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Preface
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research group of the Centrum Wiskunde & Informatica (CWI) in Amsterdam.

I would like to thank Rob van der Mei and Erik Winands for giving me the
opportunity to undertake an internship at the CWI. Furthermore, their support
and feedback are much appreciated. Thanks are also due to Alex Roubos, who
provided valuable comments on earlier drafts of this internship report. I am in-
debted to Marko Boon, who placed parts of his sound polling simulation program
at my disposal, which unquestionably saved a lot of work. Furthermore, I would
like to express my gratitude to Rob van der Mei and Bert Zwart for offering me the
opportunity to present the work of Chapter 2 at the Third Madrid Conference on
Queueing Theory, held in Toledo, Spain. This has been an invaluable experience
for me. Finally, I am grateful to all colleagues at the CWI for a great working
atmosphere in general.

Amsterdam, July 2010
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Abstract

Throughout this internship report, polling systems play a central role. Polling
systems are queueing systems consisting of multiple queues, attended by a single
server. The server can only serve one queue at a time. Whenever the server moves
from one queue to another, a stochastic, non-zero switch-over time is incurred. The
server never idles; even when there are no customers waiting in the whole system
the server keeps roving between queues.
In the literature on these systems, often Poisson arrivals are assumed. In many
applications, however, the Poisson assumption is not realistic. This motivates us
to study polling models with renewal arrivals, which represent a far broader class
of arrival streams.
Firstly, an approximation of the complete waiting time distribution in polling sys-
tems with renewal arrivals is derived. This approximation may act as a basis for
design decisions within polling systems.
Secondly, polling systems with renewal arrivals and batch service are studied. Us-
ing characteristics of the obtained distributional approximation, the question is
addressed how sizes of batches should be chosen in order to optimize the waiting
time.
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Chapter 1

Introduction

1.1 About the CWI

Founded in 1946, CWI is the national research center for Mathematics and Com-
puter Science in the Netherlands. More than 170 full professors have come from
CWI, of whom 120 still are active. CWI’s strength is the discovery and develop-
ment of new ideas, and the transfer of knowledge to academia and to Dutch and
European industry. This results in importance for our economy, from payment sys-
tems and cryptography to telecommunication and the stock market, from public
transport and internet to water management and meteorology.

With its 55 permanent research staff, 40 postdocs and 65 PhD students, CWI
lies at the heart of European research in mathematics and computer science. Re-
searchers at CWI are able to fully concentrate their efforts on their scientific work,
and to build an international network of peers. More than half of the permanent
research staff maintains close contact with universities as part-time professors. The
personal and institutional research networks strengthen CWI’s positions and serve
as a magnet for attracting talent. CWI researchers come from more than 25 coun-
tries world-wide.

CWI was a birthplace of the world-wide internet. The national domain name
cwi.nl was the first one ever issued anywhere. CWI helped with the development of
the wing of the Fokker Friendship, chosen later as the most beautiful Dutch design
of the 20th century. The popular language Python was invented at CWI, the
language in which Google was developed. CWI applied combinatorial algorithms
to the scheduling of the Dutch railway system. XML-databases were build to the
needs of the Netherlands Forensic Institute and 3D visualization techniques to
better detect cancer tumors.
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2 CHAPTER 1. INTRODUCTION

1.2 Polling systems

The internship carried out at the PNA2 department within the CWI primarily
encompassed research on polling systems. Consequently, polling systems will play
a central role throughout this internship report. Polling systems are queueing
systems consisting of multiple queues, attended by a single server. Each queue
has its own customer arrival stream. When the server moves from one queue to
another, a non-zero switch-over time is incurred in order to prepare for service at
the next queue. For a graphical representation of a polling system in which the
server switches through the queues in a cyclic manner, see Figure 1.1.
The analysis of polling systems is important in many real-life application areas, such
as computer-communication systems, manufacturing systems and traffic systems.
To give an insight into the applicability in these areas, we give an example of an
application in each of these areas.

• Computer-communication: Time-sharing computer systems consist of mul-
tiple terminals, which share multi-drop lines in order to communicate with
a central computer. To avoid transmission collisions, the central computer
polls the terminals, one at a time, after which all pending data transactions
of the polled terminal are handled.

• Manufacturing systems: The stochastic economic lot scheduling problem
(SELSP) deals with the make-to-stock production of multiple standardized
products on a single machine with limited capacity under random demands.
This problem is analyzed extensively in [39].

• Traffic systems: The analysis of signalized intersections is the most obvious
example of a traffic system application. Cars waiting in the several lanes
represent customers waiting in queues and the green light is modelled by
drawing the analogy with the server.

For more applications, see [41]. Because of the importance of analysis of polling
systems in real-life applications, a huge body of literature on polling systems has
developed since the late 1950s, starting with the papers of [21] and [22]. Literature
overviews of polling systems can be found in [19, 30, 32].
Since the underlying models of the next chapters are slightly different — although
they both can be classified as polling models —, we do not aim to give a gen-
eral notation framework in this section; each of these chapters will have its own
introduction and notation. Nevertheless, the several input parameters and charac-
teristics of the polling model are to be discussed. By construction of the polling
model, there are three stochastic components that are influential to the perfor-
mance of the polling system.

Arrival processes. Customers arrive at their correspondent queues according
to mutually independent arrival processes. In literature these arrival processes are
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Figure 1.1: Polling system with cyclic service.

often assumed to be Poisson processes, i.e., the interarrival times of customers of
the same type are exponentially distributed. However, the validity of the Poisson
assumption may be very questionable in certain real-life applications. This is why
throughout this report only renewal arrivals are assumed.

Service processes. Whenever a server polls a queue1, it will commence a ser-
vice period, in which a number of customers of the current queue is served. Each
customer requires its own service time from the server. For customers of the same
type, these service requirements are commonly assumed to be mutually indepen-
dent, independent of the state of the system and identically distributed. Through-
out the analysis following in this report, hardly any characteristics of the service
time distributions are required other than the first two moments.

Switch-over processes. To switch from one queue to another, the server typi-
cally needs some time to prepare for offering service at the “new” queue. For each
directed pair of queues, the switch-over times needed are assumed to be indepen-
dent samples from some probability distribution. Again, we will generally require
only the first two moments of these distributions.

Although these stochastic components are very important in the description of
the polling model, they do not fully identify a polling system. The performance
of such a system also depends, other than the number of queues, on the following
variables.

1The moment when the server concludes the switch-over period leading to being set up for
service at the current queue.
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Buffer size. Since in most applications there is ample room for customers to
wait for service in the system, the queues are usually assumed to have an infinite
buffer size. Obviously this assumption does not coincide with reality, however it
still is very applicable due to the fact that the buffer size is hardly ever a limiting
factor.

Service discipline. The service discipline specifies how many customers are
served by the server between two switch-over periods. Results found indepen-
dently by [13] and [28] show that performance analysis is tractable if the service
discipline satisfies a so-called branching property. Analysis will generally become
hardly tractable otherwise. In such case, exact results on performance measures
such as the waiting time are only available for some special cases, such as a sym-
metric or a two-queue system. The branching property is defined as follows:

Property 1.2.1. If the server in a polling system with N queues arrives at queue
i to find li customers there, then during the course of a server’s visit, each of these
li customers will effectively be replaced in an i.i.d. manner by a random population
having probability generating function (PGF) hi(z) = hi(z1, . . . , zN ), which can be
any N -dimensional probability generating function.

The most important of the service disciplines satisfying Property 1.2.1 are

• The exhaustive service discipline: when the server start service at a queue, it
will continue service as long as there are customers waiting in the queue. It
will stop service and commence a switch-over procedure if and only if there
are no customers waiting in the current queue anymore.

• The gated service discipline: when the server starts service at a queue, it will
only serve the customers that were present at the start of the service period
before it switches to another queue.

Common service disciplines that do not satisfy Property 1.2.1 are

• The customer-limited service discipline: the server will continue serving cus-
tomers until either the queue is empty or a certain prespecified number of
customers have been served during the service period, whichever happens
first.

• The time-limited service discipline: the server will continue serving customers
until either the queue is empty or a certain prespecified amount of time has
passed since the start of the service period, whichever happens first.

Server routing. The order in which the server polls the queues is determined
by the routing mechanism. A distinction can be made between dynamic and static
routing mechanisms. In dynamic routing mechanisms, the choice of the queue to
be switched to is dependent on the state of the system, whereas it is not when



1.2. POLLING SYSTEMS 5

the server adopts a static routing mechanism. An example of a dynamic routing
mechanism policy is the so called ‘serve-longest-queue’ policy, where the server will
always switch to the queue having the most customers waiting.
In this report the focus however is on static routing mechanisms. Static routing
mechanisms include

• The cyclic routing mechanism: the server switches through the queues in a
cyclic manner. That is, the server will typically serve all queues repeatedly
in the order in which the queues were numbered. The time between two
departure epochs of the server at the same queue is then called a cycle.

• Routing according to a polling table: the server switches through the queues
periodically according to some prespecified order. The cyclic routing mecha-
nism may be seen as a specific case of polling table routing.

• The Markovian routing mechanism: randomness is introduced in the decision
for the server which queue to switch to after a service period. Probabilities
pij are introduced, which denote the probability that the server will proceed

to queue j after having served queue i. Of course, we have that
∑N

j=1 pij = 1
for all i.

Queueing discipline. The order in which customers are served by the server
within a service period is specified by the queueing discipline. Mostly a First-
Come-First-Served (FCFS) discipline is assumed, which means that the customer
with the least recent arrival time will be served first. It should be noted that
the distribution of the length of a queue is independent of its queueing discipline,
provided the queueing discipline does not depend on the service times. In case of
Poisson arrivals, this also means that the mean waiting time is independent of the
queueing discipline by Little’s law. However, the waiting time distribution as a
whole does depend on the queueing discipline at all times.

The three stochastic components together with these variables totally identify
a single-server polling system. Note that each queue can have its own service and
queueing discipline. We will conclude this section with a note on the stability of
the polling system. In case of the exhaustive or gated service discipline and a cyclic
routing mechanism, ρ < 1 and E[S] <∞ are necessary and sufficient conditions for
stability [9]. Here, ρ is the load of the system (the sum of the arrival rates times
the mean service times of each customer-type), and E[S] is the total switch-over
time needed by the server during a complete cycle, which in practice is of course
finite.
In case of Poisson arrivals, cyclic routing and quantity-limited service, the following
equation is a necessary and sufficient condition for stability:

ρ+ E[S] max
i∈{1,...,N}

(
λi
ki

)
< 1, (1.1)
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where λi and ki are the mean arrival rate and the quantity limit of queue i respec-
tively (cf. [12]).

1.3 Research objectives

A central role in analysis of polling systems is taken by the evaluation of the
waiting time. Waiting time is often seen as an important performance measure of
a queueing system. In addition, waiting time can become a critical issue in systems
involving human customers, or in systems where perishable goods are produced.
To this end, it is very helpful to be able to predict characteristics of the waiting
time based on the parameters of the polling system.
In literature, often Poisson arrivals are assumed, mainly because of the reduction
of analytic complexity this assumption comes with. However, the assumption of
exponentially distributed interarrival times may not always be valid and realistic.
Moreover, most of the literature focuses solely on the first moment of the waiting
time distribution. Remarkably little attention has been paid to the evaluation of
the complete distribution of the delay in the queues. This gives birth to the first
research objective.

Research objective 1. Development of a closed-form approximation of the
complete waiting time distribution in polling systems under the assumption of
renewal arrival processes.

The assumption of renewal arrivals implies that the interarrival times of cus-
tomers in each queue should be independent and identically distributed. However,
they are not necessarily exponential.
For systems with renewal arrivals, expressions or numerical algorithms for the exact
computation of waiting time characteristics do not exist in general. A closed-form
approximation of the mean waiting time was derived in [2]. However, no closed-
form approximations exist for the complete waiting time distribution. Therefore,
we aim to obtain a closed-form approximation of the complete waiting time dis-
tribution. When such an approximation is found, it may act as a basis for design
decisions within polling systems. For example, one may think of a model variation
where customers do not arrive at the polling system directly, but first form batches,
after which those batches enter the polling system as a whole. When assuming that
the service requirements of such batches are independent of the number of under-
lying customers, one is confronted with the question how large batch sizes should
be chosen. This issue gives rise to the second research objective.

Research objective 2. Development of accurate and efficient methods to op-
timize the size of batches in polling systems with renewal arrivals and batch service.
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The methods obtained may be used for implementation in decision support
systems on the one hand, and may give insights into how optimal batch sizes
behave in the several polling system’s parameters on the other hand.

1.4 Structure of the report

The present internship report is set up as follows. Chapter 2 contains a study
that aims to fulfill the first research objective as stated in the previous section. In
Chapter 3 the methods found by research based on the second research objective
are explained. As the research topics of the latter two chapters are quite distinct
and the models studied have subtle, but very important differences, both chapters
contain their own brief introductions and literature studies, model descriptions,
notations and suggestions for further research.
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Chapter 2

Evaluation

In this chapter we aim to fulfill the first research objective as formulated in Sec-
tion 1.3. The focus is on waiting time distributions in cyclic polling models with
renewal arrivals, general service and switch-over times, and exhaustive service at
each of the queues. The assumption of renewal arrivals prohibits an exact analysis
and reduces the available analytic results to heavy traffic asymptotics, limiting re-
sults for large switch-over times and large numbers of queues, and some numerical
algorithms. Motivated by this, the goal of the present study is to propose a new
method for deriving simple closed-form approximations for the complete waiting
time distributions that works well for arbitrary load values. Extensive simulation
results show that the approximations are highly accurate over a wide range of
parameter settings.

2.1 Introduction

In this chapter, the waiting time in cyclic polling systems with renewal arrival
streams and exhaustive service is considered. Arrival streams are not (necessarily)
Poisson, while the assumption of Poisson arrivals is made in most of the literature
on polling systems. For systems with renewal arrivals, solutions for performance
metrics, such as moments and distributions of waiting times do not exist in general.
Exact expressions and algorithms that do exist, are only valid in certain limiting
cases, e.g., when the load tends to one [26] or the total switch-over time in a cycle
tends to infinity [40]. These expressions and algorithms can be used as an approxi-
mation in general, but practice shows that they often become inaccurate quickly as
soon as the limiting condition is violated. Closed-form approximations are available
for the mean waiting time [2], however there are none available that approximate
the complete waiting time distribution. Even in case of Poisson arrivals, generally
little attention is paid to the complete waiting time distribution rather than the
mean waiting time. As an exception, assuming Poisson arrivals Choudhury and
Whitt [5] propose an efficient numerical algorithm to calculate tail probabilities of
the waiting times based on numerical transform inversion, for models that satisfy a

9
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multi-type branching structure [28]. For models that violate the branching struc-
ture, more computationally intensive algorithms exist [1, 18]. A common drawback
of these numerical algorithms is that they only give limited insight into how the
waiting time distribution reacts to changes in the system parameters.

The goal of this chapter is to propose a new method for deriving a closed-form
approximation of the waiting time distribution for arbitrary values of the load.
The approach taken is that of combining known heavy traffic (HT) asymptotics
for the waiting time distributions [23, 26], which are shown to work well when the
system is heavily loaded, with a recently developed approximation for the mean
waiting times by Boon et al. [2], which works well for the whole range of load
values. This chapter presents the first closed-form approximation of the waiting
time distribution in polling systems with renewal arrivals. This approximation is
shown to be exact in the known limiting cases, and extensive experimentation with
simulations shows that the approximation is highly accurate for a wide range of
parameter settings. We emphasize that the strength of this combined approach
lies in its striking simplicity and the fact that it leads to approximations in closed
form, which opens up many possibilities for generalization of the approach to other
polling models (e.g., with more general branching-type service policies, and with
non-cyclic periodic server routing) and for optimization of the system performance.

In Section 2.2 the model and notation are introduced. In Section 2.3 the main
result of this chapter, the distributional approximation is presented, and the idea
behind it explained. Section 2.4 discusses several properties of the obtained approx-
imation. In Section 2.5, the approximation is verified by an extensive simulation
study. Finally, Section 2.6 discusses suggestions for further research.

2.2 Model description and notation

Consider a polling system consisting of N ≥ 1 queues, Q1, . . . , QN , with an infinite-
sized buffer at which customers arrive. Throughout this chapter, a queue index i is
understood as ((i−1) mod N)+1, e.g., QN+1 actually refers to Q1. Customers in
the different queues are waiting to be processed by a single server. At each queue,
customers arrive according to a renewal process. Interarrival times of customers at
Qi are denoted by the random variable Ai, the customers are assumed to arrive at
rate λi = 1

E[Ai]
. The total arrival rate to the system is denoted by Λ =

∑N
i=1 λi.

Within a queue, customers are served on a First-Come-First-Served (FCFS) basis.
The service time of a type-i customer at Qi is denoted by the random variable Bi
with kth moment E[Bk

i ], and its waiting time in Qi by the random variable Wi with
kth moment E[W k

i ], k > 0. We use B to denote the service time of an arbitrary
customer entering the system, with E[Bk] =

∑N
i=1

λi
Λ E[Bk

i ].
Queues are served according to an exhaustive service discipline, i.e., a server will
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not start switching to another queue before the customers in the current queue
are all served, including the ones that arrived during the service period. When-
ever a server has finished service at Qi, it will switch to Qi+1. We define a cycle
at Qi as the time between two successive departures of the server at Qi. In or-
der to switch from Qi to Qi+1, the server needs a switch-over time, of which the
duration is denoted by the random variable Si with kth moment E[Ski ], k > 0.
S =

∑N
i=1 Si denotes the total switch-over time in a cycle. Throughout it is as-

sumed that E[S] > 0 and that all interarrival times, service times and switch-over
times are mutually independent and independent of the state of the system. The
load offered to Qi is denoted by ρi = λiE[Bi], 1 ≤ i ≤ N . The total load in the
system is denoted by ρ =

∑N
i=1 ρi. A necessary and sufficient condition for the

stability of the described system reads ρ < 1 [9]. The waiting time at Qi is defined
as the time between the arrival of an arbitrary customer in the system and the
moment when he is taken into service.

Throughout, it may be convenient to scale a system such that a certain load
is achieved. This scaling is done by keeping the service time distributions fixed
and varying the rates of the renewal processes. In particular, it proves convenient
to denote with x̂ the value of each variable x that is a function of ρ evaluated at
ρ = 1. In that case Âi denotes the interarrival time of Qi customers evaluated at

ρ = 1. Then, scaling to a load ρ < 1 is done by taking the random variable Ai := Âi
ρ .

Finally, we introduce some notation. The residual length of a random vari-

able X is denoted by Xres, with E[Xres] = E[X2]
2E[X] . The squared coefficient of

variation (SCV) of a random variable X, Var[X]
E[X]2

, is denoted by c2
X . We define

σ2 =
∑N

i=1 λ̂i(Var[Bi] + c2
Ai
E[Bi]

2) and δ =
∑N

j=1

∑N
k=j+1 ρ̂j ρ̂k. In the case of

Poisson arrivals, the former can be simplified to σ2 = E[B2]/E[B]. We refer to
a polling system as symmetric, when the queues in the polling system share the
same interarrival time distributions, service time distributions and switch-over time
distributions. Of course, a system is asymmetric when this condition is violated.

Throughout, the notation
d−→ means convergence in distribution. Indicator func-

tions are used in the form of 1{A}, which evaluate to one if condition A holds, zero
otherwise. Finally, when a random variable X is said to be gamma distributed with
shape parameter α and inverse scale parameter µ, its density function is given by
fX(x) = e−µxµαxα−1

1{x≥0}/Γ(α), where Γ(α) =
∫∞

0 e−xxα−1dx.

2.3 Derivation of the approximation

The two key ingredients of the distributional approximation will be the HT diffusion
approximation for the waiting time by Olsen and Van der Mei [26], and the mean
waiting time approximation by Boon et al. [2] for a general load. The HT diffusion
approximation will be refined such that its mean concides with the mean waiting
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time approximation, while the diffusion approximation remains unchanged in the
case of HT after refinement. The two ingredients are given first, after which the
main result is derived and presented. Although not stated explicitly, it follows
naturally from [26] that

(1− ρ)Wi
d−→ UIi, ρ ↑ 1, (2.1)

where U is a uniformly distributed random variable on [0,1], and Ii a gamma
distributed random variable with shape parameter α and inverse scale parameter
µi as follows:

α =
2E[S]δ

σ2
+ 1 and µi =

2δ

(1− ρ̂i)σ2
.

Let E[Wi] denote the mean waiting time of a type-i customer at Qi, 1 ≤ i ≤ N .
Then, the work of Boon et al. [2] shows that an accurate approximation E[Wi,Boon]
of E[Wi] as a function of ρ is as follows:

E[Wi,Boon] =
K0 +K1,iρ+K2,iρ

2

1− ρ
, (2.2)

where the constants K0,K1,i and K2,i depend on several parameters of the polling
system at hand:

K0 = E[Sres],

K1,i = ρ̂i((c
2
Ai

)4
1{c2Ai

≤1} + 2
c2
Ai

c2
Ai

+ 1
1{c2Ai

>1} − 1)E[Bres
i ] + E[Bres]

+ ρ̂i(E[Sres]− E[S])− 1

E[S]

N−1∑
j=0

j∑
k=0

ρ̂i+kVar[Si+j ],

K2,i =
1− ρ̂i

2

(σ2

2δ
+ E[S]

)
−K0 −K1,i.

An explanation of the derivation of E[Wi,Boon] can be found in Appendix A.

Our distributional approximation will be a refinement of the HT diffusion ap-
proximation given in (2.1). We assume that the waiting time distribution of Qi
can be well approximated by a product of a uniform[0,1] and a gamma random
variable with shape parameters αia and inverse scale parameter µia, divided by
(1− ρ). The property as presented in (2.1) shows that in HT the waiting time dis-
tribution can indeed be decomposed in a uniform part and a gamma part. Hence,
for a significant load, this assumption is a natural one. Therefore, when suitable
expressions for αia and µia are found, a distributional approximation is obtained.

Refinement is done using the first moment approximation presented in (2.2).
We initially impose two requirements on the refinement:
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1. In HT the refined approximation must coincide with the diffusion approxima-
tion of [26], i.e.,

α

αia
→ 1 and

µi
µia
→ 1

when the load tends to one.

2. The expectation of the refined approximation coincides with the mean waiting
time approximation of [2].

There is an infinite number of feasible combinations of αia and µia that satisfy
these two requirements, hence we add a third requirement:

3. The SCV of the refined approximating distribution matches the SCV of the
HT diffusion approximation by [26]. In other words, the shape of the refined
diffusion approximation matches the shape of the HT diffusion approxima-
tion.

Together with this third requirement, there is just one feasible set of parameters
left, which ends the search for suitable parameters. This results in the main result
of this chapter, the following approximation for the waiting time distribution in
polling systems with renewal arrivals and ρ < 1:

P[Wi < x] ≈ P[UIi,app < (1− ρ)x], (2.3)

where U is a uniformly distributed random variable on [0,1], and Ii,app a gamma
random variable with parameters

αia = αa =
2E[S]δ

σ2
+ 1 and µia =

2E[S]δ + σ2

2σ2(1− ρ)E[Wi,Boon]
.

It can be verified that the kth moment of the obtained distributional approximation
can be expressed as follows, for k ≥ 1,

E[W k
i,app] =

1

(1− ρ)k
1

k + 1

k−1∏
i=0

αa + i

µia
=

2kE[Wi,Boon]k

k + 1

k∏
i=1

2E[S]δ + iσ2

2E[S]δ + σ2
, (2.4)

with αa and µia as defined above.

We end this section with several remarks about the obtained approximation.
In the following section additional analytical justification for the approximation is
presented.

Remark 1 (Olsen’s approximation). A refined diffusion approximation for the
distribution of the waiting time in polling systems with Poisson arrivals was pre-
sented by Olsen [25]. The HT diffusion approximation used by [25] for Qi consists
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of a uniformly distributed random variable on [0,1] “times” a gamma distribu-

tion with shape parameter
E[S]

∑N
i=1 ρi(ρ−ρi)∑N

i=1 λi(Var[Bi]+E[Bi]2)
+ 1 and inverse scale parameter

(1−ρ)
∑N

i=1 ρi(ρ−ρi)
(1−ρi)

∑N
i=1 λi(Var[Bi]+E[Bi]2)

. Note that in HT these parameters coincide with the

ones used in (2.1). Refinement is done using an approximation of the mean delay
obtained by [10] for Poisson arrivals. Suggested by this mean delay approxima-
tion, Olsen adds an extra factor of ρ in the shape parameter, such that it becomes

E[S]
∑N

i=1 ρi(ρ−ρi)
ρ
∑N

i=1 λi(Var[Bi]+E[Bi]2)
+ 1 = 2E[S]δ

σ2 + 1. The inverse scale parameter is changed

accordingly such that the approximation satisfies the mean delay approximation
in [10]. One can verify that in case of Poisson arrivals, the shape parameters of
Olsen’s approximation and our approximation coincide. Hence, the distributional
approximation as given in this section generalizes Olsen’s approximation to sys-
tems with renewal arrivals, and the presented derivation of the main result of this
chapter creates intuition and justification behind the distributional approximation
of [25].

Remark 2 (Information availability). The derived waiting time distribution
approximation (2.3) only requires the first two moments of the interarrival, service
and switch-over time distributions as an input, whereas the complete waiting time
distribution generally depends on their complete distributions, even for Poisson
arrivals. This makes the approximations useful for practical purposes, because in
reality information about more than the first two moments is often hard to get.

Remark 3 (Applicability). Yet another view is provided by the notion that the
derived approximation gives a procedure to estimate the complete waiting time
distribution based on the mean waiting time and aggregate measures for imbalance
δ and variability σ2. In this regard, it is important to note that the mean waiting
time can easily be measured in real-life applications, in contrast to higher moments
or tail probabilities.

2.4 Analytical results

In [2] it is shown that the first moment of the distributional approximation is
in line with several known exact results, which gives support for the quality of
the approximation. That is, for Poisson arrivals the first moment satisfies the
well-known pseudo-conservation laws and is exact in symmetric systems, vacation
queues and general systems in light traffic (LT), i.e., where the load tends to zero.
Moreover, the first moment is proved to give exact results for systems with general
renewal arrivals in the asymptotic regimes of HT or infinite switch-over times.
In the present section, comparable results are proved for higher moments of the
distributional approximation.
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Heavy-traffic. By construction, the distributional approximation is exact in sys-
tems with general renewal arrivals in HT. This property is very desirable from a
practical perspective, since the proper operation of a system is particularly critical
when the system is heavily loaded.

Large switch-over times. In case of deterministic switch-over times, the wait-
ing time is only dependent on the total switch-over time in a cycle S rather than
the marginal switch-over times Si (cf. [14]). A strong conjecture is presented in [40]
that in this case the distribution of Wi

S tends to a uniform distribution on [0, 1−ρi
1−ρ ]

as S →∞.
It turns out that the distributional approximation as presented satisfies this result.
To this end, consider the kth moment of

Wi,app

S , k > 0 as S →∞. It can easily be

verified that limS→∞ E[
Wi,Boon

S ] = 1−ρi
2(1−ρ) , and hence,

lim
S→∞

E

[(
Wi,app

S

)k]
=

1

k + 1

(
1− ρi
1− ρ

)k
lim
S→∞

k∏
i=1

2Sδ + iσ2

2Sδ + σ2
=

1

k + 1

(
1− ρi
1− ρ

)k
.

(2.5)

This expression exactly coincides with the finite kth moment of a uniformly dis-
tributed random variable Y on [0, 1−ρi

1−ρ ]. Thus, the kth moment of
Wi,app

S converges

to the kth moment of Y when S tends to infinity, k ≥ 1. Under certain conditions
(which are met here), this moment-wise implies convergence in distribution (cf. [6],
Theorem 4.5.5). Therefore, the distributional approximation becomes exact in the
case of deterministic switch-over times that tend to infinity.

Large number of queues. Another limiting case is a symmetric system where
the number of queues tends to infinity. A polling model with a number of queues
that tends to infinity, also called a continuous polling model, may for example be
applicable in systems where the server is patrolling a certain route, and customers
arrive at random positions anywhere along the route. Due to symmetry, we have
that λi = Λ

N and Si = S
N , 1 ≤ i ≤ N . When taking the limit of N →∞, Λ and S

remain unchanged, which means that λi and Si will both tend to 0. For symmetric
polling systems with Poisson arrival streams and deterministic switch-over times,
a limiting result for the second moment of the waiting time is obtained in [11] as
N →∞:

lim
N→∞

E[W 2
i ] =

2ρE[B3]

3(2− ρ)(1− ρ)E[B]
+

ρ2(3− ρ)E[B2]2

3(2− ρ)(1− ρ)2E[B]2

+
ρE[S]E[B2]

(1− ρ)2E[B]
+

E[S]2

3(1− ρ)2
.

(2.6)

Using the fact that limN→∞ E[Wi,Boon] = 1
1−ρ(E[S]

2 + ρE[Bres]), one can show that
the approximation error is bounded when the number of queues tends to infin-
ity. For the sake of easy understanding and conciseness, we present the following
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analysis with the additional assumption that the service times are deterministic.
For general service times, the same analysis can be done and the same conclusion
can be drawn, however the formulas become a lot more cumbersome. In case of
deterministic service times, one can obtain a closed-form expression for the second
moment of the distributional approximation as N →∞:

lim
N→∞

E[W 2
i,app] =

1

3(1− ρ)2

2E[B] + E[S]

E[B] + E[S]
(ρE[B] + E[S])2 . (2.7)

Then, the limiting percentual absolute relative error of the approximated second
moment becomes

100%× lim
N→∞

|E[W 2
i,app]− E[W 2

i ]|
E[W 2

i ]

= 100%× (1− ρ)E[B]

E[B] + E[S]

∣∣∣∣ E[S]2 − ρE[B]2

ρ(ρ+ 1)E[B]2 + 3ρE[B]E[S] + E[S]2

∣∣∣∣ .
(2.8)

Taking the derivative of this expression with respect to ρ, and subsequently equat-
ing it to 0 shows that a (local) maximum is obtained in ρ = E[S]

E[B] with a value

of 100% × (E[B]−E[S])2

(E[B]+E[S])(E[B]+5E[S]) . This value cannot become larger than 100% and

for E[S]
E[B] < 1 becomes smaller rapidly as the durations of the switch-over times

increase. To find the maximum of this expression in the domain ρ = [0, 1], apart

from ρ = E[S]
E[B] when E[S]

E[B] < 1, the boundary ρ-values need to be regarded, ρ = 0

and ρ = 1. In practice, E[S]
E[B] is mostly larger than 1, which implies there is no

maximum in the interval [0, 1] other than in the boundaries. As stated earlier in
this section the approximation is exact for polling systems in HT. This leaves the
value of ρ = 0. It can be verified that

lim
ρ↓0

lim
N→∞

|E[W 2
i,app]− E[W 2

i ]|
E[W 2

i ]
= 100%× E[B]

E[B] + E[S]
, (2.9)

which also cannot become larger than 100%, and becomes smaller rapidly as the
durations of the switch-over times increase.

From these results, one can conclude that the absolute value of the relative error
never grows beyond 100%, and becomes smaller rapidly as ρ or E[S] becomes larger.
Summarizing, we conclude that as N → ∞, the approximation does not become
exact, however the standard deviation of the exact waiting time distribution is
nevertheless well approximated in a variety of polling systems.

2.5 Simulation study

In this section, we evaluate the accuracy of the approximation of the waiting time
distribution as presented in Section 2.3. First, we regard a rather arbitrary polling
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system and see how well the approximated and exact density functions coincide.
The “exact” density function is determined by means of simulation. Then, we study
the accuracy of the approximation in a wide range of parameter combinations
by applying the approximation to a test bed containing 10368 polling systems
and summarizing the errors of standard deviation and percentile approximations.
Again, the “exact” standard deviations and percentiles are determined by means
of simulation. Also in case of Poisson arrivals, where numerical methods exist to
determine the exact distribution, we opt for simulation, since the determination of
the exact values using numerical methods can be very cumbersome. All simulation
results presented in this section are an average taken from a variable number of
simulation runs with a length of at least 1,000,000 time units, such that the width
of the confidence interval of the average is less than 1% of the value of the actual
average.

2.5.1 Accuracy of the approximated density function

We consider a symmetric polling system with five queues. The load ρ equals 0.7,
the SCV of the interarrival times at each queue are 0.25 each. All the service times
and switch-over times are exponentially distributed with mean 1. Since there is
no exact closed-form expression available for the waiting time distribution in this
case, we compare the density function of the approximated distribution with the
simulated density function for an arbitrary queue. To obtain the latter, a kernel
estimation was made based on a huge set of simulated waiting time realizations.
Both the approximated density function and the simulated density function are
depicted in Figure 2.1. For the interarrival times, a gamma distribution was used
with shape parameter 4 and inverse scale parameter 16.

Figure 2.1 shows that the shape of the exact waiting time distribution closely
resembles the approximation. In other words, the shape of the waiting time distri-
bution in heavy traffic closely matches the shape of the waiting time distribution
for a general load. Hence, the figure suggests that the approximation is useful for
approximating the density function, tail probabilities and other characteristics of
the distribution. The next subsection will show that the approximation works well
not only in this case, but also in a variety of other polling systems.

2.5.2 Accuracy of approximated percentiles and standard devia-
tion

In this subsection we assess the accuracy of the approximation by evaluating errors
in the approximation of the standard deviation and several percentiles. We regard
the standard deviation and several percentiles of the approximated distribution
and the exact distribution of the waiting time of the first queue in a large num-
ber of polling systems with exhaustive, cyclic service. The standard deviation and



18 CHAPTER 2. EVALUATION

Figure 2.1: Approximated and simulated density function of the waiting time of
an arbitrary queue in the example in Subsection 2.5.1.

percentiles of the exact distribution are determined by means of simulation. We
first give a general impression of the accuracy, after which we try to explore what
the impact of each of the parameters is on the accuracy.

The parameter values contained in the test bed can be found in Table 2.1.
There is no difference between the queues within a particular polling system in
terms of the service time distributions and the switch-over time distributions. All
parameters are explained above, except for the last one displayed in the table.
Q2, . . . , QN take on the same amount of load each. The parameter p1 denotes what
amount of load is taken on by Q1 relative to the other queues. For example, if the
first queue takes half, twice or five times as much load as any other, p1 becomes
0.5, 2 or 5 respectively. In case the system is symmetric, p1 = 1. Since simulation
needs complete distributions as input rather than just their first two moments, two-
moment fits were deployed as described in Appendix B. For each polling system,
the approximation error of the standard deviation and the approximation error of
the 40th, 50th, 60th, 70th, 80th, 90th and 95th-percentiles are calculated. The errors
are measured in a percentual absolute relative way, i.e.,

∆% =
|a− s|
s
× 100%, (2.10)

where a denotes the approximated value by means of the distributional approxi-
mation as presented in Section 2.3. and s denotes the exact value, determined by
means of simulation.
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Notation Parameter Considered parameter values

N Number of queues {5, 10, 20}
ρ Load {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}
c2
Ai

SCV interarrival times {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}
E[Bi] Mean service times {1}
c2
Bi

SCV service times {0, 1, 4}
E[Si] Mean switch-over times {0.2, 1, 10}
c2
Si

SCV switch-over times {0, 1}
p1 Measure of asymmetry {0.5, 1, 2, 5}

Table 2.1: Parameter values of the test bed used in subsection 2.5.2.

p1 Bins

0-5% 5-10% 10-15% 15-20% 20%+

0.5 69.98% 19.68% 5.02% 2.28% 3.05%
1 69.87% 19.33% 5.56% 2.39% 2.85%
2 67.67% 19.98% 6.17% 3.20% 2.97%
5 58.72% 22.07% 8.60% 4.86% 5.75%

Table 2.2: Mean standard deviation error of the approximation applied to the test
bed, categorized in bins of 5%.

Table 2.2 and Table 2.3 show the errors made in approximating the standard
deviation and in approximating the percentiles respectively in bins of 5%. This
table suggests that the approximation performs best in case of p1 ≤ 1. Regardless,
it is shown that the majority of the standard deviation approximations, and even
more so the percentile approximation have errors lower than 5%.

In order to judge the impact of the system parameters on the performance of
the approximation, the mean absolute relative errors of the standard deviation ap-
proximation and the percentile approximation are given in Table 2.4 and in Table
2.5 respectively, vertically categorized in the different rates of asymmetry, hori-
zontally categorized in each of the relevant system parameters. Table 2.4(a) and
Table 2.5(a) show that the distributional approximation becomes better when N
increases. The same behavior of the approximation error in N is present in the ap-
proximations of [2, 25]. Table 2.4(b) together with Table 2.5(b) shows a surprising
effect of the SCV of the service times on the performance of the approximation.
While in case of c2

Bi
= 0 the standard deviation approximation error seems to grow

with p1, the same effect does not seem to happen when c2
Bi

= 4. Also, if c2
Bi

= 1 or
c2
Bi

= 4, the approximation error of the standard deviation and the approximation
error of the percentiles do not seem to react in the same way to changes in p1. Ta-
bles 2.4(c) and 2.5(c) suggest that the distributional approximation becomes better
when the variance of the switch-over times increases. Table 2.4(d) and Table 2.5(d)
suggest that approximations become better as ρ approaches 1, i.e., as the system
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p1 Bins

0-5% 5-10% 10-15% 15-20% 20%+

0.5 82.25% 10.77% 3.26% 1.07% 2.65%
1 82.14% 10.98% 3.44% 1.03% 2.41%
2 82.25% 11.17% 3.38% 1.04% 2.16%
5 77.63% 13.32% 4.76% 2.00% 2.29%

Table 2.3: Mean percentile error of the approximation applied to the test bed,
categorized in bins of 5%.

(a)

p1 N

5 10 20

0.5 5.97 4.02 3.17
1 5.99 4.06 3.25
2 6.41 4.31 3.29
5 9.08 5.76 3.77

(b)

p1 c2
Bi

0 1 4

0.5 3.91 3.25 5.99
1 4.15 3.33 5.81
2 4.80 3.64 5.57
5 6.97 5.49 6.15

(c)

p1 c2
Si

0 1

0.5 4.49 4.28
1 4.59 4.27
2 8.80 4.46
5 6.73 5.68

(d)

p1 ρ

0.5 0.6 0.7 0.8 0.9 0.95

0.5 8.22 6.66 5.11 3.48 1.81 1.06
1 8.37 6.77 5.12 3.49 1.79 1.06
2 8.82 7.14 5.42 3.65 1.87 1.12
5 11.02 9.30 7.36 5.19 2.75 1.60

(e)

p1 E[Si]

0.2 1 10

0.5 7.35 3.37 2.44
1 7.34 3.53 2.33
2 7.44 4.07 2.30
5 8.76 6.79 3.06

(f)

p1 c2
Ai

0.25 0.5 0.75 1 1.25 1.50 1.75 2

0.5 4.11 4.13 3.95 4.04 4.34 4.59 4.82 5.10
1 4.10 4.14 4.00 4.06 4.40 4.67 4.91 5.18
2 4.18 4.42 4.28 4.33 4.67 4.93 5.18 5.37
5 4.77 5.20 5.28 6.00 6.48 6.94 7.30 7.65

Table 2.4: Mean standard deviation error categorized by the value of p1 vertically
and the number of queues (a), the SCV of the service times (b), the SCV of the
switch-over times (c), the total load (d), the mean switch-over time (e), and the
SCV of the interarrival times (f) horizontally.

gets closer to HT. This is very plausible, since by construction the approximation
is exact in HT as explained in Section 2.4. According to Table 2.4(e) and Table
2.5(e) approximations seem to become better as the switch-over times become big-
ger. This is in line with the result found in Section 2.4 that the approximations
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(a)

p1 N

5 10 20

0.5 5.77 3.27 1.99
1 5.45 3.23 2.05
2 5.10 3.18 2.02
5 5.87 3.50 2.15

(b)

p1 c2
Bi

0 1 4

0.5 2.15 2.40 6.48
1 2.28 2.27 6.19
2 2.44 2.31 5.56
5 3.35 3.03 5.14

(c)

p1 c2
Si

0 1

0.5 3.87 3.49
1 3.77 3.39
2 3.58 3.29
5 4.14 3.54

(d)

p1 ρ

0.5 0.6 0.7 0.8 0.9 0.95

0.5 5.99 5.79 4.46 2.89 1.37 0.79
1 5.86 5.65 4.28 2.75 1.30 0.79
2 5.67 5.44 4.05 2.56 1.22 0.75
5 6.14 5.86 4.60 3.10 1.55 0.91

(e)

p1 E[Si]

0.2 1 10

0.5 7.50 2.19 1.34
1 6.98 2.31 1.45
2 6.43 2.42 1.46
5 6.14 3.64 1.74

(f)

p1 c2
Ai

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.5 4.20 3.59 3.25 3.31 3.48 3.65 3.86 4.09
1 3.97 3.41 3.14 3.29 3.44 3.61 3.78 3.97
2 3.53 3.13 3.04 3.30 3.45 3.56 3.67 3.80
5 3.15 3.26 3.52 3.80 4.00 4.18 4.32 4.50

Table 2.5: Mean percentile error categorized by the value of p1 vertically and the
number of queues (a), the SCV of the service times (b), the SCV of the switch-over
times (c), the total load (d), the mean switch-over time (e), and the SCV of the
interarrival times (f) horizontally.

becomes exact as the total switch-over time tends to infinity. Also, using (2.4)
one can show that the moments of the distributional approximation become less
dependent of σ2 and δ as switch-over times become smaller, which gives support to
the plausibility of the approximation becoming less reliable when the switch-over
times become relatively small. Finally, both Table 2.4(f) and Table 2.5(f) show
that the approximations’ quality is dependent on the SCV of the interarrival times,
but again an interaction effect with the value of p1 is observed.
Table 2.6 shows the mean absolute relative error categorized per tested percentile.
Generally, the 80% percentiles seem to be approximated best.

From the test bed results we can conclude that the approximation performs
well over a wide range of parameter combinations. In case of extremely variable
service times, low load and negligibly small switch-over times, the relative error
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p1 Percentile

40th 50th 60th 70th 80th 90th 95th

0.5 5.90 5.23 4.15 2.88 1.72 2.29 3.57
1 5.73 5.00 3.93 2.71 1.67 2.37 3.63
2 5.42 4.59 3.60 2.50 1.67 2.49 3.78
5 6.29 4.87 3.40 2.11 1.88 3.42 4.92

Table 2.6: Mean absolute relative errors categorized in the several percentiles.

becomes worse. The worst-case scenarios found in the testbed in terms of absolute
relative error are approximations of the 50th percentile in systems with N = 5,
ρ = 0.5, c2

Bi
= 4 and E[Si] = 0.2 having errors with an order of magnitude of

100%. However, in practice these characteristics are uncommon. For example,
in production systems settings like c2

Bi
= 4 are hardly found due to the just-

in-time philosophy, which dictates to reduce variability in, e.g., service times in
order to reduce in-process inventory. Also, these systems are typically utilized
beyond ρ = 0.5 to increase productivity, and switch-over periods are commonly
longer than service periods. Moreover, in case of a low load and small switch-over
times, although the relative error of the percentile approximations can be high, the
absolute errors may still be rather small when compared to the order of longitude
of service time durations. Therefore, the sojourn time distribution is already much
better approximated in these situations.

2.6 Further research

The present study gives birth to a variety of directions for further research. Firstly,
the distributional approximation for cyclic systems with exhaustive service may be
generalized to models with branching-type service policies [28], non-cyclic periodic
server routing [26] and other model variations. Secondly, the simple closed-form ex-
pression may act as a basis for design decisions within polling systems. Finally, one
could attempt to improve the approximation by deriving an interpolation approxi-
mation for higher moments of the waiting time and, subsequently, fit a phase-type
distribution. However, this would impel one to considerably extend the analysis of
[2], while potentially losing the simple form of the current distributional approxi-
mation.



Chapter 3

Optimization

In this chapter we aim to fulfill the second research objective as formulated in
Section 1.3. This research objective is motivated by flexible production facilities
with batch services where the batch-processing times are independent of the batch
size. In such systems, a key problem is to determine the optimal batch size. Mo-
tivated by this, we consider an N -queue batch-service polling system consisting
of an inner part and an outer part. Type-i customers arrive at the outer system
according to a renewal process and accumulate into a type-i batch. As soon as
Di customers have arrived, the batch is forwarded to the inner system where the
batch is processed, and where the batch-service requirement is independent of the
batch size Di. For this type of models, we study the problem of determining the
combination of batch sizes ~Dopt = (Dopt

1 , . . . , Dopt
N ) that minimizes a weighted sum

of the mean waiting times in the outer and the inner system. A balance in the
trade-off between the waiting times in the outer system Vi and the waiting time
in the inner system Wi needs to be found: the larger the batch size, the lower the
workload of the system and hence the average “inner waiting time”, but the higher
the average “outer waiting time” needed to accumulate Di customers. This model
does not allow for an exact analysis. Therefore, we present a numerical approach
to this problem, and propose a closed-form approximation for the optimal combi-
nation of batch sizes (which is the main result of this chapter). Note that these
two methods complement each other: the numerical approach works better in sys-
tems with a small number of queues, but the closed-form approximation requires
significantly less computation time and performs almost equally well in systems
with a large number of queues. As a by-product, we observe near-insensitivity
properties of ~Dopt, e.g., to higher moments of the interarrival and switch-over time
distributions. Extensive experimentation shows that the obtained approximation
is highly accurate.

23
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3.1 Introduction

This chapter is motivated by practical flexible manufacturing systems where a pro-
duction facility makes a large number of products. The nature of the production
technology is such that products are processed in batches. Moreover, the time
required to process such a batch depends only weakly on the size of the batch,
because processing itself affects the entire batch at once. Common examples are
an oven that heats multiple items at once, a paint bath which may paint several
items at a time, the production of pharmaceuticals or the blending of gasoline (cf.
[42]). Batch service also does not only have its applications in production facilities,
but it is also applicable in the field of computer-communication systems, such as
video tex systems and Time Division Multiple Access (TDMA) systems [20]. Man-
agement of production facilities is often challenged with a rather complex trade-off
concerning the determination of batch sizes. Having smaller batch sizes implies
that less product inventory is needed to have a batch formed and that arriving
jobs requiring server attention spend a smaller amount of time in storage before
they become part of a batch. Therefore, taking small batch sizes is often desir-
able on the one hand. However, having larger batch sizes implies that there are
less batches that require processing, which reduces the workload of the production
system. This reduction of workload thus translates into less waiting time for the
batches as a whole. Therefore, taking larger batch sizes is desirable on the other
hand.

In accordance with the applicability of batch services, there is a body of liter-
ature available on non-polling queueing systems with batch service, both from an
evaluation perspective [16, 17], and a design perspective [7, 35, 42]. Over the past
few decades, the analysis and optimization of polling systems also have been sub-
ject of intensive research efforts, see [19, 30, 32] for overviews. However, remarkably
little attention has been paid to polling models in combination with batch service.
As an exception, Boxma et al. [3] study the performance of a class of polling mod-
els with batch service when batches are always served integrally, and Vlasiou and
Yechiali [33] study the case where the service of underlying jobs may be abandoned
and pushed to the batch of the next visiting period when the current visit time
is up. Optimal dynamic routing policies for these systems are studied, when the
server has complete freedom of visits in [20] and when routing must be done in
subsequent Hamiltonian tours [34]. In [27], the question is studied whether upon
arrival the server should poll a station or idle until more customers have arrived
at the station when the server assumes a cyclic routing mechanism. These studies
mostly assume that the server can take in any number of customers for service
at a time and that customers arrive according to Poisson arrival processes. For
polling models with renewal arrivals and normal service, hardly any exact results
are known, except for several asymptotic regimes, including limiting cases where
the system is heavily loaded [26], the switch-over times are large [40], or where
the number of queues grows to infinity. Faced by this, approximations have been
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developed for the mean waiting time [2], recently extended to the complete waiting
time distribution [8].

In the batch service models addressed above, there is no upper bound to the
number of customers served during one visit of the server to a queue. We con-
sider a model that is fundamentally different. We assume that at each queue, the
server can only process batches of a queue-dependent, fixed number of customers
at a time, which is more realistic in many production systems. More specifically,
we study an N -queue batch-service polling system consisting of an inner part and
an outer part. Type-i customers arrive at the outer system according to a re-
newal process and accumulate into a type-i batch. Thus, customers have to wait
in the outer part until they become part of a fully accumulated batch. When Di

customers have accumulated in the outer system, the batch is forwarded to the
inner system, which can be seen as a regular polling system. In the inner system
the batch, and thus the underlying customers wait until the batch as a whole, is
processed by the server. It is assumed that the batch service requirement is inde-
pendent of the batch size Di. For this model, we study the problem of determining
the combination of batch sizes ~Dopt = (Dopt

1 , . . . , Dopt
N ) that minimizes a weighted

sum of the total mean waiting times in the outer and the inner system. Note that
by addressing this problem, one is confronted with a challenging trade-off. When
batch sizes are increased, the workload of the system reduces, leading to the inner
waiting time being shorter. However, it will take longer before a batch of size Di is
fully accumulated and sent to the inner system, which increases the outer waiting
time.
In the absence of exact analysis, we present a numerical approach for this problem.
Moreover, as the main result of this chapter we propose a closed-form approxima-
tion for the optimal combination of batch sizes that allows for back-of-the-envelope
calculations, and which gives valuable insights in the dependence of the system per-
formance with respect to the batch size. Extensive experimentation shows that the
approximation is highly accurate. The methods considered are complementary. As-
suming a small number of queues, the numerical method performs better than the
closed-form approximation. However, the numerical method does not scale well in
the number of queues, assuming larger numbers of queues will eventually result in
the numerical method requiring infeasibly long computation times. Moreover, the
closed-form approximation will perform increasingly well in that case, favouring the
closed-form approximation whenever there is a large number of queues involved.
As a by-product of the closed-form approximation, we observe near-insensitivity
properties of the batch sizes. Firstly, the closed-form approximation suggests that
the optimal batch sizes are insensitive to higher moments of the interarrival and
switch-over time distributions. Secondly, it is suggested that the ratio of the opti-
mal batch sizes of two types or queues is independent of any characteristic of other
queues.

The structure of this chapter is as follows. In Section 3.2, the model is in-
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troduced in detail and required notation is given. In Section 3.3 the problem is
described in detail. Section 3.4 provides evaluation measures, after which a nu-
merical approach to obtain near-optimal batch sizes is discussed and a closed-form
approximation of the optimal batch sizes proposed in Section 3.5. In Section 3.6
validation of these approaches is performed by means of simulation, while Sec-
tion 3.7 takes a look at the near-insensitivity properties suggested by the obtained
closed-form approximation by means of numerical studies. Finally, Section 3.8
offers suggestions for further research.

3.2 Model description and notation

We consider the queueing system as depicted in Figure 3.1. This queueing system
can be divided into an outer part and an inner part. The outer part has type-i
customers entering the system according to a renewal arrival process, where inter-
arrival times are denoted by the random variable EAi. Type-i customers (denoted
by yellow rectangles in Figure 3.1) are said to arrive at rate λi = 1

E[EAi]
and have

to wait in the outer system until Di type-i customers are present in the outer part,
where Di is by nature a strictly positive integer. Whenever there are Di customers
present, these customers immediately form a type-i batch (denoted by teal rectan-
gles in Figure 3.1) and this batch is immediately forwarded to the inner system as
a type-i super-customer. The inner part of the queueing system is a typical polling
system consisting of N > 1 queues, Q1, . . . , QN , each with an infinite-sized buffer
at which batches arrive and wait until they are taken into service by a single server
that is attending all queues. Throughout, a queue index i is understood as ((i− 1)
mod N) + 1, e.g., QN+1 actually refers to Q1. Interarrival times of type-i batches
at Qi are denoted by the random variable Ai and the type-i batches themselves
are said to arrive at rate νi = 1

E[Ai]
. Note that Ai =

∑Di
i=1EAi, which gives rise to

the useful relations νi = λi
Di

and Var[Ai] = DiVar[EAi].

In the polling system, batches are served based on a first-in-first-out queueing
discipline. It should be noted that the length of Q1, . . . , QN , and in case the Ai
are exponential also the mean waiting times are independent of the queueing disci-
pline, provided that the queueing discipline is on its turn independent of the service
times. The service time of a type-i customer is denoted by the random variable Bi,
which is completely independent of Di. That is, the number of customers present
in the batch, or simply the batch size has no impact on the service requirement
of the batch itself. Whenever a batch is being served, it is assumed that the un-
derlying customers are all served simultaneously, such that there is no underlying
customer in the batch that has its service requirement completed before the batch
as a whole is served. The cost of having a type-i customer waiting anywhere in the
system for one unit of time is denoted by ci.
The server attends the queues according to an exhaustive service discipline, i.e.,
when attending Qi, the server will commence moving to another queue if and only
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Figure 3.1: Graphical representation of the model under consideration.

if Qi is completely empty. The server switches through the queues in a cyclic
manner, which means that the server will switch to Qi+1 after the server has com-
pleted a service period at Qi. In order to succesfully perform this switch, the server
typically needs a switch-over time, of which the duration is denoted by a random
variable Si.
We define a cycle at Qi as the time between two successive departures of the
server at Qi. Then, S =

∑N
i=1 Si denotes the total switch-over time in a cycle.

Since batches arrive at Qi at rate νi = 1
E[Ai]

, the load offered to Qi is denoted by

ρi = νiE[Bi]. The total load offered to the inner polling system is then denoted
by ρ =

∑N
i=1 ρi. A necessary and sufficient condition for the stability of the inner

system reads ρ < 1 [9]. Since no work is created or destroyed in the outer part of
the system, this is also a necessary and sufficient condition for the stability of the
described system as a whole.

Throughout, it may be convenient to scale the polling system such that a cer-
tain load is achieved. This scaling is done by keeping the service time distributions
fixed and varying the rates of the renewal arrival processes of the customers. In
particular, it proves convenient to represent with x̂ the value of each variable x
that is a function of ρ evaluated at ρ = 1. In that case Âi denotes the interarrival
time of type-i batches evaluated at ρ = 1. Then, scaling to a load ρ < 1 is done by

taking the random variable Ai := Âi
ρ (or in terms of customers, EAi := ÊAi

ρ ).
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Finally, we introduce some additional notation. The residual length of a non-
negative random variable X with positive finite mean is denoted by Xres, with

E[Xres] = E[X2]
2E[X] . The squared coefficient of variation (SCV) of a random variable

X, Var[X]
E[X]2

is denoted by c2
X . We define σ2 =

∑N
i=1 ν̂i(Var[Bi] + c2

Ai
E[Bi]

2) and

δ =
∑N

j=1

∑N
k=j+1 ρ̂j ρ̂k. Note that in case batches arrive at the polling system

according to a Poisson process, the former can be simplified to σ2 = E[B2]/E[B].
We refer to the system as symmetric, whenever the interarrival distributions of all
the customer types are equal, Di is independent of its index and the queues in
the polling system have identical service time distributions and switch-over time
distributions. Of course, a system is asymmetric when any of these conditions is
violated. Indicator functions are used in the form of 1{A}, which evaluate to one
if condition A holds, zero otherwise.

The main result of this chapter is the following closed-form approximation of
the batch size vector ~Dopt minimizing the weighted sum of the waiting times of the
customers:

Eoptapp =
N∑
i=1

λiE[Bi]

di
+

√√√√2

(
N∑
i=1

cidi
λi

)−1( N∑
i=1

ciωi,app

)(
N∑
i=1

λiE[Bi]

di

)
, (3.1)

~d = (d1, . . . , dN ) =

(
1,
λ2

λ1

√
c1E[B2]

c2E[B1]
, . . . ,

λN
λ1

√
c1E[BN ]

cNE[B1]

)
, (3.2)

and

~Dopt
app = (Dopt

1,app, D
opt
2,app, . . . , D

opt
N,app) = (d1E

opt
app, d2E

opt
app, . . . , dNE

opt
app), (3.3)

where

ωi,app =
1− ρ̂i

2

(∑N
j=1 ν̂jVar[Bj ]

2δ
+ E[S]

)
for i = 1, . . . , N (3.4)

and Dopt
i,app represents an approximation of the optimal type-i batch size. Since

these values may be fractional, they are rounded off to the nearest positive integer
if that results in a stable system, otherwise they are rounded to the nearest strictly
larger integer.

3.3 Problem description

The optimization problem studied in this chapter concerns the optimal choice of
batch sizes. The waiting time of a type-i customer can be decomposed into two
parts:
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• Vi, the time a type-i customer has to wait upon arrival until its type-i batch
is full.

• Wi, the time a type-i customer spends in Qi as part of a batch waiting for
attention of the server.

This decomposition illustrates a trade-off in the choice of batch sizes. When one
decides to increase the size of a type-i batch Di, Vi will obviously increase since
customers have to wait longer on average until their batch is full. On the other
hand, when batch sizes are increased, less batches need to be attended to by the
server of the polling system. Consequently, the load ρ of the polling system will
decrease, and Wi will become smaller. This motivates us to study the question how
batch sizes should be chosen, such that the (weighted) type-averaged total waiting
time of a customer is as small as possible.

Let us define a cost function as a function of ~D = (D1, . . . , DN ),

C( ~D) = C(D1, . . . , DN ) =
N∑
i=1

ci(E[Vi] + E[Wi]). (3.5)

Then, the problem at hand encompasses the search of

arg min
~D

C(D1, . . . , DN ) (3.6)

for a given weight vector ~c = (c1, c2, . . . , cn), under the constraint that all the
elements of ~D remain positive and integer-valued. Unfortunately, there is no exact
expression available for E[Wi]. For E[Vi] however, a closed-form exact expression
in terms of ~D can be obtained through the conditional law of the unconscious
statistician. Let Eij be the event that an arriving type-i customer is the j-th
taking place in the type-i batch currently being filled in the outer system. Then,

E[Vi] =

Di∑
j=1

P[Eij ]E[Vi|Eij ]. (3.7)

It is evidently seen that P[Eij ] = 1
Di

and E[Vi|Eij ] = Di−j
λi

. Combining this, we

have that E[Vi] = Di−1
2λi

. Therefore, the cost function equals

C(D1, . . . , DN ) =
N∑
i=1

ci

(
Di − 1

2λi
+ E[Wi]

)
. (3.8)

Figure 3.2 gives the general form and a visual clue about how E[Vi]+E[Wi] changes
in Di, 1 ≤ i ≤ N . The grey lines show E[Vi] and E[Wi]. These two components
together determine the total waiting time of a type-i customer and clearly show the
explained trade-off. The component E[Wi] in this figure was approximated using
the result of [2], which is also presented and used in Section 3.4. The present study
concerns the question how the batch size vector ~D = (D1, D2, . . . , DN ) should be
chosen such that C(D1, . . . , DN ) is minimized.
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Figure 3.2: Illustration of the trade-off between small and large batch sizes in the
total waiting time.

3.4 Evaluational tools

As concluded earlier, the total waiting time of a type-i customer can be decom-
posed in two parts, denoted by E[Vi] and E[Wi]. An exact expression for E[Vi] is
readily available and derived in the previous section. However, an exact expression
for E[Wi], the waiting time of a customer in a polling system with renewal arrivals,
does not exist. Exact evaluation of (3.8) is therefore not possible. A way to get
around this is by using the well-performing approximation for E[Wi] found by Boon
et al. [2], which was given and used earlier in 2.2 in the previous chapter. This
approximation is shown to be exact in a variety of limiting cases and a very good
approximation in general. For an explanation of the derivation of this approxima-
tion E[Wi,Boon], see Appendix A.
Using this approximation, one may use the following approximative cost function
for evaluational purposes:

CBoon(D1, . . . , DN ) =

N∑
i=1

ci

(
Di − 1

2λi
+ E[Wi,Boon]

)
. (3.9)

Since E[Wi] is the only term in this function that is approximated, CBoon(D1, . . . , DN )
adopts the accuracy properties of E[Wi,Boon]. That is, CBoon(D1, . . . , DN ) is exact
in a variety of limiting cases, and a very accurate approximation of the cost in gen-
eral. This approximative cost function can now be used for optimization purposes,
as is done in Subsection 3.5.1.

3.5 Optimization

This section discusses a numerical approach to the optimization problem posed in
Section 3.3 and moreover presents the main result of this chapter, a closed-form
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approximation of the batch sizes minimizing C(D1, . . . , DN ). These two methods
are complementary: for a small N , the numerical approach works significantly bet-
ter than the closed-form approximation. However, the numerical approach does
not scale well in N , such that it requires long computation times for a large N .
The closed-form approximation however only requires a negligible amount of com-
putation time and performs almost equally well in case the number of queues is
large.

3.5.1 Numerical approach

When one wants to avoid a simulation-like method for the determination of optimal
batch sizes, an expression for E[Wi] is needed. Taking E[Wi,Boon] as an approxi-
mation for E[Wi] results in the approximative cost function CBoon(D1, . . . , DN ) as
given in Section 3.4. The vector ~Dopt

Boon minimizing this approximative cost function
could then act as an approximation of the optimal batch size vector. Closed-form
expressions for the batch sizes minimizing CBoon(D1, . . . , DN ) are exceptionally
hard to derive and untractably complicated. However, numerical methods can be
used to obtain this minimum.
Note that optimization problem (3.6) is a constrained non-linear problem, since
the polling system should be stable at all times and all batch sizes should be pos-
itive. However, this can be converted to an unconstrained optimization problem
by adding a term to the cost function which is uncomparably large whenever the
constraint is violated, zero otherwise.
This procedure may lead to fractional optimal batch sizes. However, by nature,
batch sizes must be integer. Each of the fractional values is therefore rounded to
the nearest positive integer. If this results in an unstable system, each of the values
is rounded upwards to the nearest larger integer.

Validation of this numerical approach is done in Section 3.6. The numerical
approximation is shown to perform well over a wide range of system parameters.
However, numerical methods such as these may be cumbersome to deploy and only
give limited insight into how the waiting time and the optimal value for ~D react
to changes of the system’s parameters. The numerical approach performs well and
does not require much computation time for low values of N . However, it does not
scale well with the number of queues, since more queues implies more batch sizes
to optimize. On its turn, more batch sizes translates in additional dimensions. Due
to the curse of dimensionality the computation time needed may grow infeasibly
long.

3.5.2 Closed-form approximation

Because of the limitations of a numerical approach, our present goal is to derive
a closed-form approximation of the optimal batch sizes. To this end, we aim to
derive a simply computable closed-form approximation of the optimal batch sizes
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based on an approximative cost function. The cost function CBoon(D1, . . . , DN )
as derived in Section 3.4 defies the derivation of a closed-form solution. Therefore,
we first derive an approximation for E[Wi] that is less complex than E[Wi,Boon],
resulting in the approximative cost function Capp(D1, . . . , DN ). Then, closed-form
approximations for the optimal batch sizes will be derived. For the sake of clarity of
presentation, we initially approach the problem in its one-dimensional form, more
specifically under the restriction that D1 = D2 = . . . = DN . Note that this is a
restriction that is often a natural one in practice. For example, think of an oven
with a fixed number of baking slots. After we have solved the one-dimensional
case, we consider the multi-dimensional problem. That is, we obtain the vector
~Dopt
app minimizing Capp(D1, . . . , DN ) and use it as an approximation of the optimal

batch sizes minimizing C(D1, . . . , DN ).

Preliminaries

The function CBoon(D1, . . . , DN ) is too complex to gain closed-form approxima-
tions of the optimal batch sizes, which is the main aim of this chapter. We therefore
introduce another, even simpler approximation of the mean batch waiting time of
the form

E[Wi,app] =
a+ biρ

1− ρ
. (3.10)

This form has a first order polynomial in the numerator rather than a second order
polynomial as in E[Wi,Boon]. Still, we require this approximation to be exact in LT
and highly accurate in HT:

1. In LT, we have that E[Wi] = E[Sres]. Therefore we require E[Wi,app]|ρ=0 =
a = E[Sres].

2. The behavior of the mean waiting-time in HT has been analyzed in [23],
where the following result has been obtained for the mean waiting time in
HT:

E[Wi] =
ωi

1− ρ
+ o((1− ρ)−1), ρ ↑ 1, (3.11)

where ωi can be thought of as a rate at which E[Wi] tends to infinity (in case
of ρ = 1, the polling system is unstable). For exhaustive service, it is shown
that

ωi =
1− ρ̂i

2

(
σ2

2δ
+ E[S]

)
. (3.12)

where σ2 =
∑N

i=1 ν̂i(Var[Bi] + c2
Ai
E[Bi]

2). Since c2
Ai

=
c2EAi
Di

tends to 0 very

rapidly as Di increases, we may simplify σ2 by σ2
app =

∑N
i=1 ν̂iVar[Bi]. We
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opt to do so for reasons found below, such that we have that

ωi,app =
1− ρ̂i

2

(
σ2
app

2δ
+ E[S]

)
. (3.13)

This second requirement leads to (1− ρ)E[Wi,app]|ρ=1 = a+ bi = ωi,app.

The above requirements result in the following approximation for the mean waiting
time:

E[Wi,app] =
E[Sres] + (ωi,app − E[Sres])ρ

1− ρ
= E[Sres] +

ωi,appρ

1− ρ
. (3.14)

This leads to the definition of the approximative cost function

Capp(D1, . . . , DN ) =

N∑
i=1

ci

(
Di − 1

2λi
+ E[Wi,app]

)
. (3.15)

Note that we have opted to approximate σ2 and ωi by σ2
app and ωi,app. We use

these approximations rather than the original expressions mainly because of a very
interesting characteristic these approximations exhibit, which proves invaluable in
the derivation of a closed-form approximation. When the ratios between batch
sizes are known, these approximations can be evaluated while lacking knowledge of
the batch sizes themselves. Accordingly, we have that the approximations retain
their values, whenever batch sizes are changed in a way that the ratios between
them remain the same. In σ2

app we have the terms ν̂i and Var[Bi]. The latter is by
definition independent of the batch sizes, the former requires a bit more thought.

We have that ν̂i = λ̂i
Di

. When the batch sizes are changed such that the ratios

between them remain the same, e.g., when ~D = (3, 6, 12) is changed to (2, 4, 8)
or (6, 12, 24), but not to (1, 2, 3), we have that the λ̂i scale accordingly in order
to keep the load evaluated at one, such that the ν̂i retain their values. Therefore,
under the assumption of fixed ratios between the batch sizes, the ν̂i and therefore
σ2
app can be evaluated independently of the Di themselves. This is not the case

with σ2, since the term c2
Ai

is inversely proportional to Di.
The “independence” of ν̂i also implies that ρ̂i = ν̂iE[Bi] can be evaluated indepen-
dently of the batch sizes under the same assumption. Therefore, ωi,app, which is
dependent on ρ̂i and σ2

app, can also be fully identified using the ratios of the batch
sizes, rather than the batch sizes themselves. The approximations prove to be
rather accurate, since taking customers together in larger batches result in batch
arrival processes converging to deterministic arrival processes, in which case these
approximations are exact.

We conclude this section with the listing of two limiting characteristics of
E[Wi,app]:
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• In case of deterministic switch-over times tending to infinity, a strong conjec-
ture is presented in [40] stating that Wi

S tends to a uniform distribution on

[0, 1−ρi
1−ρ ]. This implies that E[Wi]

S → 1−ρi
2(1−ρ) when S → ∞. It turns out that

E[Wi,app] becomes exact under these circumstances, since

lim
S→∞

E[Wi,app]

S
=

1− ρi
2(1− ρ)

= lim
S→∞

E[Wi]

S
. (3.16)

• For systems with N = 1 without vacations, i.e., a GI/G/1 queue, a widely
used elementary approximation for E[W ] — which is exact when assuming
Poisson arrivals — reads

E[W ] ≈
ρE[B](c2

A + c2
B)

2(1− ρ)
, (3.17)

see for example (8) of [37]. In case of deterministic arrival streams and
N = 1, E[Wi,app] coincides with this particular approximation. This is a
desirable characteristic, since c2

Ai
drops rapidly as Di is increased.

One-dimensional problem

In this subsection, we solve the problem under the restriction that D = D1 = D2 =
. . . = DN . In that case, the approximative cost function reduces to

Capp(D) =

N∑
i=1

ci(D − 1)

2λi
+

N∑
i=1

ciE[Sres] +

∑N
i=1 ciωi,app

∑N
i=1 λiE[Bi]

D −
∑N

i=1 λiE[Bi]
. (3.18)

Since the ratios between the batch sizes are taken fixed in this one-dimensional
case, ωi,app behaves independently of the value of D, as illuminated earlier in the
present section. This independency property allows a trivial derivation of the value
D minimizing Capp(D). In order to find this minimum, we evaluate d

dDCapp(D)
and equate the result to zero:

(D −
∑N

i=1 λiE[Bi])
2
∑N

i=1
ci

2λi
−
∑N

i=1 ciωi,app
∑N

i=1 λiE[Bi]

(D −
∑N

i=1 λiE[Bi])2
= 0. (3.19)

Solving this equation for D leads to the following optimal and feasible value for D:

Dopt =
N∑
i=1

λiE[Bi] +

√√√√2

(
N∑
i=1

ci
λi

)−1( N∑
i=1

ciωi,app

)(
N∑
i=1

λiE[Bi]

)
. (3.20)

Since for D ≤
∑N

i=1 λiE[Bi] the system is unstable, and there are no boundaries
to examine, the given expression for Dopt is the only one that minimizes Capp(D).
Because this expression can take fractional values, proper rounding is needed. We
do this the same way as done in subsection 3.5.1, i.e., rounding to the nearest
positive integer if that results in a stable system, rounding upwards to the nearest
larger integer otherwise.
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Multi-dimensional problem

In this subsection, the type-i batches are not necessarily equal for the different i,
i.e., we relax the constraint that D1 = D2 = . . . = DN . In this case, the traditional
approach would be to take partial derivatives of Capp(D1, . . . , DN ) with respect to
D1, D2, . . . , DN , and equate each of them to zero, resulting in a set of N equations
with N unknowns. This however does not allow for easy solutions, since we do not
have any assumptions on the ratios of the batch sizes. Lacking such an assumption,
the property that ωi,app can be evaluated independently of the Di as illuminated
earlier in this section does not hold, making analysis intractable. Therefore, we
use a different approach. We will write ~D = ~dE, where ~d = (d1, d2, . . . , dN ) is a
constant N -dimensional vector. The elements of this vector can be thought of as
proportional values of the optimal, fractional batch sizes before rounding. E.g.,
when d2/d1 = 2, then Dopt

2,frac/D
opt
1,frac = 2. When we have a vector of proportional

values that is known to hold for the optimal value of ~Dfrac, the only task that

remains is optimizing E, which then results in the optimal value of ~D itself. Since
E is a mere one-dimensional constant, this is a one-dimensional optimization prob-
lem, where ωi,app will act as a constant in E by its independency property. This
allows for the same kind of analysis as carried out in Subsection 3.5.2.

Of course, first the vector ~d has to be identified. We will not derive a vector
that is exact for any combination of input parameters, for the same reason we do
not approach the matter as a multi-dimensional problem. Instead, we propose an
approximation, which is exact in certain limiting cases. The problem described in
Section 3.3 encompasses the search of the value of

arg minC(D1, . . . , DN ) = arg min
~D

N∑
i=1

ci(E[Vi] + E[Wi]) (3.21)

under the constraint that the system is stable, i.e., that the load in the polling
system ρ =

∑N
i=1 νiE[Bi] remains smaller than one. We now deploy an indepen-

dence argument. Typically, optimal batch sizes are such that upon adopting those
optimal batch sizes, ρ becomes very small. That is, the ρi are proportional to
1
Di

, which means that for considerable batch sizes ρ =
∑N

i=1 ρi is fairly moderate,
which on its turn results in the system being near the state of LT. Since in LT it
holds that E[Wi] = E[Sres], we have that the mean waiting time is independent of
the batch sizes in LT. This motivates us to use the ratios of the following problem
as an approximation for ~d, using the expression found for E[Vi] in Section 3.3:

arg min
~D

N∑
i=1

ci(E[Vi]+E[Sres]) = arg min
~D

N∑
i=1

ciE[Vi] = arg min
~D

N∑
i=1

ci
Di − 1

2λi
, (3.22)

under the constraint that
∑N

i=1 νiE[Bi] < 1. Since E[Vi] is monotonously decreasing
in Di, the optimal solution will be such that the slack of this constraint converges
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to zero. In other words, in the optimum we have that
∑N

i=1 νiE[Bi] + ε = 1, where

ε ↓ 0. Although not conventionally correct, we will write
∑N

i=1 νiE[Bi] = 1 in the

interest of easy notation, which gives birth to DN = λNE[BN ]

1−
∑N−1

i=1 νiE[Bi]
. Then, we can

write this problem unconstrained as

arg min
~D

N−1∑
i=1

ci
Di − 1

2λi
+

cN
2λN

(
λNE[BN ]

1−
∑N−1

i=1
λiE[Bi]
Di

− 1

)
. (3.23)

In the optimal value of ~D, we have that the derivative of the operand with respect
to Di equals zero, 1 ≤ i < N . This leads to the following equation:

Di

(
1−

N−1∑
k=1

λkE[Bk]

Dk

)
= λi

√
cN
ci

E[BN ]E[Bi]. (3.24)

This equation immediately gives a relation between the optimal values for Di and
Dj (1 ≤ i, j < N):

Di

Dj
=
Di

(
1−

∑N−1
k=1 νkE[Bk]

)
Dj

(
1−

∑N−1
k=1 νkE[Bk]

) =
λi
√

cN
ci
E[BN ]E[Bi]

λj
√

cN
cj
E[BN ]E[Bj ]

=
λi
λj

√
cjE[Bi]

ciE[Bj ]
. (3.25)

By symmetry, we also have that this result holds for 1 ≤ i, j ≤ N . This strikingly
simple result gives the exact relation between the optimal batch sizes whenever
the polling system resides in LT, and a good approximation in case ρ is close to
zero. Therefore, we use this result for the determination of ~d. Since only the
proportionality of these values is relevant, we set d1 = 1. The other elements of ~d
immediately follow:

~d =

(
1,
λ2

λ1

√
c1E[B2]

c2E[B1]
, . . . ,

λN
λ1

√
c1E[BN ]

cNE[B1]

)
. (3.26)

Note that the (3.26) is exact whenever E[Wi] is insensitive to the batch sizes.
In practice this may happen in a deterministic production environment, where
scheduling is done such that the mean batch waiting time E[Wi] is zero. Now ~d
has been determined, we have reduced the current problem to a one-dimensional
optimization problem. Writing ~D = ~dE, we are only left with the task of finding
the optimal value of E. This problem is solved completely analogously to the
solution of the problem in Subsection 3.5.2, leading to

Eoptapp =

N∑
i=1

λiE[Bi]

di
+

√√√√2

(
N∑
i=1

cidi
λi

)−1( N∑
i=1

ciωi,app

)(
N∑
i=1

λiE[Bi]

di

)
. (3.27)

We end up with the following approximation of the optimal batch sizes:

~
Dopt
app = (Dopt

1,app, D
opt
2,app, . . . , D

opt
N,app) = (d1E

opt
app, d2E

opt
app, . . . , dNE

opt
app), (3.28)
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Notation Parameter Considered parameter values

N Number of queues {2, 5}
λi = 1

N

∑N
i=1 λi Type-averaged arrival rate { 0.5

N
, 2
N
}

E[Bi] = 1
N

∑N
i=1 E[Bi] Type-averaged mean service time {1}

E[Si] = 1
N

∑N
i=1 E[Si] Type-averaged mean switch-over time {0, 0.2, 1, 10}

c2Ai
SCV interarrival times {0.25, 1, 2}

c2Bi
SCV service times {0, 1, 4}

c2Si
SCV switch-over times {0, 1}

~c Weight vector {(λ1, λ2, λ3, λ4, λ5), (1, 1, 1, 1, 1),
(5, 4, 3, 2, 1)}

Table 3.1: Parameter values of the test beds used in Section 3.6.

where di and Eoptapp are as given above. Since in this formulation the batch sizes
can still take fractional values, we again use the same rounding strategy as used
in the numerical approach. We round each of the values to the nearest positive
integer if this results in a stable system, otherwise we round each of the values

upwards to the nearest strictly larger integer. After rounding,
~

Dopt
app gives a straight-

forward approximation of the solution to the problem formulation in Section 3.3.
The obtained approximation requires little or no computation time. Unlike the
numerical approach, the computation time required is hardly dependent on the
number of queues or any other characteristics of the system at hand.

3.6 Validation

In this section, we assess the performance of the two solution methods presented
in Section 3.5 by use of simulation. We compare the performance of the numerical
approach and the closed-form approximation in terms of the cost function with
respect to the cost of the minimum obtained by simulation. This is done based on
two test beds containing 1260 polling system in total, which bring a wide variety
of input parameters with them.

We assess the performance of the numerical approach and the closed-form ap-
proximation on a test bed of symmetric systems, and a test bed of asymmetric
systems. The symmetric test bed consists of symmetric systems corresponding to
each of the combinations possible of parameter values found in Table 3.1, which
corresponds to a total of 504 systems. Note that in case of E[Si] = 0 for all
i, the realisations of Si are all zero, irrespective of the value of c2

Si
. Moreover,

~c = (λ1, λ2, λ3, λ4, λ5) and ~c = (1, 1, 1, 1, 1) result in the same weight vector in
case of symmetry. The asymmetric test bed consists of asymmetric systems cor-
responding to the same combinations found in Table 3.1, with a total of 756.
Differences compared to the symmetric systems are found in the mean arrival
rates and the mean service and switch-over times, they are not the same for each
queue anymore. Let λi, E[Bi] and E[Si] be the type-averaged arrival rate, mean
service time and mean switch-over time respectively. Then, the parameters are
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taken asymmetrically through the formulas λj = 2j
N+1λi, E[Bj ] = 2j

N+1E[Bi] and

E[Sj ] = 2(N+1−j)
N+1 E[Si], 1 ≤ j ≤ N .

For the sake of validation of the numerical approach, an implementation of a
Newton type-algorithm for unconstrained minimization was used, see [29] for de-
tails. To make sure that the polling system remains stable, a penalty term A1{ρ≥1}
was added to the cost function, where A is an unproportionally large constant. As
starting values for the batch sizes, also unproportionally large values were used.
For the validation of the derived closed-form approximation, the formula given in
(3.28) was implemented.

We express the comparisons in terms of the cost function relative to simulation.
Differences are expressed in a percentual, relative way, i.e.,

∆% =
a− s
s
× 100%, (3.29)

where s is the cost of the optimal batch size vector obtained by simulation, and a
is the cost belonging to the batch size approximations of the respective approxi-
mation method. It should be noted that the closed-form approach only produces
approximations of the optimal batch size vector, not the accompanying value of the
cost function. To obtain the latter, the found optimal batch size approximations
are used as input for simulation. More specifically, the costs are obtained by aver-
aging over the results of multiple simulation runs of 1.000.000 time units, with the
optimal batch sizes as input. Again simulation was used, because it is the only way
of obtaining “exact” results. Note that this is also done for the approximations
found by the numerical approach. Although E[Wi,Boon] could be used for evalua-
tion as illuminated in Section 3.4, simulation was used in an effort to compare the
two approximation methods in an unbiased way.

It should be noted that although both the numerical approach and the closed-
form approximation only require at most the first two moments of the interarrival,
service and switch-over time distributions as an input, all simulations done in this
section need the distributions of them as a whole as input. Therefore, we have
deployed the common two-moment distribution fits as described in Appendix B.

These preparations now allow us to compare the two solution techniques. Ta-
ble 3.2 shows the mean differences in cost performances of the numerical approach
and the closed-form approximation relative to simulation, categorized in the test
beds used and each of the input parameters. From these tables, one can see that
the two solution techniques and simulation are quite close together in terms of
performance. Whenever total waiting times become longer, as is the case when
E[Si] = 10, λi = 2

N or N = 5, we see that the numerical and closed-form ap-
proximations perform increasingly well with respect to simulation. In some cases
they may even work better than simulation due to the fact that simulation errors
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become such that they interfere with finding the exact optimum of the cost. In
case waiting times are generally short, for example when E[Si] = 0 or λi = 0.5

N ,
the batch size vector found by the numerical approach and the closed-form ap-
proximation usually coincide. However, whenever a difference in the found batch
size vector occurs, the difference in terms of cost of that particular system may be
considerable, such that the mean differences grow past 5%. It should be noted that
although large relative differences may occur in these cases, the absolute differences
are still very small, due to the fact that the waiting times themselves are small.
Moreover, the relative difference in terms of the sojourn time would make a far
less daunting impression. For example, the worst case of the closed-form approxi-
mation performance found in the test beds is the asymmetric system with N = 2,
λi = 1, E[Si] = 0.2, E[S2

i ] = 0.04, c2
Bi

= 0, c2
Ai

= 2 and ~c = (1, 1). Simulation

comes up with Dopt = (2, 5), while Dopt
app evaluates to (1, 4). This yields an increase

in average waiting time of 189.88%. However, the absolute increase of waiting time
is merely 1.76.
When considering the particular role of the value of N , a similar effect is observed.
We see that when N = 2, the numerical approach works significantly better than
the closed-form approximation. However, when N = 5, the performance with re-
spect to simulation is better in both cases, and the difference between the methods
becomes smaller. Combined with the fact the numerical approach does not scale
well with N , this acts as an illustration of the complementary property of the pair
of methods as discussed earlier. Also, some interaction effects of the performance
with the SCVs of the interarrival times, service times and switch-over times can be
observed. Finally, one can see that although often the case, the numerical approach
does not always score equally well or better than the closed-form approximation
judging by the results of the asymmetric systems with E[Si] = 1 in the test bed.
One may have expected this to hold in general, since E[Wi,Boon] approximates
E[Wi] better than E[Wi,app].

To study the differences in the found optimal batch size results, the percentual
relative differences in found batch sizes are given in Table 3.3. The results were
broken down in the same categories as the results in Table 3.2. Judging from Table
3.3 one may conclude that the three solution techniques not only score comparably
well in terms of cost, but also the optimal batch sizes found are similar. The
same effects of the input parameters on the accuracy of the approximations can
be observed. In particular, the relative differences for N = 5 of the two methods
are almost equal, while this is not the case for N = 2. This again illustrates the
complementary effect.

3.7 Influence of input parameters

Whereas simulation methods and numerical methods act as a sort of black box, the
closed-form approximation obtained in Subsection 3.5.2 offers suggestions about
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(a)

Test bed Numerical Closed-form
Symmetric 0.303 1.624

Asymmetric 0.645 4.848

(b)

Test bed λi = 0.5
N

λi = 2
N

Numerical Closed-form Numerical Closed-form
Symmetric 0.520 1.013 0.086 2.234

Asymmetric 0.696 4.543 0.594 5.153

(c)

Test bed N=2 N=5
Numerical Closed-form Numerical Closed-form

Symmetric 0.428 2.776 0.178 0.471
Asymmetric 0.870 7.715 0.419 1.981

(d)

Test bed c2Si
= 0 c2Si

= 1

Numerical Closed-form Numerical Closed-form
Symmetric 0.329 1.978 0.279 1.859

Asymmetric 0.763 5.837 0.683 5.649

(e)

Test bed E[Si] = 0 E[Si] = 0.2
Numerical Closed-form Numerical Closed-form

Symmetric 1.066 3.981 0.309 2.976
Asymmetric 1.272 12.009 1.477 9.393

Test bed E[Si] = 1 E[Si] = 10
Numerical Closed-form Numerical Closed-form

Symmetric 0.208 0.766 0.011 1.545
Asymmetric 0.221 -0.050 -0.077 0.026

(f)

Test bed ~c = (λ1, λ2, λ3, λ4, λ5) ~c = (1,1,1,1,1) ~c = (5,4,3,2,1)
Numerical Closed-form Numerical Closed-form Numerical Sol. Tech. 3

Symmetric 0.250 0.635 0.250 0.635 0.356 2.613
Asymmetric 0.328 3.400 0.637 7.139 0.969 4.004

(g)

Test bed c2Ai
= 0.25 c2Ai

= 1 c2Ai
= 2

Numerical Closed-form Numerical Closed-form Numerical Closed-form
Symmetric 0.231 0.352 0.312 1.420 0.365 3.099

Asymmetric 0.826 0.626 0.643 4.510 0.465 9.408

(h)

Test bed c2Bi
= 0 c2Bi

= 1 c2Bi
= 4

Numerical Closed-form Numerical Closed-form Numerical Closed-form
Symmetric 0.082 2.789 0.262 0.687 0.565 1.395

Asymmetric 1.140 10.626 0.627 3.491 0.168 0.427

Table 3.2: Relative difference of the cost obtained by the approximation methods with the
minimum cost obtained by simulation. The displayed percentual differences are categorized in the
test beds, the approximation methods (a), and the type-averaged arrival rate (b), the number of
queues (c), the SCV of the switch-over times (d), the type-averaged mean switch-over time (e),
the weight vector (f), the SCV of the interarrival times (g) and the SCV of the service times (h).
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(a)

Test bed Numerical Closed-form
Symmetric 4.169 5.499

Asymmetric 4.510 6.895

(b)

Test bed λi = 0.5
N

λi = 2
N

Numerical Closed-form Numerical Closed-form
Symmetric 4.001 4.127 4.336 6.872

Asymmetric 2.966 5.266 6.054 8.523

(c)

Test bed N=2 N=5
Numerical Closed-form Numerical Closed-form

Symmetric 5.008 7.206 3.330 3.792
Asymmetric 4.290 8.918 4.730 4.872

(d)

Test bed c2Si
= 0 c2Si

= 1

Numerical Closed-form Numerical Closed-form
Symmetric 3.764 5.107 4.527 5.915

Asymmetric 3.985 6.632 5.081 7.287

(e)

Test bed E[Si] = 0 E[Si] = 0.2
Numerical Closed-form Numerical Closed-form

Symmetric 3.981 5.595 3.233 5.376
Asymmetric 4.694 7.414 4.667 7.667

Test bed E[Si] = 1 E[Si] = 10
Numerical Closed-form Numerical Closed-form

Symmetric 3.345 4.712 6.023 5.404
Asymmetric 3.345 6.361 5.425 7.353

(f)

Test bed ~c = (λ1, λ2, λ3, λ4, λ5) ~c = (1,1,1,1,1) ~c = (5,4,3,2,1)
Numerical Closed-form Numerical Closed-form Numerical Closed-form

Symmetric 3.406 4.193 0.250 0.635 4.932 6.805
Asymmetric 3.199 6.993 4.655 7.188 5.675 6.503

(g)

Test bed c2Ai
= 0.25 c2Ai

= 1 c2Ai
= 2

Numerical Closed-form Numerical Closed-form Numerical Closed-form
Symmetric 3.800 4.010 3.890 5.414 4.816 7.075

Asymmetric 4.779 4.621 4.408 7.326 4.342 8.737

(h)

Test bed c2Bi
= 0 c2Bi

= 1 c2Bi
= 4

Numerical Closed-form Numerical Closed-form Numerical Closed-form
Symmetric 3.181 5.388 3.763 5.044 5.562 6.066

Asymmetric 5.006 8.548 4.010 5.979 4.514 6.157

Table 3.3: Relative differences of the batch sizes obtained by the approximation methods with
the simulated optimal batch sizes. The displayed percentual differences are categorized in the test
beds, the solution techniques (a), and the type-averaged arrival rate (b), the number of queues
(c), the SCV of the switch-over times (d), the type-averaged mean switch-over time (e), the weight
vector (f), the SCV of the interarrival times (g) and the SCV of the service times (h).
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the influence of the input parameters on the optimal batch size vector and implies
some near-insensitivity properties.

It is suggested by (3.27) that the average optimal batch size increases directly in
λi and E[Bi], and indirectly in E[B2

i ] and E[S] through the ωi,app-term, 1 ≤ i ≤ N .
This is natural behavior, since an increase in any of these terms naturally trans-
lates into an increase of E[Wi], which is remedied by taking larger batch sizes.
Concerning the ratios of the optimal batch sizes, it is suggested by (3.26) that
the optimal value of Di relative to the optimal batch sizes corresponding to other
queues is increasing in λi and E[Bi] and decreasing in ci. Intuitively, this is also
natural behavior. When λi and E[Bi] increase, ρi and thus E[Wi] become larger,
which is remedied by taking Di larger. A larger value of ci implies a larger penalty
for the value of E[Vi] + E[Wi]. Therefore, one will want to take Di smaller and all
other batch sizes larger, such that the value of E[Vi] + E[Wi] is decreased.

Next to these observations, (3.26) and (3.27) also suggest the following near-
insensitivity properties:

• The optimal batch sizes are near-insensitive to higher moments of the inter-
arrival and switch-over time distributions,

• The ratios of the optimal batch sizes is not as sensitive to the weights and
mean service times as it is to the arrival rates,

• The ratio of optimal batch sizes belonging to a pair of types/queues is nearly
insensitive to characteristics of any other type/queue.

As these near-insensitivity properties give valuable insights into the behavior
of the optimal batches, these insensitivity properties are further discussed below.
Simulation results are presented to illustrate the validity of the results.

Near-insensitivity to higher moments of the interarrival and switch-over
time distributions. Near-insensitivity to the higher moments of the interarrival
and switch-over time distributions is suggested because the value of Eoptapp as well

as ~d are not dependent on them. Insensitivity to the higher moments of the inter-
arrival time distribution is a result of the simplification in ωi,app. This makes the
approximation useful for practical purposes, because in reality information about
more than the first two moments is often hard to get. The assumption of the aver-
age size being (near) independent of the higher moments was justified by the fact
that the internal batch arrival processes to the polling system converge to deter-
ministic arrival processes quickly as batch sizes increase. Independence of higher
moments of the switch-over time distribution can be justified by the fact that these
moments have no impact on the mean waiting time of customers that is due to the
server being in a switch-over period and therefore have negligible impact on the
batch sizes as well. To investigate the plausibility of near-insensitivity, consider
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Figure 3.3: Mean batch size as a function of the SCV of the interarrival and the
switch-over time distributions.

a symmetric system with 5 queues. The mean arrival rate of each queue equals
λi = 3. Furthermore we have that for each queue ci = E[Bi] = E[Si] = 1, E[B2

i ] = 2
and c2

Ai
= c2

Si
for 1 ≤ i ≤ N . A small simulation study results in Figure 3.3. In

this figure the behavior of the mean optimal exact batch size is given as a function
of c2

Ai
= c2

Si
. Apart from some noise which can be contributed to simulation error,

the figure shows a near constant line, which again implies plausibility that optimal
batch sizes are at least nearly insensitive to the higher moments of the interarrival
and switch-over time distributions.

Lesser sensitivity of ratios to weights and mean service times compared
to arrival rates. It may not be intuitive to see why the impact of the weights
and the mean service times on the ratios is less than the mean arrival rates, as
suggested by the placement of the square root in (3.26). The ratios as given in
(3.26) are known not to hold exactly in general, however it is used for the general
case in the closed-form approximation of (3.28). Therefore, we again undertake a
small simulation study to study the validity of this assumption. Consider a two-
type system where customers arrive according to Poisson processes — i.e., c2

EAi
= 1

—, exponential service times and deterministic switch-over times with a duration
of one time unit, and a variable k ranging from one to three. More specifically, we
consider the three scenarios as given in Table 3.4. It is easily seen that the ratio
as given in (3.26) evaluates to 1 in all three of the scenarios given in the table.

Figure 3.4 shows the ratio of the exact optimal batch size values,
Dopt

1

Dopt
2

obtained

by simulation as a function of k for all scenarios as a function of k. Although
these lines may seem to have a downward drift, this drift is quite faint compared
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Scenario Qi λi ci E[Bi]

Arrival rate vs. mean service time Q1 4 1 1

Q2 5− k 1
(

4
5−k

)2

Arrival rate vs. weight Q1 4 1 1

Q2 5− k
(

5−k
4

)2
1

Mean service time vs. weight Q1 4 1 1
Q2 4 k k

Table 3.4: Parameter input used for the results found in Figure 3.4.

Figure 3.4: Ratio
Dopt

1

Dopt
2

as a function of k.

to the observed integer effects and simulation errors. On top of that, the lines are
close together. Taking into account the accompanying scenarios as given in Table
3.4, this reinforces the plausibility of lesser sensitivity to weights and mean service
times when compared to arrival rates.

Near-insensitivity of ratios to other types or queues. As mentioned ear-
lier, (3.26) suggests that the ratio of optimal batch sizes of two types is at least
nearly independent of the characteristics of a third type or queue in the sys-
tem. To investigate the plausibility of this suggestion, we again deploy a simu-
lation study. Consider a three-type system with Poisson arrivals and exponen-
tial switch-over times, and again a variable k ranging from one to three. In
addition, we have that (λ1, λ2, λ3) = (4, 2, k), (E[B1],E[B2],E[B3]) = (1, 0.5, k),
(E[B2

1 ],E[B2
2 ],E[B2

3 ]) = (2, 0.25, k2) and all switch-over times have a mean dura-

tion of one. Figure 3.5 shows the ratio of
Dopt

2

Dopt
1

- which according to (3.26) should
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Figure 3.5: Ratio
Dopt

2

Dopt
1

as a function of k.

be equal to 0.5 for all values of k - as a function of k by means of simulation. A
more or less constant line can be observed, which indeed gives plausibility to the
suggestion that the ratio of two optimal batch sizes is at least nearly independent
of the characteristics of a third customer-type or queue.

We end this section with several other practical remarks concerning the ob-
tained closed-form approximation.

Remark 1 (Ratio constraints). The derived closed-form approximative solu-
tion allows for constraints concerning the relation between the different batch sizes,
by adjusting the di-values. For example, if one wants to take the batch sizes equal
for each of the queues, we have that Dopt

1 = Dopt
2 = . . . = Dopt

N and therefore one
could set d1 = d2 = . . . = dN = 1. In that case, (3.27) and (3.28) combined reduce
to (3.20).

Remark 2 (cµ-rule). The values taken for di bear resemblance to the well-
known cµ-rule (see for example [4] or [24]). This rule prescribes that in a multi-
queue single server system with Poisson arrivals, zero switch-over times, free server
routing and non-preemptive service, the server should always prioritize the service
of customers belonging to queues with the highest value of ci

E[Bi]
in order to minimize

the weighted mean number of customers in the queues.
To compare this with our model, note that taking smaller type-i batch sizes is
equivalent to an increase in priority of Qi. Then, Vi will generally become smaller
in such a way that the mean total waiting time of type-i customers reduces — even
though Wi will become larger —, and the load of the polling system will increase
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at the expense of extra waiting time for other type-j customers. In order to be
able to compare our model with models where the cµ-rule is applicable, regard a
system in which all the Vi → 0, giving rise to λi → ∞ for all the queues. In that
case (3.25) suggests that

Di

Dj
=

√
cj

E[Bj ]

(
ci

E[Bi]

)−1

. (3.30)

This equation suggests that if ci
E[Bi]

>
cj

E[Bj ] , Di should be taken smaller than Dj .

This in accordance with the cµ-rule, which states that if ci
E[Bi]

>
cj

E[Bj ] , Qi should

get priority over Qj .

3.8 Further research

The research done in the present chapter gives birth to a variety of directions for
further research. In this section, we discuss some of the possibilities.

Higher moments and tail probabilities. In this chapter, the evaluation and
optimization done encompassed the minimization of the weighted mean waiting
time of customers. This could be extended to the minimization of higher moments
of the waiting time or even tail probabilities of the waiting time. This may prove
very interesting in practical situations, where the variance of the waiting times
must be kept small, or where waiting thresholds are set, which are not to be ex-
ceeded. For the evaluation of weighted higher moments, the intuitive cost function∑N

i=1 ciE[(Vi + Wi)
n] may be replaced by

∑N
i=1 ci(E[V n

i ] + E[Wn
i ]), where E[Wn

i ]
may be estimated by using an approximation proposed by [8], the main result of
the previous chapter. Especially in case of E[S] = 0 this may prove to be very
tractable. Then, optimization may be performed based on the obtained expres-
sions.
The result of the previous chapter, an approximation of the complete waiting time
distribution in polling systems with renewal arrivals, may also act as a basis for
evaluation and optimization of tail probabilities.

Other service disciplines. We have only discussed the case where the server
operates through an exhaustive service discipline to attend batches. The present
study could be adjusted for models with other branching-type service policies [28]
or even be generalized to them. The question remains whether a simple closed-form
approximation can still be determined in the latter case.

Non-cyclic routing. Throughout this chapter, only systems where the server
assumed a cyclic routing mechanism have been looked at. This could be extended
to other routing mechanisms, or even generalized to routing according to general
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polling tables. Since the behavior of the waiting time in LT and HT [26] is known
under custom polling table routing, generalization may be feasible.

Model variations. In the model considered the service requirement of a batch
is independent of the size of the batch, as commonly observed in practice. This
could be extended to models with size-dependent service requirements. Also, in the
model at hand the load of the polling system can become very small when batch
sizes increase, which may result in the polling system having no batches waiting
in its queues. Currently, the server will keep switching over in this case, while
for example in production systems it may be interesting to let the server reside
in idle mode. The HT characteristics of the waiting time will not change, since
there will always be batches to serve. The LT characteristics of the waiting time
is generally also easily identified, which allows for identification of E[Wi,Boon] and
E[Wi,app] for idling policies. Following the approach of this paper, both numerical
and closed-form approximations may then be found for this model variation.

Rounding strategy. Both the numerical approach and the closed-form approx-
imation produce fractional batch sizes. To obtain integer batch sizes, we round
each of the batch sizes to the nearest integer if that results in a stable system,
otherwise we round each of them upwards to the nearest larger integer. One could
attempt to improve the approximations by adopting more sophisticated rounding
strategies. However, this may introduce extra complexity in the approximation,
while the performance cannot greatly increase, judging by the already very nice
results of Table 3.2.
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Appendix A

Boon’s approximation

There are no closed-form expressions or numerical algorithms available in lit-
erature for the exact computation of the mean waiting time in polling systems
with renewal arrivals. A well-performing closed-form approximation however
has been derived by Boon et al. [2]. This approximation is not only shown
to perform very well, it also is easily implementable in software and gives in-
sights in the impact of system parameters on the mean waiting time. Adopting
the notation as given in Section 3.2, Boon’s approximation E[Wi,Boon] can be
expressed as follows:

E[Wi,Boon] =
K0 +K1,iρ+K2,iρ

2

1− ρ
, (A.1)

where the constants K0,K1,i and K2,i depend on several parameters of the
polling system at hand. In case all queues receive exhaustive service, we have

K0 = E[Sres],

K1,i = ρ̂i((c
2
Ai

)4
1{c2Ai

≤1} + 2
c2
Ai

c2
Ai

+ 1
1{c2Ai

>1} − 1)E[Bres
i ] + E[Bres]

+ ρ̂i(E[Sres]− E[S])− 1

E[S]

N−1∑
j=0

j∑
k=0

ρ̂i+kVar[Si+j ],

K2,i =
1− ρ̂i

2

(∑N
j=1 λ̂j(Var[Bj ] + ρ̂2

jVar[Âj ])∑N
j=1 ρ̂j(1− ρ̂j)

+ E[S]
)
−K0 −K1,i.
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If all queues receive gated service, we have

K0 = E[Sres],

K1,i = ρ̂i((c
2
Ai

)4
1{c2Ai

≤1} + 2
c2
Ai

c2
Ai

+ 1
1{c2Ai

>1} − 1)E[Bres
i ] + E[Bres]

+ ρ̂iE[Sres]− 1

E[S]

N−1∑
j=0

j∑
k=0

ρ̂i+kVar[Si+j ],

K2,i =
1 + ρ̂i

2

(∑N
j=1 λ̂j(Var[Bj ] + ρ̂2

jVar[Âj ])∑N
j=1 ρ̂j(1 + ρ̂j)

+ E[S]
)
−K0 −K1,i.

The idea behind this approximation can be explained as follows. The
restrictions imposed on the approximation are firstly that the formula should
be closed-form and allow easy implementation, since these are necessities
for optimization purposes and the development of software tools. Secondly,
the approximation should capture the light traffic limit and the heavy traffic
limit behavior in an exact way. To comply to these restrictions, the form
above with (1− ρ) in the denominator and a second order polynomial in the
numerator was chosen.
It is proved in [23] that capturing the HT behavior requires having the term
(1 − ρ) in the denominator. Furthermore, this term is generally a common
thing to have in exact expressions for the mean waiting time in queueing
systems. Perhaps the most trivial example of this is the Pollaczek-Khintchine
formula for the M/G/1 queue.
Having a second order polynomial fulfills the need for simplicity and is
sufficient to obtain exact results for several limiting cases.

The parameters K0, K1,i and K2,i were chosen such that the approximation
satisfies the following three light traffic (LT) and heavy traffic (HT) properties:

1. LT requirement: E[Wi,Boon]|ρ=0 = E[Wi]|ρ=0,

2. LT requirement: d
dρE[Wi,app]|ρ=0 = d

dρE[Wi]|ρ=0,

3. HT requirement: (1− ρ)E[Wi,app]|ρ=1 = (1− ρ)E[Wi]|ρ=1.

When the system is in the state of LT, the server will be switching constantly.
Therefore, if a certain type-i customer would arrive, its waiting time would
equal a residual switch-over time needed by the server to get to Qi, giving
rise to E[Wi]|ρ=0 = E[Sres]. Since the system is completely empty, this is com-
pletely insensitive to the service discipline.
An expression for d

dρE[Wi]|ρ=0 is derived in [2], both for the exhaustive and
gated discipline. This is mainly done using the well-known Fuhrmann-Cooper
decomposition [14] in combination with a LT theorem found by Whitt [38].
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The Fuhrmann-Cooper decomposition states that in a vacation system with
Poisson arrivals the queue length of a customer is the sum of two independent
random variables: the number of customers in an isolated M/G/1 queue, and
the number of customers during an arbitrary moment in the vacation period.
Combining this with Whitt’s result, the LT limit of the mean waiting time in
a GI/G/1 queue, ultimately results in an expression for d

dρE[Wi]|ρ=0.
For the exhaustive and gated service disciplines, an expression for (1 −
ρ)E[Wi]|ρ=1 is derived in [23]. Using these expressions, the three requirements
above together completely determine the parameters K0, K1,i and K2,i as
given above, which completely identifies Boon’s approximation of the mean
waiting time.
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Appendix B

Two-moment fits

In Chapters 2 and 3, at most the first two moments of the interarrival, service
and switch-over time distributions are involved in the analysis performed.
Simulations were used as a tool to measure the performance of the approx-
imations obtained. Simulation methods however need complete distributions
as an input rather than just the first two moments of each of them. Therefore,
we have used various two-moment distribution fits throughout.
Let X be a random variable with first moment E[X], second moment E[X2]

and squared coefficient of variation (SCV) c2
X = E[X2]

E[X]2
− 1. When E[X] and

E[X2] are known, the simulation tools will fit one of the following common
distributions to X, characteristic for the SCV at hand (cf. [31]).

Case c2X = 0. In case of a SCV of zero, X is taken to be deterministic with
value E[X].

Case 0 < c2X < 1. Whenever the SCV of X takes a value between zero
and one, a mixed Erlang distribution is fitted. The density function of this
distribution is

fX(x) =

(
p
k − 1

lx
+ (1− p)

)
fY (x), (B.1)

where

k = d 1

c2
X

e, p =
kc2
X −

√
k(1 + c2

X)− k2c2
X

1 + c2
X

, l =
k − p
E[X]

,

and Y is a Erlang distributed random variable with shape parameter k, rate
parameter l and density function

fY (y) =
e−lylkyk−1

1{y≥0}

(k − 1)!
.
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The distribution fitted to X can be interpreted as a mixture of two Erlang
distributions with shape parameters k − 1 and k respectively. Both of these
Erlang distributions can thus each be interpreted as a sum of k − 1 and k
exponential distributions respectively.

Case c2X = 1. When the SCV equals one, X is taken to be exponential with
rate parameter 1

E[X] .

Case c2X > 1. For a SCV larger than one, a hyperexponential distribution
with two phases (H2) is fitted, having density function

fX(x) = pω1e
−ω1x + (1− p)ω2e

−ω2x, (B.2)

where

p =
1

2

(
1 +

√
c2
X − 1

c2
X + 1

)
, ω1 =

2p

E[X]
and ω2 =

2(1− p)
E[X]

,

under the assumption of balanced means, i.e., p
ω1

= 1−p
ω2

.


