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Chapter 2

Literature Review

This chapter provides an overview of previous research with Global Positioning System (GPS) related
to this study. First, some literature about detecting the stop locations themselves is provided,
followed by predicting the arrival time.

2.1 Detecting Stop Locations

The studies about detecting stop locations differ slightly from this study. The difference is that the
studies below detect the stop locations themselves, while the stop locations in this study are already
known.

Yang et al. (2014) implemented a supervised machine learning model, Support Vector Machine
(SVM) with nested k-fold cross validation, for identifying urban freight delivery stops from second-
by-second GPS data in New York City. This model is based on delivery stops with a minimum stop
duration of around ten minutes. In total, 2249 stops were detected from the GPS data. Most of the
identified stops were nondelivery stops, only 42 were delivery stops. The extracted features from the
GPS data were: the duration of a stop, the distance from a stop to the center of New York City,
and the distance to a stop closest to a major bottleneck. The ground truth labels, the delivery stops
of the trip, were available due to the driver log data recorded by drivers of the delivery trucks. The
accuracy of the linear SVM with nested 10-fold is higher than 99% for the training and testing data
sets.

Another study to detect the locations of a stop was conducted by Ting et al. (2017). An unsuper-
vised model was implemented, whereby a dynamic approach was used. Hereby no prior knowledge
is given while stop locations can be discovered. A stop is a part of a trip where the vehicle has
spent a minimal amount of time. The use of GPS trajectories discovers these stop locations. Each
trajectory in the data set consists of temporal, ordered, timestamped points with geographical co-
ordinate information such as longitude, latitude, and altitude. The basis of Ting et al. approach is
that the stop of a trajectory should have a lower moveability and a higher density of GPS points.
Therefore, finding an appropriate method to estimate the density when moveability is considered
is meaningful. The original DBSCAN (Density-Based Spatial Clustering of Applications) method
is improved to consider moveability by giving a lower moveability a larger weight. The improved
DBSCAN model has an F1-score of 0.9583 against an F1-score of 0.7778 for the standard DBSCAN
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model. From this it follows that the improved model works better than the standard model.

2.2 Predicting Arrival Times

Research has also been conducted into predicting the arrival time at a stop. This is related to the
subject of this study since the data consists of GPS points as well. However, these studies are not
related to the research question. The difference with this research is that the studies below predict
the arrival time, while we want to predict whether the vehicles have arrived or departed: yes or
no. In this research, the detected arrival or departure time is derived from the timestamp of the
corresponding GPS point.

Liu et al. (2020) collected a GPS data set (i.e., update frequency about 30 seconds) of buses’ tra-
jectories in Dublin and uses an efficient pre-processing method that compares widely used prediction
models for predicting the bus arrival times. The pre-processing method contains two phases. Trip
segmentation is performed first, followed by point interpolation. Point interpolation is performed
in two ways: interpolating a GPS point every 100 meters and interpolating GPS points at a bus
stop. These methods are called distance-based trip and stop-based trip, respectively. 4311 trips are
selected after pre-processing the data, where each distance-based trip contains 191 points, while each
stop-based trip includes 59 points. Predicting the arrival time is conducted on the two interpolation
techniques and tested on five prediction models: delay, k-nearest-neighbor (k-NN), kernel regression
(KR), additive model, and recurrent neural network using long short term memory (RNN-LSTM).
RNN-LSTM performs best, followed by KR, k-NN, delay, and the additive model. Besides, the stop-
based trip interpolation method outperforms the distance-based trip method, significantly reducing
the training and prediction computational cost while maintaining satisfactory prediction accuracy.

A new bus arrival time prediction algorithm that combines GPS data with real-time estimates
of inter-station travel speeds is developed by Sun et al. (2007). The two weeks’ collected GPS data
were logged with a fixed time interval of 26 seconds from a bus route in China. Before predicting
the bus arrival time, the exact location of the bus on the route based on its GPS data is determined.
After which, the average travel speed to the station is calculated, and the bus running direction.
Finally, a FSM model is constructed with four states to predict the arrival times at a station. The
four states are beginning, prediction, terminus, and unknown. The bus starts in the beginning state
and transitions to the prediction state when the bus route and bus running direction are found. In
the prediction state, the predicted arrival times to the stations continually update. When a bus
reaches the final stop, it will transit to the terminus states. In every state, an unexpected incident
can occur. In that case, transition to the unknown state takes place. The results indicate that
the proposed system can achieve satisfactory accuracy in predicting bus arrival times and perfect
performance in predicting travel direction.

As mentioned, the studies from this chapter are not entirely in line with this research since we
want to predict if the vehicle has arrived at or departed from a stop location. In addition, we are
dealing with a special situation too, namely unloading and loading at the same location, which is
seen as two stops. Previous research on this topic has not yet been performed. Therefore different
models will be implemented on different feature sets to investigate which combination gives the best
performance. The used models and feature sets are discussed in Chapters 4 and 5, respectively.
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Chapter 4

Methods

In the previous chapter, the operation of the current stop detection model was described. In this
chapter it is investigated which machine learning models are best to apply for a stop detection model.
First, a brief explanation about supervised learning is given, followed by a description of the different
machine learning models which will be used in the following chapters of this research. Then, various
performance metrics are explained. Performance metrics are needed to evaluate and compare the
performance of the different models later in this research. Finally, a description of hyperparameter
tuning is given, which is required to receive the best results.

4.1 Machine Learning Techniques

Machine learning is a field of artificial intelligence (AI). As Han et al. (2012a) describe, machine
learning is a technique whereby computers can learn from data without any human knowledge.
When using machine learning techniques, the computers will understand the problem complexity,
recognize patterns and make intelligent decisions based on data. Machine learning algorithms can
be divided into the following categories (Alzubi et al., 2018):

• Supervised learning: predict the outcomes for new data.
• Unsupervised learning: get insights from large volumes of new data.
• Semi-supervised learning: a combination of supervised and unsupervised learning.
• Reinforcement learning: during the learning process, a response tells whether the output is

correct or not. The algorithm explorers and rules out various possibilities to get the correct
output.

This research addresses supervised learning.

4.1.1 Supervised Machine Learning

According to Alzubi et al. (2018), Muhammad and Yan (2015), and Dey (2016), supervised machine
learning algorithms are designed to learn by example. In addition to the independent variables, the
training data also contains the correct answer, the truth labels. During training, the algorithm will
search for patterns in the data that correlate with the desired output. After training, the algorithm
will take new unseen inputs from the test set and determine which label the new inputs will be
classified based on prior training data. The objective is to predict the correct label for the test data.
A visualization of the supervised learning process is in Figure 4.1.

8



Figure 4.1: Supervised machine learning (Muhammad and Yan (2015))

Supervised machine learning techniques are divided into two different types of problems. First,
there are classification problems where the output is assigned to discrete variables. Second, there
are regression problems where the output is assigned to continuous variables (Bishop, 2006, page 3).
Since the goal of the research is to detect the arrival and departure, supervised learning including
classification problems is used. The outcome of the arrival detection will be: arrived or non-arrived.
The same applies to the departures: departed or non-departed. Hence, we can speak of binary
classification. Some functional classification models are described in the next subsections.

4.1.2 Decision Tree

Decision Trees (DTs) can be seen as a basic model. When the data is nonlinear, DT can be used.
The trees are built through split the data multiple times, starting from the root node. The data is
split into subsets from this node according to certain cutoff values in the features until the terminal
node (Molnar, 2019), also known as the leaf node. Every cutoff is called a decision rule. How many
decision rules are taken depends on the max depth parameter. When this parameter is set to high,
the biggest disadvantage of DTs will occur, namely overfitting. The green line in Figure 4.2 is the
result of overfitting. The DT learned from the exceptions.

Figure 4.2: The green line represents overfitting and the black line represents a good fit

9



4.1.3 Random Forest

Ensemble learning is an improved machine learning technique by combining several models into one
model. Bagging and boosting (Section 4.1.4) are two popular ensemble methods. A popular bagging
method is the Random Forest (RF) algorithm. According to Couronné et al. (2018), RF creates
data samples from the data set with bagging (bootstrap aggregation). For each sample data, a DT is
trained. Every tree gives a prediction, whereby the final prediction is the class with the most votes,
as in Figure 4.3. RF can handle large data sets. In addition, an advantage over the DT mentioned
by Xuan et al. (2018) is that the algorithm is not that sensitive to extreme values and, therefore,
not easy to overfit. However, the RF has some disadvantages as well. First, the training process
requires much computational time in combination with many trees to build. Secondly, ensemble
learning suffers from more difficult interpretability. The combination of all the trees is like a black
box.

Figure 4.3: Structure of the Random Forest (Habib et al., 2020)

RF is the first model to be implemented and tested. While building the RF, there are some
essential hyperparameters to tune, see Table 4.1. The column range denotes the tried values while
tuning the hyperparameters. Note that when the hyperparameter bootstrap is set to false, the whole
data set is used to build each tree. The hyperparameter criterion can be set with Equation (4.1),
the Gini index, or the Entropy in Equation (4.2), where c is the number of classes and Pj is the
probability of class j (Han et al., 2012c, page 341). The main difference between the criteria is the
ranges of the interval and the computation time. The values of the Gini index are inside the interval
[0, 0.5], while the Entropy interval is [0, 1]. The computation time of the Gini index is faster since
the Entropy uses the logarithm function (Aznar, 2020).

Table 4.1: The hyperparameters of the Random Forest

Hyperparameter Definition Default Range
n estimators Number of trees to build 100 [20,200]

criterion Function to measure the quality of a split Gini Gini,Entropy
max depth Maximum number of nodes in a tree None [10,50]

min samples split Minimum number of instances required before splitting a node 2 [2,15]
min samples leaf Minimum number of instances required to be at the leaf node 1 [1,5]

max features The number of features to consider when looking for the best split sqrt [2,number of features]
bootstrap Uses bootstrap samples when building trees True True,False
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Gini = 1−
c∑
j

P 2
j . (4.1)

Entropy = −
c∑
j

Pj · log2 ·Pj . (4.2)

Random Forest Algorithm

Algorithm 1 is the RF algorithm described by Hastie et al. (2009a).

Algorithm 1: Random Forest

for b=1 to B: do
(a) Draw a bootstrap sample Z∗ of size N from the training data;
(b) Build a random forest tree Tb to the bootstrapped data, by recursively repeating the
following steps for each terminal node of the tree, until the minimum node size nmin is
reached;

i Select m features at random from the p features.
ii Pick the best features/split-point among the m features.

iii Split the node into two daughter nodes.
end

Output the ensemble of trees {Tb}B1 ;

To make a prediction at a new point x:
Let Ĉb(x) be the class prediction of the bth random forest tree. Then
ĈBrf (x) = majority vote{Ĉb(x)}B1

4.1.4 Gradient Boosting

Gradient Boosting (GB) is another ensemble learning method. A difference between the bagging
method RF is that GB builds one tree at a time. According to Zhang and Haghani (2015), the
boosting method strategically resamples the training data to provide the most useful information
for each consecutive model. This is one of the major differences between bagging and boosting. The
misclassification errors of the previous models are used while building the new tree. This new tree
tries to reduce the errors from the previous tree. To reduce the error, a loss function is used to
determine the error. Figure 4.4 is a visualization of GB where the red bar denotes the error. Hence,
the combining process of the ensemble learning of the trees is from the beginning, while the RF
algorithm combines the trees at the end of the process. There are some drawbacks to the boosting
technique. There is a risk of overfitting since the GB keeps trying to minimize the error. This can
be avoided by tuning the n estimators parameter, which denotes the number of boosting stages to
perform. Another drawback is the training time, which can take a long time since all the trees are
built sequentially.
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Figure 4.4: Structure of the Gradient Boosting (CatBoost, 2018)

Gradient Boosting Algorithm

The algorithm of the GB is described by Zhang and Haghani (2015). The first step is to set the
objective function:

Objective = min Loss. (4.3)

Since we want to minimize the errors, the objective consists of the loss function, which we want
to minimize. Next, the model f0(x) is initialized with a constant value:

f0(x) = argminp

N∑
i=1

L(yi, ρ). (4.4)

Now we can compute the negative gradient of the loss function for all instances:

zim = −
[
∂L(yi, f(xi))

∂f(xi)

]
f=fm−1

(4.5)

The GB continues by fitting a decision tree gm(x) to predict the targets zim from covariates xi
for all training data. Whereafter, the gradient descent step size is computed:

pm = argminp

n∑
i=1

L(yi, fm−1(xi) + pgm(xi)) (4.6)

Now we have built a new tree, the model wil be updated as follow:

fm(x) = fm−1(x) + pmgm(x), (4.7)

where the first part shows the prediction of the previous trees and the second part represents the
tree that we just built, as in Figure 4.4. This process will repeat from Equation (4.5) till (4.7) until
we reached M , the number of estimators to build.
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4.1.5 XGBoost

Over the years, evolution took place on tree-based algorithms. The first algorithm is the DT, followed
by Bagging, RF, Boosting, GB, and XGBoost. XGBoost stands for eXtreme Gradient Boosting and
is based on gradient boosting trees. As mentioned by Chen and Guestrin (2016), a regularization
term is introduced by XGBoost, and the objective function from Equation (4.3) is now defined as
follow:

Objective = min Loss+ Ω, (4.8)

where Ω denotes the regularization term. This term consists of three parts as in Equation (4.9).
The first term is the weight γ times the T leaves. The second term is the L1 regularization term
on the weight, where α is the regularization weight, and wj are the values of leaf j. The last term
is the L2 regularization term on the weight and uses λ as the regularization weight parameter. The
regularization terms are very similar. The difference is that the L1 regularization takes the absolute
value of the leaves, while the L2 regularization term takes the square of the leaves.

Ω = γT + α
T∑
j=1

|wj |+
1

2
λ

T∑
j=1

W 2
j . (4.9)

The introduced regularization term can prevent overfitting, as Mo et al. (2019) described, which
is an advantage over the GB. Another advantage of XGBoost is the use of parallel and distributed
computation, making the learning process faster to give a quicker modeling process. In addition to
these advantages, XGBoost can handle missing values by train both routes of the split and select
the best option. A disadvantage of the XGBoost is that it does not work well on small data sets,
and it has many hyperparameters, which require parameter tuning to improve the performance.

XGBoost is the second model to be implemented and tested. Table 4.2 displays the hyperpa-
rameters to be tuned. Where the column range denotes the tried values during the tuning process.
Beside these hyperparameters, the used learning objective and the evaluation metric need to be
set. The objective is set on binary : logistic. This objective is the logistic regression for binary
classification, whereby the output is the probability belonging to a certain class.

Logistic Regression =
ex

1 + ex
. (4.10)

The output of the logistic regression is in the range of [0,1]. Thus, an output above 0.5 belongs
to class 1, and otherwise, the output belongs to class 0. For the evaluation metric, the error is used,
which is for binary classification as well.

Error =
number of wrong cases

number of all cases
. (4.11)
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Table 4.2: The hyperparameters of the XGBoost

Hyperparameter Definition Default Range
num boost round Number of trees to build - [20,200]
eta (learning rate) Prevents overfitting by using step size shrinkage in the update 0.3 [0.1,1]

gamma Minimum loss reduction required to make a split 0 [1,5]
max depth Maximum number of nodes in a tree 6 [5,50]

min child weight Minimum sum of instance weight needed in a child to make a split 1 [1,15]
max delta step Maximum delta step we allow each leaf output to be 0 [0,10]

subsample Takes a subset of the data 1 [0.5,1]
colsample bytree Ratio of features when constructing each tree 1 [0.1,1]
colsample bylevel Ratio of features for each level in the tree 1 [0.1,1]
colsample bynode Ratio of feature for each node in the tree 1 [0.1,1]

alpha L1 regularization 0 [0,1]
lambda L2 regularization 1 [0,1]

4.1.6 Support Vector Machines

Support Vector Machines (SVM) can be used for both linear and nonlinear data sets. First, we focus
on the linear SVM. The goal of the SVM described by Hastie et al. (2009b), is to find the optimal
hyperplane between two classes as in Figure 4.5a. The hyperplane dimensionality equals the number
of features minus one. The maximum margin in Figure 4.5b is used to find the optimal hyperplane.
The maximum margin is the biggest distance between the data points of the two distinctive classes.

(a) Find optimal hyperplane (b) Maximum margin

Figure 4.5: Hyperplane SVM (Ippolito, 2019)

When dealing with nonlinear data, the kernel trick can be applied (Witten et al., 2017). The
kernel trick transformes nonlinear data into linear data. The most common kernel functions are the
polynomial in Equation (4.12), radial basis function (RBF) in Equation (4.13), and the sigmoid in
Equation (4.14) (Han et al., 2012b). How these kernel functions are applied in the SVM is explained
during the description of the SVM algorithm below.

Polynomial : K(xi,xj) = (xi · xj + 1)h (4.12)
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RBF : K(xi,xj) = e−||xi−xj ||2/2σ2

(4.13)

Sigmoid : K(xi,xj) = tanh(κxi · xj − δ) (4.14)

SVM has the advantage it can still be used on data sets with high dimensionality, even when the
dimensional is higher than the number of instances (Auria and Moro, 2008). A major drawback of
using the SVM model is the required training time for large data sets. In addition, when the number
of features is much greater than the number of samples, choosing the appropriate kernel function
and regularization term is crucial to avoid overfitting. Moreover, the SVM uses an expensive 5-fold
cross validation to provide probability estimates (Pedregosa et al., 2011). Therefore, the preference
is to use SVM models on smaller data sets.

The third model to be implemented and tested is the SVM. The hyperparameters in Table 4.3
will be tuned to receive the best results using the SVM. A misclassification receives a higher penalty
with a higher penalty term C and will be tuned in the range between 1 and 100.

Table 4.3: The hyperparameters of the Support Vector Machine

Hyperparameter Definition Default Range
C Penalty term 1.0 [1,100]

kernel Kernel type RBF Poly,RBF,Sigmoid
gamma Kernel coefficient Scale Scale,Auto

Support Vector Machine Algorithm

The SVM algorithm is described by Kecman and Wang (2005), Hastie et al. (2009b) and Cristianini
and Ricci (2008) where the notation of Kecman and Wang is used. We train a data set of N pairs
and p features: D = {(x1, y1), (x2, y2), · · · , (xN , yN )|xi ∈ Rp, yi ∈ {−1, 1}}. The hyperplane is
defined as:

d(x,w, b) = wTx + b =
n∑
i=1

wixi + b, (4.15)

where b is the scalar and is called the bias. After training the model, the weights are obtained,
and unseen data, xp, can be feed to the model. The SVM produces output 0 according to an
indicator function given by:

iF = o = sign(d(xp,w, b)), (4.16)

where the standard notation for the output from the SVM equals 0. Here from follows if
d(xp,w, b) > 0, the pattern xp belongs to class 0, else the pattern belongs to class 1. To find
the optimal hyperplane, the margin M = 2

||w|| should be maximized. Minimizing the weights

wTw =
∑n
i=1 w

2
i leads to the maximization of the margin M. Hence, the learning problem is

min
1

2
wTw subject to yi[w

Txi + b] ≥ 1, i = 1, · · · , N. (4.17)
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The classes in the feature space may overlap each other. To be able optimizing M with overlapping
classes, slack variables, ξ = (ξ1, ξ2, · · · , ξN ), should be added. With these slack variables, it is allowed
to be on the wrong side of the margin for some points, also known as the soft margin. We can rewrite
Equation (4.17) as follow:

min
1

2
wTw + C

N∑
i=1

ξki subject to

{
wTxi + b ≥ 1− ξi, for yi = 1, ξi ≥ 0

wTxi + b ≤ −1 + ξi, for yi = −1, ξi ≥ 0
(4.18)

This is the defined support vector classifier for the non-separable case, where C is the cost
parameter (the penalty term in Table 4.3). In the case of the separable case, C is set to infinity.
Cross validation is used to determine how many misclassifications and observations are allowed inside
of the soft margin to get the best classification. Equation (4.18) is a convex programming problem,
which can be solved with the Lagrange primal function

Lp(w, b, ξ, α, β) =
1

2
wTw + C

N∑
i=1

ξi −
N∑
i=1

αi{yi[wTxi + b]− 1 + ξi} −
N∑
i=1

βiξi, (4.19)

where αi and βi are the Lagrange multipliers. The Lagrangian function has to be minimized
with respect to w, b and ξ, and maximized with respect to the Lagrange multipliers. This problem
can be solved in a dual space. To minimize w, b and ξi, we take the following derivatives and set
these derivatives to zero. We obtain the following results:

∂Lp

∂w0
= 0, i.e., w0 =

N∑
i=1

αiyixi (4.20)

∂Lp

∂b0
= 0, i.e.,

N∑
i=1

αiyi = 0 (4.21)

∂Lp

∂ξi0
= 0, i.e., αi + βi = C (4.22)

The next step for solving the problem in the dual space is to satisfies the Karush-Kuhn-Tucker
(KKT) conditions below,

αi{yi[wTxi + b]− 1 + ξi} = 0, i = 1 · · · , N (4.23)

βiξi = (C − αi)ξi = 0, i = 1 · · · , N (4.24)

Substituting (4.20), (4.21) and (4.22) into (4.19) will lead to the Lagrangian Wolfe dual objective
function:

Ld(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj

subject to 0 ≤ αi ≤ C and
N∑
i=1

αiyi = 0

(4.25)
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The Lagrangian Wolfe objective function only depends on the Lagrangian multipliers, which is
a advantage since it is easier to be solved. Since we are dealing with nonlinear data, the kernel
trick can be used from this point. Instead of the Lagrange Wolfe dual above, the following objective
function will be used with the same constraint as in Equation (4.25):

Ld(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi,xj), (4.26)

where K(xi,xj) is one of the kernel functions from Equation (4.12), (4.13), or (4.14) As described
by (Han et al., 2012b, page 413) the nonlinear data is transformed into a higher dimensional space.
Hereby, nonlinear mapping is used. After transforming the data into a higher dimensional space, a
linear separating hyperplane can be found.

4.1.7 Artificial Neural Network

The first created Neural Network (NN) is invented by Rosenblatt and is called the Perceptron,
which can be used for binary classification problems (Rosenblatt, 1958). The Perceptron contains
an artificial neuron, which will be explained later. The input layer consists of N neurons (the input
features), and the output layer is for binary classification (1 if it is truth, else 0) and consists of
one neuron. The Perceptron has evolved, nowadays multiple artificial neurons with multiple hidden
layers can be used and are called a Multi-Layer Perceptron (MLP). The MLP consist of minimal
three layers: one input layer, minimum one hidden layer, and one output layer. A visualization of a
two-layer (the input layer is not counted) MLP with four neurons in the hidden layer is visualized
in Figure 4.6.

Figure 4.6: Example of a MLP with n input features, one hidden layer with four neurons and the
output layer with one neuron

The input layer of the MLP consist of the input features, also known as the input signals. The
input layer passes the features onto the next layer. In the next layer, the first hidden layer, the
artificial neurons will apply different transformations to the data. The operation of these artificial
neurons is visualized in Figure 4.7. The input values will be multiplied, each with its own weight
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(W ), modified during the learning process. All these values will be added together with the bias
b. The final operation of the neuron is applying the activation function. Equation (4.27) gives the
output (y) of a neuron, where φ is the activation function (Baldeschi et al., 2019). The different
activation functions and their behavior will be explained later. If the MLP consists of multiple
hidden layers, the input of each artificial neuron in the current layer is the output of all artificial
neurons of the previous layer. Hence, we speak of a fully connected network since all the neurons in
a layer are connected to all neurons in the next layer. The same operations of the artificial neurons
will be applied in all neurons of the remaining layers. The MLP is a feedforward neural network
since the information is only passed forward to the next layer. This first phase of the training process
from the input layer to the output layer is called forward propagation.

y = φ(
n∑
j=1

wixi + b). (4.27)

Figure 4.7: Operations done by a neuron (Arnx, 2019)

Backpropagation

The output of the MLP is affected by the weights (W ) and the biases (b) and need therefore be
optimized. To find the optimal weights and biases, we first need to define a loss function. The
lower the loss, the better the model. Thus, we can speak of a minimization problem. Since we
are dealing with a binary classification problem, the error of the predictions is determined with the
binary cross-entropy loss function (Ho and Wookey, 2020):

Binary Cross− Entropy =
1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)), (4.28)

where N is the number of training instances, yi represents the actual class, and log p(yi) and
1−log p(yi) is the probability of class 1 and 0, respectively. The task of the loss function is to compare
the probabilities with the truth labels and calculate the penalty for any deviation between this truth
label and the output of the MLP (Ho and Wookey, 2020). Now we know the error of our prediction,
we will update the weights and biases by propagating the error back, which is called backpropagation.
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The gradient descent technique is used to get the loss as close as possible to zero next time. As
described by Torres (2020), the gradient descent technique changes the weights in small increments.
Therefore, the derivative of the loss function with respect to the weights is determined, which tells
us the direction we need to move towards to reach the minima, as in Figure 4.8. The step size
of the gradient direction is determined by the learning rate and needs to be optimized during the
hyperparameter optimization. Zhang (2019) described that the learning rate should not be set too
large since we may miss the minimum, but it should not be set too small either so we won’t get
stuck in a local minimum. The update rule is in Equation (4.29), where α is the learning rate. After
a specific batch size, the parameters are updated due to the gradient descent. There are different
batch sizes of the gradient descent mentioned by Zhang:

• Batch gradient descent: all data is trained at once. All the instances are used to calculate
the gradient. A drawback is a high risk of getting stuck at a local minimum.

• Stochastic gradient descent: one instance is trained at once and is used to calculate the
gradient. A drawback is a high variance in the model parameters and the computation time
since a lot more iterations are needed.

• Mini-batch gradient descent: instead of all data or one instance, N random instances are
trained each iteration. The best size of N should be set while optimizing the hyperparameters,
called batch size.

• Momentum: the momentum is an extension of the stochastic gradient descent. It helps to
converge faster.

The number of epochs denotes the number of times the processes forward and back propagation
is carried out on all the data.

Wij = Wij − α
∂Error

∂Wij
(4.29)

Figure 4.8: Gradient descent algorithm (Loy, 2018)
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Dropout

A common problem in MLP is overfitting due to the many hyperparameters that can be tuned. To
avoid this problem, the technique dropout can be used (Srivastava et al., 2014). Using dropouts does
not use all neurons during the training phase, as shown in Figures 4.9a and 4.9b. The dropout of a
neuron is determined by assigning a random probability p to the network. With probability p, the
neuron will remain in the network, and with probability 1 − p, the neuron will be removed. The
dropout rate can be applied on the input layer and the hidden layers. During the test phase, all
neurons remain in the network, but the weights are multiplied by p so that the actual output during
the test phase is the same as the expected output from the training phase. This is visualized in
Figures 4.9c and 4.9d. In addition that dropout can prevent overfitting, Srivastava et al. mentioned
dropout is a technique that can try many different architectures of the MLP more efficiently.

(a) Standard MLP (b) MLP after applying dropout

(c) Neuron at training time with probability p (d) Neuron at test time with probability p

Figure 4.9: Dropout Multi-Layer Perceptron (Srivastava et al., 2014)

Hyperparameters

Activation functions are used to control the outputs of the MLP as described by Nwankpa et al.
(2020). To get the desired output, the correct activation function should be used. With an activation
function, it is possible to receive nonlinearity output. The different activation functions are in Table
4.4, with a visualization in Figure 4.10.
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Table 4.4: Activation functions

Activation function Function Range

sigmoid φ(x) = 1
1+e−x (0,1)

tanh φ(x) = ex−e−x

ex+e−x (-1,1)

softplus φ(xi) = log(1 + ex) [0,inf)

ReLU φ(x) = max(0, x) [0,inf)
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Figure 4.10: Activation functions

The most successful and widely used activation function in the hidden layers is the Rectified
Linear Unit (ReLU) because of the better performance and faster learning compared to other ac-
tivation functions (Nwankpa et al., 2020; Ramachandran et al., 2017). Therefore, the ReLU will
be used as an activation function in the hidden layers in this research. Since we are dealing with
a binary classification problem, the sigmoid activation function is used on the output layer. The
sigmoid output is between 0 and 1, which will be interpreted as the probability that the input has
the positive class. For optimizing the weights, the Adam optimizer will be used. This is an opti-
mizer that works well for many different data, according to Kingma and Ba (2014). The remaining
hyperparameters to tune are in Table 4.5. Kandel and Castelli (2020) recommend using a power of
2 for the batch size parameter. Therefore the values 4, 8, 16, 32, and 64 are tried for optimizing the
batch size parameter.
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Table 4.5: The hyperparameters of the Multi-Layer Perceptron

Hyperparameter Definition Tried Values
epochs The number of cycles through the full training data set 10 till 100 with steps of 5

batch size The number of samples through the NN before updating the weights 4,8,16,32,64
hidden layers Number of layers between the input and the output layer 1,2

nodes hidden layer1 Number of nodes in hidden layer 1 8,16,32,64
nodes hidden layer2 Number of nodes in hidden layer 2 0,8,16,32,64

learning rate Step size of updating the weights 0.01, 0.001, 0.0001
dropout input layer The dropout rate in the input layer 0,0.10,0.20

dropout hidden layer 1 The dropout rate in hidden layer 1 0,0.10,0.20
dropout hidden layer 2 The dropout rate in hidden layer 2 0,0.10,0.20

Advantage and Disadvantage

The MLP has some advantages and disadvantages described by Tu (1996). An advantage of the MLP
is that it can be trained by both numeric and categorical input and output features. Although, some
transformation of the data is needed, which will be explained in Section 5.5.1. Another advantage
is that the MLP can detect complex nonlinear relationships between independent and dependent
features.

One of the major drawbacks is the unexplained behavior of the network. Its behavior is like
a black box. Furthermore, developing a neural network can be time-consuming since of the many
hyperparameters to tune. In addition, MLP is prone to overfitting. Moreover, training an MLP is
computationally expensive.

4.2 Performance Metrics

Performance metrics are used to evaluate and compare the performance of the models. Although
the accuracy and the error rate are widely used and are easy to calculate and interpret, it has some
drawbacks in imbalanced data sets (Fernández et al., 2018). The majority class can be predicted
well in imbalanced data, while the minority class is hard to predict correctly. In this case, a high
accuracy (or a low error rate) is still obtained, which is not a good indicator. Therefore, the following
performance metrics will be used.

Confusion Matrix

As Han et al. (2012c) described, the confusion matrix is a useful tool for analyzing how well the
model predicts the correct labels. A confusion matrix consists of four blocks, as shown in Figure
4.11. The meaning of the blocks in the context of this research are as follow:

• True Negatives (TN): A non-arrival is predicted as a non-arrival
• False Positive (FP): A non-arrival is predicted as an arrival
• False Negative (FN): An arrival is predicted as a non-arrival
• True Positive (TP): An arrival is predicted as an arrival

The meaning of the blocks is based on the arrival detection model. However, for the departures
model, non-arrival and arrival are replaced by non-departure and departure, respectively.
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Figure 4.11: Illustration of a confusion matrix (Bhagwat et al., 2019)

Precision

Precision measures the fraction of actually correct positive identifications. In the context of this re-
search, it is the fraction of the predicted arrivals (departures) that are actually arrivals (departures).
The formula of the precision measure is:

Precision =
TP

TP + FP
. (4.30)

Recall

Recall measures the fraction of actual positives that are identified correctly. In this research, it is
the fraction of the total arrivals (departures) predicted as arrival (departure). The recall formula is:

Recall =
TP

TP + FN
. (4.31)

F1-score

For both precision and recall, the perfect score equals one. However, the precision and recall are
related, and therefore it will not be possible to get a perfect score for both measures. When the
precision increases, the recall will decrease, and vice versa. An alternative way to use precision and
recall is to combine them into a single measure. This is the approach of the F1 measure (Han et al.,
2012c).

F1 =
2× precision× recall
precision+ recall

. (4.32)

4.3 Cross Validation

Cross Validation (CV), also known as k-fold CV, is one of the most commonly used data resampling
methods to tune the hyperparameters, according to Berrar (2018). When CV is used, the training
data is split into k approximately equal partitions, each, in turn, is used for testing, and the remainder
k-1 part is used for training (Witten et al., 2011). The testing part during CV is called the validation
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set. The validation set differs from the test set. During CV, the test data is not used at all. This data
will remain unseen until the final models will be tested. An example of a 5-fold CV is visualized in
Figure 4.12. The four green folds per split are the training data, where the blue fold is the validation
data. The same combination of hyperparameters is trained five times on the different compositions
of the folds.

Figure 4.12: Illustration of a 5-fold cross validation (Pedregosa et al., 2011)

4.4 Hyperparameter Tuning

The discussed models have multiple hyperparameters. These hyperparameters help with the learning
process and need to be tuned. Since there are many different combinations of hyperparameters,
tuning manually is time-consuming. In addition, there is a chance that the best combination of
hyperparameters is missed. Therefore, tuning will be performed by random search and grid search.

4.4.1 Random Search and Grid Search

Random search sets up a grid with values for the hyperparameters. Then, for each of the n-iterations,
random combinations of hyperparameters are selected to train the model and evaluate. Random
search is more efficient for hyperparameter tuning than grid search when there is a high dimension
of hyperparameters mentioned by Bergstra and Bengio (2012).

Another manner of selecting the best combination of hyperparameters is grid search. The main
difference between random and grid search is that the first method will not train and evaluate all
the hyperparameter combinations while the second method does. Therefore, searching for the best
hyperparameters using grid search will require an intensive and exhausting computation time. Grid
search is reliable in a low dimensional of hyperparameters (Bergstra and Bengio, 2012).

Yu and Zhu (2020) recommended using random search first to rapidly reduce the search space,
followed by a grid search to get a finer result. Therefore, this research uses both random and
grid search. First, 100 combinations of hyperparameters are trained and evaluated using random
search with a 5-fold CV. Next, a small grid is set up with hyperparameter values around the best
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hyperparameters after random search. Finally, grid search with a 5-fold CV is applied to obtain the
best combination of hyperparameters for the final models.

4.5 Summary

Several supervised machine learning models are explained in this chapter, and four of them will be
implemented and tested later in this research. First of all, the RF is selected as machine learning
model. The RF builds multiple trees, where the final prediction is the class with the most votes.
The RF is not that sensitive to extreme values and thus not easy to overfit.

Secondly, the XGBoost is used. The XGBoost creates multiple trees as well. The major difference
is that the XGBoost uses the misclassification of the previous tree while building the new tree. While
building that new tree, it will attempt to reduce the error of the prior tree. A regularization term
is used while building the XGBoost.

Thirdly, we have the SVM. The SVM finds a hyperplane between two classes which maximizes
the margin between the data points of the two distinctive classes. An advantage of the SVM is that
it can still be used on data sets with high dimensionality, even when the dimensional is higher than
the number of instances. A drawback is the required training time for large data sets.

Fourthly, we have the MLP, which consists of one or more hidden layers. A fully connected
network is created since the output of each artificial neuron of the previous layer is the input for all
artificial neurons of the current layer. During the backpropagation, the weights will be optimized,
which will reduce the error. The MLP consists of many hyperparameters which need to be tuned.

The performance of the models is evaluated and compared with the use of performance metrics.
The F1 tries to optimize both precision and recall.

To receive the best performances of the models and prevent overfitting, the hyperparameters will
be tuned. Tuning these hyperparameters will be performed by random search followed by a grid
search including 5-fold cross validation.
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Appendix B

Parameters Arrivals

The hyperparameters for the different models for the arrivals are determined with a 5-fold CV
random search, followed by a 5-fold CV grid search. The random state is set on 7 for all model
types. With this setting, the results are reproducible.

Random Forest

The results of the RF hyperparameters for all the four features sets are in Table B.1.

Table B.1: The selected hyperparameters of the RF for all arrival feature sets

Hyperparameter Feature set 1 Feature set 2 Feature set 3 Feature set 4
n estimators 100 80 150 35

criterion entropy entropy entropy entropy
max depth 43 25 20 22

min samples split 3 12 6 12
min samples leaf 2 1 2 1

max features 8 19 17 17
bootstrap True True True True
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XGBoost

The results of the XGBoost hyperparameters for all the four features sets are in Table B.2.

Table B.2: The selected hyperparameters of the XGBoost for all arrival feature sets

Hyperparameter Feature set 1 Feature set 2 Feature set 3 Feature set 4
num boost round 35 66 90 45

max depth 15 15 20 15
gamma 3 3 3 3

min child weight 7 3 3 7
eta 0.30 0.25 0.20 0.30

max delta step 1 1 1 1
subsample 1 1 1 1

colsample bytree 1 1 0.5 1
colsample bylevel 1 1 0.8 1
colsample bynode 1 1 0.5 1

alpha 0 0 0 0
lambda 1 1 0.5 1

Support Vector Machine

The results of the SVM hyperparameters for all the four features sets are in Table B.3.

Table B.3: The selected hyperparameters of the SVM for all arrival feature sets

Hyperparameter Feature set 1 Feature set 2 Feature set 3 Feature set 4
kernel RBF RBF RBF RBF
gamma scale auto auto auto

C 25 15 5 20

Multi-Layer Perceptron

The results of the MLP hyperparameters for all the four features sets are in Table B.4.

Table B.4: The selected hyperparameters of the MLP for all arrival feature sets

Hyperparameter Feature set 1 Feature set 2 Feature set 3 Feature set 4
Epochs 50 80 90 100

Batch size 64 64 64 64
# hidden layers 2 2 2 1

# nodes hidden layer 1 16 16 64 32
# nodes hidden layer 2 8 8 16 0

Learning rate 0.001 0.001 0.001 0.001
Dropout input layer 0.0 0.0 0.0 0.0

Dropout hidden layer 1 0.0 0.0 0.2 0.0
Dropout hidden layer 2 0.0 0.0 0.0 0.0
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Appendix D

Parameters Departures

The hyperparameters for the different models for the departures are determined with a 5-fold CV
random search, followed by a 5-fold CV grid search. The random state is set on 7 for all model
types. With this setting, the results are reproducible.

Random Forest

The results of the RF hyperparameters for all the four features sets are in Table D.1.

Table D.1: The selected hyperparameters of the RF for all departure feature sets

Hyperparameter Feature set 1 Feature set 2 Feature set 3 Feature set 4
n estimators 90 90 50 130

criterion entropy entropy gini entropy
max depth 25 25 40 20

min samples split 11 2 5 2
min samples leaf 1 1 1 1

max features 3 15 6 19
bootstrap True True True True
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XGBoost

The results of the XGBoost hyperparameters for all the four features sets are in Table D.2.

Table D.2: The selected hyperparameters of the XGBoost for all departure feature sets

Hyperparameter Feature set 1 Feature set 2 Feature set 3 Feature set 4
num boost round 45 60 70 55

max depth 5 19 25 18
gamma 3 2 1 1

min child weight 7 2 1 2
eta 0.30 0.20 0.25 0.20

max delta step 1 1 1 1
subsample 1 1 1 1

colsample bytree 1 1 0.5 1
colsample bylevel 1 1 1 1
colsample bynode 1 1 1 1

alpha 0 0 0 0
lambda 1 1 0.6 1

Support Vector Machine

The results of the SVM hyperparameters for all the four features sets are in Table D.3.

Table D.3: The selected hyperparameters of the SVM for all departure feature sets

Hyperparameter Feature set 1 Feature set 2 Feature set 3 Feature set 4
kernel RBF RBF RBF RBF
gamma auto scale auto auto

C 5 13 45 15

Multi-Layer Perceptron

The results of the MLP hyperparameters for all the four features sets are in Table D.4.

Table D.4: The selected hyperparameters of the SVM for all departure feature sets

Hyperparameter Feature set 1 Feature set 2 Feature set 3 Feature set 4
Epochs 50 50 55 40

Batch size 64 32 64 32
# hidden layers 2 1 2 2

# nodes hidden layer 1 64 32 64 32
# nodes hidden layer 2 16 0 16 16

Learning rate 0.001 0.0001 0.001 0.001
Dropout input layer 0.0 0.0 0.0 0.0

Dropout hidden layer 1 0.1 0.0 0.0 0.0
Dropout hidden layer 2 0.0 0.0 0.0 0.0
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