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Managerial summary

The purpose of this research is to provide decision support for a European retailer with its daily delivery
operations of goods. A critical challenge which the retailer faces is the limited capacity of the transportation
network in the Amsterdam area. This leads to very strict requirements for the tactical delivery routing plans.
Indeed, it is usually the case that there is only one parking place available at each store per time window
and any delay in arrival may result in a situation where the next truck due to arrive is forced to drive around
in circles or wait somewhere blocking traffic. The uncertainty of travelling times due to traffic congestion is
also an important factor which can significantly affect an actual delivery schedule, causing arrival delay and
consequent waiting time. This research aims to minimize total travel and waiting time costs first by carefully
planning the deliveries in the presence of uncertainty, and second by considering strategic buffer locations
for a delivery vehicle to wait temporarily until a loading zone for a particular store becomes available instead
of blocking traffic or adding to traffic and vehicle kilometres travelled by circling around.

In order to respond to this challenge a mathematical model is proposed and prototyped which is capable of
generating daily delivery routing plans for retail goods given necessary constraints and the cost structure.
This model takes into account incurred costs such as the mileage, demand satisfaction and waiting time.
These factors are weighted according to their relative importance. The assessment of this model is based
on the comparison of the generated plans with the actual plans currently used by the European retailer. In
particular, an existing historical routing plan is used as an input for the model, the total solution costs are
computed, then a plan is generated by this model and the results are compared.

Analysis demonstrates that buffer locations help to reduce waiting costs without any drop in total solution
costs. Furthermore, commonly used buffers which are shared by multiple stores have greater cost reduction
than linked buffers which are dedicated to a particular store. These shared buffers allow 7.5% savings of the
waiting time costs and 6.9% of the total solution costs respectively, compared to the case without buffers.
Moreover, smaller relative importance of demand satisfaction costs less than or equal to 1.0e/item leads to
the possibility of considering partial delivery. In addition, an instrument is obtained to verify the usefulness
of different buffer locations by using these locations in the model. The more often a buffer is shown to be
used, the more reason there is to propose to the municipality to dedicate a buffer at that location.
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1 Introduction

The purpose of this research is to provide decision support for a European retailer with its daily delivery
operations of goods. A critical challenge which the retailer faces is the limited capacity of the transportation
network in the Amsterdam area. This leads to very strict requirements for the tactical delivery routing plans.
Responding to this challenge, both a mathematical analytical model and a numerical method of solving this
problem are proposed. This method is capable of generating delivery routing plans given all necessary
constraints and the cost structure. The model takes into account incurred costs such as the mileage, demand
satisfaction level and waiting time, all being weighted according to their relative importance. Furthermore,
in order to reduce waiting time, buffer locations within the Amsterdam area are considered where a truck
can park and wait until the loading zone at a store becomes available. The numerical method is approximate
in nature and is based on the Column Generation technique. This technique allows iterative exploration
of search space by adding new promising one-truck routes (columns). The Regret construction heuristic is
applied to generate an initial solution. New promising columns are generated by means of solving the Pricing
Subproblem which takes into account duals of the Master problem relaxation. Analysis demonstrates that
the buffer locations help to reduce waiting time incurred by early arrivals without any drop in total solution
costs. Furthermore, an instrument is obtained to verify the usefulness of different buffer locations by using
these locations in the model.

The thesis is organised as follows: This chapter provides the reader with a high level overview of the research.
In Chapter 2, the statement of the research is formulated and assumptions are defined. The description of
all necessary data sources, data cleaning and transformation procedures as well as the analytical methods for
extracting knowledge from the data is provided in Chapter 3. Chapter 4 contains the mathematical model
formulation. The numerical method of solving this model is described in Chapter 5. Chapter 6 reports on
several experiments which have been conducted in order to verify the hypothesis. In Chapter 7, conclusions
are made, and recommendations regarding possible usage of the implemented model as well as promising
directions for further research are proposed. While Chapters 1, 2 and 7 are intended for a broad audience,
the remaining chapters require general technical background and familiarity with the theory of mathematical
optimization in particular.

2 Research statement

The research hypothesis is formulated as follows. Utilization of buffer locations in the Amsterdam city area
results in the reduction of the waiting time costs of the European retailer’s daily delivery operations of goods
while the demand satisfaction level does not decrease. When considering waiting time, two types of delay
are taken into account, incurred by either early arrivals at a store when store personnel is not prepared for
unloading/loading the truck, or overlapping arrival and departure of multiple vehicle at the same store when
multiple vehicles cannot be serviced simultaneously.

There are a number of assumptions which are made. First, it is assumed that different types of costs have
different importance. This assumption significantly affects the resulting shipment plan generated by the
model. Second, it is assumed that it is possible to deliver less goods than the total demand by a store. This
allows consideration of cases when partial demand satisfaction can result in lower travelling time and/or
waiting time costs. Third, it is assumed that different types of goods have their own relative priority for
delivery. In other words, if a store has demand for all considered types of goods then an attempt is made
to deliver fresh goods first. Fourth, for the deterministic case it is assumed that a truck might travel at a
maximal allowed speed for a particular road segment. Fifth, it is assumed that a particular buffer would be
used only once for a particular one truck trip. Sixth, it is assumed that the most reasonable time to arrive
at a store from a buffer is in the middle of corresponding time window. This allows more possibility for a
truck which arrived during a previous time window and is still parked to leave this store, so that overlapping
arrival and departure are eliminated. Finally, the length of a driver shift is taken into account and it is
assumed that a trip duration should not exceed 8 hours.
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3 Data Discovery

3.1 Data Selection

First, the set of necessary data sources is defined:

Data Source Description
Google place id map – A map with Google Road API places id as-

signed to Amsterdam roads.
Acquired from: Municipality of Amsterdam

Google city flow data – A dataset with road traffic measurements in
Amsterdam.

Acquired from: Municipality of Amsterdam
Hoofd en plusnetten map – The National Road Database map with

structural parameters of Amsterdam roads.
Acquired from: Municipality of Amsterdam

Wegvakken map – The National Road Database map with
structural parameters of The Netherlands
roads.

Acquired from:
https://www.rijkswaterstaat.nl

Parameters related to the Euro-
pean retailer’s store locations in
Amsterdam

– The spatial locations of the European re-
tailer’s delivery destinations in Amsterdam.

– The demand of each store location per prod-
uct type.

– The number of vehicles of each vehicle type
at each store location which can be un-
loaded at the same time.

– The time windows per day for each day of
the week for each store for delivery by each
vehicle type.

Acquired from: Freight delivery company
Parameters of the freight deliv-
ery company fleet which services
the retailer’s distribution centre

– Types of available delivery vehicles.
– Number of delivery vehicles are per vehicle

type.
– Capacity of each vehicle type per product

type.
Acquired from: Freight delivery company

Travel plan of each delivery vehi-
cle

– Expected time of departure from the re-
tailer’s distribution centre.

– Expected time of arrival at each store loca-
tion.

– Expected time of departure from each store
location.

– Expected time to travel back to the re-
tailer’s distribution centre.

– Planned travel route in terms of street line
segments.

Acquired from: ICT solution company
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Data Source Description
Actual travel route of each deliv-
ery vehicle

– Actual time of departure from the retailer’s
distribution centre.

– Actual time of arrival and departure at each
store location.

– Actual time to travel back to the retailer’s
distribution centre

Acquired from: ICT solution company
Buffer locations in the Amster-
dam area

– Buffer locations linked to particular stores
agreed with the Municipality of Amster-
dam.

– Multi-purpose parking locations in
Amsterdam provided by ”Truck
Parking Europe” service https:

//app.truckparkingeurope.com

– Map of urban development non-residential
functions http://maps.amsterdam.nl/

open_geodata/

Table 1: Data Sources

Next, the training set time period from 1 April until 29 June 2016, and the test set time period on 30 June
2016 are selected for further analysis.

After that, identification of the attributes of each data source is performed, using the defined time period
where it is relevant.

The Google place id map contains 77,258 rows of data. Each row represents a directional road segment
(PlaceId) for which Google has collected historical aggregate statistics (Table 7). The Google city flow dataset
contains 142,436,186 rows. Each row represents a measurement made for a particular road segment (PlaceId)
at a particular point in time (Table 8). The ”Hoofd en plusnetten” map has 24,044 rows. Each row represents
a link (wvk id) of the Amsterdam transportation network (Table 9). The ”Wegvakken” map contains
1,008,045 rows of data. Each row represents a link (wvk id) of the Netherlands transportation network
(Table 10). The spatial location dataset of the European retailer’s delivery destinations in Amsterdam
contains 82 rows. Each row represents either the distribution center (naam=DC) or a store (Table 11). For
the vehicles parameters of the retailer’s delivery destinations in Amsterdam there are 84 rows. Each row
represents a store (Table 12). For the freight transport delivery fleet parameters there are 6 rows. Each row
represents a capacity of a particular vehicle type carrying a particular type of goods (Table 13). For the
Travel plan (30 June 2016, Amsterdam) there are 125 rows. Each row represents a delivery to a store (Table
14). For the buffer locations linked to corresponding stores there are 4 selected rows. Each row represents a
buffer (Table 15). For the commonly used buffer locations there are 10 selected rows. Each row represents
a buffer (Table 16).

3.2 Data Cleaning and Transformation

The PostGIS extension of PostgreSQL database is utilized (geospatial functions) combined with QGIS and
R (rgeos and maptools libraries) to manage the map data. In addition, the igraph library is used to compute
the shortest paths.

3.2.1 Correction of Google place id map

The Google place id map has some road segments with incorrect spatial location of starting and/or ending
points which prohibit proper identification of intersections. One example of this is at the intersection near
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Heiligeweg 46 (Figure 1.a). Another example is where Celebesstraat crosses Balistraat (Figure 1.b). A
number of these issues are fixed manually.

(a) (b)

Figure 1: Google place id map issues

3.2.2 Extention of ”Hoofd en plusnetten” map

There are a number of roads missing in the ”Hoofd en plusnetten” map which connect the central part of
Amsterdam with Amsterdam Zuidoost through Diemen, and near the intersection between Ringweg Zuid
and A2 highway. The missing links make it impossible to perform the identification of shortest paths (Figure
2.a). Those missing roads are copied from the ”Wegvakken” map and the maximal speed values are estimated
from the neighbourhood.

(a) New roads added (in red colour) (b) Roads matched by wvk id

Figure 2: Hoofd en plusnetten map extension and matching with Google

3.2.3 Filtering of roads in ”Hoofd en plusnetten” map

The ”Hoofd en plusnetten” map contains 1,975 rows with positive values of the attribute ”auto” representing
major roads intended primarily for vehicle traffic. This criterion is alone however insufficient for selecting
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all roads where delivery vehicles may travel. Furthermore, the attribute ”snelheid” (travel speed) has zero
values for some vehicle roads. Thus, vehicle roads not suited for delivery trucks are excluded based on the
following criteria:
– If the attribute ”bst code” in the corresponding ”Wegvakken” map record (which has the same ”wvk id”)

has value of either FP or VP. This criterion filters out dedicated bicycle paths (FP) and dedicated pedes-
trian paths (VP).

– If either of the attributes ”fiets” (bicycle) or ”voet” (pedestrian) is non-zero while all of the attributes
”ov”, ”auto” and travel speed are zero in the ”Hoofd en plusnetten” map. Here roads are excluded that
have indication of minimal vehicle traffic.

– If the attribute ”bus tram” is 2 and all of the attributes ”voet”, ”fiets” and ”auto” are zero in the ”Hoofd
en plusnetten” map. This filters out road segments that are primarily used for public transit.

3.2.4 Google place id and ”Hoofd en plusnetten” map matching

In order to perform a vehicle fleet routing algorithm there is a need to know the travelling time along the
links of Amsterdam transportation network. Indeed, the possibility to get to an arbitrary location on time
depends not only on the travelling distance to this location from a starting point but also on the amount of
time a vehicle will spend travelling due to travel speed limitations for each link.

There are two maps which contain necessary information to estimate travelling times on the vehicle trans-
portation network in Amsterdam. The Google place id map has data about directionality of road segments.
The ”Hoofd en plusnetten” map has information about the maximal travel speed on the transportation links.
Given these two data sources, they are matched together in order to combine the directionality of the Google
place id map with travel speed data from the ”Hoofd en plusnetten” map.

The idea of the map matching algorithm is to look for similarity between segments of both maps using three
parameters computed for each pair of those segments such as distance, number of overlapping points and
angle. Given these parameters, the most similar segment from the Google map is selected for each segment
from the ”Hoofd en plusnetten” map.

In order to obtain the distance between two segments, the first segment geometry from the Google map is
split into points, and the average 2D Cartesian distance is calculated between the second segment geometry
from the ”Hoofd en plusnetten” map and each of those points. For the sake of computation of the number
of overlapping points, the number of the first segment points is counted which are within 0.0002 distance
from the second segment. The distances are defined in units of the spatial reference system (0.0001 ≈ 11.1
m, 0.00001 ≈ 1.11 m).

The computation of an angle between two segments requires first splitting first segment into points and
finding two points which are the closest to the second segment. Then, the angle α1 is computed from the
horizontal to the vector defined by these points, then this angle is adjusted to get rid of directionality as
follows:

α̂i =

{
αi − 180 if αi ≥ 180

αi otherwise
i = 1, 2 (1)

Next, the second segment is split into points and two these points are found which are the closest to two
first segment points that were identified in the previous step. Given these two second segment points, the
angle α2 is computed from the horizontal to the vector defined by these points and this angle is adjusted to
get rid of directionality according to (1). As a result, the slopes of both segments are obtained in an area
where these segments are close to each other. This gives an estimate of how similar these two segments are
in terms of their spatial orientation.

Given these three parameters computed (distance, number of overlapping points and angle), a heuristic
matching procedure is applied as follows:
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1. For each first map segment up to two candidates are selected from the ordered list of the second map
segments based on the maximal number of overlapping points, minimal angle and minimal distance.

2. The first candidate is picked out if there is only one (obvious choice).

3. A candidate is selected which has the minimal distance if both candidates have the same angle, the
difference in number of overlapping points between these candidates is not greater than 0.7, and the
difference in distances between these candidates is not greater than 0.7.

4. A candidate is selected which has the minimal distance if both candidates have the same number of
overlapping points, and the difference in angles between these candidates is not greater than 15◦, and
the difference in distances between these candidates is not greater than 0.7.

5. Otherwise, a candidate is selected with the maximal number of overlapping points.

This matching procedure allows matching 53,837 Google map segments out of 77,258. Most of the time
this matching is correct but in some difficult cases manual corrections are made. Three examples of such
matching results are represented in Figure 2.b and Figure 3.

(a) (b)

Figure 3: Hoofd en plusnetten map matching with Google (continued)

3.2.5 Estimation of missing maximal speed in Google place id map

After the above map matching procedure with the ”Hoofd en plusnetten” map there are still 532 segments in
the Google place id map which have zero maximum speed. These segments are connected to segments with
non-zero maximum speed, so this attribute value is estimated for these segments from the neighbourhood
by heuristic.

The idea of this heuristic is based on the visual observation that in most cases the segments with zero
maximum speed follow the same trajectory as other segments with known maximum speed values. Indeed,
as you can see in the Figure 4.a there is a highway which goes from the lower left corner to the upper right
corner. This highway in the lower section has zero maximum speed but after crossing another road it has
a maximum speed of 100. Thus, what is done is either the trajectory of a road is followed or there is a
movement in the opposite direction. Consequently, known max speed values are assigned to the missing
ones. This results in the following algorithm:

1. Segments are selected with non-zero maximum speed which have outgoing segments with zero maximum
speed (starting segments), and segments with non-zero maximum speed which have incoming segments
with zero maximum speed (ending segments).
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2. Starting and ending segments are sorted in decreasing order according to maximum speed value, so
that the higher value has priority. Therefore, for the cases when a segment with zero value has on both
its sides segments with non-zero value, the highest of two values will be propagated.

3. For starting segments, the known maximum speed value is propagated forward following the directed
route course. For each next segment in this route all outgoing segments are iteratively checked, and for
each of them maximum speed value is propagated forward recursively. For each next segment all the
incoming segments (except one that the procedure came from) are iteratively checked, and for each of
them maximum speed value is propagated back recursively (in the opposite direction to the directed
route course).

4. For ending segments the known maximum speed value is propagated backward. For each previous
segment all the incoming segments are iteratively checked, and for each of them the maximum speed
value is propagated back recursively. For each previous segment all outgoing segments are also itera-
tively checked (except one the procedure came from), and for each of them the maximum speed value
is propagated forward recursively.

As a result of applying this algorithm all the segments in the Amsterdam area are obtained with non-zero
maximum speed. The proposed heuristic is admittedly optimistically biased, in that it produces a network
where some segments have higher maximum speed values than they might have in reality. Therefore, further
analysis to improve this approach is needed. Two examples of such propagation are depicted in Figure 4 (0
in blue colour and corresponding propagated value in green colour).

(a) (b)

Figure 4: Google place id map max speed estimation

3.2.6 Network construction

After the maximum speed estimation all data necessary to compute the travelling times (and distances)
along the links of the Amsterdam transportation network is available. But the network itself is something
which needs to be constructed first.

The idea of the network construction algorithm is to form links between two intersections by combining
all the segments of the Google place id map which belong to each link. Indeed, the Google place id map
has in some cases many consecutive segments corresponding to one link so it is necessary to collect all of
them, extract their attributes and associate these segments with a link. The network is constructed using
the following algorithm:

1. All the segments are aggregated by longitude and latitude values of their starting and ending points,
and the number of unique segments is computed per each combination. This gives all the intersections.
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2. All the cases are filtered when the number of unique segments is less than or equal to 2. This gives all
the crossroads where more than 2 segments are joined.

3. All the single segments are identified which directly connect two crossroads. These segments are
counted as links.

4. All the segments are identified which go from a crossroads A to an intersection B (of exactly 2 segments)
and back to this crossroads A. This allows identification of the cycle of 2 links with opposite directions
(A → B → A). These two segments (A → B and B → A) are counted as links.

5. For the remaining segments which are not counted by the previous steps the procedure starts from a
crossroads and adds them iteratively to a link one by one, following the course of a directed network
up until it arrives to the next crossroads. In this way all links are constructed which are comprised of
more than one segment. The procedure proceeds until all the segments are assigned to links.

This algorithm gives an Amsterdam vehicle travelling links network of 21,077 nodes which are crossroads of
more than 2 links, and the 44,395 links that connect those nodes. The algorithm is straightforward and does
not apply any sophisticated methods for fast network construction like Hierarchical Routing (Geisberger et
al., 2008) because the size of created network is relatively small. This allows computation of this network in
a few minutes on a PC with 4x Intel(R) Core(TM) i3-2350M CPU @ 2.30GHz and 16Gb RAM. However,
if there was a need to construct such network for the whole country of the Netherlands, advanced methods
would be definitely needed to be considered. Two examples of the algorithm results are represented in Figure
5. In purple colour are the links which combine the paths from the original map.

(a) (b)

Figure 5: Google place id map network

3.2.7 Shipment Data extraction

A unique identifier i is assigned to each store from Table 11 (Table 17). A unique identifier i is assigned to
each buffer from Tables 16 and 15 respectively (Tables 18 and 19). These two groups are not used at the
same time so the identifiers overlap. It is defined that each of these buffers has only one time window w = 1
[0, 1440], 0 service time, and 0 demand for all goods types.

The procedure proceeds with extracting time windows data. To start with, it fills missing start and end of
store’s time window values in Table (14) as corresponding planned arrival and departure respectively. After
that, the procedure orders all time windows related to each store according to their start time, and assigns
to these time windows numbers from 1 to 4 (w). Next, service duration s is calculated for each combination
of i and w as the difference between corresponding planned arrival and departure. Finally, the resulting
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start b and end e of time windows are computed as the number of minutes since June 30 00:00 (Table 20).

Identifiers are assigned such as h = 1 and h = 2 to goods types VS and HB, identifiers k = 1 to vehicle type
BAK, k = 2 to vehicle type CIT and k = 3 to vehicle type EUR respectively (Table 21).

Demand of store i within time window w is extracted as a vehicle’s capacity divided by the number of stops
this vehicle does during this trip. In order to do so first the largest vehicle which can visit all the trip’s
stores is found, using Table (12). Then, the maximal capacity of a trip is computed as the capacity Qk1 of
the trip’s vehicle type k for the fresh goods type VS(h = 1) using Table (13). Next, the number of stops N
per store id i and type of goods for each trip is calculated using Table (14). After that, for each trip the
demand is computed for goods type h of store i visited by this trip within time window w as:

d̂wh
i =

⌊
Qk1

N

⌋
(2)

Finally, demand of store i within time window w is adjusted as:

dw2
i =

⌊
Qk2

max o∈HQko
d̂w2
i

⌋
, dw1

i = d̂w1
i (3)

While extracting demand data it is assumed that each and every store can be visited only by one vehicle
within each of its time windows. In fact, there is one exception in the Shipment plan for June 30, that is there
are two trips such as DC—2016—26-4-099 and DC—2016—26-4-99 which visit the same stores. The model
is deliberately simplified by omitting trip DC—2016—26-4-99. The resulting demand values are represented
in Table 22.

3.3 Data Analysis

3.3.1 Nearest crossroads search for European retailer’s store locations

Data analysis starts by looking for the nearest network crossroads from each of the given European retailer’s
store locations.

The idea behind this search is to select a network link such that it has the nearest to this store location
Google place id map path, and either starting or ending crossroads of this link are within a certain 2D
Cartesian distance (0.02 ≈ 2 km) from this store location.

3.3.2 Shortest route calculations for European retailer’s delivery network

Given the nearest crossroads, the procedure proceeds computing the shortest route in terms of the travelling
distance between each pair of the retailer’s stores in the Amsterdam area.

The resulting network of shortest routes is depicted in Figure 6 in blue while the retailer’s store locations are
represented as brown dots. The spatial points for which there are Google data measurements are displayed
as green dots.

3.3.3 Nearest buffer location search

Given the network which was constructed in 3.2.6, the nearest node bu is found for each of the buffers from
Table 16. Next, for each ordered pair of stores (i, j) node bu is found such that the sum of travelling times
from i to bu and from bu to j is minimal for this pair (i, j). This results in set NB = (i, j, bu) which for each
pair (i, j) has exactly one element with corresponding to this pair nearest buffer.

3.3.4 Road mean speed forecasting

From Figure 6 it is observed that in many cases the Google speed mean measurements are made for the
spatial points which indeed belong to the shortest routes between the European retailer’s stores. This
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Figure 6: European retailer stores pairs shortest routes and Google data coverage

observation leads to the conclusion that more realistic and adequate fleet route planning can be made for the
future if these measurements are taken into account instead of considering fixed constant travelling times.
It is only done for the links which are covered by such measurements, while for the remaining (mostly inner)
links the static structural travelling times are used based on the maximal speed.

In order to set up the experimental environment two sets are considered such as a training data set of 3
months from 1 April till 29 June 2016, and 30 June 2016 as a test set. These sets for each path have about
25,500 and 250 observations respectively.

The idea of the forecasting algorithm is based on the Fourier analysis of time series (Bloomfield, 2000). The
predicted mean speed is reconstructed as the sum of certain harmonics extracted from the training set time
series. These harmonics correspond to the peaks of Autocorrelation function which indicate the periodicity

patterns in the time series. In other words, if there is peak p1 at lag l1 then harmonic hc =
⌊
Ntraining

p1

⌋
+ 1

needs to be added to the resulting reconstructed signal along with a number of harmonics on both sides of
hc. For instance, if there is a time series constructed from cosine function with period 150 and the number of
observations is 320 (two complete periods and a bit more) then there are 2 peaks of Autocorrelation function
at lags 147 and 287.

⌊
320
147

⌋
+ 1 = 3 thus the resulting signal is reconstructed from harmonics 2, 3, 4. This

signal is depicted in black colour in Figure 7.a. The described above idea results in the following algorithm:

1. A sub-set of the Google city flow data is considered corresponding to a certain path (fixed placeId).

2. Outliers are eliminated by removing all the measurements which being rounded to tenths (0,10,20,30,etc.)
occur in the data set less than a certain number of times (10% of the data set).

3. Missing measurements are estimated by averaging the values of two nearest points on both sides.

4. A linear regression model is fitted with dependent variable speed mean and independent variable
start interval using the training data set. This model gives an estimate for the trend T in the data
and residuals e which are needed to be studied further.

5. Autocorrelation in residuals e is studied by applying the Autocorrelation function ρe(l) (Chatfield,
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2003) to the residuals time series:

ρe(l) =
γe(l)

γe(0)
, γe(l) = Cov(et, et+l) = E(etet+l)− E(et)E(et+l), (4)

l = 1..Ntraining, Ntraining- the number of rows in the training set

6. It is observed that in most cases the residuals e demonstrate clear periodic patterns like those which
are depicted in Figure 7.b.

(a) (b)

Figure 7: Signal reconstruction example and residuals autocorrelation

7. The lags are identified which correspond to the positive peaks P+ (local maximums) of the autocor-
relation function. These peaks are what the periodic pattern is comprised of. For the sake of finding
these maximums the peak is defined as a point which has on both sides not less than a certain number
of other points with lower values. This peak neighbourhood size PN is the parameter of the model.

8. Fast Discrete Fourier Transform is applied (Bloomfield, 2000) to the residuals time series in order to

get the magnitudes mh, phases phh and frequencies fh of
Ntraining

2 harmonics (fft function from R
stats package). In particular, these parameters are needed for the peaks which were identified in the
previous step.

9. Filtered residuals are reconstructed as follows. First, only peaks are considered which correspond to
lags up to three days p ≤ 3

90Ntraining given that the training set has 90 days of measurements. Next, for
each selected peak p corresponding central harmonic number hc is computed. Finally, the symmetric
neighbourhood of hc of size 2PN + 1 is considered. All considered waves are summed and the result
is scaled by the number of harmonics

Ntraining

2

ê =
2

Ntraining

∑
p∈P+,p≤ 3

90Ntraining,hc=
⌊

Ntraining
p

⌋
+1,h∈[hc−PN,hc+PN ]

mh cos(2πtfh + phh) (5)

t = 1..(Ntraining +Ntest), Ntest- the number of rows in the test set

10. The response variable is reconstructed as ̂speed mean = T + ê

11. The goodness of fit is measured as follows:

R =
∑

t=1..(Ntraining+Ntest)

(speed meant − ̂speed meant)
2 (6)
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12. The resulting model is cross-validated using peak neighbourhood size PN = 5..25 with t = 1..(Ntraining+
Ntest).

This algorithm gives a forecast for the future mean speed value for a path given that there is historical
data for this path. This predicted mean speed value is time dependent and it is computed for each time
interval (5 munutes). Some examples of such forecasting are depicted in Figure 8. For the network links
which are comprised of more than one path such forecast is made separately for each path (when there are
measurements) and later combine these forecasts for the link.

4 Model

The problem of optimal vehicle fleet route search can be formulated using a complete directed graph G(V,A)
where V is the set of nodes and A is the set or arcs. V includes the origin depot v1, the destination depot
vn+2, and all the stores and buffers v2..vn+1. The buffers form subset B ⊂ V . A is comprised of directed
arcs between graph nodes.

In addition to the graph, there are a number of static parameters such as the set of vehicle types K, the set
of vehicle numbers L (the same cardinality is assumed for all vehicle types), the set of time window numbers
per day W (the same cardinality is assumed for all locations but not all of these time windows might have
demand for a particular store), and the set of goods types H. Each vehicle type k ∈ K has the maximal
capacity Qk in terms of the number of containers which can be loaded.

Each node vi, i ∈ V \ {1, n + 2} has its service time si and demand per product type per time window
dwh
i . Furthermore, for each node a binary variable zwi is introduced which indicates the presence of demand.

Moreover, each node vi, i ∈ V \{1, n+2} has a set of time windows in which a vehicle must arrive, described
by the beginning and ending time moments bwi and ewi respectively.

Each arc from node i to node j (i, j ∈ V ) is characterised by its travelling distance c1ij and travelling time
tij . The second parameter can be either deterministic or stochastic. In the latter case tij is represented by
its mean E(tij) and variance V ar(tij). Furthermore, the stochastic travelling times are not stationary.

The set of all feasible routes Ω is defined which start at the origin depot, visit a sub-set of stores within their
time windows and return to the destination depot. Given that at most one vehicle can visit a store within
each time window, a binary constant αklw

ri is introduced which specifies that store i is visited by vehicle l
of type k within time window w following route r. Finally, a binary decision variable xr is defined which
indicates that route r is included in a solution.

For each route r ∈ Ω three types of costs are introduced: the travelling costs c1r, the costs of not satisfying
demand c2r, and the costs of waiting at a store location due to the fact that the previous vehicle has not left
yet c3r.

The costs of travelling along a route (7) are computed as the sum of all travelling distances c1ij for the arcs
which this route is comprised of.

c1r =
∑

(i,j)∈r

c1ij ∀r ∈ Ω (7)

The costs incurred for not delivering the full amount of goods of type h to store i during time window w (8)
are computed as the difference between demand dwh

i and the actual amount of delivered goods uwh
i . The

costs of not delivering the entire demand of goods for store i within time window w (9) are computed as the
sum of cwh

2i for all types of goods h. The costs of not satisfying the demand for route r (10) are computed
as the sum of cw2i for all locations visited by route r.

cwh
2i = dwh

i − uwh
i ∀w ∈W, ∀h ∈ H,∀i ∈ V \B \ {1, n+ 2} (8)
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Path mean speed forecasting
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cw2i =
∑
h∈H

cwh
2i ∀w ∈W, ∀i ∈ V \B \ {1, n+ 2} (9)

c2r =
∑

(w,i)∈r

cw2i ∀r ∈ Ω (10)

The costs of early arrival at store j within time window y (11) are defined as being greater than the difference
between the beginning of time window byj and the time needed to come to this location (j, y) from a previous
location (i, w) visited during this route. The time of reaching (j, y) is computed as the sum of the arrival
time awi at (i, w), the service time si at i and the travelling time tij from i to j. Furthermore, these costs
should also be greater than 0 because there is no intention to incur negative costs (profit).

cy3j ≥ b
y
j − (awi + si + tij), c

y
3j ≥ 0 (11)

c3r =
∑

(y,j)∈r

cy3j ∀r ∈ Ω (12)

The costs of waiting at store i within time window w for any pair of routes r, q (13) are defined as being
greater than the difference between departure dew−1

ri from this store i within the previous time window w−1
following route r and arrival awqi at this store i within time window w following route q. Furthermore, these
costs should also be greater than 0 because there is no intention to incur negative costs (profit). The costs
of waiting for pair of routes r, q (14) are computed as the sum of waiting costs for all locations visited by
these routes.

cw3rqi ≥ dew−1
ri − awqi, cw3rqi ≥ 0 ∀w ∈W \ {1}, ∀i ∈ V \B \ {1, n+ 2}, ∀r, q ∈ Ω (13)

c3rq =
∑

∀w∈W\{1}

∑
∀i∈V \B\{1,n+2}

cw3rqi ∀r, q ∈ Ω (14)

The last type of costs turns the problem into a non-linear (quadratic) formulation unless the following is
defined:

xrq =

{
xrxq if r 6= q

xr otherwise
c1rq =

{
c1r if r = q

0 otherwise

c2rq =

{
c2r if r = q

0 otherwise
c3rq =

{
c3r if r = q

0 otherwise
∀r, q ∈ Ω (15)

Given these definitions, the objective function is formulated as follows:

min
∑
r∈Ω

(γ1c1rr + γ2c2rr + γ3c3rr)xrr + γ3

∑
r∈Ω

∑
q∈Ω

c3rqxrq (16)

subject to:∑
k∈K

∑
l∈L

∑
r∈Ω

αklw
ri xrr = zwi ∀w ∈W, ∀i ∈ V \B \ {1, n+ 2} (17)

0 ≤
∑
r∈Ω

xrr ≤ Kmax (18)

xrq ∈ {0, 1} ∀r, q ∈ Ω (19)

xrq = xqr ∀r, q ∈ Ω (20)

xrq >= xrr + xqq − 1 ∀r, q ∈ Ω (21)

The objective function (16) aims to minimize the sum of costs for all routes that are included in a solution.
These costs are weighted by coefficients γ which determine the relative importance of each type of costs.
Constraint (17) guarantees that all stores that have demand for delivery of goods are visited. The total
number of routes in a solution should not exceed a certain threshold (18). The above formulation is named
the Integer Master Problem (IMP).
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5 Algorithm

5.1 Column Generation

It is technically difficult to explicitly solve the IMP because the number of feasible routes becomes very large
even for instances of a moderate size. For a given day in June 2016 there are 71 stores and 125 ”locations”
(combinations of a store and a time window) so that the upper bound of the number of feasible solutions is
about 125! which is a huge number. Of course, in reality this number is much smaller because it is unlikely
that a vehicle will visit more than 2 stores during one route, because its capacity is relatively small compared
to demand. Nevertheless, this number is still large so a special technique is applied to solve this problem.
This technique is called Column Generation (Hu and Kahng, 2016).

The idea of Column Generation is to build Ω iteratively by adding new promising routes (columns) which
could potentially improve a current solution. In order to generate new columns a linear relaxation of the
IMP is formulated by replacing (19) with:

xr ≥ 0 ∀r ∈ Ω (22)

This relaxation is named the Linear Master Problem (LMP) and it allows application of the Simplex method
to search for new promising columns. These new columns being added to Ω should have potential to improve
the objective function (16). In terms of the Simplex method it means that they should have negative reduced
cost. The reduced cost of a route is computed as follows:

ĉr = cr − βTar − β0 − βKmax
(23)

cr = c1r + c2r + c3r

ar =
∑
k∈K

∑
l∈L

aklwri ∀w ∈W, ∀i ∈ V \B \ {1, n+ 2}

In this formulation, cr is the total cost of route r, β is the vector of |W ||V \ B \ {1, n + 2}| dual variables
corresponding to (17), ar is the vector of the same cardinality as β such that each element indicates whether
store i is visited within time window w following route r, β0 and βKmax are the dual variables related to both
parts of inequality (18) respectively.

Therefore, the search for new promising columns is an optimization problem which is formulated as follows:

minr∈Ωĉr (24)

subject to all constraints related to a route

This problem is named the Pricing Sub-Problem.

5.2 Dynamic Programming Formulation for Pricing Sub-Problem

The Pricing Sub-Problem is solved by the Dynamic Programming Algorithm as it is proposed in Ropke and
Cordeau(2009). First, the state space is defined at any location (i, w), i ∈ V \ {1, n + 2}, w ∈ W as the set
of the following parameters:

– k - the type of vehicle k
– awi - the arrival time
– ĉwi - the partial reduced cost of arrival
– {qwh

i |∀h ∈ H} - the amount of goods of type h for which the cargo space is reserved
– Sw

i - the set of locations that have been visited before arriving at (i, w)

Given these definitions, the value function is formulated as follows:

Viw(k, awi , ĉ
w
i , {qwh

i |∀h ∈ H}, Sw
i ) =

min(j,y)∈(V,W )((j = (n+ 2)) ∧ ĉyj ∨ (j 6= (n+ 2))∧
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min(Vjy(k, ayj , ĉ
y
j , {q

yh
j |∀h ∈ H}, S

y
j ), Vjy(k, abyj , ĉb

y

j , {q
yh
j |∀h ∈ H}, SB

y
j )) (25)

Subject to:

ayj = max(byj , a
w
i + si + tij), ab

y
j = max(

byj + eyj
2

, awi + si + ti,bu + tbu,j) (i, j, bu) ∈ NB (26)

uyhj = min(dyhj ,max o∈HQ
ko −

∑
o∈H

qwo
i − 1h>1

∑
o=1..(h−1)

ûyoj ),

ûyhj =

⌈
max o∈HQ

ko

Qkh
uyhj

⌉
h = 1..|H| (27)

qyhj = qwh
i + ûyhj ∀h ∈ H (28)

ĉyj = ĉwi + c1ij + cy2j + cy3j − β
y
j , ĉb

y

j = ĉwi + c1,i,bu + c1,bu,j + cy2j − β
y
j (29)

Sy
j = Sw

i ∪ {(j, y)}, SBy
j = Sw

i ∪ {(bu, 1), (j, y)} (30)

Stopping criteria:

ayj > eyj , ab
y
j > eyj (31)

j 6= (n+ 2) ∧
∑
h∈H

uyhj = 0 (32)

(j, y) ∈ Sw
i (33)

In this formulation, Vwi(k, a
w
i , ĉ

w
i , {qwh

i |∀h ∈ H}, Sw
i ) is the minimal reduced cost of reaching the destination

depot n+ 2 from the current position at store i within time window w. Vw1(k, 0,−β0 − βKmax , {0|∀h ∈ H})
gives the minimal reduced cost of travelling from the origin depot 1 to the destination depot n+ 2.

The equality (26) along with inequality (31) assure that the current vehicle arrives to store j within time
window y but not earlier than it finishes serving the previous store i within time window w taking into
account travelling time from store i to store j. The amount of goods uyhj of each type h ∈ H, that is
delivered to store j within time window y, and the corresponding amount of cargo space that needs to be
reserved ûyhj , are computed by (27). It is assumed that the types of goods are ordered according to their
priority h = 1..|H|. The reserved capacity of the current vehicle after visiting store j is calculated by (28).
The equality (29) gives the partial reduced cost of this route up until reaching store j within time window
y. A recursion step is not made if any goods can not be delivered to the next location, either because the
current vehicle capacity is exceeded or there is no demand for delivery of goods (32).

The value function formulation (25) is extended to deal with buffering locations. In order to do so, a second
Vjy term and minimum operator are added. This second Vjy represents an option when instead of travelling
directly from i to j a truck goes to buffer bu first. The minimum among two Vjy indicates that both options
are considered, that is to say, direct travel from i to j as well as travel through the nearest buffer bu, and
the option with minimal total reduced costs is chosen. Next, It is (heuristically) assumed that the waiting
costs due to overlapping arrivals/departures for the entire solution will get lower if a truck arrives to a store
from its nearest buffer not earlier than in the middle of the store’s time window. Given this assumption, the
arrival time equality (26) is adjusted accordingly. The partial reduced cost equality (29) is also extended
for this case to take into account the travelling costs to and from buffer bu, and to exclude the early arrival
costs cy3j which can not occur in this case.

The value function (25) needs to be solved |K| times but not necessarily to optimality because in practice a
limited number of new promising columns during are needed during each Column Generation iteration.

5.3 Route Construction Heuristic

The Column Generation technique described in subsection 5.1 requires a good initial set of promising columns
Ω to start with. A regret construction heuristic is applied in order to populate this set. The idea of this
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heuristic (Floudas and Pardalos, 2009) is to extend a route by visiting a location which would cause the
biggest regret if this location was not selected as the next destination.

To start with, the last visited store i is defined within time window w as location l, and the set of remaining
unvisited locations as R. Then, all the possible route extensions l → u → v,∀v ∈ R, u ∈ R \ {v} are
evaluated. For each of these extensions the measure of regret is computed, and after that next route location
v is chosen which has the highest value of this measure.

Different regret measures are used. First, regret is defined as the amount of demand which exceeds the
remaining vehicle capacity:

max

(∑
o∈H

dohi − (min o∈HQ
ko −

∑
o∈H

qwo
i ), 0

)
(34)

Next, another option is considered by defining regret as the amount of time which a vehicle is late travelling
from location (i, w) to location (j, y):

ewi + si + tij − eyj + tmax ∈ [0, 2tmax] (35)

5.4 Local Search

In case if the algorithm gets stuck not being able to improve current best solution, a local search procedure
is applied in order to explore the search space and hopefully escape from the current local optimum. This
procedure is based on the shaking of current solution, which applied as follows:

1. Up to 100 pairs of routes of more than one location each are uniformly selected which belong to the
current best solution, then the Regret Construction Heuristic (subsection 5.3) is applied to the set of
locations corresponding to each pair.

2. Up to 100 triples of routes of more than one location each are uniformly selected which belong to
the current best solution, then the Regret Construction Heuristic (subsection 5.3) is applied to the
combined set of each pair of locations.

5.5 Summary

Based on the ideas of the previous subsections, the following algorithm is proposed to solve the model
formulated in section 4:

1. An initial solution is generated by applying the Regret Construction Heuristic (subsection 5.3), then
this initial solution is shaken by applying the Local Search procedure (subsection 5.4).

2. The LMP is iteratively solved which is defined in subsection 5.1 considering the optimal solution of
this relaxation as the lower bound. The improvement is defined as the fact of getting better (smaller)
value of the lower bound.

2.1. If there are no improvements of the LMP lower bound in 3 consecutive iterations, the IMP is
solved which is defined in subsection 5.1, non basic routes are dropped and the current best
solution is shaken by applying the Local Search procedure (subsection 5.4). If this shaking gives
better solution then a new iteration is started, otherwise the procedure stops and reports the best
obtained solution.

2.2. If there are some improvements in the LMP lower bound, up to 100 new promising routes are
obtained for each vehicle type by solving the defined in subsection 5.2 Pricing Sub-Problem using
current LMP duals values. If there are no new routes then the procedure loops back to step (2.1.).

2.3. The Pricing Sub-Problem is defined as being solved if there is no vehicle type for which exactly
100 new promising routes were obtained. If this is the case the procedure proceeds to the last
iteration solving the LMP and the Pricing Sub-Problem only one more time, and then applying
step (2.1.).

This algorithm gives a heuristic sub-optimal solution.
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6 Results

The proposed algorithm is prototyped in Python and Gurobi is used as a linear solver. All the tests are
performed on a PC with 4x Intel(R) Core(TM) i3-2350M CPU @ 2.30GHz and 16Gb RAM.

6.1 Experiments

6.1.1 γ1 = 0, γ2 = 1.0, γ3 = 0

First, the simplest option is considered when the only costs which are taken into account are the demand
satisfaction costs c2. For this particular case the optimal solution is known (0) because according to the
experts’ requirement the stores’ demand is estimated as the proportion of trucks’ capacity. Therefore, it is
known that the shipment plan exists which is capable of completely satisfying demand for delivery of goods.
This knowledge gives an opportunity to test the ability of the model to generate (near) optimal delivery
plan because the model uses only demand as input but not the known shipment plan. From Figure 9 it is
observed that, despite the algorithm demonstrates a good convergence, only a sub optimal solution of 28 is
obtained, which means that (4421− 28)/4421 = 0.9937 of demand is satisfied.

(a) The solution value convergence (b) The reduced costs convergence

Figure 9: γ1 = 0, γ2 = 1.0, γ3 = 0

6.1.2 γ1 = 0.1, γ2 = 1.0, γ3 = 0

The travelling costs c1 are added into consideration. Furthermore, it is assumed that one container that
is not delivered costs as much as 10 travelled kilometres (γ1 = 0.1). Figure (10) indicates that a slightly
worse solution is obtained which is 334.1512/308.7328 = 1.0823 multiplied by benchmark. Moreover, the
c2 component of the solution is 30 so that (less) (4421 − 30)/4421 = 0.9932 of demand is satisfied. On the
other hand, this solution has c1 of 304.1512 which is slightly less compared to that of the benchmark solution
(308.7328).
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(a) The solution value convergence (b) The reduced costs convergence

Figure 10: γ1 = 0.1, γ2 = 1.0, γ3 = 0

6.1.3 γ1 = 0.1, γ2 = 1.0, γ3 = 0.1 without buffers

The waiting time costs c3 are added into consideration regarding those as being 10 times less important
as the demand satisfaction costs c2 (or just as important as the travelling costs c1). In other words, it is
assumed that one container that is not delivered costs as much as 10 minutes of waiting (γ3 = 0.1). From
Figure 11 it is seen that the method smoothly converges in 5 iterations.

(a) The solution value convergence (b) The reduced costs convergence

Figure 11: γ1 = 0.1, γ2 = 1.0, γ3 = 0.1

The costs of the benchmark solution in this case get increased by 25 (333.7328) because this solution has 3
overlapping arrivals/departures (6.2 units in total) which are highlighted in red in Figure 12. Furthermore,
there are early arrivals which sum up to 18.8 units (Table 2), no demand satisfaction costs and travelling
costs of 308.7328 (308.7328 + 0 + 18.8 + 6.2 = 333.7328).

path, (i,w) sum of early arrivals, in units
(1,1) (18,3) (24,2) (1,1) 1.10
(1,1) (18,2) (24,1) (1,1) 0.60
(1,1) (43,1) (3,2) (1,1) 0.60
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path, (i,w) sum of early arrivals, in units
(1,1) (4,1) (77,2) (1,1) 0.40
(1,1) (71,1) (14,3) (1,1) 0.90
(1,1) (3,3) (75,1) (1,1) 3.20
(1,1) (15,1) (14,2) (1,1) 0.60
(1,1) (3,1) (36,1) (1,1) 0.70
(1,1) (80,1) (22,1) (1,1) 0.70
(1,1) (59,1) (6,1) (1,1) 0.20
(1,1) (77,1) (42,1) (1,1) 0.60
(1,1) (64,1) (39,1) (1,1) 0.60
(1,1) (27,1) (46,1) (1,1) 0.40
(1,1) (41,1) (79,1) (1,1) 0.50
(1,1) (29,2) (21,2) (1,1) 0.80
(1,1) (22,3) (33,1) (1,1) 0.40
(1,1) (80,2) (44,2) (1,1) 0.50
(1,1) (56,1) (15,4) (1,1) 1.00
(1,1) (32,1) (4,2) (1,1) 1.00
(1,1) (45,1) (35,2) (1,1) 0.60
(1,1) (63,1) (8,1) (1,1) 0.20
(1,1) (50,2) (68,1) (1,1) 2.10
(1,1) (79,2) (70,1) (1,1) 0.20
(1,1) (44,1) (38,1) (15,3) (1,1) 0.90
Table 2: Benchmark solution early arrivals γ1 = 0.1, γ2 = 1.0, γ3 =
0.1

On the other hand, the model gives solution 366.2584 (366.2584/333.7328 = 1.0975 times the benchmark
solution) without overlapping arrivals/departures (Figure 13),with 18.3 units of early arrivals (Table 3), but
39 ((4421 − 39)/4421 = 0.9912) containers which are not delivered and 308.9584 units of travelling costs
(308.9584 + 39 + 18.3 + 0.0 = 366.2584)
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Figure 12: Benchmark Shipment plan γ1 = 0.1, γ2 = 1.0, γ3 = 0.1
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Figure 13: Generated Shipment plan γ1 = 0.1, γ2 = 1.0, γ3 = 0.1

path, (i,w) sum of early arrivals, in units
(1,1) (3,1) (43,1) (1,1) 1.50
(1,1) (80,2) (15,3) (1,1) 5.60
(1,1) (64,1) (39,1) (1,1) 0.60
(1,1) (15,1) (14,2) (1,1) 0.60
(1,1) (44,1) (38,1) (44,2) (1,1) 0.40
(1,1) (56,1) (15,4) (1,1) 1.00
(1,1) (71,1) (14,3) (1,1) 0.90
(1,1) (29,2) (21,2) (1,1) 0.80
(1,1) (3,3) (32,1) (1,1) 2.30
(1,1) (50,2) (70,1) (1,1) 4.60
Table 3: Generated solution early arrivals γ1 = 0.1, γ2 = 1.0, γ3 =
0.1
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6.1.4 γ1 = 0.1, γ2 = 1.0, γ3 = 0.1 with linked buffers

Next, four buffering locations linked to particular stores are considered across the Amsterdam city area
depicted in green in Figure 14. Those buffers have no associated early arrivals and overlapping arrivals/de-
partures costs.

Figure 14: European retailer stores and linked buffers in Amsterdam, in i(k) format

From Figure 15 it can be observed that the method converges in 5 iterations, the same as the experiment
without buffers.

(a) The solution value convergence (b) The reduced costs convergence

Figure 15: γ1 = 0, γ2 = 1.0, γ3 = 0 with linked buffers

The model gives solution 353.6694 (353.6694/333.7328 = 1.0597 times the benchmark solution) with only
0.1 units of overlapping arrivals/departures (Figure 16), 11.0 units of early arrivals (Table 4), 33 ((4421 −
33)/4421 = 0.9925) containers which are not delivered and 309.5694 units of travelling costs (309.5694+33+
11.0 + 0.1 = 353.6694). It is seen that only one buffer 86 is utilized. This buffer is linked to stores 15, 34, 80.
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Furthermore, it is noticed that there is no drop in demand satisfaction (33 compared to 39 for 6.1.3) while
lower waiting costs c3 are obtained (11.0 + 0.1 = 11.1 compared to 18.3 + 0.0 = 18.3 for 6.1.3).

Figure 16: Generated Shipment plan γ1 = 0.1, γ2 = 1.0, γ3 = 0.1 with linked buffers

path, (i,w) sum of early arrivals, in units
(1,1) (3,1) (43,1) (1,1) 1.50
(1,1) (64,1) (39,1) (1,1) 0.60
(1,1) (38,1) (86,1) (15,3) (14,3) (1,1) 1.20
(1,1) (29,2) (21,2) (1,1) 0.80
(1,1) (50,2) (70,1) (1,1) 4.60
(1,1) (3,3) (32,1) (1,1) 2.30

Table 4: Generated solution early arrivals γ1 = 0.1, γ2 = 1.0, γ3 =
0.1 with linked buffers
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6.1.5 γ1 = 0.1, γ2 = 1.0, γ3 = 0.1 with commonly used buffers

Next, ten commonly used buffering locations are considered across the Amsterdam city area depicted in
green in Figure 17. The commonly used buffers, just as the linked buffers, have no associated early arrivals
and overlapping arrivals/departures costs.

Figure 17: European retailer stores and buffers in Amsterdam, in i(k) format

From Figure 18 it is observed that the method converges in 6 iterations which is 1 more compared to the
two cases without buffers and with linked buffers.

(a) The solution value convergence (b) The reduced costs convergence

Figure 18: γ1 = 0, γ2 = 1.0, γ3 = 0 with commonly used buffers

The model gives solution 340.9910 (340.9910/333.7328 = 1.0217 times the benchmark solution) with only
0.1 units of overlapping arrivals/departures (Figure 19), 4.4 units of early arrivals (Table 5), 26 ((4421 −
26)/4421 = 0.9941) containers which are not delivered and 310.491 units of travelling costs (310.491 + 26 +
4.4 + 0.1 = 340.9910). It is seen that 4 out of 10 buffers are utilized such as 88, 89, 90, 91. Furthermore, it is
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noticed that there is no drop in demand satisfaction (26 compared to 39 for 6.1.3) while lower waiting costs
c3 are obtained (4.4 + 0.1 = 4.5 compared to 18.3 + 0.0 = 18.3 for 6.1.3 and 11.0 + 0.1 = 11.1 for 6.1.4).

Figure 19: Generated Shipment plan γ1 = 0.1, γ2 = 1.0, γ3 = 0.1 with commonly used buffers

path, (i,w) sum of early arrivals, in units
(1,1) (3,1) (43,1) (1,1) 1.50
(1,1) (38,1) (88,1) (32,1) (50,2) (1,1) 2.40
(1,1) (8,1) (90,1) (33,1) (15,3) (1,1) 0.50

Table 5: Generated solution early arrivals γ1 = 0.1, γ2 = 1.0, γ3 =
0.1 with commonly used buffers
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6.1.6 Relative importance of containers delivery

The relative importance γ2 of delivery of containers is varied from 0.5 to 2.0 with step 0.5 and the effect of
this change on the demand satisfaction and total solution costs is analysed. The results of these experiments
are represented in Figure 20. From the plot 20.a it is seen that the number of containers not delivered first
goes down significantly when γ2 is changed from 0.5 to 1.0, and after that it flattens when γ2 is increased
further from 1.0 to 1.5,2.0. On the other hand, plot 20.b demonstrates that the total solution costs increase
linearly while γ2 is changed from 0.5 to 2.0.

(a) Demand satisfaction (b) Total solution costs

Figure 20: Effects of containers delivery importance γ2
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6.2 Summary

The results of conducted experiments are represented in Table 6

benchmark solution generated solution
γ1c1 γ2c2 γ3c

y
3j γ3c3rq

∑
γ1c1 γ2c2 γ3c

y
3j γ3c3rq

∑
γ1 =
0.0, γ2 =
1.0, γ3 = 0.0

0.00 0.00 0.00 0.00 0.00 0.00 28.00 0.00 0.00 28.00

γ1 =
0.1, γ2 =
1.0, γ3 = 0.0

308.73 0.00 0.00 0.00 308.73 304.15 30.00 0.00 0.00 334.15

γ1 =
0.1, γ2 =
1.0, γ3 = 0.1
without
buffers

308.73 0.00 18.80 6.20 333.73 308.96 39.00 18.30 0.00 366.26

γ1 =
0.1, γ2 =
1.0, γ3 = 0.1
with linked
buffers

308.73 0.00 18.80 6.20 333.73 309.57 33.00 11.00 0.10 353.67

γ1 =
0.1, γ2 =
1.0, γ3 = 0.1
with
commonly
used buffers

308.73 0.00 18.80 6.20 333.73 310.49 26.00 4.40 0.10 340.99

Table 6: Experiments summary

It is seen that use of linked buffering locations allows reduction of the waiting times costs c3 from 18.3+0.0 =
18.3 to 11.0 + 0.1 = 11.1 units while the number of containers not delivered decreases from 39 to 33. Fur-
thermore, utilization of commonly used buffering locations allows reduction of the waiting times costs c3
even further to 4.4 + 0.1 = 4.5 while the number of containers not delivered also decreases to 26. The
reduction in waiting times is achieved due to decrease in the early arrivals costs cy3j from 18.3 to 11.0 and 4.4
respectively while the overlapping arrivals/departures costs c3rq slightly increase from 0.0 to 0.1. Therefore,
the hypothesis is true. Moreover, commonly used buffers give higher cost reduction than buffering locations
linked to stores.

The relative importance is defined for the travelling costs c1, the demand satisfaction costs c2 and the waiting
times costs c3 as γ1 = 0.1e/km, γ2 = 1.0e/item and γ3 = 0.1e/minute respectively. This definition allows
to conclude that utilization of commonly used buffers leads to total cost savings of 366.26−340.99 = 25.27e
per day, which is (366.26− 340.99)/366.26 = 6.9% of the total solution costs without using buffers. Further-
more, the waiting times costs for the case with commonly used buffers are also reduced by 18.3−4.5 = 13.8e
which is (18.3− 4.5)/18.3 = 7.5% of the waiting times costs without using buffers. On the other hand, the
travelling costs get slightly increased by 310.49 − 308.96 = 1.53e (15.3km more kilometres are travelled)
which is (310.49− 308.96)/308.96 = 0.0049%

It is observed that linked buffer number 86 and commonly used buffer numbers from 88 to 91 are uti-
lized but the remaining ones are not so it gives an indicator of which buffering locations are of higher
importance. Furthermore, the stores are identified which require utilization of buffers before visiting them
(14, 15, 22, 26, 32, 33, 44, 70, 71). Thus, the experiment allows identification of utilized buffers as well as
buffer-prone stores (Figure 21).
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Figure 21: Utilized buffers (in green) and buffer-prone stores (in purple), in i(k) format

7 Conclusion and recommendations

It is seen that buffering locations help to reduce waiting costs without drop in total solution costs. Further-
more, commonly used buffers have higher solution cost reduction than linked buffers. In particular, these
shared buffers allow savings of 7.5% of the waiting times costs and 6.9% of the total solution costs respec-
tively, compared to the case without buffers. The solution with cost reduction is obtained at the expense of
small increase in travelling costs (0.0049%).

It is observed that there are two clearly separable intervals of the relative importance γ2 of demand sat-
isfaction such as [0.5, 1.0] and (1.0, 2.0]. γ2 greater than 1.0e/item corresponds to the case when delivery
costs dominate other types of costs thus there is no way to consider partial delivery. γ2 less than or equal
to 1.0e/item stands for the case when delivery costs are comparable to other types of costs so it becomes
possible to trade partial demand satisfaction for shorter travelling distances and/or smaller waiting times.
Therefore, smaller relative importance of demand satisfaction costs leads to the possibility of considering
partial delivery.

It is recommended to use the implemented model to assess the usefulness of the buffering locations in the
Amsterdam area. In order to do so, a number of experiments might be conducted for different shipment
dates, and the usage of buffers could be monitored. Based on these statistics more precise inference would
be possible to determine which buffers could be established.

It is recommended to consider this model as an alternative option to perform daily routes planning. Firstly,
it can provide comparable results to the benchmark solution. Secondly, it is flexible for extension in general
and for experimenting in particular with different importance of relative costs.

It is recommended to extend this model to take into account drivers’ shift scheduling and stores’ efficiency.

It is recommended to extend this model in order to deal with the cases when more than one truck is allowed
within the same time window at the same store. This will make the model more realistic.

It is recommended to extend the numerical method described in chapter 5 in order to take uncertain travel-
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ling times into account. One of the possible ways to estimate the mean travelling speed is proposed in 3.3.4.
This will also make the model more realistic.
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8 Appendix

Name Type Description %
miss-

ing

min max mean

id numerical Identifier of a row 0 1 77258 38629.50
placeId categorical Identifier of a

Google place
0

geom spatial Spatial coordinates
of a directional
road segment
(EPSG SRID 4326)

0

Table 7: The Google place id map attributes

Name Type Description %
miss-

ing

min max mean

placeId categorical Identifier of a
corresponding
Google place id

0

start interval numerical Start of the
measurement time
epoch, in seconds
since 1970-01-01
00:00:00

0 1459468800 1467323700 1463397714

flow bucket numerical Indicator of the
relative road traffic
intensity

0 0 9 6.62

speed mean numerical Average road
travelling speed

0 0 45.00 11.37

Table 8: The Google city flow data attributes
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Name Type Description %
miss-

ing

min max mean

voet numerical Number of bicycle
paths

0 0.00 2.00 0.23

fiets numerical Number of foot
paths

0 0.00 5.00 0.44

ov numerical Number of bus and
tram paths

0 0.00 2.00 0.21

auto numerical Number of car
paths

0 0.00 2.00 0.13

bus tram categorical 1 - bus, 2 - tram
wvk id numerical Identifier of a road 0 219383002 999000386 253049886
snelheid numerical Maximal travelling

speed
0 0.00 100.00 34.52

geom spatial Spatial coordinates
of a directed road
segment (EPSG
SRID 28992)

0

Table 9: The ”Hoofd en plusnetten” map attributes

Name Type Description %
miss-

ing

min max mean

wvk id numerical Identifier of a road 0 27142004 555557003 308030531
bst code categorical FP -bicycle path,

VP -foot path
Table 10: The ”Wegvakken” map attributes

Name Type Description %
miss-

ing

min max mean

naam categorical Name of a store 0
x numerical Longitude of a

store’s spatial
location

0 4.75 4.98 4.88

y numerical Latitude of a
store’s spatial
location

0 52.29 52.44 52.37

Table 11: European retailer’s delivery destinations spatial at-
tributes
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Name Type Description %
miss-

ing

min max mean

Winkelnr categorical Name of a store 0
Wagentype categorical Type of the largest

truck which can be
parked: EUR -
Euro trailer
(largest), CIT -
City trailer, BAK -
Bakwagen
(smallest)

0

Table 12: European retailer’s delivery destinations vehicles param-
eters

Name Type Description %
miss-

ing

min max mean

vehicle type categorical Type of a truck:
EUR - Euro trailer,
CIT - City trailer,
BAK - Bakwagen

0

type of goods categorical Type of goods: VS
- Vers, HB -
Houdbaar

0

Q numerical Number of
containers which
can be loaded

0 30 61 45.67

Table 13: Freight transportation company delivery fleet parameters
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Name Type Description %
miss-

ing

min max mean

tripid categorical Identifier of a trip 0
stop number numerical Ordered position of

a store within this
trip

0 1.00 4.00 1.79

stop name categorical Name of a
destination

0

vehicle type categorical Abstract type of a
truck: TREKKER
- Euro or City
trailer, BAKWA-
GEN( KOEL) -
Bakwagen

0

type of goods categorical Type of goods: VS
- Vers, HB -
Houdbaar

0

start time tw datetime Start of a store’s
time window

13 2016-06-30
01:45:00

2016-06-30
22:25:00

2016-06-30
12:56:08

end time tw datetime End of a store’s
time window

15 2016-06-30
02:45:00

2016-06-30
23:25:00

2016-06-30
13:48:35

start time datetime Planned time of
arrival at a store

0 2016-06-30
01:07:00

2016-06-30
22:55:00

2016-06-30
12:46:39

end time datetime Planned time of
departure from a
store

0 2016-06-30
01:34:00

2016-06-30
23:29:00

2016-06-30
13:20:45

Table 14: Travel plan

naam description address vehicle type x y

1 buffer for store
1001

Paleisstraat 25 Amsterdam EUR 4.88 52.42

2 buffer for store
1027

Van Sonsbeeckstraat
Amsterdam

EUR 4.80 52.36

3 buffer for store
1080

Loowaard 8 Amsterdam EUR 4.88 52.33

4 buffer for stores
1117,1391 and 8684

Galenstraat 35 Amsterdam CIT 4.87 52.38

Table 15: Linked buffer locations
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naam description address vehicle type x y

1 Oostzanerdijk
Amsterdam

Oostzanerdijk 1035 Amsterdam EUR 4.88 52.42

2 La Cantina
Westpoort
Amsterdam

Hornweg 48 1044 AN
Amsterdam

EUR 4.80 52.40

3 Overschiestraat
Amsterdam

Overschiestraat 1062
Amsterdam

EUR 4.84 52.35

4 Lay-by Nieuwen-
dammerdijk
Amsterdam

Nieuwendammerdijk 542 1023
BX Amsterdam

EUR 4.95 52.39

5 Lay-by
Reigersbospad
Amsterdam

Reigersbospad 1106
Amsterdam-Zuidoost

EUR 4.97 52.30

6 Cruise Terminal
Amsterdam

De Ruijterkade 1013
Amsterdam

EUR 4.91 52.38

7 Public car parking
garage

Hoogoorddreef 1102
Amsterdam-Zuidoost

BAK 4.96 52.31

8 Public car parking
garage

Haarlemmer Houttuinen 1013
GM Amsterdam

BAK 4.89 52.38

9 Public car parking
garage

Europaboulevard 1083 AD
Amsterdam

BAK 4.89 52.33

10 Public car parking
garage

Sam van Houtenstraat 1067 JG
Amsterdam

BAK 4.80 52.38

Table 16: Commonly used buffer locations

Table 17: European retailer’s delivery destinations with identifiers
(available upon request)

naam x y i

1 4.88 52.42 83
2 4.80 52.40 84
3 4.84 52.35 85
4 4.95 52.39 86
5 4.97 52.30 87
6 4.91 52.38 88
7 4.96 52.31 89
8 4.89 52.38 90
9 4.89 52.33 91
10 4.80 52.38 92

Table 18: Commonly used buffer locations with identifiers

naam x y i

1 4.88 52.42 83
2 4.80 52.36 84
3 4.88 52.33 85
4 4.87 52.38 86

Table 19: Linked buffer locations with identifiers
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i w b e s
2 1 300 360 53
2 2 710 770 49
3 1 390 450 61
3 2 527 587 47
3 3 952 1012 54
4 1 485 545 35
4 2 1083 1143 37
5 1 210 270 40
5 2 1131 1191 68
6 1 480 540 53
7 1 825 885 42
8 1 414 474 53
8 2 535 595 57
9 1 1265 1325 27
10 1 150 210 64
10 2 630 690 47
10 3 1166 1226 57
12 1 594 654 41
13 1 1020 1080 42
13 2 1220 1280 49
14 1 534 594 41
14 2 621 645 24
14 3 878 938 42
15 1 588 612 24
15 2 731 791 49
15 3 815 847 32
15 4 900 960 44
16 1 242 302 47
16 2 551 611 36
16 3 960 1020 46
17 1 782 842 50
18 1 460 520 43
18 2 544 573 29
18 3 549 578 29
18 4 625 685 53
19 1 457 517 34
19 2 1063 1123 40
20 1 584 644 50
21 1 398 458 60
21 2 746 806 52
22 1 449 509 16
22 2 629 689 24
22 3 728 788 16
23 1 390 450 51
23 2 1253 1313 47
24 1 587 619 32
24 2 597 629 32
24 3 708 742 34
25 1 1201 1261 42
26 1 1020 1080 49
26 2 1200 1260 45
27 1 455 515 30
29 1 390 450 45

29 2 696 756 36
30 1 1102 1162 44
31 1 210 270 62
32 1 1037 1097 31
33 1 750 810 26
33 2 1138 1198 30
33 3 1276 1336 36
34 1 240 300 77
34 2 990 1050 77
35 1 600 660 48
35 2 1096 1156 47
36 1 462 522 41
37 1 1170 1230 32
37 2 1337 1397 36
38 1 791 806 15
39 1 510 570 66
39 2 1157 1217 68
40 1 528 588 62
40 2 750 810 59
41 1 487 547 39
42 1 480 540 67
42 2 823 883 74
43 1 469 529 48
44 1 757 781 24
44 2 765 825 42
44 3 1093 1153 46
45 1 1050 1110 32
46 1 491 551 46
46 2 960 1020 47
47 1 624 684 65
47 2 1034 1094 55
48 1 935 995 63
49 1 485 545 63
49 2 694 754 60
50 1 105 165 50
50 2 1126 1186 30
50 3 1223 1283 53
51 1 999 1059 63
52 1 1073 1133 38
53 1 767 827 51
53 2 1007 1067 48
54 1 1167 1227 31
54 2 1345 1405 34
56 1 867 927 21
56 2 1218 1278 24
57 1 431 491 46
57 2 1090 1150 52
59 1 445 505 32
61 1 549 609 36
62 1 585 645 39
63 1 390 450 22
64 1 475 535 27
68 1 1180 1240 45
70 1 1205 1265 25
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71 1 840 900 18
73 1 1226 1257 1
74 1 1226 1286 49
75 1 1052 1062 10
76 1 1044 1104 38
77 1 445 505 25
77 2 525 585 28
78 1 534 594 32
78 2 1081 1141 34
79 1 532 592 39

79 2 1157 1217 40
80 1 405 465 33
80 2 735 795 23
80 3 1196 1256 39
81 1 334 394 43
81 2 851 911 44
82 1 435 495 46
82 2 588 648 46

Table 20: Time windows

k h Q
1 1 34
1 2 30
2 1 50
2 2 45
3 1 61
3 2 54

Table 21: Goods types with identifiers

i w h d
2 1 1 61
2 2 2 54
3 1 1 30
3 2 2 26
3 3 2 22
4 1 2 22
4 2 1 25
5 1 2 54
5 2 1 61
6 1 1 30
7 1 1 50
8 1 1 11
8 2 2 30
9 1 2 30
10 1 1 61
10 2 2 54
10 3 2 54
12 1 2 54
13 1 1 50
13 2 2 45
14 1 1 34
14 2 2 15
14 3 2 15
15 1 2 15
15 2 2 30
15 3 1 11
15 4 1 17
16 1 1 61
16 2 2 54
16 3 2 54
17 1 2 54

18 1 1 34
18 2 2 15
18 3 2 15
18 4 2 30
19 1 2 54
19 2 1 61
20 1 2 54
21 1 2 54
21 2 1 30
22 1 1 17
22 2 2 30
22 3 1 17
23 1 2 30
23 2 1 34
24 1 2 15
24 2 2 15
24 3 1 50
25 1 2 54
26 1 2 30
26 2 1 34
27 1 1 25
29 1 2 54
29 2 1 30
30 1 2 54
31 1 2 54
32 1 1 25
33 1 1 17
33 2 1 34
33 3 2 30
34 1 1 50
34 2 2 45
35 1 2 45
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35 2 1 25
36 1 1 30
37 1 1 34
37 2 2 30
38 1 1 11
39 1 1 17
39 2 2 30
40 1 2 45
40 2 1 50
41 1 1 30
42 1 1 25
42 2 2 45
43 1 2 26
44 1 1 11
44 2 1 17
44 3 2 30
45 1 1 25
46 1 1 25
46 2 2 45
47 1 2 54
47 2 1 61
48 1 2 54
49 1 1 61
49 2 2 54
50 1 1 50
50 2 2 14
50 3 2 45
51 1 2 54
52 1 2 54
53 1 1 50
53 2 2 45
54 1 1 34
54 2 2 30
56 1 1 17
56 2 2 30

57 1 2 45
57 2 1 50
59 1 1 30
61 1 1 17
61 1 2 15
62 1 1 17
62 1 2 15
63 1 1 11
63 1 2 9
64 1 1 17
68 1 1 16
68 1 2 14
70 1 1 20
70 1 2 17
71 1 2 15
73 1 1 15
73 1 2 13
74 1 1 15
74 1 2 13
75 1 2 22
76 1 2 45
77 1 1 25
77 2 2 22
78 1 1 34
78 2 2 30
79 1 1 30
79 2 2 17
80 1 1 17
80 2 1 17
80 3 2 30
81 1 2 45
81 2 1 50
82 1 2 45
82 2 1 50

Table 22: Demand
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