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Management Summary

Temperature-controlled vehicle routing problems are a specific kind of vehicle routing problem
concerning trucks with temperature regulatable loading spaces, that are used for the transport
temperature sensitive products. On board of such a truck is a refrigerator unit that can cool or
heat the loading space to reach a desired temperature. At the same time, this temperature is also
influenced by the temperature outside the truck, especially while the truck’s door is opened for
loading purposes. This means that a vehicle does not only consumes energy for traveling, but also
for the continuous temperature regulation by the refrigerator unit.

Companies that offer temperature-controlled transportation, usually have a set of required
pickups and deliveries that should all be visited within a specified time window. Each of the
products that are picked up, have specific temperature requirements for transportation. The goal
is to create feasible routes covering all visits as efficiently as possible. This are usually the routes
that minimize the total required fuel consumption, and therefore the resulting costs and emissions.
Traditionally, such a vehicle routing problem can be approached by finding the routes with the
lowest total distance. But for temperature-regulated trucks, this are not necessarily also the routes
that require the least fuel for the truck and the refrigerator unit. So might it be the case that taking
slightly longer routes can prevent a truck from a long loading stop while at the same time keeping
the rest of the load frozen and consuming a lot of fuel. This makes this problem different from a
regular vehicle routing problem, requiring different approaches.

The first issue that arises when aiming to solve such a problem is that it is not trivial to compute
an expected fuel usage, given a certain route planning. That is why the first part of this research
will use historical data, containing sensor measurements collected in and around a truck during
real performed routes. Based on this historical data, there will be searched for ways to estimate
fuel consumption based on features of the route that can be known or estimated in advance. The
second part of this research will use these estimations while searching for routes that minimize
this total estimated fuel consumption. A MILP is formulated and solved that explicitly minimizes
fuel usage instead of minimizing the total route distance. Furthermore, it is also investigated what
the effect is of allowing a dynamic target temperature that can change during the route versus a
fixed setpoint per vehicle.

The results show that this is a very promising approach, that is able to decrease the estimated
amount of consumed fuel compared to using a distance objective. Especially when also allowing
a dynamic target temperature. These gains are achieved by selecting different routes, that prefer
certain combinations of products with matching temperature requirements as well as optimizing
at which moments possible waiting times are included. In this way, there is more fuel saved
for temperature regulation than is required for the extra traveling distances, lowering the total
consumption. This proof of concept shows that extending the model, could make it a very usable
approach in practice to save fuel in cold-chain logistics.
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1 Introduction

Within the domain of logistics and transportation, the optimization of all tasks and processes in-
volved can be of great value. Planning and performing all operations efficiently can greatly reduce
the time and resources required. Generally, this does not only lead to a decrease in operational
costs, but can also lower the total consumption of energy and materials, and therefore the emission
and waste generated. It could even create additional profit and an improved market position due
to better customer service and experience. A lot of research in this area has already been done
and is used in practice, but as a result of ever increasing computational power the possibilities
and effectiveness for solving bigger and more complex problems, and thereby the interest of both
research as well as industry, keeps growing.

The problem that will be discussed in this paper is based on a realistic scenario concerning
companies in the transport and logistics sector that possess vehicles with temperature regulatable
loading spaces. Such a company usually has a list of pickup and delivery requests that need to be
served within a certain time window. Each pair of requests involves the transportation of a certain
amount of goods from one location to another, while maintaining a product dependent temperature
inside the loading space. The company has to assign each pair of requests to one of its vehicles
and also has to decide in which order each vehicle visits those assigned requests. The aim is to
do this such that routes are created for each of the vehicles that respect all temperature and time
window requirements while preventing unnecessary high transportation costs. Two different cases
will be considered regarding the temperature regulation inside the loading spaces. In the first case,
each vehicle has a fixed setpoint temperature to which the loading space will be cooled or heated.
This is based on the currently most common situation where a specialized technician is required
to make changes to the settings of the refrigerator. In the second case, the setpoint temperature
of a vehicle can be changed dynamically at any point during a route. This is based on the more
advanced situation where either a dynamic temperature regime can be set up at the start of a route,
or the target temperature can be changed manually by the driver based on the instructions from his
board computer.

Traditionally, this can be seen as a Capacitated Vehicle Routing Problem (CVRP) with addi-
tional constraints for pickup and delivery, for the time windows of each visit and for the allowed
temperature ranges for each product type. It is assumed that there is a fixed number of available
vehicles with only variable costs for their fuel consumption. This can then be solved as a Mixed
Integer Linear Programming (MILP) model with the objective to minimize the total distance of all
the resulting routes. These shortest routes are then assumed to require the lowest amount of fuel
for both traveling and temperature regulation.

However, the assumption that the shortest routes also lead to the lowest fuel consumption
might not always be correct. There could be many other factors that influence the fuel consump-
tion that are not taken into account when using this approach. For example, the fuel required to
maintain a certain temperature inside the vehicle might depend on the type and amount of loaded
products. Some products are picked-up pre-frozen, while others might be stored at room tem-
perature and do neither require, nor mind to be transported in a cold environment. Also, while
(un)loading a truck, the door of the loading space will need to be open. This means that the longer
the service time, the more the temperature inside the loading space is affected by the outside tem-
perature. After the door is closed, the refrigerator will need to cool or heat the loading space to
match the target temperature again. Since this could lead to peaks in the fuel used by the refrig-
erator unit, it would make sense to take this into account as well. While finding the best routes,
there might be chosen for routes with a slightly higher total distance if this for instance leads to
better load combinations or avoid long (un)loading stops when there is a big difference between
the setpoint and outside temperatures. So could it be that transporting certain electronics together
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with frozen meat at a low temperature is allowed, but consumes more fuel than splitting those
tasks over two different trucks. There are many such non-trivial factors that possibly influence
the total amount of fuel that is used by a vehicle for traveling and temperature regulation. That is
why the first goal of this research will be to come up with a way to make an accurate and reliable
estimation of the total fuel that will be consumed by a vehicle when executing a certain planned
route of pickups and deliveries. This will be done based on historical data that has been collected
by sensors that have been placed on board of temperature regulated trucks that are currently in op-
eration at Mandersloot. These sensors do not only measure the fuel levels in the tank, but also take
a large number of other measurements in and around the truck. The learned estimation methods
will then be used to achieve the second goal of this research. Namely, comparing the fuel usage
estimations of solutions that result from finding routes by minimizing the total travel distance with
those resulting from minimizing on the total fuel usage explicitly. This will be done for both the
situation where the temperature setpoint is fixed, as well as for the situation where this setpoint
is dynamic along a route. If can be shown that it is possible to decrease the total fuel usage by
explicitly optimizing over this, this would be of great value to the industry of cold chain logistics.
In this way, it would be possible to gain from an economical perspective by reducing the total
costs as well as gaining from an sustainability perspective by reducing the total emissions.

A number of studies have been looking into similar cold-chain vehicle routing problems be-
fore. Aung and Chang (2014) looked into clustering methods in order to make combinations of
different products that could be transported at the same target temperature. The objective was
to minimize the quality decay of each product, by making sure that the target temperatures were
close enough to a product’s optimal required temperature. Hsiao et al. (2017) formulated a MILP
with an objective function that minimized both travel costs, refrigeration costs as well as product
quality decay translated into costs based on the expected residual shelf life after delivery. Refrig-
eration costs were estimated by a fixed amount per loaded product and per degrees of temperature
difference between each loaded product and the current target temperature, without taking exter-
nal causes for temperature fluctuations into account. An evolutionary algorithm was presented to
solve the problem instances heuristically. Stellingwerf, Kanellopoulos, et al. (2018) incorporated
an objective function where fuel usage for traveling is computed as a function of certain charac-
teristics of the route and vehicle load including traffic, loaded weight and temperature regulation.
Fuel usage for temperature regulation is computed based on the energy required to counter thermal
processes due to difference with the outside temperature. The used values are based on a theoretic
situation with a single fixed target and outside temperature. It was shown that including the fuel
usage for temperature regulation could lead to different solutions and routes compared to solv-
ing the default load dependent problem. Stellingwerf, Groeneveld, et al. (2021) extended this by
deriving more accurate quality decay estimations using real supermarket data. It was concluded
that quality decay could be reduced by having shorter service times, shorter travel times and better
cooling units. The required energy from temperature regulation also depended on the isolation
quality of a truck as well as on the outside temperature. Only a fixed outside temperature and a
single product type with a fixed target temperature were considered.
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2 The Data

This research has been based on historical transportation data of temperature controlled transport
across the Benelux and Central Europe performed by the company Mandersloot. They granted
access to the planned schedules and realized routes in May 2020 and January until March 2021
as have been created by the ORTEC Routing and Dispatching (ORD) application, as well as the
sensor measurements collected from the vehicles while performing these tasks. This data has been
enriched with publicly available historical weather data from the National Centers for Environ-
mental Information (NCEI) within the National Oceanic and Atmospheric Administration Agency
(NOAA). All datasets have been used to learn how to estimate the fuel usage for a planned route,
but also to create reality-based problem instances to solve. For the creation of instances and vi-
sualizations of the results has also been made use of ORTEC’s Vehicle Routing API, in order to
construct the fastest truck routes over the road and compute the route’s distance and expected (time
dependent) travel time.

2.1 ORTEC Routing and Dispatching data

ORTEC keeps a record of the historical routing and dispatching data as has been scheduled by their
planning application and has been realized afterwards. This information is stored in a relational
SQL database with many different tables and columns, which are not all relevant for the current
research. A query was used to extract a list of all the actions planned and performed in the time
periods for which sensor data is available. This list contains multiple sequences of subsequent
actions that together form a so called shift. At each shift, a container is first coupled to a truck,
followed by a number of pickup, travel and delivery tasks, before the container is finally uncoupled
from the truck. For each of those actions, the following information has been extracted:

• Type of action (couple/pickup/delivery/travel/decouple).
• Plate of the vehicle that performed the action.
• Planned start and ending time of the action.
• Realized start and ending time of the action.
• For pickup & delivery actions the earliest and latest allowed starting times.
• For pickup & delivery actions the load amount, product type and allowed temperature range.
• Total load amount and product types present in the container during the action.
• Geographic location of the action (for travel actions both a start and ending location).
• For travel actions the expected distance and duration of the route.

Figure 1: Two example shifts from the routing and dispatching data
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2.2 Sensor data

The sensors on board of the containers do regular measurements in and around the container
while the container is in use. It tracks the temperature at different positions inside the container,
but also performs measurements at the tires and coupling point. Furthermore, this data contains
information about the operating state of the refrigerator unit as well as information from the on
board GPS device. It includes continuous measurements per vehicle on the following data:

• The measured temperature at multiple locations in the container, evaporator and air vents.
• The refrigerator unit’s mode, status and temperature setpoint.
• The remaining fuel level in the refrigerator unit’s tank.
• The tires’ temperature, pressure and rotation speed.
• Whether the container is coupled to a truck.
• Whether the container door is open.
• The geographic location, altitude, vehicle speed and time from the GPS device
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Figure 2: Example of sensor data while the refrigerator is mainly cooling
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Figure 3: Example of sensor data while the refrigerator is mainly heating
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2.3 Weather data

The NOAA’s National Centers for Environmental Information provides public access to environ-
mental data around the world. Among their datasets is the Global Surface Summary of the Day
(GSOD). This dataset contains daily weather measurement averages from over 9,000 weather sta-
tions since 1929. From this dataset, the following information has been extracted for the relevant
stations and time periods:

• The mean, maximum and minimum temperature over a day.
• The mean and maximum wind speed over a day.
• The total amount of precipitation and snow over a day
• The mean air pressure over a day
• The mean visibility over a day
• The occurrence of any snow, rain, hail, thunder or extreme wind over a day

Figure 4: Locations of weather stations across central Europe

2.4 Routing API

ORTEC’s Routing API is part of ORTEC’s cloud service solutions that includes the functionality
of constructing the fastest truck routes over the road between any two given coordinates. The API
is able to not only return the generated routes and their distances, but also includes the expected
travel time both in normal circumstances as well as based on the expected congestion during
a specific time of the week. This service is used for enriching the historical data, for creating
instances as well as for making route visualizations.
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3 Methods

3.1 Modeling assumptions

In order to turn reality into a solvable MILP model without any non-linearity, a number of mod-
eling assumptions and simplifications have to be made. The model will be formulated as a Multi
Vehicle Routing Problem with Time Windows. Each of the requests is represented by a node of a
fully connected graph. Each of the vertices between two nodes represents the shortest truck route
between the locations of the two requests. The goal is now to find the best route for each vehicle
such that every request is exactly visited once while all additional constraints are satisfied.

Figure 5: An example of a real routing problem instance and it’s graph representation.

3.1.1 Instance

A problem instance should specify a fixed number of vehicles, nodes and product types. Each of
the vehicles should have some maximum loading capacity as well as a specific starting node that
specifies where the vehicle is located at time zero. Each node should specify the amount and type
of product picked up or delivered, the service time required at this node, the earliest and latest
allowed starting time and the average outside temperature during this time window. Each product
type should specify the minimum and maximum temperatures at which it should be transported.
Finally, both a matrix with the distance as well as a matrix with the expected travel times between
each combination of nodes should be included. The exact locations of a node are not required to
solve an instance, but could be used for visualization purposes.
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Start Time (min) Load (lm)Node Earliest Latest Type Size Service Time (min) Outside Temp (◦C)

1 0 9567.4 Plants 0.62 120 4.06
2 10055.7 108007.5 Food -0.40 130 1.18
3 0 71340.8 Food 1.40 120 -2.87
4 2455.6 12615.5 Flowers -4.40 206 10.11
5 788.4 17050.5 Plants -0.62 3262 4.89
· · · · · · · · · · · · · · · · · · · · ·

Vehicle Capacity (lm) Start Node
1 12.8 1
2 12.8 14
3 14.8 17

Product Min Temp (◦C) Max Temp (◦C)
Fruit 2 10
Meat -18 2
Plants 4 14

Flowers 6 16
Electronics -18 18

Distance (km) 1 2 3 4 · · ·
1 0 346.2 346.2 836.0 · · ·
2 345.3 0 0 979.7 · · ·
3 345.3 0 0 979.7 · · ·
4 758.9 452.4 450.0 0 · · ·
· · · · · · · · · · · · · · · · · ·

Duration (min) 1 2 3 4 · · ·
1 0 298.2 298.2 651.5 · · ·
2 294.2 0 0 424.7 · · ·
3 294.2 0 0 424.7 · · ·
4 647.3 422.5 422.5 409.4 · · ·
· · · · · · · · · · · · · · · · · ·

Table 1: Example Instance

3.1.2 Solution

The solution to such an instance should specify a route for each of the instance’s vehicles. Each
route contains a sequence of one or more nodes, beginning at the vehicle’s starting node, as well
as the times at which the vehicle is planned to enter and leave each of those nodes. Furthermore,
a solution should specify either a fixed target temperature for each vehicle, or a dynamic target
temperature at every part of each vehicle’s route.

Figure 6: Routes of two example solutions with respectively one and two vehicles
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3.1.3 Temperature over time

While at a node, a vehicle is (un)loading at a fixed location and it’s door will be continuously open.
This means that the inside temperature (t) is gradually changing towards the outside temperature
(w) during service. This loss of cold or heat is assumed to happen at fixed rates (L+ and L−) that
will be derived from the historical data. From the moment that the inside temperature equals the
outside temperature onwards, the inside temperature will not change any further. Given a known
starting temperature t0, this means that the temperature at time τ during service is defined as:

t(τ) =

{
max{t0 − L− · τ, w} if t0 ≥ w
min{t0 + L+ · τ, w} if t0 < w
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Figure 7: Examples of temperature change during service for four different starting temperature

While at a connection, a vehicle is traveling from one location to another with it’s door closed. This
means that the inside temperature is gradually heated or cooled towards the target temperature (s).
This heating and cooling also happens at fixed rates (C+ and C−) that will also be derived from
the historical data. From the moment that the inside temperature equals the target temperature, the
inside temperature will not change any further. Given a known starting temperature t0, this means
that the temperature at time τ during travel is defined as:

t(τ) =

{
max{t0 − C− · τ, s} if t0 ≥ s
min{t0 + C+ · τ, s} if t0 < s
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Figure 8: Examples of temperature change during traveling for four different starting temperature

Vehicles are allowed to stay longer at a node than the service time requires, either by waiting with
the door open or closed. Waiting time with the door opened is represented by an extended time
spent in a node, while waiting with a closed door is represented by an extended time spent at an
arc.
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3.1.4 Fuel usage

A solution can either be scored by the total travel distance or by the total estimated fuel usage. This
estimation is done by a linear function that will be learned from the historical data. This function
will map the information that can be derived from the decision variables, such as the time, load,
inside, outside and target temperatures at each node and arc into a fuel consumption estimation.
The linearity of this function is very important for solving purposes of the MILP. More details on
how this function will be learned from the historical data follows in Section 3.3.

3.2 Data processing

In order to turn the available datasets into usable training data for fuel estimation and solvable
problem instances, a number of processing steps are required. The data from the different sources
has to be preprocessed and matched into a coherent dataset first. In order to learn estimating
fuel usage, this data should then be resampled into records that match complete historical service
or travel segments that matches the situation as modeled by a single node or arc. Furthermore,
reality-based instances should be generated from the entire set of available historical requests.

3.2.1 Data preprocessing

The sensor data per container reports measurements between each few seconds up to thirty minutes
while the refrigerator is switched on. To prepare this data for further usage, it requires some
parsing, cleaning and transformations. So was the categorical feature containing information on
the refrigerator state one-hot encoded, to allow for summarizing over time intervals later. Some of
the continuous measurements contain unexpected fluctuations that are expectedly caused by faulty
measurements. Take measurements such as the fuel level, for which it is known that it should only
gradually decrease over time and should just increase with a big step towards a full tank level when
it is refueled. Any small increases at other moments in time have to be caused by disturbances of
the sensors or fuel surface, such as due to bumpy or sloped roads. Since both those disturbances
as well as refueling are not of interest for determining the fuel consumption, this data is converted
by taking the difference over each time step with a lowerbound of zero:

fuel_consumption[t] = max
{

fuel_level[t] − fuel_level[t−1], 0
}
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In order to enrich this sensor data with the weather measurements from the GSOD dataset, it
is required to find the closest weather stations for each of the sensor measurements. For each
sensor measurement the average weather measurements of the nearest stations, using Euclidean
distance, on the corresponding day can then be added. This datasets do only contain a daily
average, minimum and maximum temperature and not the exact temperature at each time of the
day. The temperature level over a day, given these average minimum and maximum value can
however be modeled by a sinusoidal function. This sinusoid should have a period of 24 hours, that
is shifted such that the minimum temperature occurs at time tmin which is known to be dependent
on the month of the year (Johnson and Fitzpatrick, 1977). The amplitude and mean should then be
chosen such that the min, max and mean temperatures are fulfilled. In order to achieve this for any
wmin ≤ wmean ≤ wmax, the amplitude is a sinusoidal function in itself that shifts the average over
the entire 24 hours up or down. This means that the temperature at time t during the day could be
estimated by:

A(t) = (wmax + wmin − 2 · wmean)︸ ︷︷ ︸
difference between the amplitudes above and below average

· sin
(
π
12(t− tmin − 6)

)
+

average amplitude︷ ︸︸ ︷
1
2 (wmax − wmin)

w′(t) = A(t) · sin
(
π
12(t− tmin − 6)

)
+ wmean − 1

2

︷ ︸︸ ︷
(wmin + wmax − 2 · wmean)

w(t) = min

{
max

{
w′(t), wmin

}
, wmax

}
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Figure 9: Examples of temperature fluctuation modeling over a day

3.2.2 Create training data

In order to create training data, the ORD data is chopped into segments representing either an
entire service or an entire travel for which the refrigerator had been active and expanded with
the sensor and weather measurements of the same vehicle between the segment’s start and finish
time. Each segment is then turned into a single record of features, by summarizing each of the
measurements by taking the mean, min, max, total increase, total decrease and total difference
over the time window. Since the measurements only include the fuel used at the refrigerator’s
engine, an estimation of the fuel used at the trucks main engine of 0.133L per minute (Hsiao et al.,
2017) is added for each of the travel segments. All these records are then randomly split into a
train and a test dataset, that will be used to find average temperature change rates as well as for
learning and validating the function to estimate fuel usage.
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3.2.3 Create instances

In order to generate solvable reality based instances, it is required to turn the continuous data into
finite time problems existing out of |N | requests to be served by |K| vehicles starting at a time
τ = 0. An instance is generated by randomly taking 1

2 |N | pairs of pickup and delivery requests
from the complete set of requests available in the historical ORD data. Similarly, a subset of |K|
different vehicles are randomly drawn from all known vehicles. All requests’ time windows are
aligned by subtracting the original route’s actual starting time. Finally, the MILP as will be defined
in Section 3.4 is used without any objective function other than minimizing the amount of selected
arcs, to quickly check if any feasible solutions exists for the given time windows and distances.
Only if that is proven to be the case, the created instance is maintained.

Figure 10: Example subset of pickup and delivery pairs

3.3 Fuel estimation

In order to estimate the total fuel consumption of a vehicle during each service and travel segment,
two linear functions will be fitted on the training dataset using ElasticNet regression (Zou and
Hastie, 2005). The goal is to find a set of weights ~σ that, taking a dot product with an equal sized
array of features, yields the best fuel consumption estimations. ElasticNet is a linear regression
model that combines the strength of Ridge regularization (Hoerl and Kennard, 1988) and Lasso
regularization (Tibshirani, 1996). Both regularization methods extend a Ordinary Least Squares
loss function with a penalty term to prevent overfitting on the training data. Ridge regression
uses the continuous squared magnitude α2||~σ||22 to penalize large weights. Lasso regression uses
α1||~σ||1 that apart from penalizing large weights, also acts as feature selection method by shrinking
all less important weights to zero. All features are chosen such that they should not lead to any
fuel consumption when all equal to zero themselves, meaning that the intercept is fixed to zero.

The features that will be considered for fuel estimation during service are apart from the total
service duration also the mean, total increase, total decrease and total difference during service
of the load, the inside, outside and target temperatures as well as the differences between these
different temperatures. For fuel estimation during travel, additionally also the total travel distance
and expected travel time are considered. There might be other factors available in the historical
data that also influence the fuel usage and could improve the predictions. However, those cannot
be expressed in advance in terms of the decision variables of the MILP of Section 3.4 and are
therefore not regarded.
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3.4 Mixed Integer Linear Programming Model

The following parameters, variables, objective function and constraints together form a Mixed
Integer Linear Programming model that gives a formal definition of the problem. Given a set of
instance specific parameters, the Gurobi Optimizer (Gurobi Optimization, 2021) is used to find
the optimal solution.

3.4.1 Parameters

The total set of parameters used in the model exists out of parameters that describe a specific prob-
lem instance, parameters that have been derived from the historical data and are used regardless
of the specific problem, as well as auxiliary big-M parameters that are derived from the instance
specific parameters and act as theoretical upper bounds on certain decision variables.

Instance specific parameters

o : Dummy depot node

N : Set of request nodes

V : Set of dummy depot and request nodes N ∪ {o}
Si : Service time at node i ∈ N

Θ−i : Earliest starting time at node i ∈ N
Θ+
i : Latest starting time at node i ∈ N

∆+p
i : Amount of product p ∈ P picked up at node i ∈ N

∆−
p
i : Amount of product p ∈ P delivered at node i ∈ N

Z(i,j) : Travel time at the arc from node i ∈ N to node j ∈ N
D(i,j) : Travel distance at the arc from node i ∈ N to node j ∈ N
Wi : Outside temperature at node i ∈ N

K : Set of vehicles

Qk : Load capacity of vehicle k ∈ K
nk0 ∈ N : Starting node of vehicle k ∈ K

P : Set of product types

T−p : Minimum allowed temperature setpoint for product of type p ∈ P
T+
p : Maximum allowed temperature setpoint for product of type p ∈ P

Learned global parameters

C+ : Heating rate while traveling in degrees/second

C− : Cooling rate while traveling in degrees/second

L+ : Cold loss during service in degrees/second

L− : Heat loss during service in degrees/second

~σservice :
Weights for the linear function mapping decision variables

to fuel usage estimate during service

~σtravel :
Weights for the linear function mapping decision variables

to fuel usage estimate during travel
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Big-M constants

Latest possible finish time of a segment

Mτ : max
i∈N

[
Θ+
i + Si + max

j∈N
Z(i,j)

]
Longest possible distance of one travel segment

MD : max
i∈N

max
j∈N

D(i,j)

Highest possible total load size at any moment

M` : max
k∈K

Qk

Highest outside temperature at any moment

MW : max
i∈N

Wi

Highest possible difference between outside and target temperatures at any moment

Mt : max

{
max
i∈N

Wi, max
p∈P

T+
p

}
−min

{
min
i∈N

Wi, min
p∈P

T−p

}
Highest possible temperature difference cooled and heated within a single segment

MC− : C− ·max
i∈N

max
j∈N

Z(i,j)

MC+ : C+ ·max
i∈N

max
j∈N

Z(i,j)

Highest possible cold and heat temperature loss within a single segment

ML+ : L+ ·max
i∈N

Si

ML− : L− ·max
i∈N

Si

Highest possible fuel usage during one service segment

Mf : ~σservice ·
[
Mt . . . M` . . . Mτ

]ᵀ
Highest possible fuel usage during one travel segment

Mg : ~σtravel ·
[
MD Mτ Mt . . . M` . . . Mτ

]ᵀ
3.4.2 Decision Variables

The following decision variables are used to describe a solution and track the time, load and
temperatures at each segment for fuel estimation.

Routing variables

xki ∈ B Node i ∈ N is visited by vehicle k ∈ K
yk(i,j) ∈ B Arc from i ∈ V to j ∈ V is visited by vehicle k ∈ K

Time tracking variables

τki ∈ R+ Time at which vehicle k ∈ K enters node i ∈ N
τ̂ki ∈ R+ Time at which vehicle k ∈ K leaves node i ∈ N
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Load tracking variables

`k,pi ∈ R+ Cumulative load of type p ∈ P when vehicle k ∈ K enters node i ∈ N
ˆ̀k,p
i ∈ R+ Cumulative load of type p ∈ P when vehicle k ∈ K leaves node i ∈ N

zk,pi ∈ B Cumulative load contains type p ∈ P when vehicle k ∈ K enters node i ∈ N

ẑk,pi ∈ B Cumulative load contains type p ∈ P when vehicle k ∈ K leaves node i ∈ N

Temperature tracking variables

tki ∈ R Inside temperature when vehicle k ∈ K enters node i ∈ N
t̂ki ∈ R Inside temperature when vehicle k ∈ K leaves node i ∈ N

Temperature setpoint variables

In case of a dynamic setpoint per vehicle

ski ∈ R Temperature setpoint when vehicle k ∈ K enters node i ∈ N
ŝki ∈ R Temperature setpoint when vehicle k ∈ K leaves node i ∈ N

In case of a fixed setpoint per vehicle∗

sk ∈ R Temperature setpoint for vehicle k ∈ K
∗(The rest of the model is defined for the dynamic setpoint case, which can be translated

to the fixed setpoint case by replacing each variable ski and ŝki by the variable sk

)
Outside temperature difference tracking variables

δ⊕
k
i ∈ R+ Positive temperature difference with the outside temperature

when vehicle k ∈ K enters node i ∈ N

δ	
k
i ∈ R+ Negative temperature difference with the outside temperature

when vehicle k ∈ K enters node i ∈ N

δ�
k
i ∈ B Outside temperature is higher than the inside temperature

when vehicle k ∈ K enters node i ∈ N

δ̂⊕
k

i ∈ R+ Positive temperature difference with the outside temperature

when vehicle k ∈ K leaves node i ∈ N

δ̂	
k

i ∈ R+ Negative temperature difference with the outside temperature

when vehicle k ∈ K leaves node i ∈ N

δ̂�
k

i ∈ B Outside temperature is higher than the inside temperature

when vehicle k ∈ K leaves node i ∈ N
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Setpoint temperature difference tracking variables

γ⊕
k
i ∈ R+ Positive temperature difference with the setpoint temperature

when vehicle k ∈ K enters node i ∈ N

γ	
k
i ∈ R+ Negative temperature difference with the setpoint temperature

when vehicle k ∈ K enters node i ∈ N

γ�
k
i ∈ B Setpoint temperature is higher than the inside temperature

when vehicle k ∈ K enters node i ∈ N

γ̂⊕
k
i ∈ R+ Positive temperature difference with the setpoint temperature

when vehicle k ∈ K leaves node i ∈ N

γ̂	
k
i ∈ R+ Negative temperature difference with the setpoint temperature

when vehicle k ∈ K leaves node i ∈ N

γ̂�
k
i ∈ B Setpoint temperature is higher than the inside temperature

when vehicle k ∈ K leaves node i ∈ N

Temperature change during service tracking variables

λ⊕
k
i ∈ R+ Part of temperature difference δ⊕ki that is not lost during service[

λ⊕�
]k
i
∈ B There is some remaining coolness λ⊕ki after service

λ	
k
i ∈ R+ Part of temperature difference δ	ki that is not lost during service[

λ	�
]k
i
∈ B There is some remaining heat λ	ki after service

Temperature change during traveling tracking variables

µ⊕
k
i ∈ R+ Part of temperature difference γ⊕ki that could not be cooled during traveling[

µ⊕�
]k
i
∈ B Not the full temperature difference γ⊕ki could be cooled during traveling

µ	
k
i ∈ R+ Part of temperature difference γ	ki that could not be heated during traveling[

µ	�
]k
i
∈ B Not the full temperature difference γ	ki could be cooled during service

Fuel estimation variables

fki ∈ R+ Fuel usage by vehicle k ∈ K at node i ∈ N
gk(i,j) ∈ R+ Fuel usage by vehicle k ∈ K at the arc from i ∈ N to j ∈ N
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Additional node tracking variables[
t⊕∆
]k
i
∈ R+ Inside temperature increase during service

by vehicle k ∈ K at node i ∈ N[
t	∆
]k
i
∈ R+ Inside temperature decrease during service

by vehicle k ∈ K at node i ∈ N[
t�∆
]k
i
∈ B Inside temperature did increase during service

by vehicle k ∈ K at node i ∈ N

[
s⊕∆
]k
i
∈ R+ Setpoint temperature increase during service

by vehicle k ∈ K at node i ∈ N[
s	∆
]k
i
∈ R+ Setpoint temperature decrease during service

by vehicle k ∈ K at node i ∈ N[
s�∆
]k
i
∈ B Setpoint temperature did increase during service

by vehicle k ∈ K at node i ∈ N

[
δ⊕∆
]k
i
∈ R+ Outside temperature difference increase during service

by vehicle k ∈ K at node i ∈ N[
δ	∆
]k
i
∈ R+ Outside temperature difference decrease during service

by vehicle k ∈ K at node i ∈ N[
δ�∆
]k
i
∈ B Outside temperature difference did increase during service

by vehicle k ∈ K at node i ∈ N

[
γ⊕∆
]k
i
∈ R+ Setpoint temperature difference increase during service

by vehicle k ∈ K at node i ∈ N[
γ	∆
]k
i
∈ R+ Setpoint temperature difference decrease during service

by vehicle k ∈ K at node i ∈ N[
γ�∆
]k
i
∈ B Setpoint temperature difference did increase during service

by vehicle k ∈ K at node i ∈ N

[
`⊕∆
]k
i
∈ R+ Load increase during service by vehicle k ∈ K at node i ∈ N[

`	∆
]k
i
∈ R+ Load decrease during service by vehicle k ∈ K at node i ∈ N[

`�∆
]k
i
∈ B Load did increase during service by vehicle k ∈ K at node i ∈ N
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Additional arc tracking variables[
t⊕∆
]k
(i,j)
∈ R+ Inside temperature increase during travel by vehicle k ∈ K

from node i ∈ N to j ∈ N[
t	∆
]k
(i,j)
∈ R+ Inside temperature decrease during travel by vehicle k ∈ K

from node i ∈ N to j ∈ N[
t�∆
]k
(i,j)
∈ B Inside temperature did increase during travel by vehicle k ∈ K

from node i ∈ N to j ∈ N

[
W⊕∆

]k
(i,j)
∈ R+ Outside temperature increase during travel by vehicle k ∈ K

from node i ∈ N to j ∈ N[
W	∆

]k
(i,j)
∈ R+ Outside temperature decrease during travel by vehicle k ∈ K

from node i ∈ N to j ∈ N[
W�∆

]k
(i,j)
∈ B Outside temperature did increase during travel by vehicle k ∈ K

from node i ∈ N to j ∈ N

[
s⊕∆
]k
(i,j)
∈ R+ Setpoint temperature increase during travel by vehicle k ∈ K

from node i ∈ N to j ∈ N[
s	∆
]k
(i,j)
∈ R+ Setpoint temperature decrease during travel by vehicle k ∈ K

from node i ∈ N to j ∈ N[
s�∆
]k
(i,j)
∈ B Setpoint temperature did increase during travel by vehicle k ∈ K

from node i ∈ N to j ∈ N

[
δ⊕∆
]k
(i,j)
∈ R+ Outside temperature difference increase during travel

by vehicle k ∈ K from node i ∈ N to j ∈ N[
δ	∆
]k
(i,j)
∈ R+ Outside temperature difference decrease during travel

by vehicle k ∈ K from node i ∈ N to j ∈ N[
δ�∆
]k
(i,j)
∈ B Outside temperature difference did increase during travel

by vehicle k ∈ K from node i ∈ N to j ∈ N

[
γ⊕∆
]k
(i,j)
∈ R+ Setpoint temperature difference increase during travel

by vehicle k ∈ K from node i ∈ N to j ∈ N[
γ	∆
]k
(i,j)
∈ R+ Setpoint temperature difference decrease during travel

by vehicle k ∈ K from node i ∈ N to j ∈ N[
γ�∆
]k
(i,j)
∈ B Setpoint temperature difference did increase during travel

by vehicle k ∈ K from node i ∈ N to j ∈ N
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3.4.3 Objective function

Two different objective functions will be considered for this model, namely:

Minimize the travel distance of each vehicle

min
∑
k∈K

(
yk(i,j) ·D(i,j)

)
(1a)

Minimize the fuel usage of each vehicle at each node and at each arc

min
∑
k∈K

∑
i∈N

fki +
∑
j∈N

gk(i,j)

 (1b)

3.4.4 Constraints

The following constraints are used to describe all conditions that each solution should fulfill as
well as to define the values of all decision variables.

Routing constraints

Each vehicle should begin with visiting its starting node

yk
(o,nk

0)
= 1 ∀k ∈ K (2)

Each vehicle should leave the dummy depot exactly once∑
j∈N

yk(o,j) = 1 ∀k ∈ K (3)

Each node must be entered by any vehicle exactly once∑
k∈K

∑
i∈V

yk(i,j) = 1 ∀j ∈ N (4)

Each vehicle that enters a node should leave the node afterwards∑
i∈V

yk(i,j) =
∑
i∈V

yk(j,i) ∀k ∈ K,∀j ∈ V (5)

Each node is visited by a vehicle if any of the incoming arcs is used

xkj ≥ yk(i,j) ∀k ∈ K,∀i ∈ V,∀j ∈ N (6)

Time constraints

Track the time spent at each node
τ̂ki ≥ τki + Si

−
(

1− xki
)
·Mτ

∀k ∈ K,∀i ∈ N (7)

Track the time spent at each arc
tkj ≥ t̂ki + Z(i,j)

−
(

1− yk(i,j)
)
·Mτ

∀k ∈ K,∀i ∈ N, ∀j ∈ N (8)

Force that no request starts before its time window opens
τki ≥ Θ−i

−
(

1− xki
)
·Mτ

∀k ∈ K,∀i ∈ N (9)

Force that no request starts after its time window closes
τki ≤ Θ+

i

+
(

1− xki
)
·Mτ

∀k ∈ K,∀i ∈ N (10)
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Load constraints

Initialize the starting load to zero

`k,pj ≤
(

1− yk(0,j)
)
·M` ∀k ∈ K,∀p ∈ P,∀j ∈ N (11)

Track the load change at each node
ˆ̀k,p
i ≥ `

k,p
i + ∆+p

i −∆−
p
i

−
(

1− xki
)
·M`

∀k ∈ K,∀p ∈ P,∀i ∈ N (12)

ˆ̀k,p
i ≤ `

k,p
i + ∆+p

i −∆−
p
i

+
(

1− xki
)
·M`

∀k ∈ K,∀p ∈ P,∀i ∈ N (13)

Track the load change at each arc

`k,pj ≥ ˆ̀k,p
i

−
(

1− yk(i,j)
)
·M`

∀k ∈ K,∀p ∈ P,∀i ∈ N, ∀j ∈ N (14)

`k,pj ≤ ˆ̀k,p
i

+
(

1− yk(i,j)
)
·M`

∀k ∈ K,∀p ∈ P,∀i ∈ N, ∀j ∈ N (15)

Track the loaded products at each node

`k,pi ≤ z
k,p
i ·M` ∀k ∈ K,∀p ∈ P,∀i ∈ N (16)

Track the loaded products at each arc
ˆ̀k,p
i ≤ ẑ

k,p
i ·M` ∀k ∈ K,∀p ∈ P,∀i ∈ N (17)

Force that no vehicle can have more load than its capacity∑
p∈P

ˆ̀k,p
i ≤ x

k
i ·Qk ∀k ∈ K,∀i ∈ N (18)

Force that the delivery at each node can be served with the loaded products

`k,pi ≥ ∆−
p
i

− xki ·M`

∀k ∈ K,∀p ∈ P,∀i ∈ N (19)

Force that the setpoint always respects all loaded product’s requirements when entering a node
ski ≥ T−p

−Mt · (1− `k,pi )
∀k ∈ K,∀p ∈ P,∀i ∈ N (20)

ski ≤ T+
p

+Mt · (1− `k,pi )
∀k ∈ K,∀p ∈ P,∀i ∈ N (21)

Force that the setpoint always respects all loaded product’s requirements when leaving a node
ŝki ≥ T−p

−Mt · (1− `k,pi )
∀k ∈ K,∀p ∈ P,∀i ∈ N (22)

ŝki ≤ T+
p

+Mt · (1− `k,pi )
∀k ∈ K,∀p ∈ P,∀i ∈ N (23)
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Temperature initialization constraints

Initialize the inside temperature equal to the outside temperature at the starting node
tkj ≥Wj

−
(

1− yk(0,j)
)
·MW

∀k ∈ K,∀j ∈ N (24)

tkj ≤Wj

+
(

1− yk(0,j)
)
·MW

∀k ∈ K,∀j ∈ N (25)

Outside temperature difference tracking constraints

Calculate the difference between the inside and outside temperature when entering each node

δ⊕
k
i − δ	

k
i = Wi − tki ∀k ∈ K,∀i ∈ N (26)

Calculate if the outside temperature is higher than the inside temperature when entering each node

δ⊕
k
i ≤ δ�

k
i ·Mt ∀k ∈ K,∀i ∈ N (27)

δ	
k
i ≥ (1− δ�ki ) ·Mt ∀k ∈ K,∀i ∈ N (28)

Calculate the difference between the inside and outside temperature when leaving each node

δ̂⊕
k

i − δ̂	
k

i = Wi − t̂ki ∀k ∈ K,∀i ∈ N (29)

Calculate if the outside temperature is higher than the inside temperature when leaving each node

δ̂⊕
k

i ≤ δ̂�
k

i ·Mt ∀k ∈ K,∀i ∈ N (30)

δ̂	
k

i ≥ (1− δ̂�ki ) ·Mt ∀k ∈ K,∀i ∈ N (31)

Setpoint temperature difference tracking constraints

Calculate the difference between the inside and target temperature when entering each node

γ⊕
k
i − γ	

k
i = Wi − tki ∀k ∈ K,∀i ∈ N (32)

Calculate if the setpoint temperature is higher than the inside temperature when entering each node

γ⊕
k
i ≤ γ�

k
i ·Mt ∀k ∈ K,∀i ∈ N (33)

γ	
k
i ≥ (1− γ�ki ) ·Mt ∀k ∈ K,∀i ∈ N (34)

Calculate the difference between the inside and target temperature when leaving each node

γ̂⊕
k
i − γ̂	

k
i = Wi − t̂ki ∀k ∈ K,∀i ∈ N (35)

Calculate if the setpoint temperature is higher than the inside temperature when leaving each node

γ̂⊕
k
i ≤ γ̂�

k
i ·Mt ∀k ∈ K,∀i ∈ N (36)

γ̂	
k
i ≥ (1− γ̂�ki ) ·Mt ∀k ∈ K,∀i ∈ N (37)
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Temperature change during service tracking constraints

Calculate which part of the coolness is left after service

λ⊕
k
i ≥ δ⊕

k
i − L+ ·

(
τ̂ki − τki

)
−
(

1− xki
)
·ML+

∀k ∈ K,∀i ∈ N (38)

Calculate if there is some coolness left after service

λ⊕
k
i ≤ δ⊕

k
i − L+ ·

(
τ̂ki − τki

)
+
[
λ⊕�
]k
i
·ML+

+
(

1− xki
)
·ML+

∀k ∈ K,∀i ∈ N (39)

λ⊕
k
i ≤

(
1−

[
λ⊕�
]k
i

)
·ML+

+
(

1− xki
)
·ML+

∀k ∈ K,∀i ∈ N (40)

Calculate which part of the heat is left after service

λ	
k
i ≥ δ	

k
i − L− ·

(
τ̂ki − τki

)
−
(

1− xki
)
·ML−

∀k ∈ K,∀i ∈ N (41)

Calculate if there is some heat left after service

λ	
k
i ≤ δ	

k
i − L− ·

(
τ̂ki − τki

)
+
[
λ	�
]k
i
·ML−

+
(

1− xki
)
·ML−

∀k ∈ K,∀i ∈ N (42)

λ	
k
i ≤

(
1−

[
λ	�
]k
i

)
·ML−

+
(

1− xki
)
·ML−

∀k ∈ K,∀i ∈ N (43)
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Temperature change during traveling tracking constraints

Calculate how much could not be cooled during traveling

µ⊕
k
i ≥ γ	

k
i − C− ·

(
τkj − τ̂ki

)
−
(

1− yk(i,j)
)
·MC−

∀k ∈ K,∀i ∈ N, ∀j ∈ N (44)

Calculate if the temperature could not be fully cooled during traveling

µ⊕
k
i ≤ γ	

k
i − C− ·

(
τkj − τ̂ki

)
+
[
µ⊕�
]k
i
·MC−

+
(

1− yk(i,j)
)
·MC−

∀k ∈ K,∀i ∈ N, ∀j ∈ N (45)

µ⊕
k
i ≤

(
1−

[
µ⊕�
]k
i

)
·MC−

+
(

1− yk(i,j)
)
·MC−

∀k ∈ K,∀i ∈ N, ∀j ∈ N (46)

Calculate how much could not be heated during traveling

µ	
k
i ≥ γ⊕

k
i − C+ ·

(
τkj − τ̂ki

)
−
(

1− yk(i,j)
)
·MC+

∀k ∈ K,∀i ∈ N, ∀j ∈ N (47)

Calculate if the temperature could not be fully heated during traveling

µ	
k
i ≤ γ⊕

k
i − C+ ·

(
τkj − τ̂ki

)
+
[
µ	�
]k
i
·MC+

+
(

1− yk(i,j)
)
·MC+

∀k ∈ K,∀i ∈ N, ∀j ∈ N (48)

µ	
k
i ≤

(
1−

[
µ	�
]k
i

)
·MC+

+
(

1− yk(i,j)
)
·MC+

∀k ∈ K,∀i ∈ N, ∀j ∈ N (49)
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Additional node tracking constraints

Temperature change during service[
t⊕∆
]k
i
−
[
t	∆
]k
i

= t̂ki − tki ∀k ∈ K,∀i ∈ N (50)

Temperature did increase during service[
t⊕∆
]k
i
≤
[
t�∆
]k
i
·Mt ∀k ∈ K,∀i ∈ N (51)[

t	∆
]k
i
≤
(

1−
[
t�∆
]k
i

)
·Mt ∀k ∈ K,∀i ∈ N (52)

Setpoint temperature change after service[
s⊕∆
]k
i
−
[
s	∆
]k
i

= ŝki − ski ∀k ∈ K,∀i ∈ N (53)

Setpoint temperature did increase after service[
s⊕∆
]k
i
≤
[
s�∆
]k
i
·Mt ∀k ∈ K,∀i ∈ N (54)[

s	∆
]k
i
≤
(

1−
[
s�∆
]k
i

)
·Mt ∀k ∈ K,∀i ∈ N (55)

Outside temperature difference change during service[
δ⊕∆
]k
i
−
[
δ	∆
]k
i

= δ̂ki − δki ∀k ∈ K,∀i ∈ N (56)

Outside temperature difference did increase during service[
δ⊕∆
]k
i
≤
[
δ�∆
]k
i
·Mt ∀k ∈ K,∀i ∈ N (57)[

δ	∆
]k
i
≤
(

1−
[
δ�∆
]k
i

)
·Mt ∀k ∈ K,∀i ∈ N (58)

Setpoint temperature difference change during service[
γ⊕∆
]k
i
−
[
γ	∆
]k
i

= γ̂ki − γki ∀k ∈ K,∀i ∈ N (59)

Setpoint temperature difference did increase during service[
s⊕∆
]k
i
≤
[
γ�∆
]k
i
·Mt ∀k ∈ K,∀i ∈ N (60)[

γ	∆
]k
i
≤
(

1−
[
γ�∆
]k
i

)
·Mt ∀k ∈ K,∀i ∈ N (61)

Load change after service[
`⊕∆
]k
i
−
[
`	∆
]k
i

= ˆ̀k
i − `ki ∀k ∈ K,∀i ∈ N (62)

Load did increase after service[
`⊕∆
]k
i
≤
[
`�∆
]k
i
·Mt ∀k ∈ K,∀i ∈ N (63)[

`	∆
]k
i
≤
(

1−
[
`�∆
]k
i

)
·Mt ∀k ∈ K,∀i ∈ N (64)
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Additional arc tracking constraints

Temperature change during travel[
t⊕∆
]k
(i,j)
−
[
t	∆
]k
(i,j)

= tkj − t̂ki ∀k ∈ K,∀i ∈ N, ∀j ∈ N (65)

Temperature did increase during travel[
t⊕∆
]k
(i,j)
≤
[
t�∆
]k
(i,j)
·Mt ∀k ∈ K,∀i ∈ N, ∀j ∈ N (66)[

t	∆
]k
(i,j)
≤
(

1−
[
t�∆
]k
(i,j)

)
·Mt ∀k ∈ K,∀i ∈ N, ∀j ∈ N (67)

Outside temperature change during travel[
W⊕∆

]k
(i,j)
−
[
W	∆

]k
(i,j)

= Wj −Wi ∀k ∈ K,∀i ∈ N, ∀j ∈ N (68)

Outside temperature did increase during travel[
W⊕∆

]k
(i,j)
≤
[
W�∆

]k
(i,j)
·Mt ∀k ∈ K,∀i ∈ N, ∀j ∈ N (69)[

W	∆
]k
(i,j)
≤
(

1−
[
W�∆

]k
(i,j)

)
·Mt ∀k ∈ K,∀i ∈ N, ∀j ∈ N (70)

Setpoint temperature change after travel[
s⊕∆
]k
(i,j)
−
[
s	∆
]k
(i,j)

= skj − ŝki ∀k ∈ K,∀i ∈ N, ∀j ∈ N (71)

Setpoint temperature did increase after travel[
s⊕∆
]k
(i,j)
≤
[
s�∆
]k
(i,j)
·Mt ∀k ∈ K,∀i ∈ N, ∀j ∈ N (72)[

s	∆
]k
(i,j)
≤
(
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[
s�∆
]k
(i,j)

)
·Mt ∀k ∈ K,∀i ∈ N, ∀j ∈ N (73)

Outside temperature difference change during travel[
δ⊕∆
]k
(i,j)
−
[
δ	∆
]k
(i,j)

= δkj − δ̂ki ∀k ∈ K,∀i ∈ N, ∀j ∈ N (74)

Outside temperature difference did increase during travel[
δ⊕∆
]k
(i,j)
≤
[
δ�∆
]k
(i,j)
·Mt ∀k ∈ K,∀i ∈ N, ∀j ∈ N (75)[

δ	∆
]k
(i,j)
≤
(
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[
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]k
(i,j)

)
·Mt ∀k ∈ K,∀i ∈ N, ∀j ∈ N (76)

Setpoint temperature difference change during travel[
γ⊕∆
]k
(i,j)
−
[
γ	∆
]k
(i,j)

= γkj − γ̂ki ∀k ∈ K,∀i ∈ N, ∀j ∈ N (77)

Setpoint temperature difference did increase during travel[
γ⊕∆
]k
(i,j)
≤
[
γ�∆
]k
(i,j)
·Mt ∀k ∈ K,∀i ∈ N, ∀j ∈ N (78)[

γ	∆
]k
(i,j)
≤
(

1−
[
γ�∆
]k
(i,j)

)
·Mt ∀k ∈ K,∀i ∈ N, ∀j ∈ N (79)
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Fuel estimation constraints

Linear function for estimating fuel usage during service

fki ≥ ~σservice ·
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Linear function for estimating fuel usage during travel

gk(i,j) ≥ ~σtravel ·
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4 Results

4.1 Temperature change rates

The temperature fluctuation over time has been analyzed by looking at the service and travel seg-
ments obtained from the historical data. Figure 11 shows for both kind of segments the distribution
of the temperature change rates for two different cases. Although the values show correlation with
certain weather condition features, a fixed rate per case should be taken to comply with the model
assumptions and perserve linearity in the MILP. That is why the average temperature change rates
per second have been determined, resulting in the following values:

L+ = 0.00207 ◦C/second C+ = 0.00984 ◦C/second

L− = 0.00206 ◦C/second C− = 0.00975 ◦C/second
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Figure 11: Distribution of the temperature change rates per case over all training records

4.2 Fuel usage

The same historical data segments have been used to train the fuel estimation functions. Figure
12 shows the distribution of the fuel usage during a single service and a single travel segment in
the training dataset. The consumed fuel during service shows a high correlation with the outside
temperature and the amount of (un)loaded products, which is also an indirect measure for the time
the door has to be opened. During travel segments, the fuel consumption is mainly correlated with
the route distances as well as the size of the gap between the starting and the target temperature.
The exact weights for each of the features have been learned using ElasticNet regression on the
training data and are validated on a different set of historical segments. All resulting (nonzero)
weights that led to the best estimations, can be found in Table 2.

Weights for fuel estimation during service
Feature Weight

Average -0.05240
Difference 0.41678Inside temperature
Increase 0.73342

Difference 1.05491Outside temperature Decrease 0.13503
Difference 0.67446
Increase 0.06926Target temperature
Decrease -0.32350

Outside temperature ∆ Decrease 0.17867
Average 0.03402Target temperature ∆ Decrease -0.30712
Average 0.22448
Increase 0.52944Total load
Decrease -0.07351

Duration Total -0.00001

Weights for fuel estimation during travel
Feature Weight

Distance 0.00026Route Duration -0.00190
Increase 0.11279Inside temperature Decrease -0.08096

Target temperature ∆ Increase -0.23766
Duration Total 0.00006

Table 2: Fuel estimation weights
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Distribution of fuel usage per hour during service Distribution of fuel usage per hour during travel
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Figure 12: Distribution of fuel usage over all training records

4.2.1 Fuel usage during service

The best results for the fuel usage estimation during service have been obtained using regulariza-
tion parameters α1 = α2 = 1.5. Figure 13 shows the distribution of the errors for the training
segments as well as a comparison between all measured and predicted values. The mean absolute
error was 7.81L and is depicted in red. The remaining errors were mainly correlated with the
occurrence of refrigerator error states that are not regarded in the current MILP.
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Figure 13: Prediction results for fuel usage during service on the training segments

For the segments in the test set, the mean absolute error was with 8.67L slightly higher. Figure 14
shows that the biggest errors are made in the segments where relatively high amounts of fuel were
used. For those segments, the predicted values are usually still higher than average, but the exact
values can deviate somewhat from the truth.
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Figure 14: Distribution of fuel usage over all training records
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4.2.2 Fuel usage during travel

For the travel segments, the best performing regularization parameters are α1 = α2 = 20. The
distribution of the errors within the training set can be found in Figure 15, where the mean absolute
error is equal to 7.74L. The remaining errors were mainly correlated with rare weather events such
as fog or snow, which are not incorporated in the MILP.
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Figure 15: Distribution of fuel usage over all training records

The mean absolute error was with 12.09L a bit higher for the test segments. Again, it stands out
that the higher errors are made in those segments were the fuel usage is high. In those cases, the
fuel usage can be slightly overestimated.
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Figure 16: Distribution of fuel usage over all training records
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4.3 Minimizing fuel consumption

As explained in Section 3.2.3, it is possible to create a large number of unique problem instances
by sampling from the historical data. Each of these instances can be formulated as a Mixed
Integer Linear Program and solved by the Gurobi solver in order to find the best solution. There
are four different strategies for which each instance will be solved and the resulting estimated
fuel consumptions as well as other route details will be compared. The MILP can either have the
objective to find the routes with the smallest total distance (distance objective) or the objective to
find the routes with the lowest estimated fuel consumption explicitly (fuel objective). Both are
regarded in the situation where the target temperature is fixed over the entire route of a truck (fixed
setpoint) as well as in the situation where the target temperature can dynamically change over time
(dynamic setpoint).

4.3.1 Example solutions

For three example instances, the resulting solutions for both the distance objective as well as the
fuel objective are shown on a map in Figures 17, 18 and 19. When visually comparing the two
solutions for each of these examples, it can be seen that the solutions found by optimizing over the
total route length tend to prefer different routes than those obtained using the fuel objective. The
latter solutions have a decreased estimated fuel usage at the expense of an increased route length
and total duration, leading to very different routes.

Total distance: 2923 km
Distance objective: Total duration: 45 hours

Total fuel: 2554 L

Total distance: 3400 km
Fuel objective: Total duration: 52 hours

Total fuel: 2310 L

Figure 17: Routes of two example solutions for an instance with two vehicles and ten requests

Total distance: 7626 km
Distance objective: Total duration: 111 hours

Total fuel: 4961 L

Total distance: 8119 km
Fuel objective: Total duration: 129 hours

Total fuel: 4750 L

Figure 18: Routes of two example solutions for an instance with two vehicles and twenty requests
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Total distance: 10313 km
Distance objective: Total duration: 146 hours

Total fuel: 3165 L

Total distance: 11754 km
Fuel objective: Total duration: 166 hours

Total fuel: 2885 L

Figure 19: Routes of two example solutions for an instance with three vehicles and twenty requests

4.3.2 Solution characteristics

A total of 200 unique instances with ten up to twenty requests and one up to three vehicles have
been created and solved. Those reality based instances do all have varying characteristics regard-
ing the strictness of the service time windows, the distances between the different requests and the
present product types. The average percentage of estimated fuel usage that is saved when com-
paring between the four different strategies can be found in Table 3. The results show that both
optimizing over fuel usage as well as using a dynamic setpoint can lead to a total average fuel
usage reduction of up to 13% compared to the other strategies.

Fuel usage reduction by using
Distance objective Fuel objective

Setpoint Setpoint
Instead of using Fixed Dynamic Fixed Dynamic

Fixed 6.27% 8.82% 13.12%Distance objective Setpoint Dynamic 0.13% 6.10%
Fixed 4.61%Fuel objective Setpoint Dynamic

Table 3: Fuel estimation reduction between the different strategies

Apart from the difference in resulting fuel usage, there are a number of other differences to be
found when comparing the solutions between the different strategies. Figure 20 shows the relative
distributions of a number of other solution characteristics.

Solving problem instances by using the explicit fuel objective instead of the distance objective,
does usually lead to an increased time required for the solver to find the optimal solution. However,
the fuel consumption for the solutions is lower. This decrease of used fuel seems to be gained
both during travel as well as during service. Apart from longer route distances and durations,
a number of other main differences stand out when comparing to the solutions from using the
distance objective. Firstly, the average load is usually higher meaning that the solution tend to
have fuller trucks during service and travel. Secondly, the fuel objective does also lead to higher
service times by idling trucks when the doors are open instead of waiting with the doors closed.
This is probably done to make use of cold outside temperatures when applicable, while waiting
for another request’s time window to open, without having to refrigerate using fuel in the mean
time. Finally, it can be observed that the average inside temperatures during service are slightly
higher for the fuel objective overall.
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When comparing the effect of allowing a dynamic setpoint instead of a fixed setpoint, it stands
out that fuel can be saved both during service and travel as well. The number of different product
types that are loaded simultaneously in a truck is lower. This means that the target temperature
does now only have to be set as cold as the currently loaded products require, instead of having
to take the products that are present at any point during the entire route into account. On average,
this leads to higher target temperatures that are only temporarily lowered when strictly necessary,
which can save a lot of fuel.
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Figure 20: Relative distributions of all solution characteristics between the different strategies
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4.3.3 Product combinations

The results did show that using a dynamic setpoint led to an overall decrease of simultaneously
loaded product types. But the exact product types that occur together do differ as well when
comparing between the two regarded objective functions. Figure 21 shows how frequently certain
product combinations occurred over all solved instances. When explicitly optimizing over the
fuel usage, it stands out that combinations like chicken and fruit or electronics and flowers occur
relatively often, while electronics are less often combined with food, fruit or vegetables. These
difference have to do with the allowed temperature ranges for the different products, as well as the
corresponding service locations and durations that might differ between the varying product types.
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Figure 21: Relative frequency that a product combination occurs in the solutions per objective
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4.3.4 Scalability

The amount of requests considered in a single problem instance were relatively small compared
to a realistic situation. The complexity of the regarded problem and MILP formulation causes
that the solving times that are required to find an optimal solution quickly increase for instances
with more nodes, which makes it difficult to solve bigger instances as well. Figure 22 shows an
example of the progress of the Gurobi optimizer solving a single problem instance. What can be
observed for this example is representable for all of the solved instances. It shows that the solver
is usually able to quickly find the optimal solution, but requires a far longer time to increase the
lower bound and proof the optimality of this solution.
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Figure 22: Progress of upper and lower bounds over time while solving an example instance
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5 Conclusions

The aim of this research was to estimate and optimize the fuel usage in temperature-controlled
vehicle routing. The first goal was to make reliable estimations of the total fuel consumption
required for executing a planned route of pickups and deliveries. The second goal was to minimize
this estimated fuel consumption by explicitly optimizing over it instead of letting it be a result of
optimizing over route distances. Additionally, the effect of allowing the temperature setpoint to
change dynamically during a route was investigated.

It has been shown that a linear function can be fitted to the historical data that is able to map
variables describing a certain route planning to an estimated fuel usage. The performance of
the learned function on a validation dataset showed that it was possible to distinguish segments
with higher or lower fuel consumption and make predictions with a mean absolute error of at
most 12L. The errors that were made in the predictions, were mainly correlated with events that
are not included in the model and are difficult to account for in advance, such as failures in the
refrigerator unit. Secondly, it has been shown that both optimizing over fuel usage explicitly as
well as allowing a dynamic setpoint can lead to a clear reduction of the fuel consumption. When
combined, the two strategies led to a fuel usage reduction of up to 13% over the reality based
instances, compared to the fixed objective with fixed setpoint. These fuel savings can involve very
different routes to be constructed, that come at the expense of an increased total route distance and
duration. The gains in fuel usage are achieved by combining more and different types of load and
making better use of the moments at which the vehicle is waiting.

These results are very promising and show that explicitly taking fuel usage into account when
optimizing routes in cold-chain logistics, could lead to different routes and solutions with reduced
fuel consumption. However, a lot of further research steps can be done in order to obtain more
reliable results and increase the practical usability of this approach. The current research has been
done using historical data from a limited time period on which the fuel consumption and temper-
ature behavior are based. The quality and reliability of the predictions can probably be improved
when more historical segments would be available for testing. When more data is available, the
effect of possible measurement errors or exceptional situations will decrease, leading to an in-
crease of the overall performance. This additional historical data segments should preferably be
as equally spread over a year as possible, to make sure all possible seasons and weather conditions
are represented.

Furthermore, the MILP formulation has been based on a number of assumptions that could
be further improved. In order to preserve linearity and limit the complexity of the model, not all
possibly relevant factors have been included. So are the temperature change rates probably not
constant over time and for all possible environmental conditions. Similarly, weather conditions
and travel times will usually be time dependent. Furthermore, a lot of practical issues have not
been considered, such as possible different refrigerator modes to choose from, or vehicles with
more than one compartment each having a separate setpoint. Finally, the model has also not
been made robust for coping with possible travel delays or refrigerator failures. Another issue
that should be tackled in order to further improve the usability of this approach, is related to the
maximum number of requests for which a single instance can still be solved. In order to achieve
this with the currently available computational power, it would probably be required to make use
of problem specific heuristics or other non-exact solving methods. The results have namely shown
that obtaining a good solution can usually be done a lot quicker than proving optimality.
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