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Abstract
In this thesis, we compare different exploration methods in deep Q-
learning networks. To this end, we select a subset of existing ex-
ploration strategies. This selection contains algorithms of Deep Q-
Network and we compare ε-greedy, annealed, noisy networks and
bootstrapped DQN. The networks are described, details discussed
and the differences explained. We compare the different algorithms
in different test environments. We show that in different environ-
ments the score is depending on the exploration method. As an end
result of this research, we summarise the results in a framework as
recommendations that can be used by companies to decide which al-
gorithm to use for different problems. This framework is based on
looking at the difference in performance, hardware requirements and
problem setting. We show that different methods perform differently
depending on the environment and we explain why this happens.
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The only stupid question
is the one you never ask.

RICH S. SUTTON



Preface
After witnessing Alpha Go’s [19] win against the best human Go
player in the world, my interest in reinforcement learning was sparked.
As the number of possible moves in a game is larger than the num-
ber of atoms in the universe, the computer can not calculate all the
possibilities. Despite those limitations, it had beaten the number
one player which was never been achieved before. So how did Alpha
Go do this and what techniques have been used to achieve this ac-
complishment? The main techniques that made this breakthrough
possible was using reinforcement learning and other techniques like
deep learning. Throughout my study, I had one course that explained
this algorithm, but I knew there was so much more to discover in this
field of machine learning. I started to experiment with implementing
my own algorithms and soon found out this is a subject I wanted to
spend my 6 months of research on.
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1 Introduction
Reinforcement learning is learning what to do - how to map situa-
tions to actions - so as to maximise a numerical reward signal [2]. The
learner is not told which actions to take but instead must discover
which actions yield the most reward by trying them [23]. Reinforce-
ment learning is a unique part of the machine learning area. It differs
from other machine learning methods as it is optimising for the fu-
ture reward instead of the current one. Optimising for the future can
be extremely useful in a lot of use cases and hard to achieve in a
different way. Let us look at a chess game. One could make a simple
program that evaluates of every board, the outcomes of all possible
moves. When this program only evaluates the board one step ahead
it cannot see certain things. In chess you can, for example, sacrifice
an important piece to get a better position in a couple moves away.
This cannot be seen by our simple program as it would never do such
a move because it would not be a better position in the next move.
This can be a perfect example where reinforcement learning can come
into play as it optimises for the future reward (win or lose) instead
of the current board evaluation. This way of solving games has been
shown to be better than humans in different games such as chess and
Go [20].

1.1 Basics
Reinforcement learning can be applied to a large number of different
problems. In order to apply reinforcement learning to a problem,
three parts of the problem need to be defined clearly. As long as
there is a known reward function, a state and actions which can
influence the outcome of the goal. These three components together
form a reinforcement learning problem. As an example, we will use a
fitness app which where people want to lose weight. For this app, the
amount of lost weight is the goal that you want to maximise and all
the notifications the app gives you, are the actions. The state is the
different kind of information the app collects of a user, its activity and
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app usage. In chess the setup of a reinforcement learning algorithm
would be to have an action of all the possible moves, the reward is a
win or lose and the state is the current situation of the board.

1.2 Mobiquity Inc.
This research is sponsored by Mobiquity Inc., which is a professional
services company that creates compelling digital engagements for cus-
tomers across all channels. Mobiquity’s core business is to make en-
gaging mobile apps in combination with consultancy. With their 5
different end-to-end services; strategy, experience design, product en-
gineering, cloud services and analytics, Mobiquity looks at innovation
all the time. They are interested in how reinforcement learning can
help their clients, how to integrate its products and what to imple-
ment. The aim of this thesis is to support quick decision making for
companies that want to implement reinforcement learning. A frame-
work will be provided which they can use to map their problem onto
which algorithm will be the best to apply. Different aspects and per-
formances will be looked at which will be described in the methods
section. This is all done by giving the company access to the code,
a research and evaluation report of the different algorithms. Also, it
will give a good overview of all the different factors they should look
at when thinking of implementing one.

1.3 Reading guide
First, we will discuss the background in section 2. We will discuss
the main idea of reinforcement learning and the mathematical foun-
dation behind it. After that the different methods will be explained
in section 3. All environments will be discussed as well as the differ-
ent models and the way we will evaluate the different algorithms. In
section 4 we will explain how we implemented our algorithms exactly
and in section 5 we will show our results and conclusions which con-
tains the framework. Finally, we will discuss all further improvements
that can be made in the discussion section 6.
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2 Background

2.1 Reinforcement learning
Now that we introduced reinforcement learning on a high level and
explained where it is applicable let us go a bit deeper into how it
works. A reinforcement learning problem as a sequential decision-
making problem under uncertainty [5]. This can be written down in
the form of a Markov decision process. It has state space which is
denoted as S, a set of actions of the agent A, transitions from state
s ∈ S to state s′ ∈ S with action a ∈ A at time t ∈ T denoted as
at and which is denoted as P (St+1 = s′|st = s, at = a). Next to that
there is a reward function R(s, s′, a) that returns the reward which is
given from s to s′ with action a. This is shown in figure 2.1.

Figure 2.1: Reinforcement learning [21]

There are two different types of models which will determine the
action an agent takes. A model-based algorithm learns the transition
probability from each state-action pair. A model-free algorithm relies
on a trial-and-error strategy, where it keeps updating its knowledge.
A policy π denotes a method by which the agent determines the next
action based on the current state. Instead of a reward function, we
define a value function Vπ(s) that maps the current state s to the
expected long-term return under policy π. In the next section, we

12



will go deeper into this value function. But first, we need to explain
that there are two different types of policies, on-policy and off-policy.
An on-policy agent learns the value based on its current action A
derived from the current policy, whereas its off-policy counterpart
learns it based on the action A′ obtained from another policy [22].

2.2 Q-learning
Ideally, the reward function can be found, but in most cases that
is infeasible. Due to randomness and other factors which cannot be
influenced by the actions, an exact reward function cannot be found
in most real-life problem settings. This is why a value function is
introduced. It calculates the expected reward based on the state and
action. This value function needs to be learned based on the collected
data. There are multiple ways of learning a value function and one
way is known as Q-learning [30]. For every state-action pair, it has
a Q-value which is the reward used to provide the reinforcement and
can be said to stand for the ”quality” of an action taken in a given
state [11]. Q-learning is an off-policy and model-free reinforcement
learning algorithm. The following equation is the rule how the value
is updated of a state-action pair.

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
At

Q(St+1, At)−Q(St, At)]
(2.1)

After every time step t the Q-function can be updated by the new in-
formation it obtained. The first part of the function contains simply
the old value of the Q-value. The learning rate α is a value between
0 and 1 and determines to what degree new information influences
the Q-value. This α is multiplied by the actual reward, R, added to
the estimate of the optimal future value Q(St, At). This estimation
is adjusted by the discount factor γ. The discount factor γ deter-
mines the importance of future rewards. It is also a number between
0 and 1. When the discount factor is close to zero, it only cares about
the current rewards. When it is close to 1 it will try to optimise on
the long-term reward. Next, to choosing the appropriate α and γ
there needs to be selected initial Q-values for every state-action pair.
There are multiple ways to initialise Q-values. How to choose the
best approach depends on the problem statement. If exploration is
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encouraged in the beginning, high initial Q-values are chosen assum-
ing that always the highest Q-value is selected. This is because an
update of the Q-value will lead to a lower Q-value. The next time an-
other action will be chosen until the Q-values will converge to their
(local) optimum value. When choosing low initial Q-values, it can
happen that the exploration will be minimal.

Now we have Q-values that represent our current estimation of
the reward given a state and a policy. Next to that, we have a Q-
function that is updating the Q-values based on new data. These
values are all stored in for example a matrix which has a Q-value
for every state-action pair. This is called the tabular implementation
of Q-learning [7]. After every step, the Q-function will be updated
with all the corresponding effects for the Q-values. The more data
it processes the more accurate predictions of the policy will be. The
higher the Q-value, the higher estimation of a reward. When all Q-
values are low in a certain moment, the Q-function cannot estimate
which action will lead to a high reward.

2.2.1 Exploitation and Exploration
Depending on the environments, just performing the action which
has the highest Q-values will likely converge to a local optimum.
For example, when in the first step a certain state-action pair has
a high Q-value, it will never perform another action in that state.
To avoid this there are multiple ways to perform ”exploration”. The
most implemented way to do this is having a random element when
deciding which action to take. Instead of looking at the Q-values a
fraction ε of the times a random action is performed. With ε between
0 and 1 This is called the ε-greedy exploration method. Next to
the ε-greedy exploration method, there are various ways to perform
exploration. In section 3.2.1 we explore this.

A common dilemma in reinforcement learning revolves around bal-
ancing exploiting known information and exploring the problem space
to find new information [2, 26]. In this research, this will be the main
focus of the different algorithms that are being compared. All differ-
ent algorithms have a different method to deal with this dilemma.
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2.3 Deep Q-learning
Before starting to compare the different exploration methods we should
first set up an algorithm that will solve the problem with at least one
of the different exploration methods. The algorithm we have cho-
sen in this thesis is a deep Q-Network (DQN) as this algorithm has
proven to work in different environments. The different exploration
methods are all modification of this original algorithm.

Deep Q-learning is a form of the classic Q-learning model. At ev-
ery step, the state is evaluated and will give a Q-value which approx-
imate the reward of each possible action. Traditionally Q-learning
was designed to have a value for every state action pair which called
tabular Q-learning. But this is not extendable when the state space
is increasing as the possible pairs are growing exponentially. For ex-
ample, when having 100 different binary variables which define the
state space and 10 different actions to take it means that there should
be more than 1.26 · 1031 different Q-values, which also needs to be
updated at every time step. Also a lot of problems do not have bi-
nary variables as input space but have more values for a variable or
even continues. This kind of problems makes the Q-learning explode
and not feasible for a lot of problems. To avoid these limitations a
machine learning technique is used to approximate the rewards at ev-
ery action. Machine learning is applied to makes a supervised model
with input state and output action. In this case, a deep neural net is
used as a machine learning model, hence the name Deep Q-learning.
The model learns from previous experience in mini-batches, which
avoids the model to train after every step. This approach makes sure
the algorithm is time efficient and stays feasible, now the only things
that will be stored are all the history state-action pairs and the model
which are for a deep neural network only the different weights and not
all possible state-action pairs of the model. The input of this model
is the state-action pairs and is optimised on the obtained reward.
The output of the model are the Q-values for the different possible
actions.

Next to having the ability to tackle problems with a bigger state
space, not only discreet but also continues variables, it is also more
scale-able. The method of using a nonlinear function approximate
such as a neural network which represents an action-value is known
to be unstable or even diverge [27]. There are two main ways to
avoid this behaviour. The first one is the use of experience replay
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and the second one is periodically updating the Q-values. These
improvements and others will be discussed in the next sections.

2.3.1 Experience replay
Every time step the agent stores the obtained data. The data which
is stored is et = (st, at, rt, st+1), with experience, state, action, reward
and next state at time t correspondingly. The dataset is defined as
D = {e1, ..., et}. To introduce a new mechanism to remove corre-
lations in the observation sequences and to smooth over the data
distribution a sample is taken from D, (s, a, r, s′) ∼ U(D). This uni-
form sample is taken when the algorithm is updating the Q-values in
mini-batches. The last N experiences are stored which is called the
replay memory. The replay memory does not make any disquisition
in the importance of the different transitions and overwrite the oldest
transitions with the newest when the memory buffer reached N . This
is also the case with the mini batches. So although there can be made
some improvements, this solution tackles the main problems.

Prioritized Experience Replay

One improved that can be made to learn more from some transitions
than from others is to use prioritized experience replay [18]. This
can be done to look at transitions which do not fit well. Instead of
uniformly sampling from the replay buffer, there is been looked at the
error which is made by the value function. The bigger the error the
higher probability to get in the mini-batch. The selection is efficiently
done by having a binary tree which has the error for each index of
the memory buffer which does not slow down the algorithm by much.

2.3.2 Periodical updating the Q-values
Another way to improve the stability and especially reduce the ob-
servation sequence is to introduce two different networks: Q and Q̂.
This is called Double Q-learning [28]. At every C number of up-
dates, the network Q is cloned to Q̂. This makes sure that the data
is not including too recent observations in there Q-values. A direct
consequence of that is that the current state is not influencing the
predictions of the last couple of states. This works well as Q(st, at) is
highly correlated with Q(st+1, at), so adding a time delay the Q-values
will not be influenced by the recent observations.
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2.3.3 State representation in DQN
The state can be represented in various ways when using DQN. It
really depends on the available data in the environment. It can be
observed data by sensors. This can be all data which represents the
current state. Examples are temperatures of sensors, coordinates of
certain objects or even screenshots of videos. There are even video
games that can learn on the RAM1 of the game, so the input state is
an array with bytes [24]. All data that represents the state space can
be helpful to obtain the most optimal Q-values. In this research, we
will also look at the pixels of a screen and transform that to a format
that can be processed by our DQN, such as an array of RGB-values2.

Next to the already told differences of Q-learning and DQN there
are some other details not discussed but explained in the original
publication [14]. In figure 2.2 the full algorithm is described which
we call deep Q-learning.

Figure 2.2: Algorithm 1: Deep Q-learning with experience replay

An episode is a complete play from one of the initial state to a final
state. In every episode, the same steps will be checked. The most

1Acronym for random access memory, a type of computer memory that can be
accessed randomly.

2RGB (red, green, and blue) refers to a system for representing the colours to
be used on a computer display.
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important steps will be explained. First the action will be decided,
this is done based on the highest corresponding Q-value or there will
be chosen a random action. This action will be performed and this
will be stored in the replay memory. Then the network is trained by
performing a gradient descent based on the returned reward.
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3 Methods
In this chapter we discuss and explain all the different environments
we used in this research, the different exploration methods we com-
pare and how we will evaluate which algorithms are better and in
which ways.

3.1 Environments
There are 3 different types of environments used in this research.
Classic controlling, game solving by screenshots and an experimental
setup to measure exploration in a policy. Now we shall take a look
at each in more detail.

3.1.1 OpenAI Gym
OpenAI Gym is a toolkit for developing and comparing reinforce-
ment learning algorithms. It supports teaching agents in different
ways, from walking to playing games like Pong or Pinball [4]. It is an
open-source library that can be used to compare different reinforce-
ment algorithms in different designed environments. In our research
2 different types of environments are compared: Mountain Car and
the Atari 2600 environment. The first one is a classical controlling
game. There is a small factor of randomness [8] and after some ex-
ploration it should be easy to solve. Atari games are different, there
is some randomness in the games and the input size is bigger. In the
next paragraphs, the differences will be explained more.

Mountain Car

In our research, the Mountain Car environment is part of the classic
controlling problems. The goal is to drive up a big hill with a car. It
has to build up its own momentum to be able to do this. The version
which is used is called: MountainCar-v0, this specific version of the
environment, has the following description:
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A car is on a one-dimensional track, positioned between
two ”mountains”, see figure 3.1. The goal is to drive up
the mountain on the right; however, the car’s engine is
not strong enough to scale the mountain in a single pass.
Therefore, the only way to succeed is to drive back and
forth to build up momentum [15].

Figure 3.1: Mountain Car

The input values of the model are the current position and the
velocity. To create an extra level of difficulty the car is placed at a
random position without velocity. The episode is terminated if 200
iterations are reached or if the car reached the top. The actions which
can be taken at every timestep are push left, push right and no push.

Atari 2600

Based on the popular old school games on Atari, OpenAI imple-
mented a selection of the games in the Gym environment. specific
description:

Maximise your score in the Atari 2600 game. In this envi-
ronment, the observation is an RGB image of the screen,
which is an array of shape (210, 160, 3) Each action is
repeatedly performed for a duration of 4 frames [12, 1].
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There are different games which can be played and they represent
a set of different problems. Because the input space and controls are
all the same, there can be a generic model applied which can be used
for all different games. Games vary from Pong to Pacman. They all
have different objectives and different ways to achieve high scores.
When model-free models are used which achieve good results, it can
be said that they perform well in different environment settings.

In this research two Atari games are tested, Breakout and Pong.
In Breakout, a layer of blocks is in the top third of the screen. A
ball travels across the screen, bouncing off the top and side walls
of the screen. When a brick is hit, the ball bounces away and the
brick is destroyed. The player loses a turn when the ball touches the
bottom of the screen. To prevent this from happening, the player
has a movable paddle to bounce the ball upward, keeping it in play.
Rewards are accumulated when the ball breaks a block and it stops
when the player misses the ball and when all the blocks are broken.
Pong is a game that simulates table tennis. The player controls paddle
by moving it vertically across the left or right side of the screen.
They can compete against a computer that is controlling the second
paddle on the opposing side. Players use the paddles to hit a ball
back and forth. The goal is for each player to reach 21 points before
the opponent. Points are earned when one fails to return the ball to
the other. Two illustrations of both games are shown in figure 3.2
and 3.3.
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Figure 3.2: Breakout in
Atari Figure 3.3: Pong in Atari

3.1.2 Chain
This third environment is specially designed to test whether different
models show signs of deep exploration [17]. In this environment, a
Markov chain is made with length N with N > 3. The agent has to
go left or right in every step and starts at state 2. At state 1 and
N the agent receives a reward of 0.001 and 1 respectively, see figure
3.4. The episode ends after N + 9 steps. The goal is to maximise
the cumulative reward of each episode. The greater N is, the less
likely for the algorithm to reach state N . The most optimal score is
obtained by only go to the right and stay in N until the end. When
the algorithm reaches that state it will be rewarded with a big reward
and the algorithm will find a way to go back to that state. The hard
part is to find that state in the first place. This is why the algorithm
shows signs of deep exploration when it finds this state after a time.
Deep exploration means exploration which is directed over multiple
time steps which are indeed needed to solve this environment.
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Figure 3.4: Chain

3.2 Exploration methods
In this section, different exploration methods are compared. The
different models are distinct in the sense of how they estimate the
Q-values and interpret those values. Because the Q-values are es-
timations of the reward and those estimations are especially in the
beginning not accurate and should not be trusted that much. There
are different ways to do that, but the main idea is that you should ex-
ploit the information which you have already learned or explore new
states in the hope you will result in a greater reward. Another reason
why it is important to choose different actions is that the algorithm
can be in a local minimum. To avoid this exploration can be a very
useful way to go out of this minimum.

There are traditionally two different categories of exploration: ex-
ploring undirected and directed [31]. The undirected exploration re-
lies on following random moves instead of looking at the given Q-
values. The most commonly used implementation of this method is
the ε-greedy method which will be explained in this section. The di-
rected exploration has tracks different values which helps it determine
if it should exploit or explore. There are 3 types: frequency based,
recency-based and error based. If we look at the recency-based we
will check the Q-values and take in the recency into account. It will
give more recent information more value than old information. If a
certain action is not chosen in a long time it might want to explore
this action again. Directed exploration brings an extra complexity to
the problem as there has to be recorded and/or calculated informa-
tion about one of the three different types.

In recent years there has been a lot of research being done in the
field of reinforcement learning and there are two recent papers that
show more exploration than the traditional papers, namely: noisy
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networks and bootstrapped DQN. We will explain both of these meth-
ods in this section.

3.2.1 ε-greedy
As already explained the different Q-values in the algorithm are an
estimation and might also converge to a local minimum. The first
problem can be solved by gathering more data and improving the
neural network by training it on that data. The second one can be
solved by using the following method. Performing a random action
completely independent of the Q-value. If you do this often it will
reach state action pairs which would not be reached otherwise. The
trade-off here is to perform this random action with probability ε and
perform the action of the policy with probability 1− ε. This is called
ε-greedy. The higher ε the more exploration and the lower ε the more
exploitation is performed. Sometimes you would be doing a random
action instead of doing the optimal one, independent of the Q-values.

There are multiple implementations of this method. The most used
one is to keep ε low and constant throughout the experiment. Another
way is to use linear annealed exploration. It will start with a high ε
(i.e. 1) and will decrease a small value linearly over every step. After
a set number of steps, it will stay at a fixed ε. This implementation
makes sure that there is a lot of exploration at the beginning of the
experiment and will exploit all that information in the end. This can
be useful as you first want to explore the state space and after you
have a good view of the optimal actions.

3.2.2 Noisy networks
Noisy networks is an implementation of the original DQN with dif-
ferent dense layers. Those layers are replaced with a new kind of
layer which is described in noisy networks for exploration [6]. The
main idea is that the layers are getting parametric noise added to
the weights of the layer. This noise is influencing the Q-values which
causes that the predicted value is different than in a normal DQN
network. The randomness has a direct influence on the Q-values.
This means that when the algorithm is not confident between differ-
ent possible actions it will be more random than when it is confident.
When the Q-values for an action are high without noise, the noise
will not influence this too much because it will still be higher than
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other actions. For this reason, the algorithm is exploring more when
not certain and follows the optimal policy when is more confident.

The dense layers are replaced by the noisy layers according to an
implementation by Andrew Liao [10].

y = wx+ b (3.1)

We transform the normal layer

y
def= (µw + σw � εw)x+ µb + σb � εb (3.2)

Where µw + σw � εw replaces µ and µb + σb � εb replace the bias
in the normal dense layer. As in the original for noisy networks the
DQN algorithm is chosen to use factorised Gaussian noise. Where
� represents element-wise multiplication. This function is used to
generate the ε values, the noise. The µ values are uniformly initialised
values U(− 1√

p ,+
1√
p). The σ values are initialised as a constant value

σ0√
p with σ0 = 0.4. These values are chosen as described in the original

paper. The parameter are chosen carefully for a specific problem.
This requires a parameter optimisation process.

3.2.3 Bootstrapped DQN
Bootstrapped DQN [17] empowers the different strengths of single
DQNs. The idea is that you start with k different DQNs. All are
initialized with random values in the networks. During each episode,
one of the k networks is selected and the actions will be performed
by the optimal Q-value of that network. After every step, there is a
probability p that will determine if that state, action, reward pair is
added to the memory for each of the k networks. Because all networks
are different the network will reach different state spaces which are
shared with a fraction p with all other networks. So, if a certain
action results in better results for one network it will help the other
networks which it is added to. The network uses that information
in the next episodes. This loop will make sure that all networks will
have this information when the time passes. With actions that have
negative results, it’s a bit different. That information is not shared as
much as the positive actions as the Q-values for those actions will be
low when it is already in the memory of a network. This behaviour
of the collaboration between networks can lead to a positive effect of
score performance, but also has some memory problems. It uses k
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times as much networks which lead to slower processing time. When
the networks are parallelized it only has an increase of 1.2 times a
default DQN which is acceptable in most situation. This is possible as
there was a shared network and only at the last layer a split between
the different heads. Every iteration had an effect on the shared layers
and fraction p of the k heads. This is shown in figure 3.5.

Figure 3.5: Shared bootstrapped network

This is done to make use of the exploration advantages of the boot-
strap DQN, but not to make the network k ∗ p times slower. With
the shared network, the authors of the original paper show that the
performance of the scores improves more than the extra consumed
time. An efficient way of storing the data also does not make the
algorithm slower.

3.3 Evaluation
We compare different exploration methods based on different crite-
ria. These criteria are described in this section. These criteria should
result in an overview which Mobiquity can use to evaluate which algo-
rithms to use in different business cases. We have in total 5 different
elements we will use in our framework to evaluate the different algo-
rithms. The first 2, score and area under the curve, will be explained
in this section and the obtained results will be discussed in the next
section. The other 3, speed, integration and environment fit, will be
discussed in this section. These criteria do not need any results so
we will already explain how the different algorithms perform in it.
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3.3.1 Score
Every environment has a reward function. You can look at the maxi-
mum score that is obtained over time. This can be a good indicator of
the potential of a certain algorithm. All scores are aggregated to the
mean of the last 100 episodes. This is done to really see the trends
and not just accidental behaviour.

3.3.2 Area under the curve
Usually the performance of a game is fluctuating over time, ideally in-
creasing. The area under the curve (AUC) can help in quantifying the
performance over time in one single number. It looks at all the scores
over time and adds them up from timestamp 0 to n. This value can
be good when you compare the overall performance of an algorithm
and not the maximum score. When an algorithm is learning fast the
AUC will also be higher when reaching similar maximum scores, than
an algorithm with a slow learning curve. This can be good to know
when you want to train an algorithm with fewer iterations.

3.3.3 Speed
Training speed is an important factor when implementing algorithms
in business perspectives. Sometimes it is not that important to get
the optimal answer as long as it does not take a lot of time to get.
In other examples, it does not matter how long it takes as long as
the answer is the best. Also, there can be some hardware limitations
that will result in different kinds of algorithm requirements.

All simulations are done on a shared cloud environment on Amazon
Web Services (AWS). This gives the limitation that the speed on a
certain machine is also dependent on other AWS users. Because of
this we will refer to other results of the original papers when discussed
and explain the speed in a theoretical way.

In theory, the speed difference of the annealed, greedy and noisy
methods are more or less the same. The whole algorithm is the same
except the already discussed variations. Maybe we can say that an-
nealed exploration can be a fraction faster than greedy as there is
more often a random move instead of a prediction of a model. This
can be safe some time but this is negligible.

The bootstrap algorithm is slower than all other algorithms. This
is because the model is just bigger, which results in slower training
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and predicting. It can the number times as slow as the number of
heads. But due to efficient implementation and parallelization over
multiple cores, this can be reduced. Furthermore, when the network
has a shared network before the splitting of the heads like how we
implemented it in the Atari environment the speed is only a little
slower than the original implementation of a DQN. The implemen-
tation K=10, p=1 ran with less than a 20% increase on wall-time
versus DQN [17].

3.3.4 Integration
An important aspect for the business perspective besides the effec-
tiveness of the different algorithms is how easy it is to implement our
approach and our findings in their new and/or existing systems. If
it wants to implement one of the different algorithms the start is to
implement the normal DQN with an ε-greedy policy. So we can say
that this is the most ’simple’ algorithm. Immediately followed by the
linear annealed variant of the ε-greedy policy. This just requires a
couple of extra lines of code which is no effort in comparison with the
whole system. The noisy networks come up next when it comes to
complexity. An extra neural network layer has to be integrated and
some parameter optimisation needs to be performed for new prob-
lems. This optimisation can be really important for the performance
of the network. The most difficult algorithm to implement is the
bootstrapped DQN. This requires to make decisions in the number
of heads and the fraction that of information is shared between the
heads. Next to that the most difficult integration part is to design
and implement the network architecture. What part of the network
should be shared and where should the network be split in the differ-
ent heads.

Next to keeping in mind how the algorithms should be integrated,
it is also important for the business whether an algorithm can be ex-
plained to stakeholders within a company. With bootstrapped DQN
this is also the hardest after the noisy networks. The ε-greedy and
linear annealed policy are relatively simple to explain compared to
them.
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3.3.5 Environment fit
Different algorithms can show different results in different environ-
ments. This is because there should be a fit for an algorithm de-
pending on its environment. For some environments it is hard to
find the optimal policy and there needs more exploration. ε-greedy
has a constant level of exploration which does not change over time.
This algorithm is the best for environments which do not need explo-
ration. The linear annealed policy is for environments where there
first needs to be obtained a lot of information to make the optimal
decisions. Noisy networks show signs of little exploration. In the be-
ginning, it is high as the weights are initialised with noise. After some
time it does not show that much of exploration. bootstrapped DQN
is specialised for environments where a lot of exploration is needed,
but both can converge to an optimum after a lot of iterations.
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4 Experimental setup
In this chapter, we will discuss how the different algorithms are ex-
actly implemented in more detail and how it is made reproducible for
future research.

In our setup, we have a DQN with 3 extra variations on it next
to the original ε-greedy DQN. These variations are linear annealed,
noisy networks and bootstrap exploration. Other than the described
differences, the networks are exactly the same. All are run on the
same type of machine on the AWS cloud. In all environments the
simulation is run 3 times with different seeds1. The multiple runs are
necessary because the initial values of the neural networks can be very
dependent on the explored space. The weights bias the Q-function
towards a set of actions and which might result in different future
exploration. Also, the algorithm itself has stochasticity because it
can perform action selection randomly. The final results are based on
the maximum obtained scores of the different seeds.

4.1 Network architecture
In this research, 2 different neural network architectures are used.
One is used for the Atari games and another model for the other
environments.

4.1.1 Atari
The network used for the Atari environment is an exact copy of the
network which is described in DQN [14]. There are some slight varia-
tions with the different algorithms which were explained in the meth-
ods section. The exact parameters used and implementations in this
research are outlined in the next section.

The input of the DQN is a grey-scale image representation of 84
by 84 pixels. The 4 recent frames are feed into the network because

11,2,3 are the chosen seeds
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this gives information in pictures which represents the direction of
moving objects. This allows the network to observe the change in the
pixels and so the movement of certain objects. The first hidden layer
of the network is a convolutional layer of 32x8x8 filters with stride 4
with the input image and applies a rectifier non-linearity. The second
hidden layer is another convolutional layer of 64x4x4 filters with stride
2, again followed by a rectifier non-linearity. The third hidden layer
is another convolutional layer of 64x3x3 filters with stride 1, again
followed by a rectifier non-linearity. The final hidden layer is fully-
connected and consists of 256 rectifier units. The output layer is a
fully-connected linear layer with a single output for each valid action.
The number of valid actions varied between 4 and 18 based on the
games we considered [13].

Now some parameters will be explained which are used in the net-
work and their values of them in this experiment. In total there are
106 number of actions taken. The higher this number, the more in-
formation the network has and also the more likely the network will
perform better. The learning rate, α, is set to 10−4. As described at
the beginning of the paper this rate determines how much of the new
information is influencing the new target value. The discount factor,
γ, is set to 0.99 which indicates how important future rewards are.
Every 1000 steps the network is updated. The memory gets sampled
to update the network every 4 steps with mini-batches of size 32.

Double DQN

This small variation in the DQN is implemented to boost the perfor-
mance [28]. DQNs are known to overestimate the action values [25].
To avoid these two value functions are set instead of one. First there
was a network for selecting and evaluating actions. In the Double
DQN setting, there is a current network and an older one. The cur-
rent network w, selects actions a and the older network w′ is used for
evaluation. Where I is the target update of the network.

I = [r + γmax
a′

Q(s′, a′, w)Q(s, a, w)]2 (4.1)

I = [r + γQ(s′, argmax
a′

Q(s′, a′, w), w′)−Q(s, a, w)]2 (4.2)
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Reward clipping

All Atari games have different reward functions. For some games,
players can earn up to 10000 points and others only 10. Keeping
these reward functions means training will be unstable. This is why
all negative rewards are set to -1 and all positive rewards to 1. This
is called reward clipping.

Figure 4.1: DQN network Atari [3]

4.1.2 Bootstrapped DQN
As already explained, for speed efficiency purposes instead of creating
k different networks, part of the network is shared. After the final
layer, the network is split into K = 10 distinct heads, each one is fully
connected and identical to the single head of DQN. This includes a
fully connected layer to 512 units. After that layer, it will split into
the different heads of another fully connected layer. For every head,
a Q-value for every action is generated. All the fully connected layers
use Rectified Linear Units(ReLU) as a non-linearity. We normalise
gradients 1/K that flow from each head.
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4.1.3 Others
We have two different types of models. One is for the Chain and
Mountain Car environments and the other is for the Atari games.
The difference is in the number of layers, type of layers, size of layers
and parameters of the agent.

In general all parameters are the same as in the Atari setup as
long as we do not mention it. But the architecture of the networks is
different. The network had a much simpler network of just one convo-
lutional layer of 64 units with a ReLu and a fully connected layer with
a linear activation function with the number of actions as a number
of units. With bootstrapped DQN the first fully connected layer was
replaced by K = 10 different networks. The learning rate was 10−3

and ε = 0.1, which have proven to perform in online contests [16].
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5 Results & Conclusion
In this chapter, we will discuss all the obtained observations and
results. A framework will be provided to select the most appropriate
algorithm for new problems.

5.1 Gym
As described, one of the tested problems is the Mountain Car. This
problem needs a lot of exploration as it will only find a reward when
going up the hill. This requires the algorithm to perform the tasks
in a way that it will reach the top without knowing that that is the
goal.

Figure 5.1 and table 5.1 show the results obtained after running
the experiments. From these results we see that the bootstrap ex-
ploration strategy learns to climb uphill the fastest in comparison to
the other exploration strategies. We can observe this during the first
150 iterations. Furthermore, we observe that the mean reward drops
after iteration 150. A plausible explanation for this behaviour could
be that the exploration rate is still too high after 150 iterations and
as a result, the network keeps exploring which results in the policy
changing over time. This also suggests that it might be beneficial to
run the experiments for a larger number of iterations. Similar be-
haviour is seen in experiments with annealed and greedy exploration.
Noisy exploration was not able to reach the top of the hill during
our experiments. We suspect that this is due to the parameters and
network architectures that were selected. These parameters and ar-
chitectures were selected based on the original paper [13] that used
this exploration method. This paper however tests noisy networks
in an Atari environment while we test it in a different environment.
Finally, we see that the linear annealed algorithm scores the best in
both AUC and top score. This exploration strategy shows a clear
exploration due to the fact that the average reward is fluctuating.

34



Figure 5.1: Results Mountain Car

Method AUC Top score
Greedy 1719 -192
Annealed 2111 -191
Bootstrap 1540 -194
Noisy 0 -200

Table 5.1: Results Mountain Car

5.2 Chain
In figure 5.2 all the different results are plotted for the chain environ-
ment. We first see that the rewards are much higher when N is low.
This is exactly what is to be expected as it is easier to reach a low
N when doing for example just random moves. When the algorithm
reached a certain state it is likely to keep going to that state as the
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reward is much higher than in-state 1. We can clearly see this in
figure 5.2j that when the noisy network found the optimal solution
after 75% of the time and kept going to that state. In table 5.2 all
the top scores and AUC’s are presented. The greedy algorithm is
performing well when N is low. We can see that the algorithm will
reach a perfect store for N < 50. After that, the greedy algorithm
does not perform enough exploration to obtain this optimum.

(a) N = 10 (b) N = 20 (c) N = 30

(d) N = 40 (e) N = 50 (f) N = 60

(g) N = 70 (h) N = 80 (i) N = 90

(j) N = 100 (k) Legend

Figure 5.2: Plots for different chain lengths
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Method N=10 N=20 N=30 N=40 N=50
AUC Top AUC Top AUC Top AUC Top AUC Top

Greedy 19833 12 18071 12 15231 12 12676 12 11310 10
Annealed 19213 11.1 17224 10.1 13528 9.1 10975 8.1 9337 7.4
Bootstrap 18990 10.9 15610 10 13666 9.2 10770 8.2 9687 7.4
Noisy 22650 12 21206 12 21147 12 20861 12 18397 12
Method N=60 N=70 N=80 N=90 N=100

AUC Top AUC Top AUC Top AUC Top AUC Top
Greedy 8921 7.5 7531 6 6066 6 4932 6 3990 4
Annealed 128 0.1 131 0.1 1769 4.5 165 0.1 177 0.1
Bootstrap 7457 6 114 0.1 93.2 0.1 157 0.1 2203 2.7
Noisy 19447 12 14668 11.6 15130 11.9 15873 11.7 5645 12

Table 5.2: Results Chain

In table 5.3 we see that the noisy networks outperform the other
algorithms, followed by the greedy algorithm. The linear annealed
and bootstrap algorithms show similar results. Both are reaching the
end, but cannot converge into the optimal solution. Even after they
find a good solution they are exploring where they should have to
exploit their knowledge.

Method AUC Top score
Greedy 10856.1 8.75
Annealed 7264.7 5.07
Bootstrap 7874.7 5.47
Noisy 17502.4 11.92

Table 5.3: Results the mean of the Chain
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5.3 Atari
The results of Atari can be found in table 5.4. It includes the scores
when playing using random policy [29]. This gives a good view on
how the algorithms really improve and learn. In figure 5.3 and 5.4
the results are shown over time. We can see that in the Atari domain
the bootstrapped DQN is outperforming all other algorithms. The
performance of the other algorithms is similar across each other. In
both environments we see that noisy networks are underperforming in
the beginning, but they recover after a while. In both figures we can
see that the angle of the slope is the highest in the end. We suspect
that with more iterations it will outperform the linear annealed and
greedy algorithm. This is also supported by the original paper of the
noisy networks [6].

Figure 5.3: Results Pong
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Figure 5.4: Results Breakout

Method Pong Breakout
AUC Top AUC Top

Greedy 3783 0.62 37038 63.0
Annealed 4140 3.14 35678 71.2
Bootstrap 8222 18.4 44545 86.9
Noisy 3436 1.4 38978 67.7
Random -20.7 1.7

Table 5.4: Results Atari

5.4 Framework
In table 5.5 we provided the final framework. This framework can
be used by companies. It gives an overview of the difficulty of imple-
mentation, the speed, AUC, top score and what type of environment
is suitable. The framework provides this information for every algo-
rithm. Companies can check their problem based on their restrictions
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and what they think is important. For example when there is no lim-
itation on computational time a bootstrap algorithm can be the best
option as it will converge faster. When a problem doesn’t involve a
lot of randomnesses and has to be solved in a shorter amount of time
the annealed algorithm would be selected.

Imp. Speed AUC Top score Env. type
Greedy ++ + − − No exploration needed
Annealed ++ + + + Explore over time
Bootstrap − − − ++ ++ Keep exploring
Noisy − + + + Little exploration

Table 5.5: Framework: How to choose which algorithm

In conclusion, when looking at the performance the bootstrapped
DQN is doing the best and also learns faster. The bootstrapped DQN
works better with more complex problems. Despite the fact of being
the best performer it also has some downsides. As it is harder to
implement and is slower. When these downsides are big enough that
it is not a good fit for the problem, there should be looked at the
different algorithms. As shown in the framework these differences
are limited and mostly depend on the type of environment and the
amount of exploration needed.
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6 Discussion
More research has to be done to make stronger claims about the
different algorithms and their performance. Also due to time limi-
tations and cost restrictions we could not have enough timesteps to
converge to an optimal solution for any of the different algorithms.
This is also shown in the different papers which describe the algo-
rithms used. Despite our limited simulation times, we can now see
how the algorithms behave with limited data. This is also very useful
especially for businesses as they can have an idea which algorithm to
use with limited data.

Also we found out that results differed a bit from the original pa-
pers. This is because we did not use the exact same networks and
parameters for all experiments. We see this for the performance of the
chain environment with the bootstrapped DQN. The noisy networks
do not perform in the Mountain Car environment. This suggests
that the parameters of the noise that was added were not suitable
for this problem. To compare the methods in a more equal way we
can first optimise the individual algorithms. After the right networks
are chosen and the corresponding parameters the final results can be
generated and compared. The optimisation method can also be very
helpful for a company which needs to implement the algorithms to
boost their performance.

In this research, every simulation is done exactly 3 times with differ-
ent seeds which leads to different results. It is done multiple times as
all algorithms and some environments have random factors in them.
To prove the significance the experiments have to be performed mul-
tiple times. A Wilcoxon signed-rank test [32] can be performed on
the different metrics to conclude significance. To make bigger claims
the number of different seeds has to be increased as it will help with
this test. In this research, this could not be performed due to time
limitations.

Next to improvements in the experimental setup, we can also look
at different algorithms which are competitive with the current ones.
One recent publication is ”Rainbow: Combining Improvements in
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Deep Reinforcement Learning” [9]. This DQN is a combination of a
set of state of the art reinforcement algorithms. It can be interest-
ing to see if other algorithms are performing better in the different
environments. In the paper they outperformed almost all know algo-
rithms at that point in time. This can be seen in figure 6.1

Figure 6.1: Results rainbow [9]

As shown in figure 6.1, there are a lot of different algorithms that
are compared. If this research will be extended this will be one of the
first to take a look at. As the time is progressing a lot of different
algorithms are developed with improvements in performance. Our
framework will also check how suitable these new algorithms will be
in a business case.
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