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Modeling Defaults in Residential Mortgage 

Backed Securities: An Intensity Based Approach 

 

Abstract  

In May 2008 the outstanding issuance of  European Asset Backed Secur i t ies 

was more than €1150 bi l l ion and Residentia l  Mortgage Backed Securi t ies (RMBS) 

accounted for  77% of th is  amount.  Natural ly,  g iven these f igures, managing defaul t  

r isk of  the col lateral  pool  becomes of  crucia l  importance to f inancial  inst i tut ions 

and investors.  In th is paper we present an intensi ty based approach for  model ing 

resident ia l  mortgage defaul ts .  More speci f ical ly,  we wi l l  f i t  a Cox proport ional  

hazard rate model to descr ibe the probabi l i ty  of  defaul t  (PD) for  residentia l  

mortgages and the uncertainty around the expected PD. Once we are able to 

model  mortgage defaul ts we wi l l  turn our attent ion to model ing the distr ibut ion of 

loss given defaul t  (LGD) and determine the ef fects of  defaul ts  to the RMBS 

tranches. We hope that  the resul ts of  th is research wi l l  improve NIBC’s exist ing 

methods for  managing the credi t  r isk or iginat ing f rom the col lateral  pool  of 

European RMBS transact ions. 
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I. Introduction  
 

1.1 An  overview  of  Residential  Mortgage  Backed  Securities  

Resident ia l  Mortgage Backed Securi t ies (RMBS) are f inancia l  secur i t ies backed 

by a pool of  resident ia l  mortgages. The process of  creat ing RMBS (as wel l  as al l  

other types of  s tructured credi ts)  is  cal led secur i t izat ion. In th is  sect ion we 

present a short  descr ipt ion of  the RMBS transact ions and the r isks associated wi th 

them.  

Resident ia l  Mortgage Backed Secur i t ies are structured credi ts that can be 

character ized by the fo l lowing: the or ig inator  (usual ly a bank) has a pool  of  

resident ia l  mortgages on i ts  balance sheet.  The or ig inator  sel ls  those to a so 

cal led Special  Purpose Vehicle  (SPV),  a company created solely for  the purpose of  

secur i t izat ion. The SPV raises funds to purchase these mortgages by issuing 

notes to investors.  In th is  way the investors only bear the r isk ar is ing f rom the 

pool  of  mortgages (col lateral  pool)  and are general ly independent f rom the credit  

r isk of  the respect ive ( former)  owner of  those assets (e.g.  or ig inat ing bank).  

The assets ( in this  case residentia l  mortgages) of  the col lateral  pool generate 

interest  and pr incipal  payments. These payments as wel l  as potent ial  losses, that 

may occur in case the under lying borrowers do not serve their  obl igat ions, are 

distr ibuted to the investors according to the structure of  the secur i t izat ion.  In this 

way the credi t  r isk of the col lateral  pool is  t ransferred to the investors.  The notes 

are div ided into several  c lasses with di f ferent senior i ty,  varying from AAA to 

Equity.  In general  the notes with the lowest rat ing are the f i rs t  to absorb losses in 



 

 

 

 

6

the under ly ing pool of  assets.  Natural ly,  the notes with lowest rat ing have the 

highest r isk and accordingly generate the highest return. Respect ively,  the most 

senior  notes are the least r isky ones and produce the lowest return.  The set of 

rules,  which distr ibutes cash f lows (and losses) from the col lateral  to the notes,  is  

cal led the waterfal l  of  the structured credi t .  Each RMBS deal has i ts  speci f ic 

waterfa l l .  Therefore, investors in RMBS have to focus on both the under ly ing r isk 

of  the securi t ized port fo l io (col lateral  pool)  and the rules that determine which 

consequences investors have to face in case certa in events occur.  The fact  that 

d i f ferent notes have di f ferent r isk prof i les,  though they al l  reference the same 

under ly ing port fo l io,  is  based on the respect ive special  transact ion structure.  This 

enables investors to sat is fy their  individual r isk appet i tes and needs. Figure 1.1 

depicts the general  s tructure of  a typical  RMBS transact ion. 

 

Figure  1 .1  RMBS Genera l  S t ructure 
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Because the water fa l l  of each RMBS deal is  unique and has been determined 

at  or ig inat ion,  the ef fect  of  a given (expected) loss from the pool  to the notes is  

speci f ic  for each RMBS but determinist ic .  NIBC’s Trading Department has i ts  own 

model  to determine th is  ef fect determinist ical ly .  On the other hand, from a r isk 

management point  of v iew i t  is  important to have a model  that stochast ical ly  

descr ibes the uncertainty of  the losses or ig inat ing f rom the pool  i .e.  the 

uncertainty around the expected PD. In th is  paper we wi l l  present a stochast ic 

approach for model ing the credi t  r isks associated wi th the col lateral  pool  of 

resident ia l  mortgages.  

 

1.2 Mortgage  Termination  –  Default  or  Prepayment  

A great deal  of  research exists today on model ing mortgage terminat ion. A 

general  consensus exists in the l i terature – a mortgage is  terminated i f  i t  is e i ther 

prepaid or the borrower has defaul ted from his payment obl igat ions (Deng [3] and 

Deng, Quigley & Van Order [4]) .   

The goal of  th is  paper,  however,  is  to model  the uncertainty around the 

expected loss associated with RMBS securi t ies.  In structured credi ts the proceeds 

from prepaid (and also paid on their  legal matur i ty)  mortgages are used by the 

SPV to ei ther replenish the mortgage pool  (purchase new mortgages),  or  to repay 

some of the outstanding notes.  In the f i rs t  case there is  pract ical ly no effect  of 

prepaid mortgages to the cash f lows of  the notes. In the second case this  ef fect  is  

determined by the speci f ic  RMBS contract  -  repayment of  notes could be for  

example proport ional to the notes tranches ( in th is case again there is pract ical ly  
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no impact to the credit  enhancements of  the notes)  or i t  could only af fect the most 

senior  notes.  To summarize -  in RMBS transact ions,  prepayments ei ther have no 

impact on the cash f lows to the notes or  th is  impact is  determinist ic  (determined 

by the waterfa l l ) .  Therefore in the scope of th is paper,  the credi t  r isk associated 

with mortgage port fo l ios is  essent ia l ly  the r isk that  borrowers wi l l  default  and fai l  

to meet interest  rate payments on the outstanding balance plus the r isk that g iven 

default ,  the col lateral  value of  the defaul ted mortgage is less than the outstanding 

balance plus unpaid interest.   

 

1.3 Structural  vs.  Intensity  Based  Approach  

The credi t  r isk model ing l i terature has been essent ia l ly developed in two ways – 

the structural  approach and the reduced-form approach. The structural  approach is  

a lso sometimes cal led opt ion-based approach. The ancestor of  a l l  structural  

models is  the Merton Model [5] .  The main idea is  to use the evolut ion of f i rms’ 

(borrowers’)  s tructural  var iables, such as asset (house) and debt values, to 

determine the t ime to defaul t  or to prepay. Default  is v iewed as a put opt ion; the 

borrower sel ls his  house back to the lender in exchange for e l iminat ing the 

mortgage obl igat ion. Whereas, prepayment is  v iewed as a cal l  opt ion; the borrower 

exchanges the unpaid balance on the debt instrument for  a release from fur ther 

obl igat ion.  In the structural  approach i t  is  assumed that  there are no t ransact ional 

or reputat ion costs for defaul t  or  prepayment and that,  borrowers are wel l -

informed and make the rat ional  choice to exercise ei ther  the cal l  or  the put opt ion 

when they can increase their  wealth.  These assumptions may look appropr iate 

when deal ing wi th commercial  borrowers but are not real is t ic  when consider ing 
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resident ia l  mortgages. The behavior  of  pr ivate individuals,  whose purpose is  to 

f inance their  property wi th the loan, is  not a lways rat ional in the sense of  the 

economic theory.  

Another shortcoming of  s tructural  models ar ises when consider ing the legal 

aspects of mortgage contracts.  The major i ty  of  structural  models were developed 

in at tempt to descr ibe the credi t  r isk of the mortgage market in the Uni ted States. 

Whi le in the US, borrower ’s obl igat ions to the or ig inator of  the loan are terminated 

in the case of  default  ( the bank only has r ights on the property,  no matter  i f  i ts  

actual  market value is  less than the value of  the mortgage contract) ,  th is  is not the 

case in Europe. In most European resident ia l  mortgage contracts, i f  a borrower 

defaul ts he loses his property and i f  the market  value of  the property does not 

cover the present value of  the outstanding interest  payments the borrower is  also 

obl iged to cover this  di f ference. In this  case, the approach of  model ing default  

behavior  as a put opt ion on the house value is  qui te unreal is t ic .  

An extensive l i terature exists employing the structural  approach in the valuat ion 

of  mortgages (see, for  instance,  Titman & Torous  [6] ,  Kau et a l  [7]  or  Kau and 

Keenan [8]) .  Whi le the opt ion based v iewpoint  has y ie lded considerable insights 

into the workings of ideal ized mortgages, i t  has proven di f f icul t  to employ such 

models for  the purpose of  empir ical  est imation. 

The reduced-form models are also cal led in tensi ty  or  hazard rate  models. 

Compared to structural  reasoning, the reduced-form point of  v iew is  a good deal 

less economical :  defaul t  or  prepayment is no longer internal ly determined, but 

rather,  external ly  imposed on the model  according to some random process.  In 

intensi ty based models,  the defaul t  t ime is  modeled as a f i rst  jump t ime of  an 
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exogenously g iven jump process. In the l i terature several  explanatory var iables for  

a defaul t  of  a mortgage contract  have been ident i f ied.  Smith,  Sanchez and 

Lawrence [9]  and Deng [3]  select mortgage speci f ic  and economic character is t ics 

for  predict ing defaul ts and for  calculat ing the probabi l i ty  of  incurr ing a loss on a 

defaul ted loan.  Santos Si lva and Murteira [10]  use borrower ’s  character is t ics,  such 

as the Debt-To-Income rat io (DTI) ,  which is  usual ly only observable by the issue 

of  the mortgage. In their  model ,  Fol l ian,  Huang, and Ondr ich [11] inc lude durat ion, 

locat ion,  demographic and economic var iables as covariates to explain default .   

Combinat ions of  the structural  and reduced form models a lso exist .  To model 

t ime to defaul t ,  Deng [3]  and Deng and Quigley [12] propose combining the 

f inancial  value of the put opt ion in the structural  approach, with non-opt ion related 

var iables,  such as unemployment or  divorce rates. 

In th is  paper we consider res idential  mortgage defaul t  as an event which is  

t r iggered by mortgage speci f ic ,  macro-economic and by some personal  “non-

f inancial"  reasons, more than by a rat ional economic decis ion (see also Deng and 

Quigley [12] and De Giorgi  [13]) .  One common (macro-economic)  cause for  defaul t  

is  unemployment;  another is  d ivorce. In the case of  unemployment the income of 

the borrower can dramat ical ly decrease and the consequence wi l l  be the inabi l i ty  

to pay the interest on the outstanding balance. Therefore,  consider ing an RMBS 

col lateral  pool ,  we t ry to model  the distr ibut ion of  the expected number of  defaul ts 

according to the economic environment,  i .e. to economic factors such as 

unemployment and interest  rates,  or  to socia l  and demographic developments,  

such as the increase of  the number of  d ivorces.   
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We propose an intensi ty based approach for  model ing the t ime to defaul t ,  

which we take to be the f i rst- jump-t ime of  an inhomogeneous Poisson process wi th 

stochast ic  intensi ty,  also cal led a doubly stochast ic  Poisson or  Cox Process. The 

main idea consists in condi t ioning on a set  of  explain ing var iables (e.g.  loan-to-

value (LTV) rat io or  DTI) ,  which af fect borrowers '  credi t  qual i ty  and behavior,  and 

to consider borrower defaults  as independent given the set  of  information about 

the common economic environment.  The intensi ty process is  d irect ly re lated to the 

underly ing explanatory var iables, as in the proport ional  hazard rate model (PHR) 

of  Cox and Oakes [14] .  The specif ic  character is t ic  of the model are presented in 

the next  chapters. 

1.4 Loss  Given  Default  Models  

As already ment ioned above – a mortgage contract  wi l l  cause losses i f  g iven 

default ,  the col lateral  value of  the defaul ted mortgage is less than the outstanding 

balance plus unpaid interest.  We therefore also need a way to model the  loss 

given  defaul t  (LGD) of the residential  mortgages in the col lateral  pool .  

In the exist ing credi t  r isk l i terature, in i t ia l  approaches for  LGD est imat ion were 

determinist ic  in nature.  Nevertheless,  nowadays i t  has become widely accepted to 

treat LGD as a loss sever i ty dis tr ibut ion rather than to regard each est imate as 

determinist ic ,  s ince a number of  factors play a ro le in the ul t imate recovery, and to 

est imate these determinist ical ly is  a di f f icul t  task. 

There are two main approaches for  model ing loss sever i ty.  The f i rs t  one is 

determinist ic – i t  s imply assumes that a l l  recover ies are f ixed values that are 

known in advance. The argument for  th is  s impl i f icat ion is  the facts that  the 
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uncertainty of  the recovery rates does not contr ibute s igni f icant ly to the r isk of  

losses,  when compared wi th the defaul t  rate volat i l i ty .  In other words,  the defaul t  

rate est imate dominates the LGD est imate, when est imat ing the expected loss of 

an exposure. 

The second method models the recovery rates as a random var iable between 

0% and 100%. The LGD of  a mortgage is  then given as 1 minus the recovery rate. 

Most of ten in the l i terature,  a U-shaped beta  d istr ibut ion is  used to model  the 

recovery values. This d istr ibut ion is  very useful  because i t  can be bound between 

two points and can assume a wide range of  shapes. Many popular commercial ly  

avai lable port fo l io management appl icat ions use a beta dis tr ibut ion to model the 

recovery value in the event of defaul t .  In th is  paper we adopt th is  methodology to 

model the LGD of RMBS’s col lateral  pool  of  mortgages. The exact est imat ion 

procedure and the cal ibrat ing of the beta distr ibut ion are presented in the next  

chapter .   

The rest  of  the paper is  organized as fo l lows: sect ion I I  g ives a short 

mathemat ical  background of  random t imes, hazard rates and jump processes; in  

sect ion I II  the model for  probabi l i ty of  defaul t  is  introduced; sect ion IV  descr ibes 

the est imat ion methodology,  the avai labi l i ty  of  data and the loss-given-defaul t  

model ;  in sect ion V  we present the resul ts  of  our  s imulat ions and sect ion VI  

concludes the study. Technical  resul ts  are reported in the Appendix.  
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II. Mathematical  tools  

Let us f i rst  star t  by presenting some mathematical  tools for  the analysis of  

reduced-form models.  In part icular we wi l l  focus on random t imes and hazard 

rates.  We start  wi th random t imes wi th determinist ic  hazard rates and af ter  that  we 

consider s i tuat ions where the only observable quant i ty is  the defaul t  t ime i tsel f .  

This forms the basis for  an analys is of  a more real is t ic  s i tuat ion where addit ional 

informat ion, generated for  instance by economic explanatory var iables, is  

avai lable, so the hazard rate wi l l  typical ly be stochast ic.  We give a descr ipt ion of  

the doubly stochast ic  random t imes. Doubly stochast ic  random t imes are the 

s implest  example of random t imes wi th stochast ic hazard rates and are thus 

f requent ly used in dynamic credi t  r isk models.  We assume that the reader is 

famil iar  wi th the basic not ions from the theory of  s tochast ic  processes, such as 

f i l t rat ion,  stopping t imes or  basic mart ingale theory. 

2.1 Random  Times  and  Hazard  Rates  

Let us consider a probabi l i ty space ( )PF,,Ω  and a random t ime  τ  def ined on 

th is  space i .e.  ),0(: ∞→Ωτ  is  a posi t ive,  -measurable random variable that is 

interpreted as the t ime to default  of a mortgagor. We denote by 

F

)()( tPtF ≤= τ  the 

cumulat ive dis tr ibut ion funct ion of  τ  and by )()(1)( PtFtF =−= t>τ  the survival  

funct ion of τ .  We assume that 0)0(( )0 === τPF  and that  0) >(tF  for  a l l  ∞<t .  

We can now define the jump or  defaul t  indicator  process  associated wi th )( tY τ  by 
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{ }tt IY ≤= τ

0

 for  .  Note that  is  a r ight  cont inuous process which jumps from 

 to 1 at  the defaul t  t ime 

0≥t )( tY

τ  and that { tt IY > }=− τ1 .  

A f i l t rat ion   on (  is  an increasing fami ly )( tF )F,Ω { }0: ≥ttF  of sub-σ -a lgebras 

of  :   for  F FF ⊂sF ⊂t ∞<≤≤

t

st0

F

.  For  a generic  f i l t rat ion (  we set 

.  In pract ice f i l t rat ions are typical ly  used to model the f low of 

informat ion.  The f i l t rat ion  represents the state of  knowledge of  an observer at 

t ime  and  means that  at  t ime t  the observer is  able to determine i f  an 

event 

)tF

)t

tA F∈

(U∞ =F σ

t

0≥t
F

A  occurred.  

In the fol lowing we assume that the only observable quant i ty is  the random 

t ime τ  and equivalent ly the associated jump process .  Let  be given by  )( tY )( tH

{ }( )tuYut ≤= :σH                                          (2.1) 

)( tH  is the f i l t rat ion generated by defaul t  indicator  process i .e.  the  h is tory of  the 

defaul t  informat ion up to and including t ime .  By def in i t ion,  t τ  is  an -stopping 

t ime as { }

)( tH

{ tY= }t ∈=≤ 1 tHτ  for  a l l  t .  0≥

Definition  2.1  (hazard  rates  and  cumulative  hazard   function)  

The funct ion ))(ln(: tF−=)(tΓ  is  cal led the cumulat ive hazard funct ion of  the 

random t ime τ .  I f   is  absolutely cont inuous wi th density ,  the funct ion F f

)(/)())(1/()(:)( tFttft =−=γ tfF  is  cal led the hazard rate of  τ .  
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By def ini t ion we have  and )(1)( tetF Γ−−= )()(/)()( ttFtft γ==Γ′ ,  so 

.  When we consider a very smal l  interval of  t ime, the hazard rate ∫=Γ
t

dsst
0

)()( γ

)(tγ  can be interpreted as the instantaneous chance of defaul t  at  t ime t ,  g iven 

survival  up to t ime t .  For  we have: 0>h

)(1
)()()|(

tF
tFhtFthtP

−
−+

=>+≤ ττ                               (2.2) 

and therefore 

)()()(lim
)(

1)|(1lim
00

t
h

tFhtF
tF

thtP
h hh

γττ =
−+

=>+≤
→→

                (2.3) 

The hazard rate )(tγ  can be interpreted as the expected number of  fa i lures 

(defaul ts)  in a uni t  of  t ime. Since integrat ion is  pract ical ly summation – the 

cumulat ive hazard funct ion  can be understood as the expected 

number of  fa i lures in the per iod of t ime between 0 to t .  

∫=Γ
t

dsst
0

)()( γ

There are several  advantages in learning to th ink in terms of hazard rates, 

rather than the tradi t ional densi ty funct ions and cumulat ive distr ibut ion funct ions. 

Hazard funct ions give a more intu i t ive way to interpret and understand the process 

that generates fa i lures. This is why in survival  analys is  regression models are 

more easi ly  grasped by explain ing how di f ferent  var iables (covar iates) af fect  the 

hazard rate. 
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III. Model  for  Probability  of  Default  

As already stated, in th is  paper we wi l l  t ry to descr ibe the probabi l i ty  of  defaul t  

of  residentia l  mortgages v ia an intensi ty based model .  Moreover,  our goal  is  to 

quant i fy the dependence and sensi t iv i ty  of  the PD on some explanatory factors. 

These factors can be mortgage speci f ic (LTV and/or  DTI rat ios)  or  external  

(unemployment and/or interest  rates).  Most of  the intensity-based models,  

including ours,  maintain a doubly stochast ic  character,  which means that  not  only 

i t  is  uncertain whether an obl igor wi l l  defaul t  at a part icular  t ime, but  that  the 

intensi ty (hazard rate)  by which this  event occurs is  a lso uncerta in beforehand. 

Therefore we try to model the default  t ime of  a res ident ia l  mortgage as a random 

t ime with a stochast ic hazard rate.  This leads to the use of  the so-cal led doubly 

stochast ic  Poisson Process  to model the probabi l i ty of defaul t .   

3.1 Duration  and  Time  to  Default  

Consider the fo l lowing sett ing. Let { }niVBsP iii ,...,1),,,( ==  be a port fo l io of n  

resident ia l  mortgages. For mortgage i ,   denotes the t ime of issue (calendar 

t ime), 

is

( )
isttii BB

≥
= ,  is  a process giv ing the outstanding balance at  t ime t  and 

( )
istti ≥,i VV =  is  a stochast ic  process giving the house value at t ime t .  We suppose 

that  the mortgage portfo l io is  total ly  character ized by P .  
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Figure  3 .1  Dura t ion  and  t ime  to  de fau l t .  

Now let   be a posi t ive random variable giv ing the durat ion or  

l i fet ime of  a mortgage contract  i  and let 

),0(: ∞→ΩiD

),0(: ∞→Ωiτ  be also a posi t ive random 

var iable giv ing the t ime to defaul t  of  a mortgage  i .e.i iτ  is  the per iod of  t ime from 

now ( )  t i l l  the obl igor i  defaul ts.  We assume that  for  al l  mortgage contracts in 0t P  

we have P .  Moreover,  ,  0)0 ==iD( 0) >d 0>( >DiP ∀d  and also 0)0( ==iτP  and 

0>)> t( iτP ,  .  We have 0>∀t ∞=iD  (or  equivalent ly  ∞=iτ )  i f  mortgage i  does 

not  defaul t .  Also let  denote the defaul t  t ime (calendar t ime) of  obl igor i  and id iθ  

be the per iod of  t ime that  the mortgage has been outstanding (per iod of  t ime from 

issue t i l l  now – current l i fet ime of  the mortgage).  See f igure 3.1.   

Since  is  known in advance for  any given t ime ,  we can calculate is 0t iθ  and 

s ince iθ  is  known and determinist ic ,  the distr ibut ion (hazard rate)  of  t ime to 

defaul t  iτ  is  completely determined by the distr ibut ion (hazard rate)  of  the 

durat ion .  Mathemat ical ly we have:  iD

)|()( iiiii DtDPtP θθτ >+≤=≤                                 (3.1) 
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In other words – the probabi l i ty  that  mortgage i  wi l l  defaul t  in a cer ta in interval 

of  t ime t  is equal to the probabi l i ty that the l i fet ime of the mortgage i  is  less than 

or  equal to the current l i fet ime of the mortgage plus t ,  g iven that  the mortgage is 

st i l l  outstanding at  t ime  (has survived t i l l  ) .  Moreover we have:  0t 0t

)(
)()(

)|()(
ii

iiii
iiiii DP

DPtDP
DtDPtP

θ
θθ

θθτ
>

≤−+≤
=>+≤=≤              (3.2) 

and i f  we know the hazard rate or  the cumulat ive hazard funct ion for the 

distr ibut ion of   then al l  the values on the r ight  hand-side of  (3.2)  are known. iD

We wi l l  now use Cox Proport ional  Hazard Rate Model to model the hazard rate 

of  mortgage durat ion. 

3.2 The  Cox  Proportional  Hazards  Model  

In this  chapter  we present a way to model (and later est imate)  the hazard rate 

of  mortgage durat ion. We borrow a model typical ly used in medical  sc ience in the 

f ie ld of  survival  analys is.  The Cox Model  is  a wel l- recognized stat is t ical  technique 

for  explor ing the relat ionship between the survival  of  a pat ient  and several 

explanatory var iables (a lso cal led covar iates) .   

In our case we assume that mortgage defaul ts are tr iggered by some mortgage 

speci f ic  and/or  by some external  (environment speci f ic)  factors.  We suppose that 

we can f ind a set  of  predictors for  the defaul t  event of  obl igor  .  Mathematical ly 

we have a mult i -d imensional s tochast ic  process 

i

),...,( 1 pi XX=X ,  such that each 
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component  represents an explain ing factor for  the event of  default  

of  obl igor  i ,  as for  example the regional  unemployment rate.   

),...,1(, pqX qi =

)| iXLet (tλ  be the hazard rate of  mortgage durat ion,  g iven a part icular  

real izat ion of  the defaul t  factors ),...,( 1 pi XX=X .  Note that )|( it Xλ  s imply states 

that )(tλ  is  a funct ion of  .  Cox Proport ional Hazard Model assumes 

that  the relat ionship between 

),...,1 pX

)| iX

(i X=

(t

X

λ  and the explanatory factors  is  g iven by: iX

)exp(*)()|( ii tht XX βλ ′=                                         (3.3) 

where  is the basel ine hazard (ef fect of  (e lapsed) t ime  on mortgage 

durat ion) and

)t(h t

β  is  a vector  of  coeff ic ients giv ing the sensi t iv i ty  of  the hazard rate 

to changes in the explanatory var iables.  Note that the basel ine hazard  

corresponds to the instantaneous probabi l i ty of  default ,  g iven survival  (no default)  

up to t ime  when al l  the covariates are zero. The model a lso states that the 

basel ine funct ion is  the same for al l  mortgages in considerat ion i .e.  the defaul t  

rates of  mortgage i  and mortgage 

)(th

t

j  d i f fer  only in the real izat ions of the 

covar iates  and .  This fact p lays a crucia l  ro le in the est imat ion procedure, 

as we wi l l  see later .  From (3.3)  and the def in i t ion of  the hazard rate,  i t  fo l lows that 

the cumulat ive hazard funct ion of mortgage durat ion is  equal  to: 

iX jX

exp(*)()
0

sh
t

iX = ∫ )()exp()()exp()(
0

tHdsshdst i

t

ii XXX βββ ′=′=′Λ ∫|         (3.4) 
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where  is  the basel ine cumulat ive hazard funct ion. dsshtH
t

∫=
0

)()(

The model explains the fol lowing behavior of the defaul t  intensi ty process: 

suppose that at  the beginning of the mortgage agreement an expected intensi ty 

(defaul t  rate)  0λ  can be associated to obl igor .  I f  the obl igor ’s behavior  is  not 

af fected by any predictors ,  then we expect  no contr ibut ion of 

 to the intensi ty process, meaning that 

i

pXX ,...,1

)p,...,( 1i XX=X 0=iβ ,  for  a l l  .  

Moreover,  i f  the elapsed t ime does not contr ibute to the defaul t  intensi ty,  then 

pi ,...,1=

0)()( λλ ≡= tht  is  constant,  which would imply a homogenous Poisson process.  

However,  in pract ice we observe that obl igor ’s behavior  changes dur ing the l i fe 

of  the mortgage, meaning that the probabi l i ty  of  incurr ing a defaul t  increases or 

decreases. Some factors  af fect  the abi l i ty  of  obl igor  to pay the interest 

rate on a mortgage, changing stochast ical ly the defaul t  intensi ty.  Equation (3.2) 

suggests that predictors  and t ime  af fect the real izat ions of  

pXX ,...,1

pXX ,...,1

i

t )(tλ  in a 

mult ip l icat ive way. 

Another th ing worth ment ioning is  defaul t  correlat ion, which is  certa in ly lower 

for  res ident ia l  mortgages compared to commercia l  mortgages. Dependence 

between residential  mortgage defaul ts can be explained, to a large extend, only by 

the macroeconomic environment (e.g.  unemployment rate and/or interest  rate).  

This al lows us to assume condit ional  independence of  resident ia l  defaul ts .  We 

assume that obl igors who default  up to t ime t  are condit ional ly independent,  g iven 

the history of  the predictors up to t ime t .  This assumption seems reasonable for 
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the k ind of  port fo l io we are consider ing in th is  paper – a port fo l io of  pr ivate 

individuals ( for  company defaul ts  and commercia l  mortgages th is  assumption 

would not  be real is t ic) .  In fact  th is  condi t ional  independence impl ies that,  g iven a 

scenar io through the predictors,  obl igor defaul ts occur independent ly,  meaning 

that  the dependence structure is  ful ly  descr ibed by the evolut ion of  the common 

(macroeconomic)  covariates.  

IV. Available  Data  and  Model  Estimation  

4.1 Residential  Mortgage  Historical  Data  

NIBC Bank N.V. has maintained a signi f icant database of  Dutch resident ia l  

mortgages. The database contains approximately 92 thousand records and was 

recorded between 01/01/2002 and 6/1/2008 so al l  s t i l l  exis t ing contracts have 

“end_date” -  6 /1/2008. See table 4.1 for  a sample of  the database. 

Original LTV Original DTI Loan start date Loan end date 
Right censored 

data 
(0=defaulted) 

0.390438728 0.218330602 7/1/2000 6/1/2008 1 

1.154709643 0.141826843 3/1/2005 6/1/2008 1 

1.14553197 0.269474451 3/1/2005 6/1/2008 1 

1.158583728 0.37568185 3/1/2005 6/1/2008 1 

0.808333333 0.126808706 3/1/2008 6/1/2008 1 

1.285714286 0.1235684 3/1/2005 10/1/2006 0 

0.966666667 0.286158458 3/1/2005 6/1/2008 1 

1 0.170747839 3/1/2005 6/1/2008 1 
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1.343134328 0.367103444 1/1/2006 6/1/2008 1 

0.642487047 0.121560317 3/1/2007 6/1/2008 1 

0.898305085 0.224445451 3/1/2005 6/1/2008 1 

0.423536 0.235642 3/1/2005 10/1/2007 0 

1.229367273 0.303740859 3/1/2005 6/1/2008 1 

1.167959184 0.248989162 3/1/2005 6/1/2008 1 

Table  4 .1  Sample  f rom the  Mor tgage  Database 

Each row represents one mortgage contract.  The last  column shows the defaul t  

s tatus of a mortgage loan i  – i t  is   i f  obl igor   has defaul ted (and contract 

seized to exist  in the database at  i ts  end_date) ;  and i t  is  1 i f  mortgage i  is  ei ther 

st i l l  exis t ing or  i t  was terminated due to prepayment or  repayment (and was 

removed from the database on th is  corresponding end_date) .  A mortgage contract  

is  considered to have defaul ted when i t  has been in arrears for  more than 3 

months i .e.  the obl igor  has made no interest  or pr inc ipal  payments on his 

mortgage obl igat ion for  more than 3 months. As default  is  an extremely rear event 

(especial ly in the Nether lands),  a lmost al l  of  the observat ions are censored ( last  

column is  1) .  In fact  for  the 6 years in considerat ion there were only 1558 defaul ts  

out of  92 thousand mortgage loans. 

0 i

The durat ion ( l i fet ime) of  mortgage contract  i  is  obtained by tak ing the 

di f ference between end_date   and star t_date  ,  expressed in months. i i
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4.2 Default  Predictors  

As we already stated,  the real izat ion of the covar iates (defaul t  predict ing 

factors)  has s igni f icant  impact on the real izat ion of  the hazard rate of  mortgage 

durat ion.  To construct our model we chose 4 default  factors,  namely:  

iX ,1  Or iginal  Loan-To-Value (LTV) Rat io of  loan i  

iX ,2  Or iginal  Debt-To-Income Rat io (DTI)  of  loan  i

iX ,3  Quarter ly unemployment rate (at  contract ’s  end date)  

iX ,4  3-month Eur ibor  interest  rate (at contract ’s  end date)  

Table  4 .2  Defau l t  Pred ic tors  

LTV and DTI are a common choice for  factors explain ing mortgage defaul ts .  

LTV stands for  loan-to-value rat io  and gives the rat io of  the s ize of  the mortgage 

loan to the value of  the real  estate property – or  s imply – loan value over house 

value.  The or iginal  LTV is  the loan-to-value rat io of  borrower i  at  or ig inat ion of  

the mortgage contract .  As we wi l l  show later LTV has very smal l  and stat ist ical ly  

insigni f icant  impact on the hazard rate of t ime to defaul t .  The DTI rat io on the 

other hand has a s igni f icant explanatory power in our model.  I t  stands for  debt- to-

income rat io  (sometimes also cal led PTI (payment- to- income )  rat io)  and expresses 

the rat io of monthly payments due on the mortgage loan to the reported income of 

borrower  i .e.  i t  d irect ly relates the payment weight to the abi l i ty of payment for 

obl igor .  As one would expect,  the DTI rat io has a s igni f icant importance in 

explaining the hazard rate of  t ime to default .  

i

i
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We also choose Quarter ly Unemployment Rate and Eur ibor Interest  Rate (wi th 

the appropriate lag – this  wi l l  be explained later) ,  because they are 

macroeconomic var iables that should have an impact on obl igors’  abi l i ty to pay the 

interest on their  mortgage obl igat ions. A r ise in unemployment wi l l  mean that more 

people lose their  pr imary source of income which wi l l  af fect their  abi l i ty to pay 

interest  on their  loans.  Same is t rue for  interest  rates – for  most Dutch residential  

mortgages (and most of  the mortgages in our database) the interest  payments due 

to the obl igor are determined by a base interest rate (Eur ibor)  p lus a margin. This 

means that a large increase in Eur ibor rates wi l l  increase the payment weight  of  

mortgagors and consequently wi l l  make some obl igors incapable of  paying these 

payments.   

We have to point  out here that  there are two def ini t ions of  unemployment rate 

in the Nether lands. One is  expressed as a percentage of  tota l  populat ion and one 

– as a percentage of the labor force ( that is  populat ion between 16 and 65 years 

of  age).  As expected they are almost perfect ly correlated wi th each other and i t  

makes pract ical ly  no di f ference which one we use in our model .  The only 

di f ference is the β -coeff ic ient for  unemployment in the Cox regression model 

(3.3) .  We are going to use the one that is more frequent ly used in the media and 

namely the one that is expressed as a percentage of  the labor force. 

For contracts that  have been terminated dur ing the per iod of our study,  we 

assign unemployment rate and the interest rate at the month of  terminat ion. 

Looking at  the data we see that we have a large amount of  mortgages that are st i l l  

outstanding (approximately two th irds of  the records)  and their  actual  covariates 

(  and )  are not observed. We have no actual end_date  for mortgage iX ,3 iX ,4
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contracts that st i l l  ex ist .  To overcome th is problem with missing values, we simply 

assign a  for   and  for  contracts that  are st i l l  ex is t ing.  In the next  sect ion 

we wi l l  explain why we make th is  choice and i ts impact on the est imat ion of  the

0 iX ,3 iX ,4

β  

coef f ic ients. 

 

4.3 PD  Model  Estimation  

In th is  sect ion we explain the mathematics behind the est imat ion of  the Cox 

Model.  A non-parametr ic method for  est imat ing the β  coef f ic ients was developed 

by Cox  [15]  h imself  and is  cal led part ia l  l ikel ihood  est imat ion. The est imat ion is 

non-parametr ic,  meaning that  the basel ine hazard can be lef t  unspecif ied.  This 

means that we do not  have to assume a certa in shape for  the basel ine funct ion.  In 

th is  way the est imat ion is  not  b iased by the choice of  a basel ine hazard.   

Suppose we have a data set wi th n  observat ions and k  d ist inct  fa i lure (event 

or defaul t)  t imes. We f i rs t  sor t  the ordered fa i lure t imes such that kttt <<< ...21

ktt

,  

where  denotes the fai lure t ime of the i - th mortgage. Note that it t <<< ...21  are 

the actual  t imes when defaul t  happened i .e.  only uncensored cases ( last  column in  

our database = ) .  We now want to express the event t imes as a funct ion of the 

covar iate matr ix .    

0

X

The part ia l  l ikel ihood funct ion is  der ived by tak ing the product of  the 

condit ional probabi l i ty of  a fa i lure at  t ime ,  g iven the number of  mortgages at it
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r isk at  t ime .  In other words,  g iven that a defaul t  has occurred,  what is  the 

probabi l i ty that  i t  occurred to the i - th mortgage from a r isk set  of  s ize ? 

it

N

Let  denote the number of  mortgages that are at  r isk of fa i l ing (defaul t ing) 

at  t ime  i .e.   is  the relevant r isk set .  Then the probabi l i ty  that  the 

)( itR

it )( itR j - th 

mortgage wi l l  defaul t  at  t ime  is  g iven by: it

∑∑∑
∈∈∈
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          (4.1) 

s ince the basel ine hazard  is  the same for a l l  mortgages. The denominator in 

the above expression is  the summation over al l  mortgages that  are at  r isk at  t ime 

.  Taking the product of  these condi t ional  probabi l i t ies y ie lds the part ia l  

l ikel ihood fu

)(th

it
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wi th corresponding log- l ikel ihood funct ion:  

∑ ∑
= ∈ ⎥

⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′−′=

k

i tRj
jip

i

L
1 )(

)exp(loglog XX ββ                           (4.3) 

By maximizing the log- l ikel ihood funct ion (4.3) ,  est imates of  β  are obtained. 
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Note that the product in (4.2)  and the sum in (4.3) are over al l  mortgages i  

that  have actual ly  defaul ted i .e.  ki ,....1=  and 1558=k  in our case. Those  are 

exact ly the contracts that are not censored, therefore for al l  ,  we have 

 and 

1558

ki ,....1=

0,3 ≠iX 0,4 ≠iX  (as ment ioned before,  for  a l l  mortgages that  st i l l  exis t  -  no 

defaul t  event has occurred -  we set 0,3 =iX  and 0,4 =iX ) .  

Of course the r isks sets ,  )( itR ki ,....1=  contain al l  mortgages that  are at  r isk of  

defaul t ing at  t ime  which inc ludes censored cases and consequently mortgages 

that are st i l l  exis t ing ( for  which we have no actual  observed unemployment and 

interest  rate values).  From (4.1) we see that censored cases contr ibute 

informat ion only re levant to the r isk set (denominator  of  (4.1)  and (4.2)) .  Therefore 

by set t ing  and  for  al l  those st i l l  exis t ing mortgages we actual ly 

set  

it

0,3 =jX

1) ≈jX

0=j,4X

exp( ′β  (because 0≈′ jXβ )  and the denominator  in (4.1) and (4.2) is  

s imply increased by 1 for  each mortgage contract  that st i l l  exists.  In th is  way we 

try to minimize any bias coming from the fact  that we are unable to observe the 

unemployment and interest  rate values of  the month of  terminat ion of  a l l  those st i l l  

ex ist ing loans.  On the other hand we can not s imply remove them from the 

est imat ion because we do not want to lose any informat ion about the occurrence 

of  defaul ts (and the fact  that  defaul t  is  an extremely rear event) .  Mathemat ical ly  

by set t ing  and 0,3 =iX 0,4 =iX ,  we remove any ef fects of  those unobserved 

var iables to the weight  of  the r isk set  – the denominator  of  (4.1)  and (4.2),  and we 

let  the hazard rate for  these contracts be determined only by their  basel ine hazard 
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and the other two constant  (and known for  a l l  contracts)  covar iates  ( loan-to-

value rat io)  and  (debt- to- income rat io) .  

1X

2X

Once we have est imated the β  coef f ic ients we also need an est imate of  the 

basel ine hazard  to f inal ly obtain an est imate of  the hazard rate of  fa i lure )(th

)(tλ .  In the l i terature there are a number of  approaches that have been adopted to 

est imate the basel ine hazard .  The simplest  and most f requent ly used 

approach was proposed by Breslow [16].  He der ived a maximum l ikel ihood 

est imator  of  the basel ine cumulat ive hazard funct ion ,  af ter 

assuming that  the fa i lure t ime distr ibut ion has a hazard rate which is  constant 

between each pair  of successive observed fa i lure t imes -  a reasonable assumpt ion 

in our case. The est imate of   in the interval   between two successive 

fai lure t imes  and  is  given by: 

)

t

(th

)

∫=
t

dshtH
0

)( s)(

(h ],[ 1 ii tt −

1−it it

∑
∈

′
=

)(

)exp(
~

itRj
ji

i
i

d
h

Xβδ
                                       (4.4) 

where 1−i−= ii ttδ  is  the length of  the t ime interval  and  is the number of 

defaul ts that  occur in t ime  (note that  usual ly  

id

it 1=id ,  but th is  est imat ion also 

al lows for  mult ip le fa i lures at  the same t ime  -  these fai lures are also cal led 

t ies ) .  Equat ion (4.4)  can be interpreted as the rat io between the number of  events  

and the weighted number of  ‘person-t ime’  uni ts  at  r isk,  where the weight of  each 

indiv idual  

it

j  in the r isk set   is  )i(tR )exp( jXβ′ .  A rough est imate of   )()( 1−− ii tHtH
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is iih δ~
 and i f  we sum al l  those terms over a l l  tti ≤ ,  we obtain what is cal led the 

Breslow’s est imator  of  the cumulat ive basel ine hazard funct ion at  t ime :   t

∑ ∑≤
∈

′ j )X
=

tt
tRj

i

i

i

d
tH

)(
)(

exp(
)(~

β
                                      (4.5) 

 

4.4 Modeling  Loss  Given  Default  

Resident ia l  mortgage loans are always backed by some k ind of  real  estate 

col lateral .  I f  an obl igor defaults on his payment obl igat ions then the lender gets  

hold of  the col lateral .  The recovery value – i .e.  proceeds from sel l ing th is  

col lateral  expressed as a percentage of  loan’s outstanding balance, are used to 

cover losses ar is ing from defaults  of  obl igors. 

 As we already ment ioned we want to model the recovery rates as a random 

variable between 0% and 100%. The loss-given-defaul t  (LGD) of  a mortgage is  

then given as 1 minus the recovery rate.  Most of ten in l i terature,  a U-shaped beta  

d istr ibut ion is  used to model the recovery values.  The beta distr ibut ion is  very 

useful  for  model ing recovery rates because i t  produces values between 0 and 1 

and can have a large var iety of  shapes (see f ig.4.1) .  

The probabi l i ty  densi ty funct ion of  the Beta distr ibut ion is  g iven by: 
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where  is  the gamma funct ion. ∫
∞

−−=Γ
0

1)( dtetx tx

 

Figure  4 .1  The  PDF of  the  beta  d is tr ibut ion  for  d i f fe rent  va lues  o f  the  parameters  α  and  β :  

 

As we see from f ig.  4.1 the shape of  the Beta distr ibut ion is  determined by the 

parameters α  and β .  These parameters are usual ly est imated in the fo l lowing 

way: 
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μμμβ                  (4.7) 

where μ  and σ  are the mean and standard deviat ions of the recovery rates.  NIBC 

Bank N.V. has a data set of  resident ia l  mortgages from which we obtain the 

fo l lowing character is t ics of  recovery rates: 

Number of Losses Average RR Std. Dev. RR Average LGD 
860 89.59% 19.19% 10.41% 

 

and the α  and β  parameters become: 1.71851)1(
2 =⎟

⎠
⎞

⎜
⎝
⎛ −

−⋅
⋅=

σ
μμμα  and    

0.45371⎟
⎠
⎞−

)1()1( 2 =
−⋅

⋅−=
σ

μμβ ⎜
⎝
⎛ μ

.   

Once we have cal ibrated the correct Beta distr ibut ion we can use i t  to s imulate 

random recovery rates and combining those wi th the distr ibut ion of the expected 

probabi l i ty of  default ,  obtained from our PD model,  we can determine the 

distr ibut ion of  the expected loss due to defaul t  of  a s ingle mortgage contract  or  of 

a port fo l io of  mortgage loans. 
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V. Results  

5.1 Cox  PH  model  estimation  and  regression  results  

In the previous chapter  we proposed using 4 dist inct  defaul t  predictors 

(Original  LTV, Orig inal  DTI,  Unemployment rate and  Interest rate )  for  bui ld ing the 

most sui table proport ional hazard rate model.  After running a ser ies of  Cox 

regressions we found out that the f i rs t  defaul t  factor  – Original  LTV  – has no 

stat is t ical ly s igni f icant explanatory power (see Appendix for actual  resul ts) .  

Therefore we wi l l  remove i t  f rom our model and from now on we wi l l  use only 3 

factors for model ing the hazard rate of t ime to defaul t .  Let us name the 3 

remaining covar iates as fol lows: 

iDTIX ,  Or iginal  Debt- to- Income rat io of a borrower  i

iUNX ,  Unemployment rate of  the quarter  preceding defaul t  event of  borrower i  

iIRX ,  Eur ibor 3-month Interest  Rate (monthly average of  the month preceding 
defaul t  event of  borrower i )  

Table  5 .1  Covar ia tes  

Recal l  that in our model the hazard rate for  the distr ibut ion of  mortgage 

durat ion ( l i fet ime) is  given by the fo l lowing: 

)exp(*)()|( ii tht XX βλ ′=  

To obtain est imates of  the beta coeff ic ients and the basel ine hazard funct ion, 

we use the bui ld- in Cox proport ional  hazards regression funct ion – ‘coxphfi t ’ ,  

which is  included in the Stat is t ical  Toolbox® of  Matlab®.  
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The maximum l ikel ihood est imat ion of  the beta coeff ic ients has produced the 

fo l lowing resul ts: 

Covariate: DTI -  iDTIX , Unemployment - iUNX , Euribor 3m -  iIRX ,

Beta coefficient 2.792984442 37.66940855 60.52762111 
p-value 8.02754E-49 2.00197E-84 1.0386E-148 

standard error 0.190191281 1.934816002 2.330536474 
z-statistics 14.68513399 19.46924592 25.97153994 

Table  5 .2  Coef f ic ient  es t imates  

And the Cumulat ive Hazard Funct ion  for  the distr ibut ion of  

mortgage durat ion has the fo l lowing shape: 

∫=
t

dsshtH
0

)()(

 

Figure  5 .3  Base l ine  Cumula t ive  Hazard  

We can see that the cumulat ive basel ine hazard funct ion has very low values 

even for  high durat ions. This of  course is  what we expected s ince mortgage 

default  is a very rare event.  Our est imate of  the cumulat ive basel ine hazard 

funct ion is  only given for  durat ions less than or  equal to 305 months, which is  the 
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maximal durat ion of  a defaul ted loan in our database. This does not const i tute a 

f law in the model s ince in pract ice we almost never have to analyze mortgage 

contracts that have been outstanding for  more than 25 years (300 months) .   

Example:  

Let  us now use our hazard rate model  to compute the probabi l i ty that  a speci f ic  

mortgage contract  wi l l  defaul t  in the next year ( i .e.  the expected 12-month PD). 

Consider a mortgage loan  wi th or iginal  DTI rat io – 30% that  has been issued on 

01/07/2006 and suppose that the current quarter ly unemployment rate in the 

Nether lands is  4.8% and the current monthly average of  the 3-month Eur ibor 

interest rate is 1.5%. In other words we have: 

l

%30, =lDTIX ,  

, .  Then according to (3.4) the cumulat ive hazard funct ion 

for  the distr ibut ion of  the l i fet ime for  this  speci f ic  loan is:   

%8.4, =lUNX %5.1, =lIRX

)(*)015.0*048.0*3.0*exp()()exp()|( 321 tHtHt ll ββββ ++=′=Λ XX  

and the β ’s  are given in table 5.2.   

Moreover,  by def ini t ion 2.1, the cumulat ive distr ibut ion funct ion for  the durat ion 

of   is  g iven by: l ( ))|(exp1)()( lll ttDPtF XΛ−−=≤=  and i t  has the fo l lowing 

shape:  
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Figure  5 .4  Cumulat ive  D is t r ibut ion  Funct ion   

Note that  the shape is very s imi lar  to the shape of the cumulat ive basel ine 

hazard funct ion.  This is  because of  the mult ip l icat ive relat ionship between 

basel ine hazard  and speci f ic  hazard )(tH )|( lt XΛ  and the fact that xx ≈−− )exp(1  

for  smal l  x .  

Now s ince 37=lθ  (months s ince date of  issue) and fol lowing (3.2) ,  the 

expected 12-month probabi l i ty  of defaul t  for  mortgage contract  l  is :  

005377.0
0.01071-1

0.01071-0.01603
)37(
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5.2 Expected  Loss  and  Loss  Distribution  

The expected loss due to default  of  a mortgage contract  i  can be character ized 

by the fo l lowing: 
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)(*0*)1()(*)( LGDPDPDLDGPDLoss Ε=−+Ε=Ε               (5.1) 

and for  the mortgage contract  l  that  we considered in the previous example,  we 

get  the fol lowing expected loss:   

%056.0)8959.01(*005377.0)( =−=Ε Loss  

As we ment ioned before,  f rom r isk management’s  point  of  v iew, not only the 

expected loss is important but a lso the uncerta inty around i t  – in other words we 

are more interested in the whole probabi l i ty  d istr ibut ion of  the expected loss.   

Since in our model the PD depends on two uncertain in the future factors,  

namely unemployment and interest  rates,  the stochastic  d istr ibut ion of  the 

expected PD wi l l  be determined by the stochast ic  d is tr ibut ion of those factors.  Or 

put in other words, we can der ive the distr ibut ion of  the expected PD by s imulat ing 

a large number of  possible real izat ions for  unemployment and interest  rates.  In the 

same way we can use the beta distr ibut ion that  we explained and est imated in 

sect ion 4.4,  to s imulate a number of LGD real izat ions. Combining PD and LGD 

simulat ions, we are able to der ive the whole distr ibut ion of  the loss ar is ing from a 

defaul t  of  a mortgage contract (or a port fo l io of  mortgage contracts as we wi l l  see 

in the next sect ion).  

The s imulated probabi l i ty dis tr ibut ions of PD, LGD as wel l  as the distr ibut ion of 

the expected Loss for this  speci f ic mortgage contract are presented in the 

Appendix ( f igures A11 ,  A12  and A13) .  
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5.3 Scenario  Simulations  

To simulate interest  rate paths we use a technique widely used in mathemat ical  

f inance. We assume that the evolut ion of  interest rates is  a mean revert ing 

process that  can be descr ibed by the Cox-Ingersol l -Ross (CIR) model (Cox, 

Ingersol l  and Ross  [17]) .   The model speci f ies that the short  term interest  rate 

fo l lows the fo l lowing stochast ic  d i f ferent ia l  equat ion:  

tttt dWrdtrbadr σ+−= )(                                      (5.2) 

where  is  the mean revers ion parameter,  b  is  the long-term mean (equi l ibr ium 

level) ,  

a

σ  is  the volat i l i ty  and  is a standard Brownian motion. The CIR model is 

an extension of  the wel l-known Vasicek model (Vasicek, Oldr ich  [18]) .  

tW

Simulat ing unemployment rates is  a bi t  t r ick ier  s ince in the l i terature there are 

no c lassical  models descr ib ing unemployment evolut ion as a stochast ic random 

var iable.  There are,  however, a number of  models that use ARMA or ARCH 

regressions to forecast unemployment rates.  We have to make i t  c lear  here, that in 

th is  paper we are not interested in forecast ing the most l ikely future 

unemployment rate,  but  in a l l  possib le real izat ions of unemployment rates,  i .e.  we 

are interested in the whole stochast ic  d istr ibut ion of  unemployment.  That is  why, 

to generate our theoret ical  unemployment real izat ions, we use the histor ical  

d istr ibut ion of  the relat ive change of  unemployment (quarter ly)  for  the last  9 years.  

We have determined (see Appendix)  that for  this  t ime per iod the distr ibut ion of  the 

relat ive change in unemployment is  best  f i t ted by a normal distr ibut ion wi th mean 
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0.00193_ =runμ  and standard deviat ion 0.04034_ =runσ  respect ively.  The idea is  to 

model  a possible evolut ion of  unemployment in the fo l lowing way: 

)_1(*1 ttt rununun +=+                                        (5.3) 

where  is  the level  of unemployment at  t ime t  and tun ),(~_ __ runrunNrun σμ  is  a 

normal ly-distr ibuted random var iable,  wi th the above mean and standard deviat ion.  

 represents the re lat ive change in unemployment from t ime t  to t ime trun _ 1+t .  

We wi l l  run our simulat ions wi th 3 basic unemployment scenar ios. The f i rs t  one 

we wi l l  cal l  standard .  In this  scenar io we assume that the monthly re lat ive change 

of  unemployment wi l l  keep i ts h istor ical  mean and standard deviat ion and the 

future evolut ion of unemployment wi l l  be descr ibed by (5.3)  wi th the histor ical  

mean 0.00193_ =runμ  and standard deviat ion 0.04034_ =runσ .  In th is  scenar io the 

evolut ion of  unemployment is  descr ibed by paths that  are almost evenly distr ibuted 

around the current level  of  unemployment and have a sl ight  upward trend (mean is  

posi t ive but smal l ,  see Appendix) .  

On the other hand, in the current credi t  cr is is  we expect that unemployment wi l l  

r ise (and i t  has been r is ing for  some t ime already).  Al though we are not t ry ing to 

forecast  the most l ikely future unemployment we have to take into account that at  

th is  moment i t  is  much more l ikely that  unemployment wi l l  increase substant ia l ly in 

the near future.  The Dutch Central  Bank (De Neder landsche Bank – DNB) has two 

stress test ing scenar ios for  the unemployment rate in the Nether lands.  The f i rst  

one – DNB base scenar io  suggests that the unemployment rate wi l l  be around 

5.5% at  the end of  2009 and around 8.7% at  the end of  2010. The second one – 
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the DNB stress scenar io  suggests that  unemployment rate wi l l  be around 5.7% at 

the end of  2009 and around 9.7% at  the end of  2010.  

In order to simulate the evolut ion of  unemployment that corresponds to these 

scenar ios we simply adjust the distr ibut ion of  the relat ive change in unemployment 

in the fo l lowing way – we keep the monthly standard deviat ion the same, but  we 

increase the mean of  the normal ly d istr ibuted random var iable  in (5.3) .  As a 

consequence we get s imulated paths with much higher upward trend, compared to 

the standard  scenar io (see Appendix for actual  resul ts f igures A10 ,  A11  and A12 ) .  

These scenar ios ref lect  better the current macroeconomic out look and should 

produce more real is t ic  expectat ions of the future PD’s and expected losses for  

resident ia l  mortgages. 

trun _

An overview of unemployment and interest rate simulated scenar ios is  

presented in the Appendix ( f igures A7  to A12) .  

 

5.4 Loss  Distribution  of  RMBS  Collateral  Pool  

The col lateral  pool  of  a typical  RMBS transact ion usual ly consists of  thousands 

of  mortgage contracts.  In order to obtain the loss distr ibut ion for  the whole 

mortgage port fo l io we just  sum the expected absolute losses of  a l l  loans in the 

pool  and express the resul t  as a percentage of  the total  outstanding balance of  the 

pool .  Again,  by s imulat ing a large number of  s ingle mortgage losses we are able to 

obtain the loss distr ibut ion of  the whole col lateral  pool.    
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Example: Storm 2007-I B.V. 

Storm 2007-I  B.V. is  a EUR2bn true sale secur i t izat ion transact ion of  mortgage 

loans,  or iginated in the Nether lands by Obvion N.V. The Col lateral  Pool  th is  RMBS 

transact ion can be br ief ly  character ized by the fo l lowing: 

Or iginal  Pr inc ipal  Balance: 2 047 484 181 € 

Number of  Borrowers: 10 499 

Average Loan Per Borrower 194 309 € 

Weighted Average Seasoning (months) 6 

Weighted Average Orig inal  LTV 83.7% 

Weighted Average DTI 29.7% 

Table  5 .3  Col la tera l  Pool  

Unfortunately we do not have detai led informat ion on each s ingle loan contract 

and we wi l l  use the weighted averages in our PD model .  This of  course means that 

in our s imulat ion al l  mortgages wi l l  have the same probabi l i ty of  defaul t ,  which is 

not  the case in real i ty.  We hope that  th is lack of  detai led information wi l l  not have 

a crucia l  impact on analyz ing the RMBS transact ion.   

To obtain the loss distr ibut ion of  the Pool ,  we f i rst  generate 5000 random 

real izat ions of  unemployment and interest rates.  We use those in our PD model to  

obtain 5000 real izat ions of  a s ingle mortgage contract  probabi l i ty of  defaul t .  In 

each di f ferent s imulat ion al l  contracts have the same PD. For each of  those 5000 

s imulat ions, we s imulate a random LGD value (as descr ibed in sect ion 4.4)  for  

each of  the 10 499 loans in the pool .  The sum of the absolute losses of a l l  loans 

expressed as a percentage of the outstanding balance is  then the expected loss of 

the pool .  In th is  example we wi l l  s imulate one year per iod and calculate the loss 
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distr ibut ion for  1 year.  Let us f i rs t  concentrate on the standard scenar io for the 

s imulat ion of  unemployment.  Simulat ions for  other scenar ios are presented in the 

Appendix.  Figure 5.3 represents the expected loss distr ibut ion for  the above 

col lateral  pool of  mortgages.  

 

Figure  5 .3  Expected  Loss  D is t r ibut ion  (Standard  unemployment  Scenar io )  –  resu l ts  for  o ther  

scenar ios  are  presented in  the  Appendix  

 

The fo l lowing table summarizes some important in r isk management 

character ist ics of  the loss distr ibut ion: 

Mean 0.0422% 

Standard Deviat ion 0.0166% 

95%-quant i le 0.0735% 

99%-quant i le 0.0991% 

Table  5 .4  Loss  d is t r ibut ion  character is t ics  
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5.5 Loss  Distribution  and  Defaults  of  RMBS  Notes  

Let us again focus on Storm 2007-I  B.V. The Notes structure of  this  RMBS 

transact ion is the fol lowing: 

Class Rat ing Size (%) Size (EURm) Credit  Enhancements 

A1 AAA 10.0 200 5.00% 

A2 AAA 17.0 340 5.00% 

A3 AAA 69.0 1 380 5.00% 

B AA 2.0 40 3.00% 

C A+ 1.2 24 1.80% 

D A- 0.8 16 1.00% 

E BBB- 1.0 20 Excess Spread – 0.5% 

Table  5 .4  Notes  St ructure  

The Credi t  Enhancement (CE) is l inked to credi t  qual i ty  – i t  is  a cushion that 

protects investors (notes holders)  against losses that ar ise from the under ly ing 

pool .   

In th is  RMBS transact ion there are 3 types of  credi t  enhancement.  The f i rs t  and 

most common is  – subordinat ion. Subordinat ion means that  a given tranche (c lass 

of  notes)  bears any losses only i f  the tranches junior  to i t  have been fu l ly 

exhausted. In other words losses are propagated from Class E to Class A1 notes. 

Subordinat ion is  one of  the grounding pr incipals of secur i t izat ion.  In th is  RMBS 

transact ion subordinat ion protects al l  the notes except Class E notes.  The second 

type of  credi t  enhancement is  the Excess Spread (XS) – i t  protects the Class E 

notes.  The XS is the di f ference between interest  payments der ived from the pool 
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of  mortgages and the weighted average coupon paid on the notes. For th is 

t ransact ion the XS is guaranteed by a swap agreement and is f ixed on 50 basis 

points per annum. The th ird credi t  enhancement is  the reserve fund – th is  is  a 

layer of  protect ion that has to be exhausted before note holders bear any losses. 

At  or iginat ion of  the transact ion the reserve fund is  funded by the issuance of  the 

E notes,  i .e.  the SPV issues an extra trance of  equi ty notes (also somet imes 

cal led ‘ turbo notes’  -  in th is  case the E notes) to create a buffer of  protect ion for 

the tranches senior  to the equity notes. 

We can think of  the credit  enhancements as the thresholds that need to be 

crossed so that cer tain c lass is  af fected by a loss ar is ing from the col lateral  pool.  

Since losses f rom the pool  are t ransferred to the notes from the most junior  ( in 

th is  case Class E notes) to the most senior  ( the A1 Class),  a loss to a certain 

c lass of  notes only occurs i f  the actual  loss is  big enough to fu l ly exhaust a l l  the 

tranches junior to i t ,  i .e.  i f  the loss crosses the credi t  enhancement threshold of 

th is  tranche.  

Figure 5.4 represents the loss dis tr ibut ion of  the notes for the Storm 2007-I  

B.V. RMBS transact ion af ter  a 5000 s imulat ions (with the Standard scenario for  

unemployment)  for  a 1 year per iod.  Here again we use the current  unemployment 

of  4.8% and current 3month Euribor 1.5% as star t ing values of  the scenar io 

s imulat ions. 
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Figure  5 .4  Loss  D is t r ibut ion  o f  the  Notes  (1  year  s imula t ion  per iod)  

We can see from f igure 5.4 that in th is case there is  no actual  loss for  the note 

holders.  According to our model,  a l l  the losses ar is ing f rom defaul ts  of  mortgages 

in the col lateral  pool  are absorbed by the avai lable excess spread.  

Let us now concentrate on a s i tuat ion where unemployment wi l l  r ise rapidly in 

the near future – as predicted by the base and stress scenar ios of the DNB. 

 

 

Figure  5 .5  Expected  Loss  D is t r ibut ion  o f  the  Col la tera l  pool  (DNB Base  Scenar io )  
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Figure  5 .6  Expected  Loss  D is t r ibut ion  o f  the  Notes  (DNB Base  Scenar io )  

As we can see from f igure 5.6,  according to our model ,  even i f  unemployment 

increases rapidly as predicted by the DNB base in scenar io ( to a level  of  8.7% by 

the end of  2010), there wi l l  be no losses to the Notes of  this  part icul r  RMBS deal.  

On the other hand in the DNB stress scenar io there occur some losses to the E 

Notes but again those losses are relat ively rare -  only in 10 out of  1000 

s imulat ions the loss is b ig enough to af fect  c lass E Notes (see f ig 5.8) .  

a

 

Figure  5 .7  Expected  Loss  Dis t r ibut ion  o f  the  Col la tera l  pool  (DNB St ress  Scenar io )  
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Figure  5 .8  Expected  Loss  D is t r ibut ion  o f  the  Notes  (DNB Stress  Scenar io )  

 

l l  be no 

s igni f icant  decl ine in the residentia l  property market  in the Nether lands, which wi l l  

ef fect  the proceeds from sel l ing the col lateral  of  defaul ted loans. This so cal led 

Market Value Decl ine  (MVD) wi l l  lower the recover ies f rom the col lateral  and 

increase the expected LGD and therefore wi l l  have an impact on the expected loss 

of  the mortgage pool and the loss of the RMBS Notes. Fortunately our model 

a l lows us to take th is  possib le market value decl ine into account in our 

s imulat ions,  s imply by adjust ing the 

We have done al l  of  the above s imulat ions assuming that  there wi

α  and β  parameters of  the beta distr ibut ion

n s imulate an 

reme case where the DNB stress scenar io for  unemployment was to come true 

together with a MVD of 20% for a 1-year hor izon. MVD of 20% simply means that 

rec

 

that we use for  s imulat ing recovery rates.  For example we ca

ext

overy rates wi l l  fa l l  wi th 20% on average. The loss distr ibut ion of  the Col lateral  

pool  and the loss to the Notes for  th is  extreme scenar io are presented in f igures 

5.9 and 5.91,  respect ively.   
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Figure  5 .9  Expected  Loss  Dis t r ibut ion  o f  the  Col la tera l  (DNB St ress Scenar io  w i th  20% MVD)  

 

 

Figure  5 .91  Expected  Loss  D is tr ibut ion  o f  the  Notes  (DNB Stress  Scenar io  w i th  20% MVD)  

 

We can see here that in th is  extreme case there are signi f i t  number of  

s imulat ions (767 out of  5000 to be exact)  in which the expected loss is  b ig enough 

 h i t  c lass E notes. There are even 5 cases in which the c lass D notes suffer  

losses and 1 case in which the C notes are hi t .  So i f  th is  scenar io is  a very l ikely 

scenar io we could assign a probabi l i ty  of  defaul t  

can

to

%34.155000
767 =  for  the E notes 



 

 

 

 

48

of this  RMBS transact ion, meaning that there is  a  chance that E notes wi l l  

suf fer  losses. 

We have to ment ion again here that the goal roject  is not to ident i fy 

the most l ikely development of  future unemployme terest rates or  the future 

movements of  the resident ia l  property market  Nether lands. What is 

important for  us here is that our  model a l e user to input his  own

expectat ions of  these var iables and to adjust  th is according to his own 

view of the macro economy. Our model presents  to analyze the defaul t  r isks 

associated wi th RMBS transact ions for  any po ut ion of  unemployment,  

interest  rates and resident ia l  property market.   

t ions of

factors in our model in 1-year hor izon.  

 %34.15

 of this p

nt or  in

 in the

lows th

e analys

a way

ssible evol

e evolu

 

Table 5 summarizes the resul ts we have obtained af ter  running a ser ies of 

s imulat ions wi th di f ferent assumptions about th  the stochast ic 
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y o f  de fau l t  for  Note ’s  t ranches  in  d i f ferent  scenar ios 

so al lows us to s imulate t ime hor izons di f ferent  th

Table  5  -  Probabi l i t

 

Our model  a l an 1-year,  which 

is  the standard in many credi t  r isk management tools. Simulat ion results  for  t ime 

hor izons of 2 and 3 years are presented in the Appendix ( f igures A18  to A21 ) .  We 

only present the s imulat ion results  for  the DNB base scenar io of unemployment 

and 20 % market value decl ine because we bel ieve th is  is the most l ikely one in 

the current economic s i tuat ion.  Of course other scenar ios can be easi ly 

calculated. We note that losses for  longer per iods are bigger because the 

probabi l i ty of  defaul t  of  mortgage contracts for  a longer t ime hor izon is  h igher and 

consequent ly the expected loss of  the port fo l io is  h igher.   

MVD Standard DNB Base DNB Stress

10%
A1 Notes 0% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00%
20% 0.00% 0.00% 0.00%
30% 0.00% 0.00% 0.00%

A2 Notes 0% 0.00% 0.00% 0.00%
10% 0.00% 0.00% 0.00%
20% 0.00% 0.00% 0.00%
30% 0.00% 0.00% 0.00%

A3 Notes 0% 0.00% 0.00% 0.00%
10% 0.00% 0.00% 0.00%
20% 0.00% 0.00% 0.00%
30% 0.00% 0.00% 0.00%

B Notes 0% 0.00% 0.00% 0.00%
10% 0.00% 0.00% 0.00%
20% 0.00% 0.00% 0.00%
30% 0.00% 0.00% 0.00%

C Notes 0% 0.00% 0.00% 0.00%
10% 0.00% 0.00% 0.00%
20% 0.00% 0.00% 0.02%
30% 0.00% 0.00% 0.08%

D Notes 0% 0.00% 0.00% 0.00%
10% 0.00% 0.00% 0.00%
20% 0.00% 0.04% 0.10%
30% 0.00% 0.12% 0.64%

E Notes 0% 0.00% 0.06% 0.20%
10% 0.00% 1.12% 3.96%
20% 0.02% 6.42% 15.34%
30% 0.06% 16.86% 32.32%

Notes Probability of Default 
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VI. Conclusion  

In th is  paper we have presented an approach for  model ing the distr ibut ion 

funct ions of  the Probabi l i ty  of  Defaul t ,  Loss Given Defaul t  and consequently the 

Expected Loss for  a o of  mortgage contracts.  We 

have considered the distr ibut ion of  mortgage l i fet ime as wel l  as the distr ibut ion of  

t im

ictors to the defaul t  intensi ty process.   

n.  This 

approach makes i t  possib le to analyze the loss distr ibut ion of  d i f ferent RMBS 

tranches and gives insights of  the defaul t  r isks associated wi th RMBS 

 mortgage contract  or a port fo l i

e to defaul t  and the associated condi t ional  intensi ty processes,  g iven the set  of 

predictors for  the defaul t  event.  We have modeled the intensi ty (hazard rate)  of 

mortgage durat ion as a funct ion of  two macroeconomic covariates (unemployment 

and interest rates) and one mortgage-speci f ic var iable (debt- to- income rat io) .  Our 

hazard rate model  turned out  to be very sui table in t ranslat ing the stochast ic  

behavior  of  the macroeconomic var iables to the behavior  of  expected and 

unexpected PD and the stochast ic d istr ibut ion of the Expected Loss for  a port fo l io 

of  mortgage loans. Our model is  f lexib le wi th respect to the choice of  default  

predictors (as long as th is  choice is  economical ly sound).  The model is  a lso very 

wel l  sui ted for  performing stress test ing on one or  al l  of  the factors that inf luence 

the cash f lows of  RMBS tranches. 

We have est imated the model us ing a non-parametr ic  part ia l  l ikel ihood 

approach based on the Cox Proport ional Hazards model,  which enabled us to 

est imate the ef fects of defaul t  pred

We have then run a ser ies of s imulat ions and determined the stochast ic 

d is tr ibut ion of  the Expected Loss of  a col lateral  pool of  mortgages and translated 

these expected losses to the Notes of the a typical  RMBS transact io
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tran

Further research has to be done in the direct ion of  better  handl ing missing 

covar iate values. This could improve the est imat ion of the coeff ic ients for  the PD 

model and consequent ly -  the sensi t iv i ty and signi f icance of  cer ta in defaul t  

predictors. Another possible improvement could be taking into account a hazard 

rate model that  a l lows for  t ime-dependent covar iates, which would also solve the 

pro

Other possible improvements to the model can include model ing the LGD in 

dependence of  LTV. We know that the loan-to-value rat io has an impact on the 

recovery rates and can be used to bet ter  descr ibe residential  mortgage LGD. This 

can be done for  example,  by est imat ing a di f ferent  beta distr ibut ion for  predef ined 

LTV buckets – but for re l iable est imates a larger ( than the one we had) database 

of  L

sact ions.  The model  can be used for  the analys is of  the defaul t  r isk of  any 

Dutch RMBS. Al though the model  was designed to analyze RMBS transact ions 

or iginated in the Nether lands, i t  can be easi ly adopted for other countr ies, 

provided that  enough data on the history of  resident ia l  mortgage defaul ts is 

avai lable.   

b lem with missing covar iate observat ions.   

GD’s is required. The dependence structure of  LGD and PD on one hand, and 

unemployment and interest  rates on the other,  should also be invest igated.  Based 

on the data we use we have found no s igni f icant  correlat ion between PD and LGD 

but th is  could be due to the fact  that  the t ime per iod that  we base our est imates on 

(2002-2008) is  a re lat ively stable per iod wi th no extreme economic shocks. A 

database that spans over a larger per iod of t ime and inc ludes data from economic 

downturns, could improve the accuracy of  our model .  
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Appendix  

 

Coefficient LTV DTI Unempl. Euribor 3m 
Beta -7.4E-08 2.80631 53.477971 71.41378169 

p-value 0.989268 3.01E-49 3.06E-86 6.1286E-179 
st. erorr 5.51E-06 0.19024 2.7170636 2.503752991 

z-statistics -0.01345 14.75144 19.682267 28.52269451 
Table  A1  –  Cox  model  coef f ic ients  s ta t is t ics  (w i th  LTV)  

 

 C  mBeta ovariance atrix 
3.04E-11 4.04E-10 3 66.5 E-08 .75915E-08 
4.04E-10 0.036191 -0.04 00678 .091384154 
6.53E-08 -0.04068 7.382 24345 .378678034 
6.76E-08 0.091384 2.378678 6.26877904 

Table  A2  –  Covar iance  matr ix  o f  coef f ic ient  es t imates  (w i th  LTV)  

 

 

Table  A3  –  Cox  Model  Regress ion  s tat is t ics  (w i thout  LTV)  

 

 

Table  A4  –  Covar iance  matr ix  o f  coef f ic ient  es t imates  (w i thout  LTV)  

 

*No te  tha t  the  coe f f i c ien t  es t imate  o f  LTV i s  p rac t i ca l l y  0  and  i t s  p - va lue  i s  a lmos t  1  ( s ign i f i can t l y  

d i f fe ren t  o f  0 )  and  a l so  the  pa rameter  es t imates  fo r  the  o the r  covar ia tes  a re  the  same wi th  o r  

a te  o f  de fau l t .  w i thou t  LTV –  i .e .  LTV has  no  s ign i f i can t  impac t  i n  mode l ing  the  hazard  r
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Figure  A5  –  Survi va l  Funct ion  o f  mor tgage  cont ract  :  l %30, =lDTIX ,  %8.4, =lUNX ,  

 %5.1, =lIRX .

 

Figure  A6  –  Cumulat ive  D is t r ibut ion  Funct ion  of  mor tgage  contract  :  l %30, =lDTIX ,  

 

 

%8.4, =lUNX ,  %5.1, =lIRX .
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Figure  A7  –  Eur ibor  3month  s imula t ions  –  1000 paths  for  12  month  per iod  

CIR Process :  

 

 

w i th  pa ramete rs  (es t imated  on  mon th l y  da ta  f rom the  las t  9  years ) :  

 (mean  revers ion  pa ramete r )  

 ( l ong  te rm mean)  

08010590.01484966=a

91695370.03398727 =b

00840860.01039756 =σ  ( vo la t i l i t y )  

tttt dWrdtrbadr σ+−= )(



 

 

 

 

55

0

1

2

3

4

5

6

7

8

20
00

 D
ec

./2
001

 Feb
.

20
01

 Apr.
/20

01
 Ju

ne

20
01

 Aug
./2

001
 O

ct.

20
01

 D
ec

./2
002

 Feb
.

20
02

 Apr.
/20

02
 Ju

ne

20
02

 Aug
./2

002
 O

ct.

20
02

 D
ec

./2
003

 Feb
.

20
03

 Apr.
/20

03
 Ju

ne

20
03

 Aug
./2

003
 O

ct.

20
03

 D
ec

./2
004

 Feb
.

20
04

 Apr.
/20

04
 Ju

ne

20
04

 Aug
./2

004
 O

ct.

20
04

 D
ec

./2
005

 Feb
.

20
05

 Apr.
/20

05
 Ju

ne

20
05

 Aug
./2

005
 O

ct.

20
05

 D
ec

./2
006

 Feb
.*

20
06

 Apr.
/20

06
 Ju

ne
*

20
06

 Aug
./2

006
 O

ct.
*

20
06

 D
ec

./2
007

 Feb
.*

20
07

 Apr.
/20

07
 Ju

ne
*

20
07

 Aug
./2

007
 O

ct.
*

20
07

 D
ec

./2
008

 Feb
.*

20
08

 Apr.
/20

08
 Ju

ne
*

20
08

 Aug
./2

008
 O

ct.
*

20
08

 D
ec

./2
009

 Feb
.*

 

Figure  A8  –  E
years .  

vo lu t ion  o f  the  quar ter ly  unemplo yment  ra te  in  the  Nether lands  for  the  las t  9  

Min Max Mea

 

Unemployment stat ist ics:   

n Median Std. Dev. 
3.20% 7.00% 4.96% 4.85% 1.13%
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Figure  A9  –  Re la t i ve  change in  unemployment  –  D is t r ibut ion  and Normal  f i t .   

 

Relat ive change in unemployment – histor ical  s tat is t ics:  

Mean Std. Dev. Median 
0.00193 0.040335285 0

 

Normal f i t  – est imated parameters: 

Mean Std. Dev. 
0.00192985 0.0403353
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Figure  A10  -  Unemployment  s imula t ions  –  1000 paths  for  12  month  per iod  

 

Unemployment paths (Standard Scenar io) :    

)_1(*1 ttt rununun +=+  

where ),(~_ __ runrunNrun σμ  is a random relat ive change fo l lowing a normal-
ata for  the last  9 years) :  

 

distr ibut ion wi th the fol lowing parameters (est imated on d

0.00192985=_ runμ  (mean) 

0.0403353_ =runσ  (s tandard deviat ion) 
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Figure  A11  -  Unemployment  s imula t ions  –  1000 paths  for  12  month  per iod  

 

nemployment paths (DNB Base Scenar io) :   U

)_1(*1 ttt rununun +=+  

where ),(~_ __ runrunNrun σμ  is a random relat ive change fo l lowing a normal-
distr ibut ion wi th the fol lowing parameters (est imated n data for  the last  9 years) :   o

 

0.0335_ =runμ  (mean) 

0.0403353_ =runσ  (s tandard deviat ion) 
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Figure  A12  -  Unemployment  s imula t ions  –  1000 paths  for  12  month  per iod  

 

Unemployment paths (DNB Stress Scenar io):   

)_1(*1 ttt rununun +=+  

where ),(~_ __ runrunNrun σμ  is a random relat ive change fo l lowing a normal-
distr ibut ion wi th the fol lowing parameters (est imated on data for  the last  9 years) :  

 

0.0405_ =runμ  (mean) 

0.0403353_ =runσ  (s tandard deviat ion) 
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Figure  A13  –  Expected   

1000  s imula t ions  w

PD Dis t r ibut ion  o f  mor tgage  cont ract  l :  %30, =lDTIX  

i th  in i t ia l  %81.4, =lUNX  and  in i t ia l  %5.1, =lIRX  
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 F igure  A14  –  Expected  LGD Dis t r ibut ion  o f  mor tgage  cont ract  l :  %30, =lDTIX  

1000  s imula t ions  w i th  in i t ia l  %81.4, =lUNX  and  in i t ia l  %5.1, =lIRX  
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Figure  A15  –  Expected  Loss  D is t r ibut ion  o f  mor tgage  cont ract  

1000  s imula t ions  w i th  in i t ia l  

l :  %30, =lDTIX  

%81.4, =lUNX  and  in i t ia l  %5.1, =lIRX  

 

Note that  even though PD is  not that low the Expected Losses are very smal l  

because only ≈  50% of the defaul ts resul t  in actual  loss 

 



 

 

 

 

63

 

 

Figure  A16  -  STORM 2007- I  B .V .  Col la tera l  pool  character is t ics .  

 

 

F igure  A17  -  STORM 2007- I  B .V .  Notes  St ructure  

 

 

 



 

 

 

 

64

 

Figure A18 -  Expected  Loss  Dis t r ibut ion  o f  Col la tera l  pool  (DNB Base  Scenar io  w i th  MVD

20%)  –  2  year  s imula t ion  per iod  -  5000  s imula t ions    

 

 

 

 

 

Figure  A19  -  Expected  Loss  D is t r ibut ion  o f  the  Notes  (DNB Base  Scenar io  w i th  MVD 20%)  –   

year  s imula t ion  per iod  -  5000  s imula t ions    

 

 

2  
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Figure  
2

A20  -  Expected  Loss  D is t r ibut ion  o f  Col la tera l  pool  (DNB Base  Scenar io  wi th  MVD 
0%)  –  3  year  s imula t ion  per iod  -  5000  s imula t ions    

 

 

 

 

Figure  A21  -  Expected  Loss  D is t r ibut ion  o f  the  Notes  (DNB Base  Scenar io  w i th  MVD 20%)  –   

year  s imula t ion  per iod  -  5000  s imula t ions    
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