
AdWords Bid Optimisation

MASTER THESIS

BUSINESS MATHEMATICS & INFORMATICS

VU UNIVERSITY AMSTERDAM

by
Kevin Duijndam

September 14, 2011

AdWords Bid Optimisation

Author:
Kevin DUIJNDAM

Supervisors:
Dr. Wojtek KOWALCZYK (VU)

Drs. Martijn ONDERWATER (VU)
Drs. Eric JONKER (KLM)

September 14, 2011

Preface

The Master program Business Mathematics & Informatics at the VU Univer-
sity Amsterdam is concluded by an internship. My internship took place at the
Decision Support department of KLM Royal Dutch Airlines. In this report, the
results of this internship are presented.

I would first like to thank my supervisor, Wojtek Kowalczyk, for his support
throughout this internship. The good and practical ideas he always had were
really helpful in concluding this internship. Also I would like to thank Martijn
Onderwater, for all the help in finishing this project. Both his help in practical
matters and his comments on the report have helped a lot in improving this
report.

Finally, I would also like to thank my colleagues at KLM Decision Support
for their help and support. Especially Eric Jonker for the, mostly technical,
advise and knowledge of the Google AdWords system.

In this report, some parts are confidential. They are either shown like this:
, or they are left out completely and replaced by ’Confidential’.

Kevin Duijndam

Management Summary

Companies spend more and more money on online advertising and a very
important part of most companies’ advertising campaigns is paid search. An
important aspect of advertising through paid search is how much one is will-
ing to pay for a position on the results page. Generally these positions are auc-
tioned per search phrase and therefore advertisers have to set bids per search
phrase.

To get a better understanding of the way this auction works, first the current
situation is analysed. It is shown that being displayed on the first position
almost doubles the chances of being clicked.

Using this analysis, keywords can be clustered together to try to discern dis-
tinct groups of keywords. It is shown that there is a small group of keywords
that have very different statistics compared to the other keywords. These key-
words are either a lot more effective (keywords like) or a lot more ex-
pensive but not effective at all (keywords like). There are also a
lot of keywords that are never, or almost never, clicked or viewed. Two other
groups of keywords were found with more and less active keywords.

To optimise bidding on keywords a combination of a knapsack model and a
Markov decision process model is proposed that is able to adjust its bid during
the budget period. This results in an improvement in the spending on adver-
tisements via paid search and is shown to outperform a fixed bid consistently.
An increase in performance of up to 10% is observed in simulations.

Contents

1 Introduction 2
1.1 Business Mathematics and Informatics 2
1.2 KLM . 2
1.3 The problem . 3
1.4 Report Outline . 4
1.5 Goal . 4

2 Google AdWords 5
2.1 History . 5
2.2 Auction . 6
2.3 Common practice . 8

3 Data Analysis 9

4 Clustering 10

5 Modeling the auction 11
5.1 The knapsack problem . 11
5.2 The model . 12
5.3 The online knapsack problem . 13
5.4 Single-Slot Auction . 14
5.5 Multiple-slot auctions . 15

6 The bidding process as a Markov Decision Process 17
6.1 Markov Decision Processes . 17
6.2 The model . 19

7 Results 22
7.1 The Knapsack Approach . 22

7.1.1 The performance of the algorithm 22
7.1.2 Using the algorithm on real data 27
7.1.3 Optimising the algorithm 28
7.1.4 Conclusion . 30

7.2 The Markov decision process approach 31
7.2.1 The MDP approach on generated data 31

iv CONTENTS

7.2.2 Using the algorithm on real data 33
7.3 Comparing the two methods . 33
7.4 Combining the two methods . 35

8 Conclusion 37
8.1 The adwords . 37
8.2 The auction . 37
8.3 Further work . 38

A Proof of optimality 40
A.1 Single-slot case proof . 40

A.1.1 Remark: . 41
A.2 Multi-slot case . 41

List of Figures

6.1 A graphical model of the used Markov chain 18

7.1 The computed bid for a certain keyword as a function of the
budget that is left . 23

7.2 Histograms comparing the knapsack- and dummy-bidder in sce-
nario 1 . 24

7.3 Histograms comparing the knapsack- and dummybidder in sce-
nario 4 . 26

7.4 Barcharts with the results of the two strategies of all simulations 27
7.5 The epsilon and upperbound from generation to generation . . 29
7.6 The computation time for a growing number of keywords 31
7.7 The expected optimal value (or return) per user versus the bud-

get that is allocated per user . 32
7.8 A comparison of the computation times of the two approaches . 34
7.9 The computation times of the partitioned approach 35

List of Tables

7.1 Statistics from the simulation with a dummy bidder bidding 0.2,
scenario 1 . 24

7.2 Statistics from the simulation with a dummy bidder bidding uni-
form between 0.2 and 10, scenario 2 25

7.3 Statistics from the simulation with a dummy bidder bidding uni-
formly between 0.2 and 3, scenario 3 25

7.4 Statistics from the simulation with a dummy bidder bidding 1.4,
scenario 4 . 26

7.5 Statistics from the simulation with two knapsack-bidders 27
7.6 Statistics from the simulation with the optimised knapsack-bidder 29

Chapter 1

Introduction

1.1 Business Mathematics and Informatics

Business Mathematics & Informatics 1 is a multidisciplinary programme com-
bining mathematics and computer science with business management knowl-
edge. These factors are aimed at improving business processes through mathe-
matical optimisation. Since BMI tries to be as practical as possible, it is required
to finish the study by doing an external research project. This report is the end
result of this research.

1.2 KLM

KLM stands for ’Koninklijke Luchtvaartmaatschappij’ or Royal Dutch Air-
lines. It is the oldest Dutch airline in existence with a substantial interconti-
nental network, albeit no longer independent as of its merger with AirFrance,
founded on 7 October 1919 and one of the largest in the world after the merger.
Its first commercial flight was carried out on 17 May 1920 between London and
Amsterdam [6]. On 1 October 1924 KLM commenced its service to Batavia in
the Dutch-Indies, the longest scheduled flight service before the second world
war [7]. In 1946 KLM was the first European airline to commence service to the
United States. Since 1993 all flights between Europe and the US are operated
under a joint venture agremeent, first between KLM and its partner Northwest
Airlines, and later with Delta Airlines. On 5 May 2004 KLM merged with Air
France to become Air France-KLM. Currently, KLM has well over a hundred
airplanes, excluding subsidiaries and daughters, flying to about 140 different
destinations worldwide, with about 33,000 people employed. KLM is also a
founding member of Skyteam, a global airline alliance with 13 members2 that
provides access to a global network with over 12,500 daily flights to 898 des-

1From now on, BMI.
2In February 2011

3 Introduction

tinations in 169 different countries. Since the joint-venture with Northwest
Airlines, daily cross-Atlantic frequency has risen tremendously with currently
almost 250 daily trans-Atlantic flights.

KLM has various daughter companies and subsidiaries:

• Martinair (100%)

• KLM Cityhopper (100%)

• Transavia.com (100%)

• KLM Cargo (100%)

• EPCOR3 (100%)

• KLM Flight Academy (100%)

• Cygnific BV4 (100%)

• Kenya Airways (26%)

• HSA5 (10%)

1.3 The problem

Besides the main business of transporting people and goods, KLM also needs
to advertise its tickets to potential customers. Ever since the rise of the Internet,
more and more advertisements are being placed on the web. Besides placing
normal advertisements like for instance banners on a website, another reward-
ing possibility is that of advertising on search engines. This is very effective
as people are already searching for something and if an advertisement is corre-
lated to their search, they are a lot more likely to be interested in the advertise-
ment. Therefore, advertising via search can be very effective. KLM places a lot
of advertisements at Google and logically, KLM needs to pay Google for this.
Google auctions advertisement places and for every advertisement a bid has
to be placed. If a bid is too low, an advertisement will not be displayed, but on
the other hand if a bid is too high, one might pay too much. The problem is to
find the best bids for the advertisements in such a way that the advertisements
are as effective as possible.

3European Pneumatic Component Overhaul & Repair is a repair and overhaul facility for en-
vironmental control system components, engine starters, leading edge flap drive units, air driven
pumps and other pneumatic components installed in all models of large commercial aircraft.

4Cygnific is an international, multi-channel, sales & service center for travel related services.
5High Speed Alliance is an alliance between NS (the Dutch railway company) (90%) and KLM

(10%) and it is a company that runs high-speed train services in Holland.

4 Introduction

1.4 Report Outline

In this report I will investigate the problem of advertising on the Internet
via paid search channels, and more specifically, via Google AdWords. First I
will give a brief explanation of what Google Adwords precisely is and why it
is relevant to investigate this in chapter 2. Then, I will continue with a short
investigation of what exactly can be said about these advertisements. For in-
stance, how often are the advertisements viewed per day? And how often do
people click on them? Is there a large spread in how often people book after
they have clicked? This can all be found in chapter 3. I will continue with
clustering the advertisements into groups of advertisements, as investigating
every single advertisement is neither possible nor very rewarding. How this is
done is explained in chapter 4. After this a model for the auction is proposed
which allows for computations in chapter 5 A completely different approach is
described in chapter 6. Results obtained by both models can be found in chap-
ter 7, where also a hybrid model is proposed that uses the strengths of both of
the proposed models.

1.5 Goal

The goal of this research is to optimise KLM’s spending on Google AdWords.
Optimising can be done in several ways: either by spending less money while
keeping the same number of bookings, or by spending the same amount, while
getting more bookings through the advertisements. Even something in-between
is possible, where the number of bookings increase and the spendings decrease.
Since the advertisements are displayed based on an auction system that re-
quires bids, the goal is to optimise KLM’s biddings on this auction.

Chapter 2

Google AdWords

Google AdWords is the service Google offers to companies to advertise on
the search channel of Google, the well-known ’google.com’. When a customer
searches on Google for ’klm’, the first item that is displayed is an advertisement
of KLM. Underneath this advertisement are the actual search results, in which
KLM might appear as well.

2.1 History

Around the year 2000 search engines on the Internet became a source where
one could properly find information. Up until then, a lot of unrelated websites
could also pop up on a search. Google was one of the first to get good search
results and it is still the most used search engine on the web [3] with about 65%
of the people searching something using Google. Google started its AdWords
program in 2000 to generate more revenue [4] and this set the standard for
search related advertisement. The Google AdWords program was the first to
combine a cost per click with a quality score. Before AdWords, search engines
generally placed the advertiser that was willing to pay the most per click on
the first spot, expecting that this would maximise their income. With AdWords,
Google changed this in a very smart way. Instead of displaying the advertiser
that was willing to pay $5 per click, but only getting clicked 1% of the time,
Google preferred the advertiser that was only willing to pay $1 per click, but
getting clicked 10% of the time. In that way, search results are more relevant
to the user, companies that are more relevant need to pay less per click and
Google earns more.

Paid search is now the biggest revenue driver for most search engines. Google
in 2009 for example generated a revenue of about $22 billion worldwide in paid
search, with 37 billion clicks at a $0.60 average cost per click [3]. Advertisers
are also spending more and more money on paid search, spending almost half
of their online advertisement budget on search engine marketing - $11 billion

6 Google AdWords

out of $22 billion total online advertising - with most of this $11 billion being
paid search [5].

2.2 Auction

The way Google displays its advertisements makes it necessary to have an
ordering, since the results are shown in a list. To determine an ordering of the
advertisements, Google uses an auction-based system [8]. When an advertiser
wants his advertisements to be displayed at Google, besides making the adver-
tisement itself, the advertiser also needs to determine a maximum cost per click
for his advertisement. Together with a predetermined budget this determines
whether the advertisement is shown.

However, Google does not only take money into account. To remain an at-
tractive platform for searching, it needs to take relevance for searchers into
account as well. Therefore, instead of just basing the ordering on the cost-per-
click someone is willing to offer, Google also tries to determine a ’quality score’
for the webpage the advertisement links to. Google does not disclose in what
way this ’quality score’ is determined, but it should take relevance into account
for instance. Then the ordering of the advertisements is done based on the fol-
lowing simple formula: CPCbid ·QualityScore = EndResult. Then, these end
results are sorted in a scale from high to low and the advertisement with the
highest ranking is displayed first.

It does not seem entirely fair to have to pay a certain price, even if you could
have paid less to be displayed on the same place. Therefore, Google does not
charge you the full amount of your bid per click. It looks at the advertisement
placed directly underneath and then charges you exactly what is required to
still be displayed at your current position. So if advertisement X bids 1 and has
a quality score of 10, it gets an end result of 10. If advertisement Y bids 2 but
has a quality score of 2, it gets an end result of 4. Advertiser X will now not
have to pay the 1 it bid, instead, it has to pay exactly what is required to remain
on top of Y, so it needs to keep its end result above 4. This means X will only
have to pay 0.41 instead of the 1 of its bid.

This auction system, in which you do not have to pay what you bid yourself,
but what the person directly below you bids is called a second price auction,
and it has some surprising features. One would expect that this bidding system
is negative for the auctioneer, as the bidders are required to pay less. Perhaps
surprisingly, this is not the case. The expected income for the auctioneer is
exactly equal to what it would get using a first price auction (so an auction in
which the bidder just has to pay its bid)[1]. This might sound counter-intuitive,
however, it can be shown that in such an auction, it is optimal for a bidder to
bid the amount exactly equal to what it is worth to him. Since it is not known

7 Google AdWords

what others are willing to bid, and since the winner of the bid only pays the
second price, it is optimal to bid exactly what it is worth to him. If he wins the
auction, he pays just as much as when he had tried to be smart and bid less,
but if he tries to be smart and bid less, his chances of not winning the auction
increase. Therefore, it is optimal to bid as much as it is worth to the bidder.
And because it is optimal for every person that bids to bid the value it is worth
to him, the auctioneer can expect to get the optimal value.

However, this explanation does not take everything into account. The as-
sumption was that there is only one thing to auction, but Google auctions mul-
tiple places. This is the case of the so-called ’Generalized Second Price Auc-
tion’. In this type of auction, it is not optimal anymore to bid the value the
auctioned object represents to you [2]. Suppose for instance there are three
advertisers, with values per click of $10, $4 and $2, and two positions to be auc-
tioned. Now the click-through rates of these two positions are almost the same:
the first position receives 200 clicks per day and the second position gets 199
clicks per day. If all bidders bid truthfully, then advertiser 1s payoff is equal to
($10 − $4) · 200 = $1200. If instead, he bids only $3 per clicks, he will get the
second position, and his payoff will be equal to ($10−$2) ·199 = $1592 > $1200.

This complicates the analysis of this auction system. It is actually even prov-
able that GSP in general does not have an equilibrium in dominant strategies
[2]. But it can be shown that if the GSP is modeled as a Generalized English
Auction it does have a unique equilibrium. A Generalized English Auction is
a standard English auction, so one in which the prize goes up as long as bid-
ders are willing to bid. Think for instance of a regular art auction, but with
the addition that there are more versions of the same thing to auction, like the
places for an advertisement. This equilibrium has some notable properties and
the most interesting of them is that the bid functions have explicit analytical
formulas. These formulas do not depend on bidders’ beliefs about each others’
type, the outcome of the auction only depends on the realizations of bidders’
values. One very heavy assumption in this proof is that all bidders have com-
plete information, so that they know what other players have been bidding up
until the point where they have to make their decision, and what the value per
click is for other players. When keeping this in mind, it is shown [2] that in the
unique perfect Bayesian equilibrium of the generalized English auction with
strategies continuous in sk, an advertiser with value sk drops out at price

pk(i, h, sk) = sk − αi

αi−1
(sk − bi+1).

with
pk(i, h, sk) The price at which a player drops out
bi The i-th bid
αi The click through rate at position i
sk The value per click of advertiser k
i The number of advertisers remaining (including advertiser k)

8 Google AdWords

h The history of prices at which previous advertisers have dropped out

The intuition behind this is that with i players remaining and the next bid equal
to bi+1, it is a dominated strategy for a player with value s to drop out before
the price p reaches the level at which he is indifferent between getting position
i and paying bi+1 per click and getting position i− 1 and paying p per click.

2.3 Common practice

To give a better understanding of this process in practice, the common prac-
tice is explained here. Suppose a company wants to advertise on Google Ad-
Words, first, a set of keywords will have to be determined on which the com-
pany wants to be displayed. This means that if someone searches for one of the
keywords that was set by the company, an advertisement from the company
can be displayed. After determining this set of keyword - possibly thousands -
advertisements will need to be made that are linked to the keywords. One ad-
vertisement can be linked to a lot of keywords, as keywords can be very similar.
To structure all these keywords and advertisement, campaigns can be made in
which keywords and advertisements can be grouped together.

Now for every keyword, a bid will have to be set at the Google servers, that
is the maximum price the company is willing to pay for someone clicking on
this keyword. So if there are thousands of keywords, thousands of bids will
have to be set. Besides the bid, a budget will have to be set as well, which is
generally set at campaign level. The budget ensures that never more than what
is set is spent. If the budget runs out, advertisements are no longer displayed
and thus no cost can be incurred. Because of the high number of keywords,
general practice is to set these bids once, and then leave them the same for
perhaps months.

The company will want to know whether it is doing well with its advertising
campaign, so some feedback is given from Google. Daily reports are stored
on the Google servers that show how many times it was viewed, how many
clicks and conversions came from a keyword, what the cost was, and on what
position it was shown on average. These reports can be downloaded, at a price.

Effectiveness is generally measured by the average cost per click that is in-
curred and the number of conversions that result from the campaign. Since
information about other bidders is not available, it is hard to compare with
other bidders.

Chapter 3

Data Analysis

Confidential

Chapter 4

Clustering

Confidential

Chapter 5

Modeling the auction

A lot of work has been done on modeling the bidding on keywords for ad-
vertisement auctions (see for instance [13], [14] or [15]). Almost all the work
models the choice of keywords as a stochastic knapsack problem, all recognis-
ing that this is an online variant of the knapsack problem. Meaning that instead
of knowing beforehand how well a choice will be, this can only be known af-
ter the decision has been made. And also that there is usually more than one
slot for the advertiser, so instead of picking or not picking an advertisement,
another decision based on position needs to be made.

5.1 The knapsack problem

The knapsack problem is a classical problem in operations research. In its
simplest form, it can be seen as the problem of filling a knapsack. The knapsack
has a limited capacity, say B. And in the knapsack various items can be put,
where every item has a certain value vi and a weight wi. Some items might
be worth more than others, but they can also have more weight than others.
The problems is to fill this knapsack with as much value as possible, while
still remaining below the capacity limitation. Usually this problem is studied
as a 0-1 knapsack problem, so that every item either can be taken or not. Let
xi ∈ {0, 1} denote whether an item is put in the knapsack or not. The problem
is then defined as

max
i
xivi

such that∑
i

xiwi ≤ B.

12 Modeling the auction

5.2 The model

For now, the model of [15] will be followed. First, a simplified model will
be considered in which there is just one slot, one keyword and one advertiser.
Two choices could be made in deciding in what way to advertise. Either by
determining in what position an advertisement should be, or by specifying a
bid directly. Determining in what position an advertisement should be might
be a better approach, however this does require an extra mapping from posi-
tion to bid and this is information that is not easily available. Therefore in this
approach, a direct decision on the bid will be made. But first, the model itself
should be specified. Suppose there areN+1 bidders {0, 1, . . . , N} interested in
a single keyword. Bidder 0 is an omniscient advertiser and his expected value
per click for this keyword is V . Bidder 0 has a budget of B over time period
T , and he wants to maximise his profit over the time period T . This budget
is a hard constraint, meaning that once it is exhausted, the budget can not be
refilled. Budget remaining at the end of period T is forfeited.

Bidders all bid on the keyword and are allowed to change their bid at any
time. When a query arrives at the search engine, the search engine allocates S
slots to bidders as follows: It takes the S highest bids, b1 ≥ b2 ≥ b3 ≥ · · · ≥ bS
and displays the s-th bidders advertisement in slot s. If a user clicks on the ad
in the s-th slot, the search engine charges the s-th bidder a price bs+1, if s < S
or a minimum fee bmin. It is assumed each slot has a click-through rate α(s).
This value might change from advertiser to advertiser, but since we only focus
on one advertiser, these values α(s) can be assumed to be constant (over the
advertisers, not over the slots). So to summarise, each time an ad in slot s of
an advertiser is clicked, he is charged a cost of bs+1, he obtains an expected
revenue of V and a profit of V − bs+1. The timespan T is discretised into period
{1, 2, . . . , T} such that within a time period no advertiser changes his bid.

If we would know bids of all the advertisers at each time period, the best
bidding strategy corresponds to solving a knapsack problem. Suppose there is
only one ad slot, so S = 1 and α(s) = α. At each time period t, let b(t) be the
maximum bid on the keyword among bidders 1 to N . The omniscient bidder
knows all the bids {b(t)}Tt=1. To maximize his profit, he should bid higher
than b(t) at those times that give him maximum profit and keep his total cost
within budget. Winning at time t costs him w(t) = b(t)X(t)α and earns him
v(t) = (V − b(t))X(t)α, where X(t) is the expected number of queries at time
period t1, and X(t)α is then the expected number of clicks at t. So he should
choose times Θ ⊆ T to maximise v(Θ) =

∑
t∈Θ v(t) satisfying the constraint

w(Θ) =
∑
t∈Θ w(t) ≤ B. This is a standard instance of the classic 0/1 knapsack

problem. However, for the bidding optimisation problem, items arrive in an
online fashion, instead of being able to decide after knowing everything in the
end. At each time period t, a bidder has to decide either overbidding b(t) or

1In the case of advertising, this would be the expected number of impressions.

13 Modeling the auction

not, without knowing the future. And furthermore, it is not possible to revoke
past decisions. So keyword bidding optimisation corresponds to the online
knapsack problem.

5.3 The online knapsack problem

In this case, the auction is considered with still one bidder, one slot and one
keyword, however, the future in this case is not yet known. The knapsack prob-
lem is a classic problem in operations research. For the online knapsack prob-
lem, it is shown that in its most general case there can be no online algorithm
that achieves any non-trivial competitive ratio. Here the competitive ratio is
defined as the ratio of the value of the best online algorithm to that of the best
offline algorithm [17]. However in this case two reasonable assumptions can
be made which allow to develop an algorithm. These assumptions are:

1. Each item has a weight much smaller than the capacity of the knapsack, so
w(t)� B, ∀t.

2. The value-to-weight ratio, or efficiency, of each item is both lower and upper
bounded, so L ≤ v(t)

w(t) ≤ U, ∀t.

Recall that w(t) = b(t)X(t)α and v(t) = (V − b(t))X(t)α. The assumption that
w(t) � B, ∀t is justified because the budget is usually much larger than the
money spent in small time periods as the bids are relatively small. The second
assumption is a little bit harder to justify. Since v(t)

w(t) = V
b(t) − 1, it suffices to

set U ≡ V
bmin

− 1. An obvious choice for the lower bound might be 0, however,
since we want to use these U and L in formulas, setting L to 0 is not possible.
To get a good lower bound L, notice that if b(t) is close to V , little is lost when
not bidding at those time intervals. So if we only bid when b(t) ≤ V

1+ε for
some fixed ε, the maximum amount of profit lost from not bidding in these
time periods is εB. To see this, note that if V ≈ b(t), v(t) ≈ 0. And if b(t) ≤ V

1+ε ,
we can not bid on items that are ε close to V , which results in a loss of at most
εB, since the entire budget B would be spent on bidding on these items, with
a return of ε per item. If ε is small, then the profit loss can be negligible. So we
can set L = ε and ignore all items with efficiency smaller than ε. The efficiency
of an item is defined as v(t)

w(t) .

The input sequence consists of a knapsack of capacity B and a stream of T
items having values and weights

(
v(t), w(t)

)
. The goal is to choose these items

in an online fashion, so decisions need to be made when items come along so
as to maximise the total value. Define the competitive ratio γ of an algorithm
A as γ if for any input sequence σ, we have OPT (σ) ≤ γ · A(σ). Here A(σ) is
the expected value obtained by A given σ, and OPT (σ) is the maximum value
that can be obtained by any offline algorithm with the knowledge of σ. The
algorithm described here is competitive with ratio γ = ln(UL) + 1, see [15].

14 Modeling the auction

Let Ψ(z) = (UeL)z(Ue). At time t, let z(t) be the fraction of capacity filled, so
z(t) ∈ [0, 1], pick - or in the auction contest, bid on - element t iff v(t)

w(t) ≥ Ψ(z(t)).
Note that for z ∈ [0, c] where c ≡ 1

1+ln(U/L) , Ψ(z) ≤ L, thus the algorithm will
pick all items until a fraction c of the knapsack is filled. We can assume that
Ψ(z) = L for z ∈ [0, c]. When z = 1, Ψ(z) = U , and since Ψ is strictly increasing,
the algorithm will never overfill the knapsack. In short,

Ψ(z) =

L if z ∈ [0, c]
U if z = 1(
Ue
L

)z (U
e

)
otherwise.

(5.1)

For a proof, see appendix A.

5.4 Single-Slot Auction

Now we have an algorithm for the online knapsack problem, but this does
not easily translate to a strategy for bidding strategies. Again, a case with
one advertisement and one slot is considered, however this time we have an
opponent and we compute what to bid. The bidding optimisation objective
can be to either maximise profit or revenue. Both strategies will be considered
here, the only difference is in the parameter settings.

For profit maximisation, recall that outbidding b(t) at time t gives an effi-
ciency of v(t)

w(t) = V
b(t) − 1 while for revenue maximisation it is V

b(t) . Thus, the
parameters U and L for revenue maximisation are Ur := V

bmin
and Lr := 1. For

profit maximisation this is Up := Ur − 1, but Lp could be 0. To circumvent this,
the parameter ε is introduced and we bid only when the efficiency is greater
than ε. Then Lp = ε, but this leads to an additive loss over the optimal value.

The strategies are derived from the algorithms introduced before. So we
should only bid when the efficiency is higher than the threshold. And since
the thresholds in the algorithms only depend on the fraction of the knapsack
filled, the strategies only depend on the remaining budget. The strategies can
be stated as follows:

• For the profit-maximisation case, let Ψ(z) = (
Upe
ε)z εe . At time t, if the

fraction of the budget spent is z(t), then bid b0(t) = V
1+Ψ(z(t)) .

• For the revenue-maximisation case, let Ψ(z) = (Ure)
z

1
e

. At time t, if the

fraction of the budget spent is z(t), then bid b0(t) = V
1+Ψ(z(t)) .

Note that both strategies only need the fraction of the budget spent and there-
fore need no other knowledge of the auction. Denote the profit and revenue

15 Modeling the auction

earned by the above strategies by Profit and Revenue, OPTp and OPTr de-
note the optimal values that can be obtained. For any ε > 0, we have OPTp ≤
εB + ln

(
e(V−bmin)
εbmin

)
· Profit. This follows from what was mentioned earlier,

that OPT (σ) ≤ A(σ)
(
ln(UL) + 1

)
for this algorithm and the fact that all items

with efficiency≤ ε have total value at most εB. This also suggests that different
values of ε also give different guarantees for Profit. So we can actually treat L
as a tunable parameter and thus improve the efficiency of the algorithm.

We also get OPTr ≤ ln
(

eV
bmin

)
· Revenue. This also follows from OPT (σ) ≤

A(σ)
(
ln(UL) + 1

)
, setting L = 1. This is valid if the budget is not very large.

And in practice, when wanting to maximise revenue, rarely you would still
want to buy unprofitable keyword positions.

5.5 Multiple-slot auctions

In practice however, there are no single-slot auctions, but multiple-slot auc-
tions. Therefore in this section the case with one advertisement, multiple slots,
and multiple bidders is considered. So the previous formulas need to be gener-
alised to the multi-slot case. This requires changes in both the online knapsack
problem, as this has now become a online multiple-choice knapsack problem2,
and the translation to the algorithm.

For the Online-MCKP, at each time period, at most one item has to be chosen
from an item set Nt. The goal is again to maximise the total value of the items
chosen.
Let Ψ(z) = (UeL)z Le . At time t, let z(t) denote the fraction of capacity filled and

B the budget, Et =
{
s| vs(t)
ws(t) ≥ Ψ(z(t))

}
, pick element s ∈ Et with maximum

vs(t). This algorithm has a competitive ratio of ln(UL) + 2. For a proof, see A.2.

But this is only an algorithm for the Online-MCKP, what is needed is again a
strategy for bidding. Again, both profit-maximisation and revenue-maximisation
situations are considered. At each time period, the bidder has to decide which
bidders he should outbid. The algorithm suggests to bid so as to get a maxi-
mum profit or revenue, while having a minimum efficiency. However, bidding
to get maximum profits requires knowledge of other bidders bids, and these
are generally not available. On the other hand, assuming that higher slots re-
sult in higher click-through rates (as found in section ??), bidding higher would
result in higher revenue. Therefore, an algorithm for the revenue maximisation
objective, is easier.

2From now on, Online-MCKP.

16 Modeling the auction

In the profit maximisation case, the parameters are the same as in the single-
slot auction case. The algorithm is then as follows:
Fix ε > 0. Let Ψ(z) = (Ueε)z εe . At time t, let z(t) be the fraction of the bud-

get spent, Et =
{
s|bs(t) ≤ V

1+Ψ(z(t))

}
, bid bs(t) where s = arg maxs∈Et

(V −
bs(t))α(s).
This bidding strategy requires knowing the bids bs(t), the other players bids,
and α(s). This bidding strategy also has a performance guarantee, namely,

OPTp ≤ εB +

(
ln(

V

εbmin
) + 2

)
· Profit, ∀ε > 0. (5.2)

For the revenue maximisation case, we can actually find the slot s in time t to
maximise the revenue. This is true, because the revenue obtained on bidding
bs(t) is V X(t)α(s). And since the assumption was made that α(s) is a decreas-
ing function, maximising V X(t)α(s) is equivalent to minimising s. And since
the efficiency condition imposes that bs(t) ≤ V

Ψ(z(t)) , our bid should be exactly
that. This bidding strategy has a performance guarantee of

OPTr ≤
(

ln(
V

bmin
) + 2

)
·Revenue (5.3)

Chapter 6

The bidding process as a
Markov Decision Process

Besides seeing the problem of bidding on keywords as a stochastic knapsack
variant, this problem can also be modeled using a Markov chain analysis. In
this chapter this approach is used, mainly following the model of [18].

6.1 Markov Decision Processes

The problem of bidding on keywords is now viewed as a Markov decision
process. This means that the mechanism behind the auction is viewed as a
Markov chain, in which decisions can be made. Logically the decision in this
case is whether to advertise or not, and if so, how much. The model we use
here is one that is based on a user of the system, e.g. of someone that is search-
ing at Google. This person is only seen as a user once he searches for something
that was advertised for. After this, various things can happen. If the bid was
high enough, he gets to see the advertisement, otherwise he will not see it. If he
does see the advertisement, he either clicks on it and buys something, or sees
it, remembers it, but does not buy anything. If he did see the advertisement,
he could either remember the advertisement and search for something else re-
lated, and gets displayed another advertisement, or he abandons the search.
Once again, when he sees something else related he could either click on it
and buy something, remain searching or leave the system. This is visualised in
figure 6.1.

In this picture, the user enters the model by searching for the first keyword.
After that, if the decision was made not to advertise, he has a 0.9 chance of
not converting and directly leaving the system (flow A), 0.08 of going to any
of the other keywords and a 0.02 chance of directly converting (flow B). If on
the other hand the decision was made to advertise, he has a 0.7 chance of not

18 The bidding process as a Markov Decision Process

Figure 6.1: A graphical model of the used Markov chain

converting and directly leaving the system (flow A), a 0.26 chance of going to
another keyword, and a 0.04 chance of directly converting (flow B). After a
user has either converted or not converted, all users move to the end of the
system with probability 1. The other keywords are shown seperately, because
this allows to model a carry-over effect. Note that if the user goes to another
keyword, the probability of converting increases from 0.02 to 0.03 when not
advertising (flow D). This is why the probabilities in flow A are larger than
those in C and similarly the probabilities in flow D are larger than those in B;
the carry-over effect.

The intuition behind the possibility of going from one keyword to another is
that it is possible that a user first searches for a specific flight to get information
about that flight. He then sees the KLM advertisement and does some more
investigating. After his investigations, he decides he wants to fly with KLM

19 The bidding process as a Markov Decision Process

and then Googles for KLM to book a flight. This effect is called carry-over and
is observed in other advertisement settings as well [19]. However, after the
user has done his research and made the decision to either buy his ticket or not,
the user is not searching for a flight anymore and therefore is no longer in the
system.

6.2 The model

This MDP model is very different from the knapsack model. Instead of look-
ing at keywords separately, all keywords are considered at once. This has the
advantage of being able to model the previously mentioned effect of carry-over.

Let X be the state-space representing possible user states. In accordance to
figure 6.1 a state x ∈ X captures the last query the user has done within the
system, in this case any search on a KLM keyword, or the decision to convert or
not convert. For any x ∈ X , letA(x) represent the possible actions - in this case
advertisement levels, or what to bid - in state x. Furthermore, let c(x, a) ≥ 0
denote the immediate cost of choosing action a in state x, so this is actually
what we need to pay if deciding to advertise. This relates to a constraint there
is in the budget, let this budget be defined as B. Now let Pxay denote the
probability of going from x to y when choosing action a. The initial flow of
users to the system is defined as β(x), which in this case translates to the first
search query a user has. The problem is now to maximise the number of users
that enter the convert state subject to the budget constraint. If we normalise β
to 1, β represents a probability measure which denotes the probability of a user
searching for a certain keyword, and the budgetB represents a per-user budget.
The problem can be seen as a Markov Decision Process by defining the reward
function as r(x, a) ≡ V if x = xc and r(x, a) ≡ 0 otherwise. Since the final,
absorbing state was introduced, the optimisation problem is well-defined.

For every distribution β of initial states and a policy u, there is a unique mea-
sure on the space of trajectories that can be taken. Let Puβ denote this measure.
Then define puβ(t;x; a) = Puβ (Xt = x;At = a) as the probability of observing
state x and advertising level a at time t when following policy u. Intuitively
this can be considered as the probability of being in a certain state when start-
ing from β after time t. We can then define the total expected reward for a
policy u as

R(β, u) =
∞∑
t=1

∑
X,A

puβ(t;x; a)r(x, a) (6.1)

and the total expected cost for a policy as

C(β, u) =
∞∑
t=1

∑
X,A

puβ(t;x; a)c(x, a). (6.2)

20 The bidding process as a Markov Decision Process

Now the optimisation problem is simply defined as

max
u∈U

R(β, u)

s.t. C(β, u) ≤ B, (6.3)

where U is the set of policies of interest. So choose a policy that maximizes the
reward - and in this case this means, get as many people as possible to convert
- while not spending more than the budget.

Of course, iterating over all possible policies at every possible time instance
is impossible, as there are far too many possibilities. In accordance with [20],
there are three classes of policies of interest:

• In Markov policies, ut depends only on xt (and not on (xt−1, . . . , x0)), so
in this case users are targeted based only on their current state and the
amount of time they have spent in the system.

• In stationary policies, a special case of Markov policies, ut does not depend
on t but only on x, so users are targeted only based on their current state.

• In stationary deterministic policies, a special case of stationary policies, the
action u is chosen deterministically, so in this case, all the users in the
same state are targeted in the same way.

For this case, it is sufficient to restrict attention to Markov policies, as for
any general policy u, there exists some Markov policy v such that puβ(t; ·; ·) ≡
pvβ(t; ·; ·). The proof for this can be found in [20]. Furthermore, let X ′ = X \
{xf}, where xf is the final absorbing state. An occupation measure is a ”visit
count” measure over the set of states and advertising levels (µ ∈ M(X ′ × A))
achievable by some Markov policy u:

µ(x, a) =
∞∑
t=1

puβ(t;x; a).

In short, this can be seen as the probability that a given user is in a state (x, a).

Furthermore, in [20] it is also shown that in this case, a probability measure
ρ can be defined, which is equal to such an occupation measure and which
follows

∀x ∈ X ′
(∑
y∈X′

∑
a∈A

ρ(y, a)(δx(y)− Pyax) = β(x)

)
(6.4)

where δx(y) is the standard delta-function.

21 The bidding process as a Markov Decision Process

Note that equation 6.4 is the basic ”conservation of flow” statement, so this
can be interpreted as ”any measure satisfying the set of conservation of flow
constraints is achievable with some stationary policy”. This means we only
have to search for stationary policies and even better, we can look for the solu-
tion in the form of an occupation measure like this ρ. Then 6.3 can be translated
to:

max
ρ

∑
x∈X′

∑
a∈A

r(x, a)ρ(x, a) (6.5)

s.t.
∑
x∈X′

∑
a∈A

c(x, a)ρ(x, a) ≤ B∑
y∈X′

∑
a∈A

ρ(y, a)(δx(y)− Pyax) = β(x) ∀x ∈ X ′

ρ(x, a) ≥ 0 ∀x ∈ X ′, a ∈ A

Now if ρ∗ is the optimal solution of 6.5, then the stationary policy u∗ choos-
ing the advertising level a with probability of ρ∗(x,a)∑

b ρ
∗(x,b) is the optimal ran-

domised stationary policy [18].

Chapter 7

Results

In this chapter, first the results for both the knapsack- and MDP approach
will be discussed and after that a comparison of both approaches is made. It is
more convenient to compare using generated data because then specific cases
can be generated and compared, rather than a big mixture of cases in a full
dataset.

7.1 The Knapsack Approach

This approach computes bids as a function of the portion of budget that
is left and the amount that the keyword is worth. For instance for the case
that a keyword has a worth (when converting) of 2, with a total budget of 50
and when the minimum bid is 0.1 figure 7.1 shows what bid the algorithm
computes when budget goes down. What can be seen is that the bid is very
high when there is still quite a lot of budget left, but decreases quickly as more
money is spent, until in the end the bid is equal to the minimum bid.

7.1.1 The performance of the algorithm

To determine the performance of the algorithm a simulation program was
written in which the algorithm is set to optimise revenue. During a simulation
of a day the performance of the algorithm was compared with various ’dummy
bidders’. The simulation was run 10,000 times with impressions arriving with
exponentially distributed inter-arrival times with an average of 1/2. The sim-
ulation was run for 24 hours, with a 0.3 probability of someone clicking on an
advertisement and after that a 0.1 probability of converting. The probability
of someone clicking the first place was 0.67 and someone clicking the second
place 0.33. The minimum bid was 0.2. These values are all based on the data
analysis of chapter 3. Four scenarios are analysed.

23 Results

Figure 7.1: The computed bid for a certain keyword as a function of the budget
that is left

Bidding against a constant bidder, scenario 1

In table 7.1 some results of the simulation can be seen. In this scenario, the
knapsack algorithm was compared to a bidder that always bids 0.2, the min-
imum bid of the auction. If in this case the knapsack algorithm exhausts its
budget before the end of the auction, it will lose to the dummy bidder, because
this bidder is likely to still have budget left. In figure 7.2a histograms of con-
versions are plotted, from which it is possible to conclude that the knapsack
approach clearly is distributed with a higher average than that of the dummy
approach. Furthermore, in figure 7.2b is a histogram of the cost of the two ap-
proaches. From this it is clear that the knapsack approach is far better capable
of spending its entire budget, thus optimising the number of clicks and con-
versions. However, when looking again at table 7.1 it becomes clear that the
cost per click and cost per conversion is almost exactly equal to the dummy
approach. Assuming that a conversion has a positive return, the knapsack ap-
proach is far better in this case.

24 Results

Average
Clicks

Average
Conversions

Average
Cost

Average
Cost/Click

Average
Cost/Conversion

DummyBidder 11.32 1.14 2.26 0.20 1.98
KnapsackBidder 23.00 2.31 4.60 0.20 1.99

Table 7.1: Statistics from the simulation with a dummy bidder bidding 0.2, sce-
nario 1

(a) A histogram of the daily number of conversions of the two ap-
proaches

(b) A histogram of the daily cost of the two approaches

Figure 7.2: Histograms comparing the knapsack- and dummy-bidder in sce-
nario 1

25 Results

Average
Clicks

Average
Conversions

Average
Cost

Average
Cost/Click

Average
Cost/Conversion

DummyBidder 6.42 0.66 9.50 1.48 14.39
KnapsackBidder 27.2 2.72 7.88 0.29 2.90

Table 7.2: Statistics from the simulation with a dummy bidder bidding uniform
between 0.2 and 10, scenario 2

Average
Clicks

Average
Conversions

Average
Cost

Average
Cost/Click

Average
Cost/Conversion

DummyBidder 12.1 1.21 8.64 0.714 7.14
KnapsackBidder 21.4 2.15 8.77 0.410 4.08

Table 7.3: Statistics from the simulation with a dummy bidder bidding uni-
formly between 0.2 and 3, scenario 3

Bidding against a random bidder, scenario 2

Another case is a bidder that bids uniform randomly between the minimum-
bid and the total budget over time. This represent a case that is totally different
from the previous one. Here the total budget will probably have to be spent,
while bidding in such a way so as to end in the top position as often as possible.
A short overview of the results are in table 7.2. In the table it is easy to see
that the algorithm is far better in this case as well. About the same cost is
incurred, but almost double the amount of clicks - and thus conversions - is
obtained. The histograms in this case are similar to the previous simulation
and are therefore omitted.

Bidding against a random bidder, scenario 3

Perhaps it is not very realistic to bid over the entire range, as it is highly
unlikely that someone would be willing to bid his entire daily budget just for
one click. Therefore in this case, a dummy bidder was constructed that bids
uniformly between 0.2, the minimum bid, and 3, about one third of the total
budget. The results of this simulation are in table 7.3.

Bidding against a constant bidder, scenario 4

Another simulation was run with a dummy bidder that constantly bids the
same value, 1.4. This is probably also a very realistic case as most advertisers
will probably not constantly re-optimise their biddings. The results of this sim-
ulation are in table 7.4. The histograms of this simulation for both the number

26 Results

Average
Clicks

Average
Conversions

Average
Cost

Average
Cost/Click

Average
Cost/Conversion

DummyBidder 12.5 1.25 9.8 0.784 7.84
KnapsackBidder 20.7 2.08 8.95 0.432 4.30

Table 7.4: Statistics from the simulation with a dummy bidder bidding 1.4, sce-
nario 4

(a) A histogram of the daily number of clicks of the two approaches (b) A histogram of the daily cost of the two approaches

Figure 7.3: Histograms comparing the knapsack- and dummybidder in sce-
nario 4

of clicks and the daily cost are also very interesting and these are in figures 7.3a
and 7.3b.

From both figures and the table it can be seen that the results are still a lot bet-
ter than the dummy-bidder that uses no algorithm, but randomly bids some-
thing or constantly bids the same. The algorithm is better able to spend its
budget and also gets a lot more conversion, while at the same time paying less
money per conversion. An overview of all results for conversions from all four
simulations can be seen in figure 7.4.

Simulating against the same algorithm

The previous results are all very convincing that using a knapsack approach
outperforms some basic bidding strategies. But what happens when all bidders
use an optimised approach is not obvious. Therefore, simulations were run
with two bidders that both use the knapsack approach. To still have some
difference between the two bidders, all parameters were kept equal except the
epsilon. One is bidding using an epsilon of 1.5 and the other using an epsilon
of 2. An overview of the results can be seen in 7.5.

27 Results

Figure 7.4: Barcharts with the results of the two strategies of all simulations

Average
Clicks

Average
Conversions

Average
Cost

Average
Cost/Click

Average
Cost/Conversion

KnapsackBiddera 13.8 1.36 9.75 0.709 7.16
KnapsackBidderb 16.6 1.67 9.71 0.586 5.82
a Using an epsilon of 1.5
b Using an epsilon of 2

Table 7.5: Statistics from the simulation with two knapsack-bidders

Plots are omitted, but are similar to the previously shown plots of the dummy
bidder and the knapsack bidder. This leads to the question what the optimal
value of epsilon is. But this can not easily be determined as the optimal value
of epsilon depends on the expected value of a conversion of the keyword and
other bidders’ strategies. As these strategies are not known, it is impossible to
determine what value of epsilon is optimal in general.

7.1.2 Using the algorithm on real data

Confidential

28 Results

7.1.3 Optimising the algorithm

In the previous results, the values for U and L were used from the algorithm
and ε was chosen at a certain value. But what optimal values for these param-
eters are is not clear and determining this is not straightforward. Fortunately
the simulation program that was used in the previous sections runs very fast
and therefore this could be used to determine the optimal value for these pa-
rameters. The speed of the simulation was used in a variant of a genetic algo-
rithm that was written in which a population of 100 knapsack bidders all get
the chance to compete against the best bidder of the previous generation. As
a measure of how successful an individual is, first a comparison based on the
number of conversions obtained was used. If this was equal, then on the size
of the budget that was left-over. If this was also equal, then on the number
of clicks obtained. For every generation the same random seed was used for
the simulation, this means that every individual of a generation had the same
potential number of clicks and conversions, as the queries arrived in the same
way. However for a new generation, a new random seed was used, so that the
individual would not learn the best values just for a single auction, but would
optimise for the general type of the auction.

More precisely, the genetic algorithm first generated an initial population of
100 knapsack-optimisers, all with an upperbound and ε as a random sample
from a continuous uniform distribution. The upperbound was sampled from
a distribution with bounds 0 and 50 and the ε with bounds 0 and 2. Then ev-
ery individual had a day to compete against the bidder that was best in the
previous generation. For the first generation this was set to another knapsack-
bidder who had value 2 for every parameter. After all simulations were run,
the population was sorted in the way described in the previous paragraph.

Now to create a new generation, the best two knapsack-bidders were used
to recombine into two children using 2-point cross-over. After this, the rest of
the new generation is filled by random mutations of the best 5% of the current
generation. The new parameter values were determined by adding a random
sample from a normal distribution with zero mean and σ standard deviation
to the old value, where both the upperbound and the ε have their own σ. This
σ is decreased by a small amount every generation so that in the beginning
the population can ’jump around’ the fitness landscape to explore, but in the
end can focus on one region and find the best local optimum. Then this new
generation is set as the current generation and the entire process starts over
again.

It is hard to determine a stopping criterion for this algorithm and therefore
it was stopped ’by hand’. Because every generation has a totally different day
to compete on, the number of clicks, conversions and cost varies a lot from day

29 Results

(a) The upperbound as it evolves from generation to generation (b) The epsilon as it evolves from generation to generation

Figure 7.5: The epsilon and upperbound from generation to generation

Average
Clicks

Average
Conversions

Average
Cost

Average
Cost/Click

Average
Cost/Conversion

DummyBiddera 12.43 1.25 2.677 0.215 2.14
KnapsackBidderf 21.8 2.17 8.68 0.398 4
DummyBidderb 15.2 1.52 9.57 0.629 6.29
KnapsackBidderf 17 1.69 9.39 0.552 5.56
DummyBidderc 5.18 0.53 9.88 1.907 18.64
KnapsackBidderf 22.94 2.28 4.82 0.339 3.40
DummyBidderd 11.33 1.14 2.26 0.199 1.98
KnapsackBidderf 22.94 2.28 4.82 0.21 2.11
KnapsackBiddere 6.36 0.64 9.91 1.558 15.48
KnapsackBidderf 15.96 1.59 9.88 0.619 6.21
a Always bidding 0.4
b Always bidding 1.4
c Always bidding 4
d Always bidding 0.21
e The old knapsackbidder used in the simulations in section 7.1.1
f The optimised knapsack bidder

Table 7.6: Statistics from the simulation with the optimised knapsack-bidder

to day and no pattern can be seen in this. The upperbound and ε do converge
to a certain value, as can be seen in figures 7.5a and 7.5b.

Now it is interesting to see what the algorithm does when again bidding
against an opponent. Various simulations were run again, with the results of
these summarized in table 7.6.

30 Results

What becomes most clear from these simulations is that the knapsack bidder
has really learned to get better than a non-optimised knapsack bidder. Bidding
against a bidder with constant bids has not really improved a lot.

7.1.4 Conclusion

It can immediately be seen that this method performs a lot better than bid-
ding a constant amount. The algorithm always performs better and depending
on the amount the other bidder is bidding, it can perforum up to 4 times as
good. And after optimising the bidder, it is also much better than another
knapsack bidder that was not optimised.

A big advantage of the method is that it adjusts its bids to the progress of
the auction during the budget period, if more money is spent than initially
expected, the bids get lower faster. But if on the other hand, the number of
clicks is lower than expected, and thus less money is spent, the bids remain
higher. This is a very desirable property, because a lot of other approaches
make an estimate for the number of clicks during the day and then bid a fixed
amount the entire budget period, hoping to spend it all during this period. If
the actual situation during the day is other than expected, either the bid is too
high and before the end of the budget period the budget is exhausted, or the
bid is too low and budget is left over at the end of the budget period. It is
not necessarily negative to have left-over budget, but under the assumption
that the budget is there to get positive results, it would have been better to
spend more. Another advantage is that this approach works on one keyword,
so individual bids and return can be set per keyword, thus allowing for better
fine-tuning of the model. Another very big upside to this approach is that
it is very easy to compute a bid, as only one analytical formula needs to be
computed. This is a very big advantage, as it is no problem to compute bids for
tens of thousands of keywords instantly. See for instance figure 7.61, in which
the computation time of the method is plotted versus the number of keywords
for which a bid is computed. The computation time grows linearly and is less
than 12 seconds even for 95 million keywords.

A big downside to this approach is also that it works for one keyword. To
fully utilise this approach, for every keyword (which can be as many as tens of
thousands), every time a portion of the budget is spent, so every time someone
clicks on one of the advertisements, all bids would have to be re-optimised.
This could be circumvented by not always re-optimising but only on certain
pre-defined moments in time or after a certain portion of the total budget is
spent. Another downside is that the approach uses a per-keyword budget,
whereas in reality a budget for all keywords in a campaign is set, and this is
probably more desirable as well. Because spending more on one keyword is

1The inconsistent growth in the plot is due to both stochasticity in the keywords, since they
were randomly generated, and because of other processes running on the computer

31 Results

Figure 7.6: The computation time for a growing number of keywords

not a problem if another keyword is less expensive than expected. Setting a
budget over all keywords allows the costs to average out.

7.2 The Markov decision process approach

7.2.1 The MDP approach on generated data

This approach computes advertising levels for all keywords simultaneously.
In figure 7.7 a plot was made with 100 keywords, each having a number of
impressions that is normally distributed with a mean of 1,000 and a standard
deviation of 400; number of clicks that is normally distributed with a mean of
200 and a standard deviation of 50 and number of conversions that is normally
distributed with a mean of 25 and a standard deviation of 10. For all keywords
the cost per click was randomly sampled from a log-normal distribution with
a mean of 1 and 0.7 standard deviation. The plot shows the expected optimal
value that can be attained per user, versus the total budget that is allocated per
user.

An interesting observation is that adding more and more budget helps less
and less. This is logical, after a while more advertising will not help anymore.

32 Results

Figure 7.7: The expected optimal value (or return) per user versus the budget
that is allocated per user

And that this increase is decreasing is also logical. If the algorithm chose the
correct keywords, first the ones that yield the most should be chosen and after
that the less performing keywords. That the line becomes a horizontal line
is logical too, after the first position is obtained for every keyword, adding
more budget does not help anything. The line also does not begin in the origin,
because if no budget at all is spent, the user can still search for keywords and
find KLM, only not through advertisements.

A big advantage of this approach is that it allows for direct computation of a
lot of values of interest. Like in graph 7.7, it is possible to determine how much
total value would be obtained by setting a certain budget. Or on the other
hand, what would happen to that value if the cost per click would increase by
10%.

The downside of this approach is that a lot of values need to be known in
advance. To generate the entire matrix that is needed to compute a strategy, all
carry-over probabilities need to be known. And these are all values that are
not measured currently and it is also very hard to do so. Furthermore, when
optimising with for instance 10,000 keywords, for every advertising level a

33 Results

matrix is generated that has 10,000 x 10,000 size, so a matrix with 10,000,000
variables per advertising level. And if there are 4 advertising levels for all these
keywords, for 40,000 variables the portion of time that is spent in that state
need to be computed. In general, when optimiSing the number of variables
becomes |X ′|×|A| and the number of constraints is |X|+1 . This imposes fairly
heavy restrictions on the machine on which this computations are running, as
this is quite a memory and time intensive operation.

Another downside is that the computations are all on a per-user basis, all
results need to be translated back to the general situation in which you do not
advertise for one specific user, but for anyone in the system. This is something
that is not easily done, because beforehand it is not known how many users
there will be on a given day. This gives the problem that since the budget is
set per user, this would mean the budget itself becomes stochastic. Still the
approach could provide valuable insights in for instance what the gain is per
user that searches for ’KLM’ or what effect there would be when users have a
10% higher probability of converting even when not advertising.

7.2.2 Using the algorithm on real data

Confidential

7.3 Comparing the two methods

As already mentioned, both methods have their pros and cons. Which method
is best is not easily said as both approaches can be used for other purposes. The
knapsack approach allows for fast computation of bids per keyword and can
optimise these bids during the budget period, on the other hand the MDP ap-
proach can be used to optimise the budget itself, something that is not possible
with the knapsack approach. Computing bids for actual keywords with the
MDP approach is harder because of the high number of variables involved.
Computing bids even for 10,000 keywords would take a very long time. In
figure 7.8 a comparison is made of the two approaches in terms of computa-
tion times. It can be seen that the Markov decision process approach takes a lot
more time to compute and is also not as well scalable as the knapsack approach.

The problem with computation times can however be circumvented. But
this comes at a cost. An approach to circumventing the long computation times
would be to partition the keyword set into smaller sets and then optimising per
set. This increases performance because an LP problem can be solved in time
O(n3.5) [21], where n is the number of variables. If this set is partitioned in for
example 10 partitions, the computation time becomes O(10 · (n10)3.5) and since

34 Results

Figure 7.8: A comparison of the computation times of the two approaches

10 · (n10)3.5 << n3.5, it is a lot faster to partition the keyword set. A graph with
this approach can be seen in figure 7.9.

The results are really good, with a performance increase of a factor of about
160. From the previous computation, one would perhaps expect an increase

of about 316 - given the ratio 10·(n
10)3.5

n3.5 - but O(n3.5) is worst case complexity.
Given the performance increase of a factor of about 160, it would appear the
complexity in this case is about O(n3.2). This increase still does not make it
anywhere near as fast as the knapsack approach (the knapsack approach com-
putes bids for about 40,000,000 keywords in 5 seconds, whereas the partitioned
MDP approach computes bids for only 3,000 keywords), but it does allow for
realistic computation times for a realistic keyword set.

So overall the knapsack approach can best be used to optimise bidding on
keywords. Whereas at the same time the MDP approach can be used to per-
form what-if analysis. If both approaches are combined in this way, both bid-
ding and budgeting can be optimised to find the optimal values for both. Note
however that these two things are linked heavily together and that higher bids
require a higher budget and vice versa. This still makes optimising very com-

35 Results

Figure 7.9: The computation times of the partitioned approach

plicated, but no algorithm can be made to optimise both at the same time. This
depends very much on the goals and preferences of an advertiser, so human
input for this would still be needed.

7.4 Combining the two methods

Most interesting would be to combine the strong suits of both methods and
at the same time leave out the disadvantages. The main difficulty in using the
knapsack approach for all keywords is that it actually only works very well
for one keyword, but is not able to capture relations between keywords and
the total keyword-set. On the other hand, the MDP approach is very well able
to capture these relations, but is not very well able to determine bids for one
keyword. Fortunately, these two things do not overlap and therefore a ’hybrid’-
approach can be used.

First, the MDP approach can be run with ample budget. This means that
the algorithm is able to advertise with every keyword and is not limited in
its spendings. When computations are complete, a probability distribution is
found over all keywords which gives the probability of being in a certain state.

36 Results

Since there was ample budget, the algorithm is able to advertise on any key-
word as much as it likes and therefore, the probability distribution that is ob-
tained, actually gives the amount the algorithm would like to advertise on a
certain keyword, relative to the other keywords. This value can then be used
in the knapsack algorithm to allocate a per-keyword budget. Since every key-
word in the knapsack approach needs a separate budget, exactly the portion
that was determined in the MDP approach can be used as the portion of the
total budget that is allocated to one keyword. Then computations can be made
per keyword and bids are obtained. After spending a part of the budget, the
budget needs to be re-allocated to the keywords, still according to the ratio that
was obtained with the MDP approach.

Then, using just these values as the portion of the budget that the keyword
is allowed to spend is not enough. These values only show what portion of
the time there should be advertisements on keyword x, it does not take into
account what the cost is of keeping this position. So to determine what portion
of the budget a keyword is allowed to spend in the knapsack algorithm, the
portion of time that was determined by the MDP is multiplied by the average
cost per click of this keyword. Then all keywords get a part of the budget
that is proportional to this value. When part of the budget is spent, this part
is then divided over all keywords with the same proportion. This results in
an algorithm that takes advantage of both the algorithms strengths, and uses
these strengths to circumvent the algorithms weaknesses.

Chapter 8

Conclusion

This paper was started with the question: what strategy should be used to
bid on advertisements at paid search channels? It is shown that utilising a com-
bination of a knapsack-based approach and a Markov decision process model
is a very good strategy that can improve performance up to 10% compared to
bidding a fixed amount.

8.1 The adwords

First an analysis of the current situation was done. This showed that the
cost of ranking first is generally justified, as the first position obtains a lot more
clicks than any other position. Besides, it appeared that very often the bud-
get is not entirely spent so there is still room for advertisements that are not
displayed first to bid more.

8.2 The auction

It was found that the process of deciding how much and on which keywords
to advertise can best be modeled as a knapsack problem. The main advantage
is that it is possible to compute a bid for a single keyword. When comparing
this model to the current situation - bidding a fixed amount -, an improvement
in the number of clicks, while keeping the same budget, of about 10% can be
obtained. Another big advantage of this approach is that it allows for fast com-
putations which allows setting bids for thousands of keywords.

A downside is that the model requires some parameters and determining
these can be tricky. Since the behaviour from day to day fluctuates a lot, as is
shown in the analysis in chapter 3, it is difficult to determine whether today’s
parameters are really better than yesterday’s, or that an observed change is the
result of customer behaviour.

38 Conclusion

Utilising an MDP-based approach, as described in chapter 6, yields good re-
sults for what-if analysis. It can be used to predict the possible result of changes
in budget and how much advertising would be optimal for a single keyword
within the total set of keywords. It is able to capture relations between key-
words very well.

The downside of the described MDP-based approach is that it requires more
parameters than are currently known, and these parameters are also hard to
measure. Therefore assumptions are necessary and because of the difficulty
of measuring these parameters, it is hard to determine exactly how well these
assumptions are.

Combining both the MDP and the knapsack approach yields a good, total
model that is both capable of dividing the total budget over all keywords and
of setting bids per keyword. The problem that remains is the one of setting a
total budget, but this is dependent on advertisement strategy and can not be
solved solely by mathematics. The MDP model does give a prediction of what
the result of setting a certain budget is.

8.3 Further work

The proposed knapsack model would need to compute a bid the moment an
auction is held to yield the best results. In reality this is not possible because
Google takes bids from its database and therefore fixed bids need to be set. A
resolution to this can be re-optimising every so-many minutes with the latest
results. Since the model proposed in 7.4 is already programmed to work with
actual data as it is delivered by Google, implementing this algorithm to set
bids for all keywords would not require a lot of work. What still needs to be
set up is a connection between the current system that sets bids and evaluates
the auctions and the optimiser so that the current situation can be downloaded,
the model can be run and optimised bids can be set in the Google database.

This paper is focused on finding the best possible bids for one advertiser.
Something that was only sideways involved was the behaviour of other bid-
ders in the same auction. Because in the Google AdWords system, so little
information about other bidders behaviour is disclosed, this was left as not
worth researching. However, it is an interesting question whether it is possible
to learn something about other bidders behaviours and whether this informa-
tion could be useful when further optimising a bidding strategy.

Another interesting question is what the best way of assessing the perfor-
mance of the algorithm is. Due to high fluctuations in customer behaviour, in
practice it is hard to determine whether on a given day the algorithm itself,
other advertisers or customer behaviour resulted in a change in performance.

39 Conclusion

This is closely linked to the earlier mentioned fact that it is not known whether
clicks and impressions went to another bidder, or that they were simply not
there.

Appendix A

Proof of optimality

Recall, the algorithm was as follows:
Let Ψ(z) ≡ (UeL)z(Le). At time t, let z(t) be the fraction of capacity filled, pick
element t iff v(t)

w(t) ≥ Ψ(z(t)).

A.1 Single-slot case proof

Proof. Fix an input sequence σ. Let the algorithm terminate filling Z fraction of
the knapsack and obtaining a value of (A)(σ). Let S and S∗ respectively be the
set of items picked by the algorithm given, and by the optimum. Denote the
weight of the common items byW = w(S∩S∗) and the value by P = v(S∩S∗).
For each item t not picked by the algorithm, its efficiency is < Ψ(z(t)) ≤ Ψ(Z),
since Ψ(z) is a monotone increasing function of z. Thus

OPT (σ) ≤ P + Ψ(Z)(B −W). (A.1)

Since A(σ) = P + v(S \ S∗), equation A.1 implies that

OPT (σ)

A(σ)
≤ P + Ψ(Z)(B −W)

P + v(S \ S∗)
. (A.2)

Since each item j picked in S must have efficiency at least Ψ(zj), where zj is
the fraction of the knapsack filled at that instant, we have

P ≥
∑

j∈S∩S∗
Ψ(zj)wj =: P1, (A.3)

v(S \ S∗) ≥
∑

j∈S\S∗
Ψ(zj)wj =: P2. (A.4)

41 Proof of optimality

Since OPT (σ) ≥ A(σ), inequality A.2 implies

OPT (σ)

A(σ)
≤ P + Ψ(Z)(B −W)

P + v(S \ S∗)
≤ P1 + Ψ(Z)(B −W)

P1 + v(S \ S∗)
(A.5)

Noting that P1 ≤ Ψ(Z)w(S ∩ S∗) = Ψ(Z)W and plugging in the values of P1

and P2, we get
OPT (σ)

A(σ)
≤ Ψ(Z)∑

j∈S Ψ(zj)∆zj
(A.6)

where ∆zj = zj+1 − zj =
wj

B for all j.

Now based on the assumption that the weights are much smaller than B, we
can approximate the summation via an integration. Thus,

∑
j∈S

Ψ(zj)∆zj ≈
∫ Z

0

Ψ(z) dz

=

∫ c

0

Ldz +

∫ Z

c

Ψ(z) dz

= cL+
L

e

(UeL)Z − (UeL)c

ln(UeL)

=
L

e

(UeL)Z

ln(UeL)
=

Ψ(Z)

ln(UL) + 1
(A.7)

and along with inequality A.6 this completes the proof.

A.1.1 Remark:

The approximation made in A.7 can be made more precise. Since Ψ(z) is an
increasing function of z, we get

∑
j∈S

Ψ(zj)∆zj ≥ (1− ε0)

∫ Z

0

Ψ(z) dz (A.8)

where ε0 =
maxj wj

B is a small constant. Thus, actually the competitive ratio is
ln(UeL) · 1

1−ε0 .

A.2 Multi-slot case

Proof. Recall that the algorithm was:
Ψ(z) ≡ (UeL)z Le . At time t, let z(t) denote the fraction of capacity filled, Et ≡{
s ∈ Bt| vs(t)

ws(t) ≥ Ψ(z(t))
}

, pick element s ∈ Et with maximum vs(t).

42 Proof of optimality

For any input sequence of sets σ, let A(σ) be the profit obtained by the algo-
rithm and OPT (σ) be the maximum profit obtainable. For any σ,

OPT (σ)−A(σ) ≤
(

ln(
U

L
) + 1

)
A(σ) (A.9)

As in the single-slot case proof, let S and S∗ be the sets of items chosen by
the algorithm and by the optimum respectively. Let P = v(S ∩ S∗) denote
the profit of the common items, and let W = w(s ∩ S∗) denote the weight.
In the multiple-choice case, it is not necessarily true that the efficiency of an
item selected by OPT from Nt is bounded by Ψ(z(t)), since the algorithm may
have also selected different items from Nt. So we partition the items picked by
OPT but not by the algorithm in two; items which do not satisfy the efficiency
condition and items which do. Therefore, the first kind of items have efficiency
less than Ψ(z(t)), while for the second kind of items, the total profit of these
items is less than A(σ), since the algorithm picked the most profitable item
from the same set which satisfy the efficiency condition. So we do not need to
consider these items any more, as they result in at most a profit of A(σ). So we
can assume that all items have an efficiency < Ψ(z(t)) at time t. So we return
to a similar situation as in the above proof.

Bibliography

[1] William Vickrey, Counterspeculation, Auctions, and Competitive Sealed Tenders
The Journal of Finance, Vol 16, No 1 (Mar., 1961) pp. 8-37

[2] Benjamin Edelman, Michael Ostrovsky, Michael Schwarz Internet Advertis-
ing and the Generalized Second-Price Auction: Selling Billions of Dollars Worth
of Keywords
American Economic Review, Vol 97, No 1 (Mar., 2007) pp. 242-259

[3] Top used websites in the US
http://www.hitwise.com/us/datacenter/main/dashboard-10133.html

(data of 25th of February, 2011)

[4] Google corporate history
http://www.google.com/corporate/history.html

[5] A Brief History of Paid Search Advertising
http://searchengineland.com/a-brief-history-of-paid-search-advertising-33792

(25th of February, 2011)

[6] Milestones in KLM History
http://corporate.klm.com/en/about-klm/history (4th of March, 2011)

[7] Encyclopaedia Britannica on KLM
http://www.britannica.com/EBchecked/topic/320112/KLM (4th of
March, 2011)

[8] Google AdWords
http://adwords.google.com

[9] J. MacQueen Some Methods for Classification and Analysis of Multivariate Ob-
servations
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, Vol 1 (1967) pp. 281-297

[10] A. Hartigan and M.A. Wong A K-Means Clustering Algorithm
Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 28,
No. 1 (1979) pp. 100-108

http://www.hitwise.com/us/datacenter/main/dashboard-10133.html
http://www.google.com/corporate/history.html
http://searchengineland.com/a-brief-history-of-paid-search-advertising-33792
http://corporate.klm.com/en/about-klm/history
http://www.britannica.com/EBchecked/topic/320112/KLM
http://adwords.google.com

44 BIBLIOGRAPHY

[11] M. Mahajan, P. Nimbhorkar, K. Varadarajan The Planar k-Means Problem is
NP-Hard
Lecture notes in Computer Science, Vol. 5431 (2009) pp. 274-285

[12] K. Pearson On Lines and Planes of Closest Fit to Systems of Points in Space
Philosophical Magazine, Vol 2, No. 6 (1901) pp. 559 - 572

[13] Y. Zhou, V. Naroditskiy Algorithm for Stochastic Multiple-Choice Knapsack
Problem and Application to Keywords Bidding
WWW 2008, April 21-25, 2008

[14] P. Rusmevichientong, D. Williamson An Adaptive Algorithm for Selecting
Profitable Keywords for Search-Based Advertising Services
EC ’06 Proceedings of the 7th ACM conference on Electronic commerce
(2006) pp. 260 - 269

[15] Y. Zhou, D. Chakrabaty, R. Lukose Budget Constrained Bidding in Keyword
Auctions and Online Knapsack Problems
Lecture Notes in Computer Science, Vol. 5385 (2008) pp. 566 - 576

[16] H. Kellerer, U. Pferschy, D. Pisinger Knapsack Problems
Springer (2004)

[17] A. Marchetti-Spaccamela, C. Vercellis Stochastic on-line knapsack problems
Mathematical Programming, Vol. 68 (1995) pp. 73 - 104

[18] N. Archak, V. S. Mirrokni, S. Muthukrishnan Budget Optimization for On-
line Advertising Campaigns with Carryover Effects
6th Workshop on Ad Auctions, Harvard (2010)

[19] R. Leone Generalizing What is Known about Temporal Aggregation and Adver-
tisement Carryover
Marketing Science, Vol. 14, No. 3, Part 2 (1995) pp. G141-G150

[20] E. Altman Constrained Markov Decision Processes
Technical Report RR-2574, INRIA, 05 (1995)

[21] N. Karmarkar A New Polynomial Time Algorithm for Linear Programming
Combinatorica, Vol. 4, No. 4 (1984) pp. 373-395

	Introduction
	Business Mathematics and Informatics
	KLM
	The problem
	Report Outline
	Goal

	Google AdWords
	History
	Auction
	Common practice

	Data Analysis
	Clustering
	Modeling the auction
	The knapsack problem
	The model
	The online knapsack problem
	Single-Slot Auction
	Multiple-slot auctions

	The bidding process as a Markov Decision Process
	Markov Decision Processes
	The model

	Results
	The Knapsack Approach
	The performance of the algorithm
	Using the algorithm on real data
	Optimising the algorithm
	Conclusion

	The Markov decision process approach
	The MDP approach on generated data
	Using the algorithm on real data

	Comparing the two methods
	Combining the two methods

	Conclusion
	The adwords
	The auction
	Further work

	Proof of optimality
	Single-slot case proof
	Remark:

	Multi-slot case

