shows that again Monday contributes most to the total error, followed by Friday. It
also shows that almost all over- and underestimation percentage averages are lower
than in Figure 18.

Figure 19: WMAPEP50×t(τ) values per percentile rank for the weekdays using quantile
regression trained with observation weights, evaluated on test set.
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4.3.2 Daypart

If we look at the variable Daypart, we see that the ratio of the three dayparts in
the data set is: 13.4% morning rush hour, 72.7% off-peak hours and 13.9% evening
rush hour. Therefore, the number of observations per level is very skewed, with
almost three quarters of the data consisting of off-peak hours. Figure 20 shows the
WMAPE(τ) values per daypart.

Figure 20: WMAPE(τ) values per percentile rank for the dayparts using quantile regres-
sion trained with observation weights, evaluated on test set.

Figure 21: WMAPEP50×t(τ) values per percentile rank for the dayparts using quantile
regression trained with observation weights, evaluated on test set.
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As we can see in Figure 20, for all percentiles the evening rush hour contributes least
to the total error. We can also note that for the lower percentiles the morning rush
hour contributes most, but for the higher percentiles the off-peak hours contribute
most to the total error.

Figure 21 shows the WMAPEP50×t(τ) values per daypart. The figure shows again
that the order of contribution between levels is unchanged, but that for the higher
percentiles the difference in contribution to the total error between morning rush
hour and off-peak hours has become smaller.

4.3.3 Area

Since the variable Area distinguishes between 25 areas, the ratio of the areas is
shown in Appendix B. The table in the Appendix shows that most observations are
in Area 14 (city of Amsterdam/Alkmaar/Purmerend) and Area 20 (city of Utrecht
and surroundings) with 16.2% and 9.2% of the total data respectively. The fewest
observations are in Area 2 (province of Groningen) and Area 1 (province of Fries-
land) with respectively 0.7% and 1.1% of the total data. This is probably because
train traffic in these provinces is largely provided by train operators other than NS.

Because a bar plot with 25 bars per percentile rank is too large and too difficult
to distinguish between the levels, a line plot is shown in Figure 22 instead. The
figure shows an individual line for all areas representing the WMAPE(τ) values per
percentile rank. It shows that for most areas the lines do not intersect. This means
that if we compare two areas with each other, for all percentile ranks the WMAPE(τ)
values of one area are higher than the values of the other.

Figure 22: WMAPE(τ) values per percentile rank for the areas using quantile regression
trained with observation weights, evaluated on test set.
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As can be seen in Figure 22 the smallest contributions to the total error are made
by Area 10 (city of Harderwijk/Barneveld/Veenendaal/Ede) and Area 26 (province
of Limburg). The largest contributions are made by Area 17 (city of Leiden and
surroundings). It can also be seen that for this area and Area 15 (city of Haarlem
and surroundings) the P75 is higher than the P50, which is not the case for all other
areas.

If we add the observation weights to the evaluation, the differences between the
areas become larger. This can be seen in Figure 23. In the figure we see that for
the higher percentiles there is a cluster of areas that have a larger contribution to
the total error. The areas in question are: Area 17, Area 16 (Schiphol/Hoofddorp),
Area 25 (province of Zeeland), Area 22 (Drechtsteden) and Area 11 (province of
Flevoland). However, for the lower percentiles and for P50 Area 25 easily stands
out as the largest contributor to the total error. The smallest contributions for the
percentiles are still made by Area 10.

Figure 23: WMAPEP50×t(τ) values per percentile rank for the areas using quantile re-
gression trained with observation weights, evaluated on test set.
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Chapter 5

Discussion

This chapter first presents the key findings. Afterwards, the interpretation of the
results is discussed. Finally, the limitations of the project are explained.

5.1 Key findings

This research is aimed at improving the prediction of the percentiles that represent
the distribution of a stop-stop prognose in a BDu. For NS, it is most important
that the predictions are good for stop-stop prognoses with higher passenger num-
bers and/or route travel times. In addition, for NS the higher percentiles are the
most important percentiles because they are used in the train scheduling. Therefore,
the WMAPEP50×t(τ) values are the most important evaluation method, where the
observation weights are included in the evaluation. The results show that for this
evaluation method, quantile regression trained with observation weights performs
best for all higher percentiles. This method therefore seems best suited to predict
the percentiles of the number of passengers for stop-stop prognoses in a BDu.

5.2 Interpretation of results

The results on the test set show that both the 3.0-prognoseverdeling method and
quantile regression achieve smaller errors than the 2.0-prognoseverdeling method.
More specifically, this research shows that the greatest reduction in error can be
made in the higher percentiles (P75, P90 and P95). The best result is achieved when
observation weights are included. Quantile regression trained with observation
weights can achieve about 2.5% to 7.5% better results for the higher percentiles
than the 2.0-prognoseverdeling method. This essentially means that this method has
a greater chance of reflecting the distribution of a given P50 more accurately, allow-
ing a more appropriate train to be scheduled. The 3.0-prognoseverdeling method
seems to perform best for the P10, P25 and P50. This is surprising since this is not
the case for the 5-fold cross-validation. On top of that, the 3.0-prognoseverdeling
method is not trained with observation weights, but this version of quantile regres-
sion is. It would therefore be more logical for quantile regression to perform better
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for all percentiles when evaluated with observation weights.

Quantile regression trained without observation weights actually performs worse
than the 2.0-prognoseverdeling method for almost all Pτ when evaluated with ob-
servation weights. It makes sense that this method performs worse than quantile
regression trained with observation weights. However, it is not logical that it per-
forms worse than the baseline method, since it does outperform the baseline method
when evaluated without observation weights.

If we do consider all observations equally important, then the 3.0-prognoseverdeling
method performs best for all percentiles other than P0.01 and P99.99. This method can
improve on the prediction of the distribution of the percentiles by about 2.5% for
the lower percentiles and about 5% for the higher percentiles compared to the 2.0-
prognoseverdeling method. The fact that the 3.0-prognoseverdeling method per-
forms best is somewhat unexpected, as quantile regression trained without obser-
vation weights actually minimises the evaluation function that is used in this study,
whereas the 3.0-prognoseverdeling method does not. On top of that, for most per-
centiles, quantile regression trained with observation weights performs better than
trained without observation weights. So we see that adding observation weights
makes a big difference in which method performs best. It is therefore very impor-
tant for NS that the observation weights are chosen such that everything that NS
considers important is included in these weights.

We have also split the total errors by factor variable. For the variable Weekday, we
see that the largest contribution to the total error comes from Monday and Friday
for all percentiles. This could be because the month of April includes Easter Monday
and Good Friday. These are special days that look nothing like a normal Monday
or Friday. It could be that for the BDu, these days were treated as normal days.
Therefore, the predictions and realised numbers of passengers do not match and the
errors are larger than usual.

If we look at variable Daypart, we see that the evening rush hour seems to con-
tribute least to the total error for all percentiles. For the lower percentiles, morning
rush hour seems to contribute most. The difference between morning and evening
rush hour could be due to the fact that people probably take the same train fairly
consistently in the morning, but in the evening they might sometimes take a train
earlier or later than usual. As a result, there are likely to be higher peaks in terms
of passenger numbers in the morning rush hour. For higher passenger numbers,
the absolute error is probably larger than for lower passenger numbers. Hence, the
error contribution of morning rush hour is likely to be higher than that of evening
rush hour. For the higher percentiles the off-peak hours seem to affect the total er-
ror most, which might be surprising as the average number of passengers on these
stop-stop prognoses is almost twice as low compared to both rush hours as shown
in Table 2 in the Methodology. However, it could be that because 72.7% of the data
consists of off-peak hours, its combined contribution to the total error is higher than
for the evening rush hour.
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For the variable Area, we see that the smallest contribution for almost all percentiles
is Area 10 (city of Harderwijk/Barneveld/Veenendaal/Ede). The biggest contrib-
utors to the total error are Area 17 (city of Leiden and surroundings), Area 25
(province of Zeeland) and Area 16 (Schiphol/city of Hoofddorp). It could be that
due to Good Friday and Easter Monday, people go on holiday for a long weekend,
causing the error for Schiphol Airport and province of Zeeland to be larger than
usual.

5.3 Limitations of the research

The limitations of the study will be addressed separately below.

In this study, we only consider data from April 2019. The training and test set are
therefore from the same period. It would probably be more valuable to test the
methods on a different period than that of the training set, for example training on
April 2018 and testing on April 2019. However, this was not possible for this study
as there is less than one year of normal data available with the current method as a
predictor of percentiles due to the corona pandemic. In the future, this will become
possible if there is more than a year’s worth of data.

Specific occasions that apply only to the month of April may have affected the meth-
ods. For example, in the Netherlands, Good Friday, Easter and King’s Day are in
April, which look very different from normal days in terms of train traffic. This
might have influenced the variable selection and the evaluation since in this study
these special days were included as normal days.

This study does not include data on weekends, because NS has indicated that it is
more important to focus on weekdays rather than weekend days. In addition, the
weekend may cause problems in quantile regression because it creates a dependency
between the variables Weekday and Daypart. This is because in the weekend no
distinction is made between morning rush hour, off-peak hours and evening rush
hour. On the other hand, weekdays cannot have the weekend daypart.

International trains are not considered in this study. NS has stated that the estimates
of the realised number of passengers for these trains in 2019 is not reliable enough.
Should these be reliable enough in the future, they could be included in a follow-up
study.
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Chapter 6

Conclusions

This chapter first presents the main conclusions, where we provide an answer to
the research question. After this, the recommendations for future research are pre-
sented.

6.1 Main conclusions

In this study, we examine various methods for determining the distribution of pas-
senger forecasts. The research question of this study is: “How can the estimation
of certain percentile values in the probability distribution of a predicted number of
passengers for a combination of train number, day of the week and route in a BDu
be improved?”.

Based on analysis of past passenger forecast data, we can conclude that both quan-
tile regression and the 3.0-prognoseverdeling method perform better as predictors
of the percentiles than the current method and the 2.0-prognoseverdeling method.
The results show that the prediction method used in 2019 on average overestimated
the lower percentiles and underestimated the higher percentiles. This can be seen
in Figure 8 where the line for the current method is not a straight line but a curve
instead. If we look at the lines in this plot for the other methods, we see that the
percentages of these methods are very close to the percentile ranks. This implies
that the methods predict the percentiles well on average. Because a correct predic-
tion for the stop-stop prognoses with higher P50 forecast and/or route travel time is
considered more important than for other stop-stop prognoses, the most important
evaluation metric are the WMAPEP50×t(τ) values, where the observation weights are
included. On top of that, the higher percentiles (P75, P90 and P95) are more impor-
tant to NS than the lower percentiles as the higher percentiles are the ones mainly
considered when making or adjusting a train schedule. For the higher percentiles,
quantile regression achieves the best result with an improvement of about 2.5%
to 7.5% compared to the 2.0-prognoseverdeling method. In conclusion, the use of
quantile regression trained with observation weights is a way to improve the prob-
ability distribution of a predicted number of passengers for a combination of train
number, day of the week and route in a BDu.
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6.2 Recommendations for future research

The biggest recommendation is to investigate whether it is possible to switch to
quantile regression for determining the percentiles as it shows promising results, es-
pecially when evaluated with observation weights. The fact that quantile regression
can take observation weights into account when determining the best coefficients
for the model is a big advantage over the other methods. If the method is to be
implemented, then further research will certainly be required as this project did not
investigate weekends and, of course, there are passenger forecasts for weekend days
as well. In addition, in this project we have looked at only one month of data. It
would probably be interesting to look at data of a full BDu. Lastly, we have not
considered international trains, so if predictions of percentiles for these are desired,
this should also be investigated.

The variable selection for quantile regression now focuses only on the P90. However,
it could be the case that for different Pτs a different combination of variables would
yield the best results. This would require independent variable selection for all de-
sired percentiles, searching for the best combination of variables for each percentile
individually.

Should it be that implementing quantile regression is not possible or that an im-
provement is needed on a shorter term, the recommendation would be to imple-
ment the groups of the 3.0-prognoseverdeling method to replace those of the 2.0-
prognoseverdeling method.

The P50 groups of the 3.0-prognoseverdeling method are now defined manually. A
different approach for this is to use deciles. In that case, all stop-stop prognoses are
distributed in ten P50 groups so that all groups are of approximately equal size in
terms of stop-stop prognoses (Hayes, 2021). Another approach could be to use the
seat capacities of trains as break-off points for the P50 groups.

There is still room for improvement in the 3.0-prognoseverdeling method in terms
of missing data. If it is now the case that there are no stop-stop prognoses within a
certain combination of Weekday, Daypart, Variable size P50 group, Area and Rolling
stock, but there are stop-stop prognoses of this combination in a new data set, then
the prediction of the 3.0-prognoseverdeling for this stop-stop prognose is the average
of all stop-stop prognoses in the training set. Of course, other techniques can be used
for this, such as using the average of the best comparable combination of variable
levels as a prediction. This of course requires defining when combinations of variable
levels are comparable.

Taking into account how close a prediction is to the seat capacity of a train could also
be useful to add to the observation weights. E.g., if a rolling stock unit has a capacity
of 150 seats, then accurate predictions for a P90 of 151 passengers or 299 passengers
are much more important than accurate predictions for a P90 of 225 passengers.

Another method that has been examined very briefly is quantile random forest. This
method also seems to be a suitable predictor of the percentiles. Given the limited
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time span of this study, we decided not to investigate this method thoroughly, but in-
stead to improve the variable selection of the 2.0-prognoseverdeling method (which
is the 3.0-prognoseverdeling method). In this project, quantile random forest was
performed once, achieving results that are slightly less good than the quantile re-
gression method. With some proper adjustments, comparable results can probably
be achieved. This could be done as a future research project.

The Pmin and especially the Pmax are tricky percentiles to include in the desired per-
centiles and require a different approach. As these percentiles are not defined for
quantile regression, the P0.01 and P99.99 are chosen instead. In the 2.0-prognoseverde-
ling method and 3.0-prognoseverdeling method, the Pmin of a given group is defined
as the minimum of the number of realised passengers. This will not cause any prob-
lems since the number of passengers for the Pmin is limited by the fact that it cannot
be negative. However, the Pmax is highly affected by outliers and must therefore be
handled with care. In the 2.0- and 3.0-prognoseverdeling methods, we thus choose
a linear extrapolation from the P99.5 by adding the difference between the P99.5 and
P99 to this to get a prediction for the Pmax.

It could be that the P50 of a stop-stop prognose predicted by quantile regression or
the 3.0-prognoseverdeling method is higher or lower than the P50 predicted by NS.
This may cause the distribution around the NS P50 to become very odd. A possible
solution is to raise or lower all percentile predictions by the difference between the
NS P50 and the quantile regression or 3.0-prognoseverdeling method P50.
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Appendix A

Numbers of missing data

In this appendix, the exact differences in numbers of stop-stop prognoses between
the SOFA dataset and the passenger forecast dataset are presented. On top of that,
possible explanations for this are provided.

The SOFA dataset contains 619,687 stop-stop prognoses about the realised number
of passengers. There is no missing data in this dataset itself. The passenger forecast
dataset contains 642,703 stop-stop prognoses about the passenger predictions in
terms of Pτ with τ ∈ {min, 5, 10, 25, 50, 75, 90, 95,max}. In this dataset, there are
1,552 stop-stop prognoses with missing percentile values. Most of these missing
data (1,513 stop-stop prognoses) are on the train route Gouda - Gouda Goverwelle
and vice versa. NS has confirmed that something went wrong when the data for this
route was added to the dataset.

The datasets are merged into a dataset containing 600,637 stop-stop prognoses.
Most of the stop-stop prognoses are present in both sets, but this is not the case for
the following amount of stop-stop prognoses: 18,550 stop-stop prognoses are miss-
ing in the SOFA dataset and 40,014 stop-stop prognoses are missing in the passenger
forecast dataset.

There are a number of reasons why a stop-stop prognose can be present in the SOFA
dataset, but not in the passenger forecast dataset. For example, it is possible that
a train has to stop at a certain station due to a disruption, or if for some reason an
extra stop has to be added. For these stop-stop prognoses there are no passenger
forecasts, but there is a realised number of travelled passengers. Trains may also be
cancelled for any reason. In this case, the number of passengers for the stop-stop
prognoses of this train are predicted, but there is no realised number of passengers.
In that case, these stop-stop prognoses are present in the SOFA dataset, but not in
the passenger forecast dataset.

There are also a few special days in the month of April, namely: Good Friday and
Easter Monday. It could be that a forecast for these special days was made as if it
were a normal Friday or Monday. The numbers of missing stop-stop prognoses for
these days are: 592 and 2,765 respectively for the SOFA dataset and as much as 699
and 13,128 respectively for the passenger forecast dataset.
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Appendix B

Details of variable Area

A table showing the full name of the area, in which RIP region it is located (Rand-
stad, invloedsgebied or periferie), the percentage of the dataset and the five-number
summary per area. Area 8 does not have a percentage and five-number summary as
the train traffic in this area is provided by a train operator other than NS. Area 27
are the border crossings, which are not included in this study.

Table 9: The full name, RIP, percentage of the dataset and five-number summary of the
realised number of passengers per area.
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Appendix C

Step-up steps for quantile regression
without observation weights

This appendix provides the steps for the step-up method used for the quantile regres-
sion model trained without observation weights. Table 10 shows the β̂(0.9) values
and whether all variables are significantly different from zero for a quantile regres-
sion model with each explanatory variable separately.

Table 10: The β̂(0.9) values (in number of passengers) and significance of variables for
a quantile regression model with each explanatory variable separately.

Explanatory variable β̂(0.9) All variables significant?

log(P50) 33,206.71 Yes
P50 group (100) 43,176.39 Yes

P50 group (variable) 34,979.62 Yes
Weekday 77,703.46 Yes
Daypart 71,782.92 Yes

Time (sin& cos) 76,969.30 Yes
RIP 76,178.70 Yes
Area 74,703.64 Yes

Rolling stock 72,127.63 Yes

Table 10 shows that the P50 forecast variables are the most influential variables as
their β̂(0.9) values are about twice as small as those of the other variables. Of the P50

forecast variables, the logarithm seems to perform best. This variable is therefore
chosen to form the basis of the model. Table 11 shows the results for a quantile
regression model with log(P50) and each remaining explanatory variable separately.

Table 11 shows that variable Area achieves the lowest error value. To test whether
the model including Area performs significantly better than the model without Area,
the F -test is performed, resulting in an F -statistic of 746.71, with corresponding
p-value of < 10−15. As the p-value is smaller than the significance level of α = 0.05,
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Chapter C. Step-up steps for quantile regression without observation weights

Table 11: The β̂(0.9) values (in number of passengers) and significance of variables
for a quantile regression model with log(P50) and each remaining explanatory variable
separately.

Explanatory variables β̂(0.9) All variables significant?

log(P50), Weekday 33,204.94 Yes
log(P50), Daypart 33,126.95 Yes

log(P50), Time (sin& cos) 33,127.19 Yes
log(P50), RIP 32,402.32 Yes
log(P50), Area 31,798.18 Yes

log(P50), Rolling stock 33,121.89 Yes

we can conclude that the model including Area performs significantly better than
the model without Area. Therefore, Area should be included in the model. Table
12 shows the results for a quantile regression model with log(P50), Area and each
remaining explanatory variable separately.

Table 12: The β̂(0.9) values (in number of passengers) and significance of variables for a
quantile regression model with log(P50), Area and each remaining explanatory variable
separately.

Explanatory variables β̂(0.9) All variables significant?

log(P50), Area, Weekday 31,794.68 Yes
log(P50), Area, Daypart 31,724.31 Yes

log(P50), Area, Time (sin& cos) 31,748.11 Yes
log(P50), Area, RIP 31,784.46 Yes

log(P50), Area, Rolling stock 31,758.13 Yes

Table 12 shows that variable Daypart achieves the lowest error value. Again, the F -
test is performed, resulting in an F -statistic of 473.45, with corresponding p-value
of < 10−15. As the p-value is smaller than the significance level of α = 0.05, we
can conclude that the model including Daypart performs significantly better than
the model without Daypart. Therefore, Daypart should be included in the model.
Since variables Daypart and Time both cover the time of departure and Daypart
performs better, Time is not included in the model. Table 13 shows the results
for a quantile regression model with log(P50), Area, Daypart and each remaining
explanatory variable separately.

Table 13 shows that variable Weekday achieves the lowest error value. Again, the
F -test is performed, resulting in an F -statistic of 123.18, with corresponding p-value
of < 10−15. As the p-value is smaller than the significance level of α = 0.05, we can
conclude that the model including Weekday performs significantly better than the
model without Weekday. Therefore, Weekday should be included in the model. Table
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Table 13: The β̂(0.9) values (in number of passengers) and significance of variables for a
quantile regression model with log(P50), Area, Daypart and each remaining explanatory
variable separately.

Explanatory variables β̂(0.9) All variables significant?

log(P50), Area, Daypart, Weekday 31,624.88 Yes
log(P50), Area, Daypart, RIP 31,695.95 Yes

log(P50), Area, Daypart, Rolling stock 31,683.04 Yes

14 shows the results for a quantile regression model with log(P50), Area, Daypart,
Weekday and each remaining explanatory variable separately.

Table 14: The β̂(0.9) values (in number of passengers) and significance of variables for
a quantile regression model with log(P50), Area, Daypart, Weekday and each remaining
explanatory variable separately.

Explanatory variables β̂(0.9) All variables significant?

log(P50), Area, Daypart, Weekday, RIP 31,577.44 No
log(P50), Area, Daypart, Weekday, Rolling stock 31,622.35 No

Table 14 shows that for both RIP and Rolling stock the error is less than in Table
13, but not all variables are significantly different from zero anymore. This indi-
cates that a model with one of these variables does not outperform a model without
these variables. Hence, the best found quantile regression model trained without
observation weights consists of the variables log(P50), Area, Daypart and Weekday.
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Appendix D

Step-up steps for quantile regression
with observation weights

This appendix provides the steps for the step-up method used for the quantile re-
gression model trained with observation weights. Table 15 shows the β̂P50×t(0.9)
values and whether all variables are significantly different from zero for a quantile
regression model with each explanatory variable separately.

Table 15: The β̂P50×t(0.9) values (in number of passengers2 minutes) and significance
of variables for a quantile regression model with each explanatory variable separately.

Explanatory variable β̂P50×t(0.9) All variables significant?

log(P50) 33,566.84 Yes
P50 group (100) 43,678.33 Yes

P50 group (variable) 35,063.00 Yes
Weekday 95,131.80 Yes
Daypart 82,977.94 Yes

Time (sin& cos) 97,751.11 Yes
RIP 93,300.24 Yes
Area 91,491.07 Yes

Rolling stock 82,296.87 Yes

Table 15 shows that the P50 forecast variables are the most influential variables as
their β̂P50×t(0.9) values are about twice as small as those of the other variables. Of
the P50 forecast variables, the logarithm seems to perform best. This variable is
therefore chosen to form the basis of the model. Table 16 shows the results for a
quantile regression model with log(P50) and each remaining explanatory variable
separately.

Table 16 shows that variable Area achieves the lowest error value. To test whether
the model including Area performs significantly better than the model without Area,
the F -test is performed, resulting in an F -statistic of 172.40, with corresponding
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Table 16: The β̂P50×t(0.9) values (in number of passengers2 minutes) and significance of
variables for a quantile regression model with log(P50) and each remaining explanatory
variable separately.

Explanatory variables β̂P50×t(0.9) All variables significant?

log(P50), Weekday 33,591.48 Yes
log(P50), Daypart 33,485.37 Yes

log(P50), Time (sin& cos) 33,498.92 Yes
log(P50), RIP 32,722.83 Yes
log(P50), Area 32,352.88 Yes

log(P50), Rolling stock 33,423.66 Yes

p-value of < 10−15. As the p-value is smaller than the significance level of α = 0.05,
we can conclude that the model including Area performs significantly better than
the model without Area. Therefore, Area should be included in the model. Table
17 shows the results for a quantile regression model with log(P50), Area and each
remaining explanatory variable separately.

Table 17: The β̂P50×t(0.9) values (in number of passengers2 minutes) and significance
of variables for a quantile regression model with log(P50), Area and each remaining
explanatory variable separately.

Explanatory variables β̂P50×t(0.9) All variables significant?

log(P50), Area, Weekday 32,373.15 Yes
log(P50), Area, Daypart 32,203.35 Yes

log(P50), Area, Time (sin& cos) 32,310.44 Yes
log(P50), Area, RIP 32,350.02 Yes

log(P50), Area, Rolling stock 32,365.05 Yes

Table 17 shows that variable Daypart achieves the lowest error value. Again, the F -
test is performed, resulting in an F -statistic of 307.03, with corresponding p-value
of < 10−15. As the p-value is smaller than the significance level of α = 0.05, we
can conclude that the model including Daypart performs significantly better than
the model without Daypart. Therefore, Daypart should be included in the model.
Since variables Daypart and Time both cover the time of departure and Daypart
performs better, Time is not included in the model. Table 18 shows the results
for a quantile regression model with log(P50), Area, Daypart and each remaining
explanatory variable separately.

Table 18 shows that variable Weekday achieves the lowest error value. Again, the
F -test is performed, resulting in an F -statistic of 63.98, with corresponding p-value
of < 10−15. As the p-value is smaller than the significance level of α = 0.05, we can
conclude that the model including Weekday performs significantly better than the
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Table 18: The β̂P50×t(0.9) values (in number of passengers2 minutes) and significance of
variables for a quantile regression model with log(P50), Area, Daypart and each remain-
ing explanatory variable separately.

Explanatory variables β̂P50×t(0.9) All variables significant?

log(P50), Area, Daypart, Weekday 32,115.50 Yes
log(P50), Area, Daypart, RIP 32,167.54 Yes

log(P50), Area, Daypart, Rolling stock 32,225.84 Yes

model without Weekday. Therefore, Weekday should be included in the model. Table
19 shows the results for a quantile regression model with log(P50), Area, Daypart,
Weekday and each remaining explanatory variable separately.

Table 19: The β̂P50×t(0.9) values (in number of passengers2 minutes) and significance
of variables for a quantile regression model with log(P50), Area, Daypart, Weekday and
each remaining explanatory variable separately.

Explanatory variables β̂P50×t(0.9) All variables significant?

log(P50), Area, Daypart, Weekday, RIP 32,071.66 No
log(P50), Area, Daypart, Weekday, Rolling stock 32,131.90 Yes

Table 19 shows that for RIP the error is less than in Table 18, but not all variables are
significantly different from zero anymore. For variable Rolling stock, the β̂P50×t(0.9)
value is higher than that of the model without Rolling stock. This indicates that
a model with any of these variables does not outperform a model without these
variables. Hence, the best found quantile regression model trained with observation
weights consists of the variables log(P50), Area, Daypart and Weekday.
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Appendix E

Example of differences in minimums

In this example we show why the different percentiles cannot be compared with
each other. We do this by showing that for different percentiles, there are different
minimum errors that can be achieved. Figure 24 shows a small data set with ten
data points and three prediction lines running through the data at exactly the 25th,
50th and 75th percentiles.

Figure 24: Example dataset of ten data points with prediction lines at exactly P75, P50
and P25.

If we then calculate the WMAPE(τ) values according to Equation 3.2 in the Method-
ology for the three different percentiles, we get the following:

WMAPE(25) = 0.25× (1 + 2 + 3 + 1 + 2 + 3) + 0.75× (1 + 2) = 5.25,

WMAPE(50) = 0.5× (1 + 2 + 1 + 2) + 0.5× (1 + 2 + 1 + 3) = 6.5,

WMAPE(75) = 0.75× (1 + 1) + 0.25× (1 + 2 + 3 + 1 + 2 + 4) = 4.75.

So we see that, although the prediction lines in Figure 24 perfectly pass through the
desired percentiles, the WMAPE(τ) values still differ from each other between the
percentiles. We can therefore conclude that the WMAPE(τ) values are not compara-
ble between the percentiles.
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