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Abstract

This thesis studies the effects of augmented and synthetic data in detecting breast cancer using Convo-
lutional Neural Networks (CNNs). Breast cancer is a significant health concern, yearly approximately
2.3 million new cases are reported worldwide and 670.000 women die of breast cancer every year. Dur-
ing routine scanning, approximately 25% of breast cancer cases are missed. Despite the many research
and high expectations surrounding the use of convolutional neural networks as detection methods, their
effectiveness is often limited by the availability of large, well-curated datasets. This study researches
the use of data augmentation techniques and Generative Adversarial Networks (GANs) to generate
synthetic data, to enhance the performance of CNNs in breast cancer detection. The study is struc-
tured around four subquestions to first study the performance of various CNN architectures, then the
effects of data augmentation, the effects of synthetic data, and finally the robustness of the models.
EfficientNet achieved the highest performance of several CNN architectures, with an F1-score and bal-
anced accuracy of 0.95 and 0.93 respectively. The EfficientNet model was further used as a baseline
model to evaluate the effects of augmented and synthetic data. The addition of augmentation and
synthetic data yielded varying results. Adding moderate amounts of augmented and synthetic data
slightly improved performance, but further increases did not lead to additional improvements. Addi-
tionally, to evaluate the generalization of the model, an adversarial attack was performed. This showed
that the use of data augmentation and synthetic data can lead to a significant improvement in terms of
model robustness. However, careful consideration of the quantity, quality, and diversity of the data is
crucial for the development of effective and robust models. Future research should continue to explore
and improve these techniques, with a focus on mitigating overfitting and enhancing model robustness.
The study also highlights the challenges in training and evaluating CNN models for medical image
analysis, including dataset quality, GAN stability, and variability in external datasets. These findings
contribute to the ongoing efforts to improve early breast cancer detection, ultimately contributing to
better patient outcomes.
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Chapter 1

Introduction

Breast cancer remains a leading global health concern, affecting millions of women every year. With
approximately one in seven women facing a breast cancer diagnosis at some point in their lives, it is the
second most common cancer for women worldwide [12]. Early detection is crucial as the disease can
progress rapidly, decreasing survival rates. Despite advancements in medical technology and treatment,
many lives are still lost to breast cancer every year. To address this, many countries have established
screening programs to detect the disease at an early stage. These programs have been effective in
saving lives, however, during routine screening 25% of breast cancer cases are missed [13]. This issue
highlights the difficulties in accurately interpreting mammographic images and the need for improved
diagnostic methods.

Recent research has shown that artificial intelligence (AI), particularly convolutional neural networks
(CNNs), holds significant promise for improving mammogram-based breast cancer detection. Computer
Aided Diagnosis (CAD) systems are systems designed to assist radiologists in classifying mammograms.
Studies have demonstrated that CNNs can achieve high accuracy in detecting cancerous lesions when
implemented in CAD systems [14]. However, despite these promising results in research settings, these
advancements have not yet translated into clinical practice. Challenges such as limited data availability
and the large variability in real-world cases contribute to this gap.

Problem Statement

The primary challenge in developing effective CNN models for breast cancer detection is the scarcity of
large, well-annotated datasets. In medical imaging, obtaining such extensive datasets is often imprac-
tical due to privacy regulations [15], the high cost of annotation by experts, and the imbalance in class
distributions. Obtaining large well-curated datasets takes a lot of time and collaborative efforts by
many stakeholders. These challenges result in the exploration of techniques to augment the available
data and address class imbalance, thereby enhancing the performance of CNNs in detecting breast
cancer.

Proposed Solution

This research aims to address these issues by exploring innovative approaches to improve the perfor-
mance and applicability of CNNs in breast cancer detection. By investigating techniques such as data
augmentation and synthetic data generation, this study seeks to enhance the accuracy and reliability
of mammographic analysis, ultimately contributing to better diagnostic tools and patient outcomes.

Data augmentation is a technique that is used to artificially expand the size of a training data set by
generating modified versions of existing data [16]. Common augmentation techniques include rotations,
flips, translations, and the addition of noise. These transformations help improve the robustness and
generalization ability of CNN models by exposing them to a variety of image variations. Although
data augmentation can mitigate overfitting and improve performance, its effectiveness is limited by
the diversity and quality of the original dataset [16]. An alternative approach to augmenting training
data is the generation of synthetic data using Generative Adversarial Networks (GANs) [17]. GANs
are a type of neural network that generates realistic images by learning the underlying distribution of
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the training data. Conditional GANs (cGANs), an extension of GANs, allow the generation of images
conditioned on specific labels, making them suitable for creating synthetic mammographic images with
accurate labels. The potential of cGANs to generate high-quality synthetic data could address the
limitations of traditional augmentation techniques. cGANs can provide more diversity and a larger
amount of training data.

The purpose of this study is to investigate the impact of data augmentation and synthetic data gen-
erated by GANs on the performance and generalisability of CNNs in detecting breast cancer from
mammographic images. The primary research question addressed is:

How does the use of augmented and synthetic data impact the effectiveness of convolutional
neural networks in detecting breast cancer from mammograms?

To address this question, the following subquestions are formulated regarding breast cancer detection:

1. What are the performances of different CNN architectures in detecting breast cancer from mam-
mographic images?

2. How do traditional data augmentation techniques affect the performance of CNN models?

3. How does the inclusion of synthetic data generated by GANs impact the performance of CNN
models?

4. How does the inclusion of augmented and synthetic images impact the generalization ability of
CNN models?

By exploring these subquestions, the study aims to evaluate the performance of CNN architectures,
data augmentation techniques and the use of synthetic data, ultimately providing insights to answer
the main research question.

Structure of the Thesis

The structure of the thesis is as follows: Chapter 2 provides background information, discussing breast
cancer, detection methods, the current status of Computer-Aided Detection systems, and the challenges
of acquiring data sets for breast cancer detection through a literature review. Chapter 3 describes the
dataset used in this study, including its source, characteristics, and preprocessing steps. Chapter 4
discusses neural networks and Convolutional Neural Networks, covering data augmentation techniques
and Generative Adversarial Networks. Chapter 5 details the methodology, including CNN architectures,
data preprocessing steps, augmentation techniques, and the implementation of GAN used in this study.
Chapter 6 presents the experimental results and analysis, comparing the performance of various CNN
models with and without augmentation and synthetic data, and discusses the findings. Finally, chapter
7 provides the discussion and conclusion, where also the limitations, and potential future research
directions are discussed.
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Chapter 2

Background

This chapter provides an overview of breast cancer, including its stages, survival rates, and methods of
detection. It also explores the history and current status of Computer-Aided Diagnosis (CAD) systems.
The chapter reviews relevant literature and discusses the challenges facing these technologies, including
privacy regulations, data annotation, and potential biases.

2.1 Breast cancer

Breast cancer is a large global health concern. In 2022, around 2.3 million new cases were reported,
with 670.000 deaths globally [18]. It affects approximately one in seven women at some point in their
lives, making it the second most common cancer worldwide and the number one cancer among women
globally [19].

2.1.1 Stages of Breast Cancer

Breast cancer is typically classified into stages based on the severity of the illness. The staging system
most often used is the TNM system, which considers the size of the tumour (T), the involvement of
lymph nodes (N) and the occurrence of distant metastases (M). Figure 2.1 shows the different stages
of breast cancer. Stage 0 is the earliest stage of breast cancer, in this stage, abnormal cells are found
in the milk ducts. This is a non-invasive cancer with no indication of cancerous, or abnormal cells in
the surrounding tissue [20]. This stage is highly treatable with surgical and radiation therapy. Invasive
breast cancer, stages I to III, indicates that the cancer has spread beyond the ducts or lobules into
surrounding breast tissue. Stages I and II mean there is a localised invasive disease, while stage III
stands for a locally advanced cancer that may have spread to nearby lymph nodes [20]. The treatment
of invasive breast cancer involves a combination of surgery, chemotherapy, and radiation therapy. Stage
IV, also known as metastatic breast cancer, is the most advanced stage of cancer. In this stage, cancer
cells have spread to other organs such as the lungs, liver, bones, or brain. This stage of cancer is often
not curable, the focus is on controlling the disease and improving quality of life through treatments
such as chemotherapy, hormonal therapy, targeted therapy, and supportive care [20]. While metastatic
breast cancer is not curable, advances in treatment have led to improved survival rates and quality of
life for many patients.

2.1.2 Survival rate

The survival rates for cancer patients vary according to the stage of the disease at the time of diagnosis.
People who are diagnosed with non-invasive cancer have higher survival rates than those diagnosed with
advanced cancers. The American Cancer Society uses the Surveillance, Epidemiology, and End Results
(SEER) database, maintained by the National Cancer Institute (NCI), to provide survival statistics for
different types of cancer. The SEER database tracks 5-year relative survival rates for breast cancer in
the United States, based on how far the cancer has spread [21]. The relative survival rate compares
women with a certain stage of breast cancer to women in the overall population. For example, if the
5-year relative survival rate for a specific stage of breast cancer is 90%, it means that women who have
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Figure 2.1: The stages of breast cancer [1]

that cancer are, on average, about 90% as likely as women who don’t have that cancer to live for at
least 5 years after being diagnosed [21]. The cancer is grouped in three different stages; localized (stage
0), regional (stage I, II, and III) and distant (stage IV). The survival rates can be found in table 2.1.

Table 2.1: 5-year relative survival rates for breast cancer

Stage 5-year Relative Survival Rate

Localized 99%
Regional 86%
Distant 31%

Early detection of breast cancer is crucial to increase the chances of successful treatment, especially
when the disease is in its early stages and survival rates are highest.

2.1.3 Breast cancer detection

Given the importance of early detection, numerous countries, including the Netherlands, have imple-
mented breast cancer screening programs. In the Netherlands, the Population-Based Breast Cancer
Screening Program invites women aged 50 to 75 years to be screened every two years [13]. The goal
of this screening is to detect breast cancer before the patient experiences any symptoms. This early
detection can prevent the cancer from spreading, this increases the likelihood of survival. Every year,
approximately 7000 women in the Netherlands are diagnosed with a tumour through the screening
program, this results in 1300 fewer deaths from breast cancer each year [13].

Screening programs rely on the use of mammography to detect breast cancer. A mammography screen-
ing exam usually involves two or more X-ray images of each breast, these images are referred to as
mammograms. Mammograms serve two purposes: screening and diagnosis. Screening mammograms
are used to screen asymptomatic women for breast cancer, whereas diagnostic mammograms are used
when symptoms or abnormalities are present. Diagnostic mammograms may also be conducted to
evaluate changes identified during a screening mammogram or in special circumstances, such as when
breast implants are present.

While mammography is a crucial tool for detecting breast cancer, it is not without limitations. Ap-
proximately 25% of breast cancers may be missed during routine screenings [13]. These missed cases
are referred to as false negatives. False negatives may occur due to dense breast tissue or a small
tumour size, this makes the tumour hard to detect. False negatives in breast cancer screening present
significant risks, primarily due to missed opportunities for early detection and treatment. A result of
delayed diagnosis from false negatives is that the disease is allowed to progress further. This can result
in more tumour growth, an increased likelihood of the spreading of cancer, and a reduction in treatment
options. This results in poorer treatment outcomes and decreased survival rates. Furthermore, false
negatives can give a false sense of security, which may lead patients to delay seeking further evaluation
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or treatment until symptoms get worse. False negatives also lead to financial burdens, this is caused by
the need for more extensive and costly treatments for advanced-stage cancer. To address these risks,
ongoing efforts are required to improve the sensitivity and accuracy of screening methods, enhance
physician awareness and education, and ensure timely access to appropriate healthcare services for all
individuals at risk of breast cancer. Early detection remains essential in reducing the burden of breast
cancer and improving patient outcomes.

For every 1000 women screened, around 100 may be called back for further tests because of suspicious
findings, of these, only 2-7 cases are typically confirmed as cancer [13]. False positive results cause many
problems, they can lead to unnecessary invasive procedures such as biopsies, causing discomfort and
potential complications. False positives can also trigger emotional distress, affecting mental well-being
long after the results are clarified. Another issue that arises is overdiagnosis. Overdiagnosis refers
to situations where benign lesions are discovered, but this detection is not significant as these lesions
would not have led to any symptoms or issues if they had not been diagnosed [22]. Overdiagnosis of
benign lesions can result in unnecessary treatments, exposing patients to risks without benefits [23].
There can be a financial burden for both individuals and healthcare systems due to follow-up tests and
treatment. High rates of false positives strain healthcare resources and can undermine confidence in
screening programs. While false-positive results are unavoidable in screening, efforts to minimise their
occurrence and mitigate the associated harms are essential.

To improve detection rates, there’s ongoing work to enhance mammography technology and combine
it with other screening methods. Early detection remains critical since it offers the best chance of
successful treatment and improves survival rates.

2.2 Computer-Aided Diagnosis

Over the past few decades, computer-aided diagnosis (CAD) has emerged as a popular field of re-
search and development. CAD systems are computerised tools that assist clinicians in making accurate
diagnoses by detecting abnormalities within medical images. These systems employ machine learn-
ing algorithms, such as Support Vector Machines (SVMs), Artificial Neural Networks (ANNs), and
K-nearest neighbours (KNNs), to analyse patterns and features in medical images. This can help clini-
cians in making more accurate diagnoses. These systems are versatile and can be applied across various
medical imaging modalities, including mammography, magnetic resonance imaging (MRI), computed
tomography scans, ultrasound, and more. The primary function of CAD is to provide clinicians with
a second opinion by processing imaging data and extracting relevant information indicative of certain
disease outcomes. CAD can also help in lesion detection by highlighting suspicious areas that may
require further evaluation, characterising abnormalities, assisting in cancer staging, guiding treatment
planning, evaluating treatment responses, monitoring for disease recurrence, and predicting prognosis
[24].

The development of computer-aided detection systems for various diseases started in the 1980s. Several
researchers have attempted to automate the detection of breast abnormalities. These initial studies
showed potential in CAD systems, however, there were limitations due to a lack of high-quality data and
limited computational resources [25]. Systematic research and development of CAD systems started in
the early 1980s. In 1998, the U.S. Food and Drug Administration (FDA) approved the first commercial
computer-aided detection (CAD) system to assist in the detection of breast cancer in screening mam-
mography. Since then, research in this field has been expanding, with advancements in technology and
algorithms continually improving CAD performance.

2.2.1 Literature review CAD systems

This section provides an extensive literature review and a comprehensive analysis of the existing research
on the application of CAD in breast cancer diagnosis. It is divided into two subsections: traditional
Machine Learning-based CAD systems and Deep Learning-based CAD systems.
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Machine Learning based CAD systems

The initial findings of computer-aided diagnosis systems were very promising. The original purpose
of CAD was to identify cancers that might otherwise be overlooked by radiologists. A study on CAD
and mammographic screening revealed that CAD marked 77% of cancers (88 of 115) that would have
otherwise been overlooked at the screening [26]. Other studies demonstrated the potential of CAD
systems to identify cancerous lesions that were not visible to the human eye. One study found that
CAD was able to detect 40% of cases that developed into cancers [27]. This could potentially accelerate
cancer detection by up to 2-12 months[28].

Many studies have been conducted to research machine learning methods for detecting breast cancer
from mammograms. A comprehensive systematic review of 154 articles sourced from various scientific
databases was conducted [14]. Among the articles, 98 studies used mammogram databases for their re-
search. The most common method used was the support vector machine, which was used in 50 articles.
The SVM demonstrated a wide range of accuracy, from 64.7% to 100%. Two studies obtained flawless
accuracy, while 19 others achieved high accuracy within the range of 90% to 99.5%. ANNs were also
commonly used, appearing in 34 papers. Notably, 20 of these studies reported accuracy between 90%
and 98.14%, while the others fell within the range of 71% to 89.38%. Additionally, KNNs were used in
14 papers, with the highest accuracy recorded at 98.69%. Other methods used included decision trees,
random forests, naive Bayes, etc.

These findings demonstrate the prominence of SVM, followed closely by ANN and KNN, in the realm
of mammogram data analysis. Several studies have demonstrated exceptional accuracy, especially with
SVM and ANN, suggesting their efficacy in this domain [14].

Deep Learning based CAD systems

In recent years, the field of deep learning has experienced exponential growth. This growth is largely
due to increased computational power, the availability of large-scale datasets, and innovations in algo-
rithmic techniques. This progress has led to significant breakthroughs in various fields, including the
analysis of medical images. Researchers have increasingly studied deep learning models for tasks like
detecting breast cancer from mammograms which shows promising results.

Where traditional ML-based diagnosis has shown great promise, it often faces challenges in identifying
the most relevant features for effective classification. In contrast, Deep Learning (DL) does not use
any feature selection which simplifies the process. However, compared to traditional ML methods,
deep learning requires a large volume of labelled data to obtain an accurate prediction. Despite this
requirement, deep learning systems have demonstrated good diagnostic performance, particularly in
scenarios involving low-quality breast images or complex variations in the disease.

S. Bharathi et al provided a systematic review of the literature on artificial neural networks-based
models for the diagnosis of breast cancer via mammography [29]. The research presents different deep
neural network models applied to different breast cancer classification datasets. Most studies employ
CNNs for classification tasks using datasets such as DDSM, INBreast, and MIAS, with evaluation
metrics including accuracy, AUC, sensitivity, and specificity. The results obtained from various deep
learning models applied to breast cancer diagnosis include high accuracies, ranging from 65% to 100%,
across different datasets and architectures, with models like Faster R-CNN achieving a sensitivity of
95% on the INbreast dataset and ROI-based CNN achieving an accuracy of 97% on the DDSM dataset.
Transfer learning techniques and novel approaches like Multitask Deep Neural Networks and Generative
Adversarial Networks combined with CNNs have also shown promising results, further highlighting the
effectiveness of deep learning in breast cancer diagnosis. [29]

2.2.2 CAD systems in clinical practice

After the success of CAD systems in the literature, CAD systems were implemented in clinical trials.
Unfortunately, the results of these trials did not match the expectations. Several studies have been
conducted to compare radiologists’ reading with and without CAD systems or to compare single radi-
ologist reading with CAD to double reading mammographies. Gromet conducted a clinical trial in a
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single centre to compare double reading with radiologists to single reading with a CAD system [30].
They reported that the sensitivity and recall rate from double reading were 88% and 11.9%, and single
reading with CAD were 90.4% and 10.6%, respectively. This is not a major difference, Gromet also
looked at the results of single reading without CAD, where the sensitivity and recall rate were 81.4%
and 10.2% respectively. Single reading with CAD, therefore achieved 11% higher sensitivity than the
first reading and a 2.4% higher sensitivity than the double reading. Single reading with CAD also found
a 3.9% higher recall rate than single reading, but an 11% lower recall rate than double reading. Gilbert
also conducted a clinical trial, comparing single reading using CAD to double reading, conducted in
three separate centres [31]. Each of the three centres enrolled around 9000 patients. The results showed
that the sensitivity of double reading was on average 87.7%, and for single reading 87.2%. The recall
rates in the two centres were very similar, but the third centre had significantly higher recall rates in
single reading with CAD than double reading, 5.2% vs 3.8%, resulting in an overall recall rate over all
centres at 3.9% vs 3.4%. Taylor [32] conducted a meta-analysis of studies comparing single reading with
CAD or double reading to single reading. The pooled results did not show significant improvement,
but the study revealed the performance of radiologists varied over a wide range.

A 2015 study compared the performance of 271 radiologists across 66 facilities in the Breast Cancer
Surveillance Consortium, evaluating a total of over 600.000 mammograms with and without CAD [33].
The results showed that the sensitivity was 85. 3% with CAD and 87.3% without CAD. The specificity
was 91.6% with CAD and 91.4% without. These results suggest that the use of CAD did not improve
the performance of digital screening mammography in terms of sensitivity and specificity [33]. Another
study in 2007 [34] found no change in cancer detection rate with and without CAD (4.2 vs 4.15 per
1000), a non-significant increase in sensitivity (84% vs 80.4%), but a significant decrease in specificity
(87.2% vs 90.2%), resulting in a nearly 20% increase in biopsy rate and lower overall accuracy (AUC,
0.871 vs 0.919).

The clinical environment turned out to be far more complex than the research setting. These results
from clinical setting resulted from several technical limitations, the development of CAD relied on
limited computational resources, small datasets and poor image quality [35].

2.2.3 Current status CAD systems

Despite its potential, CAD-based diagnosis has limitations. Ensuring the generalisability and robust-
ness of CAD systems remains a challenge, especially when dealing with diverse image datasets and
patient variations. Overcoming challenges such as a lack of data, the need for high-quality data, and
appropriate annotation is important for realizing its potential in real-world clinical scenarios.

The current performance of CAD systems is promising, but not sufficient to make CAD systems stan-
dalone detection and diagnosis clinical systems [36]. Despite significant interest and investment, tradi-
tional computer-aided detection has led to minimal or no significant improvement in performance and
results [37]. Currently, there are more than 20 FDA-approved AI applications for breast imaging, but
adoption and utilisation are widely variable and generally low [37]. As of now, Denmark is the only
country to have implemented a deep learning-based CAD system in their population-based screening
program. The current state of CAD systems for breast cancer detection is a topic of ongoing research,
with a focus on improving the accuracy and efficiency of these systems [36][37].

2.3 Challenges for CAD systems

The application of deep learning models in medical imaging has shown promising results in disease
detection in the literature. However, clinical practice turned out to be far more complex. Having a
high-quality data set plays an important role in the effectiveness of deep learning models [38]. Deep
learning algorithms, such as convolutional neural networks, are designed to automatically learn patterns
and features from raw data. With a large amount of diverse data, deep learning models can capture a
wide range of variations, complexities, and nuances present in image data [39]. By training a model on
a large, well-curated dataset, it is possible to develop robust and generalizable models that are capable
of accurately detecting various diseases and abnormalities [39].
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Large datasets are essential for training deep learning models with sufficient complexity and capacity
to learn hierarchical representations of medical image features. Moreover, large datasets enable the
regularisation of deep learning models, helping to prevent overfitting and improve their ability to gen-
eralise to unseen data [40]. Therefore, the availability of large, well-curated datasets is of importance
for the realisation of the potential of deep learning in medical imaging and the advancement of CAD
systems for improved patient care.

2.3.1 Privacy Regulations

The sharing of sensitive data remains a significant challenge in medical research [15]. Mammographic
images contain sensitive medical information, including details about a person’s health status and po-
tentially identifiable characteristics. Therefore, it is essential to implement measures to protect patient
privacy and comply with ethical standards. Obtaining consent from patients for the use of their medical
images in research is crucial. Sensitive medical data must be managed in a privacy-preserving manner.
To achieve this, data must follow a legal framework such as HIPAA (Health Insurance Portability and
Accountability Act) [41] in the United States or GDPR (General Data Protection Regulation) [42]
in the European Union. These frameworks specify the responsibilities of organisations in protecting
the privacy of personal health information [15]. However, adhering to these frameworks can be a big
challenge and financial burden for healthcare organisations [15].

Furthermore, the anonymisation of data through techniques such as de-identification is essential to
mitigate the risk of unintended disclosure of personal information [43]. But even with these precautions
in place, the potential for re-identification or unauthorised access remains a concern This necessitates
robust security measures throughout the data collection, storage, and usage processes. Therefore,
addressing privacy concerns effectively is essential for the ethical and responsible use of mammographic
datasets in scientific research.

2.3.2 Data Annotation

To create a well-annotated dataset, each image must be reviewed and annotated by trained professionals
to identify and classify abnormalities such as masses and calcifications. Annotating mammograms re-
quires expertise and adherence to standardized terminology and classification systems such as BI-RADS
(Breast Imaging Reporting and Data System) [44]. Additionally, ensuring consistency and accuracy
among annotators is very important to maintain the integrity of the dataset. Furthermore, metadata
such as patient demographics, imaging parameters, and clinical outcomes need to be collected and
integrated into the dataset. Overall, creating a labelled mammogram dataset demands collaboration
among healthcare providers, researchers, and data annotators, along with rigorous quality control mea-
sures to produce a reliable resource for developing and validating deep learning models in breast cancer
detection and diagnosis.

2.3.3 Biased data

Fairness in healthcare is based on the fundamental ethical principles of justice, beneficence, and non-
maleficence. Healthcare systems must provide access to high-quality care for all individuals without
discrimination. Unbalanced data, in the context of machine learning and data analysis, refers to a
situation where the distribution of classes or labels within a dataset is heavily skewed. This means that
one or more classes are significantly overrepresented or underrepresented compared to others. In other
words, there is an imbalance in the number of instances that belong to each class. Unbalanced data is
a common challenge in many real-world applications, including medical diagnosis, where positive cases
are less common compared to negative cases. Managing unbalanced data is important for developing
accurate and reliable models. When class imbalances are not addressed, it can lead to biased model
predictions and decreased performance in minority classes.
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Chapter 3

Literature

Artificial Neural Networks and Convolutional Neural Networks have revolutionised the field of artificial
intelligence, providing powerful tools for complex tasks such as image recognition, natural language
processing, and more. This chapter provides an in-depth exploration of these models, their architec-
ture, and their applications. Furthermore, the chapter discusses data augmentation and enhancement
methods, evaluating various data augmentation techniques, transfer learning, and the utilization of
generative adversarial networks.

3.1 Neural Networks

In the last years, Artificial Neural Networks have emerged as a fundamental component of artificial
intelligence. Artificial Neural Networks are models that are structurally and conceptually inspired by
the human biological nervous system [45]. ANNs consist of neurons, organized in layers. Each neuron
receives input signals, processes them, and produces an output signal [45].

An artificial neuron is made up of a single layer of input nodes that are directly connected to an output
node. Each node in the input layer represents a specific feature or attribute of the input data. The
nodes in the input layer are connected to the output layer with a certain weight, which signifies the
strength of the connection between the node and the output. The weighted inputs are added together
to form a linear combination, which is then passed through an activation function to produce a final
output [45]. Figure 3.1 visualizes an artificial neuron, having Xi with i ∈ {1, 2, .., k} input signals,
where each input has a certain weight wi with which it contributes to the output [2].

Figure 3.1: Artificial Neuron [2]

The learning process in the perceptron model involves adjusting the weights to make accurate predic-
tions. This process starts with assigning random weights to the input, after this, a summation and
activation function is applied. This will yield a predicted output which is compared to the actual out-
put. If the inputs are misclassified the weights are adjusted. This is an iterative process that is repeated
until the neuron accurately classifies the inputs. An artificial neural network can learn complex features
and patterns. A deep neural network is a neural network with a certain level of complexity, usually
having more than two layers [46]. Each layer adds complexity to the model while allowing the model
to process the inputs concisely to output the ideal solution [46].
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3.1.1 Activation functions

An important feature of the neuron is the activation function. An activation function is a function
that is added to an ANN to help the network learn complex patterns in the data [47]. The activation
function takes the output signal from the previous cell and converts it into some form that can be
taken as input to the next cell. Activation functions are crucial as they introduce non-linearity into
the network, this allows it to learn and compute non-linear mappings from inputs to outputs. Without
activation functions, a neural network’s output would be a simple linear function. The non-linearity en-
ables neural networks to handle complicated, high-dimensional, and non-linear datasets effectively[47].
Activation functions transform the summed weighted input from the neuron into an output that can
be fed to the next layer. The most commonly used activation functions are sigmoid, tanh, ReLU, and
Leaky ReLU [48]. Each of these functions contributes to the network’s ability to learn complex data
representations.

Choosing the appropriate activation function for a neural network depends on the specific problem,
network architecture, and the characteristics of the activation functions. For binary classification prob-
lems, the sigmoid function is suitable since it outputs values between 0 and 1, representing probabilities
[48]. The tanh function, which outputs values between -1 and 1, is beneficial when zero-centered data
is needed [47]. Both sigmoid and tanh can suffer from vanishing gradients. The ReLU function is
commonly used in deep networks, especially for image, speech, or audio tasks, due to its ability to
mitigate the vanishing gradient problem and speed up training [48]. The ReLu function can sometimes
result in neurons becoming inactive, a solution is the Leaky ReLu activation, which addresses this by
allowing a small gradient when inputs are negative [48]. For multi-class classification problems, the
softmax function is suitable as it converts logits into probabilities that sum to 1.

Figure 3.2: Comparison of various activation functions. Graphs were created using Python’s Matplotlib
library.
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3.1.2 Forward propagation

Forward propagation is the initial phase of training a neural network, where input data is passed
through the network to generate an output. During forward propagation, input data is fed to the
neural network and then propagated through each layer of the network. It involves the following steps:

• Input Layer: The input data is fed into the input layer of the neural network.

• Hidden Layers: The input data is processed through one or more hidden layers. Each neuron
in a hidden layer receives inputs from the previous layer, applies an activation function to the
weighted sum of these inputs, and passes the result to the next layer.

• Output Layer: The processed data moves through the output layer, where the final output of
the network is generated. The output layer typically applies an activation function suitable for
the task, such as softmax for classification or linear activation for regression.

• Prediction: The final output of the network is the prediction or classification result for the input
data.

Let’s consider a neural network with L layers. Let X be the input data. For each layer l (where
l = 1, 2, . . . , L):

• W [l] is the weight matrix for layer l.

• b[l] is the bias vector for layer l.

• Z [l] is the linear combination of inputs for layer l.

• A[l] is the activation output for layer l.

To perform forward propagation, the following steps must be followed for each layer l (where l =
1, 2, . . . , L):

1. Compute the linear combination of the inputs. For the input layer, set A[0] = X. The linear
combination can be calculated using the following equation:

Z [l] = W [l]A[l−1] + b[l] (3.1)

2. Apply the activation function σl to the linear combination to obtain the activation output:

A[l] = σl(Z
[l]) (3.2)

The goal of forward propagation is to calculate the predicted outputs of the neural network based on
the input data. By making a prediction, the model performance can be evaluated by a chosen loss
function. The loss function indicates how far the model’s predictions are from the actual true values.
This will help the optimization process by adjusting the model’s weights to make better predictions.

3.1.3 Loss function

Loss functions, also known as cost functions or objective functions, are very important in neural net-
works as they quantify the difference between the predicted outputs and the actual target values. This
measurement of error helps the optimization process, by helping the model to improve its predictions
over time. Different types of loss functions are used depending on the nature of the problem. For
regression tasks, the Mean Squared Error (MSE) is commonly used. MSE calculates the average of
the squares of the errors between predicted and actual values [49]. The MSE function is defined by
equation 3.3 where yi is the ith observed value, ŷi is the corresponding predicted value, and N is the
number of observations.

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2 (3.3)
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For classification tasks, the Cross-Entropy Loss is often employed. Cross-entropy loss measures the
difference between the predicted probabilities and the actual labels in classification tasks [50]. This
can be used to evaluate how well the model’s predictions are. There are two types of cross-entropy loss
depending on the classification task, binary and multiclass.

In binary classification, there are only two possible classes. Binary Cross-Entropy loss (BCE) calculated
the difference between the actual binary labels and the predicted probabilities. The formula for binary
cross-entropy loss is:

LBCE = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (3.4)

In this formula again yi is the actual label, ŷi is the predicted probability of the positive class, and N
is the number of instances.

In multiclass classification, where there are more than two classes, Categorical Cross-Entropy loss
(CCE) is used. CCE compares the predicted probability distribution over the classes with the actual
distribution, this is usually one-hot encoded. Categorical cross-entropy uses the following equation:

LCCE = − 1

N

N∑
i=1

C∑
c=1

yic log(ŷic) (3.5)

Here, yic is 1 if the actual label if instance i is c and 0 otherwise, ŷi is the predicted probability of
instance i being class c. And again, N is the number of instances and C is the number of classes.

3.1.4 Backward propagation

Backward Propagation (BP), was first introduced in 1986 by Rumelhart [51]. Backward propagation,
also known as backpropagation, is the process of adjusting the weights to minimize the loss function.
After forward propagation is performed and the loss is calculated, backward propagation calculates the
gradient of the loss function with respect to each weight [51].

This involves computing the partial derivatives of the loss function with respect to the network’s
weights, starting from the output layer and moving backwards through the hidden layers to the input
layer. These gradients indicate how much the loss would change with a small change in each weight.
Using these gradients, the weights are updated in the opposite direction of the gradient by a certain
amount determined by the learning rate. This iterative process of forward propagation followed by
backpropagation continues until the network’s performance converges to an optimal or satisfactory
level, effectively reducing the error and improving the network’s predictions.

Backpropagation follows the following steps:

1. Compute the Loss Gradient at the Output Layer: First, compute the gradient of the loss
function with respect to the output A[L]. Let Y be the true labels and L be the loss function.

dA[L] =
∂L

∂A[L]
(3.6)

2. Propagate the Gradient Back Through the Network: For each layer l (where l = L,L −
1, . . . , 1):

• Compute the Gradient of the Linear Combination: Calculate the loss gradient with
respect to Z [l], which involves the derivative of the activation function σ′:

dZ [l] = dA[l] ∗ σ′(Z [l]) (3.7)

where ∗ stands for element-wise multiplication.
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• Compute the Gradients of the Weights and Biases: Calculate the loss gradients with
respect to the weights W [l] and biases b[l]:

dW [l] =
1

N
dZ [l](A[l−1])T (3.8)

db[l] =
1

N

m∑
i=1

dZ
[l]
i (3.9)

where m is the number of samples.

• Compute the Gradient of the Activation from the Previous Layer: Calculate the
gradient with respect to the previous layer’s activation A[l−1] to propagate the error back-
wards:

dA[l−1] = (W [l])T dZ [l] (3.10)

3. Update the Parameters:

• Using the gradients computed, update the weights and biases for each layer l using an
optimization algorithm like gradient descent. If η is the learning rate:

W [l] = W [l] − ηdW [l] (3.11)

b[l] = b[l] − ηdb[l] (3.12)

This iterative process updates the parameters of the weights and bias to minimize the difference between
the predicted value and the target value. This process helps the neural network to learn the patterns
in the training data, improving its accuracy and generalisation to new, unseen data.

3.2 Convolutional Neural Networks

Convolutional neural networks are a type of deep learning algorithm designed to process arrayed data,
particularly images. Unlike traditional artificial neural networks, CNNs are specialized in pattern recog-
nition within images and are widely used in various computer vision tasks [52].

One key difference between CNNs and traditional ANNs lies in their architecture and operation. While
ANNs consist of neurons that receive inputs and perform operations to self-optimize through learning,
CNNs are structured with specific layers tailored for image processing tasks. These layers include
convolutional layers, pooling layers, and fully connected layers [52]. The architecture of a CNN can be
found in figure 3.3.

Figure 3.3: The Architecture of a Convolutional Neural Network [3]

3.2.1 Input layer

The input layer of a CNN contains image data, where images are represented as arrays of pixels. In
greyscale images, each pixel spans a range from 0 to 255, where 0 signifies black and 255 signifies white.
In colour images, pixels contain three channels, red, green, and blue, with each channel also ranging
from 0 to 255. Greyscale images can be portrayed as 2D arrays, height and width, while colour images
are represented in 3D arrays, height, width, and colour channel.
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3.2.2 Convolutional layer

The convolutional layer is the core building block of a convolutional neural network, containing the
main computational load of the network [53]. Its primary function is to extract features from the input
data. This is achieved through a mathematical operation called convolution, which involves the use
of kernels, also known as filters. Kernels are small weight matrices that slide over the input image,
performing an element-wise multiplication between their weights and the corresponding pixel values in
the image region they cover [54]. The results of these multiplications are then summed to produce a
single value. The mathematical representation of the convolution operation can be found in equation
3.13.

(I ∗K)(i, j) =

M−1∑
m=0

N−1∑
n=0

I(i+m, j + n) ·K(m,n) (3.13)

where:

• I is the input image (or input feature map).

• K is the kernel (filter).

• I(i, j) is the pixel value at position (i, j) in the input image.

• K(m,n) is the weight at position (m,n) in the kernel.

• M and N are the height and width of the kernel, respectively.

• (I ∗K)(i, j) is the output value at position (i, j) in the output feature map.

The output of a convolution is called a feature, the features are then added to a feature map. This
process is repeated as the kernel moves across the image, creating a feature map that highlights certain
features within the input data. Figure 3.4 shows a simple convolutional operation. Figure 3.4a shows
an input of 5x5 and a kernel of 3x3, a convolution operation is applied in figure 3.4b that results in a
feature on the feature map.

(a) Input and filter matrices in convolution. (b) Feature map generation via convolution.

Figure 3.4: Convolution operation: From input to feature map. [4]

Several important hyperparameters influence the behaviour and performance of the convolutional layer
[54]:

• Kernel size: Kernels are typically small, such as 3x3 or 5x5, and are initially set with random
values. Smaller kernels capture fine details, while larger kernels can capture broader features.

• Stride: The stride is the number of pixels by which the kernel moves each step. A stride of 1
means the kernel moves one pixel at a time, resulting in a detailed feature map. Larger strides
reduce the size of the feature map and lead to a coarser representation.

• Padding: Extra pixels are added around the border of the input image to control the spatial
size of the output feature map. The most common form of padding is zero-padding, where zeros
are added around the border
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• Number of Kernels: The number of different kernels applied in a convolutional layer. Each
kernel produces a separate feature map, allowing the network to detect multiple features.

Equation 3.14 determines the spatial dimension and depth of the output feature map after applying the
convolutional operation. This takes the kernel size, stride, padding, and number of kernels into account.

(Wl+1, Hl+1, Dl+1) =

(
Wl −Kl + 2P

S
+ 1,

Hl −Kl + 2P

S
+ 1, NK

)
(3.14)

After the convolution operation, the values are passed through an activation function. One of the most
common activation functions used in CNNs is the ReLu function. The activation function introduces
non-linearity into the model, this allows the CNN to learn complex features.

During the training of the CNN, the weights of the kernels are adjusted by backpropagation and
gradient descent. This adjustment process minimises the difference between the predicted outputs and
the ground-truth labels, allowing the kernels to learn and extract meaningful features from the input
data effectively. Convolutional layers are essential for detecting patterns and features, such as edges,
textures, and shapes, which are crucial for tasks such as image classification and object detection.

3.2.3 Pooling layer

Pooling is a fundamental operation in convolutional neural networks that plays a crucial role in down-
sampling feature maps while retaining important information [52]. It helps in controlling the model’s
complexity, reducing overfitting, and improving computational efficiency by reducing the number of
parameters and computation required in subsequent layers. The pooling operation involves sliding an
n-dimensional filter over each channel of the feature map and summarising the features lying within
the region covered by the filter.

The two most common types of pooling are Max Pooling and Average Pooling [54]. Max-pooling returns
the maximum value from the portion of the image covered by the kernel. This operation retains the
most prominent features, making the network more robust to variations and distortions in input data
[54]. Average-pooling returns the average of all the values from the portion covered by the kernel,
providing a smoothed version of the feature map [54]. A visual representation of 2x2 pooling is shown
in Figure 3.5.

Figure 3.5: Comparison of Max Pooling and Average Pooling [5].

3.2.4 Fully connected layer

The fully connected layer is important for the final stages of the CNN. Before the input is in the fully
connected layer, the input will get flattened into a one-dimensional vector. This allows each neuron
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in a layer to connect to all the neurons in the next layer. This connectivity allows the network to
learn complex features and make global decisions. During training the weights and biases are adjusted
through backpropagation and an optimiser to minimise the loss function. Like the convolutional layer,
the fully connected layer applies an activation function to introduce non-linearity into the model. In
classification tasks the fully connected layer will give a probability distribution over the classes, allowing
the network to make a prediction.

3.2.5 Hyperparameters

Hyperparameters are configuration values that are set before the learning process begins. Hyperparam-
eters are tunable and can directly affect how well a model trains and can make accurate predictions.

Batch Size

The batch size is a hyperparameter that defines the number of samples to work through before updating
the internal model parameters. Choosing a batch size can be important for the performance of a model.
Generally, a smaller batch size performs better [55]. Research of [56] claims that large batch sizes tend
to result in models that get stuck in local minima. A smaller batch size is more likely to push out local
minima and find the global minima. However, a smaller batch size results in many updates and higher
computational costs.

Learning Rate

The learning rate is a hyperparameter that determines how much to change the model in response
to the estimated error each time the model weights are updated. The learning rate determines the
strength with which the newly acquired information will override the old information. A factor of 0
will make the agent not learn anything, while a factor of 1 will make the agent consider only the most
recent information [57]. When the learning rate is too small, it may result in a slow learning process,
while a big learning rate could mean that the loss value does not converge, leading to a failure in the
learning process [57]. There is a high correlation between the learning rate and the batch size; when
the learning rates are high, larger batch sizes tend to perform better than with small learning rates
[55].

Optimiser

An optimiser is an algorithm or method used to change the parameters of a neural network, such as
weights and learning rates. By adjusting the weights of the network to help reduce loss and improve
accuracy. Two of the most common optimisers are Stochastic Gradient Descent and Adam.

• Stochastic Gradient Descent (SGD) is one of the most basic, but effective optimization
algorithms. It randomly selects one data point from the whole data set at each iteration to
reduce the computations enormously and still performs robustly. The weights are updated based
on the gradient of the error with respect to the current weight. Despite its simplicity, SGD often
takes longer to converge and may get stuck in local minima, unlike other more sophisticated
optimisers [58].

• Adam (Adaptive Moment Estimation) is an algorithm for first-order gradient-based opti-
mization of stochastic objective functions [59]. The method is straightforward to implement, is
computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the
gradients, and is well suited for problems that are large in terms of data and/or parameters. The
algorithm calculates an exponential moving average of the gradient and the squared gradient, and
the parameters beta1 and beta2 control the decay rates of these moving averages. The initial
learning rate is 0.001 by default and it’s suitable for most of the cases [59]. Adam is often a
good choice for many deep learning problems, as it usually never underperforms methods such as
gradient descent and momentum [60].

Each optimiser has its strengths and weaknesses, and the choice of optimiser can significantly affect
the speed of convergence and the final performance of the network.
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3.2.6 Classification models

In recent years, several CNN architectures have been presented. The model architecture is a crucial
factor in improving the performance of different applications. A reliable benchmark for evaluating the
efficacy of these models is the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). This is
an annual competition that was held from 2010 to 2017. It was an annual software contest where models
competed to correctly classify and detect objects and scenes. The challenge played a significant role in
the advancement of deep learning and computer vision. The following section explores the ImageNet
Challenge and the evolution of classification models that it has fostered over the years.

ImageNet challenge

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC), more commonly referred to as the
ImageNet challenge, is an annual competition that has been a significant driving force in developing
and benchmarking computer vision models [61]. The primary objective of the ImageNet challenge is
to advance the state-of-the-art in image classification and object recognition. The competition uses
the ImageNet dataset, a large-scale, labelled dataset of images designed for visual object recognition
research(source). The dataset contains millions of images categorised into thousands of classes. For
example, it includes images of animals, objects, scenes, and various everyday items. The challenge con-
sists of several tasks, including image classification, object detection, and image segmentation [61][62].
The performance of the classification models is evaluated using the top-5 error rate, which refers to the
proportion of test images for which the model’s five most probable labels match the true label. The top-
5 error rate is useful in the context of large-scale classification problems with many classes, where even
highly accurate models may sometimes miss the exact label but still provide a highly relevant top-5 list.

In 2012, AlexNet presented a model that reduced the top-5 error rate from 25% to 15.3%, marking
a significant improvement in performance and demonstrating the superiority of deep learning over
traditional methods in image classification tasks. Following AlexNet, VGGNet was introduced and
achieved a top-5 rate error of 7.3% in the 2014 ImageNet challenge [63]. Around the same time, Google
introduced GoogLeNet, also known as Inception, which used a unique module that combined multiple
convolutional filters of different sizes to make the network deeper and more efficient [64]. GoogLeNet
won the 2014 competition with a top-5 error rate of 6.7% [65]. In 2015, ResNet, developed by Kaiming
He and his team, solved the problem of training very deep networks by introducing residual connections
[66]. ResNet-152 achieved a top-5 error rate of 3.6%, winning the ImageNet challenge and pushing the
boundaries of deep learning [67]. DenseNet, introduced in 2017 by Gao Huang and colleagues, used
dense connections to improve information flow and efficiency [68]. DenseNet-121 achieved a top-5 error
rate of 5.92% on ImageNet, while DenseNet-264 achieved a top-5 error rate of 3.46% [69]. More recent
advances include EfficientNet. EfficientNet-B7, developed by Google in 2019, optimised the scaling of
network depth, width, and resolution, achieving a top-five state-of-the-art error rate of 2.7% [10].

3.2.7 Classification for mammography

The application of convolutional neural networks in mammography has been a topic of significant inter-
est in recent years. CNNs have been used for various mammography tasks, including lesion localisation
and detection, risk assessment, image retrieval, and classification tasks. Several models that emerged
from the ImageNet challenge have been applied in breast cancer detection.

AlexNet has been used to categorise mammography images into benign and malignant tumours, achiev-
ing an overall system accuracy of 95.70% [70]. Another study by Shayma Hassan et al. compared the
performance of Adam and SGD optimisers for AlexNet and GoogleNet architectures. The results
showed that in both architectures, the Adam optimiser outperformed SGD, with AlexNet achieving an
accuracy of 97.18% compared to 94.17% using GoogleNet. Thus, AlexNet outperformed GoogleNet in
this comparison.[71]

The Visual Geometry Group (VGG) network has also been utilized in mammography classification.
A study by G. Jayandhi et al. employed a Deep Convolution Neural Network (DCNN) with Transfer
Learning (TL) that utilizes mammogram image samples for breast cancer diagnosis. Results showed
that the VGG-16 architecture provided promising results on Mammographic Image Analysis Society
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(MIAS) database images with 82.5% accuracy [72].

ResNet, a model known for its residual connections that help train deeper networks, has also been
benchmarked for breast cancer diagnosis using mammography images. The highest classification accu-
racy was achieved by using ResNet18, which achieved an accuracy of 93.83% [73].

EfficientNet, which optimises the scaling of network depth, width, and resolution, has shown superiority
in cancer classification in a study comparing various CNN architectures, achieving an accuracy of 95%
[74].

These findings highlight the potential of CNNs in improving the accuracy of breast cancer detection
in mammography. Advancements in deep learning techniques, such as residual connections in ResNet
and the scaling efficiency in EfficientNet, have significantly contributed to their applicability in medical
imaging. The successful application of these architectures to mammography classification demonstrates
the continuous progress in CNN research and its critical role in enhancing diagnostic tools for breast
cancer detection.

3.3 Transfer learning

Transfer learning is a machine learning technique where a pretrained model, developed for one task,
is reused as the starting point for a model on a second task. This approach leverages the knowledge
and features learned by the model from a large, well-labelled dataset, often used in tasks like image
classification or natural language processing, and applies them to a new task with limited data. By
transferring the learned features and weights, transfer learning significantly reduces the time and com-
putational resources required to train a new model from scratch, improves the model’s performance,
and helps in achieving better generalization, especially in scenarios where the available data is sparse
or expensive to collect. Transfer learning is beneficial in fields such as image classification, where train-
ing models from scratch requires significant computational resources. Research indicates that transfer
learning can significantly improve model performance compared to training alone. Studies have demon-
strated enhanced accuracy in neural networks and convolutional neural networks when transfer learning
is applied either before or after the learning process.

3.4 Data Augmentation

Data Augmentation is a technique used in machine learning to increase the diversity and size of a
training dataset. This is achieved by applying various transformations to the existing data and creating
modified versions of the existing data. Data augmentation is widely used and has been shown to be
highly effective for image datasets. The goal of data augmentation is to help models generalize better
by exposing them to a variety of transformations of the training images, making the model more robust.
By making the model more robust, it can reduce the risk of overfitting. Numerous studies have shown
that data augmentation can lead to substantial improvements in the performance of image classification
and other computer vision tasks. Two common types of data augmentation techniques are geometric
transformations and photometric transformations. Geometric data augmentation techniques involve
spatial transformations that alter the layout of the original images. On the other hand, photometric
data augmentation techniques are based on manipulating the colour properties or pixel values of the
images.

3.4.1 Geometric transformations

Geometric transformations are among the most common data augmentation techniques. These are
transformations that alter the geometry of the image by mapping the individual pixel values to new
destinations [75]. These transformations are widely used because they are easy to implement and
effective. Some common techniques include:

• Rotating: This involves changing the orientation of an image by rotating it across an axis by a
certain degree. This is useful in scenarios where the orientation of the object in the image can
vary. Source
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• Flipping: Generate a mirror image of an image, this can be done either vertically or horizontally.
This technique is typically used in classification tasks, where orientation may vary.

• Translation: Shift images horizontally or vertically. This simulates objects appearing in different
positions within the frame, improving the model’s ability to detect objects regardless of their
position, thus preventing a positional bias.

• Scaling: Scale the images along different axes with a scaling factor. Objects may vary in size,
this can bring realistic augmented images into the training set.

These techniques are commonly used in data augmentation, a strategy to increase the diversity of the
training set without actually collecting new data. By applying these transformations, we can teach our
model to focus on the essential features of the objects, making it more robust and improving its ability
to generalize from the training data to new, unseen data.

3.4.2 Photometric Transformations

Photometric transformations are also popular data augmentation techniques, photometric data aug-
mentation involves manipulating the colour properties of images to create augmented data. These
transformations are particularly useful for grayscale images, which often suffer from variability in con-
trast and brightness. Techniques include:

• Contrast adjustment: This technique modifies the contrast of an image by scaling the distance
of the pixel values from the image mean. High-contrast images have a wider range of pixel values,
while low-contrast images have a narrower range. Adjusting the contrast can help the model learn
to recognize features under different lighting conditions.

• Brightness adjustment: This technique changes the brightness of an image by adding or
subtracting a constant value from every pixel in the image. This can help the model learn to
recognize features under varying levels of illumination

• Gaussian noise: Gaussian noise involves adding a random variation of brightness to an image at
each pixel. The variation is sampled from the Gaussian normal distribution. This technique can
help improve the robustness of a model by allowing it to learn from images with various levels of
noise, simulating real-world conditions where images may be affected by different types of noise.

3.4.3 Data Augmentation for Medical Imaging

P. Pratheep Kumar conducted a comparative study of various augmentation techniques for classifying
breast cancer into benign and malignant categories using the INBreast dataset [76]. The techniques
employed included flipping, cropping, rotation, noise injection, random brightness, and a combination
of all these methods. Without any data augmentation, the model achieved a classification accuracy
of 94.56%. The implementation of image data augmentation techniques significantly improved the
model’s performance. The flipping technique resulted in an accuracy of 96.46%, while the cropping
technique yielded an accuracy of 95.21%. The rotation method further improved the accuracy to
97.36%. Interestingly, the noise injection resulted in a slightly lower accuracy of 94.56%. Most notably,
the combination of all augmentation techniques led to the highest classification accuracy of 98.91%,
outperforming all individual methods. This underscores the effectiveness of using a comprehensive set
of data augmentation techniques in improving model performance.

Several other studies have utilized augmentation techniques such as flipping, rotation, translation, and
scaling to improve the performance of their models [77]. For instance, a study applied R-CNN for mass
detection using horizontal and vertical flipping, achieving a sensitivity of 0.83 [78]. Another study used
a modified AlexNet for tumour detection and achieved 95.70% using scaling, horizontal flip, and rota-
tion (90, 180, 270 degrees) [70]. Another study also trained an AlexNet for mammogram classification,
obtaining an accuracy of 93.2% using several geometric transformations [79].
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3.5 Generative Adversarial Networks

A Generative Adversarial Network is a deep learning architecture first developed in 2014 by Ian Good-
fellow and his colleagues [80]. GANs have gained significant attention due to their ability to generate
realistic data samples that closely resemble real-world data. This section delves into the architecture,
training process, and objective functions of GANs.

3.5.1 Basic Architecture

GANs are composed of two main neural networks: the generator and the discriminator. The two
networks are pitted against each other, with one generating new data, such as images, that the second
network then tries to identify as real or generated. The basic architecture of a GAN can be found in
figure 3.6.

Figure 3.6: Architecture of a Generative Adversarial Network [6]

3.5.2 Generator

The generator’s purpose is to create new data instances that resemble the properties of the training
data. It takes random noise as input and transforms this noise into data samples, such as images,
sounds, or text. The primary objective of the generator is to fool the discriminator by creating data
samples that are realistic enough to be indistinguishable from real data.

The architecture of a generator may vary, but in many popular GANs the generator typically comprises
a sequence of the following components:

• Input Layer: The generator initiates with an input vector of random noise, which is typically
drawn from a simple distribution such as Gaussian or uniform. This vector serves as a starting
point for the data generation process.

• Fully Connected Layers: These initial layers serve to expand the dimensionality of the input
noise, preparing it for further transformations.

• Batch Normalization Layers: These layers These layers stabilize and accelerate the training
process by normalizing the outputs of the previous layers, this results in consistent learning
gradients and faster convergence.
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• Activation Functions: These functions introduce non-linearity to the model, enabling it to
generate more complex data. The ReLU and Leaky ReLU activation functions are commonly
employed in the generator.

• Transposed Convolutional Layers: These layers upsample the input from the previous layer
to a higher spatial dimension, which is needed to increase the resolution of the generated image.
This effectively acts as the inverse of regular convolutional layers. These layers are also known as
deconvolutional layers, these layers are fundamental in the generator.

• Reshaping layers: These layers are used to reshape the data into the desired output format.

• Output layer: The final layer usually employs a tanh or sigmoid activation function, depending
on the nature of the data being generated. For image generation, a tanh function is often used
to output pixel values in a normalized range.

The objective of the generator is to produce outputs that can be classified as real by the discrimina-
tor. During the training phase, the generator receives feedback from the discriminator regarding the
realism of the generated images. The objective of the generator is to minimise the probability that the
discriminator detects fake images.

3.5.3 Discriminator

The discriminator’s purpose is to distinguish between real data and fake data. It outputs a proba-
bility value that indicates whether a given sample is real or fake. The discriminator is essentially a
binary classifier that learns to correctly identify real versus generated data through continuous training.

The discriminator receives both real data samples from the training dataset and synthetic samples from
the generator as input. It then processes these inputs through multiple layers to output a probability
score indicating the likelihood that each sample is real. The architecture of the discriminator typically
consists of convolutional layers, batch normalization layers, and fully connected layers.

• Convolutional Layers: These layers apply filters to the input data to extract hierarchical
features. In image processing, these features can include edges, textures, and more complex
structures as the layers deepen.

• Batch Normalization Layers: These layers stabilize and accelerate the training process by
normalizing the outputs of the previous layers, this results in consistent learning gradients.

• Fully Connected Layers: These layers aggregate the features extracted by the convolutional
layers into a final probability score, using a sigmoid activation function to produce a value between
0 and 1.

3.5.4 Adversarial training

Generative Adversarial Networks are trained through an adversarial process that aims to improve both
the generator and the discriminator. This competing dynamic improves the generator’s ability to create
realistic data that can fool the discriminator, while the discriminator improves its ability to distinguish
between real and fake data. Through iterative improvement, both networks continuously improve as
they learn from each other’s feedback.

The training process begins with the initialization of both the generator and the discriminator. Once
initialized, the discriminator is trained first. The discriminator is provided with a batch of real data
from the training set and a batch of fake data generated by the generator. The discriminator processes
these batches separately, giving a probability for each instance. For real data, it aims to output a
probability close to 1, indicating that the data is real. For fake data, it aims to output a probability
close to 0, indicating that the data is synthetic. The loss for the discriminator is computed based on
its ability to correctly classify real and fake data. This loss is a combination of two terms: one for real
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data classification and one for fake data classification [81]. Mathematically, the discriminator’s loss is
expressed as:

LD = −(E[log(1−D(x))] + E[log(1− (D(G(z))))]) (3.15)

Where D(x) is the discriminator’s prediction for real data x, and D(G(z)) is its prediction for fake data
generated by generator G(z) from noise z.

After updating the discriminator’s weights to minimize this loss, the generator is trained. The genera-
tor’s objective is to produce data that the discriminator cannot distinguish from real data. To achieve
this, the generator’s loss is calculated based on the discriminator’s response to fake data. Specifically,
the generator tries to maximize the discriminator’s error in identifying fake data as fake, which is
equivalent to minimizing the negative log probability of the discriminator classifying fake data as real.
The generator’s loss is given by:

LG = −E[log(D(G(z)))] (3.16)

Where D(G(z)) is the discriminator’s prediction for fake data generated by the generator. By back-
propagating this loss, the generator’s weights are adjusted to produce more realistic data

The training process of GANs is framed as a minimax game, where the generator and the discriminator
have opposing objectives. The generator seeks to minimize its loss, which translates to generating data
that the discriminator misclassifies as real. Conversely, the discriminator seeks to maximize its ability
to distinguish real from fake data. This adversarial relationship can be formalized into a single objective
function that both networks optimize:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.17)

This function encapsulates the adversarial nature of the GAN training, where the generator aims to
minimize this value while the discriminator aims to maximize it. Through this process, both networks
improve, leading to the generation of realistic data and the accurate classification of real versus fake
samples. This adversarial relationship is what gives GANs their name and their power.

Stability Issues in GAN Traning

Despite their potential, the training of GANs is notoriously challenging due to several stability issues.
These problems often result in poor convergence and suboptimal performance:

• Non-Convergence: GANs frequently fail to converge, this issue arises due to the adversarial
nature of the training process. The generator and discriminator both try to minimize their loss
while maximizing the other’s. This dynamic can lead to oscillations, where the generator and
discriminator keep outsmarting each other without reaching a stable solution. In some cases,
the discriminator becomes too good too quickly causing the generator to fail. In other cases, if
the generator becomes too good, the discriminator might fail to provide useful feedback to the
generator. Moreover, the loss landscape of GANs is highly non-convex, making it difficult to find
a global optimum. The training process can get stuck in local optima or saddle points, leading
to suboptimal solutions. [82]

• Mode Collapse: Mode collapse is a significant challenge in training Generative Adversarial
Networks. It occurs when the generator of a GAN starts producing similar or identical samples,
leading to a collapse in the modes of the data distribution1. This means the generator fails to
capture the full diversity of the real data distribution. In other words, the generator becomes
stuck in a particular mode or pattern, failing to generate diverse outputs that cover the entire
range of the data. This can result in the generated output appearing repetitive, lacking in variety
and detail, and sometimes even being completely unrelated to the training data. [83]

• Vanishing Gradients: The vanishing gradients problem is a significant issue in the training
of Generative Adversarial Networks. This problem arises when the gradients used to update
the weights of the neural network become very small, almost zero1. As a result, the weights
are not updated anymore, and learning stalls. In the context of GANs, if the discriminator
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becomes too good, then generator training can fail due to vanishing gradients. In effect, an
optimal discriminator doesn’t provide enough information for the generator to make progress.
This is because the gradients that flow back from the discriminator to the generator during
backpropagation become very small. This results in very slow learning or a complete halt in
learning for the generator. [83]

In conclusion, GANs have the potential to be a powerful tool in several fields, but their training process
presents significant challenges. These include non-convergence, mode collapse, and vanishing gradients.
Despite these issues, the promise of GANs in generating complex, high-dimensional distributions is
significant, and ongoing research continues to explore solutions to these stability issues.

3.5.5 Hyperparameters

Hyperparameters play an important role in the training and performance of Generative Adversarial
Networks. Proper tuning of these hyperparameters can significantly affect the stability, convergence
speed, and quality of the generated images. This section discusses the key hyperparameters involved
in training GANs and their impact on the model’s performance.

Batch size

The batch size determines the number of training examples used in one forward or backward pass. A
large batch size provides stable updates but requires more memory and computational resources. While
a small batch size is less memory-intensive but can lead to less stable updates. Common batch sizes
range from 32 to 256, with 64 being a typical choice for many GAN applications.

Learning Rate

The learning rate controls the step size to update the model parameters during training. Both the
generator and the discriminator have their learning rate, and tuning these rates is essential for bal-
anced training. If the generator learning rate is too high, it may cause instability, if it is too low, the
convergence may be slow. If the discriminator learning rate is too high, it can overpower the generator,
while a low learning rate will slow down the discriminator’s ability to detect.

The learning rate values typically range from 0.001 to 0.00001, a good starting point is 0.0002 which is
often used initially and adjusted based on training dynamics.

Optimiser

Similar to a CNN, the Adam Optimizer is widely used in GAN training for its adaptive learning. The
default beta values (β1 = 0.5, β2 = 0.999) are often used.

Regularization techniques

Regularisation techniques are crucial for training Generative Adversarial Networks as they help in
stabilizing the training process and improving the model’s performance.

• Batch Normalisation: This is a technique used to standardise the inputs to a layer for each
mini-batch. This results in stabilising the learning process and reducing the number of training
epochs required to train deep networks.

• Dropout: Dropout is a regularization technique that is used in neural networks to prevent
overfitting. During training, dropout randomly deactivates a proportion of neurons, effectively
dropping out these neurons. This process forces the network to learn redundant representations
and become more robust. By reducing reliance on specific neurons, dropout helps improve the
generalization ability of both the generator and discriminator, leading to more stable and effective
GAN training.

• Label Smoothing: This is a technique to prevent the discriminator from becoming too confident
in its predictions. Instead of using binary labels, 1 for real and 0 for fake, label smoothing uses
decimal values such as 0.9 for real and 0.1 for fake. This approach can improve the performance
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of GANs by making the discriminator more robust to variations in the training data and better
able to distinguish between real and fake samples from different distributions. It also helps reduce
the chance of mode collapse1.

• Gradient Penalty: Gradient Penalty is a regularization technique used to enforce the Lipschitz
continuity condition in Wasserstein GANs (WGANs), enhancing training stability. Instead of
clipping weights, the Gradient Penalty adds a term to the loss function that penalises the critic’s
gradient norm deviation from 1. This penalty term ensures smoother and more reliable gradients,
reducing issues like mode collapse and improving convergence. It is calculated as:

GP = λEx̂

[
(∥∇x̂D(x̂)∥2 − 1)2

]
(3.18)

where x̂ are interpolated points between real and generated data, and λ is a regularization coef-
ficient.

• Feature Matching: This technique aims to improve the stability of GAN training by modifying
the generator’s objective to match the statistics of features extracted by the discriminator from
real and generated data. Instead of directly minimizing the discriminator’s output, the generator
minimizes the difference between the feature representations of real and generated samples. This
encourages the generator to produce data that is not only indistinguishable from the discriminator
but also similar in structure and content to the real data, leading to more realistic outputs and
stable training.

These techniques are commonly used in GANs to improve the stability of the training process and the
quality of the generated samples.

3.5.6 Variants of GANs

Over the years, several variants of GANs have been developed to address specific challenges and improve
their performance. These variants improve the basic GAN architecture to better handle issues like mode
collapse, and training instability, and to cater to specific applications. This section will explain some
of the most common variants of GANs.

Deep Convolutional GAN

A well-known and effective network GAN design is the Deep Convolutional GAN (DCGAN) [84].
DCGAN was introduced by Radford et al in 2015 and has since become one of the most popular
variants of GANs. The DCGAN have a couple of architectural guidelines:

• Replacing any pooling layers with stride convolutions, allows the network to learn its spatial
downsampling

• Use batch normalization in both the generator and the discriminator

• Remove fully connected hidden layers for deeper architectures

• Use ReLu activation for the generator for all layers, except the output which uses Tanh

• Use LeakyReLu activation in the discriminator for all layers

Conditional GAN

Generative Adversarial Networks can be extended to Conditional Generative Adversarial Networks
(cGANs) [85]. A cGAN is a type of GAN that uses labels or conditions to generate text or images
that have characteristics similar to its training data set. The difference between a typical generative
adversarial network (GAN) and a conditional GAN is that labelled data is used to provide context to
a conditional GAN, allowing you to get better, more targeted results from the generator.

In cGANs, both the generator G and the discriminator D are conditioned on some extra information y,
this conditioning can be achieved by feeding y as an additional input to both networks. The training
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process for cGANs involves a two-player minimax game similar to the original GANs but with the
inclusion of conditional information y. The objective function is given by:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (3.19)

In this formulation:

• The discriminator D tries to maximize the probability of correctly distinguishing real samples x
from generated samples G(z|y), conditioned on y.

• The generator G aims to minimize the probability that the discriminator correctly identifies the
generated samples as fake.

By using conditional information, cGANs improve the ability of traditional GANs to produce more
specific and contextually relevant outputs, making them valuable tools when precise and controlled data
is required. However, training cGANs can be more complex due to additional conditional information.
They also still face common GAN challenges such as training instability and mode collapse.
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Chapter 4

Dataset

In the field of breast cancer research, there are several image datasets that researchers frequently employ.
The selection of an appropriate dataset is an important step in the research process. This chapter aims
to provide an overview of these datasets, evaluate their strengths and weaknesses, and then select the
dataset for this research. The chapter will also delve into the details of data preparation, an essential
step to ensure the quality and usability of the dataset.

4.1 Comparison of Datasets

This section describes some mammography datasets that are often employed in studies. By comparing
these datasets a choice will be made for which dataset is going to be utilized in this study.

4.1.1 Digital Database for Screening Mammography

One of the most popular datasets is the Digital Database for Screening Mammography (DDSM). It was
created in 1998 as a collaborative effort involving co-PI’s at the Massachusetts General Hospital (D.
Kopans, R. Moore), the University of South Florida (K. Bowyer), and Sandia National Laboratories (P.
Kegelmeyer) [86]. The dataset contains 2,620 scanned film mammography studies, containing normal,
benign and malignant cases [86]. Each study includes left and right cranio-caudal and mediolateral-
oblique views. The dataset has been referenced in over 80 papers in the field of mammographic imaging.

Despite its popularity, the DDSM dataset has several constraints. Firstly, the dataset, being quite
dated, is of low resolution. Secondly, the scanned images are stored in an outdated file format (LJPG),
necessitating the use of antiquated decompression code to retrieve the data. Lastly, the segmentation
labels, intended to outline the boundaries of lesions within the mammograms, are known to contain
inaccuracies. These limitations hinder the DDSM dataset’s reliability when creating tools that demand
precise localization or high accuracy.

4.1.2 Curated Breast Imaging Subset of DDSM

In 2017, an updated subset of the DDSM database was introduced, known as the Curated Breast
Imaging Subset of DDSM (CBIS-DDSM) [87]. This version removed low-quality images, re-annotated
regions of interest which were deemed inaccurate, and re-categorized data into two groups. The CBIS-
DDSM dataset contains 753 calcification cases, and 891 mass cases, all of which are in industry-standard
DICOM files, with a corresponding file that contains accurate annotations and ground-truth labelling
for each region of interest. The dataset contains a total of 2288 images. Based upon these improve-
ments, the CBIS-DDSM dataset became more usable, as the accurate scanned film captures added
much-needed analogue images into an otherwise digital training dataset.

One of the main criticisms of CBIS-DDSM is that the commitment to quality has resulted in a signifi-
cant reduction in the overall size of the data set. This generally requires it to be combined with other
datasets. Additionally, it only contains benign and malignant, no normal or non-cancerous cases.
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4.1.3 INbreast

The INbreast dataset is a full-field digital mammographic repository made public by the Hospital de
São João in Portugal in 2011 [88]. The dataset contains a total of 410 full-resolution digital mam-
mographic images with polygonal segmentation within a separate XML file in OSIRIX format. The
dataset contains four classes: mass, calcifications, asymmetries, and distortions, with no background
tissue descriptors. Furthermore, all pathologies contained within INbreast are confirmed histologically,
via a core biopsy or post-surgical specimen assessment.

INbreast has often been credited as the most reliable and precise open-source mammographic dataset.
Despite its relatively small size, with only 410 full-resolution digital mammographic images, it has
been highly valued in the research community. The authors of INbreast have not provided any specific
licensing terms, and have made the dataset freely available to researchers and commercial vendors.

4.1.4 MIAS

The Mammographic Image Analysis Society (MIAS) dataset was one of the first public datasets [89].
It was published in 1994 and was generated by a consortium of UK research groups. The database
includes 209 normal mammograms and 113 abnormalities with radiologist annotations, indicating the
type of abnormality [90].

4.1.5 Evaluation of the Datasets

A summary of the characteristics of the datasets can be found in table 4.1. While DDSM contains
the most images, the resolution of the images is very low. CBIS-DDSM contains a relatively high
number of images, however, it only contains benign and malignant images. This limits its utility for
this study, which aims to classify between cancerous and non-cancerous cases. Both the INbreast and
MIAS datasets also contain good quality images, however, the limited number of images is a significant
challenge in training a convolutional neural network. This highlights the difficulty in creating large,
high-quality datasets.

Table 4.1: Summary of Key Characteristics of Datasets

Dataset Year
No. of
Studies

No. of
Images

Resolution Cases Included

DDSM 1998 6.775 10.239 Low Normal, Benign, Malignant
CBIS-DDSM 2017 1.644 3.288 High Benign, Malignant

INbreast 2011 115 410 High
Mass, Calcifications,
Asymmetries, Distortions

MIAS 1994 161 322 Medium Normal, Abnormal

Due to the limitations of these datasets, further exploration of alternative datasets is necessary for this
research.

4.2 Dataset

The CBIS-DDSM dataset, despite being the best dataset upon evaluation, lacks normal, non-cancerous
cases. While the MIAS and INBreast datasets do include non-cancerous cases, their limited size poses
a challenge to training a deep convolutional neural network effectively.

To overcome these limitations, a new dataset was presented that combines all positive studies of CBIS-
DDSM and all negative studies of DDSM [7]. The combined data set takes advantage of the strengths
of both sources, providing a more comprehensive collection of mammographic images for the training of
deep convolutional neural networks. In this dataset, the Region of Interests (ROIs) of the images have
been extracted. The images have been pre-processed to convert them into a uniform size of 299x299
pixels. This standardization ensures consistency across the dataset, making it easier to train and eval-
uate the model [7].
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For the negative images from the DDSM dataset, the preprocessing involved dividing the original larger
images into 598x598 tiles. These tiles were then resized to 299x299 pixels. This tiling and resizing pro-
cess helps to manage the image size while retaining important details that are necessary for accurate
analysis [7]. By using this technique and extracting ROIs, multiple ROIs can be extracted from each im-
age, effectively increasing the size of the dataset. For the positive images from the CBIS-DDSM dataset,
the ROIs were extracted using predefined masks. These masks were applied to the images to isolate
the regions containing abnormalities, with a small amount of padding added to provide additional con-
text around the anomalies. This padding ensures that the extracted ROIs include enough surrounding
tissue to help the model distinguish between normal and abnormal areas effectively. By combining the
positive cases from CBIS-DDSM and the negative cases from DDSM, the resulting dataset provides a
diverse set of images that enhances the training process. The use of ROIs and consistent image resizing
ensures that the data set is well-prepared for deep learning applications [7]. Figure 4.1 shows images
from the dataset.

Figure 4.1: Mammographic images from the dataset. The top row is non-cancerous mammographs and
the bottom row is cancerous mammographs [7]

Given the larger size of the original images, processing and training on these high-resolution images
require substantial computational resources. To mitigate these demands and ensure efficient training,
the images are down-sampled to a resolution of 128x128 pixels. Figure 4.2 shows the same images as 4.1
but downsized to 128x128 pixels. This reduction strikes a balance between maintaining enough detail
for accurate analysis and maintaining manageable computational requirements. Despite the reduction
in resolution, the important features necessary for distinguishing between cancerous and non-cancerous
cases remain visible.

The images are labelled as negative or positive, the dataset contains 55.890 images however the dis-
tribution of these images is very skewed. Only 14% of the images are positive and the remaining 86%
are negative. During the training of the convolutional neural network, the images will be divided into
three distinct sets: training, validation, and testing, to ensure an evaluation of the model’s performance.

To evaluate the ability of the model to generalise, a separate validation set has been chosen from an
alternate database, MIAS. The MAIS dataset, like the primary one, also includes Region of Interest
(ROI) images. The images from the MIAS dataset have been pre-processed to match the format used in
our primary dataset. Specifically, the images have been resized to 128x128 pixels, ensuring consistency
in the image dimensions and allowing a direct comparison of the model performance across different
datasets. Some images can be found in figure 4.4. It is visible that the images look different in terms
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Figure 4.2: Mammographic images from the dataset after down-sampling to 128x128

Figure 4.3: Distribution of dataset

of texture, contrast, and overall appearance compared to those from the primary dataset. Despite
these differences, the goal is for the model to detect relevant features and abnormalities effectively,
demonstrating its robustness and ability to generalize across various types of mammographic images.
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Figure 4.4: Mammographic images of alternative dataset

30



Chapter 5

Methodology

This chapter outlines the methodology employed for training and evaluating the performance of three
convolutional neural network architectures: AlexNet, ResNet, and EfficientNet. It also details the
data augmentation techniques implemented and describes the GAN used to generate synthetic images.
Additionally, the chapter covers the model configurations, training procedures, and evaluation metrics.

5.1 Models

In this study, several Convolutional Neural Network architectures were utilized to classify mammog-
raphy images as cancerous or non-cancerous. The chosen models are AlexNet, ResNet, and Efficient-
Net, these models have demonstrated their effectiveness in image classification tasks in the ImageNet
Challenge. Furthermore, these models have shown promising results in breast cancer classification, as
detailed in Section 4.2.6. This section will further go into the specifics of each model and its application
in this study.

5.1.1 AlexNet

AlexNet, developed by Alex Krizhevsky and his team in 2012 [91], was one of the first CNNs to make
a significant impact in the field of deep learning. The model has been used for various tasks, including
image classification. In a study by Omonigho et al, AlexNet has been used to classify mammography
images into two classes, benign and malignant, achieving an accuracy of 95.70% [70]. This shows that
AlexNet can be a suitable model for classifying mammograms.

AlexNet contains a total of eight layers: five convolutional layers and three fully connected layers. The
architecture can be found in figure 5.1. For the first two convolutional layers, each convolutional layer
is followed by an Overlapping Max Pooling layer. The third, fourth and fifth convolution layers are
directly connected. The fifth convolutional layer is again followed by Overlapping Max Pooling Layer,
which is then connected to fully connected layers. The fully connected layers have 4096 neurons each
and the second fully connected layer is fed into a softmax classifier having 1000 classes. [91]

Overlapping max pooling is a variation of the traditional max pooling operation used in CNNs. In
overlapping max pooling, the pooling regions overlap, meaning that some pixels are considered in more
than one pooling operation. This is achieved by setting the stride to be less than the size of the
pooling window. The use of overlapping max pooling can help to reduce overfitting in CNNs. By
considering some pixels in more than one pooling operation, the model can potentially learn more
robust and diverse features from the input data. This can make the model more generalizable and less
likely to overfit the training data [91]. Another key contribution of AlexNet is the use of the Rectified
Linear Unit (ReLU) as the activation function, this helps to mitigate the vanishing gradient problem.
AlexNet also implements dropout layers, which randomly ignore a subset of neurons during training
[91]. This prevents overfitting by ensuring that the model does not rely too heavily on any single neuron.

For this study, AlexNet was adapted to accept one-channel grayscale images by modifying the first
convolutional layer. The classifier was modified to output a single value for binary classification with a
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Figure 5.1: AlexNet Architecture [8]

Sigmoid activation function.

5.1.2 ResNet

ResNet, short for residual networks, was developed in 2016 by K. He and his team [66]. ResNet revolu-
tionized deep learning by enabling the training of much deeper networks than previously possible. Like
AlexNet, ResNet aims to solve the vanishing gradient problem. But instead of changing the activation
function, ResNet introduced residual connections, also known as skip connections. A residual connec-
tion takes the activation from the (n− 1)th convolution layer and adds it to the convolution output of
the (n+ 1)th layer, it then applies ReLu un this sum and hereby skips the nth layer. Now, if the nth
layer is not learning anything we won’t lose any information.

The main component of a ResNet is the residual block. A residual block consists of multiple convolu-
tional layers with a residual connection that directly connects the input of the block to the output. Each
residual block has a convolutional layer, followed by a batch normalization and a ReLu activation. The
batch normalization normalizes the output of the previous layer to speed up the training and improve
the performance of the model. After the ReLu activation, there is again a convolutional layer, a batch
normalization and another ReLu activation. The residual connection goes directly from the input of
the block to the output. Residual blocks can be stacked together to create a deep neural network with
hundreds of layers [66]. The architecture of a residual block can be found in figure 5.2.

Figure 5.2: Residual Block [9]
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There are several variants of the ResNet architecture; e.g. ResNet-18, ResNet-34, ResNet-50, and
ResNet-101. Each model follows the same basic ResNet architecture but varies in depth. The choice
of model depends on the complexity of the task and the available computational resources. For this
study, ResNet50 was used. The first convolutional layer was adjusted to accept one-channel grayscale
images, and the final fully connected layer was modified to output a single value for binary classification,
followed by a Sigmoid activation.

5.1.3 EfficientNet

EfficientNet was introduced by Mingxing Tan and Quoc V. Le from Google Research in their 2019 [10].
EfficientNet presents a new approach to model scaling for convolutional neural networks. The process
of scaling up CNNs is widely used to achieve better results. For instance, ResNets can be easily scaled
in depth by adding more layers. A study has shown that it is to balance all dimensions of network
width, depth, and resolution. The intuition behind this is that if the input image is bigger, then the
network needs more layers to increase the receptive field and more channels to capture more fine-grained
patterns on the bigger image [10]. EffiecientNet proposed a compound scaling method that uniformly
scales width, depth, and resolution, with a set of fixed scaling coefficients [10].

Figure 5.3: Model scaling: (a) is a baseline network example; (b)-(d) are conventional scaling that
only increases one dimension of the network width, depth, or resolution. (e) is the proposed compound
scaling method that uniformly scales all three dimensions with a fixed ratio. [10]

Since model scaling does not change the layer operators in the baseline network, having a good baseline
network is also critical [10]. This study proposes a new baseline by performing a neural architecture
search using the AutoML MNAS framework [92]. The framework optimizes both accuracy and effi-
ciency to find a balance between the two. The resulting architecture uses Mobile Inverted Bottleneck
Convolution (MBConv), this convolutional block was first introduced in MobileNetV2 [93]. In this
block, the input is first expanded to a higher dimension, then a depth-wise convolution is applied,
and then it is projected back to a lower dimension. In this structure, the input and the output are
high-dimensional, and the computation is done in a lower-dimensional space. This makes the network
computationally efficient [93].

There are different variants of EfficientNet, EfficientNet-B0 is the baseline model with moderate depth,
width, and resolution. EfficientNet-B1 to B7 are all scaled versions of the model, they have increased
depth, width, and resolution, which makes them more computationally intensive but also more accurate
[10]. In this research, EfficientNet-B0 is utilized. The first convolutional layer was modified to accept
grayscale images, and the classifier was adjusted to output a single value with a Sigmoid activation for
binary classification.
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Figure 5.4: Architecture of EfficientNet-B0 with MBConv as Basic building blocks [11].

5.2 Data Augmentation and GAN Techniques

This study employs data augmentation and generative adversarial networks to enhance model perfor-
mance and generalisation. Data augmentation introduces variability into the training data through
geometric and photometric transformations. Generative Adversarial Networks are used to generate
synthetic images to also introduce variability. This section details the specific data augmentation tech-
niques employed, describes the GAN used to create synthetic images and outlines the strategy for
incorporating both augmented and synthetic images into the dataset. Additionally, an overview of the
experimental setup is provided to explain the approach and methodology.

5.2.1 Data Augmentation

Data augmentation involves applying various transformations to the training images to create new,
varied examples, which helps improve the model’s generalization. The augmentation techniques used
in this study can be found in table 5.1.

Table 5.1: Data Augmentation Techniques and Parameters

Technique Description Parameters
Random Rotation Rotate the image in a random direction. Angle range: (-30°, 30°)
Random Flipping Flips the image either horizontally or vertically at random. Probability: 0.5
Translation Shifts the image in both the horizontal and vertical directions. Max shift: 20%
Gaussian Noise Adds Gaussian noise to the image. Standard deviation: 0.1
Brightness Adjustment Changes the brightness of the image. Factor: 1.2
Contrast Adjustment Adjusts the contrast of the image. Factor: 1.2

As explained in section 3.4 there are two types of data augmentations: geometric transformations and
photometric transformations. The geometric transformations used in this study can be found in figure
5.5. The figure shows the application of geometric transformations on an image that shows a mass. In
these augmented images, the mass remains visible but appears in different locations or orientations.
This variation is beneficial because it helps the model learn to identify the mass regardless of its posi-
tion, thereby improving the model’s robustness and generalisation capabilities. By exposing the model
to masses in various locations, geometric transformations ensure that the model can detect abnormali-
ties more reliably across different contexts and orientations.
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Figure 5.5: Geometric Transformations

Photometric transformations, involve altering the pixel values of the image without changing its geom-
etry. These transformations include adjustments to brightness, contrast, and. Figure 5.6 illustrates the
application of photometric transformations on the same original image. In these augmented images,
the mass remains in the same location, but the colour and intensity values of the image are modified.
This is advantageous because it helps the model become invariant to changes in lighting conditions
and colour variations, ensuring that the detection of the mass is based on its intrinsic features rather
than external factors. Photometric transformations enhance the model’s ability to generalize across
different imaging conditions, making it more robust in real-world scenarios where lighting and exposure
can vary.

Figure 5.6: Photometric Transformations

Application of Augmented Images

The goal of adding augmented images is to enrich the training dataset with different transformations
of existing images, thereby improving the model’s ability to generalise across different scenarios, reduce
overfitting, enhance its robustness in handling real-world variations, and mitigate data imbalance by
providing additional instances of underrepresented classes.

To address the data imbalance, a strategy of data augmentation is employed, specifically targeting the
positive class. This augmentation process involves generating additional augmented images based on
the original ones, thereby increasing the size of the positive class in the dataset. Experiments will
be conducted by adding 1, 2, and 3 augmented images per positive image, and then evaluating the
performance of the model under each scenario to determine the most effective approach.

A potential risk associated with this strategy is that, since only the positive class is augmented, the
model may learn to recognise the features of the augmented images rather than the cancerous features
that are critical for accurate classification. To mitigate this risk, the model is also trained by adding
augmented images to both classes. This process will be conducted in three stages, each with a different
probability of an image generating an augmented image: 0.3, 0.6, and 1. This approach ensures that
the model is exposed to a variety of training scenarios, which could improve its ability to generalise
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and accurately classify new, unseen images.

5.2.2 Generative Adversarial Networks

This research utilizes a Conditional Generative Adversarial Network to generate images conditioned
on class labels. The cGAN framework consists of two neural networks: the Generator (G) and the
Discriminator (D), which are trained adversarially. Unlike traditional GANs, cGANs incorporate class
labels as an additional input to both networks, enabling the generation of images specific to the given
labels. The generator and the discriminators both follow the guidelines of a deep convolutional GAN
as described in section 3.5.6.

The generator uses a series of transposed convolutional layers to upsample the noise vector to the desired
image dimensions. The architecture is designed to ensure that the generated images are realistic and
are conditioned on the specified labels. The generator starts with an embedding layer that transforms
the class labels into dense vectors of the same dimension as the noise vector. These label embeddings
are then concatenated with the noise vector, this doubles the channel dimensions for the first layer
of the network. This concatenated input is processed through several transposed convolutional layers,
each followed by batch normalization and ReLU activation functions, except for the final layer, which
uses a Tanh activation to output images in the range of [-1, 1].

Similar to the generator, the discriminator begins with an embedding layer for the class labels. These
embeddings are concatenated with the input images along the channel dimension, this also increases the
number of input channels for the first convolutional layer. The network consists of several convolutional
layers, each followed by batch normalization and Leaky ReLU activation functions, except for the final
layer, which uses a Sigmoid activation to produce a probability score.

• Initialization: The weights of the networks are initialized using a normal distribution with a
mean of 0 and a standard deviation of 0.02. This initialization helps in stabilizing the training
process and improving convergence.

• Loss function: Binary Cross-Entropy Loss is utilized for both the generator and the discrimina-
tor. This loss function is chosen because it is well-suited for binary classification problems, such
as distinguishing between real and fake images.

• Optimizer: The Adam optimizer is employed with a learning rate of 0.0002 and betas (0.5,
0.999). The choice of the Adam optimizer is due to its adaptive learning rate properties, which
help accelerate the convergence of the networks.

• Learning Rate Scheduler: A Learning Rate Scheduler is implemented for both the generator
and discriminator optimisers, reducing the learning rate by a factor of 0.5 every 10 epochs. This
dynamic adjustment helps maintain training stability and effective convergence.

Generative Adversarial Network Training

The dataset comprises images at a resolution of 128x128 pixels. While higher-resolution images can
potentially yield more detailed and higher-quality generated outputs, training GANs on such images
requires significant computational resources and can pose challenges in terms of training stability. To
address these concerns and facilitate a more efficient and stable training process, the images are con-
verted to a lower resolution of 64x64 pixels.

The Deep Conditional GAN was trained over 100 epochs with a batch size of 64. To monitor the
progression of the generator’s performance, fixed noise vectors and labels are used to generate images
at the end of each epoch. This approach provides a consistent basis for visualizing improvements in
the quality and realism of the generated images over time. Comparing these generated images across
epochs allows for a clear observation of the model’s learning dynamics.

The model is initialized with random weights. Figure 5.7 shows the images at the first epoch, after
initialization.
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Figure 5.7: Random initialization of cGAN

The generated images after 100 epochs can be found in figure 5.8.

Figure 5.8: Generated images after 100 epochs

The training loss for both the generator and discriminator is tracked and plotted to analyze the train-
ing dynamics. A graph of the training loss helps in understanding how well the model is learning and
whether it is converging towards an optimal solution. Figure 5.9 shows the generator and discriminator
loss during training.

The loss graph for the GAN training shows the typical behaviour of both the generator and discrimi-
nator losses over time. Initially, both losses are high, with the generator loss above 20, indicating that
the networks start with random weights and the discriminator easily distinguishes fake from real data.
Shortly after, both losses decreased significantly, demonstrating that the networks are learning and
adapting. The discriminator loss stabilizes around a low value, this shows its ability to differentiate
between real and fake samples. The generator loss, while more variable, remains within a manageable
range, indicating ongoing improvements in generating realistic data.

Throughout the training process, the generator loss fluctuates, which is a common trait in GAN training
due to the adversarial nature of the setup. These fluctuations suggest that the generator continues to
challenge the discriminator, while the discriminator also challenges the generator, maintaining dynamic
learning. Although there are fluctuations in the generator loss, the relatively low and stable discrimina-
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Figure 5.9: Generator and Discriminator loss during training of the GAN

tor loss suggests that the GAN is generally learning and improving its ability to create realistic images.
When evaluating the images in figure 5.8, there are clear features of the mammographic training data,
however, it is still possible to differentiate between the real and the generated images. This indicates
room for further improvements in the training process of the GAN.

Application of Synthetic images

Similar to data augmentation, synthetic data is added to improve the model’s ability to generalise,
reduce overfitting, and mitigate data imbalance. The strategy for incorporating synthetic data mirrors
the data augmentation approach. To address data imbalance, synthetic images are initially added to
the positive class. Experiments are conducted by adding 1000, 5000, and 10.000 synthetic images of
the positive class to evaluate the impact on the model’s performance.

However, to mitigate the risk that the model will learn to detect synthetic images and classify them
correctly based on their synthetic nature rather than the features of the positive class, synthetic images
will also be added to both classes. This strategy ensures that the model does not become biased
towards identifying synthetic images instead of learning the critical features necessary for accurate
classification. Experiments are conducted by adding 1000, 5000, and 10.000 synthetic images to both
classes to evaluate the impact on the model’s performance.

5.3 Experimental Set Up

Extensive experiments were conducted using three state-of-the-art convolutional neural network archi-
tectures: AlexNet, ResNet, and EfficientNet. A description of the models and their key details can be
found in table 5.2. Each model was trained with both random initialization and pretrained weights.
The model that performs the best out of these models will be selected as a baseline model. During the
rest of the study, this model will be trained with different augmented and synthetic data strategies to
study the effects of these techniques.

Model Description Key Details

AlexNet
Early CNN model with deep architecture and ReLU activation.
Modified for grayscale images.
Binary classification output.

Five convolutional layers
Three fully connected layers
Softmax classifier adapted to Sigmoid

ResNet50
Deep network with residual connections to combat vanishing gradients.
Residual blocks enhance learning.
Adjusted for grayscale images; binary classification output.

Residual blocks with
convolutional layers and batch normalization
Sigmoid output for binary classification

EfficientNet-B0
Efficient CNN with compound scaling for balanced width, depth, and resolution.
Uses MBConv blocks for efficiency.
Adjusted for grayscale images; binary classification output.

Compound scaling for balance
MBConv blocks
Sigmoid output for binary classification

Table 5.2: Summary of Convolutional Neural Network Architectures

After the baseline model was set, a variety of data augmentation techniques were employed, including
rotation, flipping, translation, brightness adjustment, contrast adjustment, and Gaussian noise. The
strategy of how these augmentation techniques are added to the data are explained in section 5.2.1 and
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further summarized in table 5.3. This strategy will help to understand the influence of these techniques
on model performance and robustness.

Strategy Description
Add Augmented Images to Positive Class Add 1, 2, and 3 augmented images per positive image

Add Augmented Images to Both Classes
Add an augmented image to both
classes with probabilities of 0.3, 0.6, and 1.

Experiment Evaluation
Compare model performance under different
augmentation techniques, amounts, and probabilities

Table 5.3: Augmented Data Strategy and Experimental Setup

To further enhance the diversity of the training data, Generative Adversarial Networks were incorpo-
rated to generate synthetic images. The selected baseline model was trained with different levels of
synthetic data added to the dataset. This strategy is explained in section 5.2.2 and summarized in
table 5.4.

Strategy Description
Add Synthetic Images to Positive Class 1000, 5000, 10.000 synthetic images
Add Synthetic Images to Both Classes 1000, 5000, 10.000 synthetic images for each class
Experiment Evaluation Compare performance with different quantities of synthetic images

Table 5.4: Synthetic Data Strategy and Experimental Setup

This comprehensive testing strategy enables a systematic evaluation of the impact of pretraining, data
augmentation, and synthetic data generation on the performance of a neural network model in handling
the given classification task.

5.3.1 Hyperparameters

The training of CNNs involves several hyperparameters as described in section 3.2.5.

• Optimizer: We used the Adam optimizer. Adam combines the benefits of two other extensions
of stochastic gradient descent, namely AdaGrad and RMSProp. It computes adaptive learning
rates for each parameter.

• Learning Rate: The initial learning rate was set to 0.001. While Adam uses this as a starting
point, it adaptively adjusts the learning rates for each parameter during training.

• Loss Function: For the loss function, we employed a binary cross entropy loss with a posi-
tive weight to handle the class imbalance (BCEWithLogitsLoss). This loss function combines a
Sigmoid layer and the binary cross-entropy loss in one single class.

• Batch size: A batch size of 32 was used. This size balances the need for efficient computation
with the requirement to have diverse samples in each batch for stable training.

• Number of Epochs: The model will be trained for a total of 32 epochs. Training logs will be
monitored to observe the model’s performance and determine if it has converged. If the model
has not converged after 32 epochs, the training duration will be extended. To enhance training
efficiency, early stopping will be implemented. Specifically, if the validation loss does not improve
for 10 consecutive epochs, the training process will be halted to prevent overfitting and save
computational resources.

5.3.2 Dataset Split

The dataset will be split into three subsets: training, validation, and test sets, with a 60/20/20 ratio
respectively. The sizes of each set can be found in table 5.5. To test how robust the model is, the model
is also tested on a different dataset containing similar images.
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Set Number of images

Train 33531
Validation 11177
Test 11177

Table 5.5: Dataset Split

5.3.3 Performance Evaluation

The models will first be evaluated using performance metrics to measure how accurately they clas-
sify mammography images. Following this, their robustness will be evaluated to test how well they
handle different conditions and variations in the data. This two-step evaluation approach provides a
clear understanding of both the models’ effectiveness and their ability to generalize to new, real-world
situations. This section will detail the metrics used to evaluate the models’ performance.

Model performance

Classifying images into cancerous and non-cancerous categories is a binary classification problem. In
binary classification, the goal is to correctly identify each image as belonging to the correct class. A
classification can have one of four outcomes:

• True Positives (TP): Instances correctly classified as positive.

• True Negatives (TN): Instances correctly classified as negative.

• False Positives (FP): Instances incorrectly classified as positive.

• False Negatives (FN): Instances incorrectly classified as negative.

These four items form the basis of a confusion matrix, which is a crucial tool in evaluating the perfor-
mance of classification models and can be found in figure 5.10 [94].

Figure 5.10: Confusion Matrix

The confusion matrix can be used to calculate several evaluation metrics. One of the most commonly
used metrics is accuracy, accuracy measures the overall correctness of the model and is calculated with
equation 5.1.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

While accuracy is intuitive, it can be misleading for imbalanced datasets where the number of instances
in one class is much higher than the other.
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Other common metrics are precision and recall. Precision measured the instances of true positives,
amongst all the instances that are predicted as positive. It assesses, from all instances that are pre-
dicted positive, how many were correct. Recall measures the proportion of positive instances that were
correctly identified by the model. It evaluates, from all positive instances, how many were detected by
the model [94].

Precision =
TP

TP + FP
(5.2)

Recall =
TP

TP + FN
(5.3)

These measures have an inverse relationship, meaning improving one can lead to a decrease in the
other. Finding the right balance between these metrics is crucial for developing effective classifiers.
The F1-score is the mean of the precision and recall, this provides a single metric that balances both.
The F1-score balances the trade-off between the two metrics, offering a useful metric when both false
positives and false negatives need to be minimized [94]. This is particularly important in scenarios
where the positive class is of high importance, such as in medical diagnoses, where identifying all cases
of disease and ensuring those identified are correct is critical.

F1-Score = 2 ∗ Precision ∗Recall

Precision+Recall
(5.4)

Balanced Accuracy, is the average of recall obtained on each class. This treats both classes equally
regardless of their imbalance. This metric is useful when both classes are equally important. It ensures
that the model’s performance is evaluated equally across all classes. In medical diagnosis, this is im-
portant as both false negatives, missing a positive case, and false positives, misidentifying a negative
case, have serious implications. Balanced accuracy prevents the model from being biased towards the
majority class, which is a common issue in imbalanced datasets.

Balanced Accuracy =
1

2

(
TP

TP + FN
+

NP

TN + FP

)
(5.5)

The choice between F1-score and balanced accuracy depends on the specific priorities of the classifica-
tion task. If the main concern is to accurately identify positive cases and balance the trade-off between
precision and recall, the F1-score is more informative. If the objective is to ensure equal performance
across both positive and negative classes, balanced accuracy is a better metric. This metric is par-
ticularly useful in scenarios where the cost of misclassification is high for both classes, ensuring that
the classifier is not biased towards the majority class and provides a fair assessment of its performance
across all categories.

In summary, both F1-score and balanced accuracy are important metrics for evaluating classification
models, especially when the dataset is imbalanced. The F1-score is more useful when the focus is on
the positive class and balancing precision with recall, while balanced accuracy gives a fair assessment
across all classes, making it valuable in applications where both classes are equally important. For
breast cancer classification, where accurately identifying both cancerous and non-cancerous cases is
crucial, using both metrics can provide a comprehensive evaluation of the model’s performance.

Robustness performance

After evaluating the performance of the image classification models, it is important to also evaluate the
model’s robustness. A model’s robustness refers to the model’s ability to classify new, unseen data. It is
important to evaluate the model’s robustness to test how it would handle real-world applications. This
section describes two methods to assess the robustness of the model, this includes adversarial attacks
and testing on an additional dataset.
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Adversarial Attack Adversarial attacks are techniques used to test the robustness of the model
by adding small perturbations to the data [95]. The goal is to test whether the model is still able to
classify the images after adding a small change to the data. If the model can still correctly classify
these manipulated images, it demonstrates that the model is robust and can handle variations in the
data.

A common adversarial attack method is the Fast Gradient Sign Method (FGSM) [95]. Fast Gradient
Sign Method uses the gradients of the neural network’s loss function with respect to the input image to
create a new image that maximizes the loss. Using the gradients of the loss function with respect to the
input image shows how each pixel in the image contributes to the increase in loss. This helps identify
the weak spots of the model. By adding a small perturbation in the direction of these gradients, FGSM
creates an adversarial image that maximizes the loss. This is essentially a deliberate attack on the
model’s vulnerabilities, causing the model to misclassify the adversarial image.

The perturbation that is added to the original image is calculated by:

1. Forward Pass: Pass the input image through the model to compute the loss based on the
predicted class

2. Compute the gradient: Compute the gradient of the loss function, J(θ, x, y), with respect to
the input image x, where θ is the model parameters, and y is the true label. The gradient shows
how much the loss function changes with respect to small changes in the input.

3. Generate Perturbation: The perturbation η is computed by taking the sign of the gradient
and scaling it by a small constant ϵ, this controls how big the perturbation is.

η = ϵ · sign(∇xJ(θ, x, y)) (5.6)

4. Generate Adversarial Image: To create the adversarial image, the perturbation η is added to
the original image x.

x′ = x+ η (5.7)

FGSM is easy to implement as it only involves calculating the gradients and applying a linear transfor-
mation. This also makes it computationally efficient. In this study, an adversarial attack using FGSM
will be performed after the models are trained to evaluate their robustness.

Figure ?? shows an example of an image with the perturbation and the adversarial image.

Figure 5.11: Adversarial Attack

Additional Dataset To further evaluate the robustness of the models, they are evaluated on an
additional dataset. This dataset is extracted from the MIAS dataset as explained in section 4.2. Eval-
uating the models on this additional dataset provides insight into their ability to generalise to new,
unseen data. This is crucial for understanding the model’s performance in real-world scenarios. The
models will also be evaluated on balanced accuracy and F1-score, this will highlight the difference be-
tween classifying the test set and the additional set.

If the model is able to correctly classify the images from the additional dataset, it can handle differences
from real-world data.
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Chapter 6

Results

This section presents the results of the experiments to evaluate the performance of various Convo-
lutional Neural Network architectures in breast cancer classification. It explores the impact of data
augmentation and synthetic data, generated by the Conditional Generative Adversarial Network, on
the model’s performance. Additionally, the robustness of the models is evaluated by adversarial attack
and testing on an additional dataset.

6.1 Performance of Different CNN Architectures

Three different CNN architectures were evaluated to identify the most effective model for breast cancer
classification. The evaluated models are AlexNet, ResNet and EfficientNet. The models are trained
with random weight initialization and pretrained weight initialization.

Baseline Performance with Random Weight Initialization

The baseline performance of AlexNet, ResNet, and EfficientNet was evaluated using random weight
initialization. The results are summarized in Table 6.1. The results indicate that ResNet and Efficient-
Net struggled to train effectively with random weight initialization, as reflected in their relatively low
balanced accuracy scores. AlexNet outperformed both ResNet and EfficientNet, achieving an F1-score
and balanced accuracy of 0.86 and 0.87, respectively.

Table 6.1: Balanced accuracy and F1-Score for different CNN Architectures with random weight ini-
tialization.

Model F1-score Balanced Accuracy

Alexnet 0.86 0.87
ResNet 0.81 0.50
EfficientNet 0.81 0.50

Baseline Performance with Pretrained Weight Initialisation

The performance of the models was further evaluated using pretrained weights through transfer learn-
ing. The results are summarised in Table 6.2. EfficientNet achieved the highest F1-score of 0.95 and
a balanced accuracy of 0.93, demonstrating better performance in both metrics. AlexNet and ResNet
also significantly improved the F1-score and balanced accuracy compared to the randomly initialized
models. This highlights the effectiveness of transfer learning from pretrained models. The results in-
dicate that EfficientNet outperformed both AlexNet and ResNet in terms of balanced accuracy and
F1-score, making it the preferred choice for further experiments.

The comparison underscores the importance of pretrained models in medical image classification tasks.
Pretraining enhances model performance by transferring knowledge from large, diverse datasets, en-
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Table 6.2: Balanced accuracy and F1-Score for different CNN Architectures with pretrained weights.

Model F1-score Balanced Accuracy

AlexNet 0.91 0.83
ResNet 0.84 0.81
EfficientNet 0.95 0.93

abling better feature extraction and classification capabilities. In contrast, models with random weight
initialisation may struggle initially with learning effective representations, leading to lower performance.

Confusion Matrix and Training Performance

To further analyse the performance of the best model, Figure 6.1 presents the confusion matrix. The
confusion matrix provides a detailed view of the performance of the pretrained EfficientNet-B0 model,
illustrating its ability to correctly classify the majority of breast cancer images.

Figure 6.1: Confusion Matrix pretrained EfficientNet-B0

The confusion matrix provides a detailed overview of true positive, true negative, false positive, and false
negative classifications, offering insights into the model’s precision and recall across different classes.

Figure 6.2 illustrates the training performance of EfficientNet-B0 over 32 epochs, highlighting the
convergence behaviour of the model and the effectiveness of the training process. The training and
validation loss curves demonstrate a consistent decrease, indicating effective learning by the model.
The balanced accuracy for both training and validation data sets increased steadily, suggesting that the
model was improving its prediction capability without significant overfitting. Despite minor fluctuations
in the validation metrics, the close convergence of training and validation accuracy demonstrates good
generalization performance.
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Figure 6.2: Training and Validation Performance of EfficientNet-B0 over 32 Epochs

Summary of Key Findings

The evaluation of CNN architectures for breast cancer classification showed that AlexNet outperformed
ResNet and EfficientNet with random weight initialization, achieving an F1-score of 0.86 and a balanced
accuracy of 0.87. However, when training the model with pretrained weights, EfficientNet scored the
highest performance, with an F1-score of 0.95 and balanced accuracy of 0.93. This highlights the
effectiveness of transfer learning. These findings show that EfficientNet resulted in good performance
which will provide a strong starting point as a baseline model.

6.2 Impact of Data Augmentation on Model Performance

This section presents the impact of applying various data augmentation techniques on the performance
of the EfficientNet model for breast cancer classification. The data augmentation techniques include
rotation, flipping, translation, contrast adjustment, brightness adjustment, and Gaussian noise.

Addressing Class Imbalance: Addition of Augmented Images to Class 1

Augmented images were added to the positive class in the training set. Augmented images were added
with varying numbers per original image: 1, 2, and 3. Table 6.3 presents the balanced accuracy of the
pretrained EfficientNet with different data augmentation techniques applied.

Table 6.3: Balanced Accuracy with different data augmentation techniques applied on the positive class

Augmentations per image Rotation Flip Translation
Brightness
Adjustment

Contrast
Adjustment

Gaussian
Noise

1 0.90 0.94 0.93 0.92 0.91 0.90
2 0.88 0.93 0.88 0.90 0.91 0.88
3 0.89 0.91 0.84 0.91 0.90 0.86

For a single augmentation per image, the flip technique yields the highest balanced accuracy of 0.94,
closely followed by Translation at 0.93. The other techniques also perform well, with Brightness Ad-
justment at 0.92, Contrast Adjustment at 0.91, and both Rotation and Gaussian Noise yield a balanced
accuracy of 0.90.

When the number of augmentations per image is increased, there is a slight decrease in balanced accu-
racy across all techniques. The flip technique still performs the best with an accuracy of 0.93, contrast
adjustment stays at 0.91, and brightness adjustment decreases to 0.92. while rotation and Translation
both yield a balanced accuracy of 0.88. With three augmentations per image, the balanced accuracy
further decreases for all techniques, except for brightness adjustment, which increases to 0.91. This is,
together with the flip technique the highest accuracy at 0.91, while rotation yields an accuracy of 0.89.
The translation, brightness adjustment, and contrast adjustment techniques all have similar accuracies
ranging from 0.84 to 0.91.
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Figure 6.3: Balanced Accuracy of EfficientNet with different data augmentation techniques on the
positive class

The results are visualised in figure 6.3. This figure clearly shows the trend of decreasing balanced
accuracy with the addition of more augmentations. The results suggest that the Flip augmentation
technique yields the best results. Furthermore, the results indicate that adding one augmented image
per original image generally results in the best-balanced accuracy, with a noticeable performance drop
when adding more than 1 augmented image per original image. This suggests a potential risk of over-
fitting when too many augmented images are used, possibly causing the model to learn overly specific
features that do not generalise well to unseen data.

To further analyse the results, the F1-scores of each model are presented in table 6.4.

Table 6.4: F1-score with different data augmentation techniques applied on the positive class

Augmentations per image Rotation Flip Translation
Brightness
Adjustment

Contrast
Adjustment

Gaussian
Noise

1 0.96 0.96 0.97 0.96 0.93 0.96
2 0.96 0.97 0.96 0.97 0.96 0.96
3 0.95 0.97 0.95 0.96 0.95 0.95

When a single augmented image per positive image is added to the dataset, translation achieves the
highest F1-score of 0.97. This is followed by rotation, flip, brightness adjustment and Gaussian noise,
all at 0.96. The contrast adjustment achieved an F1-score of 0.93. All augmentation techniques were
an improvement compared to the baseline model, except for contrast adjustment. When the number
of augmented images per image is increased to two, flip, brightness adjustment, and Gaussian noise
achieve an F1-score of 0.97. Rotation and translation maintain their score of 0.96, and contrast adjust-
ment also improves to 0.96. All techniques improve the baseline model. With three augmented images
per image, flip remains the highest at 0.97. Brightness adjustment achieves a high score of 0.96, and
all the other techniques yield an F1-score of 0.95, which is the same as the baseline model.

The scores are visualised in figure 6.4. The figure clearly shows that the F1-scores have improved for
all augmentation techniques.
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Figure 6.4: F1-score of EfficientNet with different data augmentation techniques on the positive class

Comparison F1-Score and Balanced Accuracy Figure 6.5 illustrated the confusion matrix of
the model when one augmented image per image was generated using Gaussian noise. With this aug-
mentation, the balanced accuracy decreased, while the F1-score improved compared to the baseline
model. When comparing the confusion matrix of this model with the confusion matrix of the baseline,
which can be found in figure 6.1, the augmented model showed a change in the distribution of pre-
diction errors. The baseline model had fewer false negatives but more false positives. This indicates
that while the augmented model reduced the number of incorrect positive predictions, it also failed to
identify more positive images. While the F1-score improved due to better precision, the decrease in
balanced accuracy shows the trade-off between correctly identifying all breast cancer cases, and not
misidentifying images as positive which are not.

Figure 6.5: Confusion Matrix of EfficientNet trained with Gaussian Noise Data Augmentation

Preventing Overfitting: Balanced Addition of Augmented Images to Both Classes

To mitigate the risk of overfitting and create a more balanced model, the next phase of training involved
adding augmented images to both positive and negative classes. This approach aimed to ensure that
the model learns features of both cancerous and non-cancerous tissues, thereby enhancing its ability to
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generalise and make accurate predictions across all classes. By incorporating augmented data from both
classes, the study aims to optimize the model’s performance while minimizing the effects of overfitting
and bias towards any specific class characteristics. In this phase, augmented images are added to both
classes. This is done with a probability of 0.3, 0.6 or 1. The balanced accuracies of all models are
presented in table 6.6.

Table 6.5: Balanced Accuracy with different data augmentation techniques applied on both classes

Augmentations per image Rotation Flip Translation
Brightness
Adjustment

Contrast
Adjustment

Gaussian
Noise

0.3 0.92 0.92 0.94 0.93 0.91 0.90
0.6 0.91 0.95 0.93 0.89 0.90 0.91
1 0.92 0.94 0.94 0.92 0.90 0.90

When augmented images are added to the dataset with a probability of 0.3, translation achieves the
highest balanced accuracy of 0.94. This is followed closely by all other techniques, brightness adjust-
ment at 0.93, rotation and flip both at 0.92, contrast adjustment at 0.91 and Gaussian noise at 0.90.
Only translate improved the baseline and balanced accuracy achieved the same score. The other tech-
niques resulted in a slight decrease in balanced accuracy compared to the baseline model.

When adding augmentations with a probability of 0.6, the flip technique improved to 0.95, while trans-
lation decreased slightly to 0.93. The other techniques resulted in balanced accuracies ranging from
0.89 to 0.91.

Adding an augmentation to every image, with a probability of 1, the flip and translation technique
again yielded the best results with a balanced accuracy of 0.94. This is followed by a balanced accu-
racy of 0.92 for rotation and brightness adjustment and 0.90 for contrast adjustment and Gaussian noise.

These results are visualised in figure 6.6. In comparison to when data was only added to the positive
class, these results are more stable and there is no sign of overfitting when more data is added to the
dataset.

Figure 6.6: Graph visualization of the balanced accuracy of EfficientNet trained with different data
augmentation techniques applied on both classes

To further analyse the effects of data augmentation, the F1-scores were compared to the baseline model.
These results can be found in table 6.6.

When augmentations were added to the dataset with a probability of 0.3, the model showed strong
performance for almost all techniques. The flip technique, again, showed the best performance followed
by rotation, translation, Gaussian noise, and brightness adjustment. Contrast adjustment had a small
degradation and achieved an F1-score of 0.97. When the probability of adding augmentations was
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Table 6.6: F1-score with different data augmentation techniques applied on both classes

Augmentations per image Rotation Flip Translation
Brightness
Adjustment

Contrast
Adjustment

Gaussian
Noise

0.3 0.96 0.97 0.96 0.95 0.93 0.96
0.6 0.96 0.97 0.97 0.94 0.96 0.96
1.0 0.96 0.95 0.97 0.94 0.96 0.95

increased to 0.6, all the results remained very similar. Only brightness adjustment decreased to 0.95,
translation increased to 0.97, and also contrast adjustment made a significant improvement. This is
also similar to when the probability was increased to 1.0. These results are visualized in a graph in
figure 6.7, this highlights that the results are fairly stable.

Figure 6.7: Graph visualization of the F1-score of EfficientNet trained with different data augmentation
techniques applied on both classes

Summary of the Key Findings

The impact of data augmentation on EfficientNet’s performance in breast cancer classification was
analyzed using various techniques including rotation, flipping, translation, contrast adjustment, bright-
ness adjustment, and Gaussian noise. When adding augmented images to the positive class, the flip
technique provided the highest balanced accuracy and F1-score, particularly with one augmentation
per image. Adding multiple augmentations per image led to a decrease in performance, indicating
a risk of overfitting. When adding augmented images to both classes the balanced accuracy stayed
more stable as more augmentations were added, this indicates less overfitting. The flip and translation
techniques remained effective, achieving the highest balanced accuracies and F1-score. Overall, while
data augmentation generally improved F1-scores, balanced accuracy slightly declined. highlighting the
need for careful management of augmentation volume and type to optimize model performance.

6.3 Impact of Synthetic Data on Model Performance

In this section, the results are presented of the impact of adding synthetic data generated by a Genera-
tive Adversarial Network on the performance of the EfficientNet model for breast cancer classification.
First, to solve class imbalance, images are added to the positive class. Then, to prevent overfitting,
images are added to both classes.

Addressing Class Imbalance: Addition of Synthetic Images to Class 1

Synthetic images generated by the GAN developed in section 5.2.2 were added to the dataset. Different
amounts of synthetic images were added. First, to solve the data imbalance, only images with label
1 are included. Table 6.7 presents the performance of the EfficientNet model trained with different
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amounts of synthetic data added to the dataset.

Table 6.7: Balanced accuracy of EfficientNet with synthetic images added to the positive class

Number of Synthetic Images Added F1-score Balanced Accuracy

1000 0.97 0.94
5000 0.96 0.93
10.000 0.96 0.92

When 1000 synthetic images were added to the dataset, the model’s performance improved, achieving
an F1-score of 0.97 and a balanced accuracy of 0.94. This indicates a slight improvement in both met-
rics compared to when no augmented or synthetic data is added. However, as the number of synthetic
images increased to 5000, the F1 score decreased slightly to 0.96, and the balanced accuracy returned
to the baseline level of 0.93. When 10.000 synthetic images were added, the F1-score remained at 0.96,
while the balanced accuracy decreased further to 0.92.

The results indicate that adding synthetic images slightly improved the performance of the EfficientNet
model. The addition of 1000 synthetic images improved both the F1-score and balanced accuracy.
However, adding more synthetic images did not yield further improvements and slightly decreased
performance. This decline indicates that, while synthetic data can be beneficial, there is a point at
which adding too many synthetic images may lead to worse returns. This could be due to the model
overfitting to the synthetic data or the synthetic data not being diverse enough to provide additional
value.

Preventing Overfitting: Balanced Addition of Synthetic Images to Both Classes

To prevent overfitting on 1 class, synthetic images of both classes were added next. The results can be
found in table 6.8.

Table 6.8: F1-score and Balanced Accuracy of EfficientNet with Synthetic Images Added to Both
Classes

Number of Synthetic Images Added F1-score Balanced Accuracy

1000 0.95 0.93
5000 0.96 0.90
10.000 0.95 0.91

When 1000 synthetic images were added to both classes, the model’s F1-score matched the baseline at
0.95, and the balanced accuracy also matched the baseline at 0.93. This indicates that the introduction
of a moderate amount of synthetic data to both classes maintained the performance levels achieved by
the baseline model.

With an increase to 5000 synthetic images, the F1-score improved slightly to 0.96, but the balanced ac-
curacy decreased to 0.90. This suggests that while the model’s precision and recall improved, the overall
balance between classes was negatively impacted. When 10.000 synthetic images were added, the F1-
score returned to the baseline level of 0.95, while the balanced accuracy was 0.91. This showed a slight
improvement over the 5000 synthetic image scenario but still did not improve the baseline performance.

The performance metrics of adding synthetic data to both the positive class, and both classes, can be
found in 6.8. From this figure, it is clear that while the F1-score improves by adding synthetic data,
the balanced accuracy decreases slightly most of the time.
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Figure 6.8: Graph visualization of the balanced accuracy and F1-score of EffiecientNet with different
amounts of synthetic images added to the dataset

Summary of Key Findings

The impact of synthetic data on the performance of the EfficientNet model for breast cancer classifi-
cation was evaluated by adding synthetic images generated by a GAN. When synthetic images were
added exclusively to the positive class, the model showed improved performance with 1000 synthetic
images, achieving an F1-score of 0.97 and a balanced accuracy of 0.94. However, adding more synthetic
images led to a decrease in balanced accuracy, indicating that excessive synthetic data could potentially
cause overfitting.

When synthetic images were added to both classes, the model’s performance varied. With 1000 synthetic
images for each class, performance was stable and matched baseline levels. Adding 5000 synthetic
images improved the F1-score to 0.96 but decreased balanced accuracy to 0.90. Adding 10.000 images
resulted in an F1-score of 0.95 and balanced accuracy of 0.91. Overall, while synthetic data generally
improved F1-scores, it slightly reduced balanced accuracy.

6.4 Robustness Evaluation

In this section, the models are evaluated on their robustness to test how they would perform with
the variability of real-world cases. First, an adversarial attack is performed, and then the model is
evaluated on a separate dataset.

Adversarial Attack

The models are evaluated based on the Adversarial Attack as described in section 5.3.3. First, the
models trained with augmented data are evaluated, and then the models trained with synthetic data
are evaluated.

Augmented Data After the adversarial attack was performed, the models were re-evaluated based
on balanced accuracy and F1-score. This section will highlight the results of the models that added
one augmented image to the positive class, as these models performed the best out of the augmented
models. The balanced accuracy before and after the attack can be found in table 6.9. The table also
shows the percentual difference after the attack was performed.

The balanced accuracy of the baseline model dropped from 0.93 to 0.53, which is an 43.01% decrease.
The decrease indicates a significant impact of the adversarial attack on the baseline model. The bal-
anced accuracy of all other models decreased after the adversarial attack, however, the reductions were
significantly less compared to the baseline model. For instance, the adversarial attack reduced the
performance of the rotate augmentation by 25.00% and the flip augmentation reduced by 16.84%. The
contrast adjustment technique had the smallest drop of 6.59%, and the Gaussian Noise had the largest
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Table 6.9: Balanced Accuracy and Adversarial Balanced Accuracy Percentual Differences for Aug-
mented Data

Model Balanced Accuracy Adversarial Balanced Accuracy BA Diff (%)

Baseline 0.93 0.53 -43.01
Rotate 0.92 0.69 -25.00
Flip 0.95 0.79 -16.84
Translate 0.94 0.65 -30.85
Brightness 0.93 0.63 -32.26
Contrast 0.91 0.85 -6.59
Gaussian 0.91 0.53 -41.76

drop of 41.76%. This is a significant decrease, but still less than the baseline.

Table 6.10: F1-Score and Adversarial F1-Score Percentual Differences for Augmented Data

Model F1-Score Adversarial F1-Score F1 Diff (%)

Baseline 0.95 0.56 -41.05
Rotate 0.97 0.90 -7.22
Flip 0.97 0.94 -3.09
Translate 0.96 0.89 -7.29
Brightness 0.95 0.82 -13.68
Contrast 0.93 0.94 1.08
Gaussian 0.96 0.70 -27.08

Table 6.10 describes the F1-score before and after the adversarial attack, along with the percentage
differences. The baseline model’s F1-score dropped significantly from 0.95 to 0.56, resulting in a 41.05%
decrease. This large decrease again highlights the substantial impact of the adversarial attack on the
baseline. In terms of the F1-score, the model using the contrast adjustment technique experienced a
slight increase of 1.08%. All other models saw a decrease, but these were significantly less than the
baseline’s decline.

Overall, while the performance metrics for all models have decreased due to the adversarial attack, the
augmented models show improvement over the baseline. This indicates that the applied augmentations
contribute positively to the models’ robustness against adversarial attacks.

Synthetic Data Next, the models with synthetic data were re-evaluated after performing the adver-
sarial attack. Table 6.11 shows the balanced accuracy before and after the adversarial attack, along
with the percentage difference.

Table 6.11: Balanced Accuracy and Adversarial Balanced Accuracy Percentual Differences for Synthetic
Data

Model Balanced Accuracy Adversarial Balanced Accuracy BA Diff (%)

Baseline 0.93 0.53 -43.01
Positive - 1000 0.94 0.84 -10.64
Positive - 5000 0.91 0.79 -13.19
Positive - 10.000 0.92 0.84 -8.70
Both - 1000 0.93 0.51 -45.16
Both - 5000 0.89 0.62 -30.34
Both - 10.000 0.91 0.56 -38.46

Again, there is a significant drop in balanced accuracy after the adversarial attack. Interestingly, the
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decrease for models where data were added to the positive class ranged from 8.70% to 13.19%, while
when adding to both classes the decrease ranged from 30.34% to 45.16%.

The F1-scores of the models with synthetic data were also evaluated, these results can be found in table
6.12.

Table 6.12: F1-Score and Adversarial F1-Score Percentual Differences for Synthetic Data

Model F1-Score Adversarial F1-Score F1 Diff (%)

Baseline 0.95 0.56 -41.05
Positive - 1000 0.97 0.95 -2.06
Positive - 5000 0.95 0.94 -1.05
Positive - 10.000 0.96 0.95 -1.04
Both - 1000 0.95 0.81 -14.74
Both - 5000 0.96 0.85 -11.46
Both - 10.000 0.96 0.57 -40.62

The models with synthetic data added to the positive class significantly improved compared to the
baseline. While there is still a slight decrease after the adversarial attack, the F1-score ranges from
0.94 to 0.95 which is similar to the baseline evaluation without adversarial attack. When synthetic
images are added to both classes, the robustness performance decreases a bit more. Adding 1000 and
5000 images results in a decrease of 14.74% and 11.46% respectively, while adding 10.000 images results
in a 40.62% decrease.

Comparison to Additional Dataset

To further test the generalizability of the model, the model was evaluated on a different dataset. This
dataset also contains ROIs of mammograms. The top-performing models from each strategy were
assessed: the baseline EfficientNet with pre-trained weights, the model with flip data augmentation to
the positive class, the model with data augmentation to both classes, the model with synthetic data
added to the positive class, and finally the model with synthetic data added to both classes. The results
are presented in table 6.13.

Model F1-score Balanced Accuracy

Pretrained EfficientNet 0.43 0.45
Augmented images positive 0.56 0.51
Augmented images both 0.35 0.50
Synthetic images positive 0.16 0.50
Synthetic images both 0.28 0.50

Table 6.13: Performance metrics of trained models evaluated on an additional dataset

The baseline EfficientNet model with pretrained weights achieved an F1-score of 0.43 and a balanced
accuracy of 0.45. These results serve as a reference point for evaluating the impact of data augmenta-
tion and synthetic data.

The EfficientNet model trained with augmented images is also tested on the additional dataset. The
best model achieved an F1-score of 0.56 and a balanced accuracy of 0.51. Although this is an improve-
ment compared to the baseline model, the model is unable to correctly classify the images. Figure 6.9
presents the confusion matrix for the model.
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Figure 6.9: Confusion matrix of EfficientNet with augmented data evaluated on the additional MIAS
dataset

When synthetic images generated by GAN were added, the performance decreased. The model has an
F1-score of 0.28 and a balanced accuracy of 0.50. Upon further inspection of the results, it is shown
that the model classifies almost all images as positive. This results in a decrease in performance metrics.
The confusion matrix can be found in 6.10.

Figure 6.10: Confusion matrix of EfficientNet with synthetic data evaluated on the additional MIAS
dataset

Summary of Key Findings

The robustness evaluation provides insights into how the models perform under variable circumstances.
The adversarial attack led to a significant decrease in the performance of the baseline model, with the
balanced accuracy and F1-score dropping 43.01% and 41.05% respectively. While the performance of
the models with augmented and synthetic images also decreased, it was a lot less compared to the base-
line model. The models that performed the best, are contrast adjustment and adding 10.000 synthetic
images to the dataset. Contrast adjustment resulted in a decrease of 6.59% in balanced accuracy, but
an increase of 1.08% in terms of F1-score. Adding 10.000 synthetic images resulted in a decrease in
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balanced accuracy of 8.70% and a decrease in F1-score of 1.04%. While the adversarial attack showed
a decrease in performance, this decrease was significantly less when data augmentation and synthetic
data were added to the dataset.

Evaluation of an additional dataset also provides valuable insights into the generalisability of the model.
The results suggest that, while the model trained with augmented and synthetic data performed well
on the training data, it did not generalise as effectively to the additional dataset. The baseline model
yielded an F1-score and balanced accuracy of 0.43 and 0.45 respectively. This is a large drop compared
to the original dataset. While adding augmented images to the positive class led to an improvement in
the F-score and balanced accuracy of 0.56 and 0.51, this is not a sufficient performance. This decrease
in performance could be due to the additional dataset having different characteristics compared to the
training data. While both datasets contain images of the Region of Interest, differences in imaging
techniques or equipment can cause the images to appear visually different. These variations make it
challenging for the model to accurately detect breast cancer in the new dataset, highlighting the impor-
tance of the variability of the dataset when training and evaluating models for medical image analysis.
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Chapter 7

Discussion and Conclusion

This section provides an in-depth analysis of the results, examines the study’s limitations, suggests
directions for future research, and presents a conclusion.

7.1 Discussion

In recent years, the use of Convolutional Neural Networks has shown significant promise in medical
image analysis. However, the results thus far are limited due to a lack of data caused by privacy
regulations, the lack of accurate annotations and the lack of variability in the data. To address these
challenges, this research explores the impact of data augmentation and synthetic data on the perfor-
mance of CNN models in breast cancer detection. The study aims to answer the following question:

How does the use of augmented and synthetic data impact the effectiveness of convolutional neural net-
works in detecting breast cancer from mammograms?

To address this question, the research is structured around four subquestions, each focussing on different
aspects of data augmentation and synthetic data generation. This discussion will examine the findings
for each subquestion, highlighting the performance of various CNN architectures, the effects of data
augmentation techniques, the impact of synthetic data generated by Generative Adversarial Networks,
and the generalisability of these models when evaluated on a separate dataset.

Subquestion 1: Performance of Different CNN Architectures

What are the performances of different CNN architectures in detecting breast cancer from mammo-
graphic images?

To address this question, the study evaluated various CNN architectures, including AlexNet, ResNet,
and EfficientNet. EfficientNet demonstrated the highest performance with pretrained weights, achieving
a balanced accuracy of 0.93 and an F1-score of 0.95. These results highlight its potential for detecting
breast cancer from mammographic images.

Subquestion 2: Impact of Data Augmentation

How do traditional data augmentation techniques affect the performance of CNN models?

To answer this question, different types of data augmentation techniques were applied and added to
the training set. The techniques include rotation, flipping, translation, brightness adjustment, contrast
adjustment and the adding a Gaussian noise. The results showed that adding the flipping technique
yielded the best results with a balanced accuracy and F1-score of 0.94 and 0.97 respectively. The study
found that adding too many augmented images per original image led to a decrease in performance
metrics. This is likely due to the risk of overfitting on the augmented data.

In conclusion, data augmentation can positively impact the performance of a CNN if applied correctly
and in appropriate quantities. However, excessive augmentation can lead to a decrease in performance.
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Therefore, it is important to balance the quantity and quality of augmented data to optimise the
model’s performance.

Subquesion 3: Impact of Synthetic Data

textitHow does the inclusion of synthetic data generated by GANs impact the performance of CNN
models in breast cancer detection?

The study explored the effects of adding synthetic images created by Generative Adversarial Networks
into the training process. Adding a moderate amount of synthetic data (1000 images) to the positive
class resulted in an F1-score of 0.97 and balanced accuracy of 0.94, this a slight improvement in model
performance compared to the baseline. When more images were added, it led to a small decrease in
performance, with the F1-score stabilising around 0.96 and the balanced accuracy decreasing to 0.92.
This suggests that while synthetic data can be beneficial, excessive amounts may cause overfitting
or insufficient diversity. These results are very similar to when adding augmented data, although
synthetic data did not significantly enhance the performance of the EfficientNet model, it showed a
small improvement with the right amount of synthetic images. Therefore, the study concludes that
the strategic use of synthetic data could potentially enhance the performance of CNN models in breast
cancer detection.

Subquestion 4: Generalizability of CNN Models

How does the inclusion of augmented and synthetic images impact the generalisability of CNN models
for breast cancer detection?

This was evaluated by an adversarial attack and by evaluating the model with an additional dataset.
Adversarial attacks led to a significant decrease in both balanced accuracy and F1-scores for all models.
The baseline showed a large drop in performance. In contrast, the addition of augmented and synthetic
data resulted in a significantly smaller drop. This suggests that incorporating augmented and synthetic
data can enhance model robustness.

Evaluation of an additional dataset also provides valuable insights into the generalisability of the model.
The results suggest that, while the model trained with augmented and synthetic data performed well
on the training data, it did not generalise as effectively to the additional dataset. This is indicated by
the decrease in the F1 score and the balanced accuracy when the model was evaluated in a separate
data set. Differences in imaging techniques or equipment can cause the images to appear visually
different, making it challenging for the model to accurately detect breast cancer in the new dataset.
This highlights the importance of the variability of the dataset when training and evaluating models
for medical image analysis.

Answer to the Main Research Question

This research studied the effects of augmented and synthetic data on the effectiveness of convolutional
neural networks in breast cancer detection. Although EfficientNet showed high baseline performance,
both traditional data augmentation and synthetic data techniques contributed to further improvements.
The study found that from the traditional augmentation techniques, the flip technique was most effective
in improving model performance. It also showed the addition of synthetic images in the positive class
can enhance model performance. To optimize the results, is important to balance the amount of
augmented and synthetic data to avoid overfitting and maintain diversity, ensuring optimal model
performance. In addition, the results of the adversarial attack showed that the use of augmented and
synthetic data has significantly enhanced the robustness and generalisation ability of convolutional
neural networks. Overall, the research demonstrated that data augmentation and synthetic data can
be effective in enhancing the performance of CNN models for breast cancer detection.
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7.2 Conclusion

This study explored the impact of data augmentation and synthetic data on the effectiveness of con-
volutional neural networks in detecting breast cancer from mammographic images. Early detection of
breast cancer is crucial, as survival rates decline significantly as the disease progresses. While com-
puter aided diagnosis systems show promise in assisting with breast cancer detection, currently the
performance is limited and CAD systems are not widely used in clinical practice. A challenge in de-
veloping effective CAD systems is the need for large, high-quality datasets. Obtaining such datasets is
challenging due to several factors, including privacy regulations, data annotation, and the variability
in mammographic images. These challenges make it difficult to obtain a large, well-annotated dataset.
This research aimed to address these challenges by investigating whether augmenting data with tradi-
tional techniques and generating synthetic data using Generative Adversarial Networks could enhance
the performance and robustness of CNN models.

The study demonstrated that both traditional data augmentation techniques and synthetic data gener-
ated by GANs can significantly enhance the performance and robustness of CNN models, particularly
the EfficientNet model. The addition of augmented and synthetic data led to an improvement of 1% in
balanced accuracy and 2% in F1-score. Additionally, it showed significant improvements in the robust-
ness of the model. While the performance decreased after the adversarial attack was performed, it was
significantly less than the baseline model. This indicates an improvement in the robustness of the model.

Every year, approximately 900.000 women participate in the population-based breast cancer screening
program, and 7000 women are diagnosed with cancer. With an improvement of 1% in balanced accu-
racy and 2% in F1-score, the use of data augmentation and synthetic data could result in more accurate
detections and fewer missed cases. This can potentially lead to earlier interventions for hundreds of
women. While this improvement seems small, it can have substantial real-world implications, poten-
tially saving lives and reducing delayed diagnoses. The results also show that data augmentation and
synthetic data have promise for improving the generalisation ability of CNNs in breast cancer detection.
While current performance levels are still not sufficient for full clinical adoption, these techniques show
potential for further research and development, which could lead to more effective and reliable CAD
systems in the future.

In conclusion, this thesis has demonstrated that augmented and synthetic images can positively impact
CNN performance in breast cancer detection. While these techniques offer promising improvements,
further research is needed to further improve the models and address current limitations in clinical
applications.

7.3 Limitations

While this study provides valuable insights into the use of augmented and synthetic data in detecting
breast cancer from images, several limitations should be noted.

1. Quality of Dataset: Although the dataset contained many high-quality images, there were
several instances of images with anomalies or poor quality. These irregularities could have af-
fected the model’s training and evaluation processes, potentially skewing the results. Ensuring a
consistently high-quality dataset is crucial for reliable model performance.

2. Stability of the GAN: The Generative Adversarial Network used in this study struggled to
stabilize during training. GANs are known for their instability, which can result in synthetic data
that does not adequately capture the variability and realism of the original data. A more stable
and advanced GAN architecture could potentially yield better and more consistent results.

3. Additional dataset: The additional dataset, while containing the same type of images (ROIs
of mammograms), had visually different characteristics compared to the training dataset. This
variability in imaging techniques could explain the model’s poor generalization to the new data.
The lack of a reliable metric to account for these differences suggests that the model’s performance
on the additional dataset may not accurately reflect its true generalisability.
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These limitations highlight the challenges in training and evaluating CNN models for medical image
analysis. Addressing these issues in future research could lead to more robust and generalizable models.
Ensuring dataset quality, improving GAN stability, and accounting for variability in external datasets
are critical steps toward developing effective tools for breast cancer detection.

7.4 Future research

While this research provides valuable insights into the use of augmented and synthetic data for improv-
ing convolutional neural network performance in breast cancer detection, future research is suggested
to build upon these findings and to address the limitations.

1. Improved Synthetic Data Generation: The stability and quality of synthetic image gen-
eration can be improved by employing more advanced GAN architectures, such as StyleGAN,
CycleGAN, or WassersteinGANs.

2. Integration with Clinical Data: Combining image data with clinical data, such as genetic
information and medical history, could lead to more comprehensive models that provide better
results.

3. Validation dataset: As mentioned in the limitations, the validation dataset had visually differ-
ent characteristics. It is recommended to find an additional dataset with similar features.

4. Additional testing To further evaluate how well the augmented and synthetic data worked, it
could be interesting to intentionally train the model on a worse dataset by removing images. This
will also highlight how diverse the used dataset is.

5. Train on more, diverse data: Although the goal is not to rely on large datasets due to their
limited availability, it is advised to train on a more diverse dataset. When a wider range of images
is introduced the model will be able to learn a wider variety of features, enhancing its robustness
and performance in real-world scenarios.

By addressing these issues, future research can contribute to developing more accurate and generalizable
CNN models for breast cancer detection, this will result in improved patient outcomes and advances in
the field of medical imaging.
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[94] Steven A. Hicks, Inga Strümke, Vajira Thambawita, Malek Hammou, Michael A. Riegler, P̊al
Halvorsen, and Sravanthi Parasa. On evaluation metrics for medical applications of artificial
intelligence. Scientific Reports, 12, 2022.

[95] Kui Ren, Tianhang Zheng, Zhan Qin, and Xue Liu. Adversarial attacks and defenses in deep
learning. Engineering, 6, 2020.

64


