
VRIJE UNIVERSITEIT AMSTERDAM

MASTER BUSINESS ANALYTICS
MSC THESIS

Utilizing Available Data to Warm
Start Online Reinforcement Learning

Author:
S.V. DE GEUS

Date:
June 2020

Acedemic Supervisor:
A. EL HASSOUNI
M. Hoogendoorn

Second Reader:
D. DOBLER

External Supervisors:
V. MUHONEN

D. TIMMERS
R. PRICE

Utilizing Available Data to Warm Start Online Reinforcement Learning

Sofie Valesca de Geus

Master Thesis

June 2020

Vrije Universiteit Amsterdam
Faculty of Science
Business Analytics
De Boelelaan 1081a

1081 HV Amsterdam

Mobiquity Inc.
Data Analytics Team

Tommaso Albinonistraat 9
1083 HM Amsterdam

Abstract

Reinforcement learning (RL) algorithms have shown to achieve signif-
icant successes on a large set of simulated environments. However, the
application of RL in real-world problems has proven to be more challeng-
ing. In most real-world problems, there is no access to an accurate model
of the environment. Therefore, a policy has to be learned by interacting
with the real system where every action has real consequences. This is
very impractical since reinforcement learning algorithms often start with
many steps of poor performance before finding a better policy. It is there-
fore crucial to find a way to minimize poor actions and learn as efficiently
as possible. In this thesis, we propose a setup that utilizes an available
dataset with logged environment interactions to warm start reinforcement
learning (WS-RL). This proposed setup combines both offline and online
reinforcement learning techniques. We show WS-RL is able to improve
performance for more complex tasks. It reduces the time needed to find a
decent policy and therefore improves both initial and overall performance.
It however does not seem to improve the convergence of policies in the
long run. Additionally, we try to get a better understanding of the effect
of exploration when learning on the real system. To do this we compare
multiple exploration methods and settings and show which one performs
best across different environments.

Preface

The work presented here contains my thesis: "Utilizing Available Data to
Warm Start Online Reinforcement Learning". This thesis has been written
as part of the graduation requirements of the MSc Business Analytics at the
Vrije Universiteit Amsterdam. The research was conducted part-time for
eight months at the host organisation Mobiquity.

Mobiquity gave me complete freedom in choosing the research sub-
ject and I, therefore, got to explore my interest in reinforcement learning.
Throughout my study, I had not yet learned about this and therefore this
was a good opportunity. Mobiquity put me in contact with my supervisor
Ali el Hassouni who is doing a PhD in reinforcement learning and ma-
chine learning in healthcare. He helped me form my research question and
guided me further through the process.

Hereby, I would like to thank Mobiquity for giving me this opportu-
nity and providing me with all the necessary tools. I enjoyed my time at
Mobiquity and being part of the analytics team. A special thanks to my ex-
ternal supervisors Vesa Muhonen, Dennis Timmers and Richard Price, and
my academic supervisor Ali el Hassouni. They provided me with guidance
and useful feedback throughout the entire research process.

Sofie de Geus,
May 2020, Amsterdam

I

Contents

1 Introduction 1

2 Literature: Applications 3

3 Background 5
3.1 Reinforcement Learning . 5

3.1.1 Markov Decision Process 6
3.2 Algorithms . 8

3.2.1 Model-based vs Model-free 8
3.2.2 Online vs Offline . 9
3.2.3 On-policy vs Off-policy 10
3.2.4 Overview . 10

3.3 Q-learning . 11
3.4 Deep Q-learning . 13

3.4.1 Experience Replay . 13

4 Methodology 15
4.1 Warm Start Reinforcement Learning (WS-RL) 15
4.2 Environments . 18

4.2.1 CartPole . 18
4.2.2 LunarLander . 19

4.3 Models . 20
4.3.1 Deep Q-Network (DQN) 20
4.3.2 Double Deep Q-Network (Double DQN) 20
4.3.3 Dueling Deep Q-Network (Dueling DQN) 22

4.4 Exploration Methods . 23
4.4.1 Greedy . 23
4.4.2 ε-Greedy . 24
4.4.3 ε-Greedy Decay . 24
4.4.4 Softmax . 25

II

4.5 Evaluation . 25

5 Experimental setup 27
5.1 Setup . 28

5.1.1 Offline Reinforcement Learning 28
5.1.2 Online Reinforcement Learning 29

5.2 Experiment Logging . 30

6 Results & Conclusion 31
6.1 Offline Reinforcement Learning 31

6.1.1 Performance of Model Architectures 31
6.1.2 Offline Models . 34

6.2 Online Reinforcement Learning 34
6.2.1 Performance of Exploration Methods 34
6.2.2 Performance of Model Architectures 37
6.2.3 Performance of Warm Start 40

7 Discussion 42
7.1 Future Work . 43

Bibliography 44

Appendix A Implementation Details 49
A.1 Amazon Web Services (AWS) 49
A.2 Packages & Libraries . 49
A.3 Experiment Logging . 49

Appendix B Horizon 51
B.1 Training Scripts . 51

B.1.1 Offline Reinforcement Learning 51
B.1.2 Online Reinforcement Learning 52

B.2 Hyperparameters . 53

Appendix C Results 54
C.1 Offline Reinforcement Learning 54
C.2 Online Reinforcement Learning 56

III

CHAPTER 1
Introduction

Nowadays data is everywhere around us and the world of data-driven
technologies is ever-evolving. Machine learning techniques are used to
learn from data, identify patterns and provide insights. A key area where
machine learning can be used to create business value is in the decision-
making process. These techniques can analyze data faster and more ac-
curate allowing businesses to make better decisions with minimal human
intervention. Most industries working with large amounts of data have al-
ready recognised the value of machine learning technology [19].

A promising machine learning technique that can tackle complex se-
quential decision making is reinforcement learning (RL). It differs from
other machine learning techniques as it dynamically learns by adjusting
actions to optimize for future reward. The idea behind reinforcement learn-
ing is an algorithm, or agent, will learn from environment interactions by
receiving rewards for performing correct actions and penalties for incorrect
actions. An environment can be seen as a representation of the problem that
needs to be solved. During these environment interactions, the agent can
choose to exploit what it has learned or explore other options to get a bet-
ter understanding of the environment dynamics. The goal of reinforcement
learning is to find a suitable action model, also called policy, that would
maximize the total cumulative future reward. By using the feedback from
its actions the agent is able to make better behavioural decisions without
being explicitly told what to do. This process of learning is known as the
trial and error method, which imitates the learning of human beings.

Throughout the years reinforcement learning algorithms have shown
to achieve significant successes on a large set of simulated environments

1

[26, 36, 28, 42]. The advantage of having access to an accurate simulator or
model of the environment is that the agent is able to safely learn a policy
before deploying it on the real system. In this case, data becomes effectively
unlimited and consequences for poor actions are practically non-existent.
Progress made with real-world applications has been much slower. In most
real-world problems, it would be extremely difficult to obtain an accurate
simulator, since these problems are complex and have unclear rules. This
implies the agent has to learn on the real system with real consequences
for its actions. Typically, reinforcement learning agents learn good policies
only after many steps of poor performance. This becomes very impractical
in problems where data collection is expensive (e.g., in robotics) and risky
(e.g., in autonomous driving, or healthcare).

To overcome these challenges we propose a setup that utilizes an avail-
able dataset with logged environment interactions, created by a previous
controller, to warm start reinforcement learning (WS-RL). This proposed
setup combines both offline reinforcement learning and online reinforce-
ment learning. First, an offline agent is trained solely on the available
dataset without interacting with the environment. This form of reinforce-
ment learning does not affect the real system and is still able to find an im-
proved policy. Next, this pre-trained model is used as a starting point for
the online agent. This agent is able to interact with the environment and
create its own experience samples. In this warm start, the agent would no
longer have to learn from scratch and it is therefore expected to boost per-
formance. To show the effect of this warm start we compare this setup to re-
inforcement learning without extra inputs referred to as cold start (CS-RL).
By comparing both techniques we would like to answer the question: "Does
online reinforcement learning become more efficient by utilizing available
data as a warm start?"

The second point of interest is to show the effect of exploration when
learning on the real system. Finding a good balance between exploration
and exploitation has been a fundamental issue in reinforcement learning
all along. This becomes even more prominent when every action taken
in the environment during learning and exploring has an immediate im-
pact on the real system. In this research, we look at the performance of
multiple exploration methods and show which one performs best across
different environments. To find this answer we will consider both the re-
wards obtained during acting and learning (system rewards) as well as the
performance of the policies found during learning (policy rewards).

2

CHAPTER 2
Literature: Applications

Throughout the years reinforcement learning has shown some great suc-
cesses in learning policies for sequential decision-making problems and
control. Especially games with simulated environments proofed to be ex-
cellent test-beds. One of the first applications of reinforcement learning was
on the game of checkers in Samuel et al. (1959) where heuristic search meth-
ods were combined with temporal-difference learning [33]. Another im-
pressive application of reinforcement learning was on the game of backgam-
mon in Tesauro et al. (1992). Here the program TD-Gammon was intro-
duced which required little knowledge about the game itself and used a
model-free reinforcement learning algorithm similar to Q-learning [39].

These techniques still had some trouble scaling to high-dimensional
problems due to complexity issues (e.g. memory, computational and sam-
ple complexity). Advances in deep learning [20] helped to overcome these
problems resulting in applications of reinforcement learning in problems
with larger state and action spaces. In 2013, Mnih et al. connected a re-
inforcement learning algorithm to a deep neural network presenting deep
Q-learning (DQN). This framework was able to successfully learn control
policies directly from high-dimensional sensory input [26]. In 2016, Deep-
Mind developed AlphaGo, a computer program that combines advanced
search tree with deep neural networks, which was the first computer pro-
gram to defeat a professional human Go player [35]. AlphaGo was trained
on a large database of expert moves and many hours of self-play. A later
improved version, AlphaGo Zero, was introduced that masters the game
of Go without human knowledge [36]. In 2019, both OpenAI Five [28] and
AlphaStar [42] were able to achieve good results on the real-time strategy
(RTS) game Dota 2 and Star-Craft II, respectively. These games capture

3

more of the messiness and continuous nature of the real world (e.g. long
horizons, imperfect information real-time planning and complex state-action
spaces).

The above successes require large amounts of environment data to suc-
ceed. In real-world settings, this becomes problematic since data collec-
tion is often costly, risky, and time-consuming. To overcome this other
papers also focus on leveraging available environment data. In robotics
reinforcement learning has been applied to multiple robotic control tasks
like learning ball-in-a-cup [16], table tennis [15], locomotion [17] and flight
control [1, 27]. Here human-expert demonstrations are often used to effec-
tively reproduce the desired behaviour through imitation learning [34]. It
can however fail when dealing with sub-optimal demonstrations. Others
leverage batch reinforcement learning techniques [41] that can be used to
learn from a fixed batch of data no matter the quality. In Komorowski et al.
(2018) batch reinforcement learning was applied to find optimal treatment
strategies for sepsis using two datasets [13, 30]. Learning was performed
on batches of data and off-policy evaluation was used to evaluate their pol-
icy against data from another policy [18]. Other work has been done on
recommender systems [23, 47], computer resource management [24], Intel-
ligent Traffic Signal Control [25, 7, 46], real-time bidding [12] and more.

4

CHAPTER 3
Background

3.1 Reinforcement Learning

Each day people encounter problems that involve decision making. Most
real-world problems are not simple enough to be solved by a single de-
cision. Solving them involves sequences of decisions that are dependent
on each other. This means a single decision will have both immediate
and long term consequences. In these situations feedback is often delayed
and sparse, making it difficult to see the direct impact of an action on the
outcomes. Reinforcement learning is one of the ways to solve sequential
decision-making problems.

In reinforcement learning an algorithm, or agent, learns by interacting
with an environment via the trial-and-error method. An environment can
be seen as a representation of the problem that needs to be solved. Environ-
ments can be expressed in a set of states, which the agent tries to influence
via its choice of actions. At each step, the agent observes the environment
and performs an action. This will change the state of the environment.
The agent receives a positive reward signal for performing correctly and a
negative reward signal for performing incorrectly. By using the feedback
from its actions and experiences the agent can make better behavioural de-
cisions. Contrary to other machine learning approaches an agent can learn
how to maximize its long-run reward without being explicitly told how to
perform a task.

5

A representation of this interaction can be seen in the figure below, here
the agent and environment interact at each discrete time step t = 0, 1, 2, 3....

Figure 3.1: The agent–environment interaction in a Markov decision pro-
cess.

3.1.1 Markov Decision Process

Formally, a reinforcement learning problem can be defined as a Markov
decision process (MDP) [41]. An MDP is a 5-tuple M =< S, A, T, r, γ >
consisting of:

- S: the state space. At each time step, the state of the environment is an
element s ∈ S. A state is an observation of all that is important in a
state of the problem that is modelled.

- A: the action set. At each time step, the agent chooses to perform an
action a ∈ A. Actions can be used to control the environment state.

- T(s, a, s′): the transition function, representing the probability of end-
ing up in state s′ ∈ S after doing action a ∈ A in state s ∈ S.
T : S× A× S→ [0, 1]

- r(s, a): the reward function, representing the (expected) immediate re-
ward obtained after performing action a ∈ A in state s ∈ S.
r : S× A→ R

- γ: the discount factor, controlling the importance of future rewards.
0 ≤ γ ≤ 1

6

The MDP gives a mathematical framework for sequential decision-making
problems. In such a process the transition probabilities to possible next
states are only dependent on the current state and the selected action. This
means all relevant historical information for determining the next state is
present in the current state. A solution of this MDP would describe how
the agent should act. The behaviour of an agent is defined by a policy and
maps all states to actions.

- π(s): the policy function, representing the strategy of which action a ∈
A to take in a state s ∈ S, π : S→ A

The goal in reinforcement learning is to learn the optimal policy π∗,
such that the cumulative future reward is maximized. The cumulative fu-
ture reward can also be described as the return, denoted by R. The equation
for calculating the return can be seen in equation 3.1.

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞

∑
k=0

γkrt+k+1 (3.1)

In problems with a finite horizon, an agent stops when reaching a ter-
minal state. These terminal states are dependent on the definition of the
environment. A single run of the environment is called an episode. The
return after a terminal state is always zero, such a state can be defined as
an absorbing state. A transitional graph, like the one in figure 3.2, can be
used to show the dynamics of an MDP.

Figure 3.2: Transitional graph

7

3.2 Algorithms

Multiple distinctions can be made concerning the algorithms of solving re-
inforcement learning problems. First, there is a distinction between model-
based and model-free algorithms, which involves the modelling of the en-
vironment. Second, there is a distinction between online and offline algo-
rithms, which involves the way of sampling. Third, there is a distinction
between on-policy and off-policy algorithms, which involves the way of
performing policy updates. These distinctions will be explained in this sec-
tion. Additional, an overview is given with some of the more popular al-
gorithms.

3.2.1 Model-based vs Model-free

The distinction between model-based and model-free algorithms concerns
the modelling of the environment.

In model-based algorithms, the agent attempts to model the environ-
ment. First, it tries to capture the transition function T and the reward func-
tion R of the MDP by interacting with the environment. Afterwards, based
on the functions it learns, the agent tries to estimate the optimal policy. For
this, it can use value-iteration or policy-iteration. However, in most real-
life problem settings, it is not possible to find the exact reward function or
transition function using limited samples due to complexity. If the model is
inaccurate, model-based reinforcement learning can fail miserably, because
small errors can grow rapidly over a long horizon.

In model-free algorithms, on the other hand, the agent tries to estimate
the optimal policy without trying to model the environment first. Instead,
it uses value functions to estimate the optimal policy. A value function rep-
resents an estimate of how good it is to be in a certain state or perform an
action in a certain state. Finding these value functions solely relies on in-
teraction with the environment. In Section 3.3 we will explain more about
value functions and how they can be used to learn new policies.

8

3.2.2 Online vs Offline

The distinction between online and offline reinforcement learning concerns
the way of sampling.

In online reinforcement learning, the agent is allowed to interact with
the environment creating its own samples. The optimal policy is found by
alternating between the exploration phase and the learning phase multiple
times. In the exploration phase, we focus on obtaining new experiences
from the environment using a learned policy. In the learning phase, we
focus on learning from these previously obtained experiences to find new
policies. In this case, the policy performance can be obtained by applying
it directly to the environment during the exploration phase.

Figure 3.3: Online reinforcement learning

On the contrary, in offline reinforcement learning the agent itself is not
allowed to interact with the environment during learning. First, a batch
of samples is obtained from the environment, then the optimal policy is
learned solely from this earlier obtained batch. This means there is no ex-
ploration possible. To estimate the policy performance often a counterfac-
tual policy evaluation (CPE) method is used, which is able to estimate the
performance without running it on the real system.

Figure 3.4: Offline reinforcement learning

9

3.2.3 On-policy vs Off-policy

The distinction between on-policy and off-policy algorithms concerns the
way of performing policy updates. A distinction can be made between
the behavioural policy which generates the samples, and the target policy
which is the learned policy that has to be evaluated.

In on-policy algorithms, decisions about the actions are made based on
our best policy at that time and it uses the information gathered from tak-
ing that action to improve on the best policy. Here the policy you want to
evaluate is the same policy that generates the data. On-policy algorithms
are only suitable for online learning since the behavioural policy needs to
be known.

In off-policy algorithms, our behaviour of interacting with the envi-
ronment is unrelated to the optimal policy at the time of taking the action.
Here the policy we want to evaluate is different from the data generating
policy. This way it learns an optimal policy no matter which policy it is
carrying out. These off-policy algorithms are suitable for both online and
offline learning.

3.2.4 Overview

Reinforcement Learning

Model-based
methods

Policy/value iteration [29]
Dyna [37]
MCTS [4]

Model-free
methods

Off-policy

Q-learning [44]
DDPG [21]
SAC [10]

On-policy

SARSA [32]
CEM [31]

REINFORCE [45]

Figure 3.5: Overview of reinforcement learning algorithms

10

3.3 Q-learning

A popular algorithm used for reinforcement learning is Q-learning. Q-
learning is a model-free and off-policy algorithm [44]. The pseudo-code
of this algorithm is presented in Algorithm 1. The basic idea of Q-learning
is to approximate the state-action value function by observing the interac-
tions with the environment. In Q-learning we define the state-action value
function Q : S× A → R, denoted by Qπ(s, a), as the expected long-term
return from taking action a in state s and behaving under policy π.

Qπ(s, a) = Eπ

{
Rt|st = s, at = a

}
(3.2)

Using equation 3.1 it can be written as,

Qπ(s, a) = Eπ

{ ∞

∑
k=0

γkrt+k+1|st = s, at = a
}

(3.3)

This Q-value is used to express the quality of an action in a given state
for every state-action pair. The basic form of Q-learning, also called tabular
Q-learning, uses a look-up table to represent the Q-function. It is however
also possible to use a function approximator to learn the Q-function (i.e.
deep learning).

At the start of learning the Q-function estimate will be initialized. Next,
an iterative method is used based on the Bellman equation (equation 3.4) to
update the Q-function estimate. The Bellman equation defines the expected
long-term return for a certain state and action as the immediate reward
plus the expected long-term return for the next state. Because rewards in
the future are less certain they are discounted by a factor γ, 0 ≤ γ < 1. If
the discount rate is set to zero, only the immediate rewards are taken into
account, while a discount rate approaching one will make it strive for a
long-term high reward.

Q(st, at) = r(st, at) + γ ·maxaQ(st+1, a) (3.4)

After every time step t the Q-values can be updated by the new infor-
mation it obtained using the following update rule:

Qt+1(st, at) = (1− α) ·Qt(st, at) + α ·
[
r(st, at) + γ ·maxaQt(st+1, a)

]
(3.5)

11

In this update rule, a weighted average is taken of the old Q-value esti-
mate, Qt(st, at), and the new Q-value estimate, r(st, at)+γ ·maxaQt(st+1, a).
The new learned value consists of the actual obtained reward and the es-
timate of the expected long-term return of the next state discounted by γ.
Here the learning rate α, 0 ≤ α < 1, determines to what extent newly ac-
quired information overrides old information. If the learning rate is set to
zero the agent will learn nothing, while with a learning rate of one it will
only consider the most recent information. The idea of this method is that
the more experience is obtained the more accurate the predictions of the
optimal policy will be.

Algorithm 1: Q-learning

1: Set values for learning rate α, discount factor λ
2: Initialize Q
3:
4: for all episodes do
5: initialize state s0
6: for each time-step t do
7: at ← select action based on Q and exploration method
8: take action at, and observe reward r(st, at) and next state st+1
9: Qt+1(st, at)← (1− α) ·Qt(st, at) + α ·

[
r(st, at) + γ ·maxaQt(st+1, a)

]
10: st ← st+1

11:

12

3.4 Deep Q-learning

In deep Q-learning, the Q-learning algorithm is combined with an artificial
neural network [26]. Here the neural network is used as a function approx-
imator for the value function also referred to as the Q-network. This Q-
network maps states to Q-values for all possible actions. Deep Q-learning
no longer has to store the Q-values for every state-action pair, but only the
neural network with its parameter weights θ. This approach scales much
better than Q-learning. Deep Q-learning is often combined with an expe-
rience replay mechanism [22]. The pseudo-code for deep Q-learning with
experience replay can be found in Algorithm 2.

Again in deep Q-learning the Bellman equation (equation 3.4) is used
to iterative update the Q-function estimate. This is done by updating the
Q-network weights by minimising the loss function, see equation 3.6. The
loss function here is the mean squared error of the predicted Q-value and
the target Q-value. The new Q-value, r(st, at) + γ ·maxaQt(st+1, a; θ), rep-
resents the target.

Loss = (r(st, at) + γ ·maxaQt(st+1, a; θ)−Qt(st, at; θ))2 (3.6)

This is a regression problem, however, the target or actual value is un-
known. It can be argued that it is predicting its own value, but since r(st, at)
is the unbiased true reward, the network is going to perform a gradient
descent step to update the network weights θ using backpropagation to
finally converge.

3.4.1 Experience Replay

Using experience replay [22] enables reinforcement learning agents to mem-
orize and reuse past experiences. Every time step t the agent stores its ex-
perience et = (st, at, rt, st+1) consisting of the state, the action, the reward
and the next state. All these experiences are put in a data set Dt = e1, ..., et.

During learning, the Q-learning updates can now be applied on sam-
ples (mini-batches) taken from Dt. This is done by drawing uniformly at
random from the pool of stored samples, E ∼ U(Dt). Another name for the
samples that are stored is the so-called replay buffer. The size of the replay
buffer will define how many experiences will be "remembered". A replay
buffer of size N only contains the last N experiences.

13

The advantage of using experience replay is that it separates the learn-
ing phase from gaining experience, which removes correlations in the train-
ing samples [26]. Instead of learning from experiences that were obtained
directly after each other, with experience replay the chronological relation-
ship between experiences is broken. Another advantage is the efficient use
of previous experience, as it can be used for learning multiple times. This
is very important when gaining real-world experience is costly.

Algorithm 2: Deep Q-learning with Experience Replay

1: Set values for learning rate α, discount factor λ
2: Initialize empty replay buffer D to capacity N
3: Initialize Q with random weights
4:
5: for all episodes do
6: initialize state s0
7: for each time-step t do
8: at ← select action based on Q and exploration method
9: take action at, and observe reward rt and next state st+1

10: store experience et = (st, at, rt, st+1) in D
11:
12: Sample random mini-batch of transitions (sj, aj, rj, sj+1) from D

13: Set yj=

{
rj, for terminal sj+1

rj + γmaxaQ(sj+1, aj; θ), for non-terminal sj+1

14: Calculate loss (yj −Q(sj, aj; θ))2

15: Perform a gradient descent step to update θ

16:

14

CHAPTER 4
Methodology

In this section, we discuss the warm start approach (4.1), the environments
(4.2), models (4.3), exploration methods (4.4) and evaluation metrics (4.5)
used in this research.

4.1 Warm Start Reinforcement Learning (WS-RL)

In many real-world settings of reinforcement learning, there is no accu-
rate simulator of the system. This implies that learning has to be done
by interacting with the real system. In this kind of setting, reinforcement
learning becomes very impractical, since this technique is exploratory by
nature. Typically, a reinforcement learning agent starts with many steps
of poor performance before learning a better policy. This is manageable
in simulated environments, but poor performance on the real system will
have major consequences in most real-world applications (e.g. healthcare,
autonomous cars). It is therefore important to utilize knowledge about the
environment that is already available, instead of learning from scratch. In
a real-world setting, environment knowledge often occurs in the form of
available data with logged environment interactions from previous con-
trollers. In our approach, we suggest utilizing this data to warm start re-
inforcement learning (WS-RL). To do this we create a training pipeline that
combines both offline and online reinforcement learning, see Figure 4.1.

15

Figure 4.1: Training pipeline of WS-RL

This warm start approach is applied to the popular RL algorithm, deep
Q-learning. This technique was earlier described in Section 4.3.1. The
pseudo-code of WS-RL can be seen in Algorithm 3. This code can be split
up in two parts. Lines 6-10 of Algorithm 3 focus on offline reinforcement
learning. In offline reinforcement learning, there is no interaction between
the agent and the environment which decouples the data collection from
the learning phase. This means the agent has to learn from a fixed batch of
data that was earlier obtained from the environment. The experiences from
this dataset are now used to approximate the value function. This way of
learning does not affect the environment. After learning the agent will have
found a better estimate of the value function. Next, lines 12-21 of Algorithm
3 focus on online reinforcement learning. Usually, the agent initializes its
value function estimate randomly without any prior knowledge. However,
now it uses the value function estimate from offline reinforcement learning
as a starting point. Here the agent will be able to interact with the envi-
ronment and create its own samples. The model alternates between the
exploring phase, creating more samples, and the learning phase, learning
from these samples, multiple times. Now after every interaction, the new
experience will be added to the agent’s memory.

16

Algorithm 3: WS-RL

1: Set values for learning rate α, discount factor λ
2: Initialize Ddata with available samples
3: Initialize empty replay buffer Dreplay

4: Initialize Q with random weights θ
5:
6: for all epochs do . Offline RL
7: for all batches in Ddata do
8: Sample random mini-batch of transitions (sj, aj, rj, sj+1) from Ddata

9: Set yj=

{
rj, for terminal sj+1

rj + γmaxaQ(sj+1, a; θ), for non-terminal sj+1

10: Perform a gradient descent step on (yj −Q(sj, aj; θ))2

11:
12: for all episodes do . Online RL
13: initialize state s0
14: for each step t in episode do
15: at ← select action based on Q and exploration method
16: take action at, and observe reward rt and next state st+1
17: store experience et = (st, at, rt, st+1) in Dreplay

18:
19: Sample random mini-batch of transitions (sj, aj, rj, sj+1) from Dreplay

20: Set yj=

{
rj, for terminal sj+1

rj + γmaxaQ(sj+1, a; θ), for non-terminal sj+1

21: Perform a gradient descent step on (yj −Q(sj, aj; θ))2

22:

17

4.2 Environments

OpenAI Gym provides a collection of test problems, called environments,
for developing and comparing reinforcement learning algorithms. It comes
with a diverse suite of environments that range from easy to difficult and
involve many different kinds of data [3]. In this research, we will be using
the CartPole and LunarLander environment. Both environments have a
discrete action space and fall under control problems, combining mechan-
ics and reinforcement learning. These environments show similarity to con-
trol problems in the real world and show a different level of complexity.

4.2.1 CartPole

In the CartPole-v1 environment, see Figure 4.2, a pole is attached to a cart
which moves along a frictionless track. The system can be controlled by
applying a force of +1 or -1 to the cart. The pole starts upright, and the goal
is to prevent it from falling over. A reward of +1 is provided for every time
step the pole remains upright. The episode ends when the pole is more
than 15 degrees from vertical, or the cart moves more than 2.4 units from
centre. The maximum length of an episode is 500 time steps, and therefore
also the maximum reward [8].

CartPole-v1 defines "solving" as getting an average reward of 475.0.

Figure 4.2: CartPole

18

The state-space has four dimensions of continuous values which repre-
sent the position, the velocity, the pole angle and the pole velocity at the
tip. The action space has two discrete values which represent the direction
of the force applied on the cart.

State Space
0 Cart Position
1 Cart Velocity
2 Pole Angle
3 Pole Velocity At Tip

Table 4.1: CartPole State Space

Action Space
0 Force in left direction
1 Force in right direction

Table 4.2: CartPole Action Space

4.2.2 LunarLander

In the LunarLander-v2 environment, see Figure 4.3, a space-ship tries to
land between two flags smoothly. The system can be controlled by firing
the three different engines or doing nothing. Rewards are given for moving
towards the landing pad, not crashing and leg ground contact. Penalties are
given for moving away from the landing pad, crashing and firing the main
engine. The episode ends when the lander crashes or comes to rest. The
maximum length of an episode is 1000 time steps [9].

LunarLander-v2 defines "solving" as getting an average reward of 200.

Figure 4.3: LunarLander

19

The state-space has eight dimensions of continuous values. The action
space has four discrete actions, representing doing nothing, firing the left
engine, firing the main engine and firing the right engine.

State Space
0 x-Coordinate
1 y-Coordinate
2 x-Velocity
3 y-Velocity
4 Lander Angle
5 Angular Velocity
6 Right-leg Grounded
7 Left-leg Grounded

Table 4.3: LunarLander State Space

Action Space
0 Do nothing
1 Fire left engine
2 Fire main engine
3 Fire right engine

Table 4.4: LunarLander Action Space

4.3 Models

In this research, three different models are used. The models used are all
based on deep Q-learning which was earlier explained in Section 4.3.1. The
first model is identical to this technique and the other two are an extension
of this technique, introduced to improve performance.

4.3.1 Deep Q-Network (DQN)

The Deep Q-Network [26] was first used by DeepMind in 2013 and is based
on the deep Q-learning technique described in Section 4.3.1. Here Q-learning
is combined with a neural network and experience replay. Figure 4.4 shows
the architecture of the neural network used in this paper. It is however also
possible to create a different architecture. In this research, no convolutional
layers are used, but the network consists of fully connected layers. The loss
in equation 3.6 is minimized using the Adam optimizer [14].

4.3.2 Double Deep Q-Network (Double DQN)

In 2015, van Hasselt et al. combined deep Q-networks with double Q-
learning constructing the Double DQN [40]. Double Q-learning [11] was
introduced to solve the overestimation of Q-values in Q-learning. This

20

Figure 4.4: architecture Deep Q network [26]

overestimation bias in Q-learning is a result of using the same Q-function
estimate for action selection and evaluation. This makes it more likely to
select overestimated actions, resulting in overoptimistic value estimates.

To overcome overestimation double Q-learning uses two independent
Q-functions Q and Q̃ to decouple the action selection from the evaluation.
The update rule is still similar to equation 4.1 in Q-learning, but each Q-
function is now updated with a value from the other Q-function for the
next state, see equation 4.1 and 4.2. This way when Q is being updated Q̃ is
considered to compute the target and vice versa. This is said to improve sta-
bility in learning since the target function will stay fixed for a while instead
of being a moving target. Both value function Q and Q̃ are also based on
different experiences. The pseudo-code of double Q-learning can be found
in Algorithm 4. Here it assigns the two different Q-functions Q and Q̃ as
either the "update" function or "target" function. It then selects an action
based on the update function in line 11 and uses this action in the target
function for the update in line 13.

Qt+1(st, at)← (1− α) ·Qt(st, at)+

α ·
[
r(st, at) + γ · Q̃t(st+1, argmaxaQt(st+1, a)

] (4.1)

Qt+1(st, at)← (1− α) ·Qt(st, at)+

α ·
[
r(st, at) + γ · Q̃t(st+1, argmaxaQt(st+1, a)

] (4.2)

Again in double Q-learning, a neural network can be used as a func-
tion approximator for the two Q-function creating a deep Q-network with
double Q-learning. This is done in the same manner as for deep Q-learning
explained in Section 4.3.1.

21

Algorithm 4: Double Q-learning

1: Set values for learning rate α, discount factor λ
2: Initialize Q and Q̃
3:
4: for all episodes do
5: initialize state s0
6: for each time-step t do
7: at ← select action based on Q, Q̃ and exploration method
8: take action at, and observe reward r(st, at) and next state st+1
9:

10: assign Qupdate = Q and Qtarget = Q̃, or Qupdate = Q̃ and Qtarget = Q
11: at+1 = argmaxaQupdate

t (st+1, a)
12: Qupdate

t+1 (st, at)← (1− α) ·Qupdate
t (st, at) + α · [r(st, at) + γ ·Qtarget

t (st+1, at+1)]

13:

4.3.3 Dueling Deep Q-Network (Dueling DQN)

In 2015, Wang et al. combined deep Q-learning with a dueling architecture.
The Q-value that is estimated in Q-learning represents the value of a given
action a in state s (equation 3.2). The dueling network was introduced to
generalize learning across actions without changing the underlying algo-
rithm. In this network, the Q-value is split into two parts. First, V(s) the
value of being in state s independent of the action. Second, A(s, a) the ad-
vantage of taking action a in state s.

Qπ(s, a) = Vπ(s) + Aπ(s, a) (4.3)

Vπ(s) = Eπ

{
Rt|st = s

}
(4.4)

The idea behind Dueling Q-learning is that in some states the action
taken does not have an impact on the environment [43]. For instance, think
of a game where the agent has to dodge objects. The action taken will only
be important if there is a risk of collision with an object. If there is no risk
of collision it is not necessary to calculate the value of each action. The du-
eling architecture will learn which states are valuable, without learning the
effect of each action for each state.

22

To do this both elements, V(s) and A(s, a), are estimated separately us-
ing two streams of fully connected layers. After this, both estimates are
combined to produce the Q-function and outputs the Q-values for each ac-
tion. In Figure A.2 a representation for the Dueling DQN is shown.

Figure 4.5: architecture Dueling Deep Q network [43]

4.4 Exploration Methods

In Q-learning, the agent learns a Q-function that can be used to determine
an optimal action. However, it does not specify how the agent should use
these Q-values. Two things are useful for the agent to do. The agent can
choose to exploit what it has learned by choosing the action with the high-
est Q-value estimate. Or the agent can choose to explore other options to
create a better estimate of the Q-function and make better decisions in the
future. Finding a balance between exploration and exploitation is a funda-
mental issue in reinforcement learning. To find this balance an exploration
method is used, which defines the strategy used to select actions. In this
research, multiple exploration methods are used and they are discussed
below.

4.4.1 Greedy

The simplest way of selecting actions is via the greedy method. This is
an example of pure exploitation since the actions are always selected on
the agent’s current knowledge. This is done by selecting actions with the
highest Q-value.

at = argmaxa∈AQπ(st, a), ∀s ∈ S (4.5)

23

A disadvantage of this method is that the Q-values are used for action
selection even though they have not converged yet. This is the case at the
beginning of training when the agent knows little about the environment
and the estimate of the Q-function is still unreliable. The agent has to ex-
plore to gain insight into the environment dynamics. Relying solely on
exploitation is also likely to trap the agent in a local optimum. Not explor-
ing unseen parts of the environment can prevent the agent from improving
and finding the optimal policy.

4.4.2 ε-Greedy

An ε-greedy exploration is one of the most used exploration methods [38].
It uses a parameter ε, 0 ≤ ε ≤ 1, to balance exploration and exploitation.
The agent chooses the action with the highest Q-value with a probability
of 1− ε and the other times a random action is taken. The ratio between
exploration and exploitation is influenced by the value chosen for ε. The
higher this value, the more exploration is performed. Here it is necessary
to choose an appropriate value for epsilon. The greedy strategy can also be
defined as an ε-greedy strategy with ε equal to 0.

at =

{
argmaxa∈AQπ(st, a) with probability 1− ε

random with probability ε
(4.6)

A disadvantage of the ε-greedy method is that the agent keeps explor-
ing the environment even though it has learned a good policy. When the
estimate of the Q-function converges to the true value the focus should be
on exploitation. Too much exploration in task-irrelevant parts of the envi-
ronment is very inefficient.

4.4.3 ε-Greedy Decay

The ε-greedy decay method is similar to the ε-greedy method. It also selects
a random action with probability ε. The difference is that instead of the
value of ε staying constant during training it will decay over time. This
means that at the beginning of training the exploration rate is higher than
later on. This solves the drawback of the ε-greedy method, where the agent
keeps exploring even though it has found a good policy. Now there will be
less exploration as the Q-values converge. Here it is necessary to choose an
appropriate decay rate.

24

4.4.4 Softmax

A drawback of these previous ε-greedy methods is that during exploration
the agent chooses equally among all actions. This means that it is as likely
to choose the worst action as it is to choose the next-best-action. In tasks
where taking the worst action has major consequences, this is not recom-
mended. The softmax method uses the Boltzmann distribution to assign
probabilities of selecting an action. Now all actions are ranked and weighted
based on their value estimates. The greedy action is still given the highest
selection probability. At time step t an action a in state s is selected with a
probability p(st, a).

p(st, a) =
eQt(st,a)/τ

∑n
i=1 eQt(st,ai)/τ

(4.7)

The temperature τ, τ ≥ 0, controls the randomization of the action selec-
tion process. If the temperature is close to zero the agent does not explore,
resulting in a greedy policy. If τ → ∞ there are almost no differences be-
tween probabilities resulting in a random policy. Here it is necessary to
choose an appropriate value for τ.

4.5 Evaluation

In this research multiple models with different algorithms, exploration meth-
ods and hyperparameters are compared. Evaluation of these models is im-
portant to get an idea of their performance. The performance can be ex-
pressed in the number of rewards obtained from the environment. Since
the environments in this research all have an episodic horizon and stop
after a finite number of time steps, the rewards can be calculated for a sin-
gle episode. How the reinforcement model is judged depends on how the
agent will be deployed.

If the agent is able to learn safely before being deployed, the amount
of rewards obtained by the final policy is most important. To evaluate the
performance of a single policy it can be run on the environment without
any exploration. This will show how many rewards are obtained by solely
following the policy. The policy rewards are computed by running multiple
episodes and averaging the total rewards. The agent’s policy is evaluated
at multiple times during training. The performance of the policy shows if
it will eventually converge to the optimal policy.

25

The agent is only able to learn safely if a simulated environment of the
real system is available. In real-world problems this is often not the case,
meaning the agent has to learn while being deployed. In this situation, not
only the learned policies are important, but also the effect of the exploration
method. In this situation, the trade-off between exploration and exploita-
tion becomes even more important, since taking bad actions on the real sys-
tem can have an immediate negative impact. The performance of the model
on the real system can be expressed by how much rewards it receives dur-
ing acting and learning. These so-called system rewards are tracked during
the whole training period.

26

CHAPTER 5
Experimental setup

In this section, we will explain the experiments that are performed. The
experiments focus on the performance of reinforcement learning in both
an offline and online setting. The experiments are done for three differ-
ent model architectures, namely Deep Q-networks, Deep Q-networks with
double Q-learning (Van Hasselt et al., 2016) and Deep Q-networks with du-
eling architecture (Wang et al., 2015).

For all experiments in this research, we use the reinforcement learning
platform Horizon [6]. More information about this platform and the use
of it during this research can be found in appendix B. Horizon provides
implementations of multiple model architectures based on their original
paper and scripts for training these models. These scripts allow for both
offline and online reinforcement learning. The pseudo-code and a more ex-
tensive explanation of these scripts can also be found in Appendix B.

Additional, the platform provides configuration files with parameter
settings for training. These parameter settings are either based on the orig-
inal papers or recommended by Horizon themselves. Some parameter val-
ues are different per environment. An overview of the hyperparameters
used during training can be found in Appendix B.2. These settings are
used when not specified otherwise.

For all environments, the online experiments are done with 3 different
seeds. These seeds affect the initial values of the neural network and can
influence learning. The final results are averaged over these different seeds.

27

5.1 Setup

In our proposed warm start setup we use both offline and online reinforce-
ment learning. In our experiments, we look at both their performance in-
dependent of each other as well as combined.

5.1.1 Offline Reinforcement Learning

In offline reinforcement learning, a small parameter search is performed
using the Hyperopt package. This package makes it possible to run multiple
trials, and it chooses its direction within the search space based on the re-
sults. Hyperopt uses a method called the Tree-structured Parzen Estimator
(TPE). This approach was introduced at NIPS 2011 by Bergstra et. al [2].
In total 25 trials are run for each model architecture. The hyperparameters
considered for optimization are the learning rate, gamma and the target
update rate. The parameters and search space can be found in Table 5.1.

Parameter Space

learning rate LogUniform(-10,0)
gamma Uniform(0,1)
target update rate Uniform(0,1)

Table 5.1: Parameter space

During offline training, a model learns from a batch of data without any
interaction with the environment. The data used during learning is created
by sampling from the OpenAI Gym environment. As already explained
in Section 3.1 the agent interacts with the environment every discrete time
step and stores its experience. All these experiences obtained during sam-
pling form the dataset. During sampling the agent uses a random be-
haviour policy, meaning all actions are randomly selected. The number of
samples in the datasets are chosen based on the complexity and the episode
length of an environment. For the Cartpole and LunarLander environment,
the dataset contains 10.000, 50.000 samples, respectively. Training can now
be done by looping over this data with batches of size 256. In total, the
models are trained for 100 epochs. After every epoch, the performance is
evaluated in an online manner. More information about the script used for
offline training can be found in the appendix (B.1).

28

(a) CartPole (b) LunarLander

Figure 5.1: This figure shows a histogram of the episode rewards in the
datasets. The dataset for the CartPole environment contains 460 episodes in
total. The policy used to create this dataset achieved 21.77 episode rewards
on average. The dataset for the LunarLander environment contains 545
episodes in total. The policy used to create this dataset achieved -178.52
episode rewards on average.

5.1.2 Online Reinforcement Learning

In online reinforcement learning the way of exploration has a major effect
on the performance. Finding a good balance between exploration and ex-
ploitation is a fundamental issue in reinforcement learning. We, therefore,
look at the performance of multiple exploration methods. The three explo-
ration methods used are earlier described in Section 4.4. To get a good idea
of their performance multiple exploration settings are tested. For this, we
use a grid search for all three exploration methods. An overview of the pa-
rameters and their search space can be found below in Table 5.2. In offline
reinforcement learning, there is no interaction with the environment and
therefore exploration is not applicable.

Method Parameter Space

ε-greedy epsilon {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}
ε-greedy decay epsilon_decay {0.25, 0.4, 0.55, 0.7, 0.85, 0.999}
softmax temperature {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2}

Table 5.2: Parameter space per exploration method

29

In online training, the agent interacts with the environment for several
time steps. This number is set to 15.000 and 100.000 timesteps for the Cart-
pole and Lunarlander environment, respectively. Training is done every
time step on a batch of size 256. The policy evaluation is not done every
time step, but after a constant interval. The interval is set to 100 for the
Cartpole and 5.000 for the Lunarlander environment. More information
about the script used for online training can be found in the appendix (B.1).

5.2 Experiment Logging

For this research, a lot of different experiments are done. It is important to
keep this organized. This is done in Python with the use of Sacred, Mon-
goDB and Omniboard. These packages make it possible to log, store and
visualize all information of an experiment. The information consists of the
parameter settings, outputs, source files and library versions that are used
during training. This allows us to reproduce any experiment with re-runs.

version
python 3.6.7
numpy 1.17.2
torch 1.3.0
sacred 0.8.0
scikit-learn 0.20.0
pandas 0.23.4
hyperopt 0.2.2
horizon 0.1

Table 5.3: Version of python and the python libraries

30

CHAPTER 6
Results & Conclusion

In this section, the results obtained for all experiments are reported. In Sec-
tion 6.1 the results are shown for the offline reinforcement learning exper-
iments. Here we show the performance of the three model architectures.
In Section 6.2 the results are shown for the online reinforcement learning
experiments. This is divided into three different parts. In the first experi-
ment, we show the performance of the exploration methods (6.2.1). Next,
we show the performance of the three model architectures (6.2.2). And at
last, we show the performance of the warm start (6.2.3). All experiments are
done for two different environments, namely the Cartpole and Lunarlan-
der environment.

6.1 Offline Reinforcement Learning

6.1.1 Performance of Model Architectures

Cartpole environment

Figure 6.1 and Table 6.1 show the results for offline reinforcement learning
in the Cartpole environment. The results show the models are able to uti-
lize the provided data with random actions and learn better policies. The
Dueling DQN converges the fastest and reaches a policy performance, de-
noted by the policy rewards, of approximately 280 within the first 5 training
epochs (Figure 6.1). The other two models need more time to converge to
this performance. The solved reward threshold for this environment is de-
fined by finding a policy that obtains 475 rewards on average. The Dueling
DQN is the only model that was not able to find such a policy throughout

31

the whole training period, as this model shows a maximum policy perfor-
mance of only 385 (Table 6.1). This maximum policy performance is impor-
tant in offline learning since the agent can learn safely before deployment.
Therefore training can be stopped at any point in time when a good pol-
icy is found. The DQN and Double DQN show similar scores for both the
mean and maximum policy performance.

Figure 6.1: This figure shows the policy performance during offline rein-
forcement learning for the Cartpole environment. The policy performance
is represented by the average rewards obtained by running a policy in the
environment.

Policy Performance
Model mean max

DQN 270 492
Double DQN 276 500
Dueling DQN 301 385

Table 6.1: This table shows the mean and maximum policy performance
throughout an offline training run for the Cartpole environment.

32

Lunarlander environment

Figure 6.2 and Table 6.2 show the results for offline reinforcement learning
in the Lunarlander environment. The results show the models have more
difficulty learning good policies from the provided data with random ac-
tions. Not one of the models is able to find a policy that reaches the solved
reward threshold of 200. In Figure 6.2 the policy performances of all mod-
els can be seen throughout the whole training period. It shows the DQN
performs best for most of the training epochs and also reaches the highest
mean and maximum policy performance (Table 6.2).

Figure 6.2: This figure shows the policy performance during offline rein-
forcement learning for the Lunarlander environment. The policy perfor-
mance is represented by the average rewards obtained by running a policy
in the environment.

Policy Performance
Model mean max

DQN -58 129
Double DQN -98 52
Dueling DQN -96 75

Table 6.2: This table shows the mean and maximum policy performance
throughout an offline training run for the Lunarlander environment.

33

6.1.2 Offline Models

The offline models used for the warm start are chosen based on their per-
formance in the environment. To keep the experiments similar over the dif-
ferent model architectures a performance level is chosen that was reached
for all of the models after the training period. For the Cartpole and Lu-
narlander environment, these models all reach an average reward of ap-
proximately 350 and -25 over a thousand episodes, respectively.

6.2 Online Reinforcement Learning

6.2.1 Performance of Exploration Methods

In this section, we show the performance of different exploration methods
for the Cartpole and Lunarlander environment. These experiments are only
done for online reinforcement learning with a cold start. The results for
both environments can be found in Figure 6.3. To allow comparison across
the environment the performances in this figure are normalized1 to deal
with the different ranges and distributions of reward in both environments.

Cartpole environment

The performance of the policies, denoted by the normalized policy rewards,
found throughout training for the Cartpole environment can be found in
Figure 6.3a. It clearly shows the agents have no trouble finding a better
policy, since these values lie significantly higher than a random policy (red
line). This is the case for all different exploration methods and settings,
meaning the actions taken during learning have little effect on this. The
Cartpole environment is a relatively easy problem with a small sate and
action space which can explain this. Additional, the values lie high enough
to state good policies are found. The performance on the system, denoted
by the normalized system rewards, seems to be a lot more sensitive to the
different exploration settings (Figure 6.3b). The performance on the system
decreases a lot when there is too much exploration for both the ε-greedy &
ε-greedy decay methods. This is the case for settings with a high epsilon or
epsilon decay rate. It shows the random actions taken during exploration

1The normalization uses min-max scaling which scales the values to a fixed range of
0 to 1. It uses the following formula: X−Xmin

Xmax−Xmin
. For the Xmin and Xmax we will use the

minimum (random) and maximum (solved reward threshold) possible rewards obtained in
the environments.

34

have a drastic negative effect on the rewards obtained from the system. The
mean system rewards are highest for an epsilon value of 0.1 or a decay rate
of 0.85. The softmax method seems to achieve a good system reward score
for all the temperature settings that were tested and is highest at a temper-
ature of 0.2.

Lunarlander environment

Figure 6.3a also shows the performance of the policies, denoted by the nor-
malized policy rewards, for the Lunarlander environment. It shows the
agent has more trouble finding better policies. Here the amount of explo-
ration, defining the actions taken during learning, now has more influence
on the policy convergence than for the Cartpole environment. For the ε-
greedy method with high epsilon values, the agent does not even find a
policy that performs better than the random policy (red line). This can,
however, be explained by the fact it involves a more complex problem. In
this environment, the state space and action space are bigger, which makes
it harder to get an understanding of the environment dynamics. Finding a
good policy will take more time and effort. The performance on the system
in Figure 6.3b, denoted by the normalized system rewards, follows similar
behaviour as the policy performance (Figure 6.3a). The performance of the
ε-greedy & ε-greedy decay method on the system is highest for an epsilon
of 0.4 or a decay rate of 0.95. This epsilon and decay rate are higher than
for the Cartpole environment which again shows this environment needs
more exploration. The best scores are reached for the softmax method at a
temperature of 1.0.

Across environments

Ideally, we search for an exploration method that performs well for dif-
ferent environments. Therefore we also consider the performance across
environments. The results in Figure 6.3b show that choosing an epsilon
schema for the ε-greedy & ε-greedy decay method is very dependent on the
environment. Here an epsilon schema defines the value of epsilon through-
out training. The softmax method shows not only good performance, but
is also more stable across different exploration settings and environments.
Therefore, this exploration method will be used for the experiments in the
rest of this research.

35

(a) Policy Rewards

(b) System Rewards

Figure 6.3: This figure shows the results obtained for different exploration
methods during online reinforcement learning with a cold start. For each
method, the x-axis represents the settings that control the amount of ex-
ploration, where a lower value represents less exploration. The policy per-
formance and system performance are both normalized1. No distinction is
made between the three model architectures (DQN, Double DQN & Duel-
ing DQN). The performance of a random policy is shown with a red line.

36

6.2.2 Performance of Model Architectures

In this section, we show the performance of different model architectures.
The results are shown for online reinforcement with a cold start, where
the agent learns from scratch, and a warm start (WS-RL), where an offline
model is used as a starting point.

Cartpole environment

The online agent is able to learn a policy that performs well in the Cart-
pole environment. The solved reward threshold for this environment is
defined by finding a policy that obtains 475 rewards on average. Table 6.3
shows that almost all models are able to find a policy that solves the envi-
ronment. The DQN with a cold start is the only model that does not, but
it comes close. At the beginning of training, the models seem to converge
at a similar speed (Figure 6.4). However, around 4.000 timesteps the DQN
model seems to fall behind for the cold start. Something similar happens
for the Dueling DQN at 2.000 timesteps during the warm start. Overall, the
training curves are relatively close together. The Dueling DQN and Double
DQN seems to perform best for the cold start and warm start, respectively.
Additionally, the models stay stable throughout training and do not have
sudden drops in performance, meaning they do not lose knowledge from
earlier learned policies.

(a) Cold Start (b) Warm Start

Figure 6.4: This figure shows the policy performance during online rein-
forcement learning for the Cartpole environment. This plot shows the av-
erage over 3 different seeds for each model architecture. A moving average
with window size 5 is used for better visibility.

37

Policy Performance System Performance
Model mean max mean

DQN 307 466 240
Double DQN 355 500 311
Dueling DQN 382 500 339

(a) Cold Start
Policy Performance System Performance

Model mean max mean

DQN 407 500 296
Double DQN 439 500 341
Dueling DQN 364 500 330

(b) Warm Start

Table 6.3: This table shows the mean and maximum policy performance
and mean system performance throughout an online training run for the
Cartpole environment. These values show the average over 3 different
seeds for each model architecture.

Lunarlander environment

In the Lunarlander environment, the online agent (Table 6.4) is able to find
policies that perform significantly better than the offline agent (Table 6.2).
Although none of the models are able to solve the environment, which hap-
pens at a policy performance of 200, they do show improvement through-
out the training period (Figure 6.5). For the cold start, all models come close
to this threshold, but for the warm start, the maximum policy performance
lies a bit lower (Table 6.4). The Dueling DQN and Double DQN seems to
perform best for the cold start and warm start, respectively. In both set-
tings, the performance of the DQN is relatively close to this performance.

38

(a) Cold Start (b) Warm Start

Figure 6.5: This figure shows the policy performance during online rein-
forcement learning for the Lunarlander environment. This plot shows the
average over 3 different seeds for each model architecture.

Policy Performance System Performance
Model mean max mean

DQN 54 179 22
Double DQN 50 180 8
Dueling DQN 68 196 30

(a) Cold Start
Policy Performance System Performance

Model mean max mean

DQN 71 143 64
Double DQN 88 178 80
Dueling DQN 52 134 20

(b) Warm Start

Table 6.4: This table shows the mean and maximum policy performance
(rewards) and mean system performance (rewards) throughout an online
training run for the Lunarlander environment. These values show the av-
erage over 3 different seeds for each model architecture.

39

6.2.3 Performance of Warm Start

In this section, we will discuss the effect of the warm start setup on the per-
formance of an agent. To show the effect of a warm start more clearly we
calculate the difference2 for the policy performance and the system perfor-
mance. This is done for all the exploration settings of the softmax method.
These differences are visualized in Figure 6.6. The performance of cold start
and warm start runs throughout training are visualised in Figure C.3 & C.4
in Appendix C.

Cartpole

Figure 6.4 and Table 6.3 show the performance of the cold start and warm
start for the Cartpole environment with an optimized temperature setting.
Here it looks like the warm start improves performance for both the DQN
and Double DQN, whereas the Dueling DQN shows comparable results.
In Figure 6.6a, we focus on the results per temperature setting. Here we
see that for the Cartpole environment the warm start setup is not able to
improve results for all models and settings. The DQN seems to benefit
most from this setup and generally improves on all three reward metrics.
However, this is not the case for the Double DQN, where six out of the
ten temperature settings show negative difference meaning a decrease in
performance. These results show that in a relatively simple environment,
where an agent is already able to quickly find better policies without any
help (Figure 6.4a), a warm start does not necessarily improve performance.

Lunarlander

Figure 6.6b shows the warm start for the Lunarlander environment clearly
has a positive impact on the mean policy and system reward for the differ-
ent temperature settings. Again, like the Cartpole environment, the DQN
seems to benefit most from this warm start. However, for the maximum
policy rewards, this is not the case. In most settings, the warm start seems
to have little impact and for some even a negative impact on this score.
This can also be seen in Figure C.4. The warm start runs show better per-
formance at the beginning of training, but most of the cold start runs are
able to outperform the warm start in the long run. This indicates a harder

2The differences are calculated by subtracting the score of a certain metric for a cold start
from the warm start score.

40

environment, where converging to an optimal policy is more difficult, can
benefit from a warm start considering the overall performance. However,
it does not necessarily converge to a better policy. In some cases, the cold
start even converges to better policies than a warm start.

(a) Cartpole

(b) Lunarlander

Figure 6.6: This figure shows the difference2 in performances of online re-
inforcement learning with a cold start and warm start for different softmax
parameter settings. These values show the average over 3 different seeds
for each model architecture.

41

CHAPTER 7
Discussion

In this research, we investigate the performance of online reinforcement
learning performed directly on the system. In this setting, all actions taken
during learning have a direct impact. This means exploration of the envi-
ronment should be done carefully. Therefor multiple exploration methods
and parameter settings were compared. We discovered that the amount of
exploration needed is dependent on the environment we are dealing with.
This is influenced by the state and action space and the complexity of the
environment. We found that the softmax method was able to perform best.
This is due to the fact it does not take random actions during exploration,
but assigns action probabilities based on the expected return learned dur-
ing training. This way of exploration is sufficient to find a good policy and
also has the least negative impact on the system. This method also proves
to be stable across the environments and different temperature settings.

We also investigated the possibility of improving online reinforcement
learning with a proposed warm start. This warm start uses offline rein-
forcement learning to utilize an available dataset and provide knowledge
for the online agent. Again, the results show this effect is dependent on the
environment. It can be concluded that a difficult environment like the Lu-
narlander environment, where an online reinforcement learning has more
difficulty in finding an optimal policy, benefits most from the warm start. It
reduces the time needed to find a decent policy and therefore improves the
overall performance. It, however, does not necessarily converge to a better
policy.

To make stronger claims about the results a more extensive research
has to be done. Currently, the experiments are done for only three different

42

seeds. These different seeds have an effect on the random factors of the
algorithms and environments during training. Using more random seeds
would give a better understanding of the true distribution. Also, the exper-
iments are only performed for two different environments. To get a better
idea of the effect of exploration and warm starts it is important to look at
performances across more environments. And at last, for the warm start
experiments, only one trained model is selected to be used as a starting
point. It might be interesting to compare multiple models with different
performances. Due to time limitations, this is not done in this research.

7.1 Future Work

In this research, the focus is more on online reinforcement learning instead
of offline reinforcement learning. However, researching the performance of
offline reinforcement learning more extensively would be very interesting.
Most importantly the offline evaluation. If it would be possible to learn and
evaluate offline, it would ensure the models are thoroughly tested before
deploying them at scale. Horizon provides these off-policy methods and
counterfactual policy evaluation (CPE) to estimate what the reinforcement
learning would have done if it were making those past decisions. How-
ever, during this research, some challenges occurred to get this working
and therefore it is not further discussed. This would, however, be interest-
ing as future work.

It is also important to note that currently the dataset used for offline
reinforcement learning only contains random actions. This is not realis-
tic when considering a real-world reinforcement learning problem where
existing data is available from the real system. In a real-world problem
previous interactions are not taken randomly, but often follow a "human"
policy. This policy would certainly be better than taking random actions,
especially when bad actions would have a drastic impact on the system.
Using a more realistic dataset with limited exploration might negatively
affect the results of offline reinforcement learning. It would be interesting
to see how this would affect the performance of offline learning.

43

Bibliography

[1] J Andrew Bagnell and Jeff G Schneider. Autonomous helicopter con-
trol using reinforcement learning policy search methods. In Proceed-
ings 2001 ICRA. IEEE International Conference on Robotics and Automa-
tion (Cat. No. 01CH37164), volume 2, pages 1615–1620. IEEE, 2001.

[2] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Al-
gorithms for hyper-parameter optimization. In Advances in neural in-
formation processing systems, pages 2546–2554, 2011.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv
preprint arXiv:1606.01540, 2016.

[4] Rémi Coulom. Efficient selectivity and backup operators in monte-
carlo tree search. In International conference on computers and games,
pages 72–83. Springer, 2006.

[5] Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Yuchen
He, Zachary Kaden, Vivek Narayanan, Xiaohui Ye, Zhengxing Chen,
and Scott Fujimoto. Horizon: Facebook’s open source applied rein-
forcement learning platform. arXiv preprint arXiv:1811.00260, 2018.

[6] Jason Gauci, Edoardo Conti, and Kittipat Virochsiri. Horizon: The first
open source reinforcement learning platform for large-scale products
and services. AI Research, ML Applications, 2018.

[7] Wade Genders and Saiedeh Razavi. Using a deep reinforcement learn-
ing agent for traffic signal control. arXiv preprint arXiv:1611.01142,
2016.

[8] OpenAI Gym. The cartpole-v1 environment.
https://gym.openai.com/envs/CartPole-v1/.

44

[9] OpenAI Gym. The lunarlander-v2 environment.
https://gym.openai.com/envs/LunarLander-v2/.

[10] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.
Soft actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

[11] Hado V Hasselt. Double q-learning. In Advances in neural information
processing systems, pages 2613–2621, 2010.

[12] Junqi Jin, Chengru Song, Han Li, Kun Gai, Jun Wang, and Weinan
Zhang. Real-time bidding with multi-agent reinforcement learning in
display advertising. In Proceedings of the 27th ACM International Confer-
ence on Information and Knowledge Management, pages 2193–2201, 2018.

[13] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei,
Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter
Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a freely
accessible critical care database. Scientific data, 3:160035, 2016.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[15] Jens Kober, Erhan Oztop, and Jan Peters. Reinforcement learning to
adjust robot movements to new situations. In Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence, 2011.

[16] Jens Kober and Jan R Peters. Policy search for motor primitives in
robotics. In Advances in neural information processing systems, pages
849–856, 2009.

[17] Nate Kohl and Peter Stone. Policy gradient reinforcement learning
for fast quadrupedal locomotion. In IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, volume 3,
pages 2619–2624. IEEE, 2004.

[18] Matthieu Komorowski, Leo A Celi, Omar Badawi, Anthony C Gor-
don, and A Aldo Faisal. The artificial intelligence clinician learns op-
timal treatment strategies for sepsis in intensive care. Nature medicine,
24(11):1716–1720, 2018.

[19] Virendra Singh Kushwah and Aruna Bajpai. Machine learning and its
algorithms: A research. International Journal of Innovative Technology
and Exploring Engineering (IJITEE), 8(12S2), 2019.

45

[20] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553):436–444, 2015.

[21] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Con-
tinuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[22] Long-Ji Lin. Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine learning, 8(3-4):293–321,
1992.

[23] Feng Liu, Ruiming Tang, Xutao Li, Weinan Zhang, Yunming Ye,
Haokun Chen, Huifeng Guo, and Yuzhou Zhang. Deep reinforcement
learning based recommendation with explicit user-item interactions
modeling. arXiv preprint arXiv:1810.12027, 2018.

[24] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth
Kandula. Resource management with deep reinforcement learning. In
Proceedings of the 15th ACM Workshop on Hot Topics in Networks, pages
50–56, 2016.

[25] Sadayoshi Mikami and Yukinori Kakazu. Genetic reinforcement learn-
ing for cooperative traffic signal control. In Proceedings of the First IEEE
Conference on Evolutionary Computation. IEEE World Congress on Compu-
tational Intelligence, pages 223–228. IEEE, 1994.

[26] Volodymyr Mnih. Playing atari with deep reinforcement learning.

[27] Andrew Y Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie
Schulte, Ben Tse, Eric Berger, and Eric Liang. Autonomous inverted
helicopter flight via reinforcement learning. In Experimental robotics
IX, pages 363–372. Springer, 2006.

[28] Jakub Pachocki, Greg Brockman, Jonathan Raiman, Susan Zhang,
Henrique Pondé, Jie Tang, Filip Wolski, Christy Dennison, Rafal
Jozefowicz, Przemyslaw Debiak, et al. Openai five, 2019. URL
https://openai.com/blog/openai-five-defeats-dota-2-world-champions/.

[29] Elena Pashenkova, Irina Rish, and Rina Dechter. Value iteration and
policy iteration algorithms for markov decision problem. In AAAI’96:
Workshop on Structural Issues in Planning and Temporal Reasoning. Cite-
seer, 1996.

46

[30] Tom J Pollard, Alistair EW Johnson, Jesse D Raffa, Leo A Celi, Roger G
Mark, and Omar Badawi. The eicu collaborative research database, a
freely available multi-center database for critical care research. Scien-
tific data, 5:180178, 2018.

[31] Reuven Rubinstein. The cross-entropy method for combinatorial and
continuous optimization. Methodology and computing in applied proba-
bility, 1(2):127–190, 1999.

[32] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using
connectionist systems, volume 37. University of Cambridge, Depart-
ment of Engineering Cambridge, UK, 1994.

[33] Arthur L Samuel. Some studies in machine learning using the game
of checkers. IBM Journal of research and development, 3(3):210–229, 1959.

[34] Stefan Schaal. Is imitation learning the route to humanoid robots?
Trends in cognitive sciences, 3(6):233–242, 1999.

[35] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature,
529(7587):484, 2016.

[36] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas
Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354–359, 2017.

[37] Richard S Sutton. Dyna, an integrated architecture for learning, plan-
ning, and reacting. ACM Sigart Bulletin, 2(4):160–163, 1991.

[38] Richard S Sutton and Andrew G Barto. Reinforcement learning: An in-
troduction. MIT press, 2017.

[39] Gerald Tesauro. Temporal difference learning and td-gammon. Com-
munications of the ACM, 38(3):58–68, 1995.

[40] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforce-
ment learning with double q-learning. In Thirtieth AAAI conference on
artificial intelligence, 2016.

47

[41] Martijn van Otterlo. Reinforcement learning: State-of-the-Art. Springer
Berlin Heidelberg, 2012.

[42] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Math-
ieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard Pow-
ell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft
ii using multi-agent reinforcement learning. Nature, 575(7782):350–
354, 2019.

[43] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc
Lanctot, and Nando De Freitas. Dueling network architectures for
deep reinforcement learning. arXiv preprint arXiv:1511.06581, 2015.

[44] Christopher John Cornish Hellaby Watkins. Learning from delayed
rewards. 1989.

[45] Ronald J Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning, 8(3-4):229–256,
1992.

[46] Rusheng Zhang, Akihiro Ishikawa, Wenli Wang, Benjamin Striner, and
Ozan Tonguz. Intelligent traffic signal control: Using reinforcement
learning with partial detection. arXiv preprint arXiv:1807.01628, 2018.

[47] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang,
Nicholas Jing Yuan, Xing Xie, and Zhenhui Li. Drn: A deep reinforce-
ment learning framework for news recommendation. In Proceedings of
the 2018 World Wide Web Conference, pages 167–176, 2018.

48

APPENDIX A
Implementation Details

A.1 Amazon Web Services (AWS)

All experiments are run on an Elastic Compute Cloud (EC2) instance, which
is a virtual server that can be used to run applications in AWS. When setting
up an EC2 instance, you can custom-configure CPU, storage, memory, and
networking resources. Here a p2.xlarge EC2 instance was used. This instance
was linked to an S3 bucket to store data and experiment details.

A.2 Packages & Libraries

version
python 3.6.7
numpy 1.17.2
torch 1.3.0
sacred 0.8.0
scikit-learn 0.20.0
pandas 0.23.4
hyperopt 0.2.2
horizon 0.1

Table A.1: Version of python and the python libraries

A.3 Experiment Logging

The experiment logging was done with the use of Sacred, MongoDB, and
Omniboard. These packages make it possible to log, store, and visualize all
information of an experiment.

49

Figure A.1: Overview of the experiment runs in Omniboard.

Figure A.2: Comparison of multiple experiment runs with details about the
metrics, captured output, source files and configuration.

50

APPENDIX B
Horizon

In this research, we will use Horizon, an open-source end-to-end applied
Reinforcement Learning platform for production, which was introduced by
Facebook November last year [5]. Horizon addresses the unique challenges
posed by building and deploying RL systems at scale and provides for both
offline and online learning. Horizon also takes into account issues specific to
production environments, including feature normalisation, distributed train-
ing, large-scale deployment and serving, as well as data sets with thousands
of varying feature types and distributions and high-dimensional discrete and
continuous-action spaces.

B.1 Training Scripts

B.1.1 Offline Reinforcement Learning

In offline reinforcement learning, there is no interaction between the agent
and the environment, therefore the data collection and policy update steps
are decoupled. The basic idea of offline reinforcement learning can be seen
in algorithm 5. First, the replay buffer has to be filled with pre-generated
samples. Then training is done by looping over batches of samples from the
replay buffer. In a single epoch, all samples are used for training. After a
number of epochs, the model will stop training. The model is evaluated after
every epoch.

Algorithm 5: Pseudo Code: train_gym_offline_rl

1: procedure TRAIN_GYM_OFFLINE_RL(ENV, TRAINER, EPOCHS,...)
2: initialize replay buffer D
3: for all epochs e do
4: for all batches in replay buffer D do
5: train on batch . Training
6:

7: calculate policy performance (on-policy or off-policy). Evaluation

51

B.1.2 Online Reinforcement Learning

In online reinforcement learning the agent is able to interact with the environ-
ment creating its own samples. The model alternates between the exploring
phase and the learning phase multiple times. Every time step a new expe-
rience will be added to the replay buffer. The model will train every time
step on a batch taken from the replay buffer. The policy evaluation is not
done every time step, but after a certain number of time steps. How often is
dependent on the environment. It is possible to give the agent two different
inputs. One is a replay buffer filled with samples instead of being empty. The
other is a previously trained model that will be used as a starting point for the
agent. These inputs are both optional. Algorithm 6 shows the pseudo-code
of online RL.

Algorithm 6: Pseudo Code: train_gym_online_rl

1: procedure TRAIN_GYM_ONLINE_RL(.....)
2: initialize environment env, replay buffer Dreplay, epsilon
3:
4: for all episodes e do
5: initialize state s0
6:
7: for each step t in episode do
8: at ← select action based on policy . Exploration policy
9: take action at, and observe reward rt and next state st+1

10: store experience et = (st, at, rt, st+1) in Dreplay . Experience
11:
12: if total_timesteps % train_every_ts = 0 then
13: get batch from Dreplay

14: train on batch . Policy Update
15:
16: if total_timesteps % test_every_ts = 0 then
17: calculate policy performance . Policy Evaluation
18:
19:
20: decay epsilon dependent on exploration method
21:

52

B.2 Hyperparameters

Value
Hyperparameter Cartpole Lunarlander Description

max replay memory size 10000 50000 Updates are sampled from this number of
most recent frames (replay buffer size).

replay start size 256 256 The start policy is run for this number of
frames before learning starts and the re-
sulting experiences are used to populate
the replay buffer.

train every ts 1 1 The number of timesteps between two
times of training.

train after ts 1 1 The number of timesteps after which the
model will start training.

test every ts 100 5000 The number of timesteps in between two
times of evaluation.

test after ts 1 1 The number of timesteps after which the
model will start to evaluate.

total ts 15000 100000 The total number of timesteps of learning.
minimum epsilon 0 0 The lowest possible number of epsilon

that can be used for action selection. This
is used if epsilon is decayed during learn-
ing.

gamma 0.99 0.99 Discount factor gamma used in the Q-
learning update.

target update rate 0.2 0.001 The frequency with which the target net-
work is updated.

minibatch size 256 256 Number of training cases that are used to
compute policy update.

learning rate 0.01 0.001 The learning rate used by the model.
layers [-1, 128, -1] [-1, 128, 64, -1] The layer sizes of the neural network that

is used for training.
activations ["relu", "linear"] ["relu", "relu", "linear"] The activation function that is uses in the

neural network layers.

Table B.1: The hyperparameters that were used throughout training with
their value and description. These values are chosen based on recommen-
dations by Horizon or other literature.

53

APPENDIX C
Results

C.1 Offline Reinforcement Learning

Figure C.1: Hyperparameter optimization for the Cartpole environment dur-
ing offline reinforcement learning.

54

Figure C.2: Hyperparameter optimization for the Lunarlander environment
during offline reinforcement learning.

55

C.2 Online Reinforcement Learning

Figure C.3: Policy rewards throughout training runs for Cartpole environ-
ment.

56

Figure C.4: Policy rewards throughout training runs for Lunarlander envi-
ronment.

57

