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Abstract

In the competitive landscape of green energy providers, customer retention is crucial. For

Vandebron, a Dutch company, it’s vitally important to comprehend and enhance the ef-

fectiveness of their retention period. This research explores the effectiveness of supervised

machine learning models, specifically tree-based models, in predicting email conversion.

The study is focused on comprehending the influence of variables affecting prediction out-

comes, leveraging interpretable and explainable AI (IAI and XAI). Our findings indicate

a trade-off between model comprehensibility and predictive power. A Decision Tree model

emerged as highly interpretable yet less effective, whereas a Histogram Gradient Boost-

ing Classifier showed superior performance, albeit with increased complexity and reduced

interpretability.

remainder is confidential
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1

Introduction

Vandebron, a Dutch energy provider, is mainly engaged in the buying and selling of sus-

tainable generated energy. Therefor the customer base of Vandebron are energy consumers.

This study centers on the retention of those customers who are currently already in the

customer base of Vandebron. Among the diverse types of energy contracts, this research

narrows its focus to subscription-based contracts for house holds, having a duration of

either one or three years.

In the context of customer retention tasks, machine learning has become a field of interest

demonstrating efficacy in discerning patterns and processing voluminous data sets. The

high performance in terms of predictive power makes machine learning models attractive

for different machine learning task. Often these models operate as ’black boxes’, offering

little insight into the reasoning behind predictions. This lack of transparency impedes the

transformation of predictions into actionable strategies, an essential requirement to provide

decision-makers with insights.

Customer renewal rates, managed by a dedicated retention team, serve as crucial perfor-

mance metrics. The balance of higher retention rates and new customer acquisition directly

impact the company’s growth trajectory. Thus, enhancing retention is key to maintaining

Vandebron’s competitiveness. Customers can renew there contract within 150 days before

there current contract ends. This time frame of 150 days is therefor called the retention

period. Within this retention period contracts are often send to customers via email.

1.1 Problem statement

The retention team wants to investigate possibilities to optimize the retention strategy

by using data-driven insights. The sending of contract offers via email marketing can
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potentially be adjusted for all customers, sub-groups or even individuals if deemed relevant.

Before investigating the effects of adjusting the retention strategy, the marketing team is

looking for data-driven insights into potentially interesting directions. To generate these

insights the following two research questions are developed:

• How do machine learning models differ comparing predictive power and comprehen-

sibility in the context of predicting email conversion?

• Does the combined use of IAI and XAI methods enhance our understanding of ex-

planatory variables on the prediction outcome of email conversion?

1.2 Objectives

The aim of this study is to investigate, which types of mailings yield higher conversion rates

and understand why for these emails conversion rates are higher. Therefor machine learning

models are employed to investigate historical data, regarding customers and emails send to

customers. Insights enable the retention team to set the course of action, therefor insights

that can be translated into actionable strategies hold greater business value. Specifically

those that can enhance email conversion rates.

1.3 Organization context

Vandebron is a Green tech energy provider and is part of the Essent group, which is

one of the 3 biggest energy suppliers in the Netherlands. The main goal of Vandebron

is generating smart solutions that could accelerate the energy transition. To finance the

energy transition and stay financially stable they make margin on there products, like for

example energy contracts.

This project is executed by the Commercial analytics team, which is one of the two

data analytics teams. The data analytics team is responsible for maintaining a data stack,

supplying different domains with insights and provide prove of concepts to support data

driven decision making. This project is designed to support the marketing domain, within

Vandebron with insights on historical data.

1.4 Related work

The potential of machine learning for marketing purposes is underlined, by several papers

[1, 2, 3]. In literature this is accredited to the ability of machine learning methods to
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process large-scales unstructured data, having flexible model structures and yielding strong

predictive performance [2]. Statistical testing is often preferred in the field of marketing,

mainly because machine learning models rely on engineered features and flexible structures,

which can results in models becoming "black-boxes" that excel in prediction but lack in

delivering insights [2]. This threat is not only a threat for marketing purposes, but also for

other high-stake scenarios were explaining ’black-box’ models is not deemed sufficient [4].

More recently understanding how, when, and why predictions are made has become

very popular. This interest led to a lot of research into the field, leading to a variety of

techniques focused on interpreting and explaining machine learning models [5, 4]. The

terms explainability and interpretability are often used interchangeably, but in this study

we adhere to the following distinction. Interpretability refers to the ease with which a

human can understand why a model makes certain decisions. It’s about understanding

the model’s overall functioning and therefor it can only performed on so called ’white-

box’ models [6]. Paradigms underlying these type of problems fall within the field of

interpretable AI (IAI). Explainability is about understanding the predictions made by

complex models and making the decision process understandable for humans. The goal is

to provide clear explanations that are comprehensible for the end users understanding why

decisions were made by the model, without the need to understand the inner functioning

of a model [7]. This allows for investigating ’black-box’ models using different techniques.

Within the field of explainable AI (XAI) a sub-group of methods are applicable over a

wide-range of different (machine leaning) models, called model-agnostic methods [5].

So far, there is no scientific research on retention approaching the task as an email

conversion problem using XAI or IAI. The task of retention has received some attention

investigating customer renewal (or churn) in subscription-based companies using different

methods [8, 9, 10]. Research in this area of practice is tailored towards explaining, black-

box models. While marketing research is calling for researchers to extend the methods

to improve interpretability, to make machine learning more suitable [2]. This stresses

the need for more scientific research on applying the field of IAI and XAI for marketing

purposes. An other factor causing resistance in the field of marketing towards employing

machine learning is the difficulty of proving causality [2]. This problem is despite recent

developments in the field of IAI [11], recognized in this paper and considered a limitation.
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1.5 Report structure

In this report the background of different machine learning methods and techniques will

be explained. After which the methodology provides information regarding the data, pre-

processing, selection of features, applied models and the evaluation of the used methods.

The result chapter evaluates the different models and focuses on comprehension of the

tuned models applying XAI and IAI techniques. In the final chapter results are discussed,

the work is concluded and the limitations are discussed among some suggestion for further

research directions.
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2

Background

In this chapter the background on techniques used for modeling are explained diving into

tree based-models, data transformations and a selection of machine learning models. In

the second section of this chapter the aim is to explain the background of methods used

for understanding the decision process.

2.1 Tree-based models

Tree-based models systematically divide the space of variables into several subsets, leading

to discretization of continuous explanatory variables. Their structure is characterized by a

series of straightforward IF-THEN statements, which lend simplicity and interpretability

to the resulting decision trees. Tree-based models excel in situations where the relationship

between explanatory and predictive variables exhibits a moderate level of complexity, and

where data trends are non-linear and non-monotonic. These characteristics render them

highly suitable for a multitude of tabular machine learning tasks [5].

Interestingly, tree-based models often function effectively without necessity for heavy

engineering for features, allowing the model to perform well without data transformations

scaling and missing values. This is because the division of data within these models relies

on inequality (i.e. whether a explanatory variable’s value is greater or lesser than a certain

threshold), rather than being determined by the precise value of the explanatory variable

itself [5, 12].

Despite their fundamental simplicity, tree-based models often deliver impressive results.

They have been observed to outperform neural networks for regression or classification on

tabular tasks (data displayed in columns or tables), showing their efficacy and robustness

[13].
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2.2 Data transformations

The need for specific transformations is often model-dependent, tree-based models function

effectively with minimal transformations. This is because the division of data within these

models relies on inequality (i.e. whether a features value is greater or lesser than a certain

threshold), rather than being determined by the precise value of the explanatory variable

itself [5, 12].

Categorical encoding is a crucial transformation that converts categorical data into a

format that can be ingested by machine learning algorithms to enhance predictive accu-

racy, particularly when there is no ordinal relationship among the variables. This process

involves the numerical representation of categories containing string values.

The preparation of data for machine learning algorithms can involve various transfor-

mations such as imputing missing data, transforming categorical data, and scaling of mea-

surements. Transforming data serves the goal of converting the data into a usable and

interpretable format and often lead to faster convergence of machine learning models [12].

Different models perform well with the necessity for different transformations. Decision

trees often perform well with a minimal amount of transformations, for example scaling is

often not needed because of the discretization.

Categorical encoding is used to convert categorical data into a format that can be pro-

vided to machine learning algorithms to improve prediction, when their is no ordinal re-

lation between the variables. Therefor data containing labelled data are transformed into

a suitable format. The first method is suitable for low cardinality and called one-hot en-

coding, which generates a sparse matrix generating a explanatory variable for every label.

The explanatory is assigned a positive or negative label dependent on the pressence of the

label in the original data [12]. For explanatory variables containing a high cardinality this

can create explanatory variables, with low variance and therefor this is often not desirable.

A technique called frequency encoding is used to replace each category by the frequency or

proportion of occurrences of that category in the explanatory variable column. Frequency

encoding can help preserve the information about the frequency of categories [14].

Various strategies for addressing missing values in machine learning data have been de-

veloped, their applicability hinging significantly on the reason behind the absence of the

value [15]. If the data is Missing Completely at Random (MCAR), meaning the missing-

ness has no correlation to any other variables, elementary techniques (E.g. mean, mode,

or median imputation) are often sufficient. On the other hand, when data is classified
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as Missing at Random (MAR), where missingness is tied to certain observed explanatory

variables but not the unobserved ones, more sophisticated methods become necessary. A

prime example of such a method is the indicator technique, which is typically used when the

missingness can signal specific characteristics, like the non-completion of a survey [16]. In

the case of Missing Not at Random (MNAR) data, which suggests missingness is associated

with the target variable or the missing data itself, handling becomes more intricate. Such

missingness can introduce biases into classification predictions, necessitating advanced im-

putation or modeling techniques. Simple imputation approaches can still be applied, albeit

with caution due to their potential to distort the full distribution of the data [15]. These

methodologies allow for more accurate handling and interpretation of missing data, con-

tributing significantly to the robustness of machine learning predictions [17].

The scaling of explanatory variables is commonly applied to standardize datasets and

enhance the efficiency of model training and lessen the impact of outliers. However, it

could obscure model interpretability by introducing another layer of complexity. Therefore,

the necessity for scaling frequently depends on the specific algorithm being employed. For

instance, in the context of tree-based models, scaling is often optional because these models

partition data based on value comparisons, but not the absolute values themselves [18].

Yet, it’s worth noting that scaling can influence impurity measures, potentially impacting

the determination of splits and the assignment of explanatory variable importance. Several

standardization methods exist to cater different data characteristics and requirements. The

Minmaxscaler, for example, re-scales explanatory variables to fit within a 0 to 1 range

without making distribution assumptions, making it a good fit for general standardization

needs. On the other hand, the RobustScaler employs statistics that are impervious to

outliers for explanatory variable scaling. Specifically, it subtracts the median from each

data point and divides by the Interquartile Range (IQR), confining most scaled values

within the 0 to 1 range. This approach is especially beneficial for explanatory variables

with extreme outliers, as it prevents these anomalies from overly distorting the model’s

understanding of the data [19].

2.3 Feature selection methods

Feature selection is the process of selecting a subset of engineered features out of all ex-

planatory variables and is often implemented in machine learning, offering multiple benefits
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such as enhancing model performance, reducing the risk of overfitting, increasing predic-

tion performance and reducing model complexity [20]. The cumulative impact of these

benefits results in model interpretability. In contexts where model understanding is of spe-

cial interest, such as this research, the improved interpretability of models holds particular

importance and relevance.

Explanatory variable selection techniques are generally classified into three broad cate-

gories: filter methods, wrapper methods, and embedded methods. Filter methods, in the

context of decision trees, involve a pre-processing step where each explanatory variable is

individually evaluated for its relevance and predictive power (E.g. evaluation of correla-

tions or variance within the explanatory variable). Wrapper methods conceptualize the

selection of an optimal explanatory variable set as a search problem, examining and con-

trasting diverse explanatory variable combinations. This search process is informed by the

performance of a specific machine learning model, hence the name ’wrapper’. One such

strategy is Forward selection, an iterative method that begins with an empty explanatory

variable set. During each iteration, it incorporates the explanatory variable that yields the

maximum enhancement in model performance. This process is sustained until no further

improvement is witnessed or a predetermined explanatory variable limit is reached [21].

Recursive Feature Elimination (RFE), also an iterative procedure, but uses explanatory

variable importance to remove the least important explanatory variables based on their

importance scores. This elimination process is reiterated until only a specified number

of explanatory variables persist. Both forward selection and RFE provide a practical and

systematic way to navigate the search space, optimizing the balance between model perfor-

mance and complexity. Embedded explanatory variable selection is, when the selection is

incorporate is the model training phase, this is often automatically the case with Desicion

trees, since it can automatically decide not to select certain explanatory variables.

2.4 Classification models

This chapter delves into the foundations and working mechanisms of four tree-based mod-

els; Decision Trees, Random Forests, Adaptive Boosting (AdaBoost), and the Histogram-

based Gradient Boosting Tree (HistGradientBoosting).

Classification and Regression Trees (CART) is a highly intuitive and versatile machine

learning method that is applicable to both categorical (classification) and continuous (re-

gression) dependent variables. This popular decision tree implementation models the data
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decisions based on specific feature values [22], the method has proven it’s effectiveness over

many years and applications in different fields [23, 24].

The primary principle behind CART is binary recursive partitioning, wherein the data is

split into two child nodes at each decision node, this is done according to a certain measure

(E.g. Gini or entpy importance). The splitting process starts from a root node that includes

the entire dataset, and it proceeds by making the split that results in the largest possible

reduction in heterogeneity (classification) or variation (regression) within the child nodes

[22]. CART is prone to overfitting, especially with complex trees. Therefore, overfitting

techniques are often used. A possible solution is control of the tree size and complexity,

enhancing the model’s generalization capabilities [22].

Random Forests, an extension of decision trees, addresses some of the limitations of

single decision trees. By constructing a multitude of decision trees and averaging their

predictions, Random Forests mitigate the risk of overfitting and offer a more stable and

generalized model [25].

Random Forests are particularly efficient with large datasets with high dimensionality.

They can manage a large number of features without selection, by using a technique called

bootstrap aggregating or bagging to increase robustness and performance compared to

Decision trees [25].

As an ensemble model, Random Forests often provide superior performance compared

to individual models; however, this comes at the cost of interpretability as the decision-

making process within a forest of trees is far more complex than that of a single tree [26].

Adaptive Boosting (AdaBoost), operates by iterative adjusting the weights of trees dur-

ing training. It is adaptive in the sense that subsequent weak learners are tweaked in favor

of those instances misclassified, this puts special attention to the weaker classifiers. Sub-

sequently, a new model is trained on these re-weighted instances. In doing so, it creates

a sequence of weak models that gradually improve at the classification task [27]. On the

downside, AdaBoost can be sensitive to noisy data and outliers as it strives to correct all

misclassifications, including those that may stem from noise [28]. Moreover, AdaBoost

demands careful tuning of various hyper-parameters, such as the number of iterations, and

may be more computationally expensive than some other methods [29].

Histogram-based Gradient Boosting (HistGradientBoosting), signifies another progres-

sion in the development of boosting techniques. By binning continuous input explanatory
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variables into discrete bins and subsequently constructing the histogram of the data, Hist-

GradientBoosting considerably accelerates the training process and allows the algorithm

to utilize integer-based data structures [30]. Advantages are proficiently managing of large

datasets and provides exceptional predictive performance, requiring less hyper-parameter

tuning than traditional Gradient Boosting [30]. It is also designed to handle missing values

without prior data imputation, making it more user-friendly [30].

2.4.1 Interpretable AI: Decision Tree

The easy-to-follow visual representation of decision trees significantly contributes to their

interpretability. The tree root, located at the top, signifies the initial condition, while

the leaves at the bottom denote the final results. The journey from the root to any leaf

constitutes a chain of decisions leading to a particular outcome, thereby explaining the

prediction process at it’s full extent [22]. Also the decision tree visualization allows to

follow the support in the train data, this allows to explain the correlation between the

explanatory variables and prediction. Therefor this method is recommended for research

looking for interesting and actionable explanatory variables [31].

2.4.2 Explainable AI: SHAP

Explainable AI techniques, on the other hand, are used when humans are made to enable

a human to understand why a predictions was made by the AI. This allows to even explain

models considered ’black box’ models [5]. In this research we will be looking at a specific

method, which belongs to the class of ’model agnosic’ methods, meaning that the method

can be applied on many different types of AI’s.

Shapley Additive Explanations (SHAP) is a unifying measure that allocates the change

in prediction expectation, when considering a particular feature, to that feature itself. The

method was first introduced by Lundberg and Lee [32], based on the cooperative game

theory concept the Shapley value.

To compute the SHAPley values, an initial average prediction for the entire dataset is

calculated. Subsequently, for each instance, every potential feature combination is consid-

ered, leading to a power set of features (2features). This extensive exploration is due to the

underlying idea of Shapley values, which is based on the idea that the outcome of all feasi-

ble combinations of variables should be taken into account to determine the contribution

of a single variable.
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For each feature combination, the model prediction is compared when including and

excluding the feature of interest. The difference between these two predictions reflects the

marginal contribution of that feature. The Shapley value for each feature is then calculated

by averaging these marginal contributions over all possible feature combinations.

Due to the exponential explosion, if the number of features grow, calculating exact

Shapley values can be computationally heavy. As a result, popular approximation methods

are designed. One of these methods is KernelSHAP, which is allowed to use for both

trees and ensemble methods. This method also provides the possibility to account for

interactions among features [33].

Shapley values are used to make individual prediction, but an interesting aspect that

certain implementations of SHAP provide is to account for interaction values. Similar to

the calculation of Shapley values, this process averages over all possible feature coalitions.

The end result is a square matrix of SHAP interaction values for each instance. This gives

a symmetric matrix, with the main effects on the diagonal and the interactions effects off

diagonal.
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