
Generating Trajectories for Offensive Players in

Professional Football

Arnold Dijk

student number: 2675389

June 2022

A thesis presented for the degree of

MSc Business Analytics

Beyond Sports

Noorderkade 145

1823CJ ALKMAAR

Vrije Universiteit
De Boelelaan 1081a

1081 HV Amsterdam

supervisor: Daniel Karavolos supervisor: Vincent François-Lavet

second reader: Rianne de Heide

1 Abstract

The opinions of analysts during the break of professional football matches are subjective and cannot
be objectively confirmed due to a lack of analytical tools. So, the need arises for tools that can
visualize what would have happened in alternative scenarios. Developing this kind of tools is a
broad problem that can be divided into sub-problems. In this study, we focus on the sub-problem of
generating trajectories of offensive professional football players. Here, we have investigated multiple
models and feature sets. We found out that the Hierarchical Policy Network shows the highest
performance. The architecture of the Hierarchical Policy Network is based on the paradigm that
trajectories of players in team sports can be decomposed into a raw-micro and macro policy. Here,
the macro policy guides the player toward the desired position on the field. Besides, the micro
policy makes sure that the generated trajectory looks natural. The model takes features, describing
all players and the ball as input. These features are given to the model consistently by applying a
role-assignment-based procedure. At the end, we show that the best found model generates realistic
trajectories for 9 out of 10 situations.

i

2 Preface

This report shows the result for the graduation project of the master of Business Analytics. This
graduation project is executed at the Machine Learning team at Beyond Sports in the form of an
internship with a duration of six months.

First of all, I would like to express my gratitude to my supervisor Daniel Karavolos for guiding
me for the past six months. Furthermore, I would like to thank all other members of the Ma-
chine Learning team at Beyond Sports for all the nice and insightful discussions. I also would like to
thank Vincent François-Lavet for the nice discussions and suggestions during our 2-weekly meetings.

At the end, I would like to thank my family and friends. But especially my parents who always
supports me in my decisions.

ii

3 Abbreviations and Notation

Notation Description

A set of all actions
P set of all attacking players
p attacking player
e segment in which the game is alive and ball-owning team does not change
D Set of all extracted segments from the raw data
π probability-distribution over actions

S(p,t) State of player p at time t
C(p,t) Cartesian Coordinates of player p at time t
v(p,t) velocity-vector of player p at time t
a(p,t) action (discretized v(p,t)), taken by player p at time t
amacro
(p,t) macro intent action of player p at time t

m(p,t∗) boolean, indicating if the position of player p at time t is a macro intent
vmacro
(p,t) velocity vector of player p at time t on the straight line towards the next macro intent

F 1, F 2, F 3 different Feature sets (see section 6.3)
P raw
θ raw-micro policy which corrects the macro policy in the HPN

Pmacro
Φ macro policy which guides the player towards a macro intent.
ptrue probability of selecting the true trajectory (see section 6.5.1)
pgen probability of selecting the generated trajectory (see section 6.5.1)

macro intent desired position of a player on the field.
MLP Multilayer Perceptron
RNN Recurrent Neural Network
GRU Gated Recurrent Unit
HPN Hierarchical Policy Network

iii

Contents

1 Abstract i

2 Preface ii

3 Abbreviations and Notation iii

4 Introduction 1

5 Related work 3
5.1 Features . 3
5.2 Generative modelling . 4
5.3 Evaluation metrics . 4

6 Methodology 5
6.1 Data preprocessing . 5

6.1.1 Segment extraction . 5
6.2 Labeling . 5

6.2.1 Actions . 6
6.3 Features . 7

6.3.1 F 1: Base features . 7
6.3.2 F 2: Base features + image representation . 7
6.3.3 F 3: Role-assignment based features . 8

6.4 Models . 9
6.4.1 General setup . 9
6.4.2 Multi-layer Perceptron . 9
6.4.3 Recurrent Neural Network . 10
6.4.4 Hierarchical Policy Network . 10

6.5 Evaluation metrics . 12
6.5.1 Questionnaire . 13

7 Experimental setup 15
7.1 Variational Autoencoder . 15
7.2 Multi-Layer Perceptron . 15
7.3 Recurrent Neural Network . 16
7.4 Hierarchical Policy Network . 16
7.5 questionnaire . 16

8 Results 18
8.1 General observations . 18
8.2 Variational Autoencoder . 19
8.3 Evaluation . 20

8.3.1 Cross-Entropy loss . 20
8.3.2 Generated trajectories . 21
8.3.3 Questionnaire . 27
8.3.4 Overall comparison . 28

iv

9 Discussion and future work 29
9.1 Interaction effects . 29
9.2 Features . 29
9.3 Models . 30
9.4 Evaluation . 30

A Appendix 32
A.1 Rewriting hadamard product . 32
A.2 Design choices Recurrent Neural Network . 32
A.3 Detailed explanation Variational Autoencoder . 33

A.3.1 Mathematical derivation . 33
A.4 RNN trajectory procedure . 34
A.5 RNN trajectory procedure . 35

v

4 Introduction

Football is the most popular sport in many countries around the globe. Most matches played in
the highest national leagues of these countries are broadcast live on television. Here, analysts often
discuss the decisions made by the players during the break in a match. Visual tools are used to
support their arguments, where, for instance, arrows can be drawn on the screen to highlight better
decisions. However, these explanations are subjective and cannot be objectively confirmed due to a
lack of analytical tools. So, one cannot prove- or disprove the analysts’ hypothetical scenarios. For
this reason, the need arises for tools that can visualize what would have happened in such situa-
tions. The way situations during matches evolve depends on multiple critical aspects. For instance,
the position of a defender depends on the positions of attacking players1 since covering attacking
players is the main task of defenders. Moreover, the behavior of an attacking player depends on the
ball-owning player. Thus, the way a situation evolves depends on multiple complex patterns which
interact with each other. For this reason, the determination of how certain situations in football will
evolve is a broad problem that can be divided into sub-problems.
Generating the trajectories for defending players is different from that for attacking players. The
ultimate goal of attacking players is to score in the opponent’s goal. This is mostly done by building
up an attack where a player eventually shoots at the target in a promising situation. Building up an
attack can be done in different ways which introduce high uncertainty. For instance, the attacking
team in figure 1 is building up an attack where the ball-owning player (red) has the option to run
along the line or to turn around. Therefore, the resulting trajectory of the ball-owning player is
uncertain. This is different from the trajectories of players in the defending team since defending
players in general react to the decisions of attacking players. Therefore, generating trajectories for
attacking and defending players are considered to be different sub-problems. Some work is done in
generating defensive trajectories [16], [7], and [4]. This is in contrast to attacking players which is
seen as a harder problem due to the uncertainty.
In this thesis, we focus on generating trajectories of attacking players. Here, we take a true situation
with a duration of n2. Then, the problem is to generate a realistic trajectory for a single attacking
player in time-interval [n1, n2] where [0 < n1 < n2]. Furthermore, we assume that the attacking
team does not change in the entire situation and the game stays active. We describe the imple-
mentation of different generative models and compare these by using quantitative and qualitative
evaluation procedures. We show that the best found model can generate realistic trajectories for 4
seconds.

Figure 1: The model will suggest a movement towards the defender when the problem is approached
as a regression problem (red arrow in the right image). This direction is a trade-off between 2
directions with high likelihood. However, the result itself is unlikely to happen.

1an attacking player is a player in the ball-owning team

1

The remainder of this thesis is structured as follows: In the Related Work section, we discuss
literature that is taken into consideration to solve the problem. In the methodology, the procedure to
solve the problem is explained. This includes the explanation of the data-preprocessing, feature sets,
models and evaluation metrics. Then, in the Experimental Setup, we explain different experiments
to find the best performing model. The results of these experiments are shown and discussed in the
Results and Discussion sections respectively.

2

5 Related work

Part of the previous section was the introduction to the problem. In the next step, the literature
which can be used to solve the problem is discussed. In general, we observe three sub-problems. First
of all, computing features that explain the player formations is not a straightforward task. In section
5.1 we explain this problem and provide potential solutions from the literature. Then, we discuss
different approaches for generative modeling in section 5.2 where the uncertainty in decision-making
is taken into account. The third problem is about the evaluation procedure which is discussed in
section 5.3. The discussed literature will be used to construct an approach which is described in
section 6.

5.1 Features

In team sports, a group of players are working together to accomplish a task or multiple tasks. Here,
different players can have different roles which can change over time. It is not obvious from the data
what the role of each player is. In our setting, we have information about all players which is con-
catenated in a random order (see section 6.1). There are 11 players in one team which means that
information about players in a single frame can be expressed in 11! × 11! ways. Therefore, feeding
the information to models in a random order is inconsistent which makes training models very hard,
if not impossible. So, we need to come up with a solution to have a consistent representation of the
player-data.

One option to solve this problem is procedure to learn the right role assignment for each player [8].
Here, a Hidden Markov Model with Gaussian emissions is trained to define the spatial distribution
of players with a specific role. The locations of these distributions are then used in a role-assignment
procedure: every observed player in a frame can be assigned to a role using the Hungarian algorithm.
This makes sure that the data can be ordered consistently. Furthermore, this approach makes it
possible to develop models for different roles separately. The behavior of a keeper is much different
compared to a striker. So, we can develop a Keeper and striker model which simplifies the task.
However, 22 players must be observed by the device. This is a problem when not all players are
detected or at least one player has received a red card earlier in the match.

the observed players and the ball in basketball can be represented as 4-layer images [9]. Here, one
half of the field is represented as a 400 by 380 grid. In these grids, a cell can be either 0 or 1,
indicating if an entity is located in that particular cell. In the first and second layer of the image,
the objects represent the positions of the players in the attacking, and defensive team respectively.
the third layer represents the player in focus and the fourth layer represents the location of the ball.
However, authors Devin Pleuler [11] developed a model that can predict in which direction the ball-
owning player will pass the ball. Here, all coordinates of the players are mapped into an image as
well. But instead of using binary values, continuous values are used indicating the distance from the
concerning point to its closest object. This representation gives more information compared to the
approach discussed before [9] as it gives an idea of where spaces on the pitch are. So, representing
the player formations as images is another approach. In this approach, it is not necessary to have
information about all players. However, it is not possible to build separate models for different roles
since the roles are unknown.

Another potential representation of the player data is using Graph Neural Networks [12]. Here,
Graph Neural Networks are used to compute local and global features about the player formation

3

at a given moment. Using graph neural networks neglects the player data representation problem
since the final output does not depend on the order of player data. In this approach, not all players
need to be observed. However, this procedure does not provide the option to model different roles
separately.

5.2 Generative modelling

Some work has been done in the field of generating trajectories for defending players in team-sports
[4], [7], [14] . However, only a few focus on generating attacking player trajectories. The main reason
is that the behavior of attacking players contains a lot of uncertainty compared to defensive players
[16]. In general, attacking players define the game while defensive players react to these decisions.
Nevertheless, there is literature available about attacking player behavior. For instance, the work
done by [9]. Here, a Hierarchical Policy Network (HPN) is developed. Their model architecture is
based on the paradigm that the behavior of attacking players can be decomposed into micro and
macro intents. Here, micro and macro intents are goals for the short- and long-term respectively.
For instance, an attacking player could have a macro intent to reach a certain position on the pitch.
Then, the macro policy is a straight path to that macro goal. However, this will not be the true
policy when a defender is positioned in between the concerning attacking player and his macro in-
tent. Then the micro policy should guide the attacking player around the defending player. This
model accounts for the uncertainty by providing a distribution over the next positions at each step
instead of suggesting one position. Then, the next position can be defined by sampling from the
provided distribution. The results show high-quality trajectories, especially in the long term. Then,
as a continuation, a Variational Recurrent Neural Network is developed to predict the trajectories of
attacking basketball-players [5], [6]. Here, trajectories can be generated by sampling from a multi-
variate Gaussian Distribution and decode these into actions which are likely to happen. The model
takes the features describing the macro intents of all players into account. In this way, the model
can generate realistic trajectories for multiple attacking players in the same situation simultaneously.

5.3 Evaluation metrics

In generative modeling, it is hard to evaluate generated since there are no clear rules which help
indicate the quality of a generated trajectory. Decisions of attacking players are at most unlikely
but certainly not impossible. However, their exists multiple metrics which quantify the quality of
defending player trajectories in American Football [16]. Most of these metrics are focused on quan-
tifying good player behavior. For instance, they state that at least one defender should move toward
the ball-owning player to increase pressure. This statement is then used to develop a metric. How-
ever, it could happen that professional football players are making worse decisions. In our problem,
a good model should generate with a certain probability trajectories where a player is not neces-
sarily behaving optimally: the goal is mimicking instead of optimizing. It is therefore not a good
idea to use this kind of metrics since it will penalize trajectories where the player is not behaving
optimally. Instead, some models are evaluated qualitatively by a panel of domain experts [9], [5], [6].

4

6 Methodology

In this section, we discuss the proposed approach. Here, we make use of identified solutions, described
in section 5. First, the preprocessing of the data is explained. Then, we will explain how to take
the uncertainty into account by approaching the problem as a classification problem. In section 6.3,
we discuss how features are extracted from the preprocessed data. Different types of models which
will be investigated are discussed in section 6.4. The procedure to evaluate the different models is
explained in 6.5.

6.1 Data preprocessing

There is data available that describes 400 matches from the Eredivisie, played during the season
2018/2019 and 2019/2020. Data about a match contains a recording of 25 frames per second for
2 hours. each frame in the data contains the coordinates of all players and the ball. Furthermore,
the current status of the match (dead or alive2) and ball-owning team (Home-team or Away-team)
are known for each frame. Since the frames are recorded with a rate at 25 frames per second, each
match contains around 180.000 frames. This results in a dataset with 72.000.000 frames in total.
Due to time constraints, we decided to only use 42 matches. developing models based on all data
is considered as future work. Next, some pre-processing needs to be done since certain rows are
irrelevant. For instance, the device is logging data during the break of a match. This is a problem
since we are not interested in situations where the game is not active. The pre-processing is described
below.

6.1.1 Segment extraction

We define segments that satisfy the following constraints: The ball-owning team does not change
and the ball status stays alive during the entire sequence. Complex situations like ball interceptions
and fouls are avoided in this way and will be considered as future work. Then, we flip the coordinates
of all players and the ball if the ball-owning team is on the right half of the field. This is possible
because a football field is symmetric in the y-axis. By doing this, we make sure that the ball-owning
team is always on the left half of the field such that the target of the ball-owning team is to score in
the goal on the right half of the field. Afterward, we expect to see a general flow from left to right
of all players. Furthermore, we skip alternate frames to reduce the original rate of 25 frames per
second. This has increased the performance for similar studies [7], [8].

At this moment, we have a preprocessed dataset D of segments e of consecutive frames. Here, each
frame describes the positions of all observed players and the ball. From each segment e ∈ D, we
compute all actions and feature-sets, according to the procedures described in 6.2.1 and 6.3 respec-
tively.

6.2 Labeling

As mentioned before, the goal is to generate realistic trajectories. As stated in section 4, the decision
of a player in the attacking team is uncertain. This uncertainty in decision-making leads to different
trajectories which are not necessarily unrealistic. The final solution should behave similarly. That
is: different roll-outs for the same situation should not always be similar. Different approaches, for

2dead indicates inactivity. For instance, when the ball is out or right after a goal etc.

5

instance, the generative models, discussed in section 5.2 [5], [6], [9] do not predict the true trajectory
of the concerning player. Instead, it models the uncertainty by predicting the distribution over the
next positions at each step. Positions which have a high probability are more likely to occur in
reality. Then, trajectories can be generated by sampling from this estimated distribution at each
step. In this way, each roll-out will be different. A similar approach is used in this study and is
explained in the next section.

6.2.1 Actions

To define the next position of a player, we will introduce velocity vectors v(p,t). These are defined
as follows:

v(p,t) = C(p,t) − C(p,t−1) (1)

Here, C(p,t) is the Cartesian Coordinate of player p at time t. So, v(p,t) is the difference between 2
consecutive positions. Notice that C(p,t) can be recovered when C(p,t−1) and v(p,t) are known:

C(p,t) = C(p,t−1) + v(p,t) (2)

Thus, knowing the position at the start of a trajectory and the velocity vectors at all other steps
provides all information to recover the original trajectory. Therefore, trajectories can be constructed
by generating velocity vectors. This simplifies the problem since the velocity of a ball-owning player
is limited (≤ 80 cm per frame, which is 36 km/h). So, the norm of the velocity vector v(p,t) is limited
as well which limits the search space.
To deal with the uncertainty, we discretize the search space. Here, we transform the velocity-vectors
v(p,t) into an action a(p,t). This is the action, executed by player p at time t and is a one-hot encoding
in a 21 by 21 grid. the cell at index (11, 11) can be interpreted as the origin which means that
the player is not moving. one single cell to the right increases the velocity in the X-direction with
8. Furthermore, a single cell upwards increases the velocity in the y-direction with 8. This idea is
explained in figure 2. Now, instead of predicting an action immediately, we estimate π|S(p,t). Here,
π is the probability distribution over actions, and S(p,t) represents the state of player p at time t.
So, π|S(p,t) is the probability distribution over actions, given the concerning situation. Then, a(p,t)
can be defined by sampling from π|S(p,t).

Figure 2: Action space explained, v(p,t) is discretized. Notice that these velocities are based on 25
frames/sec. Now, the problem is to classify the right action.

6

6.3 Features

As explained in 6.1, The segments extracted from the data do not have the right format to serve as
input for the models. Therefore, we need to compute features from these sequences. In this section,
we describe different sets of features. We introduce 3 feature sets: F 1, F 2, and F 3. The first
feature set F 1 contains 16 basic features. Then, feature set F 2 is a concatenation of F 1 and a latent
representation of formation images where the observed coordinates of all players and the ball are
mapped. The third feature set F 3 contains information about all players, where the features about
players are ordered using a role-assignment procedure. These are explained in the next paragraphs.

6.3.1 F 1: Base features

The first feature-set contains 16 base features about the concerning player, its closest attacking-,
and defending player, and the ball. From the concerning player, we define the current and previous
Cartesian Coordinates (integers). This will help the model since the behavior of a player depends on
its current location. The previous coordinates are taken into account to give the model information
about its current direction and velocity. Furthermore, the closest home-, and away team-player
are defined. From these players, the Cartesian Coordinates and distances are computed. Note
that information about all other players is not taken into account. The Cartesian Coordinates and
velocity of the ball are taken into account. This could help since players tend to move towards the
ball. In the end, we have 12.1 million instances in 61532 trajectories in the training set and 0.5
million instances in 3155 trajectories in the validation-set.

6.3.2 F 2: Base features + image representation

The base features only describe the current and previous positions of the concerning player, the
closest hometeam-player and the closest awayteam-player. It does not take information about other
players into account. As described in section 6, the player formation can be represented as images
[11] [9]. Therefore, we decided to represent the players and the ball as a 3-layer image. each layer is a
32 by 16 image which represents the football field. each pixel in the first and second layer represents
the distance to the closest attacking and defensive team-player respectively. Furthermore, each pixel
in the third layer represents the distance to the ball. The final image contains 1536 pixels in total.
an example is shown in Figure 3. However, there will be a large number of features from which
many of them are correlated. For example, the values of 2 pixels right next to each other will have
almost the same values, since their distances to the closest player are similar. Therefore, it is a good
idea to compress the information in the image into a latent representation. This will be done by
training a Variational Autoencoder (VAE) [3].

Figure 3: Player- and ball coordinates represented as a 3-layer image, each pixel in the first, second
and third channel represents the distance from the concerning point to its closest attacking team-
player, defensive team-player and the ball respectively

7

VAE’s are models which have an encoder- and decoder network. The encoder estimates the parame-
ters of a prior distribution in latent space Z based on the original data F . In this study, we assume a
Multivariate Gaussian Distribution (µ, σ) The decoder does the other way around: it estimates the
parameters of the posterior distribution of the original data given a point in Z. a point with a high
likelihood in this posterior distribution with estimated parameters by the decoder network should
be similar to the original data F . In this study, we assume a multivariate Gaussian distribution
as posterior distribution with µ̃, σ̃ as parameters. This is because the formation images are based
on measured coordinates of the players and the ball and we assume that the error of these mea-
surements follows a normal distribution. To reduce complexity, we assume that the variances of all
pixels in the formation images are the same at any time. Therefore, parameters σ̃ of the posterior
distribution become a single learnable parameter, which is not part of the VAE. The network is
trained by minimizing the negative Evidence Lower Bound (ELBO) using gradient descent.

ELBO = RL−KL (3)

Here, RL stands for the reconstruction loss and corresponds to the likelihood of observing the origi-
nal data F under the posterior distribution from which the parameters are estimated by the decoder
network. Then, KL stands for the Kullback-Leibler divergence and is a measure of the similarity
between 2 distributions. This term makes sure that the encoded data follows a multivariate Gaus-
sian Distribution with µ̃ = 0 and σ̃2 = 1 (see section A.3 for the derivation). This has some nice
properties. First of all, instances that occur more often in the original data should have a higher
likelihood according to the proposed Multivariate Gaussian Distribution. So, the encoding network
reveals information about the likelihood of instances. This can be used to identify the likelihood
of certain formations which can be useful for future work. Next to this, we can generate random
formation images which are likely to occur by sampling from the Multivariate Gaussian Distribution
in Z, and decode this point using the decoder.

Now, we use the estimated µ ∈ Z of the encoded formation image as additional features. We choose
µ because this point has the highest probability-density in the Multivariate Gaussian Distribution.
Then, the second set of features F 2 will be a concatenation of the latent representation of the
formation images and feature set F 1. The number of instances and trajectories are the same as
feature set F 1.

6.3.3 F 3: Role-assignment based features

Another way to take information about all players into account is via a role-assignment procedure
[8]. Here, a Hidden Markov Model with Gaussian emissions is trained to define the distribution of the
visited positions on the field for each of the players (see figure 4). Then, a Hungarian algorithm [2]
is used to assign a role to each of the observed players at the start of the segment. Here, we assume
that the roles do not change during a segment. In this way, the information about the different
players is consistently ordered which makes it possible to take this information into account. In this
study, we will use existing work. The training data contains 196.867 trajectories based on 17.897
segments. Furthermore, the validation data contains 7304 trajectories based on 664 segments.

8

Figure 4: distribution of positions of different roles in the defending team (left) and attacking team
(right). These are used to assign roles to the players at the beginning of a segment.

6.4 Models

Now that the problem is defined and useful feature-sets are defined, the next step is defining models
which can estimate the distribution over actions π|S(p,t) (see section 6.2.1). We will investigate three
different models. First, The Multilayer Perceptron (MLP) is described in 6.4.2. Then the Recurrent
Neural Network is described in section 6.4.3 and the Hierarchical Policy Network is described in
section 6.4.4. Section 6.4.1 describes the general setup, including the type of model and loss function.

6.4.1 General setup

The actions of a player in the ball-owning team during a segment depend on multiple complex
patterns. For instance, a player tends to move towards good positions which depends on complex
interactions between the coordinates of all players on the field. The model should be able to capture
these patterns to provide an accurate estimate of π|S(p,t). For this reason, all models which will be
investigated during this study are deep neural networks since these are flexible in capturing complex
patterns [10]. Each of these neural networks will have 441 output nodes (21 by 21) on which a
Softmax activation is applied [10]. In this way, the output of all models can be interpreted as
π|S(p,t). We train all models by minimizing the following Cross-Entropy loss:

L = −
∑
e∈D

n2∑
t=0

∑
p∈P

∑
a∈A

ya log[ŷa] + (1− ya) log[(1− ŷa)] (4)

Here, ya is a boolean indicating if the concerning action was executed or not. Furthermore, ŷ is the
probability of the concerning action, estimated by the model. All models are developed and trained
using Gradient Descent [10]. The architectures of the different models are described in the next
paragraphs.

6.4.2 Multi-layer Perceptron

The first type of model we will investigate is the Multi-layer Perceptron (MLP) [10]. This is a neural
network that takes features F(p,t), describing S(p,t) as input. It contains at least 2 layers on which
non-linear activation functions are applied. Due to this non-linearity and having multiple layers,
the model can capture high complex patterns. This makes it possible to fit the complex patterns,

9

explained in the introduction of this section. Once the model is trained, trajectories can be generated
by algorithm 1. This algorithm is visualized in Appendix A.5.

6.4.3 Recurrent Neural Network

Another type of model which we will investigate are Recurrent Neural Networks (RNN). This is a
sequential model which is able to remember important historical information [13]. It has shown to
achieve high performance in many sequential problems. There are multiple different RNN’s, from
which we will use Gated Recurrent Units (GRU) [13]. GRU’s show high performance in similar tasks
[9], [5], [6] which is the reason to choose for this model. It can save important information for both
short and long term in one hidden state. The cell has 2 gates: a reset-gate and an update-gate. The
reset-gate defines what information on the short term should be taken into account. Besides, the
update-gate defines which short term and long term information should be remembered. Trajectories
can be generated according the procedure, described in algorithm 1 and is shown in appendix A.4.

Algorithm 1 Generating trajectories

compute F(p,n1) which represents S(p,n1) ▷ Burn-in in time-interval [0 and n1]
if MLP then

estimate π|S(p,n1) using MLP
else

estimate π|S(p,n1) and H(p,n1) using RNN
end if
get action a(p,n1) by sampling from π|S(p,n1)

for n1 ≤ t ≤ n2 do ▷ Generate in time-interval [n1 and n2]
execute ap,t
derive S(p,t+1)

compute F(p,t+1) which represents S(p,t+1)

if MLP then
estimate π|S(p,t+1) using MLP

else
estimate π|S(p,t+1) and H(p,t+1) using RNN

end if
get a(p,t+1) by sampling from π|S(p,t+1)

end for

6.4.4 Hierarchical Policy Network

Models which generate trajectories often have poor performance in the long term. As discussed in
section 5.2, a hierarchical Policy Network (HPN) can be used to deal with this problem [9]. The
results show high performance. Therefore, it is decided to investigate this framework in this study.
To explain the framework, some notation needs to be introduced. Let πraw, πmacro be the raw-micro
policy and macro policy such that:

πraw ⊙ πmacro = π (5)

The final distribution over actions π is decomposed into a raw-micro policy and a macro policy. The
idea is that the raw-micro policy optimizes the short term behavior while the macro policy guides
the player towards a macro goal. The final policy π is the Hadamard-product of the raw-micro policy
and macro policy and can be interpreted as a trade-off between long- and short-term behavior. The

10

Figure 5: Overview HPN

procedure to develop an HPN is explained in the next paragraphs.

Macro intent labeling heuristic The first step is defining the macro intent of a player. It is
unclear from the data what these macro intents of all players are. The creators of the HPN solved
this by introducing a heuristic that extracts weak labels from the data. All points in a trajectory,
where the concerning player is not moving (∥v(p,t)∥ < ϵ) are considered as macro intent. However,
the creators of the HPN [9] applied the framework to basketball which is different from football in
many aspects. From the data, we observe that attacking football players are often stationary or
moving relatively slow. Thus, considering stationary points will not work. Instead, we decided to
consider the points where an attacking player is changing direction as macro intents. Let m(p,t) be
a boolean indicating if player p at timestep t is changing direction and is defined as follows:

m(p,t) =



True if vx(p,t) < 0 < vx(p,t+1)

True if vx(p,t) > 0 > vx(p,t+1)

True if vy(p,t) < 0 < vy(p,t+1)

True if vy(p,t) > 0 > vy(p,t+1)

False otherwise

Now, the macro-action amacro
(p,t) is defined by drawing a straight line between C(p,t) and the first point

C(p,t∗) where m(p,t∗) = True and t∗ > t. Then, vmacro
(p,t) is the average velocity vector on the straight

path towards C(p,t∗). By discretizing vmacro
(p,t) we get amacro

(p,t) ∈ A. This idea is explained in figure 6.

Multi-stage learning approach We apply a multi-stage learning approach to make sure that the
raw-micro and macro policy behave according to the intended paradigm. First, the macro policy is
introduced as Pmacro

Φ which is an RNN, parameterized by Φ. First, good values for Φ need to be
found such that 6 is minimized:

Lmacro = −
∑
e∈D

n2∑
t=0

∑
p∈P

∑
a∈A

ymacro
a log[ŷmacro

a] + (1− ymacro
a) log[(1− ŷmacro

a)] (6)

This makes sure that the values in Φ are in an area where the macro policy behaves according to the
proposed paradigm. However, the action towards a macro intent is often not the true action. So, we
introduce P raw

Θ which is another RNN parameterized by Θ, representing the raw-micro policy. This
policy corrects the macro-policy and can be seen as short-term optimization. finding good values for
Θ is done by minimizing 4. Here, y = a(p,t) and ŷ = Pmacro

Φ (F(p,t))⊙P raw
Θ (F(p,t)) Parameters Φ are

11

Figure 6: Macro intents and Macro actions explained. Consider position 7 in the shown trajectory
which is a macro intent since vy(p,7) > 0 > vy(p,8). Now, the macro-action at time-step 3 can be defined

by drawing a straight line towards its first macro intent (blue line) and take the average velocity
vector. The same procedure holds for all other steps.

frozen during this step to make sure that the raw-micro policy learns to correct the macro policy.
In the last stage, parameter-sets Θ and Φ are both unfrozen. Then, the entire HPN is fine-tuned
by minimizing equation 4. An overview of this procedure is shown in Figure 7. The algorithm to
generate trajectories is the same as described in 1.

Figure 7: Overview of training procedure HPN. In the first stage, only the macro policy is trained
where parameters Φ are considered (red) and macro-actions are used as labels. Then, in the second
stage where parameters Φ are frozen (blue), the raw-micro policy is learned to correct the macro
policy. The entire model is fine-tuned in the final stage. The true actions are used as labels in stage
2 and 3

6.5 Evaluation metrics

So far, we use the cross entropy-loss as optimization-function to train the proposed model. Once an
optimal solution is found, the resulting model can estimate π|S(p,t). So, it provides a probability
distribution over actions, conditioned on the concerning situation. However, using the cross-entropy
loss as evaluation metric alone will not suffice.
In the first place, a generated trajectory is a sequence of consecutive samples from an estimated π.
The model could perform well in predicting the next action, given a certain situation. However, this
does not mean that the combination of consecutive actions in a trajectory is likely to happen.
Next to this, the cross-entropy loss is a measure of uncertainty. Higher values indicate more variance
in the distributions. Now, consider the distributions shown in 8. The actions right next to each
other in the left image are much more similar compared to the two actions in the right image
since they are in almost the same direction with almost the same velocity. Therefore, sampling

12

Figure 8: π on the left is distributed over 3 similar actions. This will lead to similar trajectories
which can be seen as low uncertainty. However, π on the right is distributed over 2 different actions
which will result in different trajectories (high uncertainty). The Cross-Entropy loss indicates the
opposite. Therefore, it can not be fully trusted.

for multiple steps from the left distribution will result in similar trajectories. Namely, a trajectory
toward the top right. However, the variance in the distribution on the right is lower, but sampling
will let the player move towards the top right or bottom left. This is caused by the fact that the
similarity between actions is not fixed. Thus, a model which estimates distributions with relatively
high variances could still be able to generate high-quality trajectories, if π is mostly spread out over
multiple similar actions instead of fewer ”less” similar actions. So, using the Cross-Entropy loss as
an evaluation metric alone will not suffice. Therefore, next to the cross-entropy loss, we inspect the
generated trajectories visually and evaluate the models in a qualitative way.

6.5.1 Questionnaire

We let a panel evaluate the generated trajectories according to the same procedure, described by
the creators of the HPN [9]. Here, the goal is to define if the generated trajectories by the models
are realistic. Due to the risk of losing interest during the evaluation, We do not consider all models
but select the best 3 models, based on the lowest cross-entropy loss and qualitative evaluation of
the generated trajectories. The experiments are constructed as follows: First, we select different
segments (e.g. free-kick, long-range shot etc.) from the validation set. Then, for every segment, one
of the models will generate a trajectory for a forward player in the attacking team for 50 frames (4
seconds). Then, each of these trajectories is shown in an animation. Here, an animation first shows
the original trajectories of all players up to a certain setpoint n1. Then, after this setpoint, both
the true and generated trajectories of the concerning player are shown but all other players and the
ball are frozen (see section 9.1 for the reasoning). Now, the task for an individual is to define which
of the 2 trajectories is the most realistic one. An example is given in figure 9.

13

Figure 9: example of an experiment. In the first and second images, the true situation is shown. In
the third and image, the true and generated trajectories are shown while all other players are frozen.
Each individual defines which trajectory looks the most realistic.

left-tailed binomial test We will use the obtained results to define how realistic the generated
trajectories are. Now, suppose that the generated trajectory in an animation is realistic. Then,
an individual cannot distinguish between the true and generated trajectory since both are realistic.
Thus, an individual will select the true trajectory or generated trajectory, both with 0.5 probability.
However, when the generated trajectory is not realistic, then it is less likely that an individual
will choose the generated trajectory. This means that the probability of choosing the generated
trajectory by an individual (pgen) is less than 0.5. These statements can be used to define the
following hypothesis:

h0 : pgen = ptrue (7)

h1 : pgen < ptrue (8)

So, for each animation, we can test these hypotheses by conducting a statistical test. When h0 is
approved, we conclude that the panel is not able to recognize the true trajectory meaning that the
generated trajectory is realistic. Furthermore, when h0 is rejected, we conclude that the generated
trajectory is not realistic. Now, we have N persons in the panel. Then, the number of individuals
from the panel who selects the generated trajectory, under h0, has a binomial distribution with
parameters p = 0.5 and n = N . Therefore, we use a left-tailed binomial test to test the hypothesis.
In all tests, 0.05 is chosen to be the significance threshold.

14

7 Experimental setup

We discussed multiple feature sets and model architectures in section 6. Now, we need to define
an experimental setup to investigate which combination of feature set and model will give the best
result. The first step is finding a good VAE to construct feature-set F 2. These experiments are
explained in 7.1. After this, experiments to find the best MLP, RNN and HPN are discussed in
sections 7.2, 7.3, and 7.4 respectively. Note that we do not tune Hyperparameters since this does
not necessarily improve the performance (see section 8.3.4 for the reasoning).

7.1 Variational Autoencoder

The VAE is used to derive latent features, describing the formation of all players and the ball as
explained in section 6.3.2. We will execute multiple experiments to find a good VAE. As architec-
ture, we investigate Convolutional Neural Networks (CNN) [4] and MLPs as VAE’s. CNN’s shows
high performance in many image-related problems [11] and [9]. This is the reason for choosing this
architecture. On the other hand, the image is entirely based on the formation of the image. There-
fore, a model which captures the formation of the players is automatically able to reconstruct the
image. These formations are complex, and therefore we will use MLP’s as second type of model
because these are flexible in capturing complex patterns. We will investigate different architectures
for both types. These are listed in 1. All CNN-VAE have 2 convolutional layers. The first layer
has 3 input channels, 8 output channels, a kernel size, padding and stride of 7, 3 and 3 respectively.
The second layer has 8 input channels, 16 output channels, a kernel size, padding and stride of 3,
2, 1 respectively. This architecture is based on the work, done by Devin Pleuler [11]. The model is
trained by using gradient descent for 500000 iterations. Here, the Adam optimizer will be used [1].

Table 1: Different VAE-architectures considered in this study.
MLP Architecture: input-hidden1-hidden2-latent CNN hidden1-latent

MLP-VAE-32 1536-128-64-32 CNN-VAE-64 64-32
MLP-VAE-64 1536-256-128-64 CNN-VAE-64 128-64
MLP-VAE-128 1536-512-256-128 CNN-VAE-128 256-128
MLP-VAE-256 1536-1024-512-256 CNN-VAE-128 512-256

7.2 Multi-Layer Perceptron

The first and most straightforward model we will investigate is the MLP. It contains 2 fully-connected
hidden layers (FC) on which ReLU-activation) is applied. The output layer represents the action-
space and has 441 nodes. Here, a softmax-activation is applied. This type of model is not able to
capture complex patterns over time, since it is not a sequential model. Therefore, we expect a lower
performance of this model, compared to the RNN and HPN. For this reason, we decided to study
this model based on feature set F 1 only. All MLP’s are trained for 200000 iterations where the
Adam optimizer is used [1].

15

Table 2: Different MLP-architectures considered in this study
Name Architecture: input-hidden1-hidden2-output

MLP-F1-16 16-16-32-441
MLP-F1-32 16-32-64-441
MLP-F1-64 16-64-128-441

7.3 Recurrent Neural Network

Concerning the RNN, we consider a fixed architecture. This is based on the HPN [9]. First, there
are 2 fully-connected layers (FC) on which a ReLU-activation is applied, then a batch-normalization
is applied to normalize the latent features which stabilizes training [15]. After this, a GRU is used
which can capture important information about the past. Then, after another batch normalization,
2 fully-connected layers are used. We will investigate the performance of the RNN on 2 different
feature sets: F 1 and F 2. The experimental setup is shown in table 3. All RNN models are trained
for 200000 iterations by using the Adam optimizer [1].

Table 3: layer-sizes of considered RNN models
Name Architecture: input-hidden1-GRU-hidden2-output

RNN-F1-16 16-32-32-64-441
RNN-F1-32 16-64-64-128-441
RNN-F2-150 144-150-150-200-441
RNN-F2-300 144-300-300-400-441

7.4 Hierarchical Policy Network

For both the raw-micro and macro policy networks, we use the same architecture as the RNN. We
assume this model to be the most promising. For this reason, we will use feature sets F 2 and F 3.
When using feature set F 2, we will train a single model. However, by using feature set F 3, we can
train separate models for each of the roles. We only investigate the Striker model in this study,
due to time restrictions. The best found setup will be used to train models for all other roles. The
different experiments we will execute are listed in table 4.

Table 4: layer-sizes of considered HPN’s
Name raw-micro architecture:input-hidden1-GRU-hidden2-output macro architecture

HPN-F2-150 144-150-150-200-441 144-150-150-200-441
HPN-F2-300 144-300-300-400-441 144-300-300-400-441
HPN-F3-16 229-50-50-100-441 229-50-50-100-441
HPN-F3-32 229-150-150-250-441 229-100-100-200-441

7.5 questionnaire

There are 33 experiments in total (explained in section 6.5.1). For the three best models, 10 experi-
ments are constructed. Furthermore, 3 dummy experiments are constructed to define the quality of

16

the panel. These are similar to a general experiment, but instead of showing a generated trajectory,
we show a frozen player. This indicates that the concerning player is staying stationary for a long
period and can be seen as unrealistic. Therefore, all individuals should select the true trajectory in
these dummy experiments. Otherwise, the quality of the panel is low.
There are 22 individuals in the panel who executed the experiments individually and right after
each other. Furthermore, experiment 4, 14 and 29 are the dummy experiments. It is allowed to
repeat an animation in order to get a better understanding of the concerning situation. After the
execution, there is time reserved to discuss the experimental setup and get useful insights from the
participant.

17

8 Results

In this section, the results of the different experiments are discussed. In section 8.1, we discuss some
general observations. After this, we discuss the results concerning the VAE in section 8.2. The
best VAE is then used to define latent features, in order to construct feature set F2 (see section
6.3.2). Then, In section 8.3, the results of the different models are compared. This includes a
comparison in Cross-Entropy loss, visual explanation of generated trajectories, based on situations
from the validation set, and qualitative evaluation. In section 8.3.4 we will draw conclusions from
the obtained results

8.1 General observations

Macro intent labeling heuristic Some results of the macro intent labelling heuristic are shown
in 10. Here, the blue line represents a true trajectory of an attacking player somewhere on the pitch.
As we can see, the heuristic performs well in most cases since all points where the player is changing
directions are detected by the heuristic. However, it sometimes classifies a point on a straight path
as macro intent. Nevertheless, this is not an issue because these labels are only used to make the
macro-policy behave as intended by the paradigm.

Figure 10: examples of macro intent labeling heuristic.

Overall Distribution over (macro) actions the left image in Figure 11 shows the general dis-
tribution over actions of all players. As we can see, the actions where an attacking player moves
toward the right occur more often than actions towards the left. This confirms the general flow from
left to right, as stated in 6.1. Furthermore, most of the actions are relatively close to the center
which means that an attacking player is in general moving slowly. This was expected since a player
is most of the time not actively involved in the build-up. Furthermore, the majority class is slowly
moving towards the right (8 cm/frame which is 1 meter per second). The image on the right in
Figure 11 shows the general distribution of the macro actions. As we can see, actions towards the
right are over-represented which indicates a general flow from left to right in terms of macro intents.
However, this distribution is different from the general distribution of the true actions. For instance,
there are more macro-actions towards the top- and bottom right, meaning that the macro intent of
a player is often towards the top-, or bottom-right.

18

Figure 11: Overall distributions of a(p,t) (left) and amacro
(p,t) (right)

8.2 Variational Autoencoder

The results of all experiments concerning the VAE are shown in table 5. In general, the MLP-VAE
outperforms the CNN-VAE in terms of ELBO-loss. Note that not all experiments concerning the
CNN-VAE are executed due to time restrictions. Next, we can see that the ELBO-loss does not
decrease much more when the latent dimension is greater than 128. Therefore, the MLP-VAE-128 is
the best found model. So, this model will be used to define the additional latent features for feature
set F2.

Table 5: Negative Variational Lower Bound (ELBO) of different VAE’s
Model negative ELBO

CNN-VAE-128 2532
MLP-VAE-32 2516
MLP-VAE-64 1941
MLP-VAE-128 1699
MLP-VAE-256 1641

In figure 12 we see a true and reconstructed formation image. As we can see, the reconstructed
formation image is similar to the true formation image which shows that most of the information
stays intact during encoding and decoding. In Figure 13, a formation image is generated by the best
found VAE. The quality is lower since the shapes are rougher compared to true formation images.
However, most of the characteristics of true formation images are observable in the generated images.

19

Figure 12: reconstruction performance of best found VAE (MLP-VAE-128).

Figure 13: generated formation image by VAE. the left, middle and right image represents the
attacking players, defensive players and the ball respectively.

8.3 Evaluation

In this paragraph, the behavior of the different models is compared. Here, we consider the Cross-
Entropy loss, a qualitative evaluation of the generated trajectories and the results of the questionnaire
evaluation (see section 6.5.1).

8.3.1 Cross-Entropy loss

In table 6, the cross-entropy loss of all models is shown. As we can see, the loss of all MLP models
is around 1.3 which means that increasing the complexity does not increase the performance. Then,
the loss of the different RNN models is around 1.15. This shows that feature set F2 does not increase
the performance of the RNN models. Furthermore, increasing the complexity of the model does not
decrease the loss. However, all RNN models performs better than the MLP models. So, including a
memory cell decreases the loss. Concerning the HPN models, the loss is similar to the RNN models
when feature set F2 is used, but is higher when feature set F3 is used. This is the result of only
taking the striker trajectory into account since the behavior of a striker is more uncertain.

20

Table 6: Cross-Entropy loss different MLP models on validation-set
Model Cross Entropy-loss Model Cross Entropy-loss Model Cross Entropy-loss

MLP-F1-16 1.31 RNN-F1-16 1.13 HPN-F2-150 1.14
MLP-F1-32 1.28 RNN-F1-32 1.16 HPN-F2-300 1.16
MLP-F1-64 1.3 RNN-F2-150 1.15 HPN-F3-100 1.31

RNN-F2-300 1.16 HPN-F3-200 1.26

8.3.2 Generated trajectories

In this paragraph, we show and discuss 4 generated trajectories per model. All stated arguments in
this paragraph are subjective and serves to explain the behavior of the models.
In each of the Figures 14, 15, 16, 17, and 18, the blue and red lines represent the true and generated
trajectories respectively. Then, the yellow and purple dots represent the attacking- and defending
team respectively at the moment that the model starts generating. Furthermore, the first 2 images
show generated trajectories of a length of 50 frames (4 seconds), while the third and fourth images
show generated trajectories with a length of 100 frames (8 seconds). First, all models are discussed
individually in the next 5 paragraphs. In the last paragraph, the different models are compared.

MLP-F1 In Figure 14, four generated trajectories by the MLP-F1 are shown. The trajectory in
the top left image concerns the goalkeeper. In reality, the goalkeeper stays close to the goal which is
confirmed by the true trajectory. However, the generated trajectory is drifting in a forward direction.
In the top right image, the true trajectory is in a left-forward direction with a smooth turn to the
right while the generated trajectory is drifting in a left-forward direction. The generated trajectory
looks shorter due to the drifting behavior. In the bottom left image, the true trajectory goes in a
backward direction and eventually makes a turn to the left. This makes the concerning player move
towards the right side of the field. Once the model starts generating, it decides to make a turn to the
right which is the opposite of the true trajectory. This makes the concerning player move towards
the left side of the field. In the bottom right image, the true trajectory immediately makes a turn
to the left in backward direction. After approximately 5 meters, the trajectory makes another turn
to the left toward the right side of the field. The generated trajectory is drifting at the start and
eventually moves towards the right side of the field.
In general, we observe a drifting behavior which is confirmed by all 4 images. This can be seen as
unrealistic. Therefore, we conclude that the MLP-F1 cannot generate realistic trajectories.

21

Figure 14: Generated trajectories using MLP-F1.

RNN-F1 The generated trajectories by the RNN-F1 are shown in Figure 15. In the top left
image, the true trajectory is in a forward direction. However, when the model started generating,
it immediately decided to make a turn to the right towards the right side of the field where the ball
was positioned. In the top right image, the true trajectory starts in a right-forward direction and
makes a turn to the left after approximately 3 meters. At the same point, the model decides to
make a turn to the right in the opposite direction of the true trajectory. In the bottom left image,
the goalkeeper launched the ball forward. The true trajectory starts in a right-forward direction
where it eventually makes a smooth turn to the left. However, when the model starts generating, it
immediately decides to make a turn to the right. Then, when the ball flies over, the model decides
to make a turn to the left towards the ball. In the bottom right image, the trajectory starts in
a backward direction and makes a smooth turn to the left. Then, after approximately 2 meters,
the true trajectory makes a u-turn towards backward direction. At the same point, the generated
trajectory stays moving toward the right side of the field.
In general, the generated trajectories by the RNN-F1 are smooth in contrast to the MLP-F1. This
could be the result of taking a memory cell into account. However, the model tends to move towards
the ball. This could be realistic, Here, it is unrealistic that a player moves toward the keeper,
knowing that the ball will fly over. So, the RNN-F1 performs better than the MLP-F1, but is still
unrealistic in the majority of the cases.

22

Figure 15: Generated trajectories using RNN-F1

RNN-F2 The trajectories, generated by the RNN-F2 are shown in Figure 16. In the top left image,
the true trajectory starts in a backward direction. Then, after approximately 2 meters, a u-turn
is made towards a right-forward direction. Once the model starts generating, it quickly decides to
make a smooth turn to the left in a forward direction. This is different from the true trajectory.
However, the ball-owning player could have decided to launch the ball in a left-forward direction if the
concerning player moved according to the generated trajectory. Therefore, the generated trajectory
is reasonable. In the second image, the true trajectory starts moving in a backward direction. After
approximately 2 meters a turn to the right is made. The generated trajectory is approximately the
same as the true trajectory. The true trajectory in the third image starts in left-forward direction
and eventually makes a turn to the right and ends close to the goal. During generating, the model
is moving slower than the true trajectory. Moving slowly in this situation is unrealistic since it is
a promising build up. Here, the concerning player should move toward a good position as quickly
as possible. In the fourth image, the true trajectory starts moving toward the right side of the field
and stays stationary after approximately 8 meters. In contrast, the generated trajectory decides to
keep moving toward the right side of the field. In this situation, the generated trajectory concerns
the left-forward player. It is unrealistic that the left forward player moves toward the right side of
the field since the ball is on the left side of the field. Therefore, this trajectory is unrealistic.
In summary, the RNN-F2 can generate realistic trajectories as is shown in the top left and right
images. But some generated trajectories are unrealistic as is shown in the bottom left and right
images.

23

Figure 16: Generated trajectories using RNN-F2

HPN-F2 The trajectories, generated by the HPN-F2 model are shown in Figure 17. Concerning
the top left image, the generated trajectory is similar to the true trajectory. However, the model
eventually decides to make a slight turn to the left toward the ball. This decision is not unrealistic
since it is still close to the true trajectory. Then, concerning the top right image, the situation is
promising. Here, the model decides to position itself in front of the goal which is a realistic scenario.
however, the true trajectory is towards the right side of the field. In the bottom left image, the
model decides to make a sharp turn to the left towards the right side of the field. However, this is
unrealistic since the ball is launched toward the left side of the field where the concerning player
is positioned. Therefore, a decision towards the left side of the field, similar to the true trajectory,
is the only realistic scenario. In the bottom right image, the generated and true trajectories are
similar. Therefore, the generated trajectory is realistic.
In summary, most of the generated trajectories are realistic as shown in the top left, top right, and
bottom right images. However, the trajectory in the bottom left image is unrealistic which shows
that the model could generate unrealistic trajectories.

24

Figure 17: Generated trajectories using HPN-F2

HPN-F3 The generated trajectories by the HPN-F3 are shown in Figure 18. In the top left image,
the model decides to make a turn to the left. After this, the model keeps going straight which is
unrealistic. The generated trajectory in the second image is similar to the true trajectory where
both are moving in a forward direction. In the third image, the model decides to make a turn to
the right which is realistic. Then, the model goes straight while being off-side which is unrealistic.
Then, in the bottom right image, the model eventually decides to make a sharp turn to the left while
the turn in the true trajectory is also to the left in approximately the same position, but less sharp.
In general. The model changes directions on points close to the points in the true trajectories. This
indicates that the model can define when it has reached a macro intent. Then, it often defines a
macro intent that is different from the true trajectory which is shown in the bottom left and right
images.

25

Figure 18: Generated trajectories using HPN-F3

Next to the generated trajectories, we can also analyze the behavior of the micro and macro policy
of the HPN. In general, the macro policy guides the player toward the next macro intent and the
micro policy makes the turn toward the next macro intent look smooth and natural. Furthermore,
the micro policy is also responsible for the acceleration and deceleration of the player. Next to this,
we observe high velocities for the micro policy and low velocities for the macro policy. An example
is given in Figure 19. Here, the macro policy guides the player toward the top right. However, the
raw-micro policy makes the player move toward the top. Concerning the HPN-F2, we observe the
same behavior.

Figure 19: visualization of raw-micro, macro and final policy of the central midfielder (marked by
black shadow).

Comparison After all, the generated trajectories by the MLP-F1 are of low quality due to their
drifting behavior and random overall direction. The trajectories, generated by the RNN-F1, RNN-
F2, HPN-F2, and HPN-F3 are smooth which is an improvement, compared to the MLP-F1. However,
the RNN-F1 tends to move toward the ball in contrast to the RNN-F2, HPN-F2, and HPN-F3.
Moreover, the generated trajectories by the HPN-F2 and HPN-F3 are different from the RNN-F2

26

since these are able to generate trajectories that have sharp turns in contrast to the RNN-F2. This
shows that the quality of the generated trajectories by the HPN is higher. In general, all models
sometimes stays stationary or repeat the same action for long periods. Repeating the same action for
a long period is shown in the left bottom image of both Figures 16 and 17. These unrealistic events
are unpredictable. According to the described observations, we consider the RNN-F2, HPN-F2, and
HPN-F3 as best models. Therefore, these models are selected for the questionnaire. These results
are discussed in the next paragraph.

8.3.3 Questionnaire

The results of the questionnaire, described in section 6.5.1 and 7.5, are discussed in this paragraph.
In table 7, the results per model are shown. Here, a cell contains 2 values, indicating the number of
votes on the generated trajectory and true trajectory respectively. Besides, the color indicates the
result of the binomial test where red means that h0 is rejected and green means that h0 is approved.
As explained in 6.5.1, the generated trajectory in an experiment is realistic when h0 is approved.
Now, h0 is approved for 5 out of 10 experiments concerning the RNN-F2, 6 out of 10 concerning the
HPN-F2 and 9 out of 10 concerning the HPN-F3. This means that the HPN-F3 generates the most
realistic trajectories, followed by the HPN-F2 and RNN-F2 respectively.

Table 7: results of the questionnaire.
experiment nr. RNN-F2 HPN-F2 HPN-F3

1 4 / 18 9 / 13 12 / 10
2 11 / 11 0 / 22 7 / 15
3 3 / 19 3 / 19 10 / 12
4 7 / 15 8 / 14 8 / 14
5 11 / 11 6 / 16 10 / 12
6 7 / 15 15 / 7 9 / 13
7 6 / 16 12 / 10 5 / 17
8 5 / 17 9 / 13 15 / 7
9 5 / 17 4 / 18 8 / 14
10 14 / 8 9 / 13 10 / 12

total 73 / 147 75 / 145 100 / 120

We also included 3 dummy experiments from which the results are shown in Table 8. The results
of the second and third dummy experiments are as expected since the majority selected the true
trajectory. However, the first dummy experiment shows unexpected results. Here, 13 participants
decided to select the trajectory where the concerning player stays stationary. We found out that
being stationary in the first dummy experiment is often considered to be realistic since multiple
defenders are positioned around the concerning player.

Table 8: results dummy experiments
experiment nr. 4 14 29

total 13 / 9 3 / 19 2 / 20

27

8.3.4 Overall comparison

All models are evaluated by comparing the Cross-Entropy loss, a qualitative evaluation of the gener-
ated trajectories, and a questionnaire. When we only consider the results of the Cross-Entropy loss
(see section 8.3.1), we conclude that the RNN-F1, RNN-F2, and HPN-F2 show the highest perfor-
mance. However, this is not confirmed by the qualitative evaluation and questionnaire. For instance,
the results of the qualitative evaluation show that the generated trajectories by the RNN-F1 are
often unrealistic. Furthermore, the Cross-Entropy loss of the HPN-F3 was higher than the RNN-F1,
RNN-F2 and HPN-F2, but the quality of the generated trajectories is more realistic according to the
results obtained by the questionnaire. This discrepancy is not unexpected and confirms the state-
ments made in section 6.5. Thus, optimizing the Cross-Entropy loss does not necessarily optimize
the quality of the generated trajectories. Furthermore, we neglect the Cross-Entropy loss in the
further analysis of the results.

The obtained results from the qualitative evaluation and the questionnaire are similar. For instance,
according to the qualitative evaluation, the HPN generates higher quality trajectories since it can
make sharp turns. Besides, the HPN-F2 and HPN-F3 outperform the RNN-F2 according to the
results obtained by the questionnaire. From these observations, we conclude that the HPN architec-
ture can generate better trajectories, compared to the RNN-F2. However, the HPN-F3 outperforms
the HPN-F2 in the questionnaire. This is unexpected since the behavior of the HPN-F2 and HPN-F3
is similar to the qualitative evaluation. There are multiple explanations. First of all, the HPN-F2
failed in generating 2 trajectories for the second and ninth experiments in the questionnaire. The
trajectory was stationary in the second experiment resulting in 0 votes by the panel. Besides, the
generated trajectory in the ninth experiment was considered to be unrealistic since the trajectory
is towards the ball-owning player who takes a corner kick. The HPN-F3 did not fail in any of the
10 generated trajectories. This distorts the results since we observed stationary behavior by the
HPN-F3 as well in the qualitative evaluation. More experiments need to be done to increase the
reliability of the questionnaire.

In summary, the Cross-Entropy loss is not a good metric for evaluating the generated trajectories.
Furthermore, both HPN-F2 and HPN-F3 show the best generated trajectories according to the
qualitative evaluation. However, the HPN-F3 outperformed the HPN-F2 which could be the result
of the low number of experiments. According to the obtained results, we consider the HPN-F3 as
the best model.

28

9 Discussion and future work

In the end, we have shown that our best model can generate realistic trajectories according to the
used evaluation metrics. However, there are multiple limitations concerning our proposed approach.
In this section, we discuss these limitations and provide potential solutions for future work.

9.1 Interaction effects

In section 4 we introduced the goal of this thesis that solves a sub-problem of a broader problem.
It turns out that solving the different sub-problems separately has limitations. In this study, we
only focused on generating attacking player trajectories. Other sub-problems like generating de-
fending player trajectories and ball-trajectory, defining pass probabilities etc. are not taken into
consideration. It is hard to generate attacking player trajectories without having solutions of all
other sub-problems due to the multiple complex interaction effects. For instance, defending players
cover attacking players in general. Now, consider a situation where an attacking player can go left or
right. In the true situation, the player decides to go to the left side of the field. The defending player
who covers the attacking player reacts to this decision by moving toward the left side of the field as
well. Thus, the attacking and defending player are moving toward the left side of the field. Now,
suppose we use the model to generate a trajectory for the concerning attacking player and it decides
to move to the right, then the defending player should also move towards the right. Thus, the true
trajectory of the defending player does not fit the generated trajectory of the attacking player since
this trajectory is toward the left side of the field. So, the combination of the true defender trajectory
and generated attacking trajectory is unrealistic. Besides, unrealistic situations are not represented
in the data. Thus, the model has never seen these situations which can lead to poor performance of
the model. Next to this, evaluating the generated trajectories is difficult since the true trajectory
of the defending player makes the situation unrealistic. For this reason, we can only look at how
realistic the shape of a trajectory is. But we cannot define how realistic a decision of a player is
since this is dependent on the trajectories of all other players on the field.

9.2 Features

During this study, we have investigated three different feature sets. It turns out that using feature
set F 2 or F 3 (see sections 6.3.2 and 6.3.3) provides the best-generated trajectories. However, using
these feature sets have some limitations which are described in this paragraph.

One approach in this study to represent the player formation was via image representation. These
images are expensive to compute since the distance to the closest entity should be defined for each
pixel. Next to that, the computed formation image needs to be encoded by the encoder network of
the VAE to compute the latent features. This procedure is done at each step to generate a trajec-
tory. This can be unnecessarily complex. Therefore, it is suggested to consider other approaches for
future work. For instance Graph-Neural-Networks (see section 5.1).

Then, none of the investigated feature sets describes information about the player itself. For in-
stance, the model does not know if the player is ”Martinez” or ”Veerman”. So, the model generates
trajectories which behave similarly to an average player in the Eredivisie. However, the model could
be improved when information about the concerning team or player is taken into account. This can
be done by introducing team or player embeddings. These embeddings are latent representations of

29

specific teams or players and could decrease the uncertainty in decision-making. Furthermore, the
embeddings provide useful information and can be applied to other areas as well.

9.3 Models

In this study, we have investigated three different models as explained in section 6.4. However, the
general setup and models have some limitations which are discussed in this paragraph.

In the first place, all investigated models generate trajectories by sampling actions from a discretized
actionspace A. Predicting the right action for the current moment is a simple task. However, the
combination of multiple consecutive predictions often leads to unrealistic trajectories as is shown by
the MLP-F1 model. The HPN has solved this problem partially. However, there are still challenges
left. For instance, we have only focused on generating trajectories for a single player at each time.
The ultimate goal is to generate trajectories for multiple players simultaneously. This is possible by
extending our setup. Here, we take the macro intents of all players as extra features into account
[5], [6]. However, this solution is complex and there may other potential approaches where complete
trajectories of multiple players are generated in one step. For instance, there is a Generative Ad-
versarial Network that can generate the trajectories of 5 defending basketball players [14] in one step.

Then, all investigated models show straight lines in their generated trajectories which is the result
of repeating the same action for a longer period which is unrealistic. Here, the same action results
in the same velocity vector that results in a straight line However, adding noise to the generated
velocity vector could be a solution to fix this kind of straight trajectories. Another solution could
be to use Variational Recurrent Neural Networks due to their continuous actionspace.

9.4 Evaluation

Three different evaluation approaches are applied: the Cross-Entropy loss as a quantitative evalu-
ation metric, a qualitative evaluation of the generated trajectories, and a questionnaire. However,
these metrics has limitations which are discussed in this paragraph.

During this study, we found out that the Cross-Entropy loss cannot be used to quantify the quality of
the generated trajectories. Thus, in the end, the quality of the generated trajectories is not expressed
in quantitative evaluation metrics. As discussed in section 5.3, it is an option to create customized
evaluation metrics. For instance, we know that the maximum rates of acceleration and deceleration
are limited. Furthermore, the maximum rate in changing the direction of a player depends on the
velocity and is limited as well. These statements can be used to construct quantitative evaluation
metrics that can provide more insights into the performance of the models.

The questionnaire served as the third evaluation metric. However, there are some limitations. For
instance, the number of experiments for the investigated model is low (10). Therefore, we suggest
to execute more experiments to make the results more reliable. On the other hand, we conduct a
statistical test for each of the experiments where we assume a significance threshold of 0.05. However,
we have executed 33 experiments. Thus the probability of making an error of type 1 for at least 1
experiment is relatively high. We suggest to apply techniques that reduce the probability of making
an error of type 1.

30

References

[1] Diederik Kingma Jimmy Lei Ba. “ADAM: a method for stochastic optimization”. In: ICLR
(2015).

[2] Ayorkor Mills-Tettey Anthony Stentz Bernardine Dias. “The Dynamic Hungarian Algorithm
for the Assignment Problem with Changing Costs”. In: Robotics Institute Carnegie Mellon
University (2007).

[3] Diederik P. Kingma and Max Welling. “An Introduction to Variational Autoencoders”. In:
Foundations and Trends® in Machine Learning 12.4 (2019), pp. 307–392. issn: 1935-8237.
doi: 10.1561/2200000056. url: http://dx.doi.org/10.1561/2200000056.

[4] Marc Schmid Patrick Blauberger Martin Lames. “Simulating Defensive Trajectories in Amer-
ican Football for Pedicting League Average Defensive Movements”. In: Frontiers (2021).

[5] Eric Zhan Yisong Yue Stephan Zheng Long Sha Patrick Lucey. “Generating multi-agent tra-
jectories using programmatic weak supervision”. In: ICLR (2019).

[6] Eric Zhan Yisong Yue Stephan Zheng Patrick Lucey. “Generative Multi-Agent Behavioral
Cloning”. In: ICLR (2018).

[7] Hoang Le Peter Carr Yisong Yue Patrick Lucey. “Data-Driven Ghosting using Deep Imitation
Learning”. In: mo (2021).

[8] Hoang M. Le Yisong Yue Peter Carr Patrick Lucey. “Coordinated Multi-Agent Imitation
Learning”. In: International Conference on Machine Learning (2016).

[9] Yisong Yue Stephan Zheng Patrick Lucey. “Generating Long-term Trajectories Using Deep
Hierarchical Networks”. In: NIPS (2016).

[10] Umberto Michelucci. Applied Deep Learning. Apress, 2018.

[11] Devin Pleuler. “Player Masks: Encoding Soccer Decision-Making Tendencies.” In: NESSIS
(2021).

[12] Michael Stöckl Thomas Seidl Daniel Marley Paul Power. “Making Offensive Play Predictable
Using a Graph Convolutional Network to Understand Defensive Performance in Soccer”. In:
MIT SLOAN (21).

[13] Fathi M. Salem. Recurrent Neural Networks From Simple to Gated Architectures. Springer,
2022.

[14] Guande Wu Shuya Zhao Jianzhe Lin Claudio Silva. “Basketball GAN: Sportingly Acceptable
Trajectory Prediction”. In: AISA (2021).

[15] Sergey Ioffe Christian Szegedy. “Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift”. In: (2015).

[16] Lin Lee Cheong Xiangyu Zeng Ankit Tyagi. “Prediction of Defensive Player Trajectories in
NFL Games with Defender CNN-LSTM Model”. In: NGS (16).

31

https://doi.org/10.1561/2200000056
http://dx.doi.org/10.1561/2200000056

A Appendix

A.1 Rewriting hadamard product

The Hadamard-product in the Hierarchical Policy Network should be interpreted as follows:

πraw|S(p,t) = σ(Y raw|F(p,t)) (9)

πmacro|S(p,t) = σ(Y macro|F(p,t)) (10)

πraw
(p,t)|F(p,t) ⊙ πmacro

(p,t) |F(p,t) = N(σ(Y raw|F(p,t))⊙ σ(Y macro|F(p,t))) = σ(Yraw|F(p,t) + Ymacro|F(p,t))
(11)

Here, Yraw|F(p,t), Ymacro|F(p,t) are the output values before the Softmax activation of the raw micro-
policy and macro policy respectively. σ stands for the Softmax-activation and N is a function which
scales the sum of the probabilities to 1.

A.2 Design choices Recurrent Neural Network

input shape during training It is necessary to have entire sequences as inputs, in order to learn
the model which information from the past should be taken into account. The input for the RNN
will have the following shape: [1, n2, F

x]. Here, n2 is the length of the sequence and is variable.
F x represents the size of the feature space. Note that we only feed 1 sequence at each time to the
model.
In many sequential problems, it is common to create batches by concatenating multiple sequences.
Here, padding is applied to make all sequences of the same length. However, we decided to avoid
this approach for two reasons.
First of all, we do not want to learn the model detecting the end of a sequence This causes problems
when the model incorrectly predicts that the sequence is over. Besides, we believe that the end of
a sequence (e.g. if the ball-status changes to ”Dead”) does not depend on the concerning player in
most cases. Eventually, this should be done by a different model which will be considered as future
work. Furthermore, imputing missing values for the features should be avoided as well. So, single
sequences are used as input during training which introduces new problems.

batch-normalization The architecture which is used by [9] contains batch-normalization [15] on
multiple layers. Here, the latent features of some hidden layers are normalized to stabilize training.
This normalization is done by executing the following transformation:

x̂(k) =
x(k) − E[x(k)]√
V AR[x(k)] + ϵ

(12)

Here, x̂(k) represents the normalized feature, x(k) represents the computed feature before normal-
ization, ϵ represents a small value to avoid dividing by 0. Furthermore, E[x(k)] is the expectation
of the feature. However, E[x(k)] is estimated based on mini-batch statistics during training but the
running statistics are used for evaluation. Therefore, the estimations of the mean and variances of
the mini-batches should be unbiased to get similar results for training and evaluation. The mini-
batch statistics in our setup are biased since the statistics of a single trajectory are different from
the statistics of the data. For instance, the observed coordinates of the player in a trajectory are
often in a small area of the field while players in the data can be in any area of the field. Since we
only have one trajectory in a batch, the estimated variances of the batches will be much lower than

32

the true variances. Besides, the estimated means of the batches are biased towards the area of the
concerning trajectory. We solve the problem by using the running statistics during training instead
of the mini-batch statistics.

Variable sequence length When training a model using batch gradient descent. It is common to
use the average Cross-Entropy loss per instance in a batch. In that case, each batch should have
the same number of instances in it. Otherwise, the model will overfit on smaller batches. For this
reason, we are forced to use the sum of the Cross-Entropy loss of all instances in the concerning
sequence. However, the length of a sequence varies between 100 and 1800. This will result in larger
gradients for longer sequences which could lead to unstable training. The learning rate should be
reduced in that situation.
Another option could have been to split longer sequences into multiple smaller sequences. However,
this could make it harder for the model to recognize long-term patterns. After splitting a sequence
into 2, a decision that is made in the second sequence could depend on a feature in the first sequence.
However, the sequences are treated independently during training which makes it impossible for the
model to recognize these patterns. Verifying this statement in our problem will be considered as
future work.

A.3 Detailed explanation Variational Autoencoder

The Variational Autoencoder can be seen as a regularized version of a general Autoencoder that
has an encoder and decoder network. Here, the encoder network, parameterized by ϕ, maps the
original data X into latent space Z and the decoder, parameterized by θ does the other way around:
it maps points from latent space back to the original data X. However, the distribution of the
encoded data in latent space Z of general Autoencoders can have any complex distribution. However,
this distribution is regularized by Variational Autoencoders by incorporating the Kullback-Leibler
divergence in the loss-function. The Kullback-Leibler divergence is a measure for the similarity
between 2 distributions. This makes sure that the distribution of the encoded data is similar to some
prior distribution (a multivariate Gaussian distribution with mean vector 0⃗ and variance vector 1⃗).

A.3.1 Mathematical derivation

First of all, we have data from which we assume that it represents reality. So, we need to come
up with a loss that maximizes the likelihood of the observed data X. In other words, we will
maximize p(X). However, it is also allowed to maximize log(p(X)) since the logarithmic function
is monotonic. However, this objective does not depend on the distribution of Z|X. In order to
regularize the distribution of Z|X we need to incorporate this term by using the rule of conditional
probability:

logPθ(X) = log
Pθ(X,Z)

Pθ(Z|X)
(13)

Then, the next step is to multiply by
Qϕ(Z|X)
Qϕ(Z|X) . Here, Qϕ is a proposal distribution for Pθ(Z|X),

constructed by the encoder network.

logPθ(X) = log
Pθ(X,Z)

Qϕ(Z|X)

Qϕ(Z|X)

Pθ(Z|X)
(14)

Now, these terms can be rewritten into separate terms.

33

log p(X) = log
Pθ(X,Z)

Qϕ(Z|X)
+ log

Qϕ(Z|X)

Pθ(Z|X)
(15)

Here, the right term is the Kullback-Leibler divergence of the Qϕ(Z|X) and Pθ(Z|X) but cannot be
computed. However, know that the Kullback-Leibler divergence is always positive. This means that
the left term is a lower bound of the log-likelihood of X. Therefore, the left term is the evidence
lower bound (ELBO). Now, we rewrite the this right term is follows:

log
Pθ(X,Z)

Qϕ(Z|X)
= logPθ(X|Z)

P (Z)

Qϕ(Z|X)
= logPθ(X|Z) + log

P (Z)

Qϕ(Z|X)
(16)

In this equation, logPθ(X|Z) is the log likelihood of observing the original data, under the posterior
distribution from which the parameters are estimated by the decoder network. This can be seen as
the reconstruction loss. Furthermore, the right term is the Kullback-Leibler divergence between the
Qϕ(Z|X) (distribution of the encoded data by the encoder network) and P (Z) (prior distribution

which is the Multivariate Gaussian Distribution with mean vector 0⃗ and variance vector 1⃗). Now,
the Variational Autoencoder which has an encoder network, parameterized by ϕ, and a decoder
network, parameterized by θ can be trained by maximizing the ELBO.

A.4 RNN trajectory procedure

Figure 20: generating trajectory with MLP explained

34

A.5 RNN trajectory procedure

Figure 21: generating trajectory with MLP explained

35

	Abstract
	Preface
	Abbreviations and Notation
	Introduction
	Related work
	Features
	Generative modelling
	Evaluation metrics

	Methodology
	Data preprocessing
	Segment extraction

	Labeling
	Actions

	Features
	F1: Base features
	F2: Base features + image representation
	F3: Role-assignment based features

	Models
	General setup
	Multi-layer Perceptron
	Recurrent Neural Network
	Hierarchical Policy Network

	Evaluation metrics
	Questionnaire

	Experimental setup
	Variational Autoencoder
	Multi-Layer Perceptron
	Recurrent Neural Network
	Hierarchical Policy Network
	questionnaire

	Results
	General observations
	Variational Autoencoder
	Evaluation
	Cross-Entropy loss
	Generated trajectories
	Questionnaire
	Overall comparison

	Discussion and future work
	Interaction effects
	Features
	Models
	Evaluation

	Appendix
	Rewriting hadamard product
	Design choices Recurrent Neural Network
	Detailed explanation Variational Autoencoder
	Mathematical derivation

	RNN trajectory procedure
	RNN trajectory procedure

