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”Artificial intelligence is the new electricity.”

- Andrew Ng
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Abstract

This thesis, conducted in collaboration with SINCERIUS, a financial due diligence com-
pany, aims to develop a model for automatically classifying ledger accounts, thereby
reducing the many hours of manual work required for financial reporting each month.
To achieve this, we evaluate the performance of traditional machine learning mod-
els—Logistic Regression, Random Forest, and Support Vector Machine—against the
state-of-the-art pre-trained embedding models, BERT, and its Dutch variant BERTje.
The task involves multi-class classification of short financial texts. We assessed the
models across four different datasets using evaluation metrics such as accuracy, preci-
sion, recall, and F1-score and employed 5-fold cross-validation to ensure the robustness
of our results. Our findings showed that BERT outperformed the other models on
the two larger datasets, while Random Forest and BERTje have the best performances
on the smaller datasets, highlighting BERT’s sensitivity to dataset size. Additionally,
we optimized the hyperparameters for all models across all datasets using the Optuna
framework. Following this optimization, BERT produced competitive results on one
dataset and demonstrated superior performance on the other three datasets, under-
scoring the importance of proper hyperparameter tuning for achieving optimal results
with BERT. The final accuracies ranged from approximately 75% to 89%, significantly
aiding consultants in classifying ledger accounts. We recommend exploring hybrid tech-
niques that combine BERT with neural networks in possible future research. Another
approach is to consider BERT ensemble models, which aggregate predictions from mul-
tiple variants of BERT to make final predictions.
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Chapter 1

Introduction

Artificial Intelligence (AI) is transforming industries, automating tasks, and improving
efficiency across various sectors. In finance, managing vast amounts of data presents
opportunities for AI. Most large financial and business services organizations have an-
nounced plans to utilize AI for virtually all statutory audits. This includes, for example,
annual reports of companies that need to be approved by an accountant. This announce-
ment highlights the rapid pace of technological integration within the industry. Despite
the reduced workload facilitated by computer systems, repetitive tasks remain present.
AI can be utilized to replace these tasks with automated systems.

Nowadays, most companies keep track of all their transactions, recording everything
for a complete overview of their financial transactions. Moreover, all EU-based limited
liability companies must prepare financial statements to monitor their business’s health
and provide a true and fair view of their financial performance and position [23]. This
obligation is part of broader EU regulations that have been introduced to promote the
convergence of accounting standards at the global level, ensuring consistent and com-
parable financial reporting across the EU.

All transactions within these financial statements are labeled to support financial anal-
ysis. This labeling process is facilitated by general ledger accounts, a core component
of a company’s accounting system. Each account within the general ledger represents a
specific aspect of the company’s financial activities. These accounts typically incorpo-
rate categories such as assets, liabilities, equity, revenue, and expenses. Organizing all
transactions into these categories allows a clear view of the company’s financial status
and performance to be visualized, facilitating informed decision-making and strategic
planning.
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CHAPTER 1. INTRODUCTION

1.1 Problem statement

This study is conducted in collaboration with SINCERIUS, a financial due diligence
company. SINCERIUS performs financial due diligence for several companies monthly,
requiring consultants to classify the ledger accounts used in financial reporting. Accu-
rate classification is essential for reliable financial analysis. Since a company typically
has hundreds of ledger accounts, this classification process is time-consuming, often
taking several hours of manual work for each new project. This study aims to develop
a classification model that can automatically classify ledger accounts, potentially re-
placing several hours of manual labor for each new project.

The process of classifying ledger accounts relies on analyzing textual descriptions cor-
responding to the nature of the transaction. While text is a rich source of information,
extracting meaningful insights from it is challenging due to its unstructured format.
The descriptions of the ledger accounts are short, varying from one to ten words, which
complicates the task of understanding the context of the piece of text. Moreover,
general ledger accounts can be classified into various classes, making it a multi-class
classification problem of short financial texts.

A general ledger account belongs to either of the two fundamental financial statements:
the balance sheet or the Profit and Loss statement (P&L). The balance sheet is a snap-
shot of a company’s financial position at a specific time, typically at the end of an
accounting period, such as a quarter or a fiscal year. The P&L provides insights into
a company’s ability to generate profit and its operational efficiency and presents the
financial performance of a company over a specific period. It summarizes revenues,
costs, and expenses to determine the company’s net income or net loss. Furthermore,
the P&L statement has two ledger accounts which can be further divided into sub-
classes: ’Operational expenses’ and ’Personnel expenses’. Classifying these subclasses
are classification problems themselves, resulting in a total of four distinct datasets and
classification tasks.

Automatic text classification can be achieved through rule-based methods or data-
driven methods like machine learning. Rule-based methods categorize text into classes
using predefined rules, demanding substantial domain knowledge. In contrast, machine
learning–based approaches learn to classify text by leveraging observations from labeled
data. Using pre-labeled examples as training data, a machine learning algorithm iden-
tifies inherent associations between texts and their labels.

Due to the complexity of classifying short texts, traditional programming methods do
not provide a possible solution. Machine learning methods, however, hold promise in
addressing this challenge, being able to learn context and adapt to the dynamic nature
of text [7]. This research aims to develop such a machine learning model to classify
general ledger accounts accurately. Therefore, various machine learning models with
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CHAPTER 1. INTRODUCTION

distinct techniques were constructed and evaluated using several performance metrics.

Since the main goal is to find the best-performing model for classifying the ledger
accounts, we will consider the current state-of-the-art model for text classification
problems, BERT (Bidirectional Encoder Representations from Transformers), a pre-
trained embedding model. To determine whether BERT does indeed show superior
performance, we evaluate BERT along with three traditional machine learning models.
Therefore, the central question addressed by this research is:

”What is the comparative performance of traditional machine learning models versus
the state-of-the-art BERT model in classifying short financial texts?”

By comparing the performance of these models, we aim to identify which approach
offers better accuracy and generalization to unseen data. This research provides useful
insights into Natural Language Processing (NLP) and financial analysis, potentially
guiding the use of automatic text classification in practical financial applications.

1.2 Contributions

This research makes several contributions to the field of automated general ledger ac-
count classification. To the best of our knowledge, this study pioneers the implemen-
tation of BERT, specifically for classifying general ledger accounts. BERT is known
for its contextualized word embeddings and bidirectional processing and has proven to
be exceptionally effective in capturing complex word relations within short textual de-
scriptions [89]. This utilization of pre-trained embeddings enhances the model’s ability
to discern subtle nuances and context-dependent meanings in financial texts, making it
particularly well-suited for the challenges posed by short-text classification in the finan-
cial domain. Therefore, we believe that BERT will outperform the traditional machine
learning models.

Our study incorporates domain-specific knowledge into the models to enhance the ac-
curacy of the classification process. Specifically, we integrate the account numbers
corresponding with the ledger accounts as a domain-specific feature. These account
numbers serve as indicators, providing contextual insights into the financial domain to
which each ledger account belongs. By augmenting the textual descriptions with such
domain-specific information, we aim to boost the classification accuracy of the models.

To ensure a fair comparison between traditional machine learning models and the pre-
trained BERT model, it’s crucial to optimize the models, giving each model an equal
chance to perform at its best. Hyperparameter tuning ensures that all models are opti-
mized to their fullest potential, reducing the risk of poor performances due to arbitrary
default settings. Hence, we use Optuna, an optimization framework for fine-tuning ma-
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CHAPTER 1. INTRODUCTION

chine learning hyperparameters. Optuna utilized more sophisticated optimization tech-
niques than common hyperparameter tuning methods, such as random or grid searches.
To our knowledge, Optuna has not previously been used to optimize the parameters of
BERT.

Finally, we introduced a feature showing the certainty scores of the model’s class predic-
tions, indicating the likeliness of a prediction being correct. This helps the consultants
at SINCERIUS filter out any wrongly predicted classes. Additionally, we added sec-
ondary predictions, which represent the second most likely classes according to the
models. This approach offers a second suggestion, allowing the consultants to deter-
mine which is the correct class in cases where predictions are uncertain.

1.3 Thesis outline

The thesis is structured as follows. The introduction has set the stage by providing
background information and introducing the problem and research question. Chapter
2 discusses the existing literature on automatic text classification. Following this, the
datasets, data preprocessing steps, and feature engineering are presented in Chapter 3.
We explain the workings of all our models in the ’Methodology’ chapter. In Chapter
5, the experimental setup and the hyperparameter tuning methods are provided. The
final results, together with the optimal hyperparameters, can be found in Chapter 6.
Lastly, we summarize our findings and recommend further research in Chapter 7.
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Chapter 2

Literature Review

The task of automatically classifying general ledger accounts remains relatively unex-
plored in the literature. Bardelli et al. [7] conducted experiments involving various
algorithms and pre-processing techniques for automatic invoice classification. While
recognizing the distinct challenges of invoice classification compared to ledger account
classification, some of their methods proved applicable. The practice of selecting diverse
pre-processing methods, a common approach in text classification [71], and fine-tuning
methods have proven beneficial in this research.

2.1 Text classification

The primary task of labeling general ledger accounts involves categorizing the textual
descriptions found on balance sheets and income statements. This task can be described
as financial text classification, an area of significant application and research focus [29,
40]. Many researchers are interested in developing text classification applications, es-
pecially with recent developments in NLP and text mining [40].

With the increasing volume of text documents generated daily, the need for automated
text classification has grown substantially. Beyond financial contexts, text classifica-
tion finds utility in various applications such as web content management [35], search
engines [67], email filtering [54], and biomedical texts [27].

2.2 Traditional machine learning models

Tong et al. [84] employed a Support Vector Machine (SVM) model for text classifica-
tion, discovering relevant features through the SVM model. Moreover, they explored
text classification by labeling words instead of entire documents, which requires docu-
ment enrichment with numerous relevant words. However, a robust understanding of
NLP and the utilization of high-dimensional representations is necessary for this, which
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CHAPTER 2. LITERATURE REVIEW

can be resource-intensive regarding memory and computing time. Consequently, this
approach may prove inefficient for the limited time at hand and tasks like short text
classification [28].

Ojala et al. [51] utilized different input columns from bank transactions for their finan-
cial statement classification problem. Their study compared accuracy across various
companies on a trained neural network model, suggesting the viability of a general-
ized model for different companies. They deliberately excluded the description column
containing free text or unstructured data. Nevertheless, they proposed that a machine
learning model could still derive insights from the text by treating words as features
within the input data.

Vink et al. [80] used several traditional machine learning models to classify ledger ac-
counts, such as Naive Bayes (NB), SVM, Random Forest (RF), and xgboost. The RF
model scored the highest accuracy in their first experimental run using a single train
and test set. When using 5-fold cross-validation, however, the SVM model slightly
outperformed the RF model. This finding aligns with the outcomes reported by Raicu
et al. [59], who implemented an NB, SVM, RF, and a Logistic Regression (LR) model
to classify Romanian ledger accounts. The SVM demonstrated superior performance
compared to the other models, outperforming them by more than 2% in terms of ac-
curacy. Bengtsson et al. [10] explored the performance of an SVM model and a Feed
Forward Neural Network (FFNN) in classifying financial transactions. Interestingly,
they trained the FFNN using Particle Swarm Optimization (PSO), a method demon-
strated to train the model faster than the conventional backpropagation approach [31].
Their findings also revealed that the SVM model achieved the highest accuracy among
the models evaluated.

2.3 Pretrained Large-Scale Embedding Models

Traditional machine learning models, such as LR, RF, and SVM, often perform less than
embedding models for NLP tasks [48]. This is primarily because traditional models rely
on manual feature extraction and cannot inherently capture the contextual meaning of
words. They treat words as isolated tokens, ignoring the nuances and relationships
between words in a sentence. This lack of understanding of context limits their ability
to process and interpret the subtleties of language effectively [48].

In contrast, embedding models excel in NLP tasks because they capture semantic
relationships between words by representing words as continuous vectors in a multi-
dimensional space. These vector representations, known as embeddings, allow machines
to understand better the contextual meaning of words based on their surrounding con-
text in a given dataset. Embeddings are typically learned from large amounts of text
data using unsupervised learning methods, enabling the model to understand language
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CHAPTER 2. LITERATURE REVIEW

patterns and relationships, which traditional models cannot achieve [32].

Latent Semantic Analysis (LSA), introduced by Deerwester et al. in 1989 [20], rep-
resents one of the earliest embedding models, employing a linear approach with fewer
than 1 million parameters trained on 200,000 words. However, early neural language
models initially underperformed compared to traditional machine learning models and
faced limited adaptation in the field of text classification [48]. An example of such a
neural language model is the feed-forward neural network based on 14 million words
proposed by Bengio et al. in 2001 [8].

Wang and Deng [87] highlighted the challenge of obtaining descriptive features for short
texts, impeding the classification process. To address this issue, one proposed solution
is to augment information, as suggested by Yin and Shen in 2020 [91]. In their work,
Yin and Shen introduced an innovative model incorporating information extracted from
the text and data retrieved from an external knowledge base. They employed a Convo-
lutional Neural Network (CNN) based text classification method, known as TextCNN,
drawing inspiration from Kim’s model from 2014 [37].

A major shift occurred with the development of significantly larger embedding models
trained on extensive datasets. In 2013, Google introduced word2vec models, trained
on 6 billion words, gaining widespread popularity for various NLP tasks [47]. Further
development took place in 2017 when AI2 and the University of Washington created
Embeddings from Language Models (ELMo), a contextual embedding model relying on
a 3-layer bidirectional Long Short-Term Memory (LSTM) with 93 million parameters,
outperforming word2vec by capturing contextual information [65]. In 2018, OpenAI
constructed embedding models using the Transformer architecture, based on attention
mechanisms [85].

In the same year, Google introduced BERT (Bidirectional Encoder Representations
from Transformers), a pre-trained model consisting of 340 million parameters and
trained on 3.3 billion words [22], also utilizing the transformer architecture. BERT
represents the current state-of-the-art embedding model, demonstrating superior per-
formance due to its ability to capture bidirectional contextual information.

González-Carvajal and Garrido-Merchan [30] employed BERT as a deep-learning model
for supervised text classification and other NLP tasks, showing promising results. BERT
utilizes transfer learning, where the model is pre-trained on a vast unlabeled corpus and
then fine-tuned on labeled data for specific tasks. Unlike other transfer models, BERT
can extract information bidirectionally from sentences, enhancing its understanding of
context [22]. Empirical tests conducted by González-Carvajal and Garrido-Merchan
concluded that BERT outperforms traditional machine learning algorithms on average
NLP tasks and recommended its adoption as a default technique.

7 Emiel Goldman



CHAPTER 2. LITERATURE REVIEW

Concerns regarding the computational demands of pre-trained models like BERT led
Sanh et al. to propose DistilBERT, a smaller and faster alternative that retains most of
BERT’s language-understanding capabilities through knowledge distillation [64]. Ar-
slan et al. compared pre-trained models in financial multi-class text classification and
found that DistilBERT outperformed BERT for certain datasets [6]. However, less opti-
mistic findings have been reported in other studies, indicating that DistilBERT retains
approximately 96% of language comprehension skills [75, 92].

Additionally, de Vries et al. [19] developed BERTje in 2019, a monolingual Dutch
BERT model based on the same architecture and parameters as BERT but trained
on a diverse dataset of 2.4 billion tokens. BERTje demonstrated superior performance
to multilingual BERT on various NLP tasks, including part-of-speech tagging, named-
entity recognition, semantic role labeling, and sentiment analysis. Considering the
Dutch context of their dataset, it can be inferred that BERTje also outperforms BERT
in this research, thereby warranting its inclusion alongside other mentioned models.

The trend of utilizing larger models and more extensive training data has persisted,
with OpenAI’s GPT-3 model containing 175 billion parameters [15], and the more
recent GPT-4 model containing a massive 170 trillion parameters [39].

2.4 Neural networks

In addition to traditional machine learning methods and embedding models, text clas-
sification can also be addressed using deep learning techniques. According to Ali et al.
[5], deep learning algorithms are often preferred over traditional ones. Deep learning
has recently experienced significant advancements and successes, particularly in NLP
[26].

Various types of neural network models exist, with three common examples being Feed-
forward Neural Networks (FFNN), Convolutional Neural Networks (CNN), and Recur-
rent Neural Networks (RNN). FFNNs are multilayer perceptions and are among the
most prevalent types of artificial neural networks [25]. In this architecture, neurons
are organized in layers and fully interconnected, with unidirectional connections and
devoid of cycles. As stated by Kowsari et al. [40], RNNs allow connections to form
cycles, enabling the output from a layer of nodes to be reintroduced as input to that
same layer. This cyclic structure allows information to be propagated through the net-
work over time, offering advantages for text processing compared to the Feedforward
approach by enabling the network to learn sequential patterns in the data [5].

CNNs perform two primary operations: convolution and pooling [26]. Convolution
generates a feature map by element-wise multiplication of a matrix or filter, extracting
features from the input. Pooling downsamples the feature map, reducing dimensional-
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ity to create smaller, more manageable representations [5].

More recently, LSTM models have gotten more attention in the field of short-text
classification. LSTM is a type of RNN architecture specifically designed to address
the vanishing gradient problem, a common issue in traditional RNNs. LSTMs are
particularly effective for tasks involving sequential data, such as NLP [9]. According
to Zhao et al. [93], LSTM networks are effective in processing sequences because they
consider the full context of text descriptions, making them superior to general RNNs in
text classification. Their study demonstrated that the LSTM model yielded impressive
results when classifying short financial descriptions across various languages.

2.5 Feature engineering

A range of complex features has been incorporated to enhance the text classification
models. Examples include the integration of parts-of-speech and phrase information
[41], the incorporation of syntax through explicit features and implicit kernels [56],
and, for sentiment analysis, the inclusion of dependency tree features [49]. However,
in a study by Wang & Manning [88], it was demonstrated that Bag of Words (BoW)
and bigram features can be more effective than more complex alternatives for feature
engineering. Therefore, we opted to utilize BoW for our traditional machine learning
models in our research.

Li et al. [42] and Sun et al. [78] have applied the BERT model to text classification by
generating auxiliary sentences and integrating domain-specific features. Both studies
demonstrate exceptional performance on multi-class classification datasets, achieving
state-of-the-art results. Incorporating domain-specific identifiers, such as account num-
bers, into classification models has significantly enhanced performance. For instance,
Ojala et al. [51] integrated account numbers as features into their neural network for
ledger account classification, leveraging domain knowledge effectively to improve clas-
sification accuracy. Similarly, Fan et al. [24] observed substantial improvements in
their financial document classification model by incorporating domain-specific infor-
mation, showing the importance of integrating domain-specific features in enhancing
model performance.
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Chapter 3

Data preprocessing

This chapter starts with an overview of the dataset, detailing its size and the classes
represented in both the balance sheet and the P&L statement. It then discusses several
data preprocessing steps essential for the NLP task at hand. The chapter concludes by
exploring the feature engineering process.

3.1 Data overview

SINCERIUS, a data-driven financial due diligence company based in Amsterdam, pro-
vided the data for this research. Financial due diligence involves thoroughly examining
a company’s financial records, statements, and practices to assess its financial health,
performance, and risks. They possess extensive labeled datasets from companies they
conducted due diligence for, comprising multiple ledger accounts. Based on the corre-
sponding descriptions, the consultants labeled these datasets manually, thereby facili-
tating the application of supervised machine learning models.

We have included 215 datasets of different companies, resulting in a highly diverse
total dataset comprising 113.798 ledger accounts. After removing missing values and
incorrect data, we were left with 98.720 accounts. Each ledger account either belongs
to the balance sheet or the P&L statement, containing 42.232 and 56.488 accounts,
respectively.

During this study, we identified instances where ledger account descriptions were dis-
tributed across multiple classes, which is suboptimal for the model as it impedes proper
learning of the correct classes. Consequently, we removed all ledger accounts associated
with a minority class linked to a specific description. This decision ensured the model
assigns ledger accounts to the class with the highest probability. Following this removal
operation, 41,187 ledger accounts remained on the balance sheet, while 54,195 were
retained on the P&L statement.
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CHAPTER 3. DATA PREPROCESSING

The classes of the balance sheet can be seen in Appendix A.1. There are 18 classes on
the balance sheet, with the class ’Tax’ being the most frequent. The P&L statement
contains 11 different classes, as seen in Appendix A.2. As discussed, the P&L statement
contains the classes ’Operational expenses’ and ’Personnel expenses’, which contain six
and four subclasses, respectively. The corresponding datasets are shown in A.3 and A.4.
It can be seen that there is a strong class imbalance across all four datasets. Section
3.5 discusses the solution to this problem.

3.2 Text preprocessing operations

In this research, several common text preprocessing techniques are utilized. These
techniques help prepare the text data for further analysis or modeling by standardiz-
ing, cleaning, and enhancing its quality, ultimately leading to better performance and
more accurate results in NLP tasks [29]. Al-Hawari and Barham [33] compared the pre-
diction accuracy of classification models trained on unprocessed datasets versus those
preprocessed and cleaned. The results revealed a significant improvement in accuracy
across all four classification models when using preprocessed and cleaned data, with an
increase of approximately 20% to 30% in each experiment.

To ensure consistency and reproducibility of our models, we created the following data
preprocessing pipeline:

1. Lowercasing

2. Word Stemming

3. Tokenization

4. Removing Punctuation and Non-word Text

5. Removing Stop Words

6. Rejoining Stem Words

Lowercasing Converting all abbreviations and capital letters to lowercase may seem
like a straightforward preprocessing step, yet its importance is often underestimated.
As Tabassum et al. [81] highlighted, this technique is particularly effective in sparse
datasets. Consistency is ensured throughout the text data by converting all text to
lowercase. This consistency is crucial as it ensures that words like ”Word” and ”word”
are treated as the same token. Such uniformity is important because the model might
interpret similar words as separate entities without them, leading to inconsistent results.

Removing Punctuation and Non-word Text Symbols and special characters are
generally irrelevant in classifying text. Removing these punctuation and non-word
characters helps clean the text data and focus on meaningful words.
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Removing Stop Words Words such as ”de”, ”en”, ”als” and ”is” (”the”, ”and”,
”if”, and ”is” in English, respectively) commonly referred to as stopwords, typically
hold little significance in NLP tasks, except in specific contexts. In text classification
tasks, these stopwords are usually disregarded, and only keywords relevant to the topics
are extracted. Identifying and removing these stopwords cleans the text and generally
improves classification model results. However, it’s important to recognize that in
certain scenarios, negation words like ”nee” and ”niet” (”no” and ”not” in English)
play a crucial role in determining the context and intent of the sentence.

Tokenization Tokenization involves breaking text into individual tokens, such as
words, characters, or punctuation. This step is essential for further analysis as it pro-
vides the basic units of text for processing. For example:

The textual description: ”NLP is revolutionizing the finance industry!”
will be tokenized as:
”NLP”, ”is”, ”revolutionizing”, ”the”, ”finance”, ”industry”, ”!”

Word Stemming Stemming involves reducing words to their root or base form by
removing suffixes while retaining the semantic meaning across various word forms. This
can help reduce the vocabulary size and capture the essence of related words. For ex-
ample, the word ”playing” will be changed to ”play” where ”ing” is removed while the
meaning of the word remains the same.

However, stemming may not always produce valid words and can sometimes result in
ambiguous or incorrect stems [60]. For example, the term ”coding” will be stemmed
to ”cod” which does not accurately represent the intended meaning in this context.
Nonetheless, we incorporated word stemming into our data preprocessing pipeline for
financial texts due to the diverse range of terms associated with financial instruments,
markets, and activities, which are mostly stemmed accurately. Additionally, Singh et
al. [76] demonstrated in their study that stemming financial texts simplifies text data
representation and enhances performance. They observed an improvement of up to
10.7% in the average precision of the model.

Rejoining Stem Words Once the preprocessing steps are completed, the stemmed
words are reintegrated into sentences. This practice is essential as preserving context
significantly influences the classification of ledger accounts.

3.3 Feature extraction

Machine learning algorithms require numerical inputs. Feature extraction converts tex-
tual data into numerical representations, enabling algorithms to process and analyze
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the text effectively. Moreover, text data can be high-dimensional, especially when deal-
ing with large vocabularies or word embeddings. Feature extraction techniques help
reduce the dimensionality of the data, making it more manageable for machine learning
algorithms. Feature extraction aims to capture the essential characteristics or patterns
present in the data, enabling the machine learning model to make accurate predictions
or classifications.

In the context of NLP, feature extraction involves converting textual data into numerical
representations, such as word vectors or document embeddings. Techniques like BoW,
TF-IDF, and word embeddings are used to extract features from text data. These
techniques transform words or documents into high-dimensional vectors, where each
dimension represents a unique feature or aspect of the text.

Bag of words BoW is a popular and simple representation technique used in NLP
and text analysis. This model is also known as the vector space model. In the BoW
model, a document (or a text description) is represented as an unordered set of words,
disregarding grammar and word order but keeping track of word frequency. The name
”Bag of Words” suggests that you can imagine all the words in a document being
thrown into a bag, and their order is ignored.

The BoW approach is advantageous not only for its independence from linguistic exper-
tise but also for its ease of interpretation. However, a more precise analysis is necessary
in certain cases, considering linguistic factors such as syntactic structure and semantic
content. For instance, while the BoW representation would assign the same vector to
the terms in the sentences ”The student received critical feedback from the professor”
and ”The professor received critical feedback from the student”, it is clear that the
different word orders convey distinct meanings. Nonetheless, given our focus on clas-
sifying short financial texts, this issue is less prominent, leading us to choose BoW as
our preferred method.

Term Frequency-Inverse Document Frequency One issue with BoW is its bias
towards frequently appearing words, potentially inflating their importance [74]. How-
ever, some words may have high occurrence rates without contributing much informa-
tion for classification or clustering tasks. Additionally, longer documents tend to receive
higher scores than shorter ones, leading to reduced accuracy for the BoW model. To
address these drawbacks, we turn to TF-IDF (Term Frequency-Inverse Document Fre-
quency), which is a statistical measure utilized to assess the relevance of a word within
a document (ledger account) amidst a collection of documents. This evaluation involves
multiplying two metrics: the frequency of a word’s occurrence within a ledger account
(TF) and the inverse document frequency of the word across the entire dataset (IDF).

This measure finds broad application, particularly in automated text analysis, and
proves highly beneficial for word scoring in machine learning algorithms employed for
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NLP tasks. TF-IDF adjusts its scoring based on how often a word appears in a docu-
ment and how common it is across all documents. This means that words like ”dit”,
”wat” and ”als” (”this”, ”what” and ”if” in English) rank lower because they are
common across many documents and carry less importance in any single document,
indirectly assigning weights to the features.

Ali et al. (2021) highlighted TF-IDF as the most commonly employed feature extrac-
tion method for textual data [5]. In their study, TF-IDF outperformed other feature
extraction techniques. The TF-IDF score for term t in document d from the document
set D is given in Equation (3.1). The score is calculated as the product of the term
frequency (TF) and inverse document frequency (IDF) [61]:

TF-IDF(t, d,D) = TF(t, d)× IDF(t,D) (3.1)

Where TF (t, d) is the number of occurrences of the term t in a document d and
IDF (t, d) is the number of occurrences of t in the document set D. Equation (3.2)
shows the IDF (t, d) calculation.

IDF(t, d) = log

(
N + 1

DF(d, t) + 1

)
+ 1 (3.2)

DF (d, t) is the document frequency, which is the number of documents d in the doc-
ument set D containing term t, and N is the total number of documents. The ”+1”
term is added to the IDF equation to prevent division by zero and mitigate potential
issues with terms that have zero document frequency.

Given the wide range of TF-IDF scores, it’s advisable to employ feature scaling tech-
niques [61]. Normalization, a commonly used approach, is particularly effective in this
regard, as it transforms all term values onto a standardized scale ranging from zero to
one. In this study, the L2 norm, also known as the Euclidean norm, is applied for nor-
malization. The normalization of the TF-IDF value of a feature x is given in Equation
(3.3).

xnorm =
x√∑n

k=1 |xk|2
(3.3)

Here, x represents the TF-IDF value of a feature, k denotes all features where x appears,
and xnorm signifies the normalized value of x.

3.4 Feature engineering

Feature engineering plays a crucial role in the success of text classification models.
In addition to standard text preprocessing techniques such as tokenization, stemming,
and stopword removal, incorporating domain-specific knowledge can further enhance
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the performance of the classifiers.

Domain-specific knowledge refers to expertise or information specific to the subject be-
ing analyzed. This knowledge can be leveraged in various ways to enrich the feature
space and improve classification performance. One feature that can serve as domain-
specific knowledge is the ledger account number. This number determines the order
of appearance on the balance sheet and the P&L statement. The account numbers
typically consist of a 4-digit sequence, ranging from 0000 to 9999. Accounts falling
under the 4000 range are commonly featured on the balance sheet, while those above
4000 are typically found on the P&L statement. Furthermore, the structure of these ac-
count numbers follows a hierarchical pattern, with the initial digit denoting the primary
category of the ledger account, while the subsequent digits offer further granularity re-
garding the type of account. For instance, an account number starting with ”4” often
signifies an expense item on the P&L, with the following digit indicating specific types
of expense items such as personnel expenses (40..), social securities (41..), or housing
expenses (42..).

Figure 3.1: Account numbers on the Balance sheet.
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Although this hierarchical system appears ideal for classifying ledger accounts, it’s
important to note that the companies assign these numbers manually, resulting in in-
consistencies across the dataset due to human error, lack of standardized procedures,
or variations in interpretation. Despite the lack of a one-to-one mapping, the account
numbers still provide valuable insights for the classification task. The breakdown of
the account numbers is shown per category in Figures 3.1 and 3.2. In Figure 3.1, TFA
stands for Tangible Fixed Assets, WIP for Work In progress, CA for Current Account,
CIT BS for Corporate Income Tax Balance Sheet, IFA for Intangible Fixed Assets and
FFA for Financial Fixed Assets. In Figure 3.2, COS stands for Cost Of Sales, and CIT
PL stands for Corporate Income Tax on the Profit & Loss statement.

The distribution of account numbers shows significant variations across all categories,
with considerable overlap between them. However, many classes can be effectively ex-
cluded based solely on the account number. For instance, Figure 3.2 clearly shows that
account numbers around 7000 or 8000 strongly indicate COS and Revenue, respectively.
This suggests a potential model performance improvement by incorporating these num-
bers.

Figure 3.2: Account numbers on the Profit & Loss statement.

There are account numbers containing letters or more digits than four. These numbers
are not considered since they are often based on a single company’s policy regarding
structuring the account numbers and, thus, do not contain any relevant information
regarding the general classification of the ledger accounts. Therefore, only numbers
within the range of 0000-9999 are concatenated to the descriptions.
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The account numbers are incorporated into the model by concatenating the numbers
to the text descriptions. An example of such concatenation is ’4000 Brutoloon’, which
is Dutch for ’gross salary’ and falls under the category of ’Personnel expenses’. The
choice of text concatenation instead of adding a new feature to the model was based
on the results found in the study of Pittara et al. [55], in which they found that the
concatenation of semantic vectors offered the best performance boost.

3.5 Class imbalance

Handling data imbalance is crucial in multi-class text classification tasks to ensure that
the model learns effectively from all classes [82]. We addressed data imbalance for our
text classification problem by combining undersampling and SMOTE (Synthetic Mi-
nority Over-sampling Technique). Undersampling involves decreasing the number of
samples from the majority class, a practice often avoided in research due to the loss of
potentially valuable information from the majority class. On the other hand, oversam-
pling can cause overfitting by excessively duplicating samples from the minority class,
potentially causing the model to learn noise and specifics of the training data rather
than true patterns.

To navigate these challenges, we investigated a combination of undersampling and over-
sampling techniques, a strategy applied in various studies [72, 77, 82]. This hybrid
approach has demonstrated greater effectiveness than using oversampling or undersam-
pling individually. By balancing the class distribution through this combination, we
aimed to retain the essential information from all classes while mitigating the risks
associated with traditional oversampling or undersampling methods. This approach
uses the strengths of both techniques to achieve improved model performance and gen-
eralization capabilities, addressing class imbalance and producing a balanced dataset
crucial for training classifiers.

SMOTE is frequently employed for oversampling due to its advanced capabilities in ad-
dressing class imbalance within machine learning. SMOTE addresses the imbalanced
class distribution by generating synthetic samples for minority classes. Instead of di-
rectly replicating existing data points, SMOTE creates new synthetic examples that
are strategically positioned within the feature space, close to existing minority class
instances. By doing so, SMOTE aims to mitigate the risk of overfitting while effec-
tively balancing class distribution, thus enhancing the model’s ability to generalize to
unseen data. This technique utilizes the inherent structure of the data to create mean-
ingful synthetic samples, ultimately improving the robustness and performance of the
classifier [52].
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Methodology

This chapter provides an overview of the models used in this research for classifying
ledger accounts. We start by examining traditional machine learning models such as
Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM).
Subsequently, we discuss using pre-trained embedding models, specifically BERT and
BERTje, which have shown remarkable capabilities in NLP tasks. Following exploring
these models, we describe the hyperparameters corresponding to the models. Tuning
these hyperparameters ensures the models are optimized for representative classifica-
tion accuracy.

4.1 Traditional machine learning models

Despite the rise of pre-trained embedding models, traditional machine learning models
remain relevant for several reasons. They often require fewer computational resources,
making them more accessible when computational resources are limited. Additionally,
these models tend to be more interpretable, offering insights into the decision-making
process and facilitating the identification of influential features [3]. Models such as LR,
RF, and SVM have shown their capability to identify patterns within textual data and
accurately assign class labels to text documents [3, 68, 84].

4.1.1 Logistic regression

LR is a statistical method that can be used for binary classification problems and can be
extended to handle multi-class classification. Despite its limitations, including the as-
sumption of a linear relationship between input features and class labels, LR remains a
common approach for text classification [70]. It offers simplicity in implementation and
interpretation, making it practical for real-world applications. Moreover, LR can han-
dle high-dimensional, sparse text data and can be regularized to prevent overfitting [70].
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When applied to text classification, the goal is to predict the class of a given piece
of text. First, one must represent the text as numerical features to utilize traditional
machine learning models for text classification problems. Our approach uses the BoW
representation, where each text is represented as a vector of word frequencies as dis-
cussed in Paragraph 3.3. The actual features used in our model are the weighted
TF-IDF values, as discussed in Section 3.3.

Binary classification LR models the relationship between the features and the prob-
ability of the piece of text belonging to a particular class using the logistic sigmoid
function. This is a mathematical function with a characteristic S-shaped curve given
in Equation (4.1), where z is any real-valued number.

σ(z) =
1

1 + e−z
(4.1)

The equation’s inverse exponential term e−z approaches 0 when z goes to infinity and
increases without bound (approaches infinity) as z approaches minus infinity. As a
result, the sigmoid function approaches 1 when z increases and 0 when z decreases,
which can be seen in Figure 4.1. The output values between 0 and 1 make the sigmoid
function ideal for modeling probabilities and binary classification tasks. The decision
threshold of 0.5 serves as a dividing point for assigning text to specific classes in binary
classification tasks. Moreover, it introduces non-linearity into the model, creating flex-
ibility to model non-linear patterns in the data [70].

Figure 4.1: Logistic sigmoid function.

The LR model computes a weighted sum of TF-IDF values and applies the sigmoid
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function as an activation function. This mapping transforms the weighted sum into a
probability value between 0 and 1, representing the likelihood of belonging to a specific
class. The final LR model equation is expressed as follows:

P (y = 1 | x;w) = σ(wTx) =
1

1 + e−wT x
(4.2)

Where:

• P (y = 1 | x;w) is the predicted probability of the class.

• w is the vector of weighted TF-IDF values.

• x is the binary input feature vector representing the presence of each word.

• wTx represents the dot product (weighted sum) of w and x.

• σ(·) is the logistic sigmoid function defined in Equation (4.1).

The model is represented in Figure 4.2. The input values x1, x2, ..., xn represent the
presence of a word in the piece of text, where n represents the number of distinct
words in the entire dataset. The weights w1, w2, ..., wn are parameters optimized by
the model, representing the contribution of each word towards the classification task.
These weights indicate the amount of information or relevance that each word adds
to the classification process. The weights essentially determine how much each word
influences the final classification decision. The summation process computes a single
value by multiplying the sum of each input value by its corresponding weight.

Figure 4.2: Logistic Regression model.

The calculated value is fed into the sigmoid function, which transforms it into a prob-
ability value between 0 and 1. Subsequently, the class prediction ŷ is made based on
this probability value, and all predictions are passed to the logistic loss function. The
logistic loss function is a common choice for logistic regression because it is well-suited
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to optimize the parameters of a model that predicts probabilities for binary outcomes
[53]. The logistic loss function L(y, ŷ) for the prediction of a single piece of text is
defined as:

L(y, ŷ) = − (y log(ŷ) + (1− y) log(1− ŷ)) (4.3)

Where:

• y is the true class label (either 0 or 1) of the single piece of text.

• ŷ is the predicted probability that the example belongs to class 1.

The overall logistic loss function L(w) is the average of individual loss terms of all
predicted labels:

L(w) = 1

n

n∑
i=1

L(yi, ŷi) (4.4)

Where:

• n is the number of texts in the train set.

• (xi, yi) represents the i-th training example with input features xi and true label
yi.

• ŷi = σ(wTxi) is the predicted probability for the i-th example using logistic
regression.

Finally, the weights are updated in each iteration using an optimization algorithm (see
Section 5.4).

Multi-label classification LR and SVM models are originally designed for binary
classification tasks and do not inherently support multi-class classification. However,
these binary classification algorithms can be adapted for multi-class problems by trans-
forming the problem into a series of binary classification subproblems. Two common
approaches for adapting LR and SVM for multi-class classification are the One-vs-Rest
(OvR) and One-vs-One (OvO) strategies, described below.
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One-vs-Rest:

• In OvR, we create K binary classifiers, each dedicated to distinguishing one class
k from all other classes combined.

• During prediction, each binary classifier calculates a probability score for its cor-
responding class.

• The final prediction is made based on the binary classifier that assigns the highest
probability score for its respective class.

One-vs-One:

• OvO decomposes the multi-class classification problem into K(K−1)
2

binary classi-
fication tasks, one for each pair of classes.

• Each binary classifier in OvO is trained to distinguish between a specific pair of
classes.

• During prediction, each binary classifier votes for one of the two classes.

• The predicted class label for a new instance is determined based on the class that
receives the most votes across all binary classifiers.

Regarding dataset characteristics, OvR effectively handles class imbalances because
each binary classifier focuses on distinguishing one class from all others. This approach
can be particularly advantageous when dealing with datasets where certain classes are
more prevalent than others. Additionally, OvR scales well with many classes compared
to OvO, as it requires fewer binary classifiers to be trained, making it more efficient
and feasible for high-dimensional classification tasks. On the other hand, OvO is pre-
ferred when dealing with complex decision boundaries and intricate class relationships.
By training classifiers for each pair of classes, OvO can better capture nuanced rela-
tionships between classes and handle scenarios where classes might exhibit overlapping
characteristics or dependencies. Since it is not obvious which approach will perform
better for our problem, both approaches are considered in the hyperparameter tuning
step.
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4.1.2 Random Forest

RF is a powerful ensemble learning method commonly used for classification and regres-
sion tasks. It belongs to the family of tree-based models and is known for its robustness,
flexibility, and ability to handle high-dimensional datasets effectively [13].

decision tree A decision tree is a graphical representation of a decision-making pro-
cess depicted in a tree-like structure. It consists of nodes that signify specific conditions,
branches representing the presence of a word, and leaf nodes that denote the final clas-
sification. An example of a decision tree is visualized in Figure 4.3.

Figure 4.3: An example of a Decision Tree.

In this example, the decision tree begins with the root node labeled ’Omzet’ (Dutch
for Revenue), representing the best data-splitting feature. As we move down the tree,
each internal node represents a test on a specific feature (e.g., the presence of a specific
word in the piece of text), which divides the dataset into smaller subgroups based on
the feature’s value. Here, ’Activa’, ’Belasting’, and ’Afschrijving’ are Dutch for assets,
tax, and depreciation.

The process continues recursively, with each split maximizing the homogeneity of the
target variable within the resulting subgroups. This means that after each split, the
tree aims to make the resulting groups as pure as possible concerning the target class.
Ultimately, as we traverse the tree from the root to the leaves (green blocks), we can
classify a new instance based on its path through the tree. For instance, if a ledger ac-
count does not contain the words ’Omzet’ and ’Afschrijving’ but does contain ’Activa’,
the decision tree model classifies the instance as TFA (Tangible Fixed Assets).

The tree is built by selecting the best feature to split on at each node. The splitting
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process continues recursively until the tree is fully grown or a stopping criterion is met.
Possible stopping criteria are discussed in Paragraph 5.4.

Optimal feature selection The best feature for splitting the data is typically deter-
mined using a criterion called ”Gini impurity” or ”information gain.” The Gini impu-
rity is the default setting for our RF model. It measures how often a randomly chosen
element from the dataset would be incorrectly classified if it were randomly labeled
according to the class distribution in the subset.

Information gain measures the target variable’s entropy (or uncertainty) reduction after
splitting the dataset on a particular feature. Features that result in higher information
gain are preferred because they lead to more significant reductions in the uncertainty
of the target variable [45].

Random Forest ensemble RF expands the concept of decision trees by creating
multiple trees during training and combining their predictions to enhance accuracy and
generalizability [70]. In an RF model, each tree is trained using a subset of the training
data and considers only a subset of the input features (chosen randomly), which leads
to varied class predictions among the trees. This deliberate introduction of randomness
helps in reducing overfitting and encourages diversity among the models in the ensem-
ble [13]. When building the RF model, each tree is trained independently to predict
the target class of a given input. The final predictions of the RF model are then made
through majority voting or probability averaging.

Figure 4.4: Majority voting in a Random Forest model [38].
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When all decision trees are built and trained, each tree ’votes’ for a class label. In
majority voting, the class that receives the most votes is considered the final prediction
of the RF. Averaging in RF models is typically used for regression tasks, where each
tree predicts a value for the target variable. The predicted values from all the trees
are then averaged to obtain the final prediction. While direct averaging of class labels
is impossible, an alternative approach known as probability voting can be used in
classification tasks. Probability voting involves averaging the predicted probabilities
assigned to each class by the individual trees. This can provide a more nuanced and
probabilistic approach to combining predictions, where the final class label is determined
based on the highest average probability across all trees. Figure 4.4 shows a simplified
version of the RF model. Here, n stands for the number of decision trees.

4.1.3 Support Vector Machine

SVM is another powerful supervised learning model used for classification and regres-
sion tasks. Like LR, SVMs are particularly effective for binary classification but can
be extended to handle multi-class problems using OvR or OvO. The primary goal of
SVMs is to determine an optimal hyperplane that effectively separates different classes
of data points within a high-dimensional space. This involves identifying a hyperplane
capable of distinctly segregating data points associated with distinct classes [79].

Figure 4.5: Simplified Support Vector Machine model [63].

In an n-dimensional space (where n represents the number of distinct words), a hyper-
plane is essentially a flat subspace of dimension n− 1. For instance, within a 2D space
(comprising two features), a hyperplane manifests as a straight line; within a 3D space
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(with three features or distinct words), it assumes the form of a plane. To visualize
this concept, consider Figure 4.5, showing a simplified example of a hyperplane within
a 2D space, dividing two distinct classes.

The characteristic of SVM lies in its prioritization of maximizing the margin, which sig-
nifies the perpendicular distance between the hyperplane and the nearest data points,
known as support vectors, for each class. The positioning of the hyperplane is directed
to optimally separate the classes by achieving the widest margin feasible. SVM aims to
find the hyperplane that maximizes this margin because a larger margin implies better
generalization and robustness of the model against unseen data [36]. Since the objec-
tive is to maximize the margin between the support vectors, SVM mainly relies on the
support vectors to define the classifier. This focused approach means that SVM does
not concern itself with all observations but rather leverages the critical support vectors
to establish the optimal hyperplane.

When dealing with perfectly linearly separable data, a hyperplane can effectively parti-
tion the data with a single line in a 2D space. However, real-world datasets, particularly
those with numerous features, are often complex and nonlinear. This complexity poses
challenges for linear separation, as seen in our text classification problem.

To address this challenge, we employ the ”kernel trick”, a technique that handles non-
linear classification problems. The kernel trick works by mapping data points into a
higher-dimensional space where linear separation becomes possible. The kernels we
consider for our SVM model are discussed below, along with their corresponding for-
mula.

• Linear Kernels: Define the dot product between the input vectors in the original
feature space. The linear kernel is given in Equation (4.5). Where K stands for
the kernel, and x and y are the input feature vectors.

K(x, y) = xT · y (4.5)

• Polynomial Kernels: Introduce nonlinearities using polynomial transforma-
tions, allowing for flexible decision boundaries. The polynomial kernel is defined
in Equation (4.6), where c is a constant and d is the polynomial degree.

K(x, y) = (xT · y + c)d (4.6)
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• Radial Basis Function (RBF) Kernels: Utilize Gaussian functions to capture
complex relationships and local similarities. The RBF kernel equation is shown
below:

K(x, y) = e(−γ∥x−y∥2) (4.7)

Here, γ is a parameter controlling the Gaussian function width, which determines
the degree of nonlinearity in the decision boundary, and ∥x− y∥ is the Euclidean
distance between the two input vectors.

Figure 4.6: Kernel example [63]

To explain the functionality of a kernel, let’s consider the scenario depicted in Figure
4.6. On the left, we see a non-linearly separable dataset existing within a 2D space.
The challenge lies in finding a linear boundary (hyperplane) that separates the red
squares from the green circles. To tackle this problem, a kernel transforms the original
2D dataset into a higher-dimensional 3D space. This transformation is executed by
mapping each data point to a new coordinate system. During this mapping process: The
kernel elevates the positions of the red squares along a newly created axis in 3D space.
Conversely, the positions of the green circles are shifted downwards along the same
axis. This transformation allows for linear separation within 3D space. Consequently,
a hyperplane (a plane in 3D) can be introduced to effectively segregate all data points
along distinct regions, thereby achieving the desired linear separability.

4.2 Pre-trained Large-Scale Embedding Models

Although Deep Learning models have achieved state-of-the-art performance in various
NLP tasks, they require training from the ground up, demanding substantial datasets
and days to converge [34]. In response to this challenge, recent years have witnessed a
revolutionary shift in text classification and various NLP tasks, thanks to pre-trained
large-scale embedding models. Examples like BERT, built upon transformer architec-
tures, have been pre-trained on extensive textual datasets.
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4.2.1 Word embeddings

Word embeddings play a crucial role in capturing the semantic meaning of words within
the context of a sentence or a document. In word embeddings, the representation of
each word is dependent not only on its own characteristics but also on the surrounding
words in the sentence.

These representations are made by transforming words into sets of real numbers, form-
ing vectors that position words in an n-dimensional space. This spatial arrangement in
a high-dimensional vector space tries to encapsulate the meanings of words, allowing
machines to interpret and process textual information more effectively [69].

Figure 4.7: Word embedding example [21].

Figure 4.7 shows a simple representation of a word embedding using three features and
a 3-dimensional vector space. The position of each word in this figure is determined by
its vector representation in the embedding space. This way, words that are semantically
similar or share common contexts will be closer to each other. The values in the figure
(e.g., the numbers 0, 1, 2, 3, 4) represent the strength of association or similarity
between each word and context. Higher values indicate stronger similarity, while lower
values indicate weaker similarity. This way, we can observe semantic relationships
between the words. For example, words like ”bee” and ”eagle” might be closer together
due to their associations with ”sky” and ”wings,” while ”helicopter” and ”jet” might be
closer due to their association with ”engine”. Words with similar meanings are located
closer together in this vector space. This approach enhances computational efficiency
and enables machines to derive meaningful insights from textual data, transforming
raw text into a structured format beneficial to machine learning algorithms [55].
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4.2.2 Pre-trained models

State-of-the-art NLP models often use pre-trained word embeddings trained on large
amounts of text data. These pre-trained word embeddings are a type of transfer learn-
ing, a machine learning technique where a model is trained on one task, and a dataset
is reused for another related task. Instead of starting the learning process from scratch,
transfer learning leverages knowledge gained from solving one problem and applies it
to a different but related problem.

Pre-trained word embeddings represent a form of unsupervised learning where a model
is trained on a large corpus of text to generate dense vector representations of words.
These embeddings encode semantic information about words based on their contextual
usage within the text. Using pre-trained word embeddings, the vast amount of existing
texts can be utilized in tasks with small labeled datasets, achieving high accuracy with
limited data [57]. Pre-trained embedding models have proven effective in enhancing
various NLP tasks, outperforming traditional machine learning and deep learning tech-
niques [17, 22, 34, 57].

4.2.3 BERT

BERT is a deep learning approach that utilizes transformers for pre-training in NLP.
It was developed in 2018 by Jacob Devlin and other Google researchers [22]. Since
its release, BERT has demonstrated state-of-the-art performance across various NLP
tasks, getting much attention in the NLP community.

Transformer architecture The architecture of BERT’s model is a multi-layer trans-
former inspired by the original design detailed by Vaswani et al., in 2017 [85]. The
transformer uses the encoder-decoder structure, a fundamental architecture in neural
networks, particularly for NLP tasks [16]. In this architecture, the encoder trans-
forms an input sequence of words, in our case (x1, ..., xn), into a sequence of continuous
representations (z1, ..., zn) using embeddings. The decoder then generates the output
sequence of symbols (y1, ..., ym) based on the encoded information from the encoder.

The transformer structure can be seen in Figure 4.8. Where the left and right sides rep-
resent the fully connected encoder and decoder, respectively. Where N is the number
of identical layers, which is set to 6 for both the encoder and decoder. The encoder con-
sists of two sub-layers, a multi-head attention layer, and a fully connected feed-forward
network. The decoder has a third layer, performing masked multi-head attention as
the first step. Each mechanism is followed by a simple normalization operator.
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Figure 4.8: The transformer model architecture [85].

The attention mechanisms allow the model to focus on different parts of the input se-
quence in parallel. It maps a query and a set of key-value pairs to an output, where the
query, keys, values, and output are all vectors. The output is calculated as a weighted
sum of the values, where each weight is determined by a compatibility function that
measures the similarity between the query and the corresponding key [85].

A single-head attention function is computed in parallel, concatenating the vectors of
the queries, keys, and values into matrices Q,K, and V , respectively. The matrix of
outputs is computed as a scaled dot-product and is given in Equation (4.8).

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (4.8)

Where dk is the dimension of the query and key vectors, and T indicates a transpose
operator, which is necessary for matrix multiplication. Finally, multi-head attention
is the concatenation of each single-head, resulting in the structure given in Figure
4.9, resulting in Equation (4.9). Where WO is the learned linear projection matrix
for the concatenated output, and h is the number of parallel attention heads in the
concatenation, which is set to 8.

Multi-Head(Q,K, V ) = Concatenate(head1, . . . , headh)W
O (4.9)

In masked multi-head attention in the decoder part, future words are ’masked,’ pre-
venting the model from accessing these words, effectively creating a causal model. This
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masking is crucial for preserving the temporal order and coherence of the output [58].
Additionally, it significantly accelerates training by capturing the relationship between
each token and its immediate successor within a single data structure.

Figure 4.9: Multi-head attention mechanism [85].

BERT architecture BERT consists of 12 transformer blocks, a hidden layer of size
h = 768, and 12 self-attention heads. Due to its input representation, which consists
of a token sequence that can represent either a single sentence or multiple sentences
combined, BERT can handle various downstream tasks. This token sequence is gener-
ated using the WordPiece embeddings, introduced by Wu et al. [90], with a vocabulary
of 30,000 tokens. In BERT, each sequence starts with an initial classification token
denoted by ([CLS]). Sequences containing multiple sentences are separated with a sep-
aration token ([SEP]). A general overview of the pre-training structure is shown in
Figure 4.10. Here, the token C is the final hidden vector of the classification token, E
denotes the input embeddings, and Ti is the final hidden token of the ith input token.
BERT has two main stages: pre-training and fine-tuning. The model trains on unlabeled
data across various tasks in the pre-training phase. In the fine-tuning stage, BERT is
initialized with the pre-trained parameters, and all parameters are tuned using our
labeled dataset specific to the classification of the ledger accounts. An advantage of
the BERT model is its pre-training architecture, which applies to various downstream
tasks, resulting in similar structures across distinct tasks [22]. Therefore, there is no
need to adjust the architecture to deal with our text classification task.
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Figure 4.10: BERT pre-training architecture [22].

Pre-training The pre-training process utilizes the BooksCorpus and EnglishWikipedia,
which consist of 800 million and 2500 million words, respectively, for a total of 3.3 bil-
lion words. The lists, tables, and headers are not included in the Wikipedia dataset,
and only text passages are extracted. The method follows the procedure of existing
literature on language model pre-training [22]. The pre-training comprises two un-
supervised tasks: Masked Language Modelling (MLM) and Next Sentence Prediction
(NSP). MLM, commonly known as the Cloze task [83], involves randomly masking
some percentage of the tokens in the input text and training the model to predict these
masked tokens based on the context provided by the surrounding tokens. Below is an
example to illustrate this:

• Original Sentence: ”The smart young student solves the complex problem.”

• Masked Sentence: ”The smart young [MASK] solves the complex problem.”

• Model Prediction: The model analyzes the surrounding context (”The smart
young” and ”solves the complex problem.”) and predicts that the masked word
is ”student.”

During training, the model is provided with sentences containing masked words. The
model learns to fill in these masked words by understanding the context of the words
around them. This representation combines the left and right context, allowing for
bidirectional learning and showing state-of-the-art results compared to traditional left-
to-right language models [22].

NSP is a training task in which the model is provided with pairs of sentences. The
goal is to predict whether the second sentence logically follows the first one. The C-
token in Figure 4.10 is used for the NSP task. It is labeled as ’IsNext’ 50% of the
time, containing the actual sentence following the first one, and ’NotNext’ the other
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50% of the time, containing a random sentence from the training data. Below are two
examples, one containing a sentence pair that logically follows each other and one that
does not.

• True example:

– Sentence 1: ”I prepared well for my big presentation.”

– Sentence 2: ”The presentation went smoothly without any problems.”

– Label: IsNext.

• False example:

– Sentence 1: ”I prepared well for my big presentation.”

– Sentence 2: ”My bike broke down on the way to work.”

– Label: NotNext.

Fine-tuning Due to the self-attention mechanism within the Transformer architec-
ture, several downstream tasks can be fine-tuned simply by adjusting the inputs and
outputs accordingly [22]. For our text classification task, we integrate the preprocessed
short financial texts (the ledger accounts) as inputs and the corresponding labels as
outputs (as the [CLS]-token representation) into BERT. This allows us to fine-tune all
parameters end-to-end. The fine-tuning process is given below:

• Initialize the model with pre-trained weights.

• Feed the tokenized input texts into the model.

• Pass the output representation of the [CLS]-token through the classification layer.

• Measure the difference between the predicted class probabilities and the actual
class labels.

• Train the model by updating the weights, using backpropagation and an opti-
mization algorithm (Adam, discussed in Section 5.4).

• Repeat this process for several epochs, adjusting the model parameters to mini-
mize the loss of the training data.
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BERT variations Since its release, researchers have been studying and refining
BERT, leading to several model variations. We have experimented with DistilBERT (a
distilled version of BERT [64]), RoBERTa (Robustly optimized BERT Pre-training ap-
proach [44]), and BERT Large. DistilBERT is a smaller and faster model trained by dis-
tilling BERT, RoBERTa adjusts key hyperparameters by eliminating the next-sentence
pre-training objective and opting for significantly larger mini-batches and learning rates
during training, and BERT Large is a larger version of BERT with more encoders, self-
attention heads, and parameters.

The modified models highlighted in their respective studies showed promising results
[22, 44, 64]. However, in our experiments, they consistently underperformed. Only
BERT Large demonstrated comparable results in certain cases, but its extensive train-
ing time exceeded our available computing resources. These outcomes could be at-
tributed to differences in the datasets they used, which mainly contain larger English
texts, whereas our datasets mainly contain short Dutch texts. This suggests that the
original BERT model provides the most reliable generalization compared to its alter-
natives. These findings align with several studies regarding the performance of BERT
and its alternative models [6, 62, 86].

Nonetheless, we did include the monolingual Dutch variant BERTje [19]. This model
was developed using the same architecture and parameters as BERT, except for some
modifications in the pre-training procedure for the MLM and NSP tasks. BERTje
is trained using a different dataset of several high-quality Dutch text collections. We
chose this modified model because our datasets mainly consist of Dutch ledger accounts.
Therefore, we anticipated that the BERTje model would outperform BERT.
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Experimental setup

This section discusses the experimental setup of this research. First, we describe our
performance evaluation techniques to assess each model’s performance in classifying
the ledger accounts. Next, we discuss cross-validation, a technique that assesses the
performance and generalizability of the models. Following this, we present two meth-
ods to aid consultants in their decision-making regarding the prediction of the ledger
account class. The first method provides certainty scores associated with the predicted
classes, and the second method incorporates a secondary prediction. This approach
facilitates more informed decision-making, enabling consultants to make effective judg-
ments based on the model’s outputs. Finally, we explain the Optuna hyperparameter
tuning framework.

5.1 Performance evaluation

The most common and comprehensive performance metric in machine learning is ac-
curacy. However, accuracy can be misleading in datasets with imbalanced classes. For
instance, in a dataset with 90% of instances belonging to one class, a model that always
predicts the majority class would achieve 90% accuracy, despite having no predictive
power for the minority class. Furthermore, Accuracy does not differentiate between
types of errors. It treats false positives and false negatives equally. Finally, accuracy
does not provide information on how well the model performs on individual classes,
which is important in our case since we want to identify which classes the model tends
to predict wrongly. Therefore, alongside the accuracy, we use the metrics precision,
recall, and the F1-score; this way, we offer better insights into the generalizability of
the models. Explanations of the four different evaluation metrics are presented below,
alongside their corresponding equations.

Accuracy The first metric is accuracy, defined in Equation (5.1), where TP stands
for True Positives, TN for True Negatives, FP for False Positives, and FN for False
Negatives. The accuracy calculates the ratio of correctly predicted instances to the total
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number of instances. It represents the probability that the model correctly predicts the
suitable class.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

Precision The precision score, described in Equation (5.2), evaluates the propor-
tion of true positives among all positive predictions made by the model. This metric
indicates the model’s reliability when it predicts a particular class [75].

Precision =
TP

TP + FP
(5.2)

Recall The recall score, defined in Equation (5.3), measures the model’s ability to
identify all relevant instances within a dataset.

Recall =
TP

TP + FN
(5.3)

F1-score The final metric is the F1-score, given in Equation (5.4), which combines
precision (PS) and recall (RC) into a single metric by calculating their harmonic mean.
This score balances precision and recall, offering a comprehensive measure of the model’s
performance [75].

F1-score = 2×
(
PS ×RC

PS +RC

)
(5.4)

5.2 Cross-validation

To evaluate the models robustly, we utilized 5-fold cross-validation. This technique
partitions the dataset into five subsets, ensuring each fold contains a balanced repre-
sentation of all classes. Figure 5.1 visualizes the concept of cross-validation. It can
be seen that the data is split into five folds. The model is trained on four folds and
validated on the remaining one fold. This process is repeated five times, each time
with a different fold used as the test set and the remaining folds as the training set.
After the five iterations, the performance metrics (accuracy, precision, recall, F1-score)
are averaged to produce a single estimate of the model performance. By evaluating the
model on multiple subsets of the data, cross-validation provides a more reliable estimate
of how the model will perform on unseen data, ensuring that the model generalizes well
and does not overfit to a particular subset of the data. In addition, this method utilizes
all data points for both training and validation, maximizing the use of available data.
Moreover, stratification was employed during this process to maintain the distribution
of classes across each fold, thereby preventing biases in model training and evaluation.
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Figure 5.1: Cross-validation explanation [1].

To further enhance the cross-validation setup’s robustness, we ensured that rows be-
longing to the same company were exclusively present in either the training or test
set within each fold. This step aimed to prevent data leakage and ensure the model
generalized well to unseen company-specific patterns.

5.3 Certainty scores and secondary predictions

An important feature was implemented to improve the utility of these predictions when
developing the models to predict the classes of textual data. Beyond predicting the
class of the text, we added the certainty scores associated with each prediction and
a secondary prediction, which the model considers to be the best prediction after the
initial one.

Certainty scores Certainty scores quantify the confidence level of the model in its
predictions. These scores are derived from the probability distributions output by the
models, indicating how likely the model believes a particular prediction is correct. For
instance, a certainty score close to 1 suggests that the model is highly confident in its
prediction, whereas a score closer to 0.5 indicates lower confidence.

Each model outputs a probability distribution over all possible classes upon making a
prediction. Each class is assigned a certain probability, with the total sum of proba-
bilities being equal to 1. The highest probability in this distribution is taken as the
certainty score. For example, if a model predicts a certain class with 85% probability,
the certainty score for that prediction is 0.85. These scores are then presented to the
end user alongside the predicted class labels.

The inclusion of certainty scores assists the consultants at SINCERIUS in prioritiz-
ing their review efforts. Predictions with lower certainty scores are flagged so that the
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consultants can judge whether the class was predicted correctly, allowing the user to an-
alyze the ledger account predictions more effectively. This prioritization helps mitigate
the risk of misclassification by focusing on cases where the model is less confident.

Secondary predictions In addition to the certainty scores, a secondary prediction
is also provided. This secondary prediction represents the model’s next best guess
for the class label, should the primary prediction be incorrect or uncertain. Including
this secondary prediction is helpful in cases where the primary prediction is uncertain
or deemed incorrect. The secondary prediction then offers an alternative that is also
considered highly probable by the model. This can be particularly useful in edge cases
where the model’s confidence is distributed among a few classes. This allows the user to
see the second most likely classification, which can help make more informed decisions.
If the primary prediction has a low certainty score, the user can also consider the
secondary prediction as a candidate.

5.4 Hyperparameter tuning

Hyperparameter tuning is the optimization of the model’s parameters to improve its
performance. Machine learning models often have many adjustable parameters, result-
ing in various possible configurations associated with a specific performance outcome.
To make a fair comparison between traditional machine learning models and BERT,
we tuned the hyperparameters of each model to ensure representative performances of
the models. Fair comparisons require that each model is given an equal opportunity to
perform optimally. Tuning hyperparameters ensures that all models are fine-tuned to
their best possible configurations, mitigating the risk of unfair advantages or disadvan-
tages based on arbitrary default settings. This section discusses the hyperparameters
we consider for each model.

Logistic regression As discussed in Section 4.1.1, LR models the probability that
a given input belongs to a particular class, using a logistic sigmoid function to output
values between 0 and 1. Table 5.1 presents the key hyperparameters of the LR model
along with their respective value ranges and possible methods.

The ’Max iterations’ parameter determines the maximum number of iterations the
solver will take before stopping, with a default setting of 100 iterations.1 Our short
text classification problem is complex and possibly needs more iterations to ensure con-
vergence, so we have set a higher upper limit.

1All default settings for the Logistic Regression model can be found on the follow-
ing website: https://scikit-learn.org/stable/modules/generated/sklearn.linear\_model.

LogisticRegression.html
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Table 5.1: Hyperparameter Tuning settings for the Logistic Regression model.

Hyperparameter Value range/method

Max iterations [50, 1500]
Penalty [L1, L2]
C [5× 10−3, 10000]
Solver [liblinear, lbfgs, saga]
Decision function [OvR,OvO]

The ’Penalty’ parameter considers the regularization technique, which prevents overfit-
ting by adding a penalty term to the loss function. This penalty discourages the model
from fitting the noise in the training data, resulting in a generalized model [12]. The
L1 penalty adds the absolute values of the coefficients to the loss function, which tends
to drive some coefficients to zero, effectively performing feature selection by excluding
certain features from the model. The L2 penalty adds the squared values of the coeffi-
cients to the loss function. This method distributes the regularization effect across all
coefficients, shrinking them towards zero but not making them exactly zero, reducing
the variance of the model.

The ’C’ parameter is the inverse of regularization strength and is thus linked to the
’Penalty’ parameter. A high value for C causes low regularization, and a low value
causes high regularization. The default is 1, which results in a moderate influence
of the regularization term on the model’s coefficients. However, a text classification
model often has many features, indicating a strong need for regularization. Therefore,
we opted for a rather large possible value range for C.

The ’Solver’ parameter determines the optimization algorithm for updating the model’s
weights in each iteration. The liblinear solver uses a coordinate descent algorithm and
is more suitable for smaller datasets [2]. The ’lbfgs’ solver stands for Limited-memory
Broyden–Fletcher–Goldfarb–Shanno. It’s a quasi-Newton method that approximates
the Broyden–Fletcher–Goldfarb–Shanno algorithm and is suited for large datasets [43].
The Stochastic Average Gradient Algorithm (SAGA) is a variant of the stochastic
average gradient method and is known for its ability to handle large-scale and sparse
datasets. Its primary objective is to minimize the average of many smooth convex
functions efficiently [66]. Finally, the multi-label classification strategy is determined
by the ’Decision function’ parameter. This either selects the OvR or the OvO strategy,
which were discussed in Section 4.1.1.

Random Forest The RF model is an ensemble model, making predictions based on
the outcome of multiple decision trees (See Section 4.1.2 for more details). The hyper-
parameters tuning settings for the RF model can be seen in Table 5.2. The ’Criterion’
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parameter determines the function used to measure the quality of a split at each node
of the trees. The possible settings are ’gini’ and ’entropy’ (also called information gain),
as discussed in Section 4.1.2.

The ’max depth’ parameter controls the maximum depth of each decision tree in the
forest. Setting a maximum depth for the decision trees helps prevent overfitting, which
occurs when the model learns the training data too well and performs poorly on un-
seen data. A shallow tree (low maximum depth) results in simpler models with fewer
splits and may lead to underfitting, while a deep tree (high maximum depth) allows
the model to capture more complex relationships in the data and may lead to overfitting.

The ’max features’ parameter determines the maximum number of features to consider
when looking for the best split at each decision tree node. It is a proportion of the total
number of features in the model. This parameter provides flexibility and helps reduce
overfitting by limiting the number of features in each tree [11]. The default setting for
the ’Max features’ parameter is ’auto’, where the maximum number of features equals
the square root of the total number of features.2 Given our extensive feature space,
using this value would lead to too many features at each split, resulting in a complex
model that will likely overfit. Therefore, we have limited the potential value range to
allow for smaller proportions. Moreover, the upper value of 0.1 is approximately equiv-
alent to the default square root setting. Our models typically consist of around 10,000
features (varying depending on the model and dataset), with the square root being
100, representing a proportion of 0.1. Finally, the ’n estimators’ parameter controls the
number of decision trees n used in the RF ensemble. The default setting is 100, so a
range between 50 and 300 seems reasonable.

Table 5.2: Hyperparameter Tuning settings for the Random Forest model.

Hyperparameter Value range/method

Criterion [gini, entropy]
Max depth [50, 15000]
Max features [5× 10−7, 0.1]
n estimators [50, 400]

Support Vector Machine The hyperparameters of the SVM model are shown in
Table 5.3. Again, C is the parameter for the inverse of regularization strength. The
range for C was chosen both by trial-and-error and the consideration of a strong regu-
larization influence due to the amount of features in the models, which is why a larger
value range was necessary. The ’Kernel’ parameter defines the function used to map

2All default settings for the Random Forest model can be found on the following website: https:
//scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.
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the input data into a higher-dimensional space where it becomes easier to classify the
data. The kernels considered are the linear kernel, the Radial Basis Function kernel,
and the Polynomial kernel, as discussed in Section 4.1.3. Like the LR model, SVM uses
the OvR or the OvO technique as a multi-label classification strategy.

Table 5.3: Hyperparameter Tuning settings for the Support Vector Machine model.

Hyperparameter Value range/method

C [5× 10−3, 10000]
Kernel [Linear, rbf, poly]
Decision function [OvR,OvO]

BERT There are two main phases in BERT: pre-training and fine-tuning. Hyper-
parameter optimization in the pre-training phase is possible. However, pre-training
involves a dataset of 3.3 billion words and 110 million parameters. This leads to a vast
search space, making it highly resource-intensive, requiring significant computational
power and time. Each pre-training run can take days to weeks on powerful GPUs
or TPUs, and tuning involves running many such experiments, making the process
extremely time-consuming [22]. Therefore, The hyperparameter optimization of pre-
training is out of the scope of this research. On the other hand, the fine-tuning phase
is more suitable for hyperparameter optimization.

Table 5.4 shows the possible hyperparameter values for BERT. The hyperparameter
’Batch size’ determines the number of samples from the training dataset utilized during
each training step. Predictions are made and compared to the expected outcomes in
each step, an error is computed, and the model’s internal parameters are adjusted
accordingly [75]. A large batch size enables faster computation due to efficient parallel
processing but requires more memory and can miss finer details with smoother gradient
descent, while a small batch size produces noisier gradient updates aiding in escaping
local minima but slows training due to less parallelization and frequent updates [9].

Table 5.4: Hyperparameter Tuning settings for the BERT model.

Hyperparameter Value range/method

Batch size [16, 32, 64, 128]
Epochs [2, 3, 4, 5, 6]
Learning rate [5× 10−7, 2× 10−4]

An epoch is one complete pass through the entire training dataset. More epochs provide
better training opportunities but can lead to overfitting, while fewer epochs reduce the
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risk of overfitting but may result in underfitting.

The ’Learning rate’ parameter controls the step size at each iteration while moving
toward a minimum of the loss function. A high learning rate speeds up the learning
process but risks quick convergence to a suboptimal solution or divergence, while a low
learning rate ensures more stable convergence but can be slow and may get stuck in
local minima [9]. The learning rate is low because of catastrophic forgetting, also known
as catastrophic interference. This refers to the neural network’s tendency to abruptly
forget previously learned information [46]. This causes models like BERT to lose all
relevant pre-trained knowledge.

The optimal hyperparameter values are task-specific. However, in the initial study by
Devlin et al. [22], the final hyperparameter values were selected using an exhaustive
grid search with the following value ranges:

• Batch size: 16, 32

• Number of epochs: 2, 3, 4

• Learning rate: 2× 10−5, 3× 10−5, 5× 10−5

Moreover, they set the dropout probability to 0.1 for all experiments and used the Adam
optimizer (short for Adaptive Moment Estimation), an advanced gradient descent opti-
mization algorithm that combines the benefits of two extensions of stochastic gradient
descent: the Adaptive Gradient Algorithm and Root Mean Square Propagation. We
copied these configurations, except for the hyperparameters in Table 5.4, where the
range of potential values has been expanded to increase the chance of discovering the
optimal values.

42 Emiel Goldman



CHAPTER 5. EXPERIMENTAL SETUP

5.5 Optuna optimization

Random and grid search are the most common and straightforward hyperparameter
tuning methods. Random search randomly selects hyperparameter values in each iter-
ation and chooses the hyperparameters corresponding to the model’s best performance
after a set number of iterations. Grid search is a technique where hyperparameters are
evaluated for all possible combinations of predefined values. It exhaustively searches
the entire hyperparameter space, testing every combination to find the best one accord-
ing to the specified evaluation metric. Both methods have weaknesses: random search
does not cover the entire search space, and grid search is computationally expensive,
resulting in a smaller search space to explore.

Therefore, we decided to implement a more sophisticated hyperparameter tuning method
called Optuna3, an open-source framework to automate the hyperparameter optimiza-
tion for machine learning models.

Objective function The first step in using Optuna is defining an objective function.
This function takes the possible hyperparameter values (as discussed in Section 5.4)
as input and returns a score that represents the performance of the model trained
with those hyperparameters. We decided to use maximizing accuracy as our objective
function since the ultimate goal of the model is to make predictions as accurate as
possible.

Sampling Algorithm Optuna has several sampling algorithms which can be chosen.
Sampling algorithms continuously adjust the search space by assessing the impact of
suggested parameter values on the objective value. They converge towards an opti-
mal parameter configuration that maximizes the objective value. The default sampling
algorithm of Optuna is the TPESampler (a Tree-structured Parzen Estimator algo-
rithm), which builds a probability distribution model of the objective function based
on the observed samples4. We have also experimented with the NSGAIISampler (Non-
dominated Sorting Genetic Algorithm II), which utilizes an elitist genetic algorithm.
However, in our case, the TPESampler demonstrated superior performance. This could
be attributed to genetic algorithms often requiring more iterations to converge, and we
lacked the computational resources to execute a sufficient number of iterations to reach
convergence With the NSGAIISampler.

Pruning algorithms Optuna automatically uses pruning algorithms to terminate
unpromising trials during the initial stages of training. This helps save computational

3https://optuna.org/
4See the following website for more details: https://optuna.readthedocs.io/en/stable/

reference/samplers/generated/optuna.samplers.TPESampler.html#optuna.samplers.

TPESampler
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resources by stopping trials that are unlikely to yield satisfactory results and conse-
quently accelerates the optimization process. The default pruning algorithm is the
MedianPruner, using the median stopping rule, which terminates the trial if its best in-
termediate result is worse than the median of intermediate results from previous trials at
the same step. We have experimented with the recommended SuccessiveHalvingPruner,
a bandit-based pruning algorithm. Both pruners resulted in comparable results in all
trials.

Trials During optimization, Optuna conducts a series of trials, each corresponding to
a set of hyperparameters sampled from the search space. Optuna evaluates the objec-
tive function for each trial and uses the results to update its probabilistic model and
decide which set of hyperparameters to try next. Since we use 5-fold cross-validation,
each trial consists of 5 training and evaluation runs, resulting in a computationally ex-
pensive experimental setup. To be able to run sufficient trials for each model, we utilize
a cloud GPU environment on Google Colab Pro5. We conducted as many number of
trials as Google Colab allowed on a T4 GPU environment for each model, leading to
varying trial counts across models. Although this might initially suggest an uneven
comparison, it ultimately leads to a relatively balanced total runtime across all models.

The results were computed and compared between each model to evaluate their relative
performance, and visualizations were made using Neptune6, an open-source machine
learning experiment tracker. All results and graphics are displayed and discussed in
Chapter 6.

5https://colab.research.google.com/
6https://neptune.ai/
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Results

This chapter presents the results of the classification models applied to the four different
datasets. For each dataset, we display the results of the base models, along with the
final results after resampling and hyperparameter tuning. We then visualize the impact
of the different hyperparameters. Finally, the effect of adding a secondary prediction is
evaluated.

6.1 Profit & Loss statement

The Profit & Loss statement dataset is the largest with 54,195 ledger accounts and 11
distinct classes. The classification results of the five models are shown in Table 6.1.
It can be seen that BERT outperforms the other models on all performance metrics.
Interestingly, BERTje does not outperform BERT, even though the dataset is mostly in
Dutch. However, the dataset also includes texts in other languages, such as English and
German. While BERT is primarily trained on English texts, it also includes multilingual
data that covers various languages, including Dutch and German. This broader coverage
may enable BERT to outperform BERTje. It can also be seen that the results only
slightly differ from each other for each performance metric. This suggests the models
have the ability to correctly classify ledger accounts, both in terms of overall accuracy
and in identifying positive instances correctly (precision, recall, and F1-score), striking
a good balance between minimizing false positives and false negatives. It also suggests
the models are robust and generalize well to unseen data. The F1-scores are lower than
both the Precision and Recall scores for most models. This is normally not possible
since the F1-score is the harmonic mean of the two (See Equation (5.4)), resulting in
the F1-score being positioned between the Precision and Recall scores or being similar
to one or both of them (in case they are equal themselves). However, since we use
5-fold cross-validation, we take the average of the results of 5 iterations. If both the
Precision and Recall are higher in some iterations, the average F1-score will be lower
than the average Precision and Recall scores. This occurs because the F1-score tends
to be closer to the lowest score of the two due to the properties of the harmonic mean.
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Table 6.1: Cross-validation performances on the Profit & Loss statement.

Model Accuracy Precision Recall F1-score

LR 0.859 0.863 0.860 0.855
RF 0.838 0.846 0.838 0.836
SVM 0.860 0.864 0.860 0.858
BERTje 0.872 0.878 0.872 0.868
BERT 0.878 0.882 0.878 0.878

Profit & Loss hyperparameter tuning To ensure the models produce represen-
tative classification results, hyperparameter tuning is essential, allowing for a fair com-
parison between the machine learning models. To illustrate the importance of hyper-
parameter tuning, one significant experiment is discussed for each model. Appendix B
shows all other hyperparameter tuning experiments.

Figure 6.1: Profit & Loss hyperparameter experiment with the Logistic Regression
model.

Figure 6.1 shows the hyperparameter tuning experiment we did with the LR model,
consisting of 200 trials. Each dot in the figure represents a single trial, with the darker
blue dots indicating trials conducted towards the end of the experiment. Each trial
involves selecting hyperparameter values, training and testing the model for each of the
five folds in the cross-validation and then averaging the five accuracies. In total, the
model was evaluated 1,000 times. It can be seen that the ’C’ hyperparameter shows two
hyperbolas, with both peaks lying between 1 and 100. The hyperbola with the lower
peak probably corresponds to the ’l1’ penalty and the ’lbfgs’ and ’saga’ solvers. The
hyperbola with the higher peak corresponds to the optimal ’l2’ penalty hyperparameter
and the ’liblinear’ solver. The figure shows that choosing the appropriate hyperparame-
ters can increase the objective value (accuracy) by some percentage points, highlighting
the importance of hyperparameter tuning.

Figure 6.2 presents the relative hyperparameter importance of the LR model experiment
for the Profit & Loss statement. The importance indicates the impact the hyperpa-
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rameter has on the objective value. Unfortunately, we could not add the ’penalty’
parameter to this figure. The ’lbfgs’ only supports the ’l2’ penalty, causing errors in
the experiment. It can be seen that ’C’ is the most crucial hyperparameter, accounting
for 67% of the parameters’ overall impact on the objective value.

Figure 6.2: Profit & Loss hyperparameter importance of the Logistic Regression model.

The progression of the trials throughout the experiment and their corresponding ac-
curacies are depicted in Figure 6.3. It can be seen that the accuracy is improved by
roughly 7% in the first 12 trials, after which it reaches its optimal value. This shows
that the search algorithm converged quickly, indicating that the algorithm is effective
in identifying the best or near-best solution without requiring extensive computational
resources or time.

Figure 6.3: Profit & Loss hyperparameter tuning results of the Logistic Regression
model.

Final results The final classification results of the five models on the Profit & Loss
statement dataset are shown in Figure 6.4. The colored bars indicate the scores without
resampling and hyperparameter tuning, and the light blue bars on top of the colored
bars show the performance improvement of resampling and hyperparameter tuning.
Most of the improvement is attributed to hyperparameter tuning, likely because the
class imbalance in the Profit & Loss statement dataset is not significantly present.
The RF model gained the most from hyperparameter tuning, whereas the SVM and
BERTje models gained the least. Ultimately, the overall comparison between BERT

47 Emiel Goldman



CHAPTER 6. RESULTS

and the traditional machine learning models remained unchanged after resampling and
hyperparameter tuning, with BERT continuing to outperform the other models with
an accuracy of 88.9%.

Figure 6.4: Profit & Loss results. The light blue bars indicate the performance im-
provement after resampling and hyperparameter tuning.

6.2 Balance sheet

The scores of the models for the Balance sheet dataset are depicted in Table 6.2. Again,
BERT outperforms the other models on all evaluation metrics. BERTje and RF are the
worst-performing models, and LR and SVM are the best traditional machine-learning
models. The evaluation scores are closely matched, indicating that the models are also
robust for the Balance sheet dataset.

Table 6.2: Cross-validation performances on the Balance sheet.

Model Accuracy Precision Recall F1-score

LR 0.828 0.836 0.828 0.828
RF 0.822 0.838 0.820 0.822
SVM 0.827 0.838 0.828 0.828
BERTje 0.822 0.830 0.822 0.820
BERT 0.836 0.842 0.836 0.836
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Balance sheet hyperparameter tuning The hyperparameter tuning experiment
we did with the RF model for the Balance sheet dataset is shown in Figure 6.5, consist-
ing of 50 trials. The RF model is more computationally intensive than the LR model.
Since we conducted the experiments in approximately the same amount of time, the
number of trials for the RF model is smaller. The figure visualizes that the ’entropy’
criterion slightly outperforms the ’gini’ criterion. Setting the ’Max depth’ parameter
higher results in better performance. This makes sense since our text data has a high-
dimensional feature space. A deeper tree can better navigate this high-dimensional
space, identifying the most relevant features for classification. The same goes for the
hyperparameter ’n estimators,’ where considering more trees improves the accuracy
score. Finally, as discussed in Section 5.4, the default setting for the hyperparameter
’max features’ is set to the square root of the total number of features, resulting in a
proportion of roughly 0.01. It can be seen that reducing this proportion increases the
final accuracy score by about 2%, further indicating the importance of hyperparameter
tuning.

Figure 6.5: Balance sheet hyperparameter experiment with the Random Forest model.

Figure 6.6 presents the relative hyperparameter importance of the RF model experi-
ment for the Balance sheet. It can be seen that the hyperparameter ’max depth’ is
most impactful on the objective value, accounting for 69% of the overall impact. The
’max features’ parameter also has some impact, while ’n estimators’ and ’criterion’ have
minimal influence on the accuracy.
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Figure 6.6: Balance sheet hyperparameter importance of the Random Forest model.

The final prediction scores of the models for the Balance sheet dataset are shown in
Figure 6.7. Interestingly, after hyperparameter tuning, the BERT and BERTje models
have demonstrated only marginal improvements, leading to the RF model surpassing
them in performance with an accuracy of 84.1%. This is probably because we could, due
to computational resources, only run 6 and 8 trials for the BERT and BERTje models,
respectively. The hyperparameter tuning experiments had to be stopped prematurely,
resulting in disappointing results. We expect better performances if more trials are run.

Figure 6.7: Balance sheet final results. The light blue bars indicate the performance
improvement after resampling and hyperparameter tuning.

6.3 Personnel expenses

The performance scores of the models for the Personnel Expenses dataset are shown
in Table 6.3. We have trained the RoBERTa model for this dataset, which performs
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worse than all other models. Moreover, BERT and BERTje are also outperformed by
the traditional machine learning models, with the RF model showing the best perfor-
mance overall. The Personnel Expenses dataset has only four unbalanced classes (See
Appendix A.4). This might cause the BERT models to perform worse, suggesting a
sensitivity towards unbalanced datasets. Finally, the evaluation scores demonstrate
close alignment once more, suggesting that the models exhibit robustness when applied
to the Personnel Expenses dataset.

Table 6.3: Cross-validation performances on the personnel expenses dataset.

Model Accuracy Precision Recall F1-score

LR 0.802 0.808 0.802 0.800
RF 0.814 0.822 0.814 0.812
SVM 0.808 0.814 0.808 0.806
BERTje 0.784 0.792 0.784 0.778
BERT 0.800 0.802 0.800 0.794
RoBERTa 0.780 0.790 0.780 0.782

Figure 6.8 illustrates the hyperparameter tuning experiment we conducted with the
BERTmodel for the Personnel Expenses dataset, consisting of 20 trials. The ’batch size’
shows optimal values for sizes 64 and 128. The number of ’epochs’ does not seem to
have much impact on the accuracy score, except that six, and possibly five, epochs
result in a decrease in accuracy. This suggests the BERT model tends to overfit quickly
when learning the model for too many epochs. Finally, the ’lr’ (learning rate) hyper-
parameter is optimal for a value of 7.06× 10−5 and experiences catastrophic forgetting
(see Section 5.4) for values larger than roughly 1.2× 10−4.

Figure 6.8: Personnel Expenses hyperparameter experiment with the BERT model.

The hyperparameter importance of the BERT model for the Personnel Expenses dataset
is depicted in Figure 6.9. Most of the hyperparameter’s impact on maximizing the
accuracy comes from the ’lr’ hyperparameter, with a relative importance of 0.85.
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Figure 6.9: Personnel Expenses hyperparameter importance of the BERT model.

Figure 6.10 shows the final classification scores of the models for the Personnel Expenses
dataset. The red bars of the RF model results indicate a decrease in performance, show-
ing that resampling can potentially lead to worse performance. This can be caused by
loss of information in our undersampling step or by introducing noise in our oversam-
pling SMOTE technique. Interestingly, the BERT and BERTje models have shown
significant performance increases, surpassing the traditional machine learning models.
This contrasts the earlier findings before resampling and hyperparameter tuning were
applied. This demonstrates handling data imbalance in combination with hyperparam-
eter tuning is crucial for the BERT and BERTje models.

Figure 6.10: Personnel Expenses final results. The light blue bars indicate the perfor-
mance improvement after resampling and hyperparameter tuning.
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6.4 Operational expenses

Table 6.4 shows the performance scores of the models for the Operational Expenses
dataset. We have trained the DistilBERT model for this dataset, which performs worse
than all other models. BERTje outperforms BERT for this dataset. The Operational
Expenses dataset contains relatively more Dutch pieces of text, probably resulting in
BERTje learning the patterns in the training data better. BERT is also outperformed
by the RF model, which shows the best performance of the traditional machine learning
models. In conclusion, the evaluation scores once again indicate close alignment, im-
plying that the models maintain robustness when applied to the Operational Expenses
dataset.

Table 6.4: Cross-validation performances on the operational expenses dataset.

Model Accuracy Precision Recall F1-score

LR 0.697 0.684 0.698 0.668
RF 0.710 0.704 0.710 0.682
SVM 0.690 0.680 0.690 0.660
BERTje 0.722 0.724 0.722 0.698
BERT 0.700 0.674 0.700 0.674
DistilBERT 0.662 0.560 0.662 0.588

Our conducted experiment with the SVM model on the Operational Expenses dataset,
consisting of 100 trials, is depicted in Figure 6.11. Similar to the LR experiment, the
’C’ hyperparameter exhibits hyperbolas. Three distinct hyperbolas are visible, likely
representing one for each kernel. The ’poly’ kernel exhibits the lowest peak topping just
above 60% accuracy, the ’rbf’ kernel falls in the middle range, and the ’linear’ kernel
yields the highest achievable accuracies just above 70%. The ’OvR’ decision function
slightly outperformed the ’OvO’ function for the SVM model for the Operational Ex-
penses dataset.

Figure 6.11: Operational Expenses hyperparameter experiment with the SVM model.
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Interestingly, towards the end of the experiment (the darker blue dots), the search algo-
rithm mainly explores the more promising hyperparameter values. This suggests that
it has found a local (or possibly global) maximum and is attempting to fine-tune the
values further to reach the actual maximum in this search area.

Figure 6.12: Operational Expenses hyperparameter importance of the SVM model.

The ’kernel’ hyperparameter clearly has the most impact on maximizing the accuracy,
as shown in Figure 6.12. However, we should note that the importance of the parame-
ter ’C’ is somewhat distorted due to the three overlapping hyperbolas and are, in fact,
having quite a significant impact, as we can see in Figure 6.11.

Figure 6.13: Operational Expenses final results. The light blue bars indicate the per-
formance improvement after resampling and hyperparameter tuning.

The final results of the Operational Expenses dataset are shown in Figure 6.13. In line
with the final results for the Personnel Expenses, the RF model computed worse per-
formance after resampling and hyperparameter tuning. Furthermore, the BERT model
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has improved significantly again, outperforming the other models in all evaluation met-
rics except for precision, where BERTje takes the lead.

6.5 Optimal hyperparameters

This section examines the best-performing hyperparameters that were found for each
model across the different datasets. The corresponding visualizations of the hyperpa-
rameter tuning experiments are shown in Appendix B.

The optimal hyperparameter values for the LR model are depicted in Table 6.5. The
’Liblinear’ solver results in the best performance across all datasets. The maximum
number of iterations varies somewhat, with the value for the Profit & Loss statement
being significantly lower. This can probably be assigned to the model overfitting, which
could happen due to noisy data in this dataset. The ’C’ parameter is high for the Profit
& Loss dataset, moderate for the Balance sheet dataset (close to 1), and low for the
Personnel and Operational Expenses datasets. Since C is the inverse of regularization
strength, this suggests that it is optimal to use most of the features of the Profit &
Loss dataset and penalize using many features in the Expenses datasets. Finally, the
optimal penalty is ’l2’, and the optimal decision function is ’OvR’ for all datasets.

Table 6.5: Optimal hyperparameters for each dataset for the Logistic Regression model.

Hyperparameter P&L
statement

Balance
sheet

Personnel
expenses

Operational
expenses

Solver Liblinear Liblinear Liblinear Liblinear
Max iterations 403 1066 891 986
C 19.12 1.28 0.027 0.573
Penalty l2 l2 l2 l2
Decision function OvR OvR OvR OvR

Table 6.6 shows the optimal hyperparameters of the RF model for all datasets. The ’N
estimators’ and ’Criterion’ hyperparameters did not significantly impact the accuracy
(see Figure 6.6). They do vary, with the Operational Expenses dataset having a lower
optimal number of iterations and the Balance sheet dataset having the ’Entropy’ crite-
rion as the optimal setting instead of ’Gini’. The optimal maximum depth of the trees
is fairly consistent across all datasets, as was expected, since a large maximum depth
is preferred, as was discussed in Section 6.2. The optimal maximum proportion of the
features varies a lot, which is not surprising since the total number of features differs
greatly across the different datasets.
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Table 6.6: Optimal hyperparameters for each dataset for the Random Forest model.

Hyperparameter P&L
statement

Balance
sheet

Personnel
expenses

Operational
expenses

N estimators 241 381 429 158
Criterion Gini Entropy Gini Gini
Max depth 12,622 13,812 11,893 12,832
Max features 2.11× 10−6 3.37× 10−5 8.00× 10−4 1.85× 10−8

The SVM model’s optimal hyperparameter values can be seen in Table 6.7. The opti-
mal values for ’C’ are similar to those of the LR model, with higher values for larger
datasets (P&L statement and Balance sheet) and lower values for the smaller ones. Fur-
thermore, the optimal kernel for larger datasets is ’rbf’, while for the smaller datasets it
is ’linear’. Finally, the optimal decision function is OvR again, except for the Profit &
Loss dataset. However, the decision function does not significantly impact the accuracy,
showing only marginal differences between the two (see Figure 6.12).

Table 6.7: Optimal hyperparameters for each dataset for the Support Vector Machine
model.

Hyperparameter P&L
statement

Balance
sheet

Personnel
expenses

Operational
expenses

C 4.10 4.26 0.040 0.299
Kernel rbf rbf Linear Linear
Decision function OvO OvR OvR OvR

Table 6.8 shows the optimal hyperparameter values for the BERTje model. The learn-
ing rate, which is the most impactful hyperparameter, varies between 1.88× 10−5 and
7.42×10−5, which is not surprising, considering the optimal values found in the study of
Devlin et al. [22], which ranges from 2×10−5 to 5×10−5. The optimal batch sizes differ
for each dataset, indicating varying dataset complexities. These differences could affect
the model’s learning dynamics and the efficiency of gradient updates during training.
Finally, the optimal number of epochs is three for the larger datasets and four and five
for the Operational and Personnel Expenses datasets, respectively.

The optimal hyperparameter values for the BERT model are displayed in Table 6.9.
The optimal learning rate values are somewhat unexpected, as they are notably larger,
with the learning rate of the Operational Expenses dataset of 1.00 × 10−4 even ap-
proaching the catastrophic forgetting levels (see Section 6.3). The optimal batch sizes
present a distinct pattern compared to those observed for BERTje. This could stem
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Table 6.8: Optimal hyperparameters for each dataset for the BERTje model.

Hyperparameter P&L Balance Personnel ex. Operational ex.

Learning rate 3.05× 10−5 7.42× 10−5 1.88× 10−5 2.07× 10−5

Batch size 64 128 32 16
Epochs 3 3 5 4

from the different pre-training approaches utilized in the models. However, it could
also be attributed to insufficient computational resources to achieve convergence in the
tuning experiments. In conclusion, the optimal number of epochs differs across all
datasets. However, this hyperparameter is less noteworthy as it has minimal impact on
the accuracy, except for some instances with 6 epochs where the model displayed slight
overfitting.

Table 6.9: Optimal hyperparameters for each dataset for the BERT model.

Hyperparameter P&L Balance Personnel ex. Operational ex.

Learning rate 6.81× 10−5 6.72× 10−5 7.06× 10−5 1.00× 10−4

Batch size 16 16 128 128
Epochs 4 5 2 3

6.6 Secondary prediction

In this section, we evaluate the impact of adding a secondary prediction on determining
the right class of the ledger accounts. We are only interested in evaluating the accuracy
of the models since their robustness has already been tested. Pure classification perfor-
mance is our main focus now. As mentioned in Section 5.3, the predictions are based on
the certainty scores, where the model classifies the ledger accounts based on the class
with the highest certainty. The secondary prediction is made by simply selecting the
class with the second-highest certainty score.

Figure 6.14 shows the accuracies of the models, including the total accuracy of con-
sidering both the primary and secondary predictions. The colored bars indicate the
final accuracies we have found through the hyperparameter tuning. The light green
bars highlight the combined accuracy, where predictions are considered correct in case
either of the two contains the right classification. All accuracies have improved signif-
icantly beyond what would be achieved by randomly selecting a secondary prediction.
This ultimately helps the end-users determine the right ledger accounts classes, know-
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Figure 6.14: Final model accuracies and secondary predictions (indicated by the light
green bars).

ing that the correct class is one of the two in roughly 90% of the cases.

The Profit & Loss and Balance datasets improved less than the Personnel and Op-
erational Expenses datasets. This makes sense because the latter two contain only
four and six distinct classes, making it more likely the second prediction is the correct
one. In conclusion, the BERT model performs better than the other models across all
datasets except for the Balance sheet, where accuracies are comparable, and the RF
model achieves the highest accuracy.
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Conclusions

To conclude, we have compared the traditional machine learning models, Logistic Re-
gression, Random Forest, and Support Vector Machine, with the state-of-the-art Nat-
ural Language Processing model BERT and its Dutch variant BERTje for the task of
short financial text classification. The data for this comparison was provided by SIN-
CERIUS, a financial due diligence company. It consists of general ledgers from 215
companies, each containing multiple accounts. Such an account is essentially a short
financial description that groups all related transactions. General ledger accounts are
part of one of the two primary financial statements: the balance sheet or the Profit
and Loss statement. Moreover, the personnel and operational expenses classes on the
profit and loss statement can be further divided into subclasses, resulting in four dis-
tinct datasets. Our objective was to evaluate the models’ performance across the four
datasets. We evaluated performance based on four metrics: accuracy, precision, recall,
and the F1-score. Additionally, we have tuned the hyperparameters of all models across
all datasets to ensure fair comparisons could be made through representative classifica-
tion scores. This chapter concludes with several recommendations for further research.

7.1 Main results

The results of our experiments highlight the strengths and limitations of each approach.
All models showed relatively small differences across all four evaluation metrics, which
implies the models are robust and generalize well to unseen data. BERT outperformed
the traditional models in classifying financial texts related to the balance sheet and
the Profit & Loss statement. BERTje showed the best classification results for the
operational expenses dataset, while the Random Forest model achieved the best per-
formance on the personnel expenses dataset. These varying results indicate that the
classification performance of machine learning models depends on the specific charac-
teristics and complexity of the datasets, preventing us from drawing any conclusions
on whether the pre-trained BERT model consistently outperforms traditional machine
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learning models. Notably, BERT performed better on the two larger datasets than the
other models, suggesting that its ability to leverage large amounts of data and capture
nuanced contextual information may provide an advantage when dealing with more
extensive datasets.

7.2 Hyperparameter tuning

Different hyperparameter settings can significantly affect a model’s performance. By
tuning these parameters, we aimed to find the settings that yield the best performance
on the specific datasets. Models with default hyperparameters may not be optimized
for the specific characteristics of the dataset being used. This can lead to biased results
where one model appears to perform better simply because its default settings happen
to be more suitable for the dataset. Thus, tuning hyperparameters ensures fair com-
parisons between the models.

After hyperparameter tuning, BERT exhibited the highest performance across all datasets
except the Balance sheet, where Random Forest slightly outperformed it. This discrep-
ancy suggests that BERT’s hyperparameters may not have been optimally tuned, given
the limited scope of our tuning experiment (only 6 trials were conducted on the Balance
sheet dataset). Nonetheless, the tuned BERT model demonstrates strong potential for
generalizability.

In conclusion, our experiments show that BERT does not consistently outperform the
traditional machine learning models, showing superior performance only for larger
datasets. However, when proper data imbalance handling and hyperparameter tun-
ing are executed, BERT tends to be superior, even for smaller datasets. Therefore,
to address our research question regarding the comparative performance of traditional
machine learning models versus the state-of-the-art BERT model in classifying short
financial texts, BERT demonstrates superior classification capabilities, provided appro-
priate resampling and hyperparameter tuning techniques are implemented.

It is worth noting that training BERT requires significantly more time than training
traditional machine learning models. Given this, along with the substantial time needed
for hyperparameter tuning, one must evaluate whether the computational investment
to train advanced embedding models like BERT outweighs the performance gains over
traditional machine learning models.

7.3 Further research

Recently, hybrid models have gained interest in the literature, showing promising re-
sults. Hybrid approaches aim to combine BERT with other machine learning approaches
to enhance performance. One such strategy is to add Long Short-TermMemory (LSTM)
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or Gated Recurrent units (GRU) layers on top of BERT embeddings to capture addi-
tional sequential dependencies in the data [50, 73]. These studies are still in their early
stages and have not yet surpassed the base BERT model in performance. However,
they have demonstrated faster processing speeds, facilitating effective hyperparameter
tuning. It is anticipated that hybrid BERT models will outperform BERT in the near
future, particularly with extended training over more epochs [73].

Another direction could be to build ensemble models, combining the strengths of tra-
ditional machine learning methods and pre-trained models such as BERT. The concept
of ensemble models involves combining the predictions of multiple individual models
to make a final prediction. This can be done by either taking the majority vote of the
individual models’ predictions or by averaging their certainty scores and selecting the
class with the highest score. This approach is similar to the Random Forest method,
which is an ensemble technique that uses multiple decision trees to make predictions.
Despite its simplicity, ensembling BERT with other machine learning models [4] or with
other BERT variants [14, 18] has shown promising results.

The Google Colab environment limits the usage duration of the powerful T4 GPU,
forcing us to terminate the hyperparameter tuning process of the BERT and BERTje
models prematurely. Consequently, this possibly led to sub-optimal performances of the
BERT models. We could conduct only several trials, whereas running dozens of trials
would have been preferable for thorough hyperparameter optimization. Future research
should consider utilizing environments with more extensive computational resources to
fully explore the potential of hyperparameter tuning for BERT models, ensuring opti-
mal performance.

Finally, we would recommend that SINCERIUS explore further fine-tuning the models
with a focus on accuracy, including secondary predictions. To achieve this, the objec-
tive function of hyperparameter tuning experiments should prioritize maximizing the
combined accuracy of both primary and secondary predictions. Improving accuracy in
this manner would help consultants make quick and reliable decisions about classifying
ledger accounts.
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eters on random forest accuracy”. In: Multiple Classifier Systems: 8th Interna-
tional Workshop, MCS 2009, Reykjavik, Iceland, June 10-12, 2009. Proceedings
8. Springer. 2009, pp. 171–180.

62



BIBLIOGRAPHY

[12] Christopher M Bishop. “Pattern recognition and machine learning”. In: Springer
2 (2006), pp. 1122–1128.

[13] Leo Breiman. “Random forests”. In: Machine learning 45 (2001), pp. 5–32.

[14] J Briskilal and CN Subalalitha. “An ensemble model for classifying idioms and
literal texts using BERT and RoBERTa”. In: Information Processing & Manage-
ment 59.1 (2022), p. 102756.

[15] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural
information processing systems 33 (2020), pp. 1877–1901.

[16] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-
decoder for statistical machine translation”. In: arXiv preprint arXiv:1406.1078
(2014).

[17] Andrew M Dai and Quoc V Le. “Semi-supervised sequence learning”. In: Advances
in neural information processing systems 28 (2015).

[18] Huong Dang et al. “Ensemble BERT for classifying medication-mentioning tweets”.
In: Proceedings of the Fifth Social Media Mining for Health Applications Work-
shop & Shared Task. 2020, pp. 37–41.

[19] Wietse De Vries et al. “Bertje: A dutch bert model”. In: arXiv:1912.09582 (2019).

[20] Scott Deerwester et al. “Indexing by latent semantic analysis”. In: Journal of the
American society for information science 41.6 (1990), pp. 391–407.

[21] Guillaume Desagulier. Word embeddings: The (very) basics. Apr. 2018. url:
https://corpling.hypotheses.org/495.

[22] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[23] EU rules on financial information disclosed by companies. Accessed: 05-02-2024.
(2023). url: https://finance.ec.europa.eu/capital- markets- union-
and - financial - markets / company - reporting - and - auditing / company -

reporting/financial-reporting_en.

[24] Mengzhen Fan et al. “Fusing global domain information and local semantic infor-
mation to classify financial documents”. In: Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge Management. 2020, pp. 2413–
2420.

[25] Hossam Faris, Ibrahim Aljarah, and Seyedali Mirjalili. “Training feedforward neu-
ral networks using multi-verse optimizer for binary classification problems”. In:
Applied Intelligence 45 (2016), pp. 322–332.

[26] Wissal Farsal, Samir Anter, and Mohammed Ramdani. “Deep learning: An overview”.
In: Proceedings of the 12th International Conference on Intelligent Systems: The-
ories and Applications. 2018, pp. 1–6.

63 Emiel Goldman



BIBLIOGRAPHY

[27] Christopher A Flores and Rodrigo Verschae. “A generic semi-supervised and ac-
tive learning framework for biomedical text classification”. In: 2022 44th Annual
International Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC). IEEE. 2022, pp. 4445–4448.

[28] Silvia Garcia-Mendez et al. “Identifying banking transaction descriptions via sup-
port vector machine short-text classification based on a specialized labelled cor-
pus”. In: IEEE Access 8 (2020), pp. 61642–61655.

[29] Andrea Gasparetto et al. “A survey on text classification algorithms: From text
to predictions”. In: Information 13.2 (2022), p. 83.
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Appendix A

Ledger account classes

Table A.1: Classes balance sheet

Class Frequency

Tax 6215
Other payables 6012
Current assets 4345
Tangible fixed assets 3350
External debt 3016
Cash 2908
Equity 2872
Other receivables 2798
Trade receivables 1431
Trade payables 1254
Inventory 1231
Financial fixed assets 1174
Intangible fixed assets 945
Work in Progress 789
Corporate income Tax 759
Financial result 691
Provision 407
Deferred revenue 179
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Table A.2: Classes Profit & Loss statement

Class Frequency

Operational expenses 19580
Personnel expenses 10443
Revenue 7912
COS 7610
Financial result 4351
Depreciation 1811
CIT PL 823
Management fee 652
Result participations 618
Amortisation 343
Book result 52

Table A.3: Classes operational expenses

Class Frequency

General expenses 9714
Sales expenses 1546
Car expenses 1502
Office expenses 1172
Housing expenses 1143
Facility expenses 487

Table A.4: Classes personnel expenses

Class Frequency

Other personnel expenses 6436
Wages and salaries 1920
Social securities 856
Pension 435
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Appendix B

Hyperparameter tuning results

B.1 Logistic Regression

This section shows all hyperparameter tuning experiments of the Logistic Regression
model.

B.1.1 Profit & Loss statement

Figure B.1: Hyperparameter tuning experiment of the Logistic Regression model on
the Profit & Loss dataset

Figure B.2: Hyperparameter tuning importance of the Logistic Regression model on
the Profit & Loss dataset
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Figure B.3: Hyperparameter tuning results of the Logistic Regression model on the
Profit & Loss dataset

B.1.2 Balance sheet

Figure B.4: Hyperparameter tuning experiment of the Logistic Regression model on
the Balance dataset

Figure B.5: Hyperparameter tuning importance of the Logistic Regression model on
the Balance dataset
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Figure B.6: Hyperparameter tuning results of the Logistic Regression model on the
Balance dataset

B.1.3 Personnel expenses

Figure B.7: Hyperparameter tuning experiment of the Logistic Regression model on
the Personnel Expenses dataset
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Figure B.8: Hyperparameter tuning importance of the Logistic Regression model on
the Personnel Expenses dataset

Figure B.9: Hyperparameter tuning results of the Logistic Regression model on the
Personnel Expenses dataset

B.1.4 Operational expenses

Figure B.10: Hyperparameter tuning experiment of the Logistic Regression model on
the Operational Expenses dataset
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Figure B.11: Hyperparameter tuning importance of the Logistic Regression model on
the Operational Expenses dataset

Figure B.12: Hyperparameter tuning results of the Logistic Regression model on the
Operational Expenses dataset

B.2 Random Forest

This section shows all hyperparameter tuning experiments of the Random Forest model.

B.2.1 Profit & Loss statement

Figure B.13: Hyperparameter tuning experiment of the Random Forest model on the
Profit & Loss dataset
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Figure B.14: Hyperparameter tuning importance of the Random Forest model on the
Profit & Loss dataset

Figure B.15: Hyperparameter tuning results of the Random Forest model on the Profit
& Loss dataset

B.2.2 Balance sheet

Figure B.16: Hyperparameter tuning experiment of the Random Forest model on the
Balance dataset
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Figure B.17: Hyperparameter tuning importance of the Random Forest model on the
Balance dataset

Figure B.18: Hyperparameter tuning results of the Random Forest model on the Bal-
ance dataset

B.2.3 Personnel expenses

Figure B.19: Hyperparameter tuning experiment of the Random Forest model on the
Personnel Expenses dataset
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Figure B.20: Hyperparameter tuning importance of the Random Forest model on the
Personnel Expenses dataset

Figure B.21: Hyperparameter tuning results of the Random Forest model on the Per-
sonnel Expenses dataset

B.2.4 Operational expenses

Figure B.22: Hyperparameter tuning experiment of the Random Forest model on the
Operational Expenses dataset
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Figure B.23: Hyperparameter tuning importance of the Random Forest model on the
Operational Expenses dataset

Figure B.24: Hyperparameter tuning results of the Random Forest model on the Op-
erational Expenses dataset

B.3 Support Vector Machine

This section shows all hyperparameter tuning experiments of the Support Vector Ma-
chine model.

B.3.1 Profit & Loss statement

Figure B.25: Hyperparameter tuning experiment of the Support Vector Machine model
on the Profit & Loss dataset
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Figure B.26: Hyperparameter tuning importance of the Support Vector Machine model
on the Profit & Loss dataset

Figure B.27: Hyperparameter tuning results of the Support Vector Machine model on
the Profit & Loss dataset
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B.3.2 Balance sheet

Figure B.28: Hyperparameter tuning experiment of the Support Vector Machine model
on the Balance dataset

Figure B.29: Hyperparameter tuning importance of the Support Vector Machine model
on the Balance dataset
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Figure B.30: Hyperparameter tuning results of the Support Vector Machine model on
the Balance dataset

B.3.3 Personnel expenses

Figure B.31: Hyperparameter tuning experiment of the Support Vector Machine model
on the Personnel Expenses dataset
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Figure B.32: Hyperparameter tuning importance of the Support Vector Machine model
on the Personnel Expenses dataset

Figure B.33: Hyperparameter tuning results of the Support Vector Machine model on
the Personnel Expenses dataset

B.3.4 Operational expenses

Figure B.34: Hyperparameter tuning experiment of the Support Vector Machine model
on the Operational Expenses dataset
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Figure B.35: Hyperparameter tuning importance of the Support Vector Machine model
on the Operational Expenses dataset

Figure B.36: Hyperparameter tuning results of the Support Vector Machine model on
the Operational Expenses dataset

B.4 BERT

This section shows all hyperparameter tuning experiments of the BERT model.

B.4.1 Profit & Loss statement

Figure B.37: Hyperparameter tuning experiment of the BERT model on the Profit &
Loss dataset
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Figure B.38: Hyperparameter tuning importance of the BERT model on the Profit &
Loss dataset

Figure B.39: Hyperparameter tuning results of the BERT model on the Profit & Loss
dataset
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B.4.2 Balance sheet

Figure B.40: Hyperparameter tuning experiment of the BERT model on the Balance
dataset

Figure B.41: Hyperparameter tuning importance of the BERT model on the Balance
dataset

Figure B.42: Hyperparameter tuning results of the BERT model on the Balance dataset
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B.4.3 Personnel expenses

Figure B.43: Hyperparameter tuning experiment of the BERT model on the Personnel
Expenses dataset

Figure B.44: Hyperparameter tuning importance of the BERT model on the Personnel
Expenses dataset
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Figure B.45: Hyperparameter tuning results of the BERT model on the Personnel
Expenses dataset

B.4.4 Operational expenses

Figure B.46: Hyperparameter tuning experiment of the BERT model on the Opera-
tional Expenses dataset
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Figure B.47: Hyperparameter tuning importance of the BERT model on the Opera-
tional Expenses dataset

Figure B.48: Hyperparameter tuning results of the BERT model on the Operational
Expenses dataset
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B.5 BERTje

This section shows all hyperparameter tuning experiments of the BERTje model.

B.5.1 Profit & Loss statement

Figure B.49: Hyperparameter tuning experiment of the BERTje model on the Profit &
Loss dataset

Figure B.50: Hyperparameter tuning importance of the BERTje model on the Profit &
Loss dataset

Figure B.51: Hyperparameter tuning results of the BERTje model on the Profit & Loss
dataset
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B.5.2 Balance sheet

Figure B.52: Hyperparameter tuning experiment of the BERTje model on the Balance
dataset

Figure B.53: Hyperparameter tuning importance of the BERTje model on the Balance
dataset

Figure B.54: Hyperparameter tuning results of the BERTje model on the Balance
dataset
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B.5.3 Personnel expenses

Figure B.55: Hyperparameter tuning experiment of the BERTje model on the Personnel
Expenses dataset

Figure B.56: Hyperparameter tuning importance of the BERTje model on the Personnel
Expenses dataset

Figure B.57: Hyperparameter tuning results of the BERTje model on the Personnel
Expenses dataset
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B.5.4 Operational expenses

Figure B.58: Hyperparameter tuning experiment of the BERTje model on the Opera-
tional Expenses dataset

Figure B.59: Hyperparameter tuning importance of the BERTje model on the Opera-
tional Expenses dataset

Figure B.60: Hyperparameter tuning results of the BERTje model on the Operational
Expenses dataset
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