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Modeling Defaults in Residential Mortgage

Backed Securities: An Intensity Based Approach

Abstract

In May 2008 the outstanding issuance of European Asset Backed Securities
was more than €1150 billion and Residential Mortgage Backed Securities (RMBS)
accounted for 77% of this amount. Naturally, given these figures, managing default
risk of the collateral pool becomes of crucial importance to financial institutions
and investors. In this paper we present an intensity based approach for modeling
residential mortgage defaults. More specifically, we will fit a Cox proportional
hazard rate model to describe the probability of default (PD) for residential
mortgages and the uncertainty around the expected PD. Once we are able to
model mortgage defaults we will turn our attention to modeling the distribution of
loss given default (LGD) and determine the effects of defaults to the RMBS
tranches. We hope that the results of this research will improve NIBC’s existing
methods for managing the credit risk originating from the collateral pool of

European RMBS transactions.
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I. Introduction

1.1 An overview of Residential Mortgage Backed Securities

Residential Mortgage Backed Securities (RMBS) are financial securities backed
by a pool of residential mortgages. The process of creating RMBS (as well as all
other types of structured credits) is called securitization. In this section we
present a short description of the RMBS transactions and the risks associated with

them.

Residential Mortgage Backed Securities are structured credits that can be
characterized by the following: the originator (usually a bank) has a pool of
residential mortgages on its balance sheet. The originator sells those to a so
called Special Purpose Vehicle (SPV), a company created solely for the purpose of
securitization. The SPV raises funds to purchase these mortgages by issuing
notes to investors. In this way the investors only bear the risk arising from the
pool of mortgages (collateral pool) and are generally independent from the credit

risk of the respective (former) owner of those assets (e.g. originating bank).

The assets (in this case residential mortgages) of the collateral pool generate
interest and principal payments. These payments as well as potential losses, that
may occur in case the underlying borrowers do not serve their obligations, are
distributed to the investors according to the structure of the securitization. In this
way the credit risk of the collateral pool is transferred to the investors. The notes
are divided into several classes with different seniority, varying from AAA to

Equity. In general the notes with the lowest rating are the first to absorb losses in
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the underlying pool of assets. Naturally, the notes with lowest rating have the
highest risk and accordingly generate the highest return. Respectively, the most
senior notes are the least risky ones and produce the lowest return. The set of
rules, which distributes cash flows (and losses) from the collateral to the notes, is
called the waterfall of the structured credit. Each RMBS deal has its specific
waterfall. Therefore, investors in RMBS have to focus on both the underlying risk
of the securitized portfolio (collateral pool) and the rules that determine which
consequences investors have to face in case certain events occur. The fact that
different notes have different risk profiles, though they all reference the same
underlying portfolio, is based on the respective special transaction structure. This
enables investors to satisfy their individual risk appetites and needs. Figure 1.1

depicts the general structure of a typical RMBS transaction.
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Figure 1.1 RMBS General Structure
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Because the waterfall of each RMBS deal is unique and has been determined
at origination, the effect of a given (expected) loss from the pool to the notes is
specific for each RMBS but deterministic. NIBC’s Trading Department has its own
model to determine this effect deterministically. On the other hand, from a risk
management point of view it is important to have a model that stochastically
describes the uncertainty of the losses originating from the pool i.e. the
uncertainty around the expected PD. In this paper we will present a stochastic
approach for modeling the credit risks associated with the collateral pool of

residential mortgages.

1.2 Mortgage Termination - Default or Prepayment

A great deal of research exists today on modeling mortgage termination. A
general consensus exists in the literature — a mortgage is terminated if it is either
prepaid or the borrower has defaulted from his payment obligations (Deng [3] and

Deng, Quigley & Van Order [4]).

The goal of this paper, however, is to model the uncertainty around the
expected loss associated with RMBS securities. In structured credits the proceeds
from prepaid (and also paid on their legal maturity) mortgages are used by the
SPV to either replenish the mortgage pool (purchase new mortgages), or to repay
some of the outstanding notes. In the first case there is practically no effect of
prepaid mortgages to the cash flows of the notes. In the second case this effect is
determined by the specific RMBS contract - repayment of notes could be for

example proportional to the notes tranches (in this case again there is practically
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no impact to the credit enhancements of the notes) or it could only affect the most
senior notes. To summarize - in RMBS transactions, prepayments either have no
impact on the cash flows to the notes or this impact is deterministic (determined
by the waterfall). Therefore in the scope of this paper, the credit risk associated
with mortgage portfolios is essentially the risk that borrowers will default and fail
to meet interest rate payments on the outstanding balance plus the risk that given
default, the collateral value of the defaulted mortgage is less than the outstanding

balance plus unpaid interest.

1.3 Structural vs. Intensity Based Approach

The credit risk modeling literature has been essentially developed in two ways —
the structural approach and the reduced-form approach. The structural approach is
also sometimes called option-based approach. The ancestor of all structural
models is the Merton Model [5]. The main idea is to use the evolution of firms’
(borrowers’) structural variables, such as asset (house) and debt values, to
determine the time to default or to prepay. Default is viewed as a put option; the
borrower sells his house back to the lender in exchange for eliminating the
mortgage obligation. Whereas, prepayment is viewed as a call option; the borrower
exchanges the unpaid balance on the debt instrument for a release from further
obligation. In the structural approach it is assumed that there are no transactional
or reputation costs for default or prepayment and that, borrowers are well-
informed and make the rational choice to exercise either the call or the put option
when they can increase their wealth. These assumptions may look appropriate

when dealing with commercial borrowers but are not realistic when considering
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residential mortgages. The behavior of private individuals, whose purpose is to
finance their property with the loan, is not always rational in the sense of the

economic theory.

Another shortcoming of structural models arises when considering the legal
aspects of mortgage contracts. The majority of structural models were developed
in attempt to describe the credit risk of the mortgage market in the United States.
While in the US, borrower’s obligations to the originator of the loan are terminated
in the case of default (the bank only has rights on the property, no matter if its
actual market value is less than the value of the mortgage contract), this is not the
case in Europe. In most European residential mortgage contracts, if a borrower
defaults he loses his property and if the market value of the property does not
cover the present value of the outstanding interest payments the borrower is also
obliged to cover this difference. In this case, the approach of modeling default

behavior as a put option on the house value is quite unrealistic.

An extensive literature exists employing the structural approach in the valuation
of mortgages (see, for instance, Titman & Torous [6], Kau et al [7] or Kau and
Keenan [8]). While the option based viewpoint has yielded considerable insights
into the workings of idealized mortgages, it has proven difficult to employ such

models for the purpose of empirical estimation.

The reduced-form models are also called intensity or hazard rate models.
Compared to structural reasoning, the reduced-form point of view is a good deal
less economical: default or prepayment is no longer internally determined, but
rather, externally imposed on the model according to some random process. In

intensity based models, the default time is modeled as a first jump time of an
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exogenously given jump process. In the literature several explanatory variables for
a default of a mortgage contract have been identified. Smith, Sanchez and
Lawrence [9] and Deng [3] select mortgage specific and economic characteristics
for predicting defaults and for calculating the probability of incurring a loss on a
defaulted loan. Santos Silva and Murteira [10] use borrower’s characteristics, such
as the Debt-To-Income ratio (DTI), which is usually only observable by the issue
of the mortgage. In their model, Follian, Huang, and Ondrich [11] include duration,

location, demographic and economic variables as covariates to explain default.

Combinations of the structural and reduced form models also exist. To model
time to default, Deng [3] and Deng and Quigley [12] propose combining the
financial value of the put option in the structural approach, with non-option related

variables, such as unemployment or divorce rates.

In this paper we consider residential mortgage default as an event which is
triggered by mortgage specific, macro-economic and by some personal “non-
financial" reasons, more than by a rational economic decision (see also Deng and
Quigley [12] and De Giorgi [13]). One common (macro-economic) cause for default
is unemployment; another is divorce. In the case of unemployment the income of
the borrower can dramatically decrease and the consequence will be the inability
to pay the interest on the outstanding balance. Therefore, considering an RMBS
collateral pool, we try to model the distribution of the expected number of defaults
according to the economic environment, i.e. to economic factors such as
unemployment and interest rates, or to social and demographic developments,

such as the increase of the number of divorces.
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We propose an intensity based approach for modeling the time to default,
which we take to be the first-jump-time of an inhomogeneous Poisson process with
stochastic intensity, also called a doubly stochastic Poisson or Cox Process. The
main idea consists in conditioning on a set of explaining variables (e.g. loan-to-
value (LTV) ratio or DTI), which affect borrowers' credit quality and behavior, and
to consider borrower defaults as independent given the set of information about
the common economic environment. The intensity process is directly related to the
underlying explanatory variables, as in the proportional hazard rate model (PHR)
of Cox and Oakes [14]. The specific characteristic of the model are presented in

the next chapters.

1.4 Loss Given Default Models

As already mentioned above — a mortgage contract will cause losses if given
default, the collateral value of the defaulted mortgage is less than the outstanding
balance plus unpaid interest. We therefore also need a way to model the loss

given default (LGD) of the residential mortgages in the collateral pool.

In the existing credit risk literature, initial approaches for LGD estimation were
deterministic in nature. Nevertheless, nowadays it has become widely accepted to
treat LGD as a loss severity distribution rather than to regard each estimate as
deterministic, since a number of factors play a role in the ultimate recovery, and to

estimate these deterministically is a difficult task.

There are two main approaches for modeling loss severity. The first one is
deterministic — it simply assumes that all recoveries are fixed values that are

known in advance. The argument for this simplification is the facts that the

11
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uncertainty of the recovery rates does not contribute significantly to the risk of
losses, when compared with the default rate volatility. In other words, the default
rate estimate dominates the LGD estimate, when estimating the expected loss of

an exposure.

The second method models the recovery rates as a random variable between
0% and 100%. The LGD of a mortgage is then given as 1 minus the recovery rate.
Most often in the literature, a U-shaped beta distribution is used to model the
recovery values. This distribution is very useful because it can be bound between
two points and can assume a wide range of shapes. Many popular commercially
available portfolio management applications use a beta distribution to model the
recovery value in the event of default. In this paper we adopt this methodology to
model the LGD of RMBS’s collateral pool of mortgages. The exact estimation
procedure and the calibrating of the beta distribution are presented in the next

chapter.

The rest of the paper is organized as follows: section 1I gives a short
mathematical background of random times, hazard rates and jump processes; in
section III the model for probability of default is introduced; section IV describes
the estimation methodology, the availability of data and the loss-given-default
model; in section V we present the results of our simulations and section VI

concludes the study. Technical results are reported in the Appendix.
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II. Mathematical tools

Let us first start by presenting some mathematical tools for the analysis of
reduced-form models. In particular we will focus on random times and hazard
rates. We start with random times with deterministic hazard rates and after that we
consider situations where the only observable quantity is the default time itself.
This forms the basis for an analysis of a more realistic situation where additional
information, generated for instance by economic explanatory variables, is
available, so the hazard rate will typically be stochastic. We give a description of
the doubly stochastic random times. Doubly stochastic random times are the
simplest example of random times with stochastic hazard rates and are thus
frequently used in dynamic credit risk models. We assume that the reader is
familiar with the basic notions from the theory of stochastic processes, such as

filtration, stopping times or basic martingale theory.

2.1 Random Times and Hazard Rates

Let us consider a probability space (Q,F,P) and a random time 7 defined on
this space i.e. 7:Q —(0,) is a positive, F-measurable random variable that is
interpreted as the time to default of a mortgagor. We denote by F(t)=P(z <t) the
cumulative distribution function of 7 and by F(t)=1-F(t)=P(r >t) the survival
function of 7. We assume that F(0)=P(r=0)=0 and that F(t)>0 for all t<oo.

We can now define the jump or default indicator process (Yt) associated with 7 by

13
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Y, = I{Tst} for t>0. Note that (Y,) is a right continuous process which jumps from

0 to 1 at the default time 7 and that 1-Y, =1,

r>t} .

A filtration (F,) on (Q,F) is an increasing family {F, :t>0} of sub- o -algebras
of F: F,cF,cF for 0<t<s<o. For a generic filtration (F,) we set
Fw:O-(UtzoFt)' In practice filtrations are typically used to model the flow of
information. The filtration F, represents the state of knowledge of an observer at

time t and AeF, means that at time t the observer is able to determine if an

event A occurred.

In the following we assume that the only observable quantity is the random

time 7 and equivalently the associated jump process (Y,). Let (H,) be given by
H, =o({Y, ru<t}) (2.1)

(Ht) is the filtration generated by default indicator process i.e. the history of the
default information up to and including time t. By definition, 7 is an (Ht)-stopping

time as {r<t}={Y, =1}e H, forall t>0.

Definition 2.1 (hazard rates and cumulative hazard function)

The function TI'(t):=—In(F(t)) is called the cumulative hazard function of the

random time 7. If F is absolutely continuous with density f, the function

y(t) = f(t)/(L—F(t)) = f(t)/F(t) is called the hazard rate of 7.
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By definition we have F({t)=1-e'® and T'(t)=f(@{t)/F{t)=y(), so
t
F(t):Jy(S) ds. When we consider a very small interval of time, the hazard rate
0

y(t) can be interpreted as the instantaneous chance of default at time t, given

survival up to time t. For h>0 we have:

_F(t+h)-F()

P(z<t+h t 2.2
(stehie>)=—""10 (2.2)
and therefore
1 1 . F(t+h)-F() _
LILYO]FP(rSt+h|T >t) = 0 lim » = y(t) (2.3)

The hazard rate y(t) can be interpreted as the expected number of failures

(defaults) in a unit of time. Since integration is practically summation - the
t

cumulative hazard function F(t)=jy(s) ds can be understood as the expected
0

number of failures in the period of time between 0 to t.

There are several advantages in learning to think in terms of hazard rates,
rather than the traditional density functions and cumulative distribution functions.
Hazard functions give a more intuitive way to interpret and understand the process
that generates failures. This is why in survival analysis regression models are
more easily grasped by explaining how different variables (covariates) affect the

hazard rate.

15
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III. Model for Probability of Default

As already stated, in this paper we will try to describe the probability of default
of residential mortgages via an intensity based model. Moreover, our goal is to
quantify the dependence and sensitivity of the PD on some explanatory factors.
These factors can be mortgage specific (LTV and/or DTI ratios) or external
(unemployment and/or interest rates). Most of the intensity-based models,
including ours, maintain a doubly stochastic character, which means that not only
it is uncertain whether an obligor will default at a particular time, but that the
intensity (hazard rate) by which this event occurs is also uncertain beforehand.
Therefore we try to model the default time of a residential mortgage as a random
time with a stochastic hazard rate. This leads to the use of the so-called doubly

stochastic Poisson Process to model the probability of default.

3.1 Duration and Time to Default

Consider the following setting. Let P ={(s;,B,,V,),i=1,..,n} be a portfolio of n
residential mortgages. For mortgage |, S; denotes the time of issue (calendar
time), B, =(Bi!t)tzsi is a process giving the outstanding balance at time t and
V, :(Vivt)tzsi is a stochastic process giving the house value at time t. We suppose

that the mortgage portfolio is totally characterized by P.
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Figure 3.1 Duration and time to default.

Now let D,:Q — (0,0) be a positive random variable giving the duration or
lifetime of a mortgage contract i and let Ti:Q—>(O,oo) be also a positive random
variable giving the time to default of a mortgage i i.e.7; is the period of time from
now (t,) till the obligor i defaults. We assume that for all mortgage contracts in P
we have P(D, =0)=0. Moreover, P(D, >d)>0, Vd >0 and also P(r; =0)=0 and
P(z; >t) >0, Vt>0. We have D, =c (or equivalently 7, =) if mortgage i does

not default. Also let di denote the default time (calendar time) of obligor i and 0.

be the period of time that the mortgage has been outstanding (period of time from

issue till now — current lifetime of the mortgage). See figure 3.1.

Since S; is known in advance for any given time t,, we can calculate &, and
since 6 is known and deterministic, the distribution (hazard rate) of time to

default 7, is completely determined by the distribution (hazard rate) of the

duration D,. Mathematically we have:

P(r; <t)=P(D, <6, +t|D, > 6,) (3.1)

17
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In other words — the probability that mortgage 1 will default in a certain interval
of time t is equal to the probability that the lifetime of the mortgage i is less than

or equal to the current lifetime of the mortgage plus t, given that the mortgage is

still outstanding at time t;, (has survived till t;). Moreover we have:

P(r, <t)=P(D, <6, +1|D, > 6,) = 2 Sﬁg)_;gDi =) (3.2)
i > Ui

and if we know the hazard rate or the cumulative hazard function for the

distribution of D, then all the values on the right hand-side of (3.2) are known.

We will now use Cox Proportional Hazard Rate Model to model the hazard rate

of mortgage duration.

3.2 The Cox Proportional Hazards Model

In this chapter we present a way to model (and later estimate) the hazard rate
of mortgage duration. We borrow a model typically used in medical science in the
field of survival analysis. The Cox Model is a well-recognized statistical technique
for exploring the relationship between the survival of a patient and several

explanatory variables (also called covariates).

In our case we assume that mortgage defaults are triggered by some mortgage
specific and/or by some external (environment specific) factors. We suppose that

we can find a set of predictors for the default event of obligor i. Mathematically

we have a multi-dimensional stochastic process X, :(Xl,...,Xp), such that each
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component X; (q=1..,p) represents an explaining factor for the event of default

of obligor i, as for example the regional unemployment rate.

Let A(t|X,) be the hazard rate of mortgage duration, given a particular
realization of the default factors X; =(X,..., X ). Note that A(t|X;) simply states
that A(t) is a function of X; =(X,,.., X ;). Cox Proportional Hazard Model assumes

that the relationship between A(t|X;) and the explanatory factors X, is given by:
A(t] X;) =h(t) *exp(8X;) (3.3)

where h(t) is the baseline hazard (effect of (elapsed) time t on mortgage
duration) and £ is a vector of coefficients giving the sensitivity of the hazard rate

to changes in the explanatory variables. Note that the baseline hazard h(t)

corresponds to the instantaneous probability of default, given survival (no default)
up to time t when all the covariates are zero. The model also states that the
baseline function is the same for all mortgages in consideration i.e. the default

rates of mortgage i and mortgage | differ only in the realizations of the
covariates X, and Xj. This fact plays a crucial role in the estimation procedure,

as we will see later. From (3.3) and the definition of the hazard rate, it follows that

the cumulative hazard function of mortgage duration is equal to:

At X)) = [h(s)*exp(8X;) ds = exp(BX,) [h(s) ds = exp(BX,)H({)  (3.4)

19
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t
where H(t) :Ih(s) ds is the baseline cumulative hazard function.
0

The model explains the following behavior of the default intensity process:

suppose that at the beginning of the mortgage agreement an expected intensity

(default rate) A, can be associated to obligor i. If the obligor’'s behavior is not

affected by any predictors Xl,...,Xp, then we expect no contribution of

X, :(Xl,...,Xp) to the intensity process, meaning that £, =0, for all i=1..,p.
Moreover, if the elapsed time does not contribute to the default intensity, then

A(t) =h(t) = 4, is constant, which would imply a homogenous Poisson process.

However, in practice we observe that obligor’'s behavior changes during the life

of the mortgage, meaning that the probability of incurring a default increases or

decreases. Some factors X,,..., X affect the ability of obligor | to pay the interest

p

rate on a mortgage, changing stochastically the default intensity. Equation (3.2)

suggests that predictors X,,..., X  and time t affect the realizations of A(t) in a

p

multiplicative way.

Another thing worth mentioning is default correlation, which is certainly lower
for residential mortgages compared to commercial mortgages. Dependence
between residential mortgage defaults can be explained, to a large extend, only by
the macroeconomic environment (e.g. unemployment rate and/or interest rate).
This allows us to assume conditional independence of residential defaults. We
assume that obligors who default up to time t are conditionally independent, given

the history of the predictors up to time t. This assumption seems reasonable for
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the kind of portfolio we are considering in this paper — a portfolio of private
individuals (for company defaults and commercial mortgages this assumption
would not be realistic). In fact this conditional independence implies that, given a
scenario through the predictors, obligor defaults occur independently, meaning
that the dependence structure is fully described by the evolution of the common

(macroeconomic) covariates.

IV. Available Data and Model Estimation

4.1 Residential Mortgage Historical Data

NIBC Bank N.V. has maintained a significant database of Dutch residential
mortgages. The database contains approximately 92 thousand records and was
recorded between 01/01/2002 and 6/1/2008 so all still existing contracts have

“end_date” - 6/1/2008. See table 4.1 for a sample of the database.

Right censored
Original LTV Original DTI Loan start date Loan end date data
(O=defaulted)
0.390438728 0.218330602 7/1/2000 6/1/2008 1
1.154709643 0.141826843 3/1/2005 6/1/2008 1
1.14553197 0.269474451 3/1/2005 6/1/2008 1
1.158583728 0.37568185 3/1/2005 6/1/2008 1
0.808333333 0.126808706 3/1/2008 6/1/2008 1
1.285714286 0.1235684 3/1/2005 10/1/2006 0
0.966666667 0.286158458 3/1/2005 6/1/2008 1
1 0.170747839 3/1/2005 6/1/2008 1

21
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1.343134328 0.367103444 1/1/2006 6/1/2008 1
0.642487047 0.121560317 3/1/2007 6/1/2008 1
0.898305085 0.224445451 3/1/2005 6/1/2008 1

0.423536 0.235642 3/1/2005 10/1/2007 0
1.229367273 0.303740859 3/1/2005 6/1/2008 1
1.167959184 0.248989162 3/1/2005 6/1/2008 1

Table 4.1 Sample from the Mortgage Database

Each row represents one mortgage contract. The last column shows the default
status of a mortgage loan I — it is O if obligor i has defaulted (and contract

seized to exist in the database at its end_date); and it is 1 if mortgage | is either
still existing or it was terminated due to prepayment or repayment (and was
removed from the database on this corresponding end_date). A mortgage contract
is considered to have defaulted when it has been in arrears for more than 3
months i.e. the obligor has made no interest or principal payments on his
mortgage obligation for more than 3 months. As default is an extremely rear event
(especially in the Netherlands), almost all of the observations are censored (last
column is 1). In fact for the 6 years in consideration there were only 1558 defaults

out of 92 thousand mortgage loans.

The duration (lifetime) of mortgage contract | is obtained by taking the

difference between end_date i and start_date i, expressed in months.
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4.2 Default Predictors

As we already stated, the realization of the covariates (default predicting
factors) has significant impact on the realization of the hazard rate of mortgage

duration. To construct our model we chose 4 default factors, namely:

lei Original Loan-To-Value (LTV) Ratio of loan i

Xz,i Original Debt-To-Income Ratio (DTI) of loan i

X3,i Quarterly unemployment rate (at contract’s end date)

X4,i 3-month Euribor interest rate (at contract’s end date)

Table 4.2 Default Predictors

LTV and DTI are a common choice for factors explaining mortgage defaults.
LTV stands for loan-to-value ratio and gives the ratio of the size of the mortgage
loan to the value of the real estate property — or simply — loan value over house
value. The original LTV is the loan-to-value ratio of borrower i at origination of
the mortgage contract. As we will show later LTV has very small and statistically
insignificant impact on the hazard rate of time to default. The DTI ratio on the
other hand has a significant explanatory power in our model. It stands for debt-to-
income ratio (sometimes also called PTI (payment-to-income) ratio) and expresses
the ratio of monthly payments due on the mortgage loan to the reported income of
borrower | i.e. it directly relates the payment weight to the ability of payment for
obligor i. As one would expect, the DTI ratio has a significant importance in

explaining the hazard rate of time to default.
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We also choose Quarterly Unemployment Rate and Euribor Interest Rate (with
the appropriate lag - this will be explained later), because they are
macroeconomic variables that should have an impact on obligors’ ability to pay the
interest on their mortgage obligations. A rise in unemployment will mean that more
people lose their primary source of income which will affect their ability to pay
interest on their loans. Same is true for interest rates — for most Dutch residential
mortgages (and most of the mortgages in our database) the interest payments due
to the obligor are determined by a base interest rate (Euribor) plus a margin. This
means that a large increase in Euribor rates will increase the payment weight of
mortgagors and consequently will make some obligors incapable of paying these

payments.

We have to point out here that there are two definitions of unemployment rate
in the Netherlands. One is expressed as a percentage of total population and one
— as a percentage of the labor force (that is population between 16 and 65 years
of age). As expected they are almost perfectly correlated with each other and it
makes practically no difference which one we use in our model. The only

difference is the f-coefficient for unemployment in the Cox regression model

(3.3). We are going to use the one that is more frequently used in the media and

namely the one that is expressed as a percentage of the labor force.

For contracts that have been terminated during the period of our study, we
assign unemployment rate and the interest rate at the month of termination.
Looking at the data we see that we have a large amount of mortgages that are still

outstanding (approximately two thirds of the records) and their actual covariates

(X;; and X,;) are not observed. We have no actual end_date for mortgage
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contracts that still exist. To overcome this problem with missing values, we simply

assign a 0 for X;; and X,; for contracts that are still existing. In the next section

we will explain why we make this choice and its impact on the estimation of the

coefficients.

4.3 PD Model Estimation

In this section we explain the mathematics behind the estimation of the Cox
Model. A non-parametric method for estimating the f coefficients was developed

by Cox [15] himself and is called partial likelihood estimation. The estimation is
non-parametric, meaning that the baseline hazard can be left unspecified. This
means that we do not have to assume a certain shape for the baseline function. In

this way the estimation is not biased by the choice of a baseline hazard.

Suppose we have a data set with n observations and K distinct failure (event

or default) times. We first sort the ordered failure times such that t <t, <...<t,,

where t; denotes the failure time of the i-th mortgage. Note that t, <t, <...<t, are

the actual times when default happened i.e. only uncensored cases (last column in
our database = 0). We now want to express the event times as a function of the

covariate matrix X.

The partial likelihood function is derived by taking the product of the

conditional probability of a failure at time t;, given the number of mortgages at
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risk at time t;. In other words, given that a default has occurred, what is the

probability that it occurred to the i-th mortgage from a risk set of size N ?

Let R(ti) denote the number of mortgages that are at risk of failing (defaulting)
at time t, i.e. R(t;) is the relevant risk set. Then the probability that the j-th

mortgage will default at time t; is given by:

_ _AIX) h@)*exp(BX;)  exp(BX))
P(t; =t |R(t;)) = Zi(tIX,-)_ Zh(t)*exp(ﬁ'xj)_ S exp(AX ) (4.1)
jeR(t) jeR(t;) jeR(t)

since the baseline hazard h(t) is the same for all mortgages. The denominator in
the above expression is the summation over all mortgages that are at risk at time
t.. Taking the product of these conditional probabilities yields the partial

likelihood function:

Tl exp(BX)
b= S expiax )

jeR(t)

with corresponding log-likelihood function:

i-1 ieR(%)

logL, = Zk:l:ﬂ,Xi —Iog( Zexp(ﬂ’xj)ﬂ (4.3)

By maximizing the log-likelihood function (4.3), estimates of £ are obtained.
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Note that the product in (4.2) and the sum in (4.3) are over all mortgages |

that have actually defaulted i.e. i=1,...kK and k =1558 in our case. Those 1558 are
exactly the contracts that are not censored, therefore for all i=1..k, we have

X3 #0 and X,; #0 (as mentioned before, for all mortgages that still exist - no

default event has occurred - we set X;; =0 and X,; =0).

Of course the risks sets R(t;), i=1...k contain all mortgages that are at risk of

defaulting at time t; which includes censored cases and consequently mortgages

that are still existing (for which we have no actual observed unemployment and
interest rate values). From (4.1) we see that censored cases contribute

information only relevant to the risk set (denominator of (4.1) and (4.2)). Therefore

by setting X;; =0 and X,; =0 for all those still existing mortgages we actually

set exp(B'X;)~1 (because B'X;~0) and the denominator in (4.1) and (4.2) is

simply increased by 1 for each mortgage contract that still exists. In this way we
try to minimize any bias coming from the fact that we are unable to observe the
unemployment and interest rate values of the month of termination of all those still
existing loans. On the other hand we can not simply remove them from the
estimation because we do not want to lose any information about the occurrence

of defaults (and the fact that default is an extremely rear event). Mathematically

by setting X;; =0 and X,; =0, we remove any effects of those unobserved

variables to the weight of the risk set — the denominator of (4.1) and (4.2), and we

let the hazard rate for these contracts be determined only by their baseline hazard

27



28

M NIBC ke

THE MERCHANT BANK OF CHOICE vrije Universiteit amsterdam

and the other two constant (and known for all contracts) covariates X, (loan-to-

value ratio) and X, (debt-to-income ratio).

Once we have estimated the f coefficients we also need an estimate of the
baseline hazard h(t) to finally obtain an estimate of the hazard rate of failure
A(t). In the literature there are a number of approaches that have been adopted to

estimate the baseline hazard h(t). The simplest and most frequently used

approach was proposed by Breslow [16]. He derived a maximum likelihood
t

estimator of the baseline cumulative hazard function H(t)zjh(s) ds, after
0

assuming that the failure time distribution has a hazard rate which is constant

between each pair of successive observed failure times - a reasonable assumption

in our case. The estimate of h(t) in the interval [t,,,t.] between two successive

failure times t,; and t; is given by:

h- d
L5 Y exp(BX))

jeR(t)

where &, =t;—t,, is the length of the time interval and d; is the number of
defaults that occur in time t, (note that usually d, =1, but this estimation also

allows for multiple failures at the same time t; - these failures are also called

ties). Equation (4.4) can be interpreted as the ratio between the number of events

and the weighted number of ‘person-time’ units at risk, where the weight of each

individual j in the risk set R(t;) is exp(8X;). A rough estimate of H(t;)—H(t,,)
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is h8, and if we sum all those terms over all t; <t, we obtain what is called the
Breslow’s estimator of the cumulative baseline hazard function at time t:

- d,
HO= 2 5omx)

ieR(t)

(4.5)

4.4 Modeling Loss Given Default

Residential mortgage loans are always backed by some kind of real estate
collateral. If an obligor defaults on his payment obligations then the lender gets
hold of the collateral. The recovery value — i.e. proceeds from selling this
collateral expressed as a percentage of loan’s outstanding balance, are used to

cover losses arising from defaults of obligors.

As we already mentioned we want to model the recovery rates as a random
variable between 0% and 100%. The loss-given-default (LGD) of a mortgage is
then given as 1 minus the recovery rate. Most often in literature, a U-shaped beta
distribution is used to model the recovery values. The beta distribution is very
useful for modeling recovery rates because it produces values between 0 and 1

and can have a large variety of shapes (see fig.4.1).

The probability density function of the Beta distribution is given by:
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X (L-x)"

f(Xa,B)=—
jou“‘l(l—u)ﬂ‘ldu

ZMXHQ_X)H (4.6)
C(e)T(B)

_ 1 a-1gq _ \\B-
"By 7Y

where T'(X) :J‘tHeft dt is the gamma function.
0

o o1 02 03 04 05 08 07 08 09 1

Figure 4.1 The PDF of the beta distribution for different values of the parameters & and ﬂ:

As we see from fig. 4.1 the shape of the Beta distribution is determined by the
parameters a and f. These parameters are usually estimated in the following

way:
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o

a=,u-(Lz_'u)—lj and ﬂ:(l—y).(%—lj (4.7)

where 4 and o are the mean and standard deviations of the recovery rates. NIBC

Bank N.V. has a data set of residential mortgages from which we obtain the

following characteristics of recovery rates:

Number of Losses Average RR | Std. Dev. RR | Average LGD
860 89.59% 19.19% 10.41%

2

and the « and S parameters become: azy-(w—l]:ljl% and
o

B =1-u) .(—/"‘(12‘“) _1j =0.4537.
o

Once we have calibrated the correct Beta distribution we can use it to simulate
random recovery rates and combining those with the distribution of the expected
probability of default, obtained from our PD model, we can determine the
distribution of the expected loss due to default of a single mortgage contract or of

a portfolio of mortgage loans.
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V. Results

5.1 Cox PH model estimation and regression results

In the previous chapter we proposed using 4 distinct default predictors
(Original LTV, Original DTI, Unemployment rate and Interest rate) for building the
most suitable proportional hazard rate model. After running a series of Cox
regressions we found out that the first default factor — Original LTV — has no
statistically significant explanatory power (see Appendix for actual results).
Therefore we will remove it from our model and from now on we will use only 3
factors for modeling the hazard rate of time to default. Let us name the 3

remaining covariates as follows:

XDT,'i Original Debt-to-Income ratio of a borrower |

XUN,i Unemployment rate of the quarter preceding default event of borrower |

X Euribor 3-month Interest Rate (monthly average of the month preceding
IRi | default event of borrower i)

Table 5.1 Covariates
Recall that in our model the hazard rate for the distribution of mortgage

duration (lifetime) is given by the following:

A(t] X;) =h(t) *exp(B'X;)

To obtain estimates of the beta coefficients and the baseline hazard function,
we use the build-in Cox proportional hazards regression function — ‘coxphfit’,

which is included in the Statistical Toolbox® of Matlab®.
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The maximum likelihood estimation of the beta coefficients has produced the

following results:

Covariate: DTI- Xy Unemployment - X, ; Euribor 3m - X o;
Beta coefficient 2.792984442 37.66940855 60.52762111
p-value 8.02754E-49 2.00197E-84 1.0386E-148
standard error 0.190191281 1.934816002 2.330536474
z-statistics 14.68513399 19.46924592 25.97153994

Table 5.2 Coefficient estimates

t
And the Cumulative Hazard Function H(t):jh(s) ds for
0

mortgage duration has the following shape:

25

0s&

0

the distribution of

Cumulative Baseline Hazard Function
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Figure 5.3 Baseline Cumulative Hazard
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We can see that the cumulative baseline hazard function has very low values

even for high durations. This of course is what we expected since mortgage

default is a very rare event. Our estimate of the cumulative baseline hazard

function is only given for durations less than or equal to 305 months, which is the

33



34

M NIBC ke

THE MERCHANT BANK OF CHOICE vrije Universiteit amsterdam

maximal duration of a defaulted loan in our database. This does not constitute a
flaw in the model since in practice we almost never have to analyze mortgage

contracts that have been outstanding for more than 25 years (300 months).

Example:

Let us now use our hazard rate model to compute the probability that a specific

mortgage contract will default in the next year (i.e. the expected 12-month PD).
Consider a mortgage loan | with original DTI ratio — 30% that has been issued on
01/07/2006 and suppose that the current quarterly unemployment rate in the

Netherlands is 4.8% and the current monthly average of the 3-month Euribor

interest rate is 1.5%. In other words we have: Xon, =30%,

Xong =4.8%, Xz, =1.5%. Then according to (3.4) the cumulative hazard function

for the distribution of the lifetime for this specific loan is:
A(t] X,) =exp(BX,)H (t) = exp(B, *0.3+ 3, *0.048 + 3, *0.015) * H (t)
and the [’s are given in table 5.2.

Moreover, by definition 2.1, the cumulative distribution function for the duration
of | is given by: F(t)=P(D, <t) :1—exp(—A(t|X,)) and it has the following

shape:
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Figure 5.4 Cumulative Distribution Function

Note that the shape is very similar to the shape of the cumulative baseline

hazard function. This is because of the multiplicative relationship between
baseline hazard H(t) and specific hazard A(t|X,) and the fact that 1—exp(—X) = X

for small X.

Now since 6 =37 (months since date of issue) and following (3.2), the

expected 12-month probability of default for mortgage contract | is:

P(D, <49)—P(D, <37) _0.01603-0.01071

P(r, <12) = P(D, <49| D, >37) =
P(D, >37) 1-0.01071

=0.005377

5.2 Expected Loss and Loss Distribution

The expected loss due to default of a mortgage contract i can be characterized

by the following:
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E(Loss) = PD*E(LDG) + (L— PD)*0 = PD *E(LGD) (5.1)

and for the mortgage contract | that we considered in the previous example, we

get the following expected loss:
E(Loss) = 0.005377 * (1—0.8959) = 0.056%

As we mentioned before, from risk management’s point of view, not only the
expected loss is important but also the uncertainty around it — in other words we

are more interested in the whole probability distribution of the expected loss.

Since in our model the PD depends on two uncertain in the future factors,
namely unemployment and interest rates, the stochastic distribution of the
expected PD will be determined by the stochastic distribution of those factors. Or
put in other words, we can derive the distribution of the expected PD by simulating
a large number of possible realizations for unemployment and interest rates. In the
same way we can use the beta distribution that we explained and estimated in
section 4.4, to simulate a number of LGD realizations. Combining PD and LGD
simulations, we are able to derive the whole distribution of the loss arising from a
default of a mortgage contract (or a portfolio of mortgage contracts as we will see

in the next section).

The simulated probability distributions of PD, LGD as well as the distribution of
the expected Loss for this specific mortgage contract are presented in the

Appendix (figures A11, A12 and A13).
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5.3 Scenario Simulations

To simulate interest rate paths we use a technique widely used in mathematical
finance. We assume that the evolution of interest rates is a mean reverting
process that can be described by the Cox-Ingersoll-Ross (CIR) model (Cox,
Ingersoll and Ross [17]). The model specifies that the short term interest rate

follows the following stochastic differential equation:
dr, =a(b—r,)dt + o\/r,dW, (5.2)

where a is the mean reversion parameter, b is the long-term mean (equilibrium
level), o is the volatility and W, is a standard Brownian motion. The CIR model is

an extension of the well-known Vasicek model (Vasicek, Oldrich [18]).

Simulating unemployment rates is a bit trickier since in the literature there are
no classical models describing unemployment evolution as a stochastic random
variable. There are, however, a number of models that use ARMA or ARCH
regressions to forecast unemployment rates. We have to make it clear here, that in
this paper we are not interested in forecasting the most likely future
unemployment rate, but in all possible realizations of unemployment rates, i.e. we
are interested in the whole stochastic distribution of unemployment. That is why,
to generate our theoretical unemployment realizations, we use the historical
distribution of the relative change of unemployment (quarterly) for the last 9 years.
We have determined (see Appendix) that for this time period the distribution of the

relative change in unemployment is best fitted by a normal distribution with mean
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ty » =0.00193 and standard deviation o,, , =0.04034 respectively. The idea is to

r

model a possible evolution of unemployment in the following way:

un,, =un,*(@+un_r,) (5.3)

where un, is the level of unemployment at time t and un_r ~ N(,uun_r,aun_,) is a

normally-distributed random variable, with the above mean and standard deviation.

un_r, represents the relative change in unemployment from time t to time t+1.

We will run our simulations with 3 basic unemployment scenarios. The first one
we will call standard. In this scenario we assume that the monthly relative change
of unemployment will keep its historical mean and standard deviation and the

future evolution of unemployment will be described by (5.3) with the historical

mean 4, , =0.00193 and standard deviation o, , =0.04034. In this scenario the

r
evolution of unemployment is described by paths that are almost evenly distributed
around the current level of unemployment and have a slight upward trend (mean is

positive but small, see Appendix).

On the other hand, in the current credit crisis we expect that unemployment will
rise (and it has been rising for some time already). Although we are not trying to
forecast the most likely future unemployment we have to take into account that at
this moment it is much more likely that unemployment will increase substantially in
the near future. The Dutch Central Bank (De Nederlandsche Bank — DNB) has two
stress testing scenarios for the unemployment rate in the Netherlands. The first
one — DNB base scenario suggests that the unemployment rate will be around

5.5% at the end of 2009 and around 8.7% at the end of 2010. The second one —
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the DNB stress scenario suggests that unemployment rate will be around 5.7% at

the end of 2009 and around 9.7% at the end of 2010.

In order to simulate the evolution of unemployment that corresponds to these
scenarios we simply adjust the distribution of the relative change in unemployment

in the following way — we keep the monthly standard deviation the same, but we
increase the mean of the normally distributed random variable un_r, in (5.3). As a

consequence we get simulated paths with much higher upward trend, compared to
the standard scenario (see Appendix for actual results figures A10, A11 and A12).
These scenarios reflect better the current macroeconomic outlook and should
produce more realistic expectations of the future PD’s and expected losses for

residential mortgages.

An overview of unemployment and interest rate simulated scenarios is

presented in the Appendix (figures A7 to A12).

5.4 Loss Distribution of RMBS Collateral Pool

The collateral pool of a typical RMBS transaction usually consists of thousands
of mortgage contracts. In order to obtain the loss distribution for the whole
mortgage portfolio we just sum the expected absolute losses of all loans in the
pool and express the result as a percentage of the total outstanding balance of the
pool. Again, by simulating a large number of single mortgage losses we are able to

obtain the loss distribution of the whole collateral pool.
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Example: Storm 2007-1 B.V.

Storm 2007-1 B.V. is a EUR2bn true sale securitization transaction of mortgage
loans, originated in the Netherlands by Obvion N.V. The Collateral Pool this RMBS

transaction can be briefly characterized by the following:

Original Principal Balance: 2 047 484 181 €
Number of Borrowers: 10 499
Average Loan Per Borrower 194 309 €
Weighted Average Seasoning (months) 6
Weighted Average Original LTV 83.7%
Weighted Average DTI 29.7%

Table 5.3 Collateral Pool

Unfortunately we do not have detailed information on each single loan contract
and we will use the weighted averages in our PD model. This of course means that
in our simulation all mortgages will have the same probability of default, which is
not the case in reality. We hope that this lack of detailed information will not have

a crucial impact on analyzing the RMBS transaction.

To obtain the loss distribution of the Pool, we first generate 5000 random
realizations of unemployment and interest rates. We use those in our PD model to
obtain 5000 realizations of a single mortgage contract probability of default. In
each different simulation all contracts have the same PD. For each of those 5000
simulations, we simulate a random LGD value (as described in section 4.4) for
each of the 10 499 loans in the pool. The sum of the absolute losses of all loans
expressed as a percentage of the outstanding balance is then the expected loss of

the pool. In this example we will simulate one year period and calculate the loss
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distribution for 1 year. Let us first concentrate on the standard scenario for the

simulation of unemployment. Simulations for other scenarios are presented in the

Appendix. Figure

5.3 represents the expected

collateral pool of mortgages.
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Figure 5.3 Expected Loss Distribution (Standard unemployment Scenario) — results for other

scenarios are presented in the Appendix
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Loss Distribution and Defaults of RMBS Notes

Let us again focus on Storm 2007-1 B.V. The Notes structure of this RMBS

transaction is the following:

Class Rating Size (%) Size (EURmM) Credit Enhancements
A1 AAA 10.0 200 5.00%
A2 AAA 17.0 340 5.00%
A3 AAA 69.0 1380 5.00%
B AA 2.0 40 3.00%
C A+ 1.2 24 1.80%
D A- 0.8 16 1.00%
E BBB- 1.0 20 Excess Spread — 0.5%

Table 5.4 Notes Structure

The Credit Enhancement (CE) is linked to credit quality — it is a cushion that
protects investors (notes holders) against losses that arise from the underlying

pool.

In this RMBS transaction there are 3 types of credit enhancement. The first and
most common is — subordination. Subordination means that a given tranche (class
of notes) bears any losses only if the tranches junior to it have been fully
exhausted. In other words losses are propagated from Class E to Class A1 notes.
Subordination is one of the grounding principals of securitization. In this RMBS
transaction subordination protects all the notes except Class E notes. The second
type of credit enhancement is the Excess Spread (XS) — it protects the Class E

notes. The XS is the difference between interest payments derived from the pool
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of mortgages and the weighted average coupon paid on the notes. For this
transaction the XS is guaranteed by a swap agreement and is fixed on 50 basis
points per annum. The third credit enhancement is the reserve fund — this is a
layer of protection that has to be exhausted before note holders bear any losses.
At origination of the transaction the reserve fund is funded by the issuance of the
E notes, i.e. the SPV issues an extra trance of equity notes (also sometimes
called ‘turbo notes’ - in this case the E notes) to create a buffer of protection for

the tranches senior to the equity notes.

We can think of the credit enhancements as the thresholds that need to be
crossed so that certain class is affected by a loss arising from the collateral pool.
Since losses from the pool are transferred to the notes from the most junior (in
this case Class E notes) to the most senior (the A1 Class), a loss to a certain
class of notes only occurs if the actual loss is big enough to fully exhaust all the
tranches junior to it, i.e. if the loss crosses the credit enhancement threshold of

this tranche.

Figure 5.4 represents the loss distribution of the notes for the Storm 2007-1
B.V. RMBS transaction after a 5000 simulations (with the Standard scenario for
unemployment) for a 1 year period. Here again we use the current unemployment
of 4.8% and current 3month Euribor 1.5% as starting values of the scenario

simulations.
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Figure 5.4 Loss Distribution of the Notes (1 year simulation period)

We can see from figure 5.4 that in this case there is no actual loss for the note
holders. According to our model, all the losses arising from defaults of mortgages

in the collateral pool are absorbed by the available excess spread.

Let us now concentrate on a situation where unemployment will rise rapidly in

the near future — as predicted by the base and stress scenarios of the DNB.
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Figure 5.5 Expected Loss Distribution of the Collateral pool (DNB Base Scenario)
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Figure 5.6 Expected Loss Distribution of the Notes (DNB Base Scenario)

As we can see from figure 5.6, according to our model, even if unemployment
increases rapidly as predicted by the DNB base in scenario (to a level of 8.7% by
the end of 2010), there will be no losses to the Notes of this particular RMBS deal.
On the other hand in the DNB stress scenario there occur some losses to the E
Notes but again those losses are relatively rare - only in 10 out of 1000

simulations the loss is big enough to affect class E Notes (see fig 5.8).
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Figure 5.7 Expected Loss Distribution of the Collateral pool (DNB Stress Scenario)
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Figure 5.8 Expected Loss Distribution of the Notes (DNB Stress Scenario)

We have done all of the above simulations assuming that there will be no
significant decline in the residential property market in the Netherlands, which will
effect the proceeds from selling the collateral of defaulted loans. This so called
Market Value Decline (MVD) will lower the recoveries from the collateral and
increase the expected LGD and therefore will have an impact on the expected loss
of the mortgage pool and the loss of the RMBS Notes. Fortunately our model
allows us to take this possible market value decline into account in our

simulations, simply by adjusting the « and S parameters of the beta distribution

that we use for simulating recovery rates. For example we can simulate an
extreme case where the DNB stress scenario for unemployment was to come true
together with a MVD of 20% for a 1-year horizon. MVD of 20% simply means that
recovery rates will fall with 20% on average. The loss distribution of the Collateral
pool and the loss to the Notes for this extreme scenario are presented in figures

5.9 and 5.91, respectively.
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Figure 5.9 Expected Loss Distribution of the Collateral (DNB Stress Scenario with 20% MVD)
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Figure 5.91 Expected Loss Distribution of the Notes (DNB Stress Scenario with 20% MVD)

We can see here that in this extreme case there are significant number of
simulations (767 out of 5000 to be exact) in which the expected loss is big enough
to hit class E notes. There are even 5 cases in which the class D notes suffer

losses and 1 case in which the C notes are hit. So if this scenario is a very likely

scenario we could assign a probability of default 76%000215.34% for the E notes
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of this RMBS transaction, meaning that there is a 15.34% chance that E notes will

suffer losses.

We have to mention again here that the goal of this project is not to identify
the most likely development of future unemployment or interest rates or the future
movements of the residential property market in the Netherlands. What is
important for us here is that our model allows the user to input his own
expectations of these variables and to adjust the analysis according to his own
view of the macro economy. Our model presents a way to analyze the default risks
associated with RMBS transactions for any possible evolution of unemployment,

interest rates and residential property market.

Table 5 summarizes the results we have obtained after running a series of
simulations with different assumptions about the evolutions of the stochastic

factors in our model in 1-year horizon.
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Notes Probability of Default

MVD Standard DNB Base |DNB Stress
A1 Notes 0% 0.00% 0.00% 0.00%
10% 0.00% 0.00% 0.00%
20% 0.00% 0.00% 0.00%
30% 0.00% 0.00% 0.00%
A2 Notes 0% 0.00% 0.00% 0.00%
10% 0.00% 0.00% 0.00%
20% 0.00% 0.00% 0.00%
30% 0.00% 0.00% 0.00%
A3 Notes 0% 0.00% 0.00% 0.00%
10% 0.00% 0.00% 0.00%
20% 0.00% 0.00% 0.00%
30% 0.00% 0.00% 0.00%
B Notes 0% 0.00% 0.00% 0.00%
10% 0.00% 0.00% 0.00%
20% 0.00% 0.00% 0.00%
30% 0.00% 0.00% 0.00%
C Notes 0% 0.00% 0.00% 0.00%
10% 0.00% 0.00% 0.00%
20% 0.00% 0.00% 0.02%
30% 0.00% 0.00% 0.08%
D Notes 0% 0.00% 0.00% 0.00%
10% 0.00% 0.00% 0.00%
20% 0.00% 0.04% 0.10%
30% 0.00% 0.12% 0.64%
E Notes 0% 0.00% 0.06% 0.20%
10% 0.00% 1.12% 3.96%
20% 0.02% 6.42% 15.34%

30% 0.06% 16.86%

Table 5 - Probability of default for Note's tranches in different scenarios

Our model also allows us to simulate time horizons different than 1-year, which
is the standard in many credit risk management tools. Simulation results for time
horizons of 2 and 3 years are presented in the Appendix (figures A18 to A21). We
only present the simulation results for the DNB base scenario of unemployment
and 20 % market value decline because we believe this is the most likely one in
the current economic situation. Of course other scenarios can be easily
calculated. We note that losses for longer periods are bigger because the
probability of default of mortgage contracts for a longer time horizon is higher and

consequently the expected loss of the portfolio is higher.
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VI. Conclusion

In this paper we have presented an approach for modeling the distribution
functions of the Probability of Default, Loss Given Default and consequently the
Expected Loss for a mortgage contract or a portfolio of mortgage contracts. We
have considered the distribution of mortgage lifetime as well as the distribution of
time to default and the associated conditional intensity processes, given the set of
predictors for the default event. We have modeled the intensity (hazard rate) of
mortgage duration as a function of two macroeconomic covariates (unemployment
and interest rates) and one mortgage-specific variable (debt-to-income ratio). Our
hazard rate model turned out to be very suitable in translating the stochastic
behavior of the macroeconomic variables to the behavior of expected and
unexpected PD and the stochastic distribution of the Expected Loss for a portfolio
of mortgage loans. Our model is flexible with respect to the choice of default
predictors (as long as this choice is economically sound). The model is also very
well suited for performing stress testing on one or all of the factors that influence

the cash flows of RMBS tranches.

We have estimated the model using a non-parametric partial likelihood
approach based on the Cox Proportional Hazards model, which enabled us to

estimate the effects of default predictors to the default intensity process.

We have then run a series of simulations and determined the stochastic
distribution of the Expected Loss of a collateral pool of mortgages and translated
these expected losses to the Notes of the a typical RMBS transaction. This
approach makes it possible to analyze the loss distribution of different RMBS

tranches and gives insights of the default risks associated with RMBS
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transactions. The model can be used for the analysis of the default risk of any
Dutch RMBS. Although the model was designed to analyze RMBS transactions
originated in the Netherlands, it can be easily adopted for other countries,
provided that enough data on the history of residential mortgage defaults is

available.

Further research has to be done in the direction of better handling missing
covariate values. This could improve the estimation of the coefficients for the PD
model and consequently - the sensitivity and significance of certain default
predictors. Another possible improvement could be taking into account a hazard
rate model that allows for time-dependent covariates, which would also solve the

problem with missing covariate observations.

Other possible improvements to the model can include modeling the LGD in
dependence of LTV. We know that the loan-to-value ratio has an impact on the
recovery rates and can be used to better describe residential mortgage LGD. This
can be done for example, by estimating a different beta distribution for predefined
LTV buckets — but for reliable estimates a larger (than the one we had) database
of LGD’s is required. The dependence structure of LGD and PD on one hand, and
unemployment and interest rates on the other, should also be investigated. Based
on the data we use we have found no significant correlation between PD and LGD
but this could be due to the fact that the time period that we base our estimates on
(2002-2008) is a relatively stable period with no extreme economic shocks. A
database that spans over a larger period of time and includes data from economic

downturns, could improve the accuracy of our model.
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Appendix

Coefficient LTV DTI Unempl. Euribor 3m
Beta -7.4E-08 | 2.80631 | 53.477971 | 71.41378169
p-value 0.989268 | 3.01E-49 | 3.06E-86 | 6.1286E-179
st. erorr 5.51E-06 | 0.19024 | 2.7170636 | 2.503752991
z-statistics | -0.01345 | 14.75144 | 19.682267 | 28.52269451

Table A1 — Cox model coefficients statistics (with LTV)

Beta Covariance matrix
3.04E-11 4.04E-10 6.53E-08 6.75915E-08
4.04E-10 0.036191 -0.040678 0.091384154
6.53E-08 -0.04068 7.3824345 2.378678034
6.76E-08 0.091384 2.378678 6.26877904

Table A2 — Covariance matrix of coefficient estimates (with LTV)

EBetal | EetaZ | Eeta3
Beta 2 8063 534781 714132
p-value 30137e-43 30377886 605608179
st error 0.1902 27170 28037
z-staistic 147514 19 5826 285231

Table A3 — Cox Model Regression statistics (without LTV)

1 E E
1 00362 -0.0407 0.0914
2 -0.0407 7 3823 2.3785
3 00314 23785 52686

Table A4 — Covariance matrix of coefficient estimates (without LTV)

*Note that the coefficient estimate of LTV is practically 0 and its p-value is almost 1 (significantly
different of 0) and also the parameter estimates for the other covariates are the same with or

without LTV — i.e. LTV has no significant impact in modeling the hazard rate of default.
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Figure A5 - Survival Function of mortgage contract l: XDTI,I 230%, XUN,I =4.8%,
X p, =1.5%.
Specific curnulative distribution function
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Figure A6 - Cumulative Distribution Function of mortgage contract I XDTI,I =300/0,

Xin, =4.8%, X, =15%.
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Figure A7 — Euribor 3month simulations — 1000 paths for 12 month period

CIR Process:

dr, = a(b—r,)dt + o/r,dW,

with parameters (estimated on monthly data from the last 9 years):

a =0.014849660801059 (mean reversion parameter)
b =0.033987279169537 (long term mean)

o =0.010397560084086 (volatility)
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Figure A8 — Evolution of the quarterly unemployment rate in the Netherlands for the last 9

years.
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Figure A9 — Relative change in unemployment — Distribution and Normal fit.

Relative change in unemployment — historical statistics:
Median

Std. Dev.

56

Mean
0.00193

0.040335285

Normal fit — estimated parameters:

Std. Dev.

Mean

0.00192985

0.0403353
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Figure A10 - Unemployment simulations — 1000 paths for 12 month period

Unemployment paths (Standard Scenario):

un,, =un,*(@+un_r,)

where un_r -~ N(,uun_r,O'un_r) is a random relative change following a normal-
distribution with the following parameters (estimated on data for the last 9 years):

tyy  =0.00192985 (mean)

Oy =0.0403333 (standard deviation)
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Figure

All - Unemployment simulations — 1000 paths for 12 month period

Unemployment paths (DNB Base Scenario):

un., =un,*(@+un_r,)

where un_r~N(x, ,,0,, ) is a random relative change following a normal-

distribution with the following parameters (estimated on data for the last 9 years):

tyy » =0.0335 (mean)

O  =0.0403353 (standard deviation)
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Figure A12 - Unemployment simulations — 1000 paths for 12 month period

Unemployment paths (DNB Stress Scenario):

un,, =un,*(@+un_r,)

where un_r -~ N(yun_r,aun_r) is a random relative change following a normal-
distribution with the following parameters (estimated on data for the last 9 years):

tyy » =0.0405 (mean)

O  =0.0403353 (standard deviation)
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Figure A13 — Expected PD Distribution of mortgage contract l: XDTII =30%

1000 simulations with initial Xy, =4.81% and initial Xz, =1.5%
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Figure Al14 — Expected LGD Distribution of mortgage contract l: XDTLI =30%

1000 simulations with initial XUN| =4.81% and initial XIRI =1.5%
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Figure A15 — Expected Loss Distribution of mortgage contract I XDT” =30%

1000 simulations with initial Xy, =4.81% and initial Xz, =1.5%

Note that even though PD is not that low the Expected Losses are very small

because only = 50% of the defaults result in actual loss
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Collateral

Pool characteristics

Original principal balance (EUR)
Current principal balance (EUR)
Average current loan per borrower (EUR)

Number of borrowers
Seasoning (months)

Loan to Value (LTMV) (%)
WA OLTMY (%)

WA CLTMV (%)

WA Indexed CLTMVY (%)
Mortgage characteristics (%)
Interest only

Savings

Insurance

Repayment

Investment

Fleating rate loans

Fixed rate loans

WA Interest rate (%)
Interest index (Euribor)

Source: Transaction documents

2,047 484,181
2,040,050,722
194,309

10,499
6

837
835
82.6

69.7
6.3
16
0.1
7.0
54
94.6
437
3m

Regional concentration (%)
Zuid-Holland

Noord-Brabant
Noord-Holland

Lien position
First and subsequent ranking (%)

Jumbo (%)
Payments

Payment frequency
Payment method
Performing loans (%)
WA DTI (%)

15.6
224
124

100
10

Manthly
Direct Debit
100

297

Figure A16 - STORM 2007-1 B.V. Collateral pool characteristics.

Capital Structure

Class Rating Size (%) Size (EURm) CE (%)
Al AAA 10.0 200 5.00
A2 AAA 17.0 340 5.00
A3 AAA 69.0 1,380 5.00
B AA 2.0 AQ 3.00
c A+ 1.2 24 1.80
D A 0.8 16 1.00
E BEBB- 1.0 20

Figure A17 - STORM 2007-1 B.V. Notes Structure

A3
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Figure A18 - Expected Loss Distribution of Collateral pool (DNB Base Scenario with MVD

20%) — 2 year simulation period - 5000 simulations

400 — T
|:| Loss Distribution

Treshold E Motes

300 - Treshold D Motes
Treshold C Motes
Treshold B hMotes

200 - Treshold AAA Motes

100 - 2g

0 \““"———.I_ ] |
w3 E D C B ALA

Figure A19 - Expected Loss Distribution of the Notes (DNB Base Scenario with MVD 20%) —

2 year simulation period - 5000 simulations
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Figure A20 - Expected Loss Distribution of Collateral pool (DNB Base Scenario with MVD
20%) — 3 year simulation period - 5000 simulations
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Figure A21 - Expected Loss Distribution of the Notes (DNB Base Scenario with MVD 20%) —

3 year simulation period - 5000 simulations
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