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Abstract

Predicting stock market prices is challenging due to market unpredictability,

with traditional theories like the efficient market hypothesis (EMH) suggesting

that prices already reflect all available information. This study aims to en-

hance prediction accuracy for the top 25 S&P 500 stocks by developing multiple

models that integrate historical data, technical indicators, fundamental data,

industry trends, macroeconomic factors, and social media sentiment. Machine

learning models including LSTM, SVM, Random Forests, and Linear Regres-

sion were used to analyze these diverse data sources. In addition, multiple

different NLP transformer models, different versions of BERT, were used to

perform sentiment analysis on sentiment data. Results showed that simpler

models performed well with basic data, while adding sentiment analysis im-

proved some predictions but also introduced noise. Moreover, the transformer

models pre-trained on financial corpus outperformed those pre-trained on stan-

dard text. Frequent rebalancing strategies outperformed sentiment-based ap-

proaches. The study concludes that integrating diverse data can improve pre-

dictions, but model simplicity and careful data selection are crucial for success.
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1

Introduction

Predicting stock market prices remains a formidable challenge. This is exacerbated by the

unpredictable nature of financial markets. In other words, stock markets are dynamic,

non-linear, non-stationary, non-parametric, noisy, and chaotic. This makes analyzing price

behavior and movements in the market quite challenging. Theories like the Efficient Market

Hypothesis (EMH) and the Random Walk Theory (RWT) further emphasize this intricacy.

In the RWT, it is assumed that stock prices move in a manner similar to a random walk.

According to the EMH, which was presented by (1) and (2), stock prices take into account

all relevant information and only the change in reaction to new information. This implies

that utilizing knowledge that is readily available to the public, it is theoretically impossible

to consistently outperform the market.

Criticism of the EMH has led to an increasing number of studies questioning its validity

and introducing new and successful approaches that combine technical analysis indicators

and chart patterns, patterns within a chart when prices are graphed, with methods from

econometrics, statistics, data mining, and artificial intelligence (3). Therefore, despite the

previously mentioned drawbacks, a new wave of research aimed at improving the precision

of stock market forecasts has been driven by the development of sophisticated computer

tools and a wide range of data sources. In order to develop a more thorough understanding

of market dynamics, there has recently been a growing trend to integrate several data sets,

such as mood analysis, technical indicators, historical pricing, and industry trends.

In particular, sentiment analysis has become increasingly important in highlighting the

emotional and psychological aspects of the market. Rich information from social media

sites, like Twitter, is now easier to acquire because of the digital era, and these datasets offer

unique insights into how the public feels about certain stocks or the market as a whole.
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1. INTRODUCTION

The big data paradigm, which seeks to increase the precision of forecasting models, is

consistent with this integration of new data streams with conventional financial indicators.

Sentiment can influence short-term market volatility, leading to discrepancies between

market value and the book value of a firm. As Nobel Prize winner Robert Shiller demon-

strated, however, fundamental reasons eventually push the share price to represent the

underlying value of the business (4). On the one hand, the predictive value of sentiment

research has been questioned even though it has made it simpler to include the emotions

of the market in forecasts regarding stock movement and price. According to research such

as (5) and (6), sentiment on social media may not be indicative. On the other hand, re-

search by (7) and (8) has shown that including market sentiment can improve the accuracy

of forecasting models, highlighting the significant influence of market sentiment on stock

movements.

Moreover, the potential of combining technical indicators and market sentiment with

fundamental data and sector-specific trends offers a promising avenue of research. When

combined, these components offer a comprehensive method for comprehending and project-

ing market behavior that goes beyond the constraints usually connected with stock market

forecasting. Using these many information sources could lead to new ways of interpreting

the intricacies of the stock market, giving analysts and investors alike a more sophisticated

and useful toolkit as computational finance develops.

The primary objective is to improve the forecasting accuracy of the stock market by

performing a thorough, data-driven analysis of the top 25 large-cap stocks in the S&P

500. In other words, the ultimate goal of this research is to develop a model that can

accurately forecast changes in stock prices. The method incorporates information from

multiple sources including historical price data, technical indicators, fundamental data,

industry trends, macroeconomic variables, and sentiment data from social media sites like

Twitter and financial news.

The secondary objective is to test the validity of traditional financial theories, such as the

EMH and RW, by incorporating these various data sources. These objectives converged in

the research question: "How does incorporating multiple data sources, different Machine-

/Deep Learning techniques, and sentiment analysis with Natural Language Processing

enhance the accuracy of stock price predictions?”

This study uses a variety of benchmark models in addition to modern methods includ-

ing time series analysis with LSTM networks and NLP tasks with bidirectional encoder

representations from transformers. Other machine learning models, such as SVR, RF, and

LR, are also investigated for their robustness in regression tasks relevant to stock price
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prediction. These models present a variety of viewpoints on the data, each with a unique

ability to capture various facets of market activity.

Advanced NLP techniques are employed to measure stock sentiment. Specifically, opti-

mized versions of BERT (Bidirectional Encoder Representations from Transformers) are

leveraged. This makes it possible to analyze sentiment in great detail that is present

in large amounts of textual data from social media and financial news, giving important

insights into public opinion and how it may affect stock prices.

More specifically, to determine which BERT model is best suited for financial sentiment

analysis, the sentiment analysis will start by comparing it to carefully selected datasets

like the Financial Phrase Bank. The next stage involves using zero-shot learning to classify

the sentiment of tweets connected to stocks by choosing the best-performing BERT model.

This makes it possible to handle tweets that are extracted from the hugging-face dataset

"twitter-financial-news-sentiment".

The paper is structured as follows. Following the introduction, Section 2 delves into prior

studies that form the basis of this research. In Section 3, the methods for gathering data

and preparing it for training and testing, including feature engineering, are described. The

methodology in section 4 describes the problem in more detail and delves into the stock

price and movement prediction models and sentiment analysis models employed together

with their evaluation metrics. The findings are shown in Section 5, which also includes a

comparison of the baseline (naive) model. In Section 6, the conclusion provides a concise

summary of the research by revisiting the main objectives and methods used. It highlights

the key findings and offers an interpretation of the results in the context of the research

questions. The paper concludes in Section 7 with a discussion of the findings, implications

for future research, and finally a reference list.
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2

Background & Literature

The first section, Traditional Finance, delves into cornerstone theories such as the Random

Walk Theory and the Efficient Market Hypothesis, which have traditionally dictated the

understanding of market behaviors. This section also explores how these theories reconcile

with empirical market behaviors, setting the stage for discussing their limitations and the

circumstances under which they may not hold.

In the second section, Challenging the Efficient Market Hypothesis, alternative approaches

are explored including fundamental and technical analysis. This part of the chapter high-

lights the limitations of traditional theories in capturing the complexities of real-world

markets and discusses how advancements in financial technologies and methodologies have

led to improved predictive capabilities. Specific attention is given to innovations in mar-

ket forecasting that leverage computational and quantitative models, reflecting the shift

towards more data-driven approaches in finance.

The third section, Sentiment Analysis in Financial Markets, assesses the role of investor

sentiment and its quantification through advanced NLP techniques. It covers the integra-

tion of sentiment analysis into financial prediction models, detailing the impact of emerging

technologies such as BERT and its financial derivatives on stock price prediction. This sec-

tion not only highlights the evolution of sentiment analysis, but also discusses its practical

implications and effectiveness in enhancing market forecasts.

Through a detailed exploration of these areas, the chapter aims to provide a compre-

hensive background, preparing the reader for a deeper investigation of modern financial

market analytics in the following chapters.
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2. BACKGROUND & LITERATURE

2.1 Traditional Finance

The exploration of financial markets has long been dominated by theories aiming to un-

derstand and predict stock prices and movements. Among the cornerstone theories in this

domain are the RWT (9) and the EMH (1, 2), each offering unique perspectives on the

nature of stock price changes and the efficiency of markets.

2.1.1 Random Walk Theory

According to the RWT, which was covered in-depth by (9), price fluctuations in stocks

follow a pattern akin to a random walk and are therefore both unpredictable and random.

Essentially this theory challenges the viability of consistently obtaining returns higher

than the market average by market timing or stock selection strategies. It claims that

attempting to predict future stock values using historical price movements is futile. This

theory is predicated on the notion that stock prices are meaningless forecasts since they are

just the product of a multitude of random occurrences and information coming together. In

other words, the random walk theory, as outlined by (10), suggests that the market price of

a particular stock should remain independent of its previous price. Early evidence for this

idea came from empirical research by (10, 11, 12), which demonstrated the random walk

nature of stock price fluctuations and hence put conventional stock forecasting techniques

to the test.

A common mathematical representation of a random walk for stock prices is given by

the following equation:

St+1 = St + ϵt (2.1)

where:

• St is the stock price at time t.

• St+1 is the stock price at time t+ 1.

• ϵt is a random variable representing the change in stock price, often modeled as a

normal distribution with mean zero and some variance σ2.

2.1.2 Efficient Market Hypothesis

Conversely, the EMH, outlined by (1) and (2), states that a stock’s price mirrors all existing

information, granting equal information access to all market participants. According to the
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2.1 Traditional Finance

EMH, this informational efficiency makes it impossible for investors to achieve consistently

higher returns through either technical or fundamental analysis, as stock prices adjust so

rapidly to new information that any attempt to trade on it is likely futile.

The EMH differentiates into three forms: 1) The weak form, which negates the utility

of technical analysis by asserting that past prices are already reflected in current prices.

2) The semi-strong form, which asserts that neither technical nor fundamental analysis

can offer an investor edge since all public information is accounted for in stock prices.

3) The strong form, which claims that all information, public or otherwise, is factored into

current stock prices, leaving no room for informational advantages in the market.

According to the EMH, markets are efficient because investors make logical decisions and

promptly adjust prices when they see an opportunity to benefit. The empirical challenges

to the EMH have been met with serious scrutiny despite its broad acceptance. Evidence

of deviations from ideal market efficiency can be found in documented market oddities like

the weekend effect (13), which notes lower returns on Mondays, and the January effect

(14), which notes that stocks typically perform better in January.

Moreover, studies on behavioral finance have revealed patterns of investor irrationality.

An expansion of conventional finance, behavioral finance, examines the psychological fac-

tors and biases influencing investor choices and market performance. This area of study

recognizes that investors are not always logical and are frequently swayed by their own

prejudices and emotions, which results in predictable but frequently poor financial judg-

ments. Behavioral finance provides answers for a range of market anomalies, that are

not fully explained by conventional financial theories such as the EMH. These anomalies

include tendencies toward overreaction (15) and the disposition effect (16, 17, 18), which

contradicts the rational investor model assumed by the EMH. These anomalies further

challenge the notion of market efficiency and rationality posited by the EMH.

Because behavioral finance incorporates psychological aspects into the examination of

investor behavior and market dynamics, it has made a substantial contribution to our un-

derstanding of financial markets. It offers a more sophisticated comprehension of financial

decision-making by acknowledging the substantial influence that emotions and cognitive bi-

ases have on investor behavior and, in turn, on the results of markets. This viewpoint adds

a great deal to the field of finance research and offers regulators, investors, and portfolio

managers wise counsel for navigating the intricacies of the financial system.
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2. BACKGROUND & LITERATURE

2.1.3 Reconciling Theory with Practice

Financial regulations and investment strategies have been significantly impacted by the

application of the RWT and the EMH in the actual world. This conventional wisdom,

however, needs to be reassessed given the persistence of market anomalies and the expand-

ing corpus of data about investor behavior. In (19), the authors introduced the Adaptive

Market Hypothesis as a framework for combining behavioral finance and the EMH. The

authors make the argument that shifting investor behavior and market conditions have an

impact on market efficiency, which is a dynamic process.

Furthermore, the strict interpretations of the RWT and EMH have been challenged

by new directions in market analysis demonstrated by developments in data analytics

and financial technology. The emergence of advanced algorithms and machine learning

models suggests possible avenues for detecting subtle patterns and connections in financial

markets, suggesting a more intricate comprehension of market dynamics that goes beyond

the dividing line of predictability and randomness.

2.2 Challenging the Efficient Market Hypothesis

The EMH is contested in the investment sector by a variety of analytical approaches

and sophisticated forecasting methods that go against the hypothesis’s claim of market

efficiency.

2.2.1 Fundamental and Technical Analysis

The two primary analysis approaches used in the investment industry are technical analysis

and fundamental analysis.

Fundamental Analysis Fundamental analysis, which considers a company’s intrinsic

value to uncover potential investment opportunities, is a crucial part of investing strategy.

With this method, analysts look at a range of financial data, including cash flow, balance,

and income statements, to determine the stability and health of a company’s finances. In

order to understand how the macroeconomic environment affects the performance of the

company, other economic data are also considered, such as rates of inflation and bond

prices.

The fundamental analysis aims to find and utilize these qualitative elements, such as

market trends and industry position. Fundamental analysis is criticized for being time-

consuming and vulnerable to analysts’ prejudices when analyzing economic and financial
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2.2 Challenging the Efficient Market Hypothesis

data. Moreover, in highly efficient markets, it is believed that all known information is

already reflected in stock prices, potentially diminishing the effectiveness of this analysis.

Technical Analysis Technical analysis, on the other hand, is based on the notion that

changes in the price of the stock market and trade volume might indicate future price

trends. This approach makes extensive use of charts and patterns to pinpoint possible

buying or selling opportunities, including oscillators, trend lines, moving averages, and

candlestick patterns. Technical analysts operate under the assumption that behavioral

finance plays a substantial role in decision making. In other words, market psychology

influences trading in a way that allows the prediction of when a stock will rise or fall based

on past patterns.

The idea that history repeats itself and that patterns in stock price movements can be

examined and forecasted is a fundamental principle of technical analysis. Traders who

prefer to make short-term investments over long-term ones tend to favor this strategy

the most. Technical analysis, however, is viewed with suspicion due to its dependence

on subjective and interpretable chart patterns and indications. In addition, critics point

out that relying solely on historical data without taking into account the fundamentals of

a company may ignore larger changes in the market or the economy that could have an

impact on stock prices.

Integration of Fundamental and Technical Analysis Although technical and funda-

mental analysis is often seen as mutually exclusive approaches, some analysts and investors

support a more integrated strategy to make use of the advantages of both approaches.

Investors may be able to improve their investment strategy by combining the long-term

outlook of the fundamental analysis with the accuracy of the technical analysis timing (20).

This would enable them to make informed decisions about the optimal timing for buying

or selling by thoroughly understanding market conditions and the value of the company.

This integrated approach recognizes that market prices can be impacted by a complex

interaction of basic reasons, investor sentiment, and previous trading patterns, allowing for

a comprehensive perspective of investing opportunities (21). Combining these approaches

could provide a more flexible and sophisticated approach to managing the risks associated

with stock investing as the financial markets continue to change (22).
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2. BACKGROUND & LITERATURE

2.2.2 Advancements in Market Prediction Techniques

As described in (23), advances in stock market analysis and prediction techniques can

be categorized into four primary approaches: statistical methods, pattern recognition,

machine learning (ML), and sentiment analysis. These approaches fall predominantly

under the broader umbrella of technical analysis, with certain machine learning techniques

also bridging the gap to include fundamental analysis for a more comprehensive market

prediction strategy.

Before the incorporation of machine learning into financial analysis, stock price predic-

tion relied heavily on statistical techniques. These conventional methods established the

foundation for a methodical approach to comprehending market dynamics by frequently

supposing linearity, stationarity, and normality. One of the best examples of these statisti-

cal techniques is time series analysis, which allows analysts to monitor and forecast changes

in stock prices over time by arranging sales data and stock prices in a chronological order.

The Auto-Regressive Moving Average (ARMA) and its variant, the Auto-Regressive In-

tegrated Moving Average (ARIMA), are pivotal in this realm, offering models that capture

autocorrelations within time series data (24). Similarly, the Generalized Autoregressive

Conditional Heteroskedasticity (GARCH) model addresses volatility clustering, a common

feature in financial time series, by modeling the variance of the current error term as a

function of the variances of the error terms of previous time periods (25), (26).

Pattern recognition focuses on finding recurrent themes in stock data, especially in Open-

High-Low-Close (OHLC) candlestick charts. By offering visual clues for possible market

moves, this practice not only enhances technical analysis, but also presents a data-driven

methodology to identify trends, reversals, and continuation patterns.

Research in this domain has used various computational techniques to establish pattern

detection techniques, ranging from Bayesian networks, which offer a probabilistic approach

to modeling uncertainties in market trends (27), to more complex models such as neural

networks and machine learning algorithms that adapt and learn from the data (28).

Studies investigating the predictive capacity of combining multiple statistical methods

have further enhanced the field of financial analysis. For example, combining GARCH

and ARIMA models has been shown to be successful in forecasting heteroskedasticity,

capturing the dynamics of mean and volatility in financial time series (29). Furthermore,

new pathways to improve prediction accuracy and investment strategies have been made

possible by applying machine learning techniques, such as SVM and RF, to the patterns

found through statistical analysis (30).
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2.2 Challenging the Efficient Market Hypothesis

Despite these advances, the challenges of modeling financial markets remain. Critiques

regarding the small sample sizes in some studies (8, 31) highlight the importance of robust

data sets and comprehensive analysis. In order to overcome these challenges, the current

study examines 25 stocks for a period of 10 years. The goal is to offer more comprehensive

and dependable insights into stock price fluctuations and to advance the rapidly developing

field of financial analytics.

Innovations in Financial Market Forecasting Machine learning has become a cor-

nerstone in the realm of financial market predictions, with both supervised and unsuper-

vised learning methods offering innovative strategies to forecast market movements. In

recent years, different ML techniques, such as supervised, unsupervised, and reinforcement

learning, have been used effectively to solve different multidisciplinary problems in real life

(32).

Supervised learning facilitates the prediction of future stock prices by leveraging histori-

cal data and algorithms that are trained on datasets with labeled input-output pairs. This

method operates on the principle that past stock price patterns can be used to forecast

future trends. Numerous studies, such as (33), that offer a thorough overview of pattern

recognition and ML techniques applied in different domains, including finance, have shown

the effectiveness of supervised learning in financial forecasting.

Conversely, unsupervised learning investigates unlabeled data in order to find latent

structures or patterns without the need for pre-established labels or categories. This

method works especially well for finding unusual or new patterns in the financial mar-

kets that are not always obvious. Unsupervised learning relies heavily on methods like

clustering and dimensionality reduction to reveal intricate links in financial datasets. The

authors of (34) discuss in more detail the possibilities of unsupervised learning in financial

analysis, including the creation of deep learning architectures that may extract valuable

data from large, unlabeled datasets.

Because technical analysis is widely accepted by financial advisors and technical data is

so readily available, machine learning is becoming the preferred method of stock market

forecasting. This preference is supported by the fact that technical indicators and stock

prices are updated daily, providing a rich dataset for analysis. The significance of this

transition is highlighted in (35), which examines the use of technical analysis in financial

markets, providing a foundational understanding of how historical price and volume data

can inform future market movements.
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2. BACKGROUND & LITERATURE

Attempts to predict financial trends have also explored SVM for daily stock price direc-

tion (36) and weekly movements on indices like NIKKEI 225 (37). The authors of (38)

introduced a fusion model that combines the hidden Markov model (HMM), the artifi-

cial neural network (ANN) and the genetic algorithm (GA) to predict market behavior,

demonstrating the potential of hybrid approaches.

The use of Artificial Neural Networks, Support vector machines, and random forest

have turned out to be pivotal tools, leveraging historical prices and technical indicators

as fundamental inputs, has been explored extensively (28, 39, 40, 41, 42). The success

achieved through these studies highlights the versatility and potential of machine learning

in navigating the complexities of finance.

Deep learning (DL) leverages multi-layered networks and has achieved notable advance-

ments in managing and interpreting massive amounts of data. Two DL techniques that are

particularly good at identifying patterns in data are convolutional neural networks (CNNs)

and long-short-term memory (LSTM) networks (43, 44). These algorithms can also detect

complex and nonlinear patterns in financial time series. (45) and (46) provide a thorough

examination of DL techniques and their applications in a variety of fields, including finance,

and address how deep learning affects financial forecasting.

Furthermore, studies have embraced ensemble approaches and Recurrent Neural Network

(RNN) methodologies in addition to conventional machine learning techniques. Research

such as (47) has shown how these hybrid models, especially those that use RNN, work

well enough to outperform traditional forecasting models in terms of accuracy. The cre-

ation of a two-stage fusion model by (30) provides additional evidence of the noteworthy

progress made in stock price prediction and supports the idea that multi-stage techniques

are preferable to single-stage models.

LSTM networks were used by (48) to forecast stock returns in the Chinese stock market.

According to the study, LSTM models are better at capturing the long-term dependencies

of stock price sequences, resulting in more accurate forecasts. The research contributes to

the increasing body of data demonstrating LSTM networks’ efficacy.

The problem of using noisy and chaotic news data for stock prediction is discussed in (49).

The authors significantly improve stock price prediction by creating a DL framework that

gathers and filters pertinent data from financial news. Their study serves as an example

of how important model architecture and data preprocessing are when using text data for

financial forecasting.

Furthermore, (50) presented a new DL-based data augmentation technique to improve

the robustness of the model and avoid overfitting. By using LSTM layers, this method

12
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enhances model performance and highlights the significance of incorporating cutting-edge

computational approaches into stock market analysis. It is intended for financial time

series forecasting.

A DL model that rates stocks according to their potential returns was proposed by (51).

Using a temporal relational ranking model, the study provides a more reliable prediction

mechanism than previous methods by capturing relational interdependence between stocks

throughout time. This approach emphasizes how relational and temporal models might

improve stock market predictions.

2.3 Sentiment Analysis in Financial Markets

Sentiment analysis is the task of extracting sentiments or opinions of people from the writ-

ten language (52). Sentiment analysis has emerged as a key tool in various applications,

from evaluating product and restaurant reviews (53, 54) to analyzing the nuanced language

of financial markets. In the realm of general sentiment analysis, the objective is straightfor-

ward: to discern consumer emotions and opinions about products, services, or experiences.

For example, a product review stating, "I absolutely love this phone; its battery life is

incredible," is clearly positive. Such direct expressions allow sentiment analysis tools to

easily categorize feedback as positive, leveraging common indicators of satisfaction.

2.3.1 Application to Financial Markets

However, when sentiment research is used in the financial industry, the circumstances are

different. This time, the emphasis shifts to analyzing the sentiment found in financial news,

analyst reports, earnings calls, and financial statements. The intricacies of articulating

financial outcomes, expectations, and market patterns are navigated by financial sentiment

analysis. A statement like "The company’s operating margin is under considerable pressure

due to increased raw material costs," though not overtly negative, signals a potential

concern for investors, indicative of a negative financial outlook.

The complexity of financial language lies in its specialized terminology, which often

carries different connotations than in everyday speech. For instance, the term "exposure,"

typically neutral, assumes a risk-related meaning in a financial context, such as in "exposure

to foreign markets."
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Impact on Stock Price Prediction The utility of sentiment analysis in predicting

stock prices, especially through the analysis of social media and financial news sentiment,

has increasingly been recognized. Incorporating sentiment data alongside historical price

information has been shown to significantly enhance prediction accuracy, posing a challenge

to traditional financial theories like the random walk theory.

Efforts to adapt sentiment analysis to financial contexts have explored various textual

representations, including bag of words, noun phrases, and named entities, integrating these

with predictive models like linear regression and SVM (7). Nonetheless, these methods

often fall short in capturing the mood information crucial for financial analysis.

Alternatively, (55) approached this by quantifying collective emotions such as hope and

fear, examining their correlation with stock market indicators through mood-tagged tweets.

This shift towards a more nuanced understanding of sentiment in financial markets under-

scores the evolving nature of sentiment analysis, bridging the gap between generic sentiment

evaluation and its application in financial forecasting.

2.3.2 Evolution of Sentiment Analysis Techniques

Recent efforts in sentiment analysis can be broadly categorized into two approaches: tra-

ditional machine learning methods that rely on text features extracted through techniques

like word counting, and DL methods that represent text through sequences of embeddings.

While traditional methods struggle to capture the semantic nuances conveyed by specific

word sequences, DL approaches offer a more nuanced analysis but require a substantial

amount of data to learn effectively (56, 57, 58).

The authors of (57) stand out for applying machine learning to the study of financial

language by evaluating the sentiment of financial documents using lexicon-based tech-

niques and a "bag-of-words" approach. Similarly, (58) used supervised machine learning

techniques to identify sentiments about financial institutions by analyzing n-grams from

tweets that contained financial information.

In (59), sentiment analysis was leveraged on Yahoo Message Board comments for stock

price prediction, integrating various NLP techniques to derive sentiment, which, along

with historical price data, served as input to an SVM for trend forecasting. This study

also explored additional classification models, such as LDA topic, JST-based and Aspect-

based models.

The authors of (60) introduced a hybrid approach, merging LSTM with investor senti-

ment analysis for the Chinese stock market prediction. Essential to this process is text

preprocessing, notably in Chinese, involving text segmentation, stop word removal, and
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conversion of text to vector representations via Word2vec, a tool that employs continuous

bag-of-words (CBOW) and Skip-gram models.

One of the pioneering studies to apply DL for financial sentiment analysis was conducted

by (56). They demonstrated that LSTM neural networks, applied to company announce-

ments, could predict stock market movements more accurately than traditional machine

learning models. Their findings also highlighted the benefits of pretraining models in larger

corpora to enhance accuracy.

Further investigations have underscored the efficacy of LSTM-based models when com-

bined with sentiment analysis. In (61) investor sentiment was extracted from forum posts,

integrating it with historical market data within a network to forecast CSI300 and senti-

ment, noting that LSTMs surpassed SVM benchmarks, with sentiment features notably

enhancing next day open price predictions.

Similarly, (62) utilized textual data from newspapers and numerical time-series data

within LSTMs to predict the open prices for ten companies, achieving significantly higher

profits compared to models relying solely on numerical data. Further studies have explored

various neural network architectures for financial sentiment analysis. The authors of (63)

found CNNs to be the most effective for analyzing sentiment in the StockTwits dataset.

The authors of (64, 65) employed doc2vec and LSTM networks, respectively, achieving

state-of-the-art results in classifying financial news sentiment.

Advancements in NLP: The Emergence of BERT and Its Financial Derivatives

In 2018, Google introduced BERT, which revolutionized the field of NLP. Rather than

processing words one at a time in order, this ground-breaking model makes use of the

Transformer architecture, a DL model that processes words in connection with all other

words in a sentence using self-attention mechanisms. The novel aspect of BERT is its

capacity to comprehend a word’s context by taking into account both the word’s left and

right surroundings.

The model is pre-trained on a vast corpus of unlabeled text, including the entire Wikipedia

and the BooksCorpus. It employs two novel strategies: masked language modeling (MLM)

and next-sentence prediction. As described in (66), MLM is the process within BERT that

randomly masks words in the input and then attempts to predict them based on the context

provided by the non-masked words in the sequence. This approach allows BERT to learn

a rich understanding of language, including word relationships and sentence structure.
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Transfer Learning and BERT BERT’s usage of transfer learning is one of its main

characteristics. BERT can be adjusted with extra output layers after it has been pre-

trained, which allows it to be flexible enough to handle a variety of NLP jobs without

requiring significant changes to the model architecture. With comparatively little addi-

tional training, researchers and practitioners can use this capability to make use of BERT’s

profound comprehension of linguistic nuances for certain applications, such as sentiment

analysis, question answering, and language inference.

After (66) introduced BERT, the NLP community set out to investigate, optimize, and

expand BERT’s capabilities. This trip resulted in the development of numerous noteworthy

variants and enhancements that are suitable for a variety of applications.

RoBERTa: A Robustly Optimized BERT Approach One of the first notable de-

velopments was the announcement of RoBERTa (Robustly optimized BERT technique)

by (67). By training the model on larger mini-batches, over longer periods of time, with

more data, and without the next sentence prediction aim, RoBERTa modifies BERT’s pre-

training procedure. Additionally, it modifies the training data’s masking pattern dynam-

ically. These adjustments allowed RoBERTa to outperform multiple benchmarks, setting

new standards for model effectiveness and efficiency in NLP tasks.

DistilBERT: A Distilled Version of BERT Recognizing the need for more computa-

tionally efficient models without compromising performance, (68) introduced DistilBERT

in 2019. DistilBERT applies knowledge distillation techniques during the pre-training

phase, effectively reducing the size of the BERT model while retaining 97% of its lan-

guage understanding capabilities and speeding up its performance. This distilled version

opened the door for deploying state-of-the-art NLP models in environments with limited

computational resources.

FinBERT: Tailoring BERT for Finance Recognizing BERT’s potential, (69) devel-

oped FinBERT, a variant of BERT specifically trained on financial texts. FinBERT was

pre-trained on a large financial corpus, including corporate reports, Earning Call Tran-

scripts, and financial news articles, to grasp the unique jargon and expressions used in the

financial domain. This specialized training enables FinBERT to outperform its generic

counterpart in financial sentiment analysis and other finance-related NLP tasks, offering

more accurate predictions and insights.
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FinancialBERT: Advancing Financial NLP Further building on BERT’s founda-

tion, (70) introduced FinancialBERT, another domain-specific adaptation pre-trained on

an even wider array of financial documents. The training of this model included diverse

sources, such as Bloomberg News and SEC filings, to capture the breadth of language used

in the financial sector. FinancialBERT demonstrated significant performance improve-

ments over both the original BERT and FinBERT, showcasing its ability to accurately

interpret complex financial narratives and sentiments.

Impact on Financial Sentiment Analysis The development of BERT and its financial

derivatives represents a significant leap forward in the application of NLP to the financial

sector. By understanding the context and subtleties of financial language, these models of-

fer unprecedented precision in sentiment analysis, allowing analysts to gain deeper insights

from financial texts. Their success underscores the potential of advanced NLP technolo-

gies to transform financial analysis, risk assessment, and decision-making processes by

providing more nuanced and sophisticated tools for interpreting market sentiments.
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3

Data

This section provides an outline of the data used in this research, its sources, and the

methods used for its collection, processing, and analysis. The types of data sets involved

will be discussed in addition to their relevance to the study and any limitations they

present. Figure 3.1 shows an overview of all the different data sets involved and highlights

some features that are included in these datasets such as volume, moving averages, and

ESG scores.

Figure 3.1: Data Source Overview
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3.1 Data Collection

For the prediction of stock price movements, this methodology will employ an integrated

framework comprising three comprehensive datasets. The primary dataset encompasses

historical stock price data, providing a foundation for analysis of past market perfor-

mance. This dataset includes detailed records of stock prices over time, offering insights

into historical trends and patterns.

The second dataset enhances the historical price data by incorporating date/time fea-

tures, technical indicators, fundamental data, and sector-specific data. This includes a

variety of technical analysis tools, such as moving averages and relative strength indices,

alongside key fundamental data such as liquidity ratios and earnings per share, and other

metrics, such as inflation and bond prices, that may influence stock performance. By inte-

grating technical indicators with fundamental data, macroeconomic features, and industry-

related trends, this data set aims to provide a more nuanced understanding of the factors

driving stock prices.

The third dataset focuses on financial sentiment, drawing data from multiple sources to

gauge the market’s emotional and psychological state. This includes analysis of sentiment

expressed in financial news articles and social media platforms such as Twitter. By exam-

ining the sentiment surrounding specific stocks this dataset seeks to capture the intangible

factors that can significantly impact stock movements.

3.1.1 Financial Data

Historical Prices From Yahoo Finance detailed records on the historical prices of the

top 25 large-cap stocks are compiled over a period of 10 years from Feb 26, 2014 untill Feb

26, 2024. The top 25 large-cap stocks collectively account for a combined weight of 44.22%

in the S&P 500 index, see table 1. These stocks are carefully chosen from the SPDR SP

500 Trust ETF (SPY), which is the oldest ETF tracking the SP 500 index according to

investopedia. As of September 20, 2023, SPY manages assets totaling $406.6 billion, with

its portfolio weightings it offers a reliable approximation for investment strategies targeting

the S&P 500 index. Even though SPY and the S&P 500 index may not align perfectly, the

ETF’s weightings as of September 20, 2023, serve as a substantial indicator of the index’s

largest constituents.

Data has been collected over a comprehensive period of 10 years starting from Feb 26,

2014 and ending on Feb 26, 2024. For each stock the data consists of 3775 rows, which

includes open, high, low, close, adjusted close prices, and volume for each stock, as depicted
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in Table 3.1. This will provide a robust foundation for analyzing historical trends and

patterns. The adjusted close prices, specifically modified for dividends and stock splits,

are emphasized to accurately track price movement over time. Although other researches

(59) have alternatively focused on closing prices. This choice of daily data frequency over a

decade allows for a detailed examination of stock performance, capturing both short-term

fluctuations and long-term trends, enhancing the depth and relevance of the analysis.

Table 3.1: Stock Price Data for AAPL

Date Open High Low Close Adj Close Volume

Feb 26, 2014 18.70 18.75 18.41 18.48 16.27 257,765,200
Feb 27, 2014 18.469 18.89 18.43 18.85 16.60 301,882,000
(...) (...) (...) (...) (...) (...) (...)
Feb 26, 2024 182.24 182.76 180.65 181.16 180.91 40,867,400
Feb 27, 2024 181.10 183.92 179.56 182.63 182.38 54,318,900

Technical Indicators For the study of stock price prediction, an array of technical

indicators is utilized. The technical indicators are derived from historical price data to shed

light on market trends and potential future price movements. The research incorporates

the widely recognized technical indicators listed in table 3.2

Fundamental data Fundamental data provides a crucial insight into a company’s fi-

nancial health, reflecting its earnings, assets, liabilities, equity, and other financial metrics

that investors use to assess its intrinsic value and long-term viability. They detail the

organization’s revenues, expenses, profitability, assets, liabilities, and cash flow operations,

thereby offering a comprehensive insight into its fiscal stability and operational efficiency.

For each stock the data spans a decade, covering the period from September 27, 2014,

to December 30, 2023, and comprises 38 quarterly financial summaries for a specific stock.

The dataset contains a broad spectrum of metrics as can be seen in table 3.3

ESG Scores The data provided, see tables 3.4 and 3.5, represents Apple Inc.’s (AAPL)

Environmental, Social, and Governance (ESG) scores over eight years, from 2014 to 2021.

ESG scores are increasingly used by investors to evaluate companies based on their sus-

tainability practices, social responsibility, and governance quality. These scores can impact

investment decisions, as they reflect how well a company manages risks and opportunities

associated with environmental stewardship, social impact, and leadership ethics.
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Technical Indicator Explanation No. Days

Moving Average (MA) Calculates the average of price data over a de-
fined period. Assists in smoothing out price
variations and emphasizing underlying market
trends.

50, 100 ,
200

Exponential Moving
Average (EMA)

Similar to the simple MA but instead the EMA
places greater emphasis on more recent price
data. This technical indicator thereby reacts
more sensitively to price changes. (35)

50, 100, 200

Relative Strength Index
(RSI)

Momentum oscillator that assesses the extent of
recent price movements to determine whether a
stock is overbought or oversold.

14

Moving Average Con-
vergence Divergence
(MACD)

The MACD is a momentum indicator that fol-
lows trends by illustrating the relationship be-
tween two moving averages of a stock’s price.

12, 26

Bollinger Bands These are lines plotted at two standard devia-
tions above and below a simple moving average
(MA) of a stock’s price. (71)

None

On-Balance Volume
(OBV)

On-Balance Volume stands as a significant mo-
mentum indicator that leverages volume flow to
forecast changes in stock price.(72)

None

Stochastic Oscillator A momentum indicator that measures a stock’s
closing price relative to its price range over
a designated period, oscillating between 0 and
100.(73)

14

Average Directional In-
dex (ADX)

A indicator used to quantify the strength of a
trend without considering its direction. (74)

14

Williams %R Is a momentum indicator that identifies over-
bought or oversold conditions in a stock’s price.

14, 28

Table 3.2: List of Technical Indicators with Explanations and Sizes Used

Industry Sector Understanding the sector weightings within the S&P 500 index is

critical for analyzing the broader market trends and their potential impact on the index’s

overall value. As of August 31, 2023, the distribution of sector weightings in the S&P 500,

according to S&P Dow Jones Indices, highlights the dominance of certain sectors and the

relative insignificance of others in terms of their contribution to the index’s performance.
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Fundamental Data Explanation

Income Statement Revenue, gross profit, operating profits, EBITDA, and
income before unusual items.

Balance Sheet Cash, short-term investments, total assets, total debt,
and common equity.

Cash Flow Net cash flow, depreciation/amortization, capital ex-
penditures, net change in cash, and free cash flow net
of dividends.

Per Share Data Dividend yield, diluted EPS, shares used to calculate
EPS.

Profitability and Return Margins (gross, EBITDA, operating, net) and returns
(free cash flow yield, ROE, ROA, ROIC).

Growth Growth in revenue, operating profit, EBITDA, income,
and EPS.

Financial Strength Ratios: debt/asset, debt/capital, debt/equity, interest
coverage, dividend coverage.

Enterprise Value Market cap, total debt, cash, and short-term invest-
ments.

Earning Power Asset turnover, income before tax margin, pretax
ROA, pretax ROE, tax complement.

Liquidity Ratios (current, quick), operational metrics (receiv-
ables, payables, inventory turnover, net trade cycle).

Table 3.3: List of Fundamental Data with Explanations

The S&P 500’s composition by sector and their respective index weightings are presented

in Table 3.4.

The sector weightings, obtained from Investopedia, within the S&P 500 index, as shown

in 3.6, play a pivotal role in determining the overall valuation of the index and its respon-

siveness to shifts within specific market sectors. For example, the Information Technology

sector, which boasts a significant weighting of 28.2%, has a pronounced impact on the

index’s performance. In contrast, sectors such as Energy, Materials, Real Estate, and Util-

ities, each with weightings below 5%, exert a comparatively minor influence on the index’s

overall value.

In addition to sector weighting, the performance of each sector can serve as a useful and

informative tool for understanding broader market dynamics. Utilizing data from Novel

Investor the analysis can be enriched further. The Data from Novel Investor provides
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ESG Factor Explanation

ESG Combined
Score

Overall rating combining environmental, social, and gover-
nance scores. Grades range from "A" (highest) to lower
grades. Apple improved from "C-" in 2014 to "C+" in 2021.

ESG Score Focuses on ESG factors excluding controversies. Apple im-
proved from "B-" in 2014 to "A-" in 2021.

Environmental
Pillar Score

Reflects Apple’s impact on the environment. Improved from
"B-" to "B".

Social Pillar Score Assesses relationships with employees, suppliers, customers,
and communities. Improved from "C+" in 2014 to "A-" in
2021.

Governance Pillar
Score

Evaluates management quality, board, and ethics. Apple
consistently scores "A" or better.

ESG Controver-
sies Score

Measures management of ESG controversies. Apple’s score
remained "D-" from 2018 to 2021.

Resource Use
Score

Focuses on resource efficiency. Apple consistently scores
"A".

Table 3.4: Example ESG Scores and Factors

Table 3.5: AAPL ESG Scores (2014-2021)

Year ESG Combined ESG Score Environ. Social Governance Controversies Resource Use

2021 C+ A- B A- A+ D- A+
2020 C A- B A- A D- A+
2019 C B+ B B A- D- A+
2018 C B+ B- B+ A D- A+
2017 C B+ B- B A D A+
2016 C B B- B- A C+ A
2015 C- B- B- C+ A- C- A+
2014 C- B- B- C+ A D+ A-

detailed performance metrics for the S&P 500 sectors from 2009 to 2023. This extended

dataset allows for a comprehensive examination of long-term trends and cyclical behaviors

within the index. 3.7 shows a snippet of the long-term performance trends across selected

sectors of the SP 500.
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Table 3.6: S&P 500 Sector Weightings as of August 31, 2023

Sector Index Weighting

Information Technology 28.2%
Healthcare 13.2%
Financials 12.5%
Consumer Discretionary 10.6%
Communication Services 8.8%
Industrials 8.4%
Consumer Staples 6.6%
Energy 4.4%
Materials 2.5%
Real Estate 2.4%
Utilities 2.4%

Table 3.7: Sector Performance from 2009 to 2023 (Selected Years)

Sector 2009 2010 2011 2015 2020 2023

COND 41.3% 27.7% 6.1% 10.1% 33.3% 42.4%
CONS 14.9% 14.1% 14.0% 6.6% 10.8% 0.5%
ENRS 13.8% 20.5% 4.7% -21.1% -33.7% -1.3%
FINL 17.2% 12.1% -17.1% -1.5% -1.7% 12.2%
HLTH 19.7% 2.9% 12.7% 6.9% 13.5% 2.1%
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Macro-Economics This research also incorporates macro-economic data, highlighting

the importance of broader economic indicators on stock market dynamics. It includes

monthly inflation data which provides insights into the general economic environment, see

table 3.8. Inflation also reflects changes in consumer purchasing power and potential shifts

in central bank policies.

Table 3.8: Monthly and Annual Inflation Rates

Month Monthly Inflation Rate (%) Annual Inflation Rate (%)
(seasonally adjusted) (not seasonally adjusted)

January 2024 0.3 3.1
December 2023 0.2 3.4
November 2023 0.1 3.1
October 2023 0.0 3.2
September 2023 0.4 3.7
August 2023 0.6 3.7
July 2023 0.2 3.2
June 2023 0.2 3.0

In addition to inflation, this study also takes into account Treasury Bond prices. Table

3.9 shows the yields on U.S. Treasury securities at different maturities, recorded at specific

dates, typically towards the year’s end. The yields are expressed as annual percentages

and provide insight into the interest rate environment, investor expectations about future

inflation, and the overall economic outlook. U.S. Treasury securities are considered risk-free

assets, making these yields benchmarks for other interest rates.

Table 3.9: U.S. Treasury Yields at Year-End

Date 1 Mo 3 Mo 6 Mo 1 Yr 2 Yr 3 Yr 5 Yr 7 Yr 10 Yr 20 Yr 30 Yr

12/31/2014 0.03 0.04 0.12 0.25 0.67 1.1 1.65 1.97 2.17 2.47 2.75
12/30/2014 0.03 0.03 0.12 0.23 0.69 1.11 1.68 2.00 2.20 2.49 2.76

3.1.2 Sentiment Data

Model Selection Data For model selection, the approach adopted involves using sen-

timent data from existing, publicly accessible repositories. Renowned platforms such as
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Hugging Face constitute a rich source of such datasets, notably those tailored for finan-

cial sentiment analysis. The repositories offer structured compilations of textual data,

encompassing tweets, and news headlines, each annotated with sentiment labels. This

pre-structured and pre-labeled data is instrumental for the initial phases of model training

and validation, where models are exposed to a variety of sentiment expressions to learn

nuanced differentiation between positive, negative, and neutral market sentiments.

For example, the "twitter-financial-news-sentiment" dataset on Hugging Face offers a

curated selection of financial news articles, each meticulously annotated with sentiment

labels. The sentiment labels are categorized into three primary types: positive, indicat-

ing optimistic or favorable views; neutral, denoting unbiased or informational content;

and negative, reflecting pessimistic or adverse opinions. In the context of the "twitter-

financial-news-sentiment" dataset, an entry might include for example, a news headline

stating, "Nomura points to bookings weakness at Carnival and Royal Caribbean," might

be labeled as "negative" due to its unfavorable implications for the company’s financial

health. Conversely, a tweet expressing concerns over decreasing debt levels within a par-

ticular sector might be tagged as "positive".

Another valuable resource for this research is the Financial Phrasebank, a publicly ac-

cessible dataset that offers a comprehensive collection of financial phrases and sentences.

The Financial Phrasebank compiles an extensive range of sentences derived from financial

news articles, each meticulously annotated to reflect sentiments such as positive, neutral,

or negative. This dataset is particularly useful for analyzing the linguistic nuances and

sentiment expressions prevalent in financial discourse.

To account for the inherent subjectivity in sentiment analysis, each sentence in the collec-

tion received between 5 to 8 annotations, facilitating a robust consensus on the sentiment

expressed. To cater to different levels of consensus and provide an objective basis for com-

parison, four alternative reference datasets were created, classified based on the degree of

annotator agreement:

1. Sentences with 100% Agreement (Sentences_AllAgree.txt): This subset contains

sentences where there was unanimous agreement among annotators on the sentiment

expressed.

2. Sentences with More Than 75% Agreement (Sentences_75Agree.txt): Includes sen-

tences where over 75% of annotators concurred on the sentiment.

27



3. DATA

3. Sentences with More Than 66% Agreement (Sentences_66Agree.txt): Consists of

sentences with more than two-thirds of annotators in agreement.

4. Sentences with More Than 50% Agreement (Sentences_50Agree.txt): Features sen-

tences where a simple majority (over 50%) of annotators agreed on the sentiment.

Each of these datasets is presented in a machine-readable format, with sentences sepa-

rated from their annotated sentiment by an "@" symbol, for instance, sentence@sentiment.

The sentiment labels used are "positive", "neutral", or "negative" allowing for straightfor-

ward integration into sentiment analysis models.

Here are two examples, see 3.10 and 3.11 from the 100% annotator agreement and 50%

annotaor agreement datasets, showcasing how sentences are annotated with sentiments.

The dataset structure and annotation process, as detailed above, ensure a nuanced and

accurate representation of sentiment in financial contexts.

Table 3.10: Example Sentences from the Financial Phrasebank - 100% agreement

Sentence Sentiment

"According to Gran , the company has no plans to move all production
to Russia , although that is where the company is growing" Neutral
"For the last quarter of 2010, Componenta’s net sales doubled to
EUR131m from EUR76m for the same period a year earlier,
while it moved to a zero pre-tax profit from a pre-tax loss of EUR7m" Positive

Table 3.11: Example Sentences from the Financial Phrasebank - 50% agreement

Sentence Sentiment

"In Sweden , Gallerix accumulated SEK denominated sales were down 1%
and EUR denominated sales were up 11 %." Neutral
"Technopolis plans to develop in stages an area of no less
than 100,000 square meters in order to host companies working in
computer technologies and telecommunications , the statement said." Neutral

Testing Data Collection The study places a strong emphasis on gathering up-to-date

sentiment data while gathering it for testing purposes. Although new data is preferred, it

is very hard to get. Instead, sentiment data considering tweets for Apple, Google, Tesla,
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Microsoft, and Amazon in the period from january 2015 to december 2019 will be used.

This kind of data derived from Twitter, could provide an instantaneous gauge of the general

mood of the market, catching the pulse of sentiment as it develops.

The number of tweets for each stock differs both in total and daily. Specifically, Apple has

527033 tweets, Google has 157145 tweets, Microsoft has 68959 tweets, Amazon has 247800

tweets and Tesla has 699704 tweets. These tweets are collected from the hugging face

dataset "twitter-financial-news-sentiment", ensuring a comprehensive and reliable source

for sentiment analysis.

3.2 Preprocessing & Feature Engineering

3.2.1 Financial Data

Target Variable Given the realistic assumption that there is no access to the stock data

the day before, the closing price on day t + 1 is predicted using information up to day t.

Using the closing prices, the target variable can be defined as the closing price of the next

day.

To incorporate this feature into our dataset, each stock’s daily closing prices are shifted

by 1 row. The outcome is a new column in our dataset, now serving as the target variable

for our predictive models. This enables the leveraging of current and historical price data

in forecasting the actual future prices, under the premise that future stock information is

not accessible at time t.

Date/Time-Features Temporal features are crucial in identifying trends, seasonal pat-

terns, and anomalies within the financial markets. Extracting useful information from any

date/time attributes into financial data analysis is crucial and offers a varied understand-

ing of market dynamics and investor behaviour. Table 3.12 an overview of the calculation

process and its significance:

Technical Indicators Preprocessing financial data is a pivotal step in preparing the

dataset for analysis. This involves calculating various technical indicators from the his-

torical price and volume data, i.e. feature engineering. Each of these indicators and their

strategy, mostly binary features indicating buy or sell signals, will be represented as sep-

arate features in the dataset, calculated for each stock based on its historical price and

volume data. This enriched dataset will then serve as the basis for subsequent analysis,
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Date Feature Explanation Formula

Extraction of
Date Components

Fundamental temporal attributes
like Year, Month and Day are directly
extracted from the date column to
analyze specific time period influ-
ences on financial metrics. This is
done to capture possible behavioral
effects such as the previously men-
tioned January effect (14) and week-
end effect (13).

Year = date.year
Month = date.month
Day = date.day

Calculation of
Cyclic Features

Sine and cosine transformations are
applied to time components (e.g.,
Month_sin, Month_cos) to account
for cyclical nature of time, ensur-
ing continuity between cycle ends
and starts. This captures seasonal
trends and weekly patterns.

Month_sin =

sin
(
2π×Month

12

)
Month_cos =

cos
(
2π×Month

12

)

Identification of
Special Periods

Binary features like Is_Monday,
Is_Month_End, Is_Quarter_End,
and Is_January highlight specific
periods of interest, reflecting unique
financial behaviors or anomalies.

Is_Month_End =1 if Day = last day of month

0 otherwise
Is_Quarter_End =1 if date ∈ {last day of quarter}

0 otherwise

Table 3.12: Date-Related Features

enabling the exploration of relationships between these technical indicators and stock price

movements. They are calculated as follows:

• Simple Moving Average (SMA) calculates the average closing price over a spec-

ified number of days, n.

SMAn =

∑n
i=1 Closei

n

Exponential Moving Average (EMA) places greater emphasis on recent prices,

using a factor k to adjust the weighting.

EMAt = (Closet × k) + EMAt−1 × (1− k), k =
2

n+ 1
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Strategy: MAs help identify trend direction. A short-term MA crossing above a

long-term MA suggests a buy signal; the reverse signals a sell. EMA crossovers

provide similar signals.

• Relative Strength Index (RSI) RSI assesses the magnitude of recent gains to

losses to identify overbought or oversold conditions.

RSI = 100− 100

1 + Average Gain
Average Loss

Strategy: Buy signals are typically given by RSI values crossing above 30 and sell

signals below 70.

• Moving Average Convergence Divergence (MACD) MACD indicates the dif-

ference between two EMAs.

MACD = EMA12 − EMA26

Strategy: A buy is suggested when MACD crosses above its signal line (9-day EMA

of MACD), and a sell when below.

• Bollinger Bands Consists of a middle SMA and upper/lower bands determined by

the standard deviation (SD) over the same period as the SMA.

Middle Band = SMA20,

Upper Band = Middle Band + 2× SD20,

Lower Band = Middle Band − 2× SD20

Strategy: Buy when the price hits the lower band; sell when it reaches the upper

band.

• On-Balance Volume (OBV) OBV uses volume flow to anticipate price changes.

OBVt = OBVt−1 +


Volumet if Closet > Closet−1

−Volumet if Closet < Closet−1

0 if Closet = Closet−1

Strategy: Increasing OBV indicates potential buy signals; decreasing OBV suggests

sells.

• Stochastic Oscillator This indicator compares the closing price to the price range

over a given period, in this example 14 days, often used to predict reversal points.

%K =
Close − Low14

High14 − Low14
× 100
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Strategy: Buy signals are given when %K rises above 20 (indicating oversold con-

ditions) and sell signals when it falls below 80 (overbought).

• Williams %R Similar to the Stochastic Oscillator, Williams %R also identifies

overbought or oversold levels.

%R =
Highn − Close
Highn − Lown

×−100

Strategy: Readings below -80 suggest buy (oversold); above -20 indicate sell (over-

bought).

• Average Directional Index (ADX) Measures trend strength. The formula used

to calculate the basic ADX is:

ADX =
Smoothed Moving Average of DX

n

Strategy: An increasing ADX indicates a strengthening trend, suitable for trading

in the direction of the trend. Values above 25 suggest strong trends. For a detailed

computation, see in the Appendix table 2.

Fundamental data The financial summary data, in other words the quarterly reports,

undergo multiple prepossessing steps. First, any rows containing missing data are dropped

to ensure completeness. After dropping rows with any missing values, the dataset is trans-

posed such that each row represents a different time period with the financial metrics as

columns. This aligns the data structure with the historical data. After this is done, the

first row is set as column headers to accurately describe each feature. Then after converting

the date information into date-time format to synchronize with the historical price data,

the data of the financial summary and earnings per share are merged with the historical

price data set.

ESG Scores The first step is to perform the score mapping by translating the ESG grades

into numerical features. This conversion facilitates quantitative analysis, allowing for a

more straightforward comparisons and aggregations of ESG performance across different

periods and companies. The mapping follows a scale where ’A+’ has the highest score (7)

and ’D-’ is the lowest (-4), see table 3.13.

32



3.2 Preprocessing & Feature Engineering

Table 3.13: ESG Score Mapping

ESG Grade Numerical Score ESG Grade Numerical Score

A+ 7 C+ 1
A 6 C 0
A- 5 C- -1
B+ 4 D+ -2
B 3 D -3
B- 2 D- -4

Industry Sector & Macro-Economics The first step is to map a single sector from

the table 3.6 to each stock. The next step includes mapping the sector performance, see

figure 3.2, to the corresponding years for each stock. A similar approach is used for the

macro-economic factors such as inflation and treasury rates. These factors do not change

in value based on different stock, however, the factors have different values for different

months and years. Therefore, the data must be mapped to corresponding year and/or

month.

Figure 3.2: Sector Performance
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3.2.2 Sentiment Data

Given the quality and structure of both the financial phrase bank (for training) and the

hugging face dataset (for testing), extensive preprocessing is not necessary. However,

several basic and fundamental cleaning procedures still need to take place to ensure the

accuracy and reliability of the sentiment analysis. These procedures include:

• Deduplication: Check for duplicate tweets and remove any duplicate tweets to ensure

that each tweet is unique and does not artificially inflate sentiment scores.

• Language Standardization: Check for non-English tweets which should in turn be

excluded, ensuring consistency in language and making sentiment analysis more ac-

curate.

• Tokenization: Tweets should be tokenized, converting text into a format suitable for

sentiment analysis algorithms. This involves breaking down sentences into individual

words or tokens.

As it turns out, the data does not include any duplicate tweets meaning that no tweets

have to be removed. Moreover, upon further investigation all sentences are English tweets

meaning there is consistency in tweets with respect to language. The final preprocessing

step involves tokenizing the tweets using the BERT model. This is done through process-

ing the text into smaller parts called tokens, which are often words or subwords. BERT

uses a sophisticated tokenization method that uses WordPiece tokenization to break the

words into subwords or characters, allowing the effective handling of rare words and mis-

spellings. An example of this is the word "playing" which might be tokenized into "play"

and "##ing" where "##" indicates that "ing" is a suffix.

3.3 Feature Selection

Feature selection is essential in the development of predictive models for financial markets,

as it significantly influences both model performance and efficiency. This sub-chapter fo-

cuses on identifying the most impactful variables to enhance model accuracy and streamline

computation. This is done by addressing data quality issues, missing values, and feature

selection.
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3.3.1 Missing Values

After combining all relevant data into a single dataset for each stock, it becomes evident

that missing values predominantly appear at the beginning or the end of the time series.

This pattern is attributed to the calculation methodologies of certain features, such as

moving averages, which inherently produce NaN values during their initial periods. Ad-

ditionally, some data such as Earnings Per Share (EPS) or Environmental, Social, and

Governance (ESG) scores may not be immediately available for recent periods such as the

start of 2024. Consequently, missing values are not distributed randomly but are concen-

trated at specific intervals along the time series.

Given this context, selecting an appropriate method to handle missing values is crucial

for preserving the dataset’s integrity and ensuring accurate analyses and models. The

strategy chosen significantly influences model performance and the accuracy of subsequent

analyses. Possible solutions are 1) deletion of rows or columns, 2) imputation by mean,

median, or mode, 3) imputation by leveraging regression models or techniques that use

similiarity measures such as K-Nearest Neighbors (KNN), 4) the absence of data might

carry usefull information an should be retained in the data.

Considering these methods and the dataset’s characteristics, the most suitable approach

depends on the specific feature and the extent of missing data. The table below summarizes

the top 20 features by the number of missing values in the combined dataset:

Table 3.14: Top Features with Most Missing Values

Feature Missing Values Feature Missing Values

4 Mo 2217 RSI-14 14
2 Mo 1466 ADX-14 14
ESG Combined Score 790 %K 13
MA-200 199 High_14 13
MA-100 99 Low_14 13
MA-50 49 %R 13
Lower_Band 19 plus_di-14 13
Upper_Band 19 minus_di-14 13
Middle_Band 19 RSI-Position 1
MA-20 19 MA-Position 1

In addressing the significant number of missing values for features such as "4 Mo" and

"2 Mo," these columns were excluded from the dataset due to the potential for introducing
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bias or inaccuracies through imputation. For moving averages, regression imputation was

deemed the most suitable approach as it preserves the trends indicated by these features

better than backward or forward filling methods, which might obscure genuine data trends.

The ESG Combined scores, characterized by stability across periods for other stocks,

were imputed using the forward fill method. This is done under the assumption that the

last observed score remains applicable in the near future.

For features with fewer than 20 missing entries, temporal or sequential imputation tech-

niques including forward and backward filling, were employed. These methods are particu-

larly effective for time-series data where the proximity of observations can provide a reliable

basis for imputation. Moreover, these methods also maintain the temporal coherence of

the dataset.

3.3.2 Normalization

Normalizing the data is necessary before proceeding to the next stage. This is important

for a number of reasons. First, there is a wide variety in the scale of financial data,

including technical indicators. For instance, prices may be in the tens, hundreds, or even

thousands, yet trade volume may be in the millions. These differences, in the absence of

normalization, have the potential to distort the analysis by favoring variables with bigger

scales thus leading to less accurate predictions.

This is resolved via normalization, which places all data on a common scale, facilitating

more equal processing and analysis of the data by algorithms. This is particularly crucial

for machine learning models, as the size of the input features can have significant impact

on the convergence of algorithms and the precision of predictions. By ensuring that every

feature contributes appropriately to the model’s decision-making process, normalization

produces outcomes that are easier to interpret and more dependable.

The normalization process is applied as follows: 1) Removal of non-Feature Columns:

Columns such as ’Date’ and ’Target_variable’ are dropped from the feature set, as these are

not required for model training. 2) Application of Normalization: The remaining features

are normalized using the minmax scaler, i.e, log scaling. 3) Reconstruction of DataFrame:

Post-normalization, the numpy arrays are converted back into pandas DataFrames to retain

the original structure and facilitate further analysis or model training.

The logarithmic scaling normalization method was selected over other normalization

methods because time series models generally assume that the variance of a seris remains

constant over time. According to (75), forecasts based on the log transformation can be

much better if the log transformation results has a more stable variance. If it turns out
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that log transforming yield higher variance, direct forecasting without normalization is

preferred. Besides variance, log transforming the data can transform potential non-linear

trend to linear trends, which allows for easier data analysis.

Let Xt be the original time series data at time t.

The log-transformed data Yt is defined as: Yt = log(Xt).

Use Yt for modeling if: Var(Yt) < Var(Xt).

3.3.3 Feature Selection

Since the model’s performance does not automatically improve with more features added

to the dataset, feature selection is the last and final stage within this chapter. The feature

selection approach involves multiple methodologies to identify significant features in dif-

ferent stocks, including large, medium, and small stocks in various sectors. This strategy

is adopted to tackle several issues. Some issues occur because the dataset contains a large

number of features and aggregated data from many sources. Among these difficulties are:

1. Curse of Dimensionality: As more features are added, the complexity of the

model increases without necessarily increasing the amount of useful information.

This causes several problems, such as data sparsity, increased computation time,

over fitting, performance degradation, and visualization challenges.

2. Multicollinearity: Adding more features increases the risk of linearly dependent

predictors, or, in other words, multicollinearity. Having two or more highly correlated

features makes it difficult to assess the independent effect of each feature on the target

variable. This can, in turn, lead to unstable estimates of coefficients in predictive

models, making the interpretation of feature importance more complicated.

3. Dilution of Feature importance: With many features, especially in higher-

dimensional datasets, the relative importance of a single predictor may seem diluted.

While the correlation of individual features with the target remains unchanged, it

becomes challenging to identify the most influential predictors among a larger set of

features.

The initial step involves a correlation analysis to assess the linear and ordinal relation-

ships between features and target variable (e.g ’Close’). The correlation analysis involves

calculating the Pearson, Kendall, and Spearman correlation coefficients for each feature
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with respect to the target variable. This analysis aims to capture different aspects of these

relationships:

1. Pearson Correlation: Identifies the degree of linear correlation between two con-

tinuous variables.

2. Kendall and Spearman (Rank-Based) Correlations: Evaluates the ordinal

association and are useful for identifying non-linear relationships that pearson might

miss.

For example, see table 3.15, features like "EMA-12" and "Upper Band" exhibited strong

Pearson correlations with " Close". This suggests their potential utility in predicting stock

prices. However, the higher values of Kendall and Spearman correlation also pointed out

complexities beyond linear relationships. This indicates a need for models to be capable

of capturing and handling such nuances.

Table 3.15: Features with High Correlation with Target Variable

Feature Pearson Kendall Spearman

Previous Close 0.999077 0.965966 0.998313
EMA-12 0.998569 0.959612 0.997681
Low_14 0.997319 0.946373 0.995812
EMA-26 0.997279 0.944278 0.995657
High_14 0.997149 0.943680 0.995343
Upper_Band 0.997120 0.942049 0.995455

Given the varied nature of correlations, the feature selection strategy included methods

to harness both linear and non-linear relationships. These methods include:

1. Principal Component Analysis (PCA): Used to reduce the dataset dimension-

ality while retaining variation present in original variables. This helps to adress the

issue of multicollinearity.

2. Automated Feature Selection Tools: Techniques like Recursive Feature Elimi-

nation (RFE) were employed to systematically remove less important features.

3. Ridge Regression & Sequential Feature Selection: Applied to combat overfit-

ting and multicollinearity ensuring robust model performance. Additionally, Ridge

Regression was used as an estimator for both forward and backward sequential fea-

ture selection.
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4. Mutual Info Regression: This helped capture non-linear relationships between

features and target variable.

Following these methods, a robust set of features for each stock was identified, with

the average number of features selected typically ranging from 20 to 30. Notably, several

features emerged as commonly selected across various stock categories, highlighting their

universal relevance and utility in financial modeling.

Commonly Selected Features Across Stocks

• Fundamental indicators like Open and volume indicators (Volume, OBV ) appear

consistently across most stocks.

• Trend-capturing features such as moving averages (MA-20, EMA-12 ) are widely used.

• Financial health indicators including Total Assets and liquidity metrics (Cash & Cash

Equivalents) are crucial for assessing company performance.

Features Common in Large Stocks

• Large-cap stocks like AAPL (Apple) and MSFT (Microsoft) commonly include fun-

damental financial data such as Market Capitalization and Operating Profit.

• Complex technical indicators like OBV-EMA-20, PC1, PC2, and PC3 are also preva-

lent.

• Basic price-related features such as Volume and Open are emphasized due to their

significant market impact.

Features in Medium/Small Stocks

• Smaller stocks select features related to volatility or specific technical indicators such

as %R and minus_di-14 that capture short-term movements.

• Time-based trend features such as Day_cos and Month_cos are more frequently

selected in medium or small-cap stocks.
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Methods & Design

This chapter presents the methodologies and specific methods employed to address the re-

search questions identified in Chapter 1. It is essential to choose the correct methodologies

to ensure the robustness, validity, and reliability of the research findings. The chapter is

organized into three main sections: Section 4.1 explains the research design and overarch-

ing strategy; Section 4.2 details the machine learning algorithms used (see Figure 4.1 for

an overview of the models); and Section 4.3 discusses the evaluation metrics and validation

procedures, with a focus on the three-stage testing process.

Figure 4.1: Stock Price Prediction Models
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4.1 Research Design and Strategy

The research strategy involves a phased testing approach to evaluate multiple models across

different phases and compare their predictive accuracy and performance. This phased

approach assesses the effectiveness of models when new data is introduced. Each model is

applied over a rolling window to prevent look-ahead bias. The rolling window sizes used

are 500 days, 250 days, and 125 days, corresponding to approximately two years, one year,

and half a year of trading days respectively. These varying window sizes allow the models

to capture different temporal dynamics and adjust more effectively to new data, which

is crucial for handling the non-stationary nature of financial time series. Moreover, by

adjusting the window size, the model’s ability to adapt to different temporal dynamics is

explored, potentially enhancing its predictive performance across different time periods.

Additionally, the continuous adaptation of models to new data offers a significant ad-

vantage in predicting financial markets, where conditions can change rapidly. Due to the

high computation time associated with more complex models such as Random Forest, a

rolling window is used with a weekly (5-day) adaptation to new data instead of daily.

This balance between update frequency and computational efficiency helps to manage the

trade-offs between timely model updates and resource constraints.

4.1.1 Phase 1

The first phase, or the benchmark phase, involves simple models that use only open, high,

low, and closing prices together with volume. This phase sets a baseline for performance

comparison with more complex models in subsequent phases. The benchmark models

include:

1. Naive Model: Uses the previous day’s closing price as a prediction for the next

day’s closing price.

2. Linear Regression: Considers the linear relationship between input features and

target predictions.

3. Random Forest and Support Vector Regression (SVR): Aim to capture non-

linear patterns and relationships in data.
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4.1.2 Phase 2

Following the benchmark models in the first phase, phase two introduces a more sophisti-

cated analytical approach by incorporating additional features and utilizing deep learning

techniques. Besides the RF and SVR models used in Phase 1, this phase introduces LSTM

networks. LSTMs are well-suited for making predictions based on time series data because

of their ability to capture long-term dependencies and relationships that simpler models

might miss. They are particularly adept at handling the noise and volatility inherent in

financial markets (43).

The LSTM models will be trained using a sliding window approach similar to Phase

1 to continuously adapt to new data. This method involves periodically retraining the

model on the most recent data, which helps it stay relevant as market conditions change.

The performance of the LSTM model will be compared against the benchmark models

established in Phase 1 to evaluate the incremental value brought by complex models and

additional features in forecasting financial time series.

4.1.3 Phase 3

The final stage, Phase 3, expands the analytical framework to incorporate sentiment anal-

ysis, recognizing the significant impact of market sentiment on financial markets. This

stage involves training and testing BERT (Bidirectional Encoder Representations from

Transformers) models on financial headlines and tweets, followed by the application of the

best-performing model to conduct zero-shot learning on financial tweets. The insights de-

rived from sentiment analysis are then integrated into the RF, SVR, and LSTM models

from Phase 2 to assess their combined effectiveness in predicting financial market move-

ments.

Training Phase: Evaluating BERT Models for Sentiment Analysis In the train-

ing phase, multiple pre-trained BERT models will be evaluated against the financial phrase

bank. The fine-tuning process involves adjusting the hyperparameters of the pre-trained

models so that they can effectively classify the sentiment expressed in financial texts. Per-

formance metrics such as accuracy, precision, recall, F1-score, and confusion matrices will

be used to assess each model’s ability to correctly interpret the sentiment of financial

headlines and tweets.
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The model that demonstrates the highest accuracy and generalizability in sentiment

classification will be selected for the subsequent testing phase. This selection ensures that

the most capable model is used to analyze real-time data.

Testing Phase: Zero-Shot Learning and Sentiment Integration The chosen BERT

model will be employed to perform zero-shot learning on a new dataset of financial-related

tweets collected during the period 2015-2019. Zero-shot learning allows the model to clas-

sify sentiment on data it has not seen before without additional training, making it highly

adaptable to new information.

The model will classify these tweets into predefined sentiment categories (positive, neg-

ative, neutral), providing a real-time snapshot of market sentiment. The sentiment data,

now structured into a time-series format indicating sentiment trends over time, will be

incorporated as an additional input feature into the models developed in Phase 2. This

integration aims to evaluate whether sentiment data can enhance the predictive accuracy

of financial market forecasts by providing contextual insights that price data alone may

not fully capture.

4.2 Machine Learning Algorithms

In this section, various machine learning algorithms are explored, discussing their theo-

retical foundations as well as practical implementation within the context of the models

used.

4.2.1 Phase 1

Naive Model As discussed before, traditional finance supports the assumption that

there is no better prediction than yesterday’s closing price, given all information up until

today. Given this assumption, the Naive Model serves as a fundamental baseline for our

predictive analysis. This simplistic approach relies solely on the adjusted closing price of

the previous day as the prediction for the current day. Although straightforward, this model

provides a reference point against which the performance of more advanced algorithms can

be compared. Its simplicity allows quick implementation and serves as a starting point for

evaluating the effectiveness of more complex models in capturing the nuances of market

behavior.
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Linear Regression

Theoretical Framework Linear regression, a fundamental tool in statistical analysis,

provides a basic approach for examining the relationship between a dependent variable

and one or more independent variables. This model is built on the assumption that there

is a linear relationship between the predictors and the target variable, aiming to identify

the optimal linear equation that minimizes the residual sum of squares.

Practical Implementation Leveraging prior feature selection efforts, where relevant

predictors were identified, the implementation of linear regression is done as follows.

Python’s sklearn library LinearRegression is used to perform the execution of linear re-

gression analyses. While the parameter tuning process may not be as elaborate as that of

more intricate models like random forest, SVR, or LSTM, it remains pivotal for optimizing

model performance.

During this phase, the model is subjected to experimentation with varying rolling window

sizes. This adaptive approach allows for the capture of temporal patterns within the data,

potentially enhancing predictive accuracy across diverse temporal contexts. To illustrate,

consider a rolling window of size n, where the regression model is recalculated at each step,

including only the most recent n observations:

yt = β0 + β1x1,t + β2x2,t + . . .+ βkxk,t + ϵt, for t = n to T

where yt is the dependent variable, x1,t, . . . , xk,t are the independent variables at time t,

and β0, β1, . . . , βk are the coefficients estimated using the data from the rolling window.

Fine-tuning of hyperparameters in linear regression involves adjustments to regulariza-

tion parameters, such as alpha in methods like Ridge or Lasso regression. Regularization

aids in curtailing overfitting by penalizing large coefficients, thereby fostering simpler mod-

els with superior generalization capabilities.

Random Forest

The available dataset is well-suited for Random Forest, a machine learning technique ca-

pable of effectively capturing intricate data patterns in high-dimensional datasets (76).

Theoretical Framework Originally conceptualized by Leo Breiman (77), the random

forest machine learning model is designed for both classification and regression tasks.

Breiman introduced an ensemble method that aggregates the results of multiple decision

trees, using voting for classification and averaging for regression, as illustrated in 4.2.
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Figure 4.2: Representation of Random Forest, obtained from (78)

Practical Implementation The implementation of the random forest algorithm uses

Python’s sklearn libraries, specifically the RandomForestRegressor module. Tuning the

models is facilitated through sklearn’s functions.

In this phase, the model is executed using different rolling window sizes, an approach

aimed at capturing various temporal patterns within the data. The subsequent steps

involve fine-tuning the model’s hyperparameters to optimize its performance. This pro-

cess entails exhaustive evaluation of various hyperparameter configurations through k-fold

cross-validation using the GridSearchCV library. The hyperparameters subjected to opti-

mization include:

1. n_estimators: 50, 100, 200, 300

2. max_depth: None, 10, 20

3. min_samples_split: 2, 5, 10

n_estimators defines the number of trees in the ensemble, max_depth specifies the max-

imum depth allowed for each tree, min_samples_split determines the minimum number

of samples required to split an internal node.

Support Vector Regression

Theoretical Framework Support Vector Regression (SVR), proposed by (79), extends
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the principles of SVM to the regression context, offering a robust approach for modeling

nonlinear relationships between input variables and continuous target variables. SVR seeks

to identify the hyperplane that best represents the data by optimizing the margin, which

is the distance between the hyperplane and the nearest data points, referred to as support

vectors. By employing kernel functions, SVR can effectively capture complex nonlinear

patterns in the data.

Practical Implementation In practical application, SVR provides a powerful tool for

forecasting continuous outcomes, particularly in scenarios where linear regression proves

inadequate due to the presence of nonlinear relationships. Following prior feature selection

endeavors, the implementation of SVR commences using Python’s sklearn library, which

offers robust modules such as SVR.

During this phase, the model undergoes experimentation with different rolling window

sizes, akin to methodologies adopted for other regression techniques. Fine-tuning of hy-

perparameters in SVR is essential for achieving optimal model performance. Key hyperpa-

rameters such as kernel type, regularization parameter (C), and kernel coefficient (gamma)

require careful calibration.

4.2.2 Phase 2

The RF and SVR models will be used as described in the previous subsection. Additionally,

this phase introduces the LSTM network.

Long-Short Term Memory

Theoretical Framework LSTM is a specific architecture of recurrent neural networks

(RNNs) developed to address the vanishing gradient problem that frequently arises in

traditional RNNs. LSTM networks are equipped with distinct memory cells and gating

mechanisms, which allow them to effectively manage and preserve information over ex-

tended sequences by selectively retaining or discarding data as necessary. This enables

LSTMs to maintain a robust memory of past inputs, making them particularly useful

for tasks involving long-term dependencies. This unique architecture enables LSTMs to

capture temporal dependencies in sequential data while mitigating the issues of vanishing

gradients and exploding gradients. Originally proposed by Hochreiter and Schmidhuber in

1997 (80), LSTM has become a cornerstone in sequential data modeling, finding applica-

tions in various domains such as natural language processing, time series forecasting, and

speech recognition.
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The LSTM architecture (see Figure 4.3) consists of three main gates: the input gate,

the forget gate, and the output gate. These gates regulate the flow of information into,

out of, and within the LSTM cell. The input gate (denoted by i(t)) controls which values

from the input will be used to update the memory state. The forget gate (denoted by f(t))

determines which information should be discarded from the cell state. The output gate

(denoted by o(t)) decides what part of the cell state should be output as the hidden state.

The cell state (c(t)) is updated with the new information, which is regulated by the tanh

activation function to add non-linearity.

Figure 4.3: LSTM Network from (81)

Practical Implementation LSTM provides a robust framework for modeling sequential

data, making it an ideal choice for time series forecasting tasks. Popular DL libraries

like TensorFlow or PyTorch offer comprehensive modules for building and training LSTM

models.

In practical implementation, the rolling window approach is utilized to ensure that the

LSTM model is continuously updated with new data. This involves retraining the model

on the most recent subset of the dataset, thereby allowing it to adapt to changing market

conditions. The model is trained on a sliding window of past observations and predicts

the next value in the sequence. This method effectively captures both short-term and

long-term dependencies in the data.

Fine-tuning hyperparameters in LSTM models is pivotal for optimizing performance.

Parameters such as the number of LSTM units, the learning rate, the dropout rate, and the

batch size are commonly adjusted during the optimization process. Furthermore, exploring

architectural variations such as stacked LSTM layers or bidirectional LSTMs can further

improve model performance.

For instance, the following hyperparameters are commonly fine-tuned:
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1. Number of LSTM units: Specifies the dimensionality of the output space.

2. Learning rate: Dictates the step size during the gradient descent optimization

process.

3. Dropout rate: Helps prevent overfitting by randomly setting a fraction of input

units to zero during each update in training.

4. Batch size: Refers to the number of samples processed in each gradient update.

Additionally, architectural variations such as stacked LSTM layers or bidirectional LSTMs

can be explored to enhance the model’s ability to capture complex patterns in the data.

4.2.3 Phase 3

Bidirectional Encoder Representations from Transformers

Theoretical Framework BERT, short for Bidirectional Encoder Representations from

Transformers, is a state-of-the-art natural language processing (NLP) model introduced by

(66). Unlike traditional NLP models that process text sequentially, either from left to right

or right to left, BERT uses a bidirectional Transformer architecture, allowing it to consider

context from both directions simultaneously. Consider the sentence "The bass was difficult

to catch." Traditional NLP models might struggle to determine whether "bass" refers to a

type of fish or a musical instrument. BERT, however, examines both the preceding context

("The") and the following context ("was difficult to catch") simultaneously, enabling it to

understand that "bass" in this instance refers to the fish.

The objective in training language models is often to predict the next word in a sequence.

BERT addresses this challenge using its key innovations. One of the key innovations of

BERT is its pretraining strategy, which involves training the model on large amounts of

unlabeled text data using two unsupervised tasks: masked language model (MLM) and next

sentence prediction (NSP). Whilst MLM helps BERT understand sentence context, NSP

helps BERT understand the relationship between pairs of sentences. Through pretraining

on vast amounts of text data, BERT learns general language representations that can be

fine-tuned for specific downstream tasks, such as text classification, question answering,

and named entity recognition.

The architecture of BERT (see Figure 4.4) consists of multiple layers of self-attention

mechanisms, which enable it to focus on different parts of the input sequence simultane-

ously. These self-attention mechanisms allow BERT to capture long-range dependencies
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and relationships between words in a sentence, leading to more contextually rich represen-

tations.

Figure 4.4: BERT architecture for sentiment analysis

As illustrated in Figure 4.4, the architecture includes: Input Layer: The input text is

tokenized into tokens (Tok1,Tok2, . . . ,TokN ) and embedded into vectors (E1, E2, . . . , EN ).

Self-Attention Mechanism: Each token attends to every other token, creating a set

of attention scores that help the model weigh the importance of different words in the

context. Output Layer: The final hidden state corresponding to the [CLS] token is used

for classification tasks, predicting sentiment labels such as positive, negative, or neutral.

Practical Implementation In this practical framework, different BERT models will be

implemented for sentiment analysis to evaluate their effectiveness and robustness. Since

the models used are already pretrained and fine-tuned, the next step is using the best

performing model to perform zero-shot learning on a test set. The model will predict the

sentiment labels during the period 2015-2019 for multiple different stocks such as Apple.

Zero-shot learning will be employed to classify the sentiment of the text data without

requiring additional training on the specific sentiment labels. The pre-trained BERT model,

which has been fine-tuned on general sentiment analysis tasks, will be used to predict

sentiment labels such as positive, negative, or neutral for each piece of text in the test set.
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This approach leverages BERT’s ability to understand context and semantic relationships

within the text to make accurate sentiment predictions.

4.3 Portfolio Optimization

While traditional evaluation metrics such as MAE, MSE, RMSE, MAPE, and R-squared

provide valuable insights into the accuracy and reliability of stock price prediction models,

they have limitations when applied to real-world trading. These metrics do not inherently

translate into profitable trading strategies, as they do not account for factors such as trans-

action costs, market conditions, risk management, and the ability to respond to market

signals in real-time. Therefore, a comprehensive approach is needed to bridge this gap.

To address this, a rule-based trading simulation will be performed from February 2014

until February 2024 to assess the models in a more realistic and comprehensive manner.

This simulation will evaluate the practical application of the models and their ability to

generate profits. The focus will be on using predicted stock prices and sentiment predic-

tions, updating portfolio weights daily, weekly, or monthly according to the optimization of

the mean-variance portfolio. This will be performed on a subset of stocks (AAPL, AMZN,

MSFT, GOOGL, TSLA) that have sentiment data available.

The mean-variance portfolio optimization, originally proposed by Harry Markowitz in

1952, aims to balance the trade-off between risk and return (82). It is calculated by

minimizing the portfolio variance while achieving a desired level of expected return. For a

portfolio of N = 5 stocks, the optimization involves the following steps:

• Expected Returns: Calculate the expected return for each stock based on historical

data.

µi =
1

T

T∑
t=1

Ri,t

where µi is the expected return of stock i, Ri,t is the return of stock i at time t, and

T is the number of time periods.

• Covariance Matrix: Compute the covariance matrix of the stock returns, which mea-

sures how the stocks move together.

Σij =
1

T − 1

T∑
t=1

(Ri,t − µi)(Rj,t − µj)

where Σij is the covariance between stock i and stock j.
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• Optimization Problem: Formulate the optimization problem to minimize the portfo-

lio variance, subject to the constraint that the sum of the portfolio weights equals 1

and potentially additional constraints on the expected return.

min
w

wTΣw subject to
N∑
i=1

wi = 1 and wTµ = µp

where w is the vector of portfolio weights, µ is the vector of expected returns, Σ is

the covariance matrix, and µp is the desired portfolio return.

• Solver: Use numerical optimization techniques (e.g., the ‘scipy.optimize.minimize‘

function) to solve the optimization problem and obtain the optimal portfolio weights.

By implementing this framework, the goal is to create a dynamic and responsive port-

folio that adapts to changing market conditions and leverages both price and sentiment

predictions to enhance performance. This comprehensive approach aims to provide a more

realistic assessment of the models’ practical utility in financial markets.

4.4 Evaluation Metrics

In this section, the evaluation metrics used to assess the performance of our models are

highlighted. Different metrics are employed for stock price prediction models and senti-

ment classification models to ensure a comprehensive evaluation of their effectiveness and

accuracy. It is important to note that in each of the evaluation metrics used, the vari-

able n represents the number of predicted values. Table 4.1 provides an overview of these

evaluation metrics.

For sentiment classification, BERT models are used to classify tweets into positive, neu-

tral or negative sentiments. The evaluation metrics used for these models are summarized

in table 4.2

Although metrics such as MAE, MSE, RMSE, MAPE, and R-squared are essential to

assess the accuracy and reliability of stock price prediction models, they have limitations

in the context of real-world trading. These metrics indicate how closely the model’s predic-

tions align with actual stock prices but do not inherently translate into profitable trading

strategies.

To address this gap, evaluating the effectiveness of the portfolio optimization strategy

becomes crucial. The effectiveness will be determined by the profitability of the portfolio

based on price predictions, sentiment or a combination of both. This helps to identify the
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Metric Explanation Formula

Mean Absolute
Error (MAE)

Measures the average magnitude of
the errors between the predicted and
actual stock prices, without consid-
ering their direction. Lower MAE
values indicate better performance.

MAE = 1
n

∑n
i=1 |yi − ŷi|

Mean Squared Er-
ror (MSE)

Measures the average squared differ-
ence between the predicted and ac-
tual stock prices. More sensitive to
larger errors than MAE. Lower MSE
values indicate better performance.

MSE = 1
n

∑n
i=1(yi−ŷi)

2

Mean Absolute
Percentage Error
(MAPE)

Measures the average absolute per-
centage error between the predicted
and actual stock prices. Lower
MAPE values indicate better perfor-
mance.

MAPE =
1
n

∑n
i=1

∣∣∣yi−ŷi
yi

∣∣∣× 100

R-squared (R²)
Score

Indicates the proportion of the vari-
ance in the dependent variable that
can be explained by the independent
variables. Higher R² values indicate
better performance. Note that is
the average value.

R2 = 1−
∑n

i=1(yi−ŷi)
2∑n

i=1(yi−ȳ)2

Table 4.1: Evaluation Metrics for Stock Price Prediction Models

potential strengths and weaknesses of the models, offering a more holistic understanding

of their practical utility in financial markets.
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Metric Explanation Formula

Confusion Matrix Provides a detailed breakdown of true positives,
true negatives, false positives, and false nega-
tives, helping to understand classification per-
formance in detail.

N/A

Accuracy Measures the proportion of correctly classified
instances out of the total instances. Higher val-
ues indicate better performance.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision Measures the proportion of true positive predic-
tions out of all positive predictions. Higher val-
ues indicate a lower false positive rate.

Precision =
TP

TP+FP

Recall Measures the proportion of true positive predic-
tions out of all actual positive instances. Higher
values indicate a lower false negative rate.

Recall =
TP

TP+FN

F1 Score Harmonic mean of precision and recall, balanc-
ing both metrics. Higher values indicate better
performance, especially for imbalanced datasets.

F1 Score =

2 ×
Precision×Recall
Precision+Recall

Table 4.2: Evaluation Metrics for Sentiment Classification
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5

Evaluation

This chapter presents the obtained results. In addition, the evaluation results are used

to justify the design choices and asses the contributions of different aspects in the design

toward the overall goals. Detailed evaluation metrics for each phase and model are provided

in the Appendix.

5.1 Phase 1 Results

As previously mentioned in Chapter 4, the methods employed in this phase are the Naive,

LR, RF, SVR models. To provide a detailed analysis, the focus will be on a subset of five

stocks: AAPL, AMZN, XOM, COST, and PEP. These stocks were selected based on their

diversity in size, performance, and characteristics. To observe their performance, tables 13

to25 in the appendix will be used.

Benchmark Model First, the performance of the Naive model across all selected stocks

improves as the window size decreases. Upon visual inspection of the Naive model’s per-

formance in predicting the stock price of AAPL in figure 5.1, it becomes clear that the

predictions are a lagged version of the closing price. This is the case for each stock and

aligns with the idea that the benchmark should be equal to yesterday’s closing price. An

example of the results can be seen in table 5.1, where it is visible that the evaluation

metrics differ between stocks except for R-squared.

LR and RF These models perform decently well. Generally, the 250-window size pro-

vides the best balance between capturing recent trends and maintaining predictive accu-

racy. For example, AAPL and AMZN show slightly better performance with the 250-

window size with regards to MSE, MAE and MAPE compared to shorter windows, indi-
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Stock MSE MAE MAPE R²

AAPL 3.311 1.1107 0.0127 0.9990
AMZN 5.0869 1.4143 0.0144 0.9978
XOM 1.233 0.7738 0.0124 0.9970
COST 23.5173 2.9079 0.0094 0.9990
PEP 2.1062 0.9262 0.0077 0.9982

Table 5.1: Phase 1 Naive Model Performance Metrics (Window Size: 250)

Figure 5.1: Phase 1 Naive Model Prediction AAPL

cating better prediction accuracy. Tables 5.2 and 5.3 show the results, from which can be

seen that the LR model yields results very close to the benchmark, while the RF model

shows some larger errors. Figures 5.2 and 5.3 show the predictions of the LR and RF

models that perform the best for AAPL over the last year.

SVR The SVR model, however, performs significantly worse compared to the LR and RF

models. The SVR model shows higher MSE and MAE values, indicating worse predictive

accuracy. For instance, AAPL’s MSE for the SVR model is 81.7553, see table 5.4, which is

significantly higher than the MSE for the LR (3.311) and RF (6.1042) models. Although

the SVR model improves with shorter window sizes, its performance remains inferior to

the benchmark and the LR and RF models.
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Ticker MSE MAE MAPE R²

AAPL 3.5162 1.1582 0.0130 0.9989
AMZN 5.2929 1.4454 0.0147 0.9977
XOM 1.7177 0.9523 0.0129 0.9952
COST 29.6008 3.2595 0.0099 0.9988
PEP 2.6011 1.0562 0.0079 0.9968

Table 5.2: Phase 1 LR Performance Metrics (Window Size: 250)

Ticker MSE MAE MAPE R²

AAPL 6.1042 1.5646 0.0178 0.9981
AMZN 10.9152 2.0324 0.0212 0.9953
XOM 3.4616 1.2691 0.0176 0.9903
COST 50.6807 4.4446 0.0133 0.9979
PEP 4.0883 1.3722 0.0102 0.9950

Table 5.3: Phase 1 RF Performance Metrics (Window Size: 250)

Performance Analysis There are a few important aspects to analyze before moving

on, as they are likely to recur in the coming phases.

First, consider the window sizes. When comparing the results for different window

sizes (500, 250, and 125) across various stocks, slight differences in evaluation scores are

observed. The Naive Model’s results indicate a higher sensitivity to recent stock volatility.

For instance, stocks like AAPL and AMZN exhibit larger errors with larger window sizes,

meaning that excluding a larger initial interval increases error. This suggests that errors

towards the end of the interval (2024) are larger than at the start of the interval (2014).

A similar trend is observed with other models. Generally, smaller window sizes yield

better results. However, for machine learning models, smaller windows mean the models

train on less data, focusing more on short-term price movements, whereas larger win-

dows capture long-term trends. Short-term price movements generally yield better results.

Nonetheless, exceptions exist, such as XOM, which performs better with larger window

sizes. This indicates that for certain stocks, capturing long-term trends provides more

accurate predictions.

Second, despite showing predictions close to the trend and having a high R-squared score,

many predictions are quite inaccurate. This means that having a high R-squared value

does not inherently mean accurate predictions. For example, the worst-performing model,
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Figure 5.2: Phase 1 LR Model Prediction AAPL (Window Size: 250)

Ticker MSE MAE MAPE R²

AAPL 81.7553 7.4247 0.1012 0.9749
AMZN 79.7812 7.4876 0.1039 0.9660
XOM 26.6401 4.3115 0.0597 0.9251
COST 906.3352 23.5585 0.0747 0.9621
PEP 46.4219 5.8901 0.0446 0.9427

Table 5.4: Phase 1 SVR Performance Metrics (Window Size: 250)

SVR, often yields R-squared values above 0.90, which would suggest a strong relationship

between the variables and indicate that the model provides a good fit to the data. However,

this is not the case, as figure 5.4 shows. Therefore, MSE, MAE, and MAPE are more

relevant evaluation metrics to consider.

5.2 Phase 2 Results

In Phase 2 of the analysis, the expanded dataset is used as previously mentioned in chapter

3 and 4. This phase aims to assess the impact of these enriched features on the model’s

predictive performance. The methods employed in this phase are RF, SVR and LSTM.

To provide a detailed analysis, the focus will again be on a subset of five stocks: AAPL,

AMZN, XOM, COST, and PEP. To observe their performance, tables 26 until 34 from the
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Figure 5.3: Phase 1 RF Model Prediction AAPL (Window Size: 250)

Figure 5.4: Phase 1 SVR Model Prediction AAPL (Window Size: 125)

appendix will be used.

RF The RF model shows decent predictive performance, although it tends to have larger

errors compared to results of the RF and LR models in phase 1. The performance metrics

in table 5.5 illustrate that for example AAPL has an MSE of 6.5295, MAE of 1.6447, and

MAPE of 0.0189. However, RF’s larger error margins compared to phase 1 models can be
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attributed to its increased complexity by adding multiple different features to the dataset.

Moreover, figure 5.5 shows the best performing AAPL predictions over the entire interval.

Ticker MSE MAE MAPE R²

AAPL 6.5295 1.6447 0.0189 0.9980
AMZN 11.8105 2.1069 0.0221 0.9950
XOM 4.1174 1.3507 0.0189 0.9884
COST 64.4071 5.0205 0.0147 0.9973
PEP 4.1084 1.3719 0.0102 0.9949

Table 5.5: Phase 2 RF Performance Metrics (Window Size: 250)

Figure 5.5: Phase 2 RF Prediction AAPL (Window Size: 250)

SVR The SVR model performs, just as in phase 1, significantly worse. As shown in table

5.6, the MSE and MAE values for SVR are substantially higher. For example, AAPL’s

MSE for SVR is 176.7071, which is significantly higher than both LR (3.5162) and RF

(6.5295). Moreover, figure 5.6 shows the best performing AAPL predictions over the entire

interval.

LSTM The LSTM model performs, when looking at the evalutation metrics, better than

the SVR model. However, its performance is worse than that of the RF model and the
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Ticker MSE MAE MAPE R²

AAPL 176.7071 10.1106 0.1206 0.9457
AMZN 228.3505 11.8663 0.1379 0.9026
XOM 72.6980 6.8700 0.0995 0.7955
COST 1384.1002 28.1580 0.0834 0.9419
PEP 67.5782 6.8292 0.0507 0.9166

Table 5.6: Phase 2 SVR Performance Metrics (Window Size: 250)

Figure 5.6: Phase 2 SVR Prediction AAPL (Window Size: 125)

benchmark. Note that the performance of the LSTM model increases as the window size

decreases, possibly suggesting that capturing short-term price movements is preferable.

Table 5.7 shows the evaluation metrics for the selected subset of stocks. Upon examining

Figure 5.7, it is evident that, while the LSTM model captures the general trend of AAPL’s

stock price movements, there are notable fluctuations in the predictions that the model

does not capture. These fluctuations are particularly pronounced at the beginning of the

time series.

Performance Analysis First, despite its promising performance in phase 1 the RF

model in this phase did not outperform its benchmark in phase 1. This could be because

of the increased complexity of the RF model in this phase, due to the inclusion of multiple

different features in the dataset. Moreover, more data could also have introduces more
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Ticker MSE MAE MAPE R²

AAPL 50.98 4.71 0.0658 0.9843
AMZN 55.29 5.41 0.0751 0.9764
XOM 13.98 2.79 0.0360 0.9606
COST 415.57 14.14 0.0509 0.9825
PEP 20.31 3.39 0.0261 0.9749

Table 5.7: Phase 2 LSTM Performance Metrics (Window Size: 250)

Figure 5.7: Phase 2 LSTM Prediction AAPL (Window Size: 250)

variablility and noise, especially since the data includes periods of high volatility. The

model might learn noise in the training data rather than the underlying patterns, which

leads to overfitting and less accurate predictions. However, cross validation was used to

prevent the overfitting.

Second, as the model was already underperforming in phase 1 the SVR model did not

perform better in phase 2. SVR models might struggle with the non-linearity and complex-

ity of stock price movements, suggesting that the added data and its complexity, volatility

and noise cannot be captured by SVR. Especially when compared to models like RF that

can better capture complex interactions between features through ensemble learning. The

inherent assumptions of SVR regarding the linearity of relationships might not hold true

for financial time series data, which often exhibit non-linear patterns and volatility cluster-

ing. This can lead to significant prediction errors, as reflected in the high MSE and MAE
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values.

Third, as previously mentioned, the LSTM predictions exhibit significant fluctuations.

These fluctuations are particularly pronounced at the beginning of the time series and

during periods of high volatility. Several factors could contribute to this behavior:

A "warm-up" period, the starting period of a time-series forecast where the model is

still adjusting to patterns. But it would not explain fluctuations apart from the start of

the interval.

The window size of 251 seems to balance capturing long-term trends and short-term

fluctuations. Nevertheless, the model’s performance improves with smaller window sizes,

likely due to the LSTM’s ability to capture shorter-term dependencies more effectively.

Figure 5.8 illustrates predictions with a smaller window size, where fluctuations decrease

but still occur throughout the interval.

Pronounced fluctuations at the start and during high volatility periods suggest that

the LSTM model is highly sensitive to rapid stock price changes. This sensitivity can lead

to overreactive predictions and higher error metrics. Limited data exacerbates this volatil-

ity sensitivity, as the model struggles to generalize patterns effectively without sufficient

examples of various market conditions, resulting in greater prediction variability.

Figure 5.8: Phase 2 LSTM Prediction AAPL (Window Size: 125)
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5.3 Phase 3 Results

Sentiment Models Before moving on to the stock price prediction results the perfor-

mance of the sentiment classification models needs to be adressed. The sentiment classi-

fication models, including BERT, RoBERTa, DistilBERT, FinancialBERT and FinBERT,

were evaluated to compare their performance on sentiment analysis tasks. To observe their

performance, tables 3 to 12 in the appendix will be used.

First, tables 3, 5, 7, 9, 11 show the precision, recall, F1 score, and support of each

model predictions. Table 5.8 presents the accuracy and F1 scores for all models. It can

be observed that the transformer pre-trained on large financial corpus obtain the highest

accuracy and F1 scores, outperforming other transformer models. Among the models that

were not pre-trained on financial corpus RoBERTA performs the best while DistilBERT

performs the worst.

Taking a closer look at the results obtained from the confusion matrices it becomes clear

that BERT mainly predicts neutral and never predicts positive (4). RoBERTa predicts

mainly neutral with a promising number of positive predictions and only some negatives

and DistilBERT only predicts negative (6, 8). Finbert and FinancialBERT have similar

predictions, comparing these transformer models it can be seen that finBERT predicts

neutral more often causing some errors while FinancialBERT predicts each class accurately

with very small errors (10, 12).

Model Accuracy F1 Score

BERT 61% 47%
RoBERTa 70% 65%
DistilBERT 13% 3%
FinBERT 98% 98%
FinancialBERT 99% 99%

Table 5.8: Summary of Model Performance

In summary, from the confusion matrices and performance metrics, it can be observed

that specialized models like FinBERT and FinancialBERT significantly outperform general-

purpose models like BERT and its variants. The main reasons for the improved perfor-

mance of FinBERT and FinancialBERT include their fine-tuning on specific domains,

which allows them to capture domain-specific sentiment nuances more effectively.
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In contrast, general-purpose models like BERT, RoBERTa, and DistilBERT show vary-

ing degrees of success, with RoBERTa performing the best among them. DistilBERT’s

performance is notably poor, likely due to the compromises made for efficiency. This anal-

ysis underscores the importance of domain-specific fine-tuning in achieving high accuracy

in sentiment analysis tasks.

In Phase 3 of the analysis, the expanded data set includes sentiment analysis as an

additional feature, as previously mentioned in Chapters 3 and 4. The sentiment data

ranges from 2015 until 2019, thereby the results will be focussed on a subset of the entire

period. Moreover, the sentiment data is only applicable to 5 specific stock AAPL, AMZN,

MSFT, GOOGL and TSLA. This phase aims to assess the impact of these enriched features

on the model’s predictive performance. The methods employed in this phase are the Naive

Model, RF, SVR, and LSTM networks. To observe their performance, tables 35 until 38

from the appendix will be used.

Benchmark/Naive Looking at the results of the benchmark model within this subset

of 2015 to 2019 it can be noticed that the MSE and MAE are relatively low, indicating that

the Naive model is performing well for this simple approach in this period. However, the

different MAPE values suggest that there is some variation in prediction accuracy across

different stocks. In addition, the same effect is noticed as in phase 1, where the naive

model performs better the smaller the window size is.

Ticker MSE MAE MAPE R²

AAPL 0.4237 0.4393 0.0106 0.9967
AMZN 1.4317 0.7664 0.0119 0.9974
GOOG 0.5328 0.4913 0.0098 0.9938
MSFT 1.689 0.8744 0.0097 0.9981
TSLA 0.3044 0.3800 0.0204 0.9794

Table 5.9: Phase 3 Naive Model Performance Metrics (Window Size: 250)

RF The Random Forest (RF) model demonstrates decent performance across all tickers

with a window size of 250. The MSE, MAE, and MAPE values are low, indicating precise

predictions with minimal error. This suggests that the RF model is somewhat effective

in capturing the underlying patterns in the stock data, but not as effective as using the
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benchmark model. Figure 5.9 shows the predictions of the RF model for AAPL over the

interval 2015 until 2019.

Ticker MSE MAE MAPE R²

AAPL 1.0096 0.7094 0.0168 0.9922
AMZN 2.4462 1.0827 0.0168 0.9956
GOOG 0.9082 0.6842 0.0136 0.9895
MSFT 3.0098 1.2610 0.0138 0.9967
TSLA 0.5542 0.5285 0.0287 0.9627

Table 5.10: Phase 3 RF Performance Metrics (Window Size: 250)

Figure 5.9: Phase 3 RF Prediction AAPL (Window Size: 250)

SVR The SVR model exhibits relatively higher error metrics compared to the Naive and

RF models. The MSE and MAE values are notably higher, particularly for AMZN and

MSFT, indicating less accurate predictions. The R² values, while decent, show that the

SVR model is less effective in capturing the variance in the data. Figure 5.10 shows the

predictions of the SVR model for AAPL over the interval 2015 until 2019.

LSTM The LSTM model’s performance is better than the SVR model but definitely

worse than the RF and Naive model. The MSE and MAE values are comparatively higher
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Ticker MSE MAE MAPE R²

AAPL 19.226 3.873 0.0982 0.8505
AMZN 63.616 6.768 0.1176 0.8862
GOOG 16.030 3.581 0.0744 0.8153
MSFT 120.980 9.874 0.1082 0.8675
TSLA 1.658 1.043 0.0584 0.8884

Table 5.11: Phase 3 SVR Performance Metrics (Window Size: 250)

Figure 5.10: Phase 3 SVR Prediction AAPL (Window Size: 250)

than those of the RF model. This indicates that while LSTM can capture temporal depen-

dencies well, it might not be as precise in terms of error metrics for this dataset. Further

tuning or alternative configurations might improve its performance. Figure 5.11 shows that

the LSTM model captures the general trend but it fails in accuratly predicting the stock

price. The same phenomenon appears from phase 2 appears where the LSTM predictions

highly fluctuate.

Perfomance Analysis In order to fully analyze the effect of sentiment, it is informative

to compare the results with and without the added features on this interval subset. The

results of the models’ performance on the subset without sentiment can be seen in tables

39 to 41. Looking at the results from these tables, it becomes clear that not adding

sentiment yields mixed results. For example, the RF model shows that in the case of
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Ticker MSE MAE MAPE R²

AAPL 9.668 2.177 0.0492 0.8689
AMZN 26.611 3.807 0.0560 0.9284
GOOG 6.172 1.992 0.0378 0.8665
MSFT 41.335 4.763 0.0502 0.9394
TSLA 2.099 1.150 0.0577 0.7834

Table 5.12: Phase 3 LSTM Performance Metrics (Window Size: 250)

Figure 5.11: Phase 3 LSTM Prediction AAPL (Window Size: 250)

TSLA, the MSE, MAE, and MAPE are lower with the added sentiment, while the other

stocks show better performance without the sentiment features. The SVR model performs

better overall without the added sentiment data, and the LSTM model performs better

with the added sentiment data except for MSFT.

This mixed performance suggests that the impact of sentiment data on model accuracy

varies depending on the stock and the model used. For some stocks, sentiment data provides

additional context that helps improve the predictive performance of models, particularly

for more complex models like LSTM. For other stocks, the inclusion of sentiment data may

introduce additional noise or complexity that models like SVR are unable to effectively

utilize, leading to reduced performance.

In summary, the inclusion of sentiment data can enhance model performance in certain

cases, particularly for models and stocks that can leverage this additional context to better
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understand market trends and investor sentiment. However, the benefit is not universal

across all models and stocks, highlighting the need for careful consideration of feature

selection based on the specific application and characteristics of the dataset.

5.4 Portfolio Optimization

As mentioned above in Chapter 4, evaluation metrics such as MAE, MSE, RMSE, MAPE,

and R-squared are essential for assessing the performance of stock price prediction models;

however, it is crucial to understand their limitations in the context of real-world trading.

The obtained predicted prices and sentiment labels will be asses using a rule-based trading

strategy. This is done for a subset of stock since the sentiment data is only applicable to

five specific stocks AAPL, AMZN, MSFT, GOOGL and, TSLA and the period January

2015 to December 2019.

The process includes the following steps: First, the portfolio weights will be determined

using the mean-variance portfolio optimization technique. Second, using predicted prices

or sentiment labels, a prediction of whether the stock price is expected to increase or

decrease will be made. Based on this decision from either the predicted stock price or

sentiment labels the final step uses this information to determine when to buy or sell

stock, specifically the stock in the subset. This portfolio optimization makes is such that

the usage of predicted prices and sentiment will be assessed in the context of real-world

trading.

This section is split into two parts; the first part employs a single, predetermined portfolio

weight that will be determined on the first trading day. The second part instead rebalances

the portfolio using daily, weekly, or monthly intervals.

5.4.1 Pre-Determined Portfolio Weights

First, the portfolio strategy that leverages price predictions will be assessed based on

the graph shown in Figure 5.12. In the initial period (2015-2016), the portfolio value

dropped below the benchmark. Moreover, in 2016 both the portfolio and, benchmark

showed some volatility with the benchmark performing relatively better. During 2016-2018

the benchmark maintained a higher value compared to the strategy portfolio although

both are showing fluctuations. Toward the end (2018-2020), a notable increase in the

strategy portfolio can be observed, surpassing the benchmark by a substantial margin.

This upward trend continued and showed signs of stabilization, maintaining its higher

value. The benchmark also experienced growth, but at a slower rate compared to the
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strategy portfolio. The strategy portfolio has a value of $28,929 while the benchmark

portfolio has a value of $16,028 at the end, showing a return of 189.3% and 60.28%,

respectively.

Figure 5.12: Portfolio Value using Price Predictions

Second, the portfolio strategy that leverages sentiment predictions will be assessed in

figure 5.13. In the initial period (2015-2016), the portfolio value started closely aligned with

the benchmark but soon dropped below it. Throughout 2016, both the portfolio and the

benchmark experienced some volatility, with the benchmark performing relatively better.

From 2016 to 2018, the benchmark consistently maintained a higher value compared to the

strategy portfolio, although both exhibited fluctuations. However, the portfolio strategy

showed a significant decline during this period, underperforming relative to the benchmark.

In the late period (2018-2020), the strategy portfolio continued to struggle, experiencing

further declines and even dipping into negative territory. By the end of the period, the

benchmark portfolio reached a higher value ($16,028), while the strategy portfolio remained

significantly lower and unstable (-$4,665). In summary, the portfolio and the benchmark

showed a return of -146.65% and 60.28%, respectively.

Third, the portfolio strategy that leverages both price predictions and sentiment predic-

tions will be assessed in figure 5.13. In the initial period (2015-2016), the portfolio value
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Figure 5.13: Portfolio Value using Sentiment Predictions

re-emerged closely aligned with the benchmark, but soon dropped below it. Through-

out 2016, both the portfolio and the benchmark experienced some volatility, with the

benchmark performing relatively better. From 2016 to 2018, the benchmark consistently

maintained a higher value compared to the strategy portfolio, although both exhibited fluc-

tuations. However, the portfolio strategy showed a significant decline during this period,

underperforming relative to the benchmark. In the late period (2018-2020), the strategy

portfolio continued to struggle, experiencing further declines and even dipping into negative

territory. In contrast, the benchmark showed a more stable and upward trend, continuing

to grow at a steady rate. By the end of the period, the benchmark portfolio reached a

higher value, while the strategy portfolio remained significantly lower and unstable. At the

end of the period, the strategy portfolio had a value of -$12,160 indicating a loss, while the

benchmark portfolio had a value of $16,028, reflecting growth. In summary, the portfolio

and the benchmark showed a return of -221.60% and 60.28%, respectively.

5.4.2 Rebalancing Portfolio Weights

In this subsection, the focus will be on the portfolio strategy that performed the best

in the previous analysis. The strategy using price predictions consistently outperformed

the other approaches. Although rebalancing portfolio weights resulted in less substantial
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Figure 5.14: Portfolio Value using Price- and Sentiment Predictions

losses compared to sentiment-based and combined price and sentiment approaches, the

price prediction strategy demonstrated superior overall performance. This highlights its

potential effectiveness in portfolio management.

Figures 5.15, 5.16 and, 5.17 illustrate the results of using daily, weekly, and monthly

intervals for rebalancing the portfolio weights through mean-variance portfolio optimization

The daily rebalancing strategy demonstrated impressive performance, achieving a strat-

egy portfolio value of $13,866.04 compared to the benchmark portfolio value of $10,903.08.

This translates to a total return of 38.66% for the strategy portfolio, significantly outpac-

ing the benchmark’s return of 9.03%. The consistent adjustment of portfolio weights on a

daily basis allowed the strategy to capitalize on short-term market movements, resulting

in superior returns.

Similarly, the weekly rebalancing approach also showed strong results, with the strategy

portfolio reaching a value of $14,029.69 against the benchmark’s $11,024.02. The total

return for the strategy portfolio was 40.30%, slightly higher than the daily rebalancing

interval, while the benchmark achieved a 10.24% return. This indicates that the weekly

interval was particularly effective, offering the highest return among the three rebalancing

frequencies. The balance between capturing market trends and minimizing transaction
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Figure 5.15: Portfolio Value using Daily Rebalancing

costs may have contributed to its outstanding performance.

On the other hand, the monthly rebalancing strategy, while still positive, resulted in a

lower total return of 15.30% with a strategy portfolio value of $11,530.39. Despite this, it

still outperformed the benchmark, which had a portfolio value of $9,008.74 and a negative

return of -9.91%. The less frequent rebalancing may have led to missed opportunities

for capturing shorter-term market gains, but it also avoided frequent transaction costs,

maintaining a solid performance relative to the benchmark.

In summary, the strategy portfolios with daily and weekly rebalancing intervals per-

formed substantially better than the benchmark, with the weekly rebalancing interval

achieving the highest total return. The daily rebalancing interval also showed significant

outperformance, highlighting the benefits of frequent adjustments to portfolio weights.

Although the monthly rebalancing interval yielded lower returns, it still managed to out-

perform the benchmark by a considerable margin, underscoring the overall effectiveness of

the mean-variance optimization approach.

When these results are compared with the initial portfolio strategy that utilizes price

predictions, it is evident that the rebalancing frequency plays a critical role in portfolio

performance. The price prediction strategy, with its rebalancing approach, demonstrated
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Figure 5.16: Portfolio Value using weekly Rebalancing

superior returns in the period 2015-2018, particularly when rebalanced weekly. During this

period the rebalancing approach yielded smaller decrease in portfolio value compared to

the initial portfolio strategy. However, the increase from 2018 until 2020 was not large in

the rebalancing approach compared to the initial strategy. These findings highlight the

importance of frequent rebalancing in optimizing portfolio performance and maximizing

returns, as shown in the performance of the strategy portfolio across different rebalancing

intervals.
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Figure 5.17: Portfolio Value using Monthly Rebalancing
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6

Conclusion

6.1 Recapitulation of Objectives and Methods

This study aimed to enhance the accuracy of stock market forecasts by integrating diverse

data sources and sophisticated analytical methods. The primary objective was to develop a

model capable of accurately predicting stock prices for the top 25 large-cap stocks in the SP

500. These objectives converged in the research question: "How does incorporating mul-

tiple data sources, different Machine- /Deep Learning techniques, and sentiment analysis

with Natural Language Processing enhance the accuracy of stock price predictions?”

A secondary objective was to test the validity of traditional financial theories, such as

the EMH and RW theory, by incorporating these various data sources. Through this

multifaceted approach, the research aimed not only to refine stock price predictions but

also to assess the ongoing relevance of established financial theories.

6.2 Summary of Key Findings

This research explored the predictive performance of various models in forecasting stock

prices across three distinct phases, aiming to enhance accuracy and robustness by incor-

porating diverse data sources. In all phases a rolling window approach was employed to

mitigate lookahead bias, testing various window sizes (6 months, 1 year, 2 years) to capture

short-term versus long-term trends. In Phase 1, using basic stock data (open, high, low,

close, volume) with models like Naive, LR, RF, and SVR, simpler models like Naive and

LR performed well, while SVR lagged significantly. In Phase 2, adding technical indica-

tors and fundamental data, the models used were RF, SVR, and LSTM networks. Despite

the increased dataset complexity, RF did not improve over Phase 1, SVR continued to
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underperform, and LSTM showed potential but had significant fluctuations. In Phase

3, incorporating sentiment analysis data, models used were Naive, RF, SVR, and LSTM.

Sentiment data yielded mixed results; it improved LSTM’s performance for specific stocks

but introduced noise for others, particularly SVR.

The Trading Simulation underscored the importance of evaluation metrics beyond

MAE, MSE, RMSE, MAPE, and R-squared. Key findings include: Pre-determined port-

folio weights with price predictions showed substantial growth, especially from 2018 to

2020, with a return of 189.3% versus the benchmark’s 60.28%. The sentiment prediction

strategy underperformed at -146.65%, and combining the price and sentiment predictions

resulted in -221.60%. For rebalancing portfolio weights, price prediction strategies outper-

formed others. Daily rebalancing achieved a return of 38.66%, weekly rebalancing 40.30%,

and monthly rebalancing 15.30%, all exceeding the benchmarks. These results highlight

the effectiveness of frequent rebalancing and the superior performance of price prediction

strategies over sentiment-based approaches in portfolio management. Although sentiment

analysis can improve model performance in specific cases, it can also introduce volatility

and noise, affecting overall predictive accuracy.

6.3 Interpretation of Results

The results of this study have significant implications for the prediction of stock prices

and trading strategies. They highlight the strengths and limitations of various predictive

models and data sources, offering valuable insights for both academic research and practical

applications.

The superior performance of simpler models like Naive and LR in Phase 1 suggests that

basic stock data can still be highly effective for forecasting purposes. This aligns with

the existing literature that emphasizes the utility of straightforward models under certain

market conditions (e.g. (1)). However, the underperformance of the SVR model, even

with enhanced datasets, indicates that more complex models may not always produce bet-

ter predictions, diverging from theoretical expectations that increased complexity should

improve accuracy (83).

In Phase 2, the addition of technical indicators and fundamental data did not significantly

enhance the performance of the Random Forest model, challenging the assumption that

incorporating more data inherently leads to better predictions (77). The Long Short-

Term Memory (LSTM) model showed potential but faced instability, suggesting that while
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advanced neural networks can capture complex patterns, they require careful tuning and

robust training data (80).

Phase 3’s inclusion of sentiment analysis data yielded mixed results. Although sentiment

data improved the performance of the LSTM for certain stocks, they introduced noise for

others, particularly affecting the SVR model. This finding aligns with literature acknowl-

edging the potential of sentiment analysis to enhance predictions but also highlights its

volatility and context-dependent nature (8). It suggests that sentiment analysis can be a

double-edged sword, improving forecasts in some scenarios while adding unpredictability

in others.

The results of portfolio optimization emphasize the practical utility of combining price

predictions with frequent rebalancing strategies. Price prediction-based strategies signifi-

cantly outperformed sentiment-based ones, particularly with daily and weekly rebalancing.

This finding underscores the importance of responsive and adaptive portfolio management

techniques in real-world trading (82).

The results from the stock price prediction models are in line with the EMH and RW

theory by demonstrating that it is not possible to achieve better performance than the

benchmark. However, the results of portfolio optimization demonstrated that it is possible

to achieve substantial returns through systematic prediction and rebalancing strategies

(9). They also caution against over-reliance on sentiment data, which can lead to poor

performance if not carefully managed.

In practical terms, the study suggests that integrating diverse data sources and employing

frequent rebalancing can enhance the effectiveness of trading strategies. While sentiment

analysis offers additional insights, its application should be context-specific and carefully

evaluated to avoid introducing excessive noise. Overall, the research highlights the need

for a balanced approach that leverages both traditional financial indicators and modern

data analytics to achieve optimal stock price predictions and trading performance.
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Discussion

7.1 Practical Implications

The findings of this research have several potential impacts on financial market practices

and trading strategies. Based on the results of the study, several key recommendations for

practitioners can be highlighted to improve current financial models and trading frame-

works.

First, the choice of data is crucial. Incorporating a wide range of data sources does

not inherently improve predictive performance. Practitioners should carefully assess the

profitability and relevance of the data being used. The most beneficial data tend to be new

or unique, providing an edge over competitors. Therefore, detailed methods for selecting

and validating data sources should be established to ensure that only the most valuable

information is utilized.

Second, sentiment data should be treated with caution. Although it can improve model

performance in specific scenarios, it also has the potential to introduce significant noise.

Practitioners should employ robust filtering and validation techniques to ensure that sen-

timent data contributes positively to prediction accuracy. This involves distinguishing

between meaningful sentiment signals and irrelevant noise from tweets or other forms of

text data.

Third, a portfolio optimization strategy should always be included. High prediction

scores are beneficial, but ultimately meaningless, if they do not translate into increased

portfolio value. Practitioners should focus on integrating predictive models with robust

portfolio management strategies to maximize returns. The study showed that frequent

rebalancing, particularly on a daily or weekly basis, significantly outperformed less frequent

rebalancing approaches.
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7.2 Limitations & Future Research

This study encountered several limitations and constraints that may have influenced the

results. It is important to acknowledge these factors to provide a comprehensive under-

standing of the research results and their potential impact.

First, the feature selection methods used in this study were regular and straightforward.

While they provided a baseline for identifying important features, more advanced feature

selection techniques might have yielded a different and potentially more effective set of fea-

tures. This limitation aligns with the practical implications discussed earlier, emphasizing

the need for detailed methods for selecting data sources.

Second, the machine learning methods, particularly deep learning models, require large

amounts of data to train effectively. The performance of these models may have been

adversely affected by the data constraints, potentially leading to less accurate predictions.

Ensuring access to extensive and high-quality datasets is crucial for the successful appli-

cation of these advanced methods.

Third, the sentiment data used in this study could have been more recent. The timeliness

of sentiment data is critical for capturing current market sentiments accurately. Utilizing

more up-to-date sentiment data could have improved the performance of the sentiment

analysis models.

Fourthly, the portfolio optimization strategy employed in this study was relatively basic,

relying on a simple rule-based model. While this provided valuable insights, there is a

need to enhance the portfolio optimization approach by incorporating different performance

metrics such as the Sharpe ratio, alpha, beta, and others. These metrics can provide a more

comprehensive evaluation of the portfolio’s performance and help refine the optimization

strategy.
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A Data

Table 1: Top 25 Components of the SPDR S&P 500 Trust ETF (SPY) by Weight

# Company Ticker Weight

1 Apple Inc. AAPL 7.05%
2 Microsoft Corp MSFT 6.54%
3 Amazon.com Inc AMZN 3.24%
4 Nvidia Corp NVDA 2.79%
5 Alphabet Inc. Class A GOOGL 2.13%
6 Tesla Inc. TSLA 1.95%
7 Alphabet Inc. Class C GOOG 1.83%
8 Berkshire Hathaway Class B BRK.B 1.83%
9 Meta Platforms, Inc. Class A META 1.81%
10 UnitedHealth Group UNH 1.28%
11 Exxon Mobil XOM 1.27%
12 Eli Lilly & Co. LLY 1.21%
13 JPMorgan Chase JPM 1.18%
14 Johnson & Johnson JNJ 1.07%
15 Visa Class A V 1.05%
16 Procter & Gamble PG 0.99%
17 Mastercard Class A MA 0.93%
18 Broadcom Inc. AVGO 0.92%
19 Home Depot HD 0.85%
20 Chevron Corporation CVX 0.81%
21 Merck MRK 0.75%
22 AbbVie ABBV 0.75%
23 Costco COST 0.67%
24 PepsiCo PEP 0.67%
25 Adobe ADBE 0.65%

Combined Weight: 44.22%
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B Model Results

Table 2: Computation of the Average Directional Index (ADX)

Step Formula/Description

1. Calculate True Range (TR) TR = max[(H − L), |H − Cprev|, |L− Cprev|]
H: Current high, L: Current low, Cprev : Previousclose

2. Calculate Directional Move-
ment (DM)

DM+ = H −Hprev if H −Hprev > Lprev −L, otherwise 0

DM− = Lprev − L if Lprev − L > H −Hprev, otherwise 0

3. Calculate Smoothed True
Range (ATR)

ATR = (
∑n

i=1 TRi) /n or a smoothed moving average

4. Calculate Smoothed Direc-
tional Indicators (DI)

DI+ = 100×
(

Smoothed DM+

ATR

)
for n periods

DI− = 100×
(

Smoothed DM−
ATR

)
for n periods

5. Calculate Directional Index
(DX)

DX =
(
|DI+−DI−|
DI++DI−

)
× 100

6. Calculate Average Direc-
tional Index (ADX)

ADX = Smoothed Moving Average of DX over n
periods

B Model Results

B.1 Sentiment Model

Class Precision Recall F1-Score Support

Negative (0) 0.08 0.01 0.01 188
Neutral (1) 0.61 0.99 0.76 879
Positive (2) 0.00 0.00 0.00 358

Accuracy 0.61 1425
Macro Avg 0.23 0.33 0.26 1425
Weighted Avg 0.39 0.61 0.47 1425

Table 3: Evaluation Metrics for BERT Model
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Pred. Negative (0) Pred. Neutral (1) Pred. Positive (2)

Actual Negative (0) 1 187 0
Actual Neutral (1) 12 867 0
Actual Positive (2) 0 358 0

Table 4: Confusion Matrix for BERT Model

Class Precision Recall F1-Score Support

Negative (0) 0.88 0.23 0.37 188
Neutral (1) 0.68 0.97 0.80 879
Positive (2) 0.82 0.30 0.44 358

Accuracy 0.70 1425
Macro Avg 0.79 0.50 0.54 1425
Weighted Avg 0.74 0.70 0.65 1425

Table 5: Evaluation Metrics for RoBERTa Model

Pred. Negative (0) Pred. Neutral (1) Pred. Positive (2)

Actual Negative (0) 44 144 0
Actual Neutral (1) 5 851 23
Actual Positive (2) 1 251 106

Table 6: Confusion Matrix for RoBERTa Model

Class Precision Recall F1-Score Support

Negative (0) 0.13 1.00 0.23 188
Neutral (1) 0.00 0.00 0.00 879
Positive (2) 0.14 0.00 0.01 358

Accuracy 0.13 1425
Macro Avg 0.09 0.33 0.08 1425
Weighted Avg 0.05 0.13 0.03 1425

Table 7: Evaluation Metrics for DistilBERT Model

B.2 Phase 1
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B Model Results

Pred. Negative (0) Pred. Neutral (1) Pred. Positive (2)

Actual Negative (0) 188 0 0
Actual Neutral (1) 873 0 6
Actual Positive (2) 357 0 1

Table 8: Confusion Matrix for DistilBERT Model

Class Precision Recall F1-Score Support

Negative (0) 0.96 0.99 0.97 360
Neutral (1) 0.92 0.99 0.96 197
Positive (2) 1.00 0.97 0.98 868

Accuracy 0.98 1425
Macro Avg 0.96 0.98 0.97 1425
Weighted Avg 0.98 0.98 0.98 1425

Table 9: Evaluation Metrics for FinBERT Model

Pred. Positive (0) Pred. Negative (1) Pred. Neutral (2)

Actual Positive (0) 355 5 0
Actual Negative (1) 1 196 0
Actual Neutral (2) 14 12 842

Table 10: Confusion Matrix for FinBERT Model

Class Precision Recall F1-Score Support

Negative (0) 0.99 0.97 0.98 194
Neutral (1) 1.00 0.99 0.99 890
Positive (2) 0.96 0.99 0.98 341

Accuracy 0.99 1425
Macro Avg 0.98 0.99 0.98 1425
Weighted Avg 0.99 0.99 0.99 1425

Table 11: Evaluation Metrics for FinancialBERT Model

B.3 Phase 2
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Predicted Negative (0) Predicted Neutral (1) Predicted Positive (2)

Actual Negative (0) 189 1 4
Actual Neutral (1) 0 881 9
Actual Positive (2) 2 1 338

Table 12: Confusion Matrix for FinancialBERT Model

B.4 Phase 3
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B Model Results

Stock MSE RMSE MAE MAPE R2 Score

AAPL 2.9916 1.7296 1.0222 0.0124 0.9991
MSFT 10.0407 3.1687 1.8767 0.0117 0.9991
AMZN 4.5924 2.143 1.296 0.0143 0.9983
NVDA 29.8367 5.4623 2.4992 0.0201 0.9983
GOOGL 2.2133 1.4877 0.9118 0.0122 0.9984
TSLA 29.927 5.4706 2.6519 0.0242 0.9975
GOOG 2.2193 1.4897 0.9072 0.0121 0.9985
BRK-B 7.1109 2.6666 1.7957 0.0083 0.9986
META 24.615 4.9614 2.8553 0.0154 0.9966
UNH 21.898 4.6795 2.8714 0.0107 0.999
XOM 1.1565 1.0754 0.747 0.012 0.9969
LLY 16.3125 4.0389 2.0202 0.0112 0.9992
JPM 2.637 1.6239 1.0559 0.0113 0.998
JNJ 1.9686 1.4031 0.9297 0.0077 0.9979
V 6.3129 2.5125 1.5704 0.0105 0.9986
PG 1.4911 1.2211 0.7766 0.0077 0.9986
MA 20.2441 4.4993 2.7321 0.0116 0.9986
AVGO 69.0584 8.3101 4.7928 0.0154 0.9988
HD 11.185 3.3444 2.0681 0.0102 0.9986
CVX 3.0339 1.7418 1.1606 0.0122 0.9968
MRK 0.8054 0.8974 0.5966 0.0093 0.9983
ABBV 1.7758 1.3326 0.8715 0.0115 0.9988
COST 21.2707 4.612 2.6845 0.0091 0.9992
PEP 1.9306 1.3895 0.8789 0.0076 0.9985
ADBE 53.1882 7.293 4.2555 0.0139 0.9983

Table 13: Phase 1 Naive Model
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Stock MSE RMSE MAE MAPE R2 Score

AAPL 3.7012 1.9239 1.2077 0.0127 0.9989
MSFT 12.4456 3.5278 2.2388 0.012 0.9988
AMZN 5.6804 2.3834 1.5431 0.0143 0.9971
NVDA 37.2778 6.1056 3.1044 0.0218 0.998
GOOGL 2.7022 1.6438 1.053 0.0124 0.9978
TSLA 37.3544 6.1118 3.2419 0.0254 0.9971
GOOG 2.7108 1.6465 1.0495 0.0124 0.9979
BRK-B 8.4223 2.9021 1.9858 0.0085 0.998
META 30.0733 5.4839 3.2778 0.0156 0.9947
UNH 26.8982 5.1864 3.3347 0.0107 0.9986
XOM 1.3056 1.1426 0.7959 0.0126 0.9971
LLY 20.1507 4.4889 2.3636 0.0114 0.9991
JPM 3.1856 1.7848 1.1989 0.0115 0.9968
JNJ 2.303 1.5176 1.013 0.0077 0.9961
V 7.6925 2.7735 1.8057 0.0106 0.9976
PG 1.7843 1.3358 0.8669 0.0079 0.9982
MA 24.9558 4.9956 3.1998 0.0118 0.9977
AVGO 85.2241 9.2317 5.6356 0.015 0.9985
HD 13.6667 3.6969 2.383 0.0105 0.9978
CVX 3.5136 1.8745 1.2521 0.0123 0.9964
MRK 0.9387 0.9689 0.649 0.0093 0.9979
ABBV 2.0753 1.4406 0.9529 0.0109 0.9985
COST 26.1986 5.1185 3.1377 0.0095 0.9989
PEP 2.3052 1.5183 0.9739 0.0078 0.9978
ADBE 66.0628 8.1279 5.092 0.0144 0.9975

Table 14: Phase 1 Naive Model (Window Size: 500)
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Stock MSE RMSE MAE MAPE R2 Score

AAPL 3.311 1.8196 1.1107 0.0127 0.999
MSFT 11.121 3.3348 2.0449 0.0119 0.999
AMZN 5.0869 2.2554 1.4143 0.0144 0.9978
NVDA 33.1307 5.7559 2.7694 0.0211 0.9982
GOOGL 2.4424 1.5628 0.9806 0.0124 0.9982
TSLA 33.2141 5.7632 2.9128 0.0247 0.9973
GOOG 2.4496 1.5651 0.9764 0.0123 0.9982
BRK-B 7.7383 2.7818 1.8942 0.0085 0.9984
META 27.1338 5.209 3.0584 0.0155 0.9958
UNH 24.2062 4.92 3.1092 0.0109 0.9988
XOM 1.233 1.1104 0.7738 0.0124 0.997
LLY 18.08 4.2521 2.1979 0.0116 0.9992
JPM 2.8952 1.7015 1.1277 0.0115 0.9975
JNJ 2.1246 1.4576 0.9706 0.0077 0.9973
V 6.9572 2.6377 1.6909 0.0107 0.9982
PG 1.6294 1.2765 0.822 0.0079 0.9985
MA 22.3553 4.7281 2.9503 0.0117 0.9982
AVGO 76.5065 8.7468 5.2248 0.0155 0.9987
HD 12.3348 3.5121 2.2273 0.0104 0.9982
CVX 3.2697 1.8082 1.2117 0.0125 0.9968
MRK 0.868 0.9317 0.6229 0.0094 0.9982
ABBV 1.9238 1.387 0.9141 0.0113 0.9987
COST 23.5173 4.8495 2.9079 0.0094 0.999
PEP 2.1062 1.4513 0.9262 0.0077 0.9982
ADBE 58.9322 7.6767 4.6393 0.0141 0.998

Table 15: Phase 1 Naive Model (Window Size: 250)
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Stock MSE RMSE MAE MAPE R2 Score

AAPL 3.1442 1.7732 1.0674 0.0126 0.9991
MSFT 10.5544 3.2487 1.9594 0.0119 0.999
AMZN 4.8244 2.1964 1.3512 0.0143 0.9981
NVDA 31.3844 5.6022 2.6265 0.0206 0.9983
GOOGL 2.3202 1.5232 0.9438 0.0123 0.9983
TSLA 31.4719 5.61 2.7744 0.0244 0.9974
GOOG 2.3267 1.5254 0.9394 0.0122 0.9984
BRK-B 7.4253 2.7249 1.8488 0.0084 0.9985
META 25.7842 5.0778 2.9471 0.0153 0.9962
UNH 23.0077 4.7966 2.9917 0.0109 0.9989
XOM 1.2006 1.0957 0.7648 0.0123 0.997
LLY 17.1468 4.1409 2.107 0.0114 0.9992
JPM 2.7626 1.6621 1.0927 0.0114 0.9978
JNJ 2.0512 1.4322 0.9544 0.0078 0.9976
V 6.6225 2.5734 1.6299 0.0106 0.9984
PG 1.5596 1.2489 0.801 0.0078 0.9985
MA 21.2452 4.6093 2.8361 0.0117 0.9984
AVGO 72.6076 8.521 5.0098 0.0156 0.9988
HD 11.7441 3.427 2.153 0.0104 0.9984
CVX 3.1697 1.7804 1.1947 0.0125 0.9968
MRK 0.8374 0.9151 0.6106 0.0094 0.9983
ABBV 1.8538 1.3615 0.8966 0.0115 0.9987
COST 22.3508 4.7277 2.7974 0.0093 0.9991
PEP 2.0174 1.4204 0.9033 0.0076 0.9983
ADBE 55.8954 7.4763 4.4381 0.014 0.9982

Table 16: Phase 1 Naive Model (Window Size: 125)
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B Model Results

Stock MSE RMSE MAE MAPE R2 Score

AAPL 2.3666 1.5384 0.9202 0.0126 0.9988
MSFT 7.3800 2.7166 1.6550 0.0112 0.9989
AMZN 4.3140 2.0770 1.3004 0.0129 0.9981
NVDA 11.6696 3.4161 1.7819 0.0206 0.9976
GOOGL 1.6034 1.2663 0.8088 0.0113 0.9983
TSLA 25.9668 5.0958 2.2826 0.0254 0.9975
GOOG 1.5960 1.2633 0.8007 0.0113 0.9984
BRK-B 7.2063 2.6845 1.7772 0.0086 0.9961
META 23.8161 4.8802 2.9024 0.0139 0.9951
UNH 19.6525 4.4331 2.7796 0.0110 0.9977
XOM 0.7052 0.8398 0.6139 0.0123 0.9924
LLY 6.3921 2.5283 1.4412 0.0112 0.9980
JPM 3.0624 1.7500 1.1320 0.0118 0.9964
JNJ 2.1584 1.4692 0.9576 0.0078 0.9946
V 7.2161 2.6863 1.6799 0.0108 0.9973
PG 1.4904 1.2208 0.7704 0.0079 0.9978
MA 23.5321 4.8510 2.9754 0.0121 0.9974
AVGO 34.6022 5.8824 3.8772 0.0148 0.9975
HD 10.7221 3.2745 2.0045 0.0100 0.9979
CVX 2.2744 1.5081 1.0166 0.0122 0.9848
MRK 0.7740 0.8798 0.5772 0.0095 0.9940
ABBV 1.6024 1.2659 0.8241 0.0116 0.9964
COST 14.2560 3.7757 2.3554 0.0092 0.9987
PEP 1.9179 1.3849 0.8692 0.0078 0.9960
ADBE 53.0234 7.2817 4.3558 0.0134 0.9980

Table 17: Phase 1 LR (Window Size: 500)
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Stock MSE RMSE MAE MAPE R2 Score

AAPL 2.1139 1.4539 0.8467 0.0128 0.9989
MSFT 6.4841 2.5464 1.5017 0.0114 0.9990
AMZN 3.8140 1.9529 1.1813 0.0133 0.9985
NVDA 10.2223 3.1972 1.5567 0.0202 0.9979
GOOGL 1.4107 1.1877 0.7512 0.0115 0.9986
TSLA 22.5805 4.7519 2.0194 0.0249 0.9976
GOOG 1.4053 1.1855 0.7423 0.0115 0.9986
BRK-B 6.3601 2.5219 1.6885 0.0086 0.9971
META 21.1555 4.5995 2.7105 0.0142 0.9963
UNH 17.6734 4.2040 2.6005 0.0114 0.9982
XOM 0.7067 0.8407 0.6115 0.0121 0.9912
LLY 5.8425 2.4171 1.3807 0.0116 0.9981
JPM 2.7498 1.6583 1.0572 0.0118 0.9972
JNJ 1.9966 1.4130 0.9253 0.0080 0.9965
V 6.3703 2.5239 1.5566 0.0110 0.9979
PG 1.4066 1.1860 0.7564 0.0081 0.9981
MA 20.5138 4.5292 2.6890 0.0120 0.9980
AVGO 30.5953 5.5313 3.6090 0.0156 0.9980
HD 9.7496 3.1224 1.8872 0.0102 0.9983
CVX 2.1651 1.4714 1.0086 0.0127 0.9891
MRK 0.7285 0.8535 0.5602 0.0098 0.9953
ABBV 1.4928 1.2218 0.8043 0.0122 0.9969
COST 13.3062 3.6478 2.2271 0.0093 0.9988
PEP 1.7136 1.3090 0.8191 0.0077 0.9969
ADBE 47.3541 6.8814 3.9512 0.0136 0.9984

Table 18: Phase 1 LR (Window Size: 250)
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Stock MSE RMSE MAE MAPE R2 Score

AAPL 2.1053 1.4510 0.8398 0.0133 0.9988
MSFT 6.2745 2.5049 1.4771 0.0119 0.9991
AMZN 3.7099 1.9261 1.1448 0.0137 0.9986
NVDA 9.9566 3.1554 1.4959 0.0204 0.9979
GOOGL 1.3600 1.1662 0.7351 0.0117 0.9986
TSLA 22.1748 4.7090 1.9462 0.0249 0.9975
GOOG 1.3468 1.1605 0.7215 0.0116 0.9987
BRK-B 6.3189 2.5137 1.6829 0.0087 0.9971
META 20.7009 4.5498 2.6919 0.0146 0.9966
UNH 17.3946 4.1707 2.5232 0.0115 0.9983
XOM 0.7530 0.8677 0.6334 0.0124 0.9904
LLY 5.8103 2.4105 1.3652 0.0118 0.9981
JPM 2.6675 1.6333 1.0264 0.0119 0.9974
JNJ 1.9842 1.4086 0.9314 0.0082 0.9967
V 6.2873 2.5074 1.5270 0.0112 0.9981
PG 1.2955 1.1382 0.7399 0.0081 0.9982
MA 20.2975 4.5053 2.6444 0.0123 0.9981
AVGO 29.3231 5.4151 3.4987 0.0160 0.9982
HD 9.5783 3.0949 1.8902 0.0106 0.9984
CVX 2.2027 1.4841 1.0324 0.0130 0.9884
MRK 0.7262 0.8521 0.5678 0.0101 0.9954
ABBV 1.5304 1.2371 0.8120 0.0127 0.9969
COST 13.7362 3.7062 2.1983 0.0095 0.9988
PEP 1.6742 1.2939 0.8173 0.0079 0.9971
ADBE 46.0243 6.7841 3.8072 0.0137 0.9984

Table 19: Phase 1 LR (Window Size: 125)
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Stock MSE RMSE MAE MAPE R2 Score

AAPL 5.1859 2.2772 1.3761 0.0187 0.9973
MSFT 14.6911 3.8329 2.4468 0.0166 0.9978
AMZN 8.1592 2.8564 1.8262 0.0184 0.9964
NVDA 29.3470 5.4173 2.7180 0.0316 0.9941
GOOGL 3.1351 1.7706 1.1426 0.0157 0.9967
TSLA 63.0171 7.9383 3.3680 0.0358 0.9938
GOOG 2.9694 1.7232 1.1067 0.0154 0.9970
BRK-B 12.4940 3.5347 2.3512 0.0112 0.9932
META 39.9808 6.3230 3.9521 0.0188 0.9918
UNH 36.9495 6.0786 4.0277 0.0159 0.9957
XOM 1.8311 1.3532 0.8538 0.0174 0.9803
LLY 14.3933 3.7939 2.1145 0.0161 0.9955
JPM 4.9946 2.2349 1.4919 0.0155 0.9941
JNJ 3.3977 1.8433 1.3024 0.0107 0.9915
V 11.0593 3.3255 2.2163 0.0145 0.9959
PG 2.6503 1.6280 1.1042 0.0113 0.9961
MA 36.3247 6.0270 3.9725 0.0168 0.9960
AVGO 73.0081 8.5445 5.5937 0.0207 0.9948
HD 23.7946 4.8780 3.0064 0.0147 0.9954
CVX 4.6370 2.1534 1.3548 0.0164 0.9690
MRK 1.2322 1.1101 0.7665 0.0126 0.9905
ABBV 3.6631 1.9139 1.2314 0.0167 0.9917
COST 31.0073 5.5684 3.6349 0.0139 0.9972
PEP 3.0465 1.7454 1.1865 0.0106 0.9936
ADBE 95.2746 9.7609 6.1465 0.0195 0.9965

Table 20: Phase 1 RF (Window Size: 500)
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B Model Results

Stock MSE RMSE MAE MAPE R2 Score

AAPL 4.5339 2.1293 1.2436 0.0184 0.9975
MSFT 12.6763 3.5604 2.1844 0.0165 0.9981
AMZN 7.3298 2.7074 1.6708 0.0194 0.9971
NVDA 24.9617 4.9962 2.3978 0.0321 0.9949
GOOGL 2.7993 1.6731 1.0610 0.0160 0.9971
TSLA 53.9824 7.3473 2.9653 0.0349 0.9942
GOOG 2.6544 1.6292 1.0341 0.0158 0.9974
BRK-B 12.0775 3.4753 2.2581 0.0114 0.9944
META 40.1074 6.3330 3.8232 0.0199 0.9929
UNH 32.8850 5.7345 3.6888 0.0158 0.9967
XOM 1.8131 1.3465 0.8749 0.0175 0.9775
LLY 12.9445 3.5978 2.0212 0.0166 0.9958
JPM 4.7673 2.1834 1.4355 0.0160 0.9951
JNJ 3.4051 1.8453 1.2571 0.0109 0.9940
V 9.6087 3.0998 2.0344 0.0145 0.9969
PG 2.4426 1.5629 1.0623 0.0116 0.9966
MA 31.1794 5.5839 3.5557 0.0163 0.9969
AVGO 71.8678 8.4775 5.3003 0.0223 0.9953
HD 21.0881 4.5922 2.7908 0.0147 0.9962
CVX 4.9203 2.2182 1.4036 0.0176 0.9752
MRK 1.2018 1.0963 0.7553 0.0132 0.9923
ABBV 3.4864 1.8672 1.2132 0.0178 0.9928
COST 26.6153 5.1590 3.2990 0.0135 0.9977
PEP 2.9625 1.7212 1.1488 0.0108 0.9946
ADBE 82.1131 9.0616 5.4440 0.0189 0.9972

Table 21: Phase 1 RF (Window Size: 250)

105



REFERENCES

Stock MSE RMSE MAE MAPE R2 Score

AAPL 4.2812 2.0691 1.2202 0.0193 0.9976
MSFT 11.8134 3.4371 2.0778 0.0164 0.9982
AMZN 7.9094 2.8124 1.6940 0.0204 0.9970
NVDA 23.1911 4.8157 2.2429 0.0313 0.9952
GOOGL 2.6547 1.6293 1.0258 0.0160 0.9973
TSLA 51.3998 7.1694 2.8559 0.0363 0.9942
GOOG 2.6619 1.6315 1.0209 0.0160 0.9974
BRK-B 12.9534 3.5991 2.3230 0.0119 0.9941
META 60.8289 7.7993 4.0276 0.0214 0.9899
UNH 31.0414 5.5715 3.5657 0.0161 0.9970
XOM 1.9038 1.3798 0.9026 0.0179 0.9758
LLY 13.3214 3.6499 2.0214 0.0173 0.9957
JPM 5.1032 2.2590 1.4307 0.0164 0.9951
JNJ 3.2780 1.8105 1.2578 0.0111 0.9946
V 10.6924 3.2699 2.0460 0.0151 0.9967
PG 2.5404 1.5939 1.0652 0.0118 0.9964
MA 34.2463 5.8520 3.5899 0.0170 0.9967
AVGO 69.5288 8.3384 5.1803 0.0232 0.9956
HD 25.0622 5.0062 2.8269 0.0157 0.9957
CVX 4.6709 2.1612 1.3918 0.0175 0.9754
MRK 1.3075 1.1434 0.7640 0.0136 0.9917
ABBV 3.3600 1.8330 1.1974 0.0182 0.9932
COST 26.0536 5.1043 3.2839 0.0141 0.9977
PEP 3.4384 1.8543 1.1645 0.0111 0.9940
ADBE 88.3784 9.4010 5.4194 0.0193 0.9970

Table 22: Phase 1 RF (Window Size: 125)
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B Model Results

Stock MSE RMSE MAE MAPE R2 Score

AAPL 760.948 27.585 19.543 0.2374 0.5997
MSFT 2354.711 48.525 39.077 0.2574 0.6400
AMZN 938.687 30.638 23.727 0.2550 0.5848
NVDA 2894.881 53.804 36.500 0.4219 0.4158
GOOGL 544.284 23.330 16.052 0.1939 0.4288
TSLA 5801.713 76.169 40.840 0.3197 0.4336
GOOG 507.750 22.533 15.807 0.1947 0.4900
BRK-B 1043.664 32.306 25.320 0.1143 0.4361
META 2604.444 51.034 41.251 0.1932 0.4682
UNH 3620.035 60.167 50.521 0.1986 0.5770
XOM 60.217 7.760 5.232 0.1090 0.3517
LLY 1452.013 38.105 26.499 0.1751 0.5494
JPM 431.608 20.775 16.660 0.1637 0.4885
JNJ 198.306 14.082 12.300 0.1001 0.5057
V 825.416 28.730 25.602 0.1756 0.6938
PG 225.533 15.018 12.281 0.1196 0.6678
MA 2768.732 52.619 45.065 0.1994 0.6989
AVGO 6686.048 81.768 62.863 0.2213 0.5229
HD 2047.074 45.245 36.743 0.1741 0.6044
CVX 155.119 12.455 9.594 0.1110 -0.0386
MRK 57.915 7.610 5.701 0.0936 0.5528
ABBV 274.866 16.579 12.686 0.1603 0.3765
COST 4042.247 63.579 49.627 0.1761 0.6397
PEP 193.844 13.923 11.674 0.1010 0.5942
ADBE 9642.112 98.194 80.918 0.2649 0.6443

Table 23: Phase 1 SVR (Window Size: 500)

107



REFERENCES

Stock MSE RMSE MAE MAPE R2 Score

AAPL 229.118 15.137 10.134 0.1453 0.8756
MSFT 651.793 25.530 18.569 0.1316 0.9033
AMZN 307.455 17.534 11.643 0.1475 0.8792
NVDA 1142.396 33.799 20.540 0.2787 0.7676
GOOGL 165.168 12.852 8.545 0.1133 0.8317
TSLA 2044.340 45.214 21.767 0.2122 0.7797
GOOG 150.546 12.270 8.305 0.1123 0.8532
BRK-B 408.150 20.203 14.889 0.0713 0.8119
META 949.470 30.813 23.735 0.1239 0.8323
UNH 1143.635 33.818 27.766 0.1194 0.8839
XOM 45.279 6.729 4.886 0.0989 0.4392
LLY 510.967 22.605 14.958 0.1114 0.8350
JPM 218.714 14.789 10.517 0.1092 0.7772
JNJ 74.158 8.611 6.915 0.0585 0.8693
V 238.192 15.433 12.940 0.0968 0.9230
PG 91.041 9.542 7.260 0.0768 0.8742
MA 772.261 27.790 22.279 0.1094 0.9239
AVGO 2309.319 48.055 34.760 0.1382 0.8485
HD 680.299 26.083 20.048 0.1032 0.8781
CVX 104.044 10.200 7.820 0.0967 0.4756
MRK 26.072 5.106 3.839 0.0676 0.8319
ABBV 114.135 10.683 7.944 0.1095 0.7641
COST 1604.612 40.058 26.927 0.0997 0.8590
PEP 74.180 8.613 6.623 0.0591 0.8655
ADBE 3394.044 58.258 41.110 0.1414 0.8828

Table 24: Phase 1 svr (Window Size: 250)
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B Model Results

Stock MSE RMSE MAE MAPE R2 Score

AAPL 95.552 9.775 6.315 0.1008 0.9471
MSFT 210.555 14.511 9.955 0.0767 0.9687
AMZN 118.660 10.893 7.052 0.0919 0.9557
NVDA 444.163 21.075 11.451 0.1622 0.9084
GOOGL 51.125 7.150 4.892 0.0705 0.9488
TSLA 1042.077 32.281 14.197 0.1587 0.8822
GOOG 50.279 7.091 4.854 0.0702 0.9516
BRK-B 205.647 14.340 10.639 0.0532 0.9062
META 462.181 21.498 15.313 0.0824 0.9233
UNH 433.410 20.819 15.630 0.0718 0.9585
XOM 22.935 4.789 3.400 0.0684 0.7081
LLY 215.448 14.678 9.065 0.0734 0.9302
JPM 97.672 9.883 6.718 0.0735 0.9056
JNJ 39.614 6.294 5.063 0.0443 0.9344
V 98.583 9.929 7.701 0.0594 0.9699
PG 39.541 6.288 4.883 0.0541 0.9444
MA 326.643 18.073 13.402 0.0672 0.9689
AVGO 1024.541 32.008 22.111 0.0969 0.9358
HD 333.556 18.264 12.630 0.0694 0.9428
CVX 54.191 7.361 5.519 0.0679 0.7144
MRK 11.328 3.366 2.583 0.0464 0.9280
ABBV 53.073 7.285 5.433 0.0798 0.8925
COST 590.398 24.298 16.652 0.0686 0.9486
PEP 29.800 5.459 4.280 0.0402 0.9484
ADBE 1519.951 38.987 24.567 0.0839 0.9484

Table 25: Phase 1 SVR (Window Size: 125)
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REFERENCES

Stock MSE RMSE MAE MAPE R2 Score

AAPL 7.1209 2.6685 1.7417 0.0184 0.9978
ABBV 5.4981 2.3448 1.5345 0.0149 0.9948
ADBE 124.3205 11.1499 7.3068 0.0213 0.9953
AMZN 11.2442 3.3532 2.1909 0.0209 0.9943
AVGO 253.1454 15.9105 8.7970 0.0206 0.9951
BRK-B 17.5211 4.1858 2.7945 0.0117 0.9959
COST 65.1361 8.0707 5.1446 0.0144 0.9972
CVX 10.5331 3.2455 1.9631 0.0170 0.9848
GOOG 4.9484 2.2245 1.4810 0.0174 0.9961
GOOGL 4.9201 2.2181 1.4777 0.0174 0.9960
HD 27.7662 5.2694 3.4332 0.0139 0.9950
JNJ 4.3526 2.0863 1.4833 0.0102 0.9883
JPM 6.7007 2.5886 1.8293 0.0159 0.9919
LLY 70.7876 8.4135 4.1139 0.0174 0.9968
MA 43.7399 6.6136 4.6163 0.0172 0.9960
META 74.7306 8.6447 5.0200 0.0245 0.9869
MRK 2.0637 1.4366 0.9981 0.0127 0.9936
MSFT 21.3135 4.6167 3.0999 0.0164 0.9979
NVDA 126.5226 11.2482 5.2987 0.0358 0.9932
PEP 3.8799 1.9697 1.3720 0.0099 0.9947
PG 3.5829 1.8928 1.3111 0.0110 0.9953
TSLA 79.7632 8.9310 4.6258 0.0374 0.9937
UNH 46.8457 6.8444 4.7096 0.0149 0.9974
V 12.5749 3.5461 2.4794 0.0145 0.9960
XOM 3.9564 1.9891 1.2859 0.0183 0.9900

Table 26: Phase 2 RF (Window Size: 500)
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B Model Results

Stock MSE RMSE MAE MAPE R2 Score

AAPL 6.5295 2.5553 1.6447 0.0189 0.9980
ABBV 5.6317 2.3731 1.5497 0.0159 0.9949
ADBE 119.4916 10.9312 6.9191 0.0213 0.9960
AMZN 11.8105 3.4366 2.1069 0.0221 0.9950
AVGO 244.8252 15.6469 8.5611 0.0224 0.9954
BRK-B 17.0762 4.1323 2.7250 0.0119 0.9964
COST 64.4071 8.0254 5.0205 0.0147 0.9973
CVX 10.6573 3.2645 2.0219 0.0181 0.9849
GOOG 4.8757 2.2081 1.3972 0.0175 0.9965
GOOGL 5.0181 2.2401 1.4229 0.0178 0.9962
HD 27.4988 5.2439 3.3529 0.0144 0.9957
JNJ 4.5282 2.1280 1.4824 0.0106 0.9916
JPM 7.6607 2.7678 1.8982 0.0170 0.9924
LLY 61.9343 7.8698 3.8147 0.0176 0.9970
MA 38.2326 6.1832 4.1170 0.0163 0.9970
META 75.6348 8.6968 4.9115 0.0252 0.9882
MRK 2.3039 1.5179 1.0360 0.0138 0.9934
MSFT 21.8812 4.6777 3.0252 0.0170 0.9980
NVDA 92.8296 9.6348 4.5915 0.0352 0.9949
PEP 4.1084 2.0269 1.3719 0.0102 0.9949
PG 3.5967 1.8965 1.3182 0.0116 0.9957
TSLA 84.4903 9.1919 4.5375 0.0391 0.9932
UNH 43.6701 6.6083 4.4611 0.0152 0.9978
V 11.4802 3.3882 2.3166 0.0144 0.9969
XOM 4.1174 2.0291 1.3507 0.0189 0.9884

Table 27: Phase 2 RF (Window Size: 250)
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REFERENCES

Stock MSE RMSE MAE MAPE R2 Score

AAPL 6.7236 2.5930 1.6556 0.0197 0.9979
ABBV 6.3565 2.5212 1.6668 0.0174 0.9944
ADBE 127.3319 11.2841 6.9035 0.0216 0.9959
AMZN 11.8042 3.4357 2.0765 0.0222 0.9953
AVGO 232.6461 15.2527 8.4099 0.0233 0.9957
BRK-B 18.4376 4.2939 2.8465 0.0128 0.9962
COST 72.4251 8.5103 5.2342 0.0161 0.9970
CVX 9.9635 3.1565 2.0819 0.0185 0.9852
GOOG 5.4435 2.3331 1.4341 0.0183 0.9962
GOOGL 5.2965 2.3014 1.4182 0.0181 0.9961
HD 33.2160 5.7633 3.5329 0.0157 0.9951
JNJ 4.7762 2.1855 1.5489 0.0112 0.9917
JPM 8.3290 2.8860 1.9238 0.0176 0.9923
LLY 66.8249 8.1746 3.9801 0.0192 0.9967
MA 44.9163 6.7020 4.3818 0.0179 0.9966
META 75.7376 8.7027 4.9571 0.0253 0.9888
MRK 2.3942 1.5473 1.0597 0.0143 0.9931
MSFT 21.6485 4.6528 2.9546 0.0172 0.9980
NVDA 119.4316 10.9285 5.0038 0.0381 0.9934
PEP 4.4750 2.1154 1.4151 0.0107 0.9947
PG 4.2950 2.0724 1.4143 0.0127 0.9948
TSLA 95.8000 9.7877 4.6504 0.0417 0.9921
UNH 43.5627 6.6002 4.4270 0.0157 0.9979
V 12.6816 3.5611 2.3814 0.0153 0.9969
XOM 4.4415 2.1075 1.4327 0.0198 0.9872

Table 28: Phase 2 RF (Window Size: 125)
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B Model Results

Stock MSE RMSE MAE MAPE R2 Score

AAPL 257.0731 16.0335 12.5498 0.1416 0.9196
ABBV 174.1265 13.1957 10.5112 0.0999 0.8346
ADBE 4899.0306 69.9931 61.1305 0.1957 0.8140
AMZN 347.3804 18.6381 16.0425 0.1786 0.8239
AVGO 7907.0305 88.9215 70.2789 0.1776 0.8482
BRK-B 612.0738 24.7401 21.1049 0.0885 0.8570
COST 2681.4323 51.7825 41.7031 0.1211 0.8835
CVX 53.6665 7.3257 5.7515 0.0495 0.9224
GOOG 166.0992 12.8879 10.4999 0.1325 0.8699
GOOGL 168.4690 12.9796 10.5026 0.1314 0.8627
HD 1031.5598 32.1179 27.1252 0.1165 0.8143
JNJ 84.8004 9.2087 7.9679 0.0554 0.7719
JPM 201.8412 14.2071 12.3252 0.1067 0.7553
LLY 2576.0204 50.7545 35.2801 0.1435 0.8819
MA 1429.2243 37.8051 33.1124 0.1345 0.8693
META 1920.3017 43.8212 37.6640 0.1917 0.6635
MRK 56.6464 7.5264 6.0470 0.0756 0.8250
MSFT 1148.5700 33.8906 28.8332 0.1691 0.8852
NVDA 3441.8438 58.6672 39.8131 0.3060 0.8161
PEP 108.5375 10.4181 9.1951 0.0666 0.8505
PG 43.7513 6.6145 5.7831 0.0524 0.9422
TSLA 1640.3772 40.5016 24.4114 0.1980 0.8711
UNH 2248.2994 47.4162 41.2598 0.1410 0.8734
V 456.9818 21.3771 19.4272 0.1233 0.8546
XOM 29.2223 5.4058 4.2950 0.0623 0.9263

Table 29: Phase 2 SVR (Window Size: 500)
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REFERENCES

Stock MSE RMSE MAE MAPE R2 Score

AAPL 176.7071 13.2931 10.1106 0.1206 0.9457
ABBV 130.7346 11.4339 9.1828 0.0934 0.8828
ADBE 3543.3229 59.5258 46.2784 0.1467 0.8804
AMZN 228.3505 15.1113 11.8663 0.1379 0.9026
AVGO 5495.5315 74.1319 54.3807 0.1401 0.8976
BRK-B 419.2033 20.4745 16.3286 0.0695 0.9120
COST 1384.1002 37.2035 28.1580 0.0834 0.9419
CVX 155.1733 12.4569 9.7741 0.0876 0.7803
GOOG 141.8861 11.9116 8.9702 0.1074 0.8971
GOOGL 140.7994 11.8659 8.9604 0.1071 0.8937
HD 672.2255 25.9273 21.1519 0.0928 0.8944
JNJ 59.2379 7.6966 6.5396 0.0472 0.8901
JPM 181.2251 13.4620 11.2289 0.0995 0.8205
LLY 1462.1973 38.2387 24.4865 0.1069 0.9297
MA 821.0864 28.6546 23.9089 0.1012 0.9349
META 1678.7492 40.9725 32.7012 0.1679 0.7383
MRK 37.9126 6.1573 4.7705 0.0624 0.8908
MSFT 730.8289 27.0338 21.2016 0.1195 0.9316
NVDA 2673.0805 51.7018 32.1861 0.2550 0.8538
PEP 67.5782 8.2206 6.8292 0.0507 0.9166
PG 70.9312 8.4221 6.9365 0.0623 0.9143
TSLA 1431.6294 37.8369 21.5913 0.1771 0.8840
UNH 1121.3818 33.4870 28.2699 0.1002 0.9439
V 270.4581 16.4456 14.2871 0.0923 0.9279
XOM 72.6980 8.5263 6.8700 0.0995 0.7955

Table 30: Phase 2 SVR (Window Size: 250)
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B Model Results

Stock MSE RMSE MAE MAPE R2 Score

AAPL 103.8566 10.1910 7.2147 0.0894 0.9681
ABBV 87.2636 9.3415 7.3453 0.0756 0.9226
ADBE 2004.0848 44.7670 31.7080 0.0986 0.9349
AMZN 144.7219 12.0300 8.6884 0.1003 0.9427
AVGO 2996.7988 54.7430 37.6169 0.0998 0.9452
BRK-B 250.2393 15.8190 12.3441 0.0537 0.9482
COST 825.1247 28.7250 21.0172 0.0653 0.9658
CVX 105.4549 10.2691 7.8369 0.0693 0.8432
GOOG 73.0659 8.5479 6.2546 0.0755 0.9487
GOOGL 71.4501 8.4528 6.2498 0.0760 0.9479
HD 437.5461 20.9176 16.0671 0.0709 0.9359
JNJ 46.9968 6.8554 5.7949 0.0421 0.9184
JPM 113.6639 10.6613 8.2167 0.0748 0.8955
LLY 835.4439 28.9040 16.8302 0.0754 0.9591
MA 454.8498 21.3272 16.6842 0.0709 0.9658
META 1029.2847 32.0825 23.6585 0.1209 0.8483
MRK 23.4999 4.8477 3.7248 0.0494 0.9318
MSFT 364.7712 19.0990 13.8233 0.0794 0.9664
NVDA 1424.3405 37.7404 21.7925 0.1716 0.9209
PEP 43.2368 6.5755 5.3337 0.0404 0.9484
PG 47.5184 6.8934 5.6627 0.0513 0.9419
TSLA 1036.8752 32.2005 17.5320 0.1533 0.9143
UNH 573.5831 23.9496 19.2934 0.0694 0.9727
V 148.7165 12.1949 9.8498 0.0640 0.9632
XOM 44.1057 6.6412 5.3255 0.0758 0.8732

Table 31: Phase 2 SVR (Window Size: 125)
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REFERENCES

Stock MSE RMSE MAE MAPE R2 Score

AAPL 62.8812 7.9298 6.0362 0.0617 0.9760
ABBV 33.3093 5.7714 4.1897 0.0375 0.9619
ADBE 812.5449 28.5052 22.2855 0.0588 0.9496
AMZN 65.7649 8.1096 6.2472 0.0536 0.9394
AVGO 1821.6026 42.6802 29.0005 0.0727 0.9646
BRK-B 136.4863 11.6827 9.0940 0.0362 0.9594
COST 658.1691 25.6548 18.7343 0.0525 0.9631
CVX 47.4823 6.8907 5.1737 0.0419 0.9422
GOOG 40.3705 6.3538 4.8084 0.0522 0.9615
GOOGL 38.0874 6.1715 4.7319 0.0557 0.9624
HD 237.4816 15.4104 11.7514 0.0458 0.9342
JNJ 23.1915 4.8158 3.6008 0.0242 0.9116
JPM 50.6220 7.1149 5.2600 0.0424 0.8989
LLY 989.6219 31.4583 19.2682 0.1059 0.9560
MA 384.3395 19.6046 14.9071 0.0521 0.9196
META 384.5136 19.6090 14.2977 0.0665 0.9291
MRK 14.9464 3.8661 2.8086 0.0337 0.9427
MSFT 303.8732 17.4320 12.6823 0.0646 0.9584
NVDA 824.9644 28.7222 19.0863 0.1793 0.9579
PEP 32.6882 5.7174 4.2806 0.0303 0.9465
PG 23.7454 4.8729 3.8697 0.0310 0.9602
TSLA 400.0830 20.0021 14.0888 0.1912 0.9683
UNH 443.6770 21.0636 15.9788 0.0455 0.9651
V 104.2043 10.2080 7.7677 0.0421 0.9234
XOM 17.4472 4.1770 3.1558 0.0426 0.9655

Table 32: Phase 2 LSTM (Window Size: 500)
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B Model Results

Stock MSE RMSE MAE MAPE R2 Score

AAPL 47.5678 6.8969 5.0669 0.0711 0.9851
ABBV 37.3434 6.1109 4.3936 0.0454 0.9645
ADBE 743.1607 27.2610 20.0569 0.0731 0.9718
AMZN 55.8677 7.4745 5.4859 0.0630 0.9717
AVGO 1203.9912 34.6986 24.8650 0.0733 0.9767
BRK-B 133.8750 11.5704 8.1648 0.0356 0.9686
COST 542.4784 23.2912 17.1119 0.0604 0.9764
CVX 38.2927 6.1881 4.3641 0.0376 0.9446
GOOG 26.9083 5.1873 3.6590 0.0473 0.9789
GOOGL 28.5605 5.3442 3.9096 0.0524 0.9767
HD 208.7608 14.4486 10.5383 0.0475 0.9624
JNJ 20.8770 4.5691 3.4012 0.0239 0.9440
JPM 36.6922 6.0574 4.5984 0.0414 0.9555
LLY 499.1659 22.3420 14.0142 0.0865 0.9770
MA 261.7247 16.1779 11.6252 0.0507 0.9761
META 246.6788 15.7060 11.4853 0.0564 0.9565
MRK 9.5393 3.0886 2.3328 0.0304 0.9704
MSFT 217.9798 14.7641 10.7544 0.0775 0.9782
NVDA 548.7317 23.4250 15.4350 0.3364 0.9704
PEP 19.8788 4.4586 3.3651 0.0250 0.9726
PG 20.1961 4.4940 3.1637 0.0275 0.9733
TSLA 348.4420 18.6666 11.3143 0.2319 0.9726
UNH 330.9058 18.1908 13.7112 0.0481 0.9814
V 78.7866 8.8762 6.6256 0.0424 0.9749
XOM 14.9406 3.8653 2.8891 0.0373 0.9623

Table 33: Phase 2 LSTM (Window Size: 250)
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REFERENCES

Stock MSE RMSE MAE MAPE R2 Score

AAPL 50.9809 7.1401 4.7113 0.0658 0.9843
ABBV 23.7968 4.8782 3.5822 0.0377 0.9786
ADBE 549.9527 23.4511 16.3250 0.0674 0.9814
AMZN 55.2921 7.4359 5.4095 0.0751 0.9764
AVGO 1510.2680 38.8622 24.5023 0.0762 0.9717
BRK-B 94.6963 9.7312 7.2756 0.0329 0.9801
COST 415.5707 20.3856 14.1434 0.0509 0.9825
CVX 35.0556 5.9208 4.3162 0.0369 0.9503
GOOG 21.1273 4.5964 3.3245 0.0488 0.9847
GOOGL 23.8083 4.8794 3.5287 0.0495 0.9820
HD 173.8137 13.1838 9.5955 0.0449 0.9727
JNJ 17.4845 4.1814 3.2300 0.0235 0.9676
JPM 28.9484 5.3804 4.0406 0.0385 0.9713
LLY 511.8202 22.6234 12.9184 0.0915 0.9752
MA 242.9708 15.5875 11.8005 0.0548 0.9807
META 213.8090 14.6222 10.5195 0.0595 0.9665
MRK 10.0306 3.1671 2.3393 0.0322 0.9710
MSFT 151.0715 12.2911 8.9170 0.0751 0.9858
NVDA 502.3594 22.4134 13.3284 0.4866 0.9722
PEP 20.3102 4.5067 3.3882 0.0261 0.9749
PG 14.2980 3.7813 2.9063 0.0257 0.9827
TSLA 210.1645 14.4971 9.2889 0.2025 0.9830
UNH 296.6599 17.2238 12.7664 0.0479 0.9852
V 93.8787 9.6891 6.8673 0.0510 0.9750
XOM 13.9752 3.7383 2.7928 0.0360 0.9606

Table 34: Phase 2 LSTM (Window Size: 125)
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B Model Results

Ticker Window Size MSE RMSE MAE MAPE R²

AAPL 251 0.4237 0.6509 0.4393 0.0106 0.9967
AAPL 125 0.4093 0.6397 0.4363 0.0111 0.9968

AMZN 251 1.4317 1.1965 0.7664 0.0119 0.9974
AMZN 125 1.3073 1.1434 0.7263 0.0122 0.9979

GOOG 251 0.5328 0.7299 0.4913 0.0098 0.9938
GOOG 125 0.5305 0.7283 0.4869 0.0102 0.9949

MSFT 251 1.689 1.2996 0.8744 0.0097 0.9981
MSFT 125 1.5803 1.2571 0.8407 0.0099 0.9984

TSLA 251 0.3044 0.5517 0.3800 0.0204 0.9794
TSLA 125 0.2929 0.5412 0.3741 0.0204 0.9791

Table 35: Phase 3 Naive Model Various Window Sizes

Ticker Window Size MSE MAE MAPE R²

AAPL 251 1.010 0.709 0.0168 0.9922
AAPL 125 1.001 0.712 0.0177 0.9922

AMZN 251 2.446 1.083 0.0168 0.9956
AMZN 125 2.626 1.094 0.0183 0.9958

GOOG 251 0.908 0.684 0.0136 0.9895
GOOG 125 0.946 0.695 0.0146 0.9909

MSFT 251 3.010 1.261 0.0138 0.9967
MSFT 125 2.729 1.190 0.0139 0.9972

TSLA 251 0.554 0.529 0.0287 0.9627
TSLA 125 0.674 0.560 0.0312 0.9521

Table 36: Phase 3 RF Various Window Sizes
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Ticker Window Size MSE MAE MAPE R²

AAPL 251 19.226 3.873 0.0982 0.8505
AAPL 125 16.040 3.335 0.0831 0.8756

AMZN 251 63.616 6.768 0.1176 0.8862
AMZN 125 36.193 5.004 0.0905 0.9417

GOOG 251 16.030 3.581 0.0744 0.8153
GOOG 125 9.140 2.575 0.0545 0.9123

MSFT 251 120.980 9.874 0.1082 0.8675
MSFT 125 53.838 6.228 0.0709 0.9450

TSLA 251 1.658 1.043 0.0584 0.8884
TSLA 125 3.062 1.330 0.0754 0.7824

Table 37: Phase 3 SVR Various Window Sizes

Ticker Window Size MSE MAE MAPE R²

AAPL 251 9.668 2.177 0.0492 0.8689
AAPL 125 4.997 1.693 0.0427 0.9609

AMZN 251 26.611 3.807 0.0560 0.9284
AMZN 125 24.881 3.517 0.0603 0.9555

GOOG 251 6.172 1.992 0.0378 0.8665
GOOG 125 6.943 1.910 0.0405 0.9198

MSFT 251 41.335 4.763 0.0502 0.9394
MSFT 125 30.086 3.866 0.0474 0.9669

TSLA 251 2.099 1.150 0.0577 0.7834
TSLA 125 1.921 1.039 0.0561 0.8698

Table 38: Phase 3 LSTM Various Window Sizes
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B Model Results

Ticker Window Size MSE MAE MAPE R²

AAPL 251 0.9332 0.6883 0.0163 0.9927
AAPL 125 0.9546 0.6989 0.0175 0.9926

AMZN 251 2.4309 1.0731 0.0167 0.9957
AMZN 125 2.5872 1.0779 0.0180 0.9958

GOOG 251 0.9144 0.6891 0.0137 0.9895
GOOG 125 0.9324 0.6911 0.0146 0.9911

MSFT 251 2.9264 1.2384 0.0136 0.9968
MSFT 125 2.6517 1.1667 0.0137 0.9973

TSLA 251 0.5699 0.5359 0.0289 0.9616
TSLA 125 0.6348 0.5517 0.0308 0.9549

Table 39: Phase 3 RF Various Window Sizes, Without Sentiment

Ticker Window Size MSE MAE MAPE R²

AAPL 251 19.0477 3.8649 0.0980 0.8519
AAPL 125 15.7579 3.3149 0.0827 0.8777

AMZN 251 62.6174 6.7343 0.1172 0.8880
AMZN 125 35.6971 4.9759 0.0902 0.9425

GOOG 251 15.3742 3.4861 0.0719 0.8228
GOOG 125 9.0972 2.5684 0.0543 0.9127

MSFT 251 119.6830 9.8334 0.1079 0.8689
MSFT 125 53.5654 6.2178 0.0708 0.9453

TSLA 251 1.5315 0.9806 0.0545 0.8969
TSLA 125 2.9957 1.3078 0.0740 0.7872

Table 40: Phase 3 SVR Various Window Sizes, Without Sentiment
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Ticker Window Size MSE MAE MAPE R²

AAPL 251 9.9697 2.2382 0.0504 0.8648
AAPL 125 8.5362 1.8041 0.0481 0.9332

AMZN 251 33.7742 4.5559 0.0663 0.9092
AMZN 125 21.5762 3.4299 0.0580 0.9614

GOOG 251 10.4418 2.3294 0.0446 0.7741
GOOG 125 5.3953 1.7823 0.0365 0.9377

MSFT 251 33.5280 4.2385 0.0438 0.9508
MSFT 125 37.7577 4.3244 0.0506 0.9585

TSLA 251 2.6148 1.2632 0.0635 0.7302
TSLA 125 1.7568 0.9978 0.0537 0.8809

Table 41: Phase 3 LSTM Various Window Sizes, Without Sentiment
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