
Cost Optimization for Freight Distribution Networks

with Consolidation Facilities

Business Analytics - Internship Report

Shipwell Advisor: Tyler Dorland
Supervisor: Oliver Fabert
2nd Reader: Rene Bekker

Author:

Austin Dickerson (2729612)

Cost Optimization for Freight Distribution Networks

with Consolidation Facilities

Author:

Austin Dickerson (2729612)

Vrije Universiteit Amsterdam

Faculty of Science

Business Analytics

De Boelelaan 1081a

1081 HV Amsterdam

Host Organization:

Shipwell

515 Congress Avenue

Austin, TX, 78701

November 2024

Abstract

Supply chain logistics is a complex problem space, with increasing volumes of

daily orders to transport and multi-echelon transportation requirements making

traditional optimization algorithms struggle to find cost-optimal solutions to daily

transportation needs. Shipwell needs a tool to optimize supply chains with Pool

Points, where orders transfer to Pool Vehicles for discounted routes.

This study compares tools, modeling decisions, and optimization methodologies

for solving a Hybrid Multi-Echelon Pickup and Delivery Problem with Time Win-

dows and Pool Points, focusing on the data of Whole Foods Market. Google’s OR

Tools Library and the Gurobi Optimizer are tested using different problem mod-

eling strategies and augmentations, focusing analysis on both the cost of solutions

and the scalability limits of each model.

The best result was achieved by an Upper Confidence Bound selected Large Neigh-

borhood Search Algorithm (UCB LNS), iteratively reconstructing partial solu-

tions. Final results, where the UCB LNS Algorithm is bagged with one of its

robust benchmarks project Whole Foods Market will save 1,540,000$ annually or

1.849% total on their produce procurement supply chain.

i

Preface

This paper is written for the Master Project in Business Analytics at the Vrije Uni-

versiteit Amsterdam. The main focus of this study is comparing different methods

for modeling the Pool Distribution Optimization Problem (PDOP) to be solved

primarily using off-the-shelf optimization software, while remaining scalable with

over 100 orders in a single model.

This research was done as a collaboration between the Vrije Universiteit Amster-

dam and the Data Science department at Shipwell, a company that specializes

in handling the logistics needs of other companies through digital supply chain

technologies, ranging from trucker rating systems, to supply chain analytics, to

routing optimization.

I would like to give a special thank you to my supervisor at Shipwell, Dr. Tyler

Dorland; for sharing a wealth of experience and wisdom in data science, indulging

technical questions both related and unrelated to this study, and trusting me to

design a tool that has a clear impact on a major business.

Finally, I would like to thank my supervisors at the Vrije Universiteit Amsterdam,

Dr. Oliver Fabert and Dr. Rene Bekker; for providing contextual insight on

optimization, giving guidance and feedback on the steps and process of conducting

research, and committing to coordinate with a student who is 5,000 miles and 9

timezones away.

ii

Contents

1 Introduction 1

1.1 Shipwell . 2

1.2 Whole Foods Market . 2

1.3 Pool Distribution Freight Networks . 3

1.4 Objective and Research Questions . 4

2 Related Work 6

2.1 Pickup and Delivery Problem (PDP) . 6

2.1.1 Hybrid Heuristic Algorithms with Local Neighborhood Search . . . 7

2.1.2 Genetic Algorithms (GA) . 8

2.1.3 Learning-Based Optimization (LBO) 10

2.2 Intermediary Points . 10

2.2.1 Trans-Shipments and Large Neighborhood Search 11

2.2.2 Multi-Echelon Vehicle Routing Problem 12

2.3 Key Takeaways . 14

3 Data 17

3.1 Whole Foods Market Data . 17

3.1.1 Order Sheets . 18

3.1.2 Data Statistics . 18

3.1.3 Feature Processing . 20

3.1.4 Data Partitioning . 21

iii

3.1.5 Order Clustering . 21

3.2 Synthetic Data . 23

3.2.1 Pool Points and Destinations . 23

3.2.2 Pickup Distributions . 24

3.2.3 Order Sizes . 25

3.3 Scenario Creation . 26

4 Driving Distances 28

4.1 Driving Distance Approximation . 28

4.1.1 OSMnx Node Networks . 29

4.1.2 Zip Code Clustering . 31

4.1.3 Major City Matrix . 33

4.2 Route Matrix Testing . 33

5 Modeling 35

5.1 Mathematical Formulation . 35

5.1.1 Sets, Parameters, and Variables . 36

5.1.2 Objective Function . 36

5.1.3 Constraints . 38

5.2 OR Tools . 41

5.2.1 Single Echelon Restructure . 41

5.2.2 Post-Processing . 43

5.2.3 Node Structure . 44

5.3 Iterative OR Tools . 46

5.3.1 Optimization Loop . 46

5.4 Gurobi . 47

5.4.1 Pre-solved Scenarios . 48

5.4.2 Node Structure and Multi-Echelon Behavior 48

6 Optimization 50

6.1 OR Tools . 50

iv

6.1.1 First Solution Strategies . 50

6.1.2 Search Metaheuristics . 52

6.1.3 Iterative Model . 55

6.2 Gurobi . 58

6.2.1 Presolved Scenarios . 58

6.2.2 Branch-and-Bound . 59

6.2.3 MIP Heuristics . 60

6.3 Self-Imposed Limitations . 61

7 Experimental Setup 62

7.1 OR Tools Iterative Run Parameter Testing 62

7.2 Upper Confidence Bound Selection Large Neighborhood Search Algorithm

Testing . 64

7.2.1 Benchmarks . 64

7.2.2 Testing Schematic . 65

8 Results and Discussion 70

8.1 Optimizer Parameters . 70

8.1.1 First Solution Strategies . 71

8.1.2 Search Metaheuristics . 72

8.1.3 Destroy Operators . 74

8.2 Pool Distribution Optimization Performance 77

8.2.1 Final Testing Results . 77

8.2.2 Solution Patterns . 82

8.2.3 Research Insights . 84

9 Conclusion and Future Research 86

9.1 Conclusion . 86

9.2 Limitations and Future Research . 88

v

Chapter 1

Introduction

Supply chain logistics is a sector that’s seen sporadic, but rapid growth in the

digital age with companies such as Amazon investing heavily in developing in-

cremental advancements. The recent Covid-19 pandemic dramatically shifted the

status quo for supply chain logistics, as links within existing supply chains were

disrupted by lock-downs. The lock-downs exacerbated an existing trend for com-

merce to move online, forcing companies to re-strategize the distribution of their

products. McKinsey Consulting surveyed businesses in 2021, and found an aver-

age of 88% across industries invested in digital supply chain technologies [1].

With numerous types of transportation options, especially for long journeys, the

need forms for innovative routing algorithms to minimize the cost while handling

the complexity of real world factors such as vehicle capacity, open hours of lo-

cations, and multi-vehicle order transfers. Managing these complexities leads to

optimization problems that demand problem-specific, hybrid algorithms to solve,

as research using traditional optimization algorithms struggles to handle these

constraints effectively. As various optimization algorithms have become more ro-

bust in the face of real-world constraints, specialized optimization tools that work

with the business rules of a company’s logistics become more viable. This leaves

an opportunity for any business taking optimization lightly to receive help, gaining

efficiency in their existing supply chain components.

1

CHAPTER 1. INTRODUCTION

1.1 Shipwell

Shipwell is freight shipping logistics startup originally based in Austin, Texas,

which has transitioned to operating fully remote. After launching in 2018, Shipwell

weathered the changes caused by Covid-19 lockdowns and their impact on supply

chains worldwide. Emphasizing a personal touch with their clients, and known

for exceptional customer service, Shipwell maintains relationships with large com-

panies to add lucrative logistics contracts that generate revenue. The clients are

looking for a service that can handle every step of their logistics process, from

planning routes, to tracking shipments, to finalizing contracts with third-party

freight transportation firms. Shipwell works toward satisfying their clients needs

by staying ahead of the industry, leveraging their strong software engineering cul-

ture to implement advanced data analysis, optimization, and language models in

its user friendly Transport Management System (TMS) platform.

Shipwell recently raised another round of venture capital funding to continue

their drive for growth by offering new features for their clients. An important

service in development is the Pool Distribution Optimization tool, which is

needed in particular by the new client Whole Foods Market. Whole Foods Market

is a very important client for Shipwell, so the Pool Distribution Optimization tool

is a high priority.

1.2 Whole Foods Market

Whole Foods Market is a large grocery store chain operating in the United Sates

with over 500 locations, including a few in Canada and the UK. The company

was purchased in 2017 by Amazon Inc. for 13.7 billion US Dollars. The pair-

ing of Whole Foods Market and Amazon was an interesting one, as Amazon was

known for efficiency and lowest cost, while Whole Foods Market had a reputation

that inspired the moniker “Whole Paycheck” to describe it’s pricing scheme [13].

Since the purchase, Whole Foods Market has integrated more technology into

their stores, facilitating Amazon services like locker package pickups and returns,

checkout-free shopping, and in-store sensory technology for advanced analytics

[33].

2

1.3. POOL DISTRIBUTION FREIGHT NETWORKS

With fealty to tech giant Amazon, Whole Foods Market looks to move to-

ward more advanced methods of logistics planning. This means approaching op-

timization analytically, while it has previously been done by hand. With Shipwell

as their logistics coordinator, leveraging tailored optimization strategies, Whole

Foods Market hopes to make a jump in efficiency on the logistics side of their

business.

1.3 Pool Distribution Freight Networks

Pool Distribution Optimization is a method of maximizing the value of Pool

Points, which are intermediary locations operated by a business to benefit their

supply chain. At pool points, orders can transfer from a Full Truck Load (FTL)

Vehicle onto a designated Pool Vehicle. These designated vehicles are assigned

a specific route, connecting the pool point to a Distribution Center, which is

the sole destination for the orders on the designated pool vehicle. These routes

are scheduled regularly, and so Shipwell is able to secure lower rates for these

routes than for ad hoc deliveries. Routing orders through a pool point to get a

discounted rate for the remainder of an order’s journey lowers net shipping costs,

so long as the optimizer can get the order to the pool point efficiently. Otherwise,

it can be cheaper to skip the pool point.

A key benefit to the pool points is the opportunity for an FTL vehicle to pick

up orders bound for disparate destination coordinates, which is only allowed when

the truck can drop all its orders at a pool point. FTL vehicles are the primary

freight vehicle type available for servicing all transportation not originating from

a pool point, called FTL because the entire truck’s capacity is paid for regardless

of true utilization. The orders dropped at a pool point by an FTL vehicle are then

placed on separate pool vehicles, each traveling directly to their respective desti-

nations, after consolidating orders from other FTL vehicles. Alternatively, FTL

trucks that skip a pool point must travel to a distribution center to drop off their

contents. These centers are typically hundreds if not thousands of miles apart, so

each FTL truck is only allowed to visit at most one. The opportunity for greater

efficiency does come with drawbacks, as this system creates a real optimization

challenge, because one set of vehicles’ behavior affects the demand for another set

of vehicles. This causes inter-dependency between the vehicle fleets, leading to

3

CHAPTER 1. INTRODUCTION

dynamic demand and synchronization issues [15].

The Pool Distribution Optimization tool looks to solve a highly constrained

version of the Pickup and Delivery Problem (PDP), which is an extension

of the Traveling Salesman Problem, a classic NP-Hard problem. The prob-

lem addressed in this study is coined the Pool Distribution Optimization

Problem (PDOP). Although research on an optimization problem with all the

specifics of the Pool Distribution Optimization Problem is sparse, each element

has been addressed in some research within the Pickup and Delivery Problem um-

brella. However, some approaches, which are effective in less constrained PDP,

cannot effectively explore the solution space of the PDOP.

1.4 Objective and Research Questions

This goal of this research is to develop a tool which can consistently produce sav-

ings optimizing vehicle routes that service a set of orders, scheduled for pickup and

delivery, while remaining computationally robust in scenarios with 100 or more

orders. Savings is measured as the improvement on cost from using pool points

over routing all orders using only FTL vehicles, while robustness is measured by

the ability to find a feasible solution in each test case within the allotted time.

Over the course of three sets of experiments; driving distance approximation meth-

ods, off-the-shelf optimization software, problem modeling decisions, optimization

parameters, and problem-specific search operators are tested to reach the best

practical routing optimization tool Shipwell can use to solve the PDOP and sat-

isfy their client Whole Foods Market.

Research Question: What is an effective and scalable approach for an op-

timization algorithm minimizing cost in the Pool Distribution Optimization Prob-

lem, which meets the capacity needs of major United States suppliers and distrib-

utors?

The following sub-questions appear through the process of developing the

PDOP optimization tool.

4

1.4. OBJECTIVE AND RESEARCH QUESTIONS

• How can the optimization tool best predict real driving distances with minimal

computational overhead and cost, while allowing for detailed visualization of

routing solutions?

• How can PDOP optimization scenarios be modeled in a way that is solvable

with multiple pool points?

• What methods effectively lower the cost of initial feasible solutions?

• Which Solution Strategies, Search Metaheuristics, and Destroy Operators are

most effective when iteratively destroying and repairing solutions produced by

the Standard OR-Tools Model?

Research sub-questions are discussed more thoroughly in the coming chapters,

with sub-question 1 addressed in Chapter 4, sub-questions 2 and 3 in Chapter

5, and sub-question 4 in Chapter 6. Each question builds on results from the

previous, as the optimization tool hybridizes algorithms and optimization steps

5

Chapter 2

Related Work

This chapter gives an overview of research on traditional optimization approaches

frequently applied to Pickup and Delivery Problems, and examples of hybrid al-

gorithms applied to problem formulations most similar to the Pool Distribution

Optimization Problem. Section 2.1 provides explanations on well substantiated

methods for solving the Pickup and Delivery Problem, focusing on why they may

be well suited to consider in the PDOP. These approaches range from Heuristic

Routing Algorithms, to Evolutionary Computing, to Machine Learning. Section

2.2 discusses research on optimization problems most similar to the Pool Distribu-

tion Optimization Problem. Due to the use of intermediary points where orders

exchange vehicles, these problems share some unique challenges in optimization

with the PDOP. Particular attention is paid to the methods for exploration in

these highly constrained problem formulations.

2.1 Pickup and Delivery Problem (PDP)

The Pickup and Delivery Problem is a well known NP-Hard optimization problem

which builds on the earlier Travelling Salesman Problem (TSP). The fundamen-

tal components of the PDP are a set of nodes where a pickup is required and a

set of nodes where a delivery is required. The PDP often uses a set of vehicles

with limited capacity, becoming the more practical Capacitated Pickup and De-

livery Problem. As the problem becomes more complex, the exact nature of the

more primitive, greedy algorithms becomes computationally intractable [30]. The

greedy algorithms that work well on the TSP struggle in a PDP because they

6

2.1. PICKUP AND DELIVERY PROBLEM (PDP)

cannot predict the long term consequences of early choices made in the routing

process that occur because of numerous constraints [9], but they computationally

cannot explore the entire search space either. Methods for solving the PDP have

means of exploring the solution space besides the optimal next individual route

operation, using a variety of methods to guide the routing exploration into a larger

search neighborhood of adjacent possible solutions.

2.1.1 Hybrid Heuristic Algorithms with Local Neighborhood Search

In solving complex routing optimization problems, Heuristic Algorithms work by

making sequential changes to an existing set of routes until a stopping criterion is

reached. The stopping criterion can be a time limit, a plateau in the solution’s ob-

jective value, or a margin between the current objective value and a lower bound

on the solution calculated by relaxing part of the problem’s constraints. Hybrid

algorithms beak the entire process into segments handled by different heuristics.

The first heuristic component, also called a First Solution Strategy, searches for

an initial feasible solution by prioritizing exploration. This is most often achieved

with an insertion algorithm, which prioritizes adding nodes to routes over improv-

ing the configuration of nodes already in routes [2]. After obtaining an initial

solution, a different set of heuristic algorithms, called a Search Metaheuris-

tic, sequentially improve the solution while maintaining feasibility. As a search

metaheuristic algorithm works, it produces a local search neighborhood after each

change to the solution. The local search neighborhood contains all the solutions

which can be reached through some operation on the current solution. Search

Metaheuristics introduce randomness, memory, or a guided search to explore new

regions of the solution space, reaching better solutions over time [30].

Local search algorithms explore slowly and would struggle to reach an initial

solution on their own, but this combination of a First Solution Strategy and a

Local Search Metaheuristic allows for a feasible solution to be found quickly, and

for sequential improvements to navigate toward a strong optima in the solution

space [26]. These two components can also contain sub-components. For exam-

ple, popular off-the-shelf Mixed Integer Linear Programming optimization tool

Gurobi forms a lower bound on the solution cost using the Barrier method. This

algorithm is similar to the simplex algorithm, but penalizes arcs near the edge of

7

CHAPTER 2. RELATED WORK

the feasible solution space when building a solution [16]. This method works be-

cause Gurobi relaxes the integer requirement on the values for each arc, showing

how precise changes to the model formulation can lead to better solutions. To

reach a feasible solution from the relaxation, Gurobi uses a Branch and Bound

algorithm to break the problem into less dependent pieces, and rounding arc val-

ues to integers. Gurobi uses a complex first solution strategy compared to those

implemented in open source library from Google, OR Tools, but the solution

lower bound gives a helpful means of assessing the quality of solutions produced

by the optimizer [16]. A major strength of Hybrid Heuristic Algorithms is their

resilience in highly constrained problems. The search algorithms check feasibility

constraints for every operation when building a local search neighborhood, rather

than optimizing selection and checking feasibility second [31].

2.1.2 Genetic Algorithms (GA)

Genetic Algorithms look at the PDP in its entirety, creating a search space for

the problem through a population of individuals that represent different possi-

ble solutions. All GA share the properties of survival, crossover, and mutation,

however different types of GA represent the optimization problem as either floats

or integers. As the population of individual solutions moves from one generation

to the next, each solution’s quality is assessed by a fitness score [12]. Then, a

selection process, which can be deterministic or stochastic, uses the fitness scores

to select which individuals in the population will reproduce. During the reproduc-

tion process, a crossover operator combines the information inside the individuals

into a single offspring. However, more than two parents contributing to a child

is possible, as in Differential Evolution. Children resulting from the crossover of

individuals in the previous generation are then mutated. This occurs based on

mutation temperature, which is the probability that any given allele in the new

individual receives a mutation [12]. A difficult aspect of using GA for a highly

constrained optimization problem such as the PDOP is ensuring the feasibility

of offspring. Due to the fact individuals in the population can have completely

different characteristics, two parents selected may have very little room to create

a feasible solution from one another’s components. Making a GA that can navi-

gate a highly constrained solution space requires the use of feasibility-preserving

operators for crossover and mutation, but the more constrained the problem, the

more those operators dictate the evolutionary process [21], making a balance of

8

2.1. PICKUP AND DELIVERY PROBLEM (PDP)

feasibility and exploration difficult to achieve.

Differential Evolution and Swarm Intelligence

In their research on unidirectional logistics distribution, Xu et al. tackled a prob-

lem with flow similarities to the PDOP using differential evolution. They used an

encoding of nodes in the model to the ordinal position of floats in an array [43].

The floats were initialized in an array of size L, equal to the number of nodes in

the model, and could take values anywhere from 0 to K, where K is the number

of vehicles. Each vehicle’s route was assigned all the indices in the array whose

value ∈ (k-1, k], where k is the vehicle number [43]. These indices are placed

in descending order, so an index with value 1.22 would be visited by vehicle 2,

but only after it has visited another array index whose value is 1.5. They used

differential evolution, which by comparison to traditional GAs converges quickly,

because new offspring only replace parents if they have a better fitness score. They

also differ in the means of crossover, using perturbation vectors to change existing

members of the population [32], which has the advantage of allowing offspring to

obtain alleles that neither parent originally had, without needing mutation.

The problem with implementing such a model is again the difficulty of achiev-

ing feasible offspring. Xu et al. looked at models with up to 21 nodes, much smaller

than those necessary at Shipwell, making more of the possible solutions feasible.

Although other researchers have studied larger models, the amount of constraints

in the PDOP explains why similar GA research uses smaller models. Genetic al-

gorithms remain a popular way to solve combinatorial optimization problems, but

their high compute cost, and poor performance in highly constrained problems

make it less ideal for implementation of the PDOP.

Within Evolutionary Computing, a propitious approach to discrete optimiza-

tion applies Swarm Intelligence. This approach increases the communication be-

tween individuals in the population, by allowing high performing individuals to

send signals to other individuals, biasing them to move towards the high per-

formers in the solution space [19]. However, solutions that rely on strategies like

Particle Swarm Optimization or Ant Colony Optimization are not well suited for

use with feasibility-preserving operators because these algorithms prioritize explo-

9

CHAPTER 2. RELATED WORK

ration over strict adherence to constraints.

2.1.3 Learning-Based Optimization (LBO)

Recently, optimization strategies that leverage some form of machine learning have

shown promise solving routing optimization problems. In a recent synopsis of LBO

strategies, Li et al. found two main types of LBO applied to TSP type problems.

These consisted of end-to-end approaches, and step-by-step approaches [23]. Step-

by-step approaches work based off either supervised learning or reinforcement

learning and use sequential route operations, similar to a local search algorithm,

but require either huge sources of routing data or the compute power to train

a reinforcement learning algorithm. Although heuristics like using an experience

replay buffer can improve the efficiency of this process, either approach within

step-by-step requires significant resources [23]. The other LBO approach gaining

traction is end-to-end, where the original demands of the system form an input and

the output is a complete solution. This works more similarly to genetic algorithms,

although there is no iterative aspect to the end-to-end computation. The problem

with the end-to-end approach is that it requires even more data than the step-by-

step approach and struggles to generalize. This is because the end-to-end nature

means the input and output of the solver’s neural network are high-dimensional,

requiring considerable parameters to tune within. So far, end-to-end models only

performed well in small scenarios with few constraints such as the traditional TSP

[23], but will likely gain popularity as their efficacy improves.

2.2 Intermediary Points

Research in the optimization of routing models that contain some kind of Interme-

diary Point, where orders transfer between vehicles, fall into two main categories.

The first is Trans-Shipment models, where the intermediary points facilitate trans-

fer of orders between vehicles of the same type. The second is Multi-Echlon models,

where orders transfer from one transportation type to another to reach their final

destination [5]. The Pool Distribution Optimization Problem’s Pool Points are

an intermediary point that shares characteristics with both types of intermediary

point.

10

2.2. INTERMEDIARY POINTS

An element adding significant challenge to the PDOP is the existence of pool

points visited by vehicles with two different sets of behavioral restrictions. A

location with the exact qualities of a pool point is not well represented in PDP

research. Pool points pose a challenge to routing algorithms, which represent the

locations in the problem as nodes. Nodes in the routing model can only be visited

once each, allowing routing algorithms to simplify the problem significantly. The

need to visit nodes multiple times also exists in models with trans-shipments, and

researchers in this sub-field found a clever solution.

2.2.1 Trans-Shipments and Large Neighborhood Search

Trans-shipments are a transfer of orders between two vehicles at a designated in-

termediary transfer point. Using such a transfer point helps trucks maximize their

own value and efficiency. David Wolfinger solved a version of the PDP with time

windows, split loads, and trans-shipments using a Large Neighborhood Search

(LNS) metaheuristic [42]. The main difference between LNS and local neighbor-

hood search is the size of components changed. Wolfinger removes entire routes

from the solution based on a percentage of total routes to remove. Using LNS

allowed him to make significant changes to the solution in the exploration pro-

cess, which is essential due to the complexity increase that allowing intermediary

points creates. In his formulation, entire routes were removed with operations

such as Random Removal, or Worst Route Removal based on cost savings, among

others. Subsequently, the solution was repaired using a set of insertion heuristics.

The insertion heuristics take advantage of the unique problem formation by using

operators such as Best Insertion With Transshipment, which only considers inser-

tions that would transfer an order between two vehicles [42]. These operations

are difficult to explore, because they can change the optimal route for the truck

receiving the order as well. Figure 2.1 shows the insertion algorithm’s logic, which

is more granular than the destroy operator, examining individual orders.

Wolfinger also makes a critical modeling decision to create a problem solvable

using a LNS algorithm: Modeling the intermediary points as multiple nodes each.

Creating copies of intermediary nodes allows multiple vehicles to visit the same

intermediary point without violating the mixed integer programming setup of the

problem [42], because every node can still only be visited at most once. In param-

eter tuning, Wolfinger also made an important discovery about route destruction.

11

CHAPTER 2. RELATED WORK

Figure 2.1: Pseudocode for the insertion algorithm used by Wolfinger [42]

He got significantly better results by removing 10-20% of the solution’s routes

before repairing [42], where the actual percentage was sampled from a uniform

distribution ∈ [0.1, 0.2] at each iteration, which was compared to ranges from

[0.0, 0.1], [0.2, 0.3], [0.3, 0.4].

Like the PDOP, Wolfinger’s optimization problem is highly constrained, be-

cause it tracks capacity, distance, and time while facilitating intermediary points.

He goes as far to to dub the problem with the acronym: PDPTWSLT, making

it clear the constraints largely define the problem and his LNS based solution fits

under the umbrella of Hybrid Heuristic Algorithms.

2.2.2 Multi-Echelon Vehicle Routing Problem

The Multi-Echelon VRP is a problem with two or more distinct components ser-

viced by different vehicle types. These systems can be difficult to optimize because

the results from one system affect the needs of another system within the model.

Vakili et al. proposed a means of tackling such a problem by splitting it into two

levels, and optimizing them separately [38]. In Vakili’s research, the first layer

optimizes depot placement and transportation routes, to supply each depot with

orders. Then, the second layer optimizes the delivery from the depots to the re-

spective destinations for the orders they contain. Breaking the optimization into

12

2.2. INTERMEDIARY POINTS

two components limits exploration of the true solution space, while drastically

decreasing the problem complexity within each step [31].

Another interesting approach for modeling a two echelon routing optimization

problem came from Lee et al., who used a novel heuristic approach based on

memetic algorithms to solve a VRP with optional second-echelon delivery. In the

problem, a distribution center has satellite depots, and all the deliveries to be made

are assigned to the nearest depot. Then, a single vehicle finds the most efficient

route to each depot as in the TSP, which forms the initial solution. In the start

case, all deliveries are made by a second-echelon direct service. To incrementally

improve, another algorithm goes through all the orders starting on the highest

second-echelon delivery cost order, testing if delivering that order directly from

the truck would be cheaper. During this test, genetic algorithms optimize the

delivery truck’s theoretical route and accept the change if the solution cost is

reduced [22]. An important similarity between this problem and the PDOP, is

the second echelon does not require additional optimization, because the routes

are direct from the intermediary point. This allowed Lee at al. to solve the

entire problem as a single model, although it is the culmination of four algorithms

working together [22]. Figure 2.2 shows the solution in progress, where circles are

local depots and triangles are the delivery locations. Each delivery is tested as

part of the main vehicle’s route, to see if it would be cheaper to deliver an order

directly.

Although the second echelon pool trucks in the PDOP do not handle single

orders, their behavior is deterministic given a set of demands from the assigned

pool point, which also does not require its own optimization step. Unfortunately,

the insertion algorithm Lee at al. used to assign orders to the delivery vehicle

vs. second-echelon delivery is not subject to any capacity constraints, so it is

not easily applied to the PDOP. This key difference relates back to the need for a

robust constraint checking mechanism as part of the optimization process, a major

benefit of using an off-the-shelf optimization tool.

13

CHAPTER 2. RELATED WORK

(a) Route Graph Before Moving a Sec-

ond Echelon Delivery to the Main Vehi-

cle’s Route

(b) The Graph after Insertion into the

Main Route

Figure 2.2: Comparison Testing of Route Graphs during the Insertion Algorithm

used by Lee et al. [22]

2.3 Key Takeaways

Developing a tool that solves the PDOP for Shipwell is about more than a theo-

retically optimal solution in testing. The final result must be a robust tool that

is time efficient, consistent, scalable, and inexpensive to run. It is important to

build off of an existing tool, such as Gurobi or OR Tools, to reduce the project’s

complexity and make it usable in production at Shipwell. Many intriguing choices

made by researchers in modeling and search strategy for problems with important

similarities to the PDOP could be applied to this problem. However, it is impor-

tant to consider the differences in formulation between a given research problem

and the PDOP, to determine if they invalidate the application of that strategy for

the PDOP. Reviewing research in the field led to four important insights about

multi-echelon, highly constrained routing optimization.

First, an algorithm that checks constraints before considering route options

will prevent wasting time exploring the large infeasible areas in the solution space.

When solving the PDOP, exploration is challenging because this problem is con-

strained in capacity dimensions and in vehicle behavior. For this reason, applying

GAs might work within existing routes, but will explore the overall solution space

very inefficiently. Some researchers apply GAs to solve sub-problems within a

14

2.3. KEY TAKEAWAYS

Hybrid Heuristic Algorithm approach [35] such as rearranging a vehicle’s route

nodes, but it is inefficient for making global decisions in problems such as the

PDOP. Given that GAs tend to strip constraints from the problem formulation,

Learning-Based Optimizations are data-hungry, and end-to-end LBOs struggle

outside the TSP; Hybrid Heuristic Algorithms are better suited for problems as

constrained as the PDOP. Moreover, within the two most prominent professional

tools for Hybrid Heuristic Algorithm routing optimization, GAs are not facilitated

for local optimizations. This means using GAs would only be practical if building

the optimizer around a GA focused tool, with individuals in the population rep-

resenting solutions, which is a poor application of GAs for the PDOP.

Second, using duplicates of intermediary nodes, assigning one to each order,

is a clever way of facilitating solutions otherwise not possible when using an opti-

mization tool modeled on heuristic algorithms. Modeling decisions play a critical

role in making the PDOP solvable using an off-the-shelf optimization tool. It

allows the use of algorithms that rely on flow conservation constraints which pre-

vent revisiting a node. In a problem where the second-echelon is optional, assigned

intermediate node duplicates can even contain information about their assigned

order. This could even facilitate optimizing both echelons concurrently without

needing the custom-made insertion operators used by Wolfinger [42], although this

is likely not scalable to the use case for Shipwell.

Third, calculating the cost of pool routes deterministically would simplify the

solution space dramatically. Therefore, solving this model should take advantage

of the simplicity in the second-echelon somehow. Leaning on Lee et al.’s prob-

lem formulation to eliminate the need for a second-echelon optimization step, by

calculating the cost of pool routes deterministically, could simplify the solution

space. Lee et al.’s second-echelon delivery working as a direct route only made

the insertion cost independent of the overall solution, which allowed the cost to

be checked during the optimization of the main vehicle. This is not possible in

the PDOP because orders get consolidated on pool trucks, which is key to their

efficiency. However, a deterministic heuristic for assessing the pool vehicle’s cost

could make the problem much more scalable, as Shipwell’s need for the optimizer

of 100-150 orders concurrently exceeds the maximum problem size in much of the

research reviewed.

15

CHAPTER 2. RELATED WORK

Fourth, Large Neighborhood Search allows highly constrained problems to ex-

plore a very tightly defined solution space. Within LNS, destroy operators do

not violate capacity constraints, so they can work outside a highly constrained

model. Insertion heuristics, on the other hand, can violate feasibility constraints

and do not work well outside of an optimization tool that manages the problem’s

constraints. This opens the potential for problem-specific destroy operators and

LNS destroy operators in general, which do not exist inside off-the-shelf profes-

sional routing optimization frameworks. This approach would allow application

of Wolfinger’s insight on highly constrained optimization to the PDOP, and for

problem specific insight to influence the optimization tool’s exploration through

designed destroy operators.

Based on the related research, decisions on how to model the problem appear

to be as important as methods for exploring the solution space. In particular,

modeling decisions on ways to modify the problem’s representation, attempting

to make small alterations from the real-world problem while maximally reducing

the routing model’s complexity, will be a central contribution of this study.

16

Chapter 3

Data

This chapter explores the data provided by Whole Foods Market to help Shipwell

build a tool to solve the PDOP, along with synthetic data used to create gener-

alized test cases. Section 3.1 examines the real data, covering all the information

provided with each order, along with steps to process additional features, com-

bine similar orders and cluster the orders on a macro-level. Section 3.2 explains

the process for generating synthetic data, used to improve the optimization tool’s

generalizability. Finally, section 3.3 gives an overview for creating scenarios used

to develop and test the routing optimization algorithms in this study.

3.1 Whole Foods Market Data

Whole Foods Market’s supply chain requires produce to be delivered from pro-

duction centers to distribution centers across the United States. The contents

are perishable, so they need to reach their destination quickly. However, there

is opportunity to improve efficiency by consolidating orders at intermediary Pool

Points, if possible within time constraints. Whole Foods Market operates six such

pool points in areas with significant pickup demand for produce to be sold in

Whole Foods Stores. Whole Foods Market has over a thousand produce orders to

pick up daily, and so procurement for a single day must to be split into a group

of scenarios which satisfy all the transportation needs for the day.

Figure 3.1 shows all produce orders that need to be shipped in one day, with

the size of points corresponding to the log-scaled weight of the order. To develop

17

CHAPTER 3. DATA

Figure 3.1: Origins of every order pickup for Whole Foods Market on Febuary

15th, 2024

an optimizer that can handle Whole Foods Market’s needs, they provided complete

order data for five of orders to fulfill, from February 7th, 8th, 9th, 12th, and 15th.

3.1.1 Order Sheets

Whole Foods Market’s order sheets contain qualitative information about each

order, along with its origin, destination, and shipping characteristics. The critical

order information is the date, origin, destination, weight, volume, and temper-

ature zone. Table 3.1 shows all the data entries provided, including qualitative

descriptions that helped in the order bundling process.

3.1.2 Data Statistics

Whole Foods Market’s order data follows a distribution that appears exponential

at a glance. However, chi-square testing shows that an exponential distribution

does not fit, with a p-value of zero, while the Kolmogorov-Smirnov test produced

a p-value of 10.007e-83. Figures 3.2 and 3.3 show the distributions for weight and

volume over all orders in the dataset, both are heavily skewed to the right.

Table 3.2 shows the inconclusive results testing for Exponential, Gamma, and

Log-Normal distributions. The order data does not conform to any traditional

parametric distribution. Between all five days order data, a total of 4487 orders

18

3.1. WHOLE FOODS MARKET DATA

Table 3.1: All initial features for one Whole Foods Market shipping order

Field Name Data Sample

Geo Range Name PA S

Commodity Group Produce/Floral

Commodity Code TROPICAL

Item Description TROPICAL, BANANA, Yellow, SFG, 40lb

PO Status Filled

Destination Account WFM DCM Midwest Distribution Center

PO Master Name 5061010

Delivery Type CPU

Origin Name Earth University-DE1

Weight 40320

Units Ordered 960

Min Temperature 56

Max Temperature 58

Pallets 20

Shipping City Wilmington

Pickup Date 2/15/2024

Delivery Date 2/17/2024

Shipping State DE

Postal Code 19801

Note: All temperatures are in Fahrenheit.

19

CHAPTER 3. DATA

Figure 3.2: Order Weights in Pounds

for WFM

Figure 3.3: Order Volumes in Pallets

for WFM

has a weight mean of 3886.49 Pounds with a median of 1764.00, while the mean

volume is 2.35 Pallets with a median of 1.00.

Table 3.2: Test Statistics and P-Values for Order Weight and Volume Distributions

Test Type
Order Weights Order Volumes

Test Statistic P-Value Test Statistic P-Value

Chi-Square EXP 1.188e+16 0.000 2.948e+14 0.000

Kolmogorov-Smirnov EXP 0.146 1.006e-83 0.162 3.044e-103

Kolmogorov-Smirnov Gamma 0.051 1.130e-10 0.109 8.793e-47

Shapiro-Wilk Log-Normal 0.826 7.799e-57 0.934 1.033e-40

Although the data does not follow any known distribution, notably there is

a high incidence of very small orders, and a low incidence of very large orders.

Whole Foods Market often has small orders, but generally at locations where many

similar orders need to be picked up concurrently.

3.1.3 Feature Processing

The raw data from Whole Foods Market needed key processing steps to facilitate

scenario generation. Whole Foods Market operates six pool points in the Western

half of the United States and ten Distribution Centers spread across the country.

The first step was to obtain the coordinates for each Whole Foods Market dis-

tribution center and each pool point. These were used to append the provided

order data with GPS coordinates for the destinations, by identifying an order’s

destination name and inputting the corresponding coordinates. The orders were

then assigned to the nearest pool point based on euclidean distance as in equation

20

3.1. WHOLE FOODS MARKET DATA

3.1.1 where p is the assigned pool point and Pc is the set of all pool point coor-

dinates, with the exception of order pickups east of the Latitude Line at -105.0.

Exception orders were too far from any existing pool point and were assigned to

pool point “zero”. Whole Foods Market’s six pool points operate on the Western

half of the United States, so pickups east of line -105.0 need not be included in

Pool Distribution Optimization Scenarios.

p = min
y∈Pc

√
(x1 − y1)2 + (x2 − y2)2 (3.1.1)

3.1.4 Data Partitioning

Daily order volumes at Whole Foods Market are too high for a single optimization

scenario. To create sets of orders that fit within the optimizer’s capacity, while

making the best opportunity to completely fill vehicles, orders must be partitioned

to facilitate the lowest net cost to transport all orders. For example, if two orders

have pickup locations on opposite sides of the United States, they cannot end up

on the same truck; so there is little benefit to placing those orders in the same sce-

nario. Orders can be partitioned into groups by geographic area, assigning orders

to the nearest pool point, then optimizing scenarios with orders from individual

pool points.

Whole Foods Market’s produce origins have distinct areas, but these areas

overlap in high population regions. This is exemplified by the Southern half of

California containing four separate pool points. In these regions, orders from

neighboring pool points may benefit from being optimized in the same scenario.

This can increase efficiency, if a pool truck at a neighboring pool point has un-

used capacity while sending the order through the local pool point would require

activating an additional truck.

3.1.5 Order Clustering

A notable fact for the produce order data at Whole Foods Market is that often,

multiple small orders going from the same origin to the same destination appear

on the same day. Groups of orders like this can count as high as ten, while overall

taking up less than a single truck’s capacity. Orders like these reduce the efficiency

21

CHAPTER 3. DATA

of the optimizers. Their capacity is closely aligned with the total number of orders

in the scenario, because the constraints in the optimizers scale either linearly or

quadratically with the number of orders, depending on the implementation.

To solve this issue, small orders with identical origins and destinations can be

bundled, while keeping the bundles small enough to be arranged inside a truck with

other orders. This clustering works by first grouping orders with the same origins

and destinations. Within these groups, orders are sorted by size in ascending

order, then aggregated into separate bundles. Whenever one of these bundles

exceeds 10% of a truck’s total weight or volume capacity, it is finalized into a

single order. Moving up the order list, once the individual orders reach 10% of a

truck’s capacity, the bundling stops and the remaining orders are finalized as they

came. This bundling process reduced the number of orders by 67% on average,

allowing an entire day’s orders to be handled in a single optimizer scenario for

each pool point.

Figure 3.4: Order Weights in Pounds after clustering for each Whole Foods Market

order on Febuary 8th, 2024

Figure 3.4 shows a histogram, giving a rough distribution on the order sizes

by weight. Bundling the orders together produces a smoother-looking distribution

that is less skewed, while reducing the number of orders significantly. As either

weight or volume capacity can trigger the 10% clustering margin, many orders

22

3.2. SYNTHETIC DATA

remain under 10% of a truck’s weight capacity of 42,000.

3.2 Synthetic Data

Although Whole Foods Market’s needs as a client of Shipwell catalyzed develop-

ment of the Pool Distribution Optimizer, Shipwell plans to offer other customers

this service in the future. Anticipating the needs of other Businesses that need Pool

Distribution Optimization necessitated synthetic data. The synthetic dataset al-

lowed the testing of scenarios outside of Whole Foods Market’s particular use-case.

Key differences to test were: scenarios having fewer orders with wider distribution,

pool points located in non-agricultural regions, and neighboring pool points with

overlapping pickup distribution zones.

3.2.1 Pool Points and Destinations

Pool points and distribution centers need to be placed realistically, because the

optimizers use heuristic estimated driving distances instead of haversine distance.

This means the tendency that logistics hubs and major highways are near large

cities must be represented in the synthetic data. Having a logistics hub in an un-

populated and poorly connected area in the US is both unrealistic and negatively

affects the accuracy of driving distance estimation. To generate synthetic locations

for the pool points and distribution centers, each location starts out as a random

selection from one of the 200 most populated cities within the United States, in

addition to the 25 largest Cities in sparsely populated states. The coordinate for

the chosen city is taken, then displaced by a distance chosen from an exponential

distribution, at a random angle from the original coordinate. The displacement

mimics the tendency for these hubs to be located just outside large cities.

Figure 3.5 shows the locations of these cities on a Map of the United States,

they are the same cities used to create a routing distance matrix between key

points in the US.

23

CHAPTER 3. DATA

Figure 3.5: Geographic Coordinates for the Cities Chosen

3.2.2 Pickup Distributions

Pickup points in the synthetic data are clustered around a center point. This

represents the expectation that a company will establish pool points near the

center of areas with a high volume of orders. From this point, the pickup positions

are randomly displaced according to an exponential distribution parameterized by:

f(x;λ) = 0.01535 · e−0.01535x (3.2.1)

This distribution produces an expectation that 99% of orders will be within

300 miles of the center. This distance is applied from the center at an angle ran-

domly selected from a uniform distribution. The center of each distribution is also

a pool point; unless the scenario does not allow the use of pool points, then that

point only acts to center the distribution of order pickups.

Any coordinate generated is checked to be within the United States, and re-

selected if not. This ensures no points are across a border, in the ocean, or

on a lake. This step is particularly important, because the optimizers use real

driving distance estimations and not the haversine or euclidean distance between

coordinates. Figure 3.6 shows a distribution of order pickups created around a

pool point outside Phoenix, Arizona. The pickup coordinates range enough in

distance that some orders may not be routed through the pool point.

24

3.2. SYNTHETIC DATA

Figure 3.6: Geographic Coordinates from an exponential distribution of synthetic

order pickups

3.2.3 Order Sizes

The synthetic orders need to have both a weight in pounds and a volume in

pallets, which were initialized using exponential distributions to achieve a very

high incidence of small orders and low incidence of large orders. In the Whole

Foods Market use case, many orders shared the same origin, allowing efficient

bundling for similar small orders. However, in the synthetic data, a generalized

case where each order has a unique origin is used. The weights and sizes for these

orders are sampled from the exponential distributions seen in equations 3.2.2 for

weight, and 3.2.3 for number of pallets.

f(x;λ) = 0.0001096 · e−0.0001096x (3.2.2)

f(x;λ) = 0.1645 · e−0.1645x (3.2.3)

These distributions have their Cumulative Distribution Function’s 99th per-

centile set to the capacity limit for standard American freight trucks, which is

42,000 Pounds and 28 Pallets respectively. Any value over this limit is clipped

to the vehicle limit, and any value close to zero is rounded up to one. Although

Whole Foods Market usually has numerous pickups from the same location, to

develop a more generalized optimizer, orders in the synthetic data can be smaller

25

CHAPTER 3. DATA

than the clusters made with Whole Foods Market data. This models that for some

businesses, small orders need to picked up from unique locations.

3.3 Scenario Creation

Each optimization problem starts with a scenario. The scenario is modeled as an

object, containing all the necessary variables to pass into the optimizer, including

the distance matrix between all the points in the scenario. The distance matrix is

populated with distances of routes that contain three legs; the haversine distance

between between the coordinate and the nearest point on the major point distance

matrix, the pre-calculated distance between the major points nearest to the origin

and destination, and the haversine distance between the second major coordinate

and destination. The logic behind this approximation method will be explained

in the next chapter. Table 3.3 shows the variables contained in the scenario that

are passed to the optimizer.

26

3.3. SCENARIO CREATION

Table 3.3: Scenario Variables Passed to the Optimizers

Variable Name Definition

Distance Matrix Matrix containing distances between all locations, used to

compute travel costs between nodes.

Number of Vehicles Total number of vehicles available for routing.

Depot Node The starting point, where all vehicles begin their routes.

Order Count The total number of orders to be delivered, used to calculate

pickup and delivery indices.

Valid Pool Points List of pool points available for consolidating orders.

Pickup and Delivery Pairs Pairs of pickup and delivery nodes for each order.

Max Travel Distance Maximum allowable travel distance in miles for each vehicle.

FTL Price Matrix Cost matrix for Full Truck Load routes between nodes.

Pallet Demand Pallet demand at each location, representing the number of

pallets to be picked up or delivered.

Demand at Nodes The weight demand in pounds at each node, which vehicles

must fulfill.

Vehicle Pallet Capacity Maximum pallet space capacity of each vehicle.

Vehicle Capacities Maximum capacities for each vehicle in terms of load they

can carry.

Time Matrix Matrix representing travel times between all locations.

Time Windows Time constraints for each location, specifying when deliver-

ies or pickups must occur.

Maximum Stops The maximum number of stops each vehicle can make.

Pooling Enabled Flag indicating if the pooling of orders at pool points is

enabled.

Assigned Pool Points Pre-assigned pool points for delivery orders if pooling is en-

abled.

Location Count Total number of locations in the scenario, including depot,

pickups, deliveries, and pool points.

27

Chapter 4

Driving Distances

This chapter explains the motivation and compares two approaches for quickly

approximating the driving distance between any two coordinates in the United

States. Both strategies use the underlying concept of creating a large node net-

work representing the US highway system, routing important segments, storing

just the routed segments, and fusing components together for a quick approxima-

tion during optimization. Section 4.1 explains the method for developing a routing

heuristic, and compares two sets of coordinates as a basis for the pre-calculated

route segments. Section 4.2 then explains the testing protocol and briefly covers

the results, which dictate the final distance approximating heuristic tool’s im-

plementation. This tool is used during the remainder of the study, to calculate

driving distance when testing optimization algorithms.

4.1 Driving Distance Approximation

Shipwell’s customers may be sending orders across the United States, clearing

major geographic obstructions and following the most efficient route through the

US highway system. It is advantageous to move away from route optimization

methods that rely on haversine distance between locations, as they can draw lines

over areas that no highway crosses, or miss that a route is obstructed by a body

of water. On the other hand, highly accurate tools like the Google Maps API are

extremely costly for optimization, when N2 routes must be calculated produce a

distance matrix for an optimization scenario. Shipwell already spends tens of thou-

sands annually on Google Maps API calls, even without using it for optimization.

28

4.1. DRIVING DISTANCE APPROXIMATION

To obtain near Google Maps API levels of accuracy without the cost, the author

chose to develop a heuristic tool that combines haversine distance with predeter-

mined routes between key points in the United States. With this estimator, the

optimizer can map pickups, destinations and pool points to their nearest respec-

tive coordinates on a pre-calculated distance matrix. In this way, the optimizer

can graft the direct distance between the start and finish of a route to their nearest

coordinates in the distance matrix, leading to a three part route, where the mid-

dle section is a real route between two points connected by the US highway system.

With the use of open source tools, driving routes between points can be accu-

rately computed without the use of costly API calls. However, this process takes

significant time, memory, and computational power, making it impractical at the

time of optimization. Instead, creating a node network representing the US high-

way system, deciding key points to include in a distance matrix, and computing

the shortest route through the network between each point allows for quick re-

sults through reuse. This yields both an accurate distance between the points and

a route that can be displayed when visualizing the solution to an optimization

problem.

4.1.1 OSMnx Node Networks

To assemble a node network that creates realistic routes, a network that contains

the most important roads for long distance travel while minimizing extraneous

connections and low speed limit roads is essential. The open source tool Open

Street Maps with networkx (OSMnx) has the capacity to construct node net-

works using road types and geographic areas, to filter out weakly connected parts

of the resulting network, and to find the shortest path between two nodes in the

network. These qualities make it an optimal selection as a routing tool. With

distribution networks spanning the United States, a high level of granularity in

the node network would produce an untractably large graph. For this reason,

only highway roads need be part of the network. However, the US highway sys-

tem has five types: Interstate Highway, U.S. Highway, State Highway, Highway

Connector, and Trunk Road [7], so the best level of detail must be investigated.

Figure 4.4 shows three different levels of detail outside Dallas, which is known for

the large highway network surrounding it. Notably, figure 4.3 includes roads with

29

CHAPTER 4. DRIVING DISTANCES

lower speed limits than the other highway types. Using this network to calculate

routes requires optimizing travel time over distance traveled, making best route

calculation more difficult.

Figure 4.1: Three types Figure 4.2: Four Types Figure 4.3: All Five Types

Figure 4.4: Node Networks for the Highways around Dallas at three levels of

granularity

Very large node networks can be difficult to find the shortest path through,

but finding routes between major points should not become its own difficult opti-

mization problem. More roads alone does not imply better calculated routes, as

the route calculation algorithm struggles in networks with too many connections.

On the opposite end, a network too sparse can remove important links through

weakly connected areas. Figure 4.5 shows what can happen when a route calcu-

lation between Dallas and New York goes off course, while figure 4.6 displays the

correct route on a more sparse network.

Figure 4.5: Route calculation error

on a higher Granularity Network

Figure 4.6: The same Points, accu-

rately Mapped with less Granularity

30

4.1. DRIVING DISTANCE APPROXIMATION

OSMnx can calculate the shortest route between two points with the A* al-

gorithm, which uses a euclidean distance heuristic in conjunction with Dijkstra’s

algorithm to focus the search towards its destination [17]. This allows OSMnx

to find the shortest path through a large node network, whereas implementing

Dijkstra’s algorithm naively would have computational complexity of O(V 2) [6],

with a highway network consisting of 274,062 vertices.

The final road network is pictured in figure 4.6, including Interstate Highway,

U.S. Highway, State Highway, and Highway Connector roads. With this network,

a distance matrix and a route matrix can be produced between any two points in

the United States. A key consideration is determining which set of coordinates

will yield a matrix that generates the most accurate routes for real customer data.

Plugging every coordinate combination and the highway node graph into OSMnx

and using the A* algorithm produces all the routes needed for the matrix. Then,

a summation of the edges in each route provides the route length.

4.1.2 Zip Code Clustering

The continental United States has 41,642 zip codes. Zip codes were designed with

US Postal Service logistics in mind [37], so they each cover an area of similar pop-

ulation size, making them higher density in more populated areas. Zip codes are

also located within geographic boundaries, so they are not centered on impassable

areas [37]. Considering that the zip codes cover all the land in the US, an efficient

clustering of these zip codes’ coordinates would leave every conceivable point in

the continental United States within range of the coordinate for its respective zip

cluster center.

A distance matrix with even 1000 zip clusters would require calculating a million

routes, each containing hundreds of node coordinates. The amount of computa-

tional power required to produce the matrix becomes a factor, in addition to the

file size increasing to multiple gigabytes. Clustering the zip codes optimally re-

quires balancing the computational load with the degree that each cluster center

adequately represents the zip codes within. To find this balance, the gap statistic

for within-cluster dispersion can be examined at different counts of clusters. The

gap statistic is computed by comparing variance at different numbers of clusters

31

CHAPTER 4. DRIVING DISTANCES

for the data with the variance in randomly generated noise with the same number

of clusters [34]. This noise is created using the same range as the data, with a

uniform distribution. As the number of clusters increases, the gap statistic should

increase, but at some point, the the gap statistic’s increase will slow. At that

number of clusters, the optimal balance between minimizing total clusters and

maximizing explained variance in the data is reached. In a plot of number of

clusters against the gap statistic, the curve is expected to follow an elbow, where

the bend in the elbow is that optimal number of clusters.

Testing then shows the distribution of zip code centroids does not show a clear

peak in gap statistic, as the zip codes are intentionally dispersed so that none di-

rectly overlap in space. Although some zip codes are closer together than others,

adding more centroids consistently increases the gap statistic so long as the num-

ber of clusters does not approach the actual number of zip codes. Instead, knowing

that 200-300 locations is in the computationally feasible range for constructing a

route matrix, the most significant drop in first derivative on the gap statistic is

computed in that range. This point was at 214 clusters, giving the base dimen-

sion for the zip code cluster based route coordinate matrix, [214x214]. Figure 4.7

shows the gap statistic curve for testing up to 5,000 clusters. For each number of

clusters, the data was clustered and compared to three different clustered sampled

distributions of synthetic noise.

Figure 4.7: Gap Statistic curve for

up to 5,000 clusters

Figure 4.8: 218 Zip Code cluster cen-

ters mapped

Figure 4.8 shows the centroids that best explained variance in the coordinates

for all continental US zip codes. The coordinates are distributed evenly with

respect to their neighbors, but less populated regions in the western half do have

32

4.2. ROUTE MATRIX TESTING

fewer assigned centroids. From this set of coordinates, a set of 47,524 routes is

calculated.

4.1.3 Major City Matrix

Although clustering zip codes creates a well dispersed map that would perform

well routing random coordinates, the order data shows a reasonable pattern of

locating near larger cities. This is clear in the Whole Foods Market order origin

map from figure 3.1, where most orders are located near large cities. Taking the

largest cities in the United States as major coordinates for the distance matrix

trades geographic dispersion for likelihood of proximity to real orders. This pro-

vides more precise routing in high population zones with numerous large cities.

Viewing the 200 largest city coordinates does leave some states with no represen-

tation. However, adding 25 of the largest cities in low population areas greatly

reduces the maximum distance an origin can be from a major coordinate. Figure

3.5 depicted the distribution of cities, which appealingly, has city clusters located

near the dense order clusters in the data for Whole Foods Market from figure 3.1.

The distance and route matrices have to be tested against real order data and

synthetic data, by comparing them to the routes produced by the Google Maps

API. The optimizer doesn’t need to know the coordinates in a route, but they are

necessary to display solutions to the scenarios tested. Seeing the solution on a

map is the quickest way of catching undesirable behavior.

4.2 Route Matrix Testing

The two route matrices are tested against the Google Maps API to determine

which to use during development of the Pool Distribution Optimizer. For this

test, 500 pickup and delivery coordinates were generated from synthetic data and

500 were sampled from Whole Foods Market orders. Figures 11.5 and 11.6 in the

Appendix visualize the order positions for the synthetic coordinates and Whole

Foods Market sampled coordinates.

Table 4.1 shows the similarity scores of the Zip Cluster Distance Matrix, the

Major City Distance Matrix, and Haversine distance against the Google Maps

API. Similarity is calculated by the formula 1− abs(d1−d2)
d1

, where d1 is the Google

33

CHAPTER 4. DRIVING DISTANCES

Maps API distance and d2 is the comparison distance. Notably, the major city ma-

trix scored higher average similarity on both data types. Kernel Density Estimate

figures 11.7 and 11.8 in the Appendix show the city matrix estimate similari-

ties approach 100% more often than the zip cluster matrix. These results show

the major city matrix is the more accurate distance matrix, but they both far

outperform the haversine distance currently used by Shipwell’s routing systems.

Figure 11.9 in the appendix shows the confidence intervals on accuracy for each

distance approximation, showing how far away haversine distance is in accuracy.

Moving forward, it is clear that the Major City Distance Matrix is reliably the

most accurate approximator, and should be used for future routing optimization

experiments. Cutting combined average discrepancy from 17.46% to 6.52% in the

routing tests, the Major City Matrix as a distance approximator is projected to

greatly reduce the discrepancy between predictions and real driving distances.

Table 4.1: Similarity Comparison of Distance Approximation Strategies for Syn-

thetic and WFM Data

Synthetic WFM

Approximator Similarity (%) Std Dev Similarity (%) Std Dev

Haversine 81.75 0.2751 83.34 0.2097

Zip Cluster 91.84 0.6911 86.30 1.1322

Major City 93.82 0.6376 93.14 0.3536

34

Chapter 5

Modeling

Modeling the Pool Distribution Optimization Problem requires a theoretical math-

ematical formulation for the problem. However, creating a routing model based

off a PDOP scenario requires additional modeling decisions on how to represent

the solution space. From there, modifications to the original problem result in

models that facilitate cost optimization on the scale needed by Shipwell. In this

chapter, section 5.1 covers the terms and mathematical constraints at the core of

the PDOP. Then, section 5.2 explains how the PDOP is modeled using the OR

Tools Routing Library, paying special attention to the formulation of a two-stage

optimization process achieved by splitting the vehicle types into two optimization

steps. Section 5.3 proposes an external Large Neighborhood Search mechanism to

further improve on the first OR Tools optimizer. And finally, section 5.4 details

a more highly constrained model using Gurobi’s MIP Solver, where both vehicle

types are optimized simultaneously.

5.1 Mathematical Formulation

The mathematical formulation posed by the Pool Distribution Optimization Prob-

lem incorporates behavioral rules in terms of travel and contents for two types of

vehicles through linear constraints. Different modeling techniques can lead to dif-

ferent abstractions, though they represent the same formulation seen below. Ad-

ditionally, some of the models in this study modify the original problem to help

find better solutions, but the question of solution’s feasibility is always answered

by satisfying the exact constraints provided in this chapter.

35

CHAPTER 5. MODELING

5.1.1 Sets, Parameters, and Variables

Table 5.1 lists the Sets, Parameters, and Variables that make up this optimization

problem. The values for each parameter are known once the scenario has been

constructed, as they are either present in the data used to construct the scenario,

or can be calculated from the scenario’s data without knowing the solution. The

variables all stem from the values xvij ∈ X, which are boolean variables that

make up a tensor X representing all routes for all vehicles. In other words, the

other seven variables are used to simplify the expression of constraints, but are

all derived from a combination of the values for x and the scenario parameter

values. Furthermore, the optimizers tested in this study all make routing decisions

regarding the values of x, or an equivalent abstraction of X such as lists of nodes

forming routes.

5.1.2 Objective Function

The overall goal of the routing optimizer is to find a solution which minimizes

the expected cost of servicing all orders in the scenario. Although many metrics

have a correlation with the objective function, ultimately, the solution to the

optimization scenario and its cost can be represented as an element-wise product.

This product is between a tensor of boolean variables X, which corresponds to the

each vehicle and all connections between all nodes, and a matrix that represents

the cost to travel between any two nodes in the scenario.

• Minimize Cost: ∑
v∈V

∑
i∈OM

∑
j∈L

dijx
v
ijR +

∑
p∈P

∑
j∈J

npjfpj

Business Goals

The behavior of routes are subject to company analytics, with business goals

outside the optimizer’s objective function, that are used to compare solutions for

a scenario obtained from different models. Including these metrics as variables

in the optimizer, and penalizing the objective function when crossing undesired

boundaries did not impact the behavior of the optimizer. However, these metrics

are still of important business value to Shipwell and their clients. Additionally,

36

5.1. MATHEMATICAL FORMULATION

Table 5.1: Notations for the Problem Formulation

Sets

L All Locations, l ∈ O ∪ P ∪ J

M Orders, m ∈M

O Unique Origins, o ∈ O

Om Order Origins, om ∈ Om

V FTL Vehicles, v ∈ V

V2 Pool Vehicles, v2 ∈ V2

J Distribution Centers (DC), j ∈ J

Jm Order Destinations, jm ∈ Jm

P Pool Points (PP), p ∈ P

X Connections Between Nodes for All Vehicles, xvij ∈ X

Parameters

fpj Fixed route costs from PP to DC, {p ∈ P, j ∈ J}
dpj Distance from PP to DC, {p ∈ P, j ∈ J}
dij Distance between nodes i and j, {i ∈ L, j ∈ L}
tij Travel time between nodes i and j

om Origin for order m

jm Destination for order m

sm Demand of size units in order m

wm Demand of weight units in order m

wv Weight capacity for Truck v ∈ V ∪ V2

sv Size unit capacity for Truck v ∈ V ∪ V2

ts Wait Time at Vehicle Stops

R FTL Rate per mile

S Maximum pickup stops allowed

D Vehicle max travel distance

T Time limit

Variables

xvij If node i and node j are connected by vehicle v, {i ∈ L, j ∈ L, v ∈ V ∪ V2}
vm FTL Truck v assigned to order m, {vm | m ∈M, v ∈ V }
v2m Pool Truck v2 assigned to order m, {v2m | m ∈M, v2 ∈ V2}
dv Distance traveled by Truck v ∈ V

lv Number of distinct locations visited by vehicle, v ∈ V ∪ V2

tv Route start time for vehicle, v ∈ V ∪ V2

pv Pool Point visited by truck v {p ∈ P}, 0 otherwise

npj Number of pool trucks going from p to j, {p ∈ P, j ∈ J}

37

CHAPTER 5. MODELING

capacity utilization is used an an input for some destroy operators in the iterative

version of the OR-Tools optimizer.

• Maximize peak truck weight capacity utilization per mile traveled (second

sum is the pool routes):∑
v∈V

∑
m∈M |vm=v

wm ·
dv
wv

+
∑
p∈P

∑
v∈V |pv=p

∑
j∈J

∑
wm|vm=v,jm=j

wm ·
dpj
wv

÷
∑
v∈V

dv +
∑
p∈P

∑
j∈J

npjdpj


• Maximize peak truck pallet capacity utilization per mile traveled (second

sum is the pool routes):∑
v∈V

∑
m∈M |vm=v

sm ·
dv
wv

+
∑
p∈P

∑
v∈V |pv=p

∑
j∈J

∑
sm|vm=v,jm=j

sm ·
dpj
wv

÷
∑
v∈V

dv +
∑
p∈P

∑
j∈J

npjdpj


• Minimize number of trucks that travel:∑

v∈V
min (1,

∑
i∈OM

∑
j∈L

xvij) +
∑

p∈P, j∈J
npj

Truck minimization is an important aspect of solutions, as pickups are usually

located near pool points, but the destinations are spread out far from the Pool

Point’s general area. Reducing the number of trucks needing to leave the Pool

Point zone towards a destination by just one generally improves the overall cost

of the solution by thousands.

5.1.3 Constraints

The Pool Distribution Optimization problem is a PDP, with capacity measured

in both metrics of weight (in pounds) and volume (in pallets). It is also a multi-

echelon routing problem, where each vehicle type has specific constraints on the

order and type of locations they may travel. These constraints are listed below as

mathematical formula.

• All orders must be picked up by an FTL Vehicle once:∑
v∈V

∑
i∈L

xvij = 1, ∀j ∈ OM

• All orders must be dropped off by a Vehicle once:∑
v∈V ∪V2

∑
i∈L

xvij = 1, ∀j ∈ JM

38

5.1. MATHEMATICAL FORMULATION

• FTL Trucks must only pickup orders bound for the same destination unless

visiting a pool point:

jm1 = jm2 , ∀m1,m2 | vm1 = vm2 = v, ∀v ∈ V |
∑
i∈O

∑
j∈P

xvij = 0

• FTL Trucks cannot drive between PP and DC, or from those to origins:∑
i∈J∪P

∑
j∈L

xvij = 0, ∀v ∈ V

• FTL Trucks cannot make more than the allowed number of pickup stops:∑
i∈O

∑
j∈O|dij>0

xvij < S, ∀v ∈ V

• Active FTL Trucks must visit either one destination or one pool point only:∑
i∈O

∑
j∈J∪P

xvij ≤ 1, ∀v ∈ V

• Pool Trucks cannot drive from DC to PP:∑
i∈J

∑
j∈P

xvij = 0, ∀v ∈ V2

• Pool Trucks cannot drive to origins:∑
i∈L

∑
j∈O

xvij = 0, ∀v ∈ V2

• All Truck routes must run within time limit, including 4 hour waits at stops:

tv +
∑

i∈0∪P

∑
j∈0∪J∪P

tijx
v
ij + tslv ≤ T, ∀v ∈ V ∪ V2

• Trucks must not surpass max travel distance:∑
i∈0∪P

∑
j∈0∪P∪J

dijx
v
ij ≤ D, ∀v ∈ V ∪ V2

• Trucks must not surpass Weight Capacity:∑
m|vm=v

wm ≤ wv, ∀v ∈ V ∪ V2

• Trucks must not surpass Pallet Capacity:∑
m|vm=v

sm ≤ pv, ∀v ∈ V ∪ V2

39

CHAPTER 5. MODELING

Behavioral Parameters

Setting up a routing optimizer requires real information about freight logistics

rules, such as the standard capacity of freight vehicles and the maximum number

of stops a business allows their trucks to make in one route. The parameters chosen

for the optimization models in this study are a combination of business rules from

Whole Foods Market and freight information from Shipwell’s extensive experience

in the field. The parameters are shown in Table 5.2, with all values static except

maximum stops, which varies greatly depending on the business. This is due to the

balance between efficiency and expediency. For example: Whole Foods Market,

sourcing produce, cares more about the product arriving fresh and prefers to allow

fewer stops for their trucks.

Table 5.2: Scenario Parameter Values

Parameter Value

Truck Weight Capacity (Pounds) 42,000

Truck Volume Capacity (Pallets) 26

Vehicle Max Distance (Miles) 3,000

Maximum Stops per Truck 5-10

Pool Route Discount 10%

Truck Rate Per Mile (Dollars) 2.0

The routing optimizer is set up to allow a heterogeneous fleet of vehicles, as

each vehicle’s dimensional limitations (size, weight, and distance) can be input

separately. However, optimizing with a variety of dimensional limitations will not

be tested because in the use case for Shipwell, freight vehicles all have roughly

the same limitations. The notable exception is maximum allowed stops, as this

is part of an individual company’s business rules. To allow for a wider variety of

solutions, one FTL vehicle and one pool vehicle are added to the optimizer for

each order. That way, potentially each order could travel on its own truck, if that

would lead to the best objective value.

40

5.2. OR TOOLS

5.2 OR Tools

Google’s OR Tools package has aConstraint Programmingmodule that is both

open source and frequently used by companies to optimize their logistics. Shipwell

uses an OR Tools based optimizer to create freight routes without pool points,

and wants an additional tool that can handle the complexity of Pool Distribution

Optimization. The initial goal for the Pool Distribution Optimization project

was to develop an optimizer that works using OR Tools, but the requirement was

relaxed due to the difficulty of this optimization problem. However, most of the

modeling and experimenting in this project remains focused on OR Tools.

5.2.1 Single Echelon Restructure

Solving this optimization problem is about more than modeling the listed con-

straints and pressing “play”. The amount of constraints in this formulation pre-

vents traditional optimization algorithms from exploring to find an acceptable so-

lution. The optimizer Shipwell had in development tried to follow this approach,

and was unable to find acceptable solutions for even simple scenarios with ten

orders. This model was abandoned, after testing at the beginning of this research

project proved the model wholly inadequate, prompting a new start from scratch

for this study. Using constraints to create two different classes of vehicles leads to

a highly constrained CVRP, whose solution space is very narrow, making any local

search algorithm struggle to escape from local optima [26]. The problem formu-

lated with these constraints is so difficult to solve, that modifying the formulation

to better allow for solution exploration is critical for the model to computationally

scale up to the needed size. To make a problem that’s solvable at scale using con-

straint programming, the formulation must be modified so demand in the system

is no longer dynamic.

To escape from dynamic demand, each of the two vehicle types can be optimized

separately. This approach takes inspiration from the work of Lee at al. [22] where

an estimation of the optional second-echelon delivery component simplified opti-

mization of the primary vehicle’s route. If given the routes of all FTL vehicles in

advance, optimizing the pool vehicles’ routes is rather straightforward. Each pool

vehicle can only travel one leg, from a pool point to a distribution center, so only

41

CHAPTER 5. MODELING

the time window to operate each pool vehicle needs to be optimized. Therefore, if

the role of the FTL trucks can be optimized reasonably well by itself, the solution

will remain efficient, while allowing more exploration through local search. To

optimize the FTL level of the routes, the optimizer needs an approximation for

the cost of a pool truck route and a structure that allows orders to be fulfilled

without the FTL vehicles delivering orders that went through a pool point.

Ghost Vehicles

The most difficult part of designing a model that can obtain an initial solution to

the PDOP is optimizing the FTL vehicle routes before optimizing the Pool vehicle

routes. This requires a mechanism for satisfying the demands at all delivery loca-

tions, despite Pool Vehicles not being a part of the model. Countless variations of

model structuring and testing led to a viable solution by allowing unconstrained

vehicles to make final deliveries from pool points. With this adaption, another

necessary component is a cost approximation for the pool deliveries in the model,

that the optimization algorithm can use to make routing decisions.

(a) A Ghost Vehicle freely completes all

delivery requirements

(b) Two FTL Vehicles are needed with-

out Pool Point usage

Figure 5.1: Illustration of Delivery Routes possible inside OR Tools model

To handle the delivery of items routed through a pool point, FTL vehicles

that visit a pool point shed some constraints on FTL vehicles, changing vehicle

type in the process. This is done by tracking a boolean variable g for each FTL

vehicle, that determines if the vehicle has visited a pool point. This is the end of

42

5.2. OR TOOLS

the FTL truck’s route, however the truck can continue onward acting as a Ghost

Vehicle. Multiplying g ’s compliment by the FTL vehicle’s destination constraint

allows the new ghost vehicle to travel between destinations as in equation 5.2.1.

Figure 5.1 shows an example of a delivery route started by an FTL vehicle and

completed by a ghost vehicle from the pool point onward. The ghost vehicles

perform the duties of the pool vehicles to come later, as they are allowed to travel

to a first destination for the corresponding pool route cost. After reaching one

destination, the trucks can travel between destinations for no additional cost, and

without counting against their maximum travel distance. This facilitates necessary

deliveries to satisfy the requirements of a viable solution, while estimating the cost

of pool routes based off selecting one of the pool routes its contents must travel.

The key behavior preserved is the ability of FTL vehicles to pick up orders that

are all bound for different destinations if and only if they visit a pool point.

• FTL Trucks cannot drive between Destinations, Ghost Vehicles Can:

(1− g)
∑
i∈J

∑
j∈J

xvij = 0, ∀v ∈ V [5.2.1]

5.2.2 Post-Processing

To find the true cost of the solution, the cost for all the FTL routes in the OR

Tools solution is summed, removing the pool route cost approximations from the

optimizer’s objective value. After the optimizer has determined which orders to

route through which pool points, post-processing on that solution stores infor-

mation about which orders were on each truck visiting a pool point and what

window of time can that truck be at the pool point without violating continuity

constraints. Algorithm 1 shows the calculation used to find how many orders need

to get from the pool point to each destination, and the minimum number of trucks

that must be assigned to service these orders.

Analysis of the first solution provides a list of when trucks arrive at a pool point

in chronological order. Then, each order on the truck is added to a queue of orders

bound to a specific destination, where the time that the first order in the queue

arrived is tracked. Once an order arrives to the queue, such that the sum of orders

in the queue do not fit on one truck, all previous orders are placed on a Pool truck

to the destination, the most recent order to arrive begins a new queue, and the

tracking timer is reset. However, if no item arrives which fills the truck in the

43

CHAPTER 5. MODELING

allotted waiting time of 24 hours, the truck leaves with all the items in the queue.

Thus, if a queue is empty when a new order arrives, the tracking timer will start

when that order arrived. The combined cost for the FTL routes from the OR

Tools solution and the calculated pool vehicle costs for each pool point used gives

the true objective value for the solution.

5.2.3 Node Structure

The modified problem representation needs to have a node structure which permits

all desired truck behaviors. To achieve maximum flexibility, it must be possible for

all FTL trucks to visit the same Pool Point. The OR Tools constraint program-

ming optimizer only allows each node to be visited by a single truck [3]. Working

around this modeling convention requires a node for every truck at every pool

point, each a proxy for the pool point itself, inspired by the implementation in

Wolfinger’s trans-shipment model with Intermediary points [42]. Since the num-

ber of FTL trucks in the model is equal to the order total, the node indices are

selected by the pattern shown in figure 5.2. Order pickups and destinations alter-

nate, so each odd number is a pickup and each even number is a destination. Once

the node indices surpass twice the number of orders, each order is assigned one

pool point node for each pool point, with coordinates at their respective locations.

However, the trucks are free to visit whichever pool node is available. The quan-

tity simply allows maximum flexibility for the truck behavior, especially in small

order count scenarios. The pool nodes have zero penalty dis-junctions, meaning

the optimizer does not need to visit any of them to find a viable solution. The

dis-junctions dramatically reduce the computational impact of adding more pool

nodes, so optimizing a scenario with x orders and 2 pool points takes a similar

compute time as a scenario with the same number of orders and 3 pool points.

This remains true despite total pool nodes in the model being equal to total orders

times total pool points.

44

5.2. OR TOOLS

Algorithm 1 Post-Processing Vehicles for one Pool Point

1: Input: List of trucks’ orders arriving at the Pool Point in chronological order,

arrival time = mt

2: Initialize an empty queue q ∈ Q, for each destination j ∈ J

3: Initialize tracking timer tq to null for each queue

4: Set count for each Pool Route, qn = 0

5: for each Vehicle arriving at the Pool Point do

6: for each Order m on the vehicle’s respective destination queue do

7: if q = null then

8: tq = mt

9: end if

10: if sum(qw) + mw > w || sum(qs) + ms > s then

11: qn ← qn + 1

12: q ← {m}
13: qt = mt

14: else if Time elapsed - mt > 24 hours then

15: qn ← qn + 1

16: q ← {m}
17: qt = mt

18: else

19: q ← q ∪ {m}
20: end if

21: end for

22: end for

23: for q ∈ Q do

24: if q ̸= null then

25: qn ← qn + 1

26: end if

27: end for

28: Net Pool Point Vehicle Cost =
∑

q∈Q qn * fpj

45

CHAPTER 5. MODELING

Figure 5.2: Structure for the nodes in an OR Tools optimization model with two

orders and two pool points

5.3 Iterative OR Tools

To further improve on the OR Tools model formulation, an iterative version of

the optimization model is developed. In this version, destroy operators which

work on the route level, remove routes from the solution based on three different

operators. The resulting partial solution is then repaired by running the OR

Tools optimizer again, inputting the partial solution. This allows the optimizer to

escape local optima by expanding the search neighborhood significantly. Highly

constrained problems involving intermediary points, such as pool points, benefit

from specialized search operators that take the distinction between FTL and Pool

routes into account [42]. Such specialized operators help the algorithm search hard

to reach areas in the solution space.

5.3.1 Optimization Loop

The iterative OR Tools optimizer runs through a loop for n iterations. With each

iteration, an OR Tools model solution is optimized, then the complete solution

is formulated through post-processing. Next a destroy operator is applied to the

solution, removing between 10 and 20 % of the routes based on the criterion of the

operator chosen. This incomplete solution is then given to the OR Tools solver to

repair. During the repair phase, because the solution is nearly complete, solution

46

5.4. GUROBI

strategies within the optimizer that cannot compute a scalable solution from a

cold start perform effectively. A greater selection of search strategies gives the

solver more flexibility as it searches for a better solution. Figure 5.3 shows the

iterative solution process, where the solution reconstruction occurs n times.

Figure 5.3: Graphic of the Iterative Solution Pipeline

5.4 Gurobi

Given the difficulty creating a formulation to the original optimization problem

using OR Tools, Gurobi Mixed Integer Programming solver is also considered.

This tool works fundamentally differently from OR Tools, as it relaxes the inte-

ger format of the boolean variables, allowing Gurobi to solve a continuous linear

program efficiently. This creates a lower bound for the solution’s objective value,

allowing the algorithm to track the optimality gap between the lower bound and

the current solution. It then works towards a feasible solution by searching within

decomposed sub-problems to reduce the amount of violated constraints until it

47

CHAPTER 5. MODELING

reaches a feasible solution. One notable difference between OR Tools and Gurobi

is that OR Tools is open source, while using Gurobi professionally is a very ex-

pensive service that includes a suite of PhD level optimization experts on retainer.

The cost to use Gurobi is prohibitive, as it would need to have a truly dramatic

difference in solution quality to merit such a high cost of use.

5.4.1 Pre-solved Scenarios

The author of this study met with an optimization engineer at Gurobi and dis-

cussed the application of their solver for the Pool Distribution Optimization prob-

lem. They remarked this was a very difficult problem to solve, and Gurobi would

do best if given feasible solutions to improve on, as it struggles to find feasible so-

lutions to improve on in highly constrained problems. To take advantage of initial

solutions produced by OR Tools, a pipeline for formatting OR Tools solutions to

fit a Gurobi formulation of the problem leverages the best qualities of both tools.

In the Gurobi formulation, both FTL and Pool vehicles are optimized simultane-

ously. The key benefit to this parallel optimization is the true pool costs of the

current solution are present during FTL route optimization. The drawback is the

node structure of the problem in Gurobi, and the additional constraints needed

to manage the Pool Vehicles.

5.4.2 Node Structure and Multi-Echelon Behavior

The node structure for the Gurobi model is defined more strictly, as the demand

is not truly dynamic, but the need for Pool Trucks to visit specific pickup nodes

is managed through constraints. In the Gurobi model, each order is assigned a

specific dropoff node at each pool point, which corresponds to a specific order.

Unlike in the OR Tools model, the pool node visited by the FTL truck must be

the right one, because each pool dropoff node has a linked pool pickup node as

shown in figure 5.4. A truck visiting an order’s assigned node at a pool point

activates a boolean variable; to activate a constraint stating a pool truck must

visit the corresponding pool pickup node.

When a truck carrying multiple orders travels to a pool point, it will visit one

node at that pool point for each order it carries. These nodes are all explicitly

48

5.4. GUROBI

Figure 5.4: Structure for the nodes in a Gurobi optimization model with two

orders and two pool points

assigned when forming the optimization model. Then, when a pool truck reaches

the pool point to pick up orders, it will visit the pool pickup node assigned to each

order that it must pick up. The Gurobi model handles the entire optimization

problem as one component, but its difficulty finding initial solutions shows there

is still no straightforward way to solve the entire problem at once. Gurobi is much

more computationally intensive, particularly in terms of memory, and the number

of constraints in the model scales quadratically with the number of orders. By

comparison, the number of constraints in the OR Tools formulation scales linearly

with additional orders.

49

Chapter 6

Optimization

This chapter explains the algorithms used to solve models in OR Tools and Gurobi

for this study. Each library uses a hybrid algorithm approach to finding solutions.

Section 6.1 covers the behavior of initial solution strategies and local search algo-

rithms available inside OR Tools. This sectional also details the external destroy

operators used in the iterative OR Tools solution model. Then, section 6.2 defines

the steps Gurobi takes to improve on initial solutions inside the two-echelon model.

And finally, section 6.3 breaks down the limitations intentionally imposed on this

research, which drive the results toward a more practical and scalable solution.

6.1 OR Tools

OR Tools contains numerous algorithms for obtaining an initial solution, and

local search to improve an existing solution. These two categories of optimization

algorithm work together inside the optimizer to reach a feasible starting point,

then make incremental improvements. The strategies and algorithms are derived

from graph theory, where trees are spanned by connecting nodes to minimize cost,

forming the basis of these optimization techniques.

6.1.1 First Solution Strategies

A First Solution Strategy is an algorithm designed to find an initial solution to

a constraint programming optimization problem [28]. These algorithms focus on

the nodes that need to be visited, prioritizing a feasible solution over an optimal

50

6.1. OR TOOLS

one. Notably, only one OR Tools first solution strategy reliably finds a feasible

solution to an unsolved Pool Distribution Optimization problem. However, in a

partial solution repair run, three total first solution strategies reliably produce

solutions. Each of the three solution strategies is explained in the following sub-

sections.

Parallel Cheapest Insertion (PCI)

The most robust first solution strategy available for the Pool Distribution Op-

timization Problem is Parallel Cheapest Insertion. It’s also the only strategy

available in the OR Tools optimizer able to consistently produce feasible solutions

for optimization problems containing 50 or more orders. Parallel Cheapest In-

sertion builds multiple routes simultaneously, inserting the cheapest node at its

cheapest position for each arc respectively. The number of concurrent arcs form-

ing depends on the problem size, and the thread capacity of the hardware used

[28]. Although parallel insertion algorithms can use heuristics like
√
n to decom-

pose the problem into a number of sub-trees based on number of graph vertices

[39], the OR Tools algorithm views the entire system when forming arcs in parallel.

The cheapest insertion operation works by examining each in-sequence node pair

(i,j) from a route, and checking the cost to insert an unvisited node k, until the

lowest cost of insertion is found. Equation 6.1.1 shows the calculation for cheapest

insertion, computed for each arc concurrently.

min
i,j,k

[c(i, k) + c(k, j)− c(i, j)] [6.1.1]

Out of the remaining unvisited nodes the cheapest node to insert, in its cheap-

est position, is added to the route. This process is only complete when every node

without a disjunction is visited on a route.

Local Cheapest Insertion (LCI)

Differing in tree search order, the Local Cheapest Insertion algorithm takes node

index into account when making insertion selections. This means that lower node

indices will be checked earlier, making the algorithm more faster, but potentially

less optimal than Parallel Cheapest Insertion. Node ordering in the optimization

51

CHAPTER 6. OPTIMIZATION

scenarios places pool points after order pickups and dropoffs, so the search tenden-

cies of this algorithm appear to bias towards skipping pool points. Nevertheless,

this insertion algorithm is not able to consistently produce feasible solutions to

large problems. The value of this algorithm comes when repairing partial solu-

tions within the Iterative Run OR Tools Optimizer. This insertion method uses

the same minimization equation, except that the index of k is selected in sequential

order [28].

Global Cheapest Arc (GCA)

The Global Cheapest Arc strategy works by finding the cheapest connections

between nodes, iteratively adding connections to the model until a feasible solution

is found [28]. This strategy is not robust enough to find initial solutions for

pool optimization scenarios of 10 orders or more, but is useful when repairing

partial solutions. Unlike insertion strategies, global cheapest arc may produce

route segments that cannot be connected while still satisfying the constraints in

this problem formulation. It often builds segments cost-effective in isolation, but

that cannot be easily integrated into a feasible overall solution.

6.1.2 Search Metaheuristics

OR Tools needs a Local Search Algorithm, also called a Search Metaheuristic,

to incrementally improve the current solution during optimization. The meta-

heuristic takes control once an initial feasible solution is found using a first solu-

tion strategy. Each metaheuristic takes a different approach to creating a local

search neighborhood and selecting which operations to use when altering a solu-

tion. OR Tools has a total of 13 local search operators [14], listed in Table 6.1.

The optimizer views a feasible solution which can be created through one of these

operations as a candidate solution. A candidate solution has to exist somewhere

in the problem’s feasible solution space, meaning that all constraints in the system

are satisfied. The set of possible candidate solutions comprises the current solu-

tion’s local search neighborhood [18]. The search metaheuristic navigates through

the solution space, by iteratively selecting a candidate solution and forming a new

search neighborhood around it. The five search metaheuristics available in OR

Tools are explained in the following subsections.

52

6.1. OR TOOLS

Table 6.1: Local Search Operators in OR Tools

Operation Description

Two-Opt Reverses a segment of a route between two nodes.

Three-Opt Removes three edges and reconnects them in a different way.

Relocate Moves a node from one position to another in any route.

Exchange Swaps two nodes between routes or within the same route.

Cross-Exchange Exchanges sub-paths between two routes.

Or-Opt Moves a chain of two or three nodes to another position in any route.

Make-Active Activates a previously inactive node by adding it to a route.

Make-Inactive Deactivates a node by removing it from a route.

Make-Unperformed Removes a node from the solution entirely.

Reverse Sequence Reverses the order of nodes in a route segment.

Chain Exchange Exchanges chains of nodes between two routes.

TSP-Opt Optimizes the sequence of nodes in a single route.

Greedy Descent (GD)

Greedy Descent is a deterministic algorithm that searches for a route operation to

reduce the solution’s objective value by the greatest amount. Its behavior is not

based on exploration, and can only take the best available immediate next option

[25]. This could have a problematic relationship with such a highly constrained

problem, as greedy descent is prone to being stuck at local optima. Greedy Descent

also uses only a subset of potential route operators, as considering all 13 would

require too much calculation at each step.

Guided Local Search (GLS)

Guided Local Search builds on the greedy behavior of traditional local search by

modifying the problem’s objective function to explore different candidate solu-

tions. This modification occurs when the optimizer has reached a local optimum.

From this position, simple greedy behavior would prevent the search algorithm

from moving any further. At local optima, guided local search ascribes features

to the current solution, and initializes penalties for inclusion of the features at

zero. In this problem these features come from specific arcs in the model, which

represent a vehicle driving between two points [41]. Equation 6.1.2 shows how the

algorithm assigns penalty utility U to features in the local optimum, where the

features with the highest utility score are chosen to be penalized, increasing the

53

CHAPTER 6. OPTIMIZATION

value of Pi. Ii(x) is an indicator function for the feature being penalized and ci(x)

is the arc cost, so expensive routes are seen as having a higher utility to penalize.

If the inclusion of the derived features in the solution fails to improve the objective

value, the penalty for including those features will increase. Over time, the penal-

ties for features that do not improve the solution cause the algorithm to move

away from the current local optimum [41]. The augmented cost function used to

select new solutions is shown in equation 6.1.3. The modified cost function g(x) is

used to navigate the solution space, and over time g(x) diverges from f(x) enough

to escape the local optimum. Coefficients for λ and a are selected by the OR Tools

routing model. Generally, λ moderates the diversity of the search space, while a

balances the size of the penalty function relative to previous improvements and

the total number of features penalized [40].

U(x, i) = Ii(x)
ci(x)

1 + pi
[6.1.2]

g(x) = f(x) + aλ
∑

1≤i≤m

pi Ii(x) [6.1.3]

Simulated Annealing (SA)

Simulated Annealing has an entropy approach to escaping local optima, which

focuses on exploration in the early stage of optimization. This approach works by

following a cooling schedule, similar the way some alloys are produced to remove

defects by controlling the speed they cool to normal temperature after smelting.

In this analogy, temperature ∈ [0,1] and equates to the likelihood of the routing

model selecting the next solution by accepting a random change, even if it in-

creases the solution cost. As the search algorithm explores, iterating through new

solutions, the temperature decreases. This makes the routing model less likely

to accept a new solution if it does not improve cost minimization, progressively

adopting more greedy behavior. A simulated annealing search algorithm puts

higher priority on finding the best region of the solution space over finding the

very best local optimum [20]. Prioritizing exploration seems a promising approach

for Pool Distribution Optimization, as local search neighborhoods are quite small

due to all the constraints in the problem.

54

6.1. OR TOOLS

Tabu Search (TS)

Another metaheuristic that modifies the problem to enhance exploration is Tabu

Search. This algorithm works by encouraging exploration when a local optimum

or a plateau is detected in the solution space. For example, when the OR Tools

routing optimizer reaches a local optimum, it will detect that no improvement

is possible from the local search neighborhood, and instead will accept a change

that increases the solution cost. Tabu Search keeps three levels of memory to

guide its exploration of the solution space. Short Term Memory is used to track

which solutions have been visited recently, to avoid redundant exploration. Short

term memory relates to modified objective values for candidate solutions f(x′),

where candidate value becomes f ′(x′) = f(x′) + T (x′), accounting for penalty

T (x′) if x′ is in the Tabu List. Intermediate Term memory biases the search

towards promising areas in the solution space by tracking the arcs which appear

frequently in good solutions. If f(x′) achieves a new best solution, x′ is removed

from the Tabu List to achieve this bias. Finally, Long Term memory drives the

search into unexplored regions when the search gets stuck in a plateau [10]. Long

Term memory assigns penalties to solutions that are in areas where significant

exploration has occurred by updating the Tabu List T (x), preventing the search

from over-exploiting one region [11].

Automatic

The Automatic search metaheuristic leverages a combination of the other search

metaheuristics, making it a robust choice as it can adapt when one search strategy

is ineffective. However, because this selection process is adaptive, and the opti-

mizer needs time to test and score the other metaheuristics before finding the best

one for the problem. Given a long period of time, automatic is expected to find

the most effective search metaheuristic, but scoring and selection can slow down

optimization if solve time is limited [29].

6.1.3 Iterative Model

The Pool Distribution Optimization problem is highly constrained, trapping search

algorithms in local optima, potentially far from the global optimum. In finding

ways to explore larger regions in the solution space, external components to the

55

CHAPTER 6. OPTIMIZATION

optimization process lead to further development for the OR Tools optimizer. An

iterative run version of the OR Tools Pool Distribution Optimizer allows analysis

of a feasible solution to guide major changes to the solution though an iterative

optimization process. A key benefit to this approach is the ability to change

the solution significantly in a single step, preventing the algorithm from being

trapped in a subspace within the problem’s feasible solution space. The use of

destroy operators to remove whole routes results in a Large Neighborhood Search.

Destroy Operators

Removing parts of the existing solution, then repairing it helps to push existing

solutions outside their current search neighborhood. The route modification op-

erators inside OR Tools have limitations in terms how large of a change they can

make in a single step. The capacity for these operators to change the current

solution defines the local search space [35], which is small in this problem, lead-

ing to the local optima issue. Defining operators that can make more significant

changes opens up the search space to better explore possible solutions. Destroy

operators are used to remove routes from the solution after post-processing. One

destroy operator randomly selects routes to remove from the solution, the other,

novel destroy operators are shown in equations 6.1.4 and 6.1.5.

• Worst Trip Removal takes the higher peak of weight or size utilization for each

vehicle, and chooses the lowest among the vehicles:

min
v∈V

max

∑
v∈V

∑
m∈M |vm=v

wm

wv
,
∑
v∈V

∑
m∈M |vm=v

sm
wv

 [6.1.4]

This operator works to push out inefficient routes, with the possibility that orders

on the destroyed route can be added to existing routes, increasing efficiency and

ideally decreasing the number of active trucks. Capacity utilization is a metric

that some Shipwell clients value in addition to the absolute cost for all routes, so

removing low utilization routes can improve the solution beyond objective value.

• Worst FTL Trip Removal takes the higher peak of weight or size utilization

for each vehicle not visiting a pool point, and chooses the lowest among the vehi-

cles:

56

6.1. OR TOOLS

min
v∈V∑

i∈O

∑
j∈P xv

ij=0

max

∑
v∈V

∑
m∈M |vm=v

wm

wv
,
∑
v∈V

∑
m∈M |vm=v

sm
wv

 [6.1.5]

This operator has similar benefits to Worst Trip removal. However, Worst FTL

Trip Removal actively reduces the number of trucks bypassing the pool point,

tending the solution towards routing orders through that pool point. More trucks

arriving at a pool point gives the pool trucks more opportunity to increase uti-

lization given the time window to fill one pool truck. When the resulting repaired

solution lowers the net solution cost compared to the previous iteration, the new

solution is saved to move forward. If the new solution is not an improvement, the

previous solution is retained.

Adaptive Selection

Two of the three destroy operators select routes to destroy deterministically. This

may cause a loop where the repaired solution is worse than the previous, so the

previous solution is reused next iteration, and the same routes are subsequently

removed. To prevent this, a combination of all three operators is tested. An

Upper Confidence Bound selection algorithm is employed to adapt selection

based on past performance. The UCB algorithm computes the upper bound of the

confidence interval on mean reward for each operator. Selections are scored based

on fractional improvement of the solution. With each selection and iteration, the

value for each UCB changes, shifting the balance of UCB scores and leading to

a dynamic selection process. The UCB for operator o is computed in equation

6.1.6, where i is the solution iteration, n is the number of times the operator has

been selected, c is the solution cost, and t is the exploration temperature. At each

iteration, improvement for the current operator o is calculated as: ∆o = ci−1 − ci

ci−1 ,

which is used to update the average performance of that operator.

UCB =

∑
∆o

n
+ t ∗

√
log (i)

n
[6.1.6]

The Iterative OR Tools optimizer resulting from this selection algorithm fur-

ther reduces solution cost after the first run of the OR Tools model. Figure 11.10

in the Appendix shows an example of a scenarios where this iterative optimizer

worked very well to reduce cost. Figures 11.11 and 11.12 depict solutions where all

57

CHAPTER 6. OPTIMIZATION

orders were either required to travel by FTL only, or where all orders must route

through a pool point. These two extremes produce similar objective value in the

solution. However, Figure 11.13 shows running the single run OR Tools optimizer

produced a solution with roughly 10% reduction in cost. Then, Figure 11.14 shows

that the Adaptive LNS is able to find an additional 5% savings making for a total

15% savings on the solution. This is the best case scenario that, which through

robust design may be repeated in real world situations.

6.2 Gurobi

Although Gurobi works with a similar model formulation to OR Tools, its prob-

lem solving approach is fundamentally different, focusing on computing models

into sub-problems within the scenario over exploration via route operations. Al-

though Gurobi natively implements first solution heuristics, they are slower for

this problem and less robust than Parallel Cheapest Insertion used by OR Tools.

Gurobi’s overall approach tries to solve the model, focusing on breaking the model

into pieces and determining components of the solution with certainty, rather than

trying to navigate the solution space through route operations.

6.2.1 Presolved Scenarios

To speed up optimization and get better incumbent solution starting points, solu-

tions are generated in OR Tools with a single run of the routing optimizer. Using

a Mixed Integer Programming (MIP) start produced from a faster model helps

Gurobi avoid exploring unpromising branches. Each solution is then transformed

into a boolean tensor that represents a MIP start for Gurobi, using a module devel-

oped to equate solutions between the two models. The key component is a formula

to compute which pool pickup nodes need to be visited by the pool vehicles, as

in the last chapter we saw that the Gurobi model strictly assigns pool nodes to

specific orders. Calculating the corresponding pool point pickup or dropoff node

for a specific order follows equation 6.2.1, where n is the total orders, o is the order

number, p is the total pool points, and pi is the index for the pool point visited.

ind = (2n) + (2po) + (2pi) + 1 [6.2.1]

58

6.2. GUROBI

Equating the nodes in the two models yields a set of routes that also satisfy

the constraints in Gurobi. They simply need to be equated to a [V,N,N] boolean

tensor, where each arc represents the connection between two nodes for a specific

vehicle. This will become the incumbent solution within the model, which is the

current best feasible solution. Feeding the tensor solution as a start into Gurobi

skips the initial solution finding phase, moving directly into a Branch-and-Bound

algorithm.

6.2.2 Branch-and-Bound

The Gurobi solver looks to break the problem down into smaller components by

fixing the value of some arcs in the model. This is called Branching, and it sim-

plifies the problem, allowing the solver to look for the best solution within more

manageable search spaces [36]. Branches that do not have promising solutions

are pruned, further simplifying the model. After the branches are formed, Gurobi

begins Bounding, where it relaxes the integer format of the solution to find the

lower bound on the solution to the sub-problem. By allowing variables to take

fractional values, Gurobi can compute an optimal solution for the relaxed, con-

tinuous version of the problem. The gap between the lower bound through this

relaxation and the incumbent solution found constitutes the Optimality Gap. This

gap is the percentage difference between the current best solution and the lower

bound determined by an integer relaxation of the problem [24]. If a node’s lower

bound is higher than the current upper bound on the problem, it is pruned en-

tirely to prevent wasted exploration. During the solving of the problem relaxation,

additional constraints called Cutting Planes help remove fractional values from so-

lutions without removing feasible integer solutions, which accelerates convergence.

Figure 6.1 shows a diagram of a branch and bound algorithm’s progression. It can

be seen to identify unfeasible branches of the solution space, prune them, and

move to search other feasible branches. This algorithm is a rigorous solution ap-

proach, in that it tries to search every branch of the tree that cannot be pruned.

This ensures that no feasible solution is overlooked, but may also lead to daunting

computational demands in large or complex instances.

59

CHAPTER 6. OPTIMIZATION

Figure 6.1: A diagram of the Branch and Bound algorithm [27]

6.2.3 MIP Heuristics

As Gurobi searches to improve solutions, it uses two MIP specific strategies to

search the solution space. The first is a Feasibility Pump, where fractional values

in the problem relaxation are rounded to make a feasible solution. It works itera-

tively, rounding values and then modifying the solution to satisfy any constraints

that were violated due to rounding [8]. The feasibility pump takes advantage

of the problem relaxation to find integer values which clearly improve the solu-

tion. The other heuristic Gurobi employs is a Relaxation Induced Neighborhood

Search, which works by comparing the incumbent solution to the linear relaxation

solution. It fixes values on the arcs where the two solutions are almost identical,

establishing where the incumbent solution and the relaxation solution suggest ap-

proximately the same value [4]. In this problem, those values always correspond

to either 1 or 0. Gurobi continues to apply heuristics, improving the incumbent

solution until either the time limit is reached or the optimality gap drops below a

threshold chosen based on the model.

60

6.3. SELF-IMPOSED LIMITATIONS

6.3 Self-Imposed Limitations

The optimization algorithms in development need to work efficiently so Shipwell

can optimize the orders of their clients without significantly impacting the com-

pany’s cloud systems. Limitations on both time and and compute power are

imposed to put emphasis on scalable solutions. Customers expect to get an op-

timized route set shortly after inputting their order data, so an upper limit of

15 minutes is imposed on solve time. To simulate a low-cost compute cluster, a

memory limit of 32GB and 3.0GhZ processor with 24 cores are used to compute

solutions. These limitations ensure that a solution developed in a research setting

is not outside the practical capabilities of the Transport Management System.

61

Chapter 7

Experimental Setup

To determine the best routing optimization conventions for solving the PDOP

in Shipwell’s use case, two series of testing serve to refine the parameters and

implementation for the models in this study. Section 7.1 catalogs the first main

round of optimization testing, in which solver parameters for repairing solutions

in the iterative OR Tools optimizer are tested. Then, section 7.2 details the final,

comprehensive round of testing for all the optimization tools and benchmarks

developed in this study across a variety of scenarios. The results of this testing

will dictate the final implementation decisions for the Pool Distribution Optimizer.

7.1 OR Tools Iterative Run Parameter Testing

The iterative optimizer has the capacity to use multiple first solution strategies

and search metaheuristics when repairing partial solutions. Each optimizer pa-

rameter is tested to determine the potential for use in the repair process. Further-

more, the three destroy operators are tested separately to compare performance.

Each destroy operator must improve solutions reliably to be included in the final

model. The testing protocol for three levels of optimizer parameters: First Solu-

tion Strategy, Search Metaheuristic, and Destroy Operator freezes two parameters

of the model, while comparing all viable types within the chosen category. For

example, when testing destroy operators, the first solution strategy is set to par-

allel cheapest insertion, and search metaheuristic is set to automatic, which are

the most robust settings respectively.

62

7.1. OR TOOLS ITERATIVE RUN PARAMETER TESTING

Testing involves optimizing ten different synthetically generated scenarios of fifty

orders, two pool points, and 5 distribution centers. Each scenario is optimized

ten separate times to examine variance within the solver with the selected pa-

rameters. In preliminary testing, three first solution strategies consistently re-

constructed a feasible solution when repairing partial solutions. Any strategies

that failed to consistently produce results were eliminated as the optimizer needs

robust performance. Parallel Cheapest Insertion, Local Cheapest Insertion, and

Global Cheapest Arc are compared in a variety of scenarios to determine which

is best. Table 7.1 shows the schematic for these tests. Each iterative run of the

solver starts with an initial solution, produced using the same robust settings as

the Single OR Tools Optimizer Run benchmark; parallel cheapest insertion and

automatic search metaheuristic. Initial solutions are generated with 90 seconds

of solve time. The optimizer then iterates twenty times, destroying and repairing

parts of the solution. Each solution repair is given 30 seconds to run, making the

full computation time roughly 12 minutes. The results of these tests inform the

settings for testing the Upper Confidence Bound Selection Large Neigh-

borhood Search (UCB LNS) Algorithm in the following section. However,

detailed results from these tests are included in the results section of the report.

Table 7.1: Configurations of First Solution Strategy, Search Metaheuristic, and

Destroy Operator in Each Test Group

Parameter Tested First Solution Strategy Search Metaheuristic Destroy Operator

Parallel Cheapest Insertion Parallel Cheapest Insertion Automatic Random Removal

Local Cheapest Insertion Local Cheapest Insertion Automatic Random Removal

Global Cheapest Arc Global Cheapest Arc Automatic Random Removal

Greedy Descent Parallel Cheapest Insertion Greedy Descent Random Removal

Guided Local Search Parallel Cheapest Insertion Guided Local Search Random Removal

Tabu Search Parallel Cheapest Insertion Tabu Search Random Removal

Simulated Annealing Parallel Cheapest Insertion Simulated Annealing Random Removal

Automatic Parallel Cheapest Insertion Automatic Random Removal

Random Removal Parallel Cheapest Insertion Automatic Random Removal

Worst Trip Removal Parallel Cheapest Insertion Automatic Worst Trip Removal

Worst FTL Trip Removal Parallel Cheapest Insertion Automatic Worst FTL Trip Removal

63

CHAPTER 7. EXPERIMENTAL SETUP

7.2 Upper Confidence Bound Selection Large Neigh-

borhood Search Algorithm Testing

The second main round of optimization testing compares the Upper Confidence

Bound selection Large Neighborhood Search algorithm against other benchmark

optimization tools using Whole Foods Market and synthetic data for scenarios of

various sizes. The main goal is to show the UCB LNS algorithm is an effective

optimization method. However, revealing patters in the ability of different models

across the variety of scenarios could emerge from the results, driving further insight

into better implementation of the final optimization tool.

7.2.1 Benchmarks

The UCB LNS algorithm has three benchmark algorithms to compete with across

a variety of scenarios. The FTL Only and OR Tools Single Run algorithms will

give an idea of the improvement from modeling with pool points, and from using

an iterative version of the optimization model. The third benchmark, Gurobi,

only works in small scenarios but is highly effective. It acts as a solution cost

lower bound for small scenarios, indicating approximately the lowest cost solution

possible in them for comparison and therefore the remaining potential efficiency.

FTL Only Solutions

Shipwell uses a routing optimizer for clients who do not operate pool points, it

runs using OR Tools. This PDP is much easier to solve and OR Tools is well

suited to the task without additional help. A similar optimizer to the version used

by Shipwell is relatively simple to implement, with solutions generated by this op-

timizer making an excellent benchmark for the solution costs that come from pool

solutions. The difference between the two represents the savings made by using

pool points. Furthermore, any pool solution with a higher cost than the FTL only

solution produced by the benchmark is a good indicator that the optimizer is not

working properly or the scenario is not suited for leveraging pool points at all.

To set up the FTL Only Solution, information for the pickup and delivery nodes

are passed to the optimizer, but all pool point related nodes and data are left out.

64

7.2. UPPER CONFIDENCE BOUND SELECTION LARGE
NEIGHBORHOOD SEARCH ALGORITHM TESTING

This way, the same scenarios can be used with the optimizer, by slicing the needed

sections from appropriate lists and matrices of scenario data. This model is fast,

and very robust, so it is used as a benchmark for every scenario type.

OR Tools Single Run Solutions

A step up in complexity from the FTL Only solution is an OR Tools Single Run

solution, these solutions are closer to the results produced by the more advanced

Gurobi and Iterative Run OR Tools solutions. This benchmark serves as a means

to test the two advanced optimization methods’ ability to improve on a feasible

solution with pooling. Although less robust than the FTL only optimizer, this

benchmark is also used for every test scenario type.

Gurobi Optimized Solutions

The solutions from Gurobi, even with pre-solved route inputs, are much slower to

produce than OR Tools. This factor alone makes it a poor candidate for Shipwell’s

Pool Distribution Optimizer, which needs to produce solutions within a few min-

utes. Furthermore, the Gurobi solver does not scale well compared to OR Tools,

so testing with every scenario type is not feasible. For example, a scenario with

just 30 orders and one pool point crashes a compute cluster with 32GB RAM,

running out of memory. Even smaller scenarios such as 20 orders and one pool

point take 30 minutes to optimize. These issues relocate the Gurobi optimizer to

use as a benchmark, rather than a final candidate.

The Gurobi model acts as an lower bound for solution cost in small scenarios,

because it searches more exhaustively than OR Tools. Gurobi solutions cannot

be verified as optimal because this is an NP-Hard problem, but scenarios small

enough to optimize with Gurobi help set a target for optimizer performance.

7.2.2 Testing Schematic

A variety of scenarios test the quality of the Iterative Run OR Tools Optimizer

with UCB LNS. Each scenario is solved three times and the scores are averaged.

Solutions are compared based on their average score for a scenario type, and

their percentage improvement over the three benchmark optimizers’ results. In

65

CHAPTER 7. EXPERIMENTAL SETUP

the synthetic data, each scenario parameter set is used to generate ten unique

optimization problems. In the real data case, 95.37% of the orders provided by

Whole Foods Market were optimized after being partitioned into scenarios.

Synthetic Scenarios

Synthetic data is critical to developing generality for optimization algorithms solv-

ing the PDOP, as the data from Whole Foods Market only covers a specific use

case. Synthetic data also serves to test the optimizer in small scenarios, where

a more thorough algorithm like Gurobi can operate and provide a lower bound

on solutions from other algorithms. Smaller scenarios in the range of 10-20 or-

ders are solvable using Gurobi, the best performing, but least scalable algorithm

used in the final testing phase. Due to strict stopping criterion and a thorough

solution approach, Gurobi either finds a very good solution or fails to improve its

incumbent solution at all, depending on computational resources relative to the

problem size. This means Gurobi is a great source for a rough cost lower bound,

when it can find a solution. Since the PDOP is deep in the NP-Hard category

of problems, having a rough lower bound is a valuable comparison tool to quan-

tify room for improvement within a scenario. All synthetic scenario sizes and the

solver parameters used with them are listed in table 7.2.

Table 7.2: Testing Schematic for O orders, P pool points, and D unique destina-

tions. Solver time reported in seconds.

(O, P, D)
Gurobi Pre-Solved OR Tools FTL Only OR Tools Single Run UCB LNS OR Tools

Tested Time (s) Tested Time (s) Tested Time (s) Tested Time (s)

(10, 1, 3) ✓ 1200 ✓ 90 ✓ 90 ✓ 360

(10, 2, 3) ✓ 2400 ✓ 90 ✓ 90 ✓ 360

(20, 1, 5) ✓ 1800 ✓ 90 ✓ 90 ✓ 360

(30, 2, 5) ✓ 90 ✓ 90 ✓ 360

(50, 2, 8) ✓ 150 ✓ 150 ✓ 520

(100, 1, 10) ✓ 150 ✓ 150 ✓ 780

(100, 2, 10) ✓ 150 ✓ 150 ✓ 780

(100, 3, 10) ✓ 150 ✓ 150 ✓ 780

Examples of these scenarios are seen in figure 7.1 and 7.2, where each cluster of

orders is roughly centered at a city and so are the destinations. Order clusters and

by extension, pool point service regions, can overlap; giving some orders multiple

pool point options.

66

7.2. UPPER CONFIDENCE BOUND SELECTION LARGE
NEIGHBORHOOD SEARCH ALGORITHM TESTING

Figure 7.1: Node Coordinates from synthetic scenario with 30 Orders, 2 Pool

Points, and 5 Destinations

Figure 7.2: Node Coordinates from synthetic scenario with 100 Orders, 3 Pool

Points, and 10 Destinations

Whole Foods Market Scenarios

Testing scenarios using Whole Foods Market data are designed to mimic the real

use case for the company. Only the largest category of scenario the optimizers

can reliably handle is used, where 100 to 150 orders are optimized simultaneously.

Table 7.3 provides the number of orders after clustering for each pool point or

pool point pair. The lesser of the optimizer’s capacity and the total number of

orders determines the actual number of orders used in a single scenario. On a

total of 7 out of 25 days, some orders were left out to reach the capacity limit of

67

CHAPTER 7. EXPERIMENTAL SETUP

150 orders. This was done for consistency in comparison, but in practice, those

scenarios over 150 orders would be split into two groups to fit into the optimizer.

In total, 95.37% of the orders for one week are used in the test schematic, so the

net cost savings will provide an idea of the cost savings per week Whole Foods

Market stands to gain from using the best pool point routing model and optimizer.

Table 7.3: Number of orders optimized for each Whole Foods Market Pool Point

and Date is the minimum between the Order Count and Capacity.

Pool Point/s: (Capacity) Feb. 15 Feb. 12 Feb. 9 Feb. 8 Feb. 7

Pool Point 4: (100) 61 82 66 63 31

Pool Point 5: (100) 82 76 79 88 54

Pool Point 2: (150) 158 166 105 145 69

Pool Point 6: (150) 150 196 156 172 124

Pool Points 1,3: (150) 144 175 139 156 50

Table 7.4: Testing Schematic for 100 and 150 Order Scenarios. Solver time is

reported in seconds.

Scenario OR Tools FTL Only OR Tools Single Run OR Tools Iterative Run

(100) 180 180 780

(150) 240 240 1440

Figure 7.3 shows the origins for a single day’s orders nearest to pool point 6.

A single day’s worth of orders near this pool point after clustering 150, which the

routing optimizer is able to compute in a single instance. The destinations are

located both across the country and within a day’s drive.

68

7.2. UPPER CONFIDENCE BOUND SELECTION LARGE
NEIGHBORHOOD SEARCH ALGORITHM TESTING

Figure 7.3: Order pickups clustered around a WFM Pool Point, along with their

destinations.

69

Chapter 8

Results and Discussion

The testing results for optimizer parameters, and optimization algorithms, are

covered in this chapter. In section 8.1, results from the Iterative OR Tools Opti-

mizer solver parameter testing are discussed, focusing on evidence to clearly show

one or multiple parameters are optimal for a general use case. Then, section 8.2

dives into the results from the final round of testing, where complete optimization

tools are compared directly, resulting in an unexpected discovery about the best

optimization implementation for Shipwell. This section also discusses important

patters seen in the testing solutions and insights on the PDOP that come from a

qualitative assessment of the results.

8.1 Optimizer Parameters

In testing the Iterative Run OR Tools optimization model, scenarios are recon-

structed using the same strategy, metaheuristic, destroy operator for each itera-

tion. This test gives insight into the long term performance of each parameter, to

better understand which configuration gives the model the best chance to find a

high quality solution. Testing the routing model in this way serves to eliminate

approaches that fail to explore the feasible solution space, with the goal of boiling

the configuration options down to the most useful parts.

70

8.1. OPTIMIZER PARAMETERS

8.1.1 First Solution Strategies

Three First Solution Strategies showed robust performance in partial solution

reconstruction. The results of testing Parallel Cheapest Insertion (PCI), Local

Cheapest Insertion (LCI), and Global Cheapest Arc (GCA) are stated in Table

8.1, showing Local Cheapest Insertion as the top performer. When examining the

confidence interval on overall cost, Figure 8.1 shows that at the 95% confidence

level, Local Cheapest Insertion significantly outperforms Parallel Cheapest Inser-

tion. However, when comparing percent improvement on the initial solution, Local

Cheapest Insertion significantly outperforms all other first solution strategies. The

evidence points to Local Cheapest Insertion as the best first solution strategy when

repairing partial solutions. Interestingly, Global Cheapest Arc scored significantly

lower on cost improvement then the others, despite having a lower average cost

than Parallel Cheapest Insertion. This suggests the initial solutions fed into the

Global Cheapest Arc test were generally higher cost solutions, despite using the

same scenarios and the initial solutions being generated with the same optimizer

settings in all test cases.

Table 8.1: Average Cost and Solution Improvement for Solution Strategies

Solution Strategy Average Cost Average Solution Improvement (%)

Parallel Cheapest Insertion 72522 7.96

Local Cheapest Insertion 65456 11.87

Global Cheapest Arc 67049 4.35

To get a sense for the effect the iterative reconstruction has on existing solu-

tions, figure [fig:kde˙solution] shows a kernel density estimate for the distribution

of improvements on the initial solution in each optimization run. Global Cheap-

est Insertion fails to improve the initial solution in 35% of instances, while Local

Cheapest Insertion appears to have a higher ceiling on solution improvement over

the other first solution strategies. Some spikes in the distributions are likely due

to solving each scenario tens time total, leading to a similar optimization path

occurring multiple times. With Local Cheapest Insertion the clear top performer,

testing for the UCB Algorithm version of the Iterative OR Tools Optimizer will

use this First Solution Strategy as the default when repairing partial solutions.

71

CHAPTER 8. RESULTS AND DISCUSSION

Figure 8.1: 95% Confidence Interval on

the Mean Cost for each First Solution

Strategy

Figure 8.2: 95% Confidence Interval on

the Mean Improvement on Initial Solu-

tion for each First Solution Strategy

8.1.2 Search Metaheuristics

As seen in Table 8.2, the results from testing Search Metaheuristics are less con-

clusive than the testing from first solution strategies. Considering the solution

strategy testing results indicate solutions have significant variance, even within

specific scenario parameters, these results suggest search metaheuristic during the

solution reconstruction process has little impact on the optimizer’s ultimate solu-

tion. Figure 8.4 shows that all five 95% confidence intervals on mean cost overlap.

Furthermore, figure 8.5 shows that four of the metaheuristics overlap in improve-

ment confidence interval, with Simulated Annealing performing significantly worse

than the other four.

Table 8.2: Average Cost and Solution Improvement for Metaheuristics

Metaheuristic Average Cost Average Solution Improvement (%)

Automatic 67683 5.90

Greedy Descent 67386 6.26

Guided Local Search 67851 5.17

Simulated Annealing 69904 2.51

Tabu Search 68264 6.60

Figure 8.6 displays the improvement distribution for each Metaheuristic, where

72

8.1. OPTIMIZER PARAMETERS

Figure 8.3: Estimated Distributions on Percent Improvement of Solutions for each

First Solution Strategy

Simulated Annealing failed to improve the initial solution for half of instances.

Automatic shows the highest ceiling, with one cost improvement even reaching

35%. Automatic is an interesting metaheuristic because it is free to move between

different the other search metaheuristics, which sounds like a generally better per-

forming approach. However, with only a few seconds to repair a solution within

each iteration for the optimizer, the search selection process might slow down con-

vergence in the little time available. Based on the results of this experiment, that

concern proved to be unnecessary. With little indication of one Search Metaheuris-

tic differing significantly in performance; the generalized nature of the Automatic

setting is theoretically appealing, while the higher ceiling on improvement in test-

ing adds a compelling argument for its use as the default setting when repairing

partial solutions during the UCB Algorithm version of the Iterative OR Tools

Optimizer tests.

73

CHAPTER 8. RESULTS AND DISCUSSION

Figure 8.4: 95% Confidence Interval on

the Mean Cost for each Search Meta-

heuristic

Figure 8.5: 95% Confidence Interval on

the Mean Improvement on Initial Solu-

tion for each Search Metaheuristic

8.1.3 Destroy Operators

The Destroy Operator experiment results in table 8.3 show that all three are some-

what successful in improving incumbent solutions. Two of these operators were

developed specifically for the PDOP, figure 8.7 shows both score within the 95%

confidence interval for average solution cost as Random Removal, vindicating their

selection as destroy operators. The average cost improvements in Figure 8.8 does

show significantly better cost improvement using the Random Removal operator.

However, this is not the full story, as the Worst Trip Removal and Worst FTL

Trip Removal operators showed rapid improvement during the first few iterations

of the optimizer. In Figure 8.9, the kernel density estimate for each operator’s

solution cost improvement over the tests shows the max value for improvement

for Worst Trip Removal and Worst FTL Trip Removal is over 40%. The highest

improvement from Random Removal was under 30%, so each operator demon-

strated strength in either average or best performance.

Table 8.3: Average Cost and Solution Improvement for Destroy Operators

Destroy Operator Average Cost Average Solution Improvement (%)

Random Removal 66102 9.94

Worst FTL Trip Removal 68883 5.97

Worst Trip Removal 67600 7.61

74

8.1. OPTIMIZER PARAMETERS

Figure 8.6: Estimated Distributions on Percent Improvement of Solutions for each

Metaheuristic

One pattern seen with the two destroy operators that analyze trip efficiency

is an optimization loop, where the routing model fails to obtain a better solution,

causing the deterministic behavior of the destroy operator to repeat itself. This

leads to the same partial solution being fed into the routing model at each iteration.

This loop weakens the performance of the iterative run optimization tool overall,

making it necessary to introduce randomness into the solver’s behavior. This is

the motivation for balancing the destroy operators in the final version of the solver,

using a selection algorithm that will favor other operators if it gets trapped in a

loop with the same operator.

75

CHAPTER 8. RESULTS AND DISCUSSION

Figure 8.7: 95% Confidence Interval on

the Mean Cost for each Destroy Oper-

ator

Figure 8.8: 95% Confidence Interval on

the Mean Improvement on Initial Solu-

tion for each Destroy Operator

Figure 8.9: Estimated Distributions on Percent Improvement of Solutions for each

Destroy Operator

76

8.2. POOL DISTRIBUTION OPTIMIZATION PERFORMANCE

8.2 Pool Distribution Optimization Performance

This section examines the results of a full array of testing scenarios in both syn-

thetic and real data, comparing the UCB LNS Algorithm to benchmarks FTL

Only, Single Run OR Tools, and Gurobi. The patterns in performance over dif-

ferent scenario types are discussed, and important takeaways from the testing are

detailed.

8.2.1 Final Testing Results

In analysis of the UCB LNS algorithm testing results, significant variance in per-

formance between algorithms, depending on the scenario parameters, quickly be-

comes clear. Although frequently achieving similar cost solutions, the FTL Only

benchmark algorithm and the UCB LNS algorithm each outperform the other in

some instances. It is important to consider that the FTL Only algorithm works

very quickly, solving a simpler model but without the ability to use Pool Points.

Despite this, the FTL Only algorithm can beat the UCB LNS algorithm in scenar-

ios where the use of Pool Points is not advantageous. In the use case for Shipwell,

the difference in computational resources between running the UCB LNS algo-

rithm alone or running it while also running the FTL Only algorithm is negligible.

Therefore, leveraging both optimization approaches concurrently, and selecting

the best solution yields the best results, while hardly increasing computational

demands. Results from testing in this section are compared against a Bagged

(FTL and UCB LNS) algorithm solution, where the better of results from FTL

Only and UCB LNS is used for each scenario instance.

Synthetic Data

The results from testing synthetic data reveal a number of patterns related to the

circumstances where each algorithm performs best. First looking to small scenar-

ios, Figure 8.10 indicates Gurobi outperforms the other algorithms in scenarios

with one pool point only. Although Gurobi was fed solutions from the Single Run

OR Tools algorithm as an incumbent solution, its performance is actually worse

in the model using two pool points. This is an unexpected outcome, showing that

the Gurobi model becomes too complex when multiple pool points are involved.

77

CHAPTER 8. RESULTS AND DISCUSSION

Thinking back to the modeling section for optimization scenarios in Gurobi, dou-

bling the number of pool points doubles the number of pool nodes in the model.

Although this is also true in OR Tools model, OR Tools allows for disjunctions

which tell the optimizer those points can be bypassed when finding a solution,

whereas Gurobi’s Barrier solution search algorithm does not support this kind of

disjunction, often resulting in an impracticable attempt to link the entire graph

structure.

Figure 8.10: Performance of the Optimizers on Synthetic Data Parameters Gurobi

can compute

Viewing the single pool point scenarios, Gurobi solutions act as a lower bound

on solution cost, as we cannot know the true optimal solution to an NP-Hard

problem. Table 8.4 shows how much Gurobi reduced solution costs compared to

the FTL Only benchmark and the UCB LNS Algorithm. In the smallest instance

of (10,1,5), Gurobi is able to improve on the UCB LNS Algorithm by nearly 6%,

but as the problem scales up, Gurobi loses the ability to find much better solutions.

In general, as scenarios scale up and stress the computational limits of the OR

Tools model, the gap between the true global optimum and the local optima found

by the optimizers should increase. This is represented in the relationship between

FTL Only performance, which is leagues ahead in speed and efficiency, and the

performance of the UCB LNS Algorithm in larger scenarios.

When comparing solutions for large scenarios of 50 or more orders, the UCB

LNS Algorithm is affected negatively by scenarios with multiple pool points. Fig-

78

8.2. POOL DISTRIBUTION OPTIMIZATION PERFORMANCE

Table 8.4: Comparative Reduction in Average Solution Cost with Gurobi

Instance FTL Only (%) UCB LNS (%)

(10,1,3) 8.06 5.79

(10,2,3) -13.90 -19.50

(20,1,5) 2.14 0.74

ure 8.11 compares the average solution cost between the Algorithms over each

scenario parameter set, showing that FTL Only averaged a lower cost than UCB

LNS in every large scenario type that includes 2 or more pool points. However,

even within a scenario parameter set where either FTL Only or UCB LNS generally

performs better, the other optimization algorithm can potentially find the lower

cost solution. This means the Bagged solution, taking the better of these two in

each instance, always beats the lowest average cost against the FTL Only, Single

Run OR Tools (referred to as Standard), and UCB LNS Algorithms individually.

Figure 8.11: Performance of the Optimizers on Synthetic Data for Different Sce-

nario Parameters

Any improvement over an FTL Only solution represents real savings a Shipwell

client would gain by using one of the PDOP algorithms. Therefore, the true

value of these algorithms is the net improvement over using just the FTL Only

algorithm. Figure 8.12 shows the improvement percentage by comparing the best

optimization setup, Bagged, with the FTL Only solution. Because the Single Run

OR Tools optimizer forms the initial solution for the UCB LNS Algorithm, it

79

CHAPTER 8. RESULTS AND DISCUSSION

is not included when choosing the Bagged algorithm solution. The percentage

improvement in smaller scenarios is much greater, although the average savings

in scenarios with 100 orders still results in over 1000$ per scenario, which would

amount to thousands in savings daily for a company with a large logistics network.

At the 95% confidence level, scenarios with 100 orders and 1 pool point performed

significantly better with Bagged than an FTL Only solution. This scenario type

is most similar to the scenarios created from Whole Foods Market data, which

bodes well for the Bagged optimizer earning the company significant savings. A

smaller company, with fewer orders to optimize in a single day could also benefit

from the large improvements seen in small scenarios.

Figure 8.12: Cost Improvement of the Bagged Optimizer Solutions over FTL

Optimization Costs alone for Synthetic Data, with a 95% Confidence Interval

Whole Foods Market Data

As in the Synthetic Data, results from Whole Foods Market data testing showed

variance in algorithm performance between different pool points. Notably, the

better algorithm for a scenario varied between days, even at the same pool point.

Figure 8.13 shows the average cost for each pool point and pool point pair tested.

FTL Only is seen to perform better than UCB LNS on average at pool points 2

and 5, while approximately tying at the combination of pool points 1 and 3. UCB

LNS finds lower average solution cost at pool points 4 and 6. Though roughly

tying on average cost in scenarios with pool points 1 and 3, the Bagged solution

80

8.2. POOL DISTRIBUTION OPTIMIZATION PERFORMANCE

beats FTL Only and UCB LNS, so both perform best on at least one of the five

days. In fact, none of the pool points had an individual algorithm as the best

performer on all five days tested. Figure 8.14 shows a comparison between daily

solutions for pool point 6, where UCB LNS achieved its highest improvement over

the FTL Only algorithm. The daily results for the remaining pool points are

included in the Additional Figures section.

Figure 8.13: Performance of the Optimizers on Data from Whole Foods Market

Pool Points

Figure 8.14: Performance of the Optimizers for Pool Point 6

Overall cost improvement ranged greatly between pool points, with Table 8.5

showing a range from 0.26% to 5.65% on average improvement over the FTL Only

solution. Examining these improvements more closely, Figure 8.15 shows the mean

81

CHAPTER 8. RESULTS AND DISCUSSION

improvement with a 95% confidence interval. The intervals confirm the Bagged

algorithm significantly improved solution costs for pool points 4, 5, and 6. The net

improvement in cost over the five days optimized is 88,885$, which accounts for

95.37% of orders during the 5 day period, one business week. Since each scenario is

optimized in three separate instances, this is divided by three, leading to a savings

of 29,628$ per week, or 1,540,673$ annually. In percentages, the net improvement

over FTL Only is 1.849%. This percentage can be applied to the extrapolated

annual expense for Whole Foods Market’s freight shipping logistics needs, taking

the expected net cost from 84,859,614$ down to 83,318,941$.

Table 8.5: Percent Cost Over FTL Only Improvements for Bagged Algorithm

Scenario Parameters Cost Improvement Over FTL Only (%)

(100, P4) 5.65

(100, P5) 2.20

(150, P2) 1.42

(150, P6) 4.23

(150, P13) 0.29

Figure 8.15: Cost Improvement of the Bagged Optimizer Solutions over FTL

Optimization Costs alone for Whole Foods Market Data

8.2.2 Solution Patterns

Through testing real and synthetic data scenarios, correlations in both the gen-

eral behavior of routes and the quality of solutions are visible. These patterns are

82

8.2. POOL DISTRIBUTION OPTIMIZATION PERFORMANCE

related to qualitative observations made through inspection of countless plotted

solutions and data-frames containing information about each order’s journey in

the solution.

Subjective analysis shows a clear pattern from the solutions in the relationship

between distance of destination and pool point use. Some scenarios, having des-

tinations that are ten times greater than the typical distance between the orders

and their local pool point, benefit from routing every order through a pool point.

Figure 8.16 shows an example of a solution where each order routes through a

pool point due to the destinations being thousands of miles away. Conversely, in

a scenario where the destinations are very near the pool point, significantly more

orders travel by FTL only. Figure 8.17 shows a solution to a scenario where the

destinations are interspersed with pickup coordinates.

Figure 8.16: A Solution with every Order Routed through the Pool Point

Figure 8.17: A Solution with most orders traveling by FTL only

Results for the UCB LNS Algorithm from optimization scenarios including 2

or 3 pool points, and over 30 orders, underperformed compared to the FTL Only

83

CHAPTER 8. RESULTS AND DISCUSSION

model. Further corroborated by Gurobi’s inability to find acceptable solutions

in models with multiple pool points, the added complexity of managing multiple

intermediary points can negate the potential for maximizing efficiency. In other

words, although placing two pool points in a model increases the solution space,

potentially creating a new global optimum, it increases the algorithm’s difficulty

to navigate that space and find a good solution. Considering that in Whole Foods

Market’s data, the scenarios with a combination of pool points 1 and 3 saw the

least improvement over FTL Only, their expected annual savings is likely even

higher if pool point 1 and 3 are optimized separately.

8.2.3 Research Insights

Through answering the main research question and sub-questions of this study,

unanticipated insights from test results will serve to improve the optimization algo-

rithm’s integration with Shipwell’s Transport Management System and potentially

further improve solution quality. There were three main unexpected takeaways.

First, results from both real and synthetic data tests on a variety of scenarios

reveal that ultimately; a Bagged algorithm using FTL Only and UCB LNS mod-

els, aggregating the most complex and fastest algorithms respectively, is the best

way to obtain a solution that beats any one algorithm in all scenario instances.

Looking at the use case at Shipwell, any approach that ignores algorithms that

may find the best solution is leaving savings untouched. Although the UCB LNS

algorithm is the best overall performer, the FTL Only algorithm requires less than

10% of the time and compute power, so Bagging the algorithms is certainly worth

the extra route cost savings.

Second, the unified optimization model, inside OR Tools, exhibits bias toward

routing orders through a pool point. This is shown by the FTL Only algorithm

results outperforming the UCB LNS algorithm in some instances, despite that

the UCB LNS algorithm can feasibly produced the same solutions as the FTL

Only algorithm. Failure to find superior solutions the FTL Only algorithm does

find shows the UCB LNS algorithm’s tendency to favor routing through a pool

point. Nonetheless, the behavior is not surprising, due to the unified model’s cost

simplification on routes running from pool points to distribution centers. Vehicles

84

8.2. POOL DISTRIBUTION OPTIMIZATION PERFORMANCE

in the OR Tools model visiting a pool point become Ghost Vehicles, which can

visit multiple distribution centers for the cost of visiting just one. This modeling

decision allows OR Tools to select the lowest distance to a distribution center out

of those a truck’s contents are bound for, to represent the pool vehicle’s cost. That

prediction will always sit at or below the true cost if the optimizer is making in-

sertion decisions optimally. Looking forward, the preference for pool routes could

be mitigated by testing different discounts to pool routes in the OR Tools model,

while maintaining the same discount when calculating the solution cost during

post-processing allocation of pool vehicles. For example, increasing the cost of

pool routes by 10% inside the model could counter the bias towards visiting pool

points, leading to better solution costs without actually changing the method for

calculating the solution’s true cost.

Third, optimizing multiple pool points at once is not worthwhile in large sce-

narios where the PDOP becomes computationally challenging. Figure 11.15 in

the Appendix shows an example of a scenario where the complexity of multiple

pool point caused the UCB LNS algorithm to find a suboptimal solution com-

pared to FTL Only. It is generally apt to split multiple pool points into separate

optimization scenarios, unless the pool points are near one another and have 30

or fewer orders to route between them. This criterion is not met by the data from

Whole Foods Market, so until a Shipwell client has a logistics use case that fits

this description, pool points should always be optimized separately.

85

Chapter 9

Conclusion and Future

Research

This study’s underlying purpose is to develop a tool that meets Shipwell’s need for

solving the Pool Distribution Optimization Problem at scale. Research questions

and sub-questions split this task into components, each designed to yield insight

for developing the final algorithm to use in production. Section 9.1 of this chapter

covers important conclusions from the research done, which are also recommenda-

tions for how Shipwell should set up their optimization tool. Then in section 9.2,

concerns and limitations of the current model, with regards to implementation in

the Transport Management System are discussed along with future avenues for

research that build on the results of this study.

9.1 Conclusion

This study set out to answer the research question: What is an effective and

scalable approach for an optimization algorithm minimizing cost in the Pool Dis-

tribution Optimization Problem, which meets the capacity needs of major United

States suppliers and distributors? The answer is best encapsulated in a set of

research conclusions, and recommendations for Shipwell both in optimizer imple-

mentation and future research avenues. Six main research conclusions as described

next answer the research question and sub-questions of this study.

86

9.1. CONCLUSION

First, making incremental improvements to routing solutions requires accurate

driving distance estimates, as improvements in cost would be otherwise overshad-

owed by uncertainty in the actual distance between coordinates in the routing

model. The best way to achieve this for very little computation or financial cost is

by using an augmented route matrix based on major cities, where pre-calculated

distances between key locations are added to the haversine distance between the

actual model coordinates and the nearest major city coordinates. Major cities

better reflect the likely coordinates for a pickup or dropoff than evenly dispersed

geographic coordinates.

Next, out of the off-the-shelf professional routing optimization tools, Google’s

OR Tools is the most robust and therefore practical for solving the PDOP. De-

spite Gurobi performing very well in small scenarios, the difficulty of this highly

constrained optimization problem is clear in Gurobi’s inability to scale to near

the practical needs of Shipwell. OR Tools uses algorithms that navigate through

the solution space, whereas Gurobi is stymied decomposing the initial model into

countless sub-problems. However, even OR Tools struggles greatly when multiple

pool points are introduced to the model because the total nodes in the model

then increases significantly, so it is better to separate pool points into their own

separate models with nearby orders only.

Third, finding an initial feasible solution to the PDOP is challenging in large

scenarios, and the best approach is to modify the problem so that the most flex-

ible component, the FTL Vehicle, is optimized separately from the Pool Vehicle

component. This is achieved using an approximation for the cost of pool routes,

based on the contents of trucks arriving at a pool point, then finding the true

cost of the pool routes during a post-processing step after OR Tools outputs a

solution. This prevents the need for managing a set of Pool Vehicles inside the

model, which would dramatically increase the model’s constraints in an already

highly constrained problem. FTL Vehicle behavior affects the demands of the

Pool Vehicles, but not vice versa.

Fourth, Automatic is the best choice for a Search Metaheuristic when using

OR Tools, although the difference between the viable choices is small. Figure

8.6 shows that using the Automatic Search Metaheuristic found the highest im-

87

CHAPTER 9. CONCLUSION AND FUTURE RESEARCH

provement in any scenario, at 35%, showing the possible advantage from the only

metaheuristic that can change between the other metaheuristics. Unlike Search

Metaheuristic, the optimal First Solution strategy differs when finding initial so-

lutions or repairing partial solutions. Parallel Cheapest Insertion is by default

the optimal strategy for initial solutions because none of the other strategies can

consistently find a solution to large scenarios over 30 orders. However, during the

partial solution repair process, the Local Cheapest Insertion strategy is the better

parameter. Figure 8.2 shows significantly more improvement on initial solutions

compared to the Parallel Cheapest Insertion or Global Cheapest Arc, this param-

eter selection has an impact.

Fifth, to facilitate partial solution reconstruction, a mechanism for Large

Neighborhood Search, similar to in the research done by Wolfinger [42] on highly

constrained models with trans-shipments, is necessary to escape local optima. The

operators should introduce randomness while also focusing on the pool point as-

pect of the model. This is best achieved by using multiple operators, selected at

each iteration through dynamic scores based on past performance. The operators

respectively introduce randomness, analyze inefficient routes, and focus on vehi-

cles either visiting or skipping a pool point.

Finally, a Bagged version of the optimization algorithm, which includes the

UCB LNS and FTL Only algorithms, ensures the best cost improvement possible

regardless of the scenario, with minimal additional compute requirements. The

FTL Only algorithm acts as a check against poor UCB LNS solutions, and to

efficiently handle scenarios where pool points turn out to be unsuitable.

9.2 Limitations and Future Research

This study is conducted with the mindset of creating a tool that Shipwell can

build into its TMS without needing to change the design in a major way. How-

ever, one component present in TMS not feasible to test, was operating hours data

for each location in the model. Handling the additional constraints from specific

operating hours per location will certainly affect solutions, so it is recommended

to conduct further tests, especially comparing the results from scenarios tested in

88

9.2. LIMITATIONS AND FUTURE RESEARCH

this study, to determine if the solutions change dramatically, which could offset

the balance between each algorithm in terms of optimality. Another potential

limitation not tested was the splitting of orders around a single pool point. For

example, if a pool point has over 200 orders to optimize for the day, it needs to be

split into two scenarios. The question of how to most efficiently split such a group

up could strongly impact final solution costs. Perhaps geographically clustering

the distribution of pickup coordinates into two groups, or using analysis to com-

pute likeness between orders, would make a better segmenting approach. This is a

question future optimization experts at Shipwell could research to further improve

the optimization tool.

Limitations aside, there are avenues for further optimizer improvement Ship-

well could research. Although this study tests many optimization parameters,

there is not enough time to test everything. Future researchers at Shipwell can

tune some of the parameters there are not closely tested in this study. First, there

is the order clustering threshold. Allowing the optimization model to cover more

orders at once, the most similar orders are grouped into clusters. The threshold

for these clusters was 10%, so once the cluster is over 10% of a single vehicle’s

capacity, that is taken as an order to use in the model. Modifying the cluster size

could have a big impact on solutions. Intuitively, the trade-off when selecting the

cluster threshold would be between capacity for orders and potential for a better

global optimum in the solution space. Another candidate parameter for further

testing is the pool route discount calculated in the optimizer. During this study,

the pool route costs used to approximate pool routes inside the optimizer and the

discount applied during post processing are the same value. However, creating a

disparity where inside the OR Tools optimizer the pool routes are estimated as

slightly higher than their actual cost, could counteract the UCB LNS Algorithm’s

bias toward using pool points. Whether this change improves the overall Bagged

Algorithm, or weakens UCB LNS component’s solution quality, is yet to be seen.

During future research, Shipwell’s data scientists could experiment with larger

compute clusters than those available for this study. This would clarify whether

extra power allows OR Tools to optimize a larger model, or if the complexity

reaches a point where the tool itself is the limit, rather than compute power.

They should also obtain data from more Shipwell customers, as each company has

89

CHAPTER 9. CONCLUSION AND FUTURE RESEARCH

unique elements from business rules to distribution patters in order, pool point,

and distribution center location. These factors cannot be replicated synthetically

without access to the real data initially, and may lead to emergent patterns in

optimizer behavior that inspire further model adjustments.

Finally, to further improve the UCB LNS model, a destroy operator that biases

optimization away from using pool points should be tested as part of the UCB

selection algorithm. The results from testing showed UCB LNS exhibited bias

towards routing through pool points. Furthermore, two of the destroy operators

used are agnostic to pool points, while the third “Worst FTL Trip Removal” biases

the model towards routing through pool points. A fourth operator that biases the

model away from pool point use could compensate for the apparent bias in the

model towards pool points.

90

Bibliography

[1] K. Alicke et al. “How COVID-19 is reshaping supply chains”. In: McKinsey

Company (Nov. 2021). url: https : / / www . mckinsey . com / business -

functions/operations/our-insights/how-covid-19-is-reshaping-

supply-chains.

[2] O. Bräysy et al. “Vehicle Routing Problem with Time Windows, Part I:

Route Construction and Local Search Algorithms”. In: Transportation Sci-

ence 39.1 (2005), pp. 104–118. doi: 10.1287/trsc.1030.0056.

[3] T. Cuvelier et al. “OR-Tools’ Vehicle Routing Solver: A Generic Constraint-

Programming Solver with Heuristic Search for Routing Problems”. In: 24e

Congrès Annuel de La Société Française de Recherche Opérationnelle et

d’aide à La Décision. Feb. 2023. url: https://hal.science/hal-04015496.

[4] E. Danna et al. “Exploring relaxation induced neighborhoods to improve

MIP solutions”. In: Mathematical Programming 102.1 (2005), pp. 71–90.

doi: 10.1007/s10107-004-0544-5.

[5] E. Demir et al. “Last mile logistics: Research trends and needs”. In: IMA

Journal of Management Mathematics 33.4 (2022), pp. 549–561. doi: 10.

1093/imaman/dpac006.

[6] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In:

Numerische Mathematik 1 (1959), pp. 269–271. doi: 10.1007/BF01386390.

[7] FHWA.National Highway System—Planning—FHWA. https://www.fhwa.

dot.gov/planning/national_highway_system/.

[8] M. Fischetti et al. “The Feasibility Pump”. In: Mathematical Programming

104.1 (2005), pp. 91–104. doi: 10.1007/s10107-004-0570-3.

[9] D. Ghosh et al. “Tolerance-based greedy algorithms for the traveling sales-

man problem”. In: (Nov. 2008). doi: 10.1142/9789812813220_0005.

91

https://www.mckinsey.com/business-functions/operations/our-insights/how-covid-19-is-reshaping-supply-chains
https://www.mckinsey.com/business-functions/operations/our-insights/how-covid-19-is-reshaping-supply-chains
https://www.mckinsey.com/business-functions/operations/our-insights/how-covid-19-is-reshaping-supply-chains
https://doi.org/10.1287/trsc.1030.0056
https://hal.science/hal-04015496
https://doi.org/10.1007/s10107-004-0544-5
https://doi.org/10.1093/imaman/dpac006
https://doi.org/10.1093/imaman/dpac006
https://doi.org/10.1007/BF01386390
https://www.fhwa.dot.gov/planning/national_highway_system/
https://www.fhwa.dot.gov/planning/national_highway_system/
https://doi.org/10.1007/s10107-004-0570-3
https://doi.org/10.1142/9789812813220_0005

BIBLIOGRAPHY

[10] F. Glover. “Future Paths for Integer Programming and Links to Artificial

Intelligence”. In: Computers & Operations Research 13.5 (1986), pp. 533–

549. doi: 10.1016/0305-0548(86)90048-1.

[11] F. Glover et al. Tabu Search. Boston, MA: Kluwer Academic Publishers,

1997. doi: 10.1007/978-1-4615-6089-0.

[12] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine

Learning. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,

1989. doi: 10.5555/534133.

[13] Gonzalez. “Amazon to buy Whole Foods for $13.7 billion in bid to become

major grocer”. In: The Seattle Times (June 2017). url: https://www.

seattletimes.com/business/amazon/amazoncom-buys-whole-foods-

for-137-billion/.

[14] Google.OR-Tools Constraint Programming Documentation. 2024. url: https:

//developers.google.com/optimization/routing/constraint_programming.

[15] P. Grangier et al. “An adaptive large neighborhood search for the two-

echelon multiple-trip vehicle routing problem with satellite synchronization”.

In: European Journal of Operational Research 254.1 (2016), pp. 80–91. doi:

10.1016/j.ejor.2016.03.040.

[16] Gurobi Optimizer Reference Manual. Gurobi Optimization, LLC, 2024. url:

https://www.gurobi.com/documentation/.

[17] P. E. Hart et al. “A Formal Basis for the Heuristic Determination of Min-

imum Cost Paths”. In: IEEE Transactions on Systems Science and Cyber-

netics 4.2 (1968), pp. 100–107. doi: 10.1109/TSSC.1968.300136.

[18] H. Hoos et al. Stochastic Local Search: Foundations and Applications. Mor-

gan Kaufmann, 2005. doi: 10.1016/B978-155860872-6/50000-4.

[19] J. Kennedy et al. “Particle swarm optimization”. In: Proceedings of ICNN’95

- International Conference on Neural Networks. Vol. 4. IEEE, 1995, pp. 1942–

1948. doi: 10.1109/ICNN.1995.488968.

[20] S. Kirkpatrick et al. “Optimization by Simulated Annealing”. In: Science

220.4598 (1983), pp. 671–680. doi: 10.1126/science.220.4598.671.

[21] S. Koziel et al. “Evolutionary Algorithms, Homomorphous Mappings, and

Constrained Parameter Optimization”. In: Evolutionary Computation 7.1

(1999), pp. 19–44. doi: 10.1162/evco.1999.7.1.19.

92

https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1007/978-1-4615-6089-0
https://doi.org/10.5555/534133
https://www.seattletimes.com/business/amazon/amazoncom-buys-whole-foods-for-137-billion/
https://www.seattletimes.com/business/amazon/amazoncom-buys-whole-foods-for-137-billion/
https://www.seattletimes.com/business/amazon/amazoncom-buys-whole-foods-for-137-billion/
https://developers.google.com/optimization/routing/constraint_programming
https://developers.google.com/optimization/routing/constraint_programming
https://doi.org/10.1016/j.ejor.2016.03.040
https://www.gurobi.com/documentation/
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1016/B978-155860872-6/50000-4
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1162/evco.1999.7.1.19

BIBLIOGRAPHY

[22] M. Lee et al. “Flexible Delivery Routing for Elastic Logistics: A Model

and an Algorithm”. In: IEEE Transactions on Intelligent Transportation

Systems 23.7 (2022), pp. 6864–6882. doi: 10.1109/TITS.2021.3063195.

url: https://doi.org/10.1109/TITS.2021.3063195.

[23] B. Li et al. “An Overview and Experimental Study of Learning-Based Op-

timization Algorithms for the Vehicle Routing Problem”. In: IEEE/CAA

Journal of Automatica Sinica 9.7 (2022). doi: 10.1109/JAS.2022.105677.

[24] J. Lysgaard et al. “A New Branch-and-Cut Algorithm for the Capacitated

Vehicle Routing Problem”. In: Mathematical Programming 100.2 (2004),

pp. 423–445. doi: 10.1007/s10107-003-0514-8.

[25] S. N. Medvedev. “Greedy and Adaptive Algorithms for Multi-Depot Vehicle

Routing with Object Alternation”. In: Automation and Remote Control 84.3

(2023), pp. 305–325. doi: 10.1134/S0005117923030086.

[26] S. Muñoz-Herrera et al. “Constrained Fitness Landscape Analysis of Ca-

pacitated Vehicle Routing Problems”. In: Entropy 24.1 (2024), p. 53. doi:

10.3390/e24010053.

[27] ResearchGate. An illustrative example of the branch-and-bound algorithm.

https://www.researchgate.net/figure/An-illustrative-example-

of-the-branch-and-bound-algorithm_fig1_286510562.

[28] Routing Options - OR-Tools. https://developers.google.com/optimization/

routing/routing_options.

[29] R. Ruiz-Torrubiano. “Modeling Local Search Metaheuristics Using Markov

Decision Processes”. In: Ar5iv (2024). doi: 10.1007/3-540-16761-7_92.

[30] F. F. S. Sánchez et al. “Comparative Study of Algorithms Metaheuristics

Based Applied to the Solution of the Capacitated Vehicle Routing Problem”.

In: Novel Trends in the Traveling Salesman Problem. IntechOpen, 2020. doi:

10.5772/intechopen.91972.

[31] T. Stefański et al. “Modeling and Optimization of Multi-echelon Transporta-

tion systems—A hybrid approach”. In: Proceedings of the Federated Confer-

ence on Computer Science and Information Systems. 2017, pp. 1057–1064.

doi: 10.15439/2017F80.

[32] R. Storn et al. “Differential Evolution – A Simple and Efficient Heuristic for

Global Optimization over Continuous Spaces”. In: Journal of Global Opti-

mization 11.4 (1997), pp. 341–359. doi: 10.1023/A:1008202821328.

93

https://doi.org/10.1109/TITS.2021.3063195
https://doi.org/10.1109/TITS.2021.3063195
https://doi.org/10.1109/JAS.2022.105677
https://doi.org/10.1007/s10107-003-0514-8
https://doi.org/10.1134/S0005117923030086
https://doi.org/10.3390/e24010053
https://www.researchgate.net/figure/An-illustrative-example-of-the-branch-and-bound-algorithm_fig1_286510562
https://www.researchgate.net/figure/An-illustrative-example-of-the-branch-and-bound-algorithm_fig1_286510562
https://developers.google.com/optimization/routing/routing_options
https://developers.google.com/optimization/routing/routing_options
https://doi.org/10.1007/3-540-16761-7_92
https://doi.org/10.5772/intechopen.91972
https://doi.org/10.15439/2017F80
https://doi.org/10.1023/A:1008202821328

BIBLIOGRAPHY

[33] K. Tarasov. “Amazon bought Whole Foods five years ago for $13.7 billion.

Here’s what’s changed at the high-end grocer”. In: CNBC (Aug. 2022). url:

https://www.cnbc.com/2022/08/25/how-whole-foods-has-changed-

in-the-five-years-since-amazon-took-over.html.

[34] R. Tibshirani et al. “Estimating the number of clusters in a data set via the

gap statistic”. In: Journal of the Royal Statistical Society: Series B (Statisti-

cal Methodology) 63.2 (2001), pp. 411–423. doi: 10.1111/1467-9868.00293.

[35] V. Tomar et al. “Metaheuristic Algorithms for Optimization: A Brief Re-

view”. In: Engineering Proceedings 59 (2024). doi: 10.3390/engproc2023059238.

[36] P. Toth et al. Vehicle Routing: Problems, Methods, and Applications. 2nd ed.

Society for Industrial and Applied Mathematics, 2014. doi: 10.1137/1.

9781611973594.

[37] United States Postal Service, Office of Inspector General. The Untold Story

of the ZIP Code. https://www.uspsoig.gov/reports/white-papers/

untold-story-zip-code. 2013.

[38] R. Vakili et al. “Multi-echelon green open-location-routing problem: A robust-

based stochastic optimization approach”. In: Scientia Iranica (2020). doi:

10.24200/sci.2020.52149.2564.

[39] P. Varman et al. “A parallel vertex insertion algorithm for minimum span-

ning trees”. In: Automata, Languages and Programming. Ed. by L. Kott.

Springer, 1986, pp. 424–433. doi: 10.1007/3-540-16761-7_92.

[40] C. Voudouris. “Guided Local Search—An illustrative example in function

optimisation”. In: BT Technology Journal 16.3 (1998), pp. 46–50. doi: 10.

1023/A:1009683510033.

[41] C. Voudouris et al. “Guided local search and its application to the travel-

ing salesman problem”. In: European Journal of Operational Research 113.2

(1999), pp. 469–499. doi: 10.1016/S0377-2217(98)00263-8.

[42] D. Wolfinger. “A Large Neighborhood Search for the Pickup and Delivery

Problem with Time Windows, Split Loads and Transshipments”. In: Com-

puters & Operations Research 126 (2021), p. 105110. doi: 10.1016/j.cor.

2020.105110.

94

https://www.cnbc.com/2022/08/25/how-whole-foods-has-changed-in-the-five-years-since-amazon-took-over.html
https://www.cnbc.com/2022/08/25/how-whole-foods-has-changed-in-the-five-years-since-amazon-took-over.html
https://doi.org/10.1111/1467-9868.00293
https://doi.org/10.3390/engproc2023059238
https://doi.org/10.1137/1.9781611973594
https://doi.org/10.1137/1.9781611973594
https://www.uspsoig.gov/reports/white-papers/untold-story-zip-code
https://www.uspsoig.gov/reports/white-papers/untold-story-zip-code
https://doi.org/10.24200/sci.2020.52149.2564
https://doi.org/10.1007/3-540-16761-7_92
https://doi.org/10.1023/A:1009683510033
https://doi.org/10.1023/A:1009683510033
https://doi.org/10.1016/S0377-2217(98)00263-8
https://doi.org/10.1016/j.cor.2020.105110
https://doi.org/10.1016/j.cor.2020.105110

BIBLIOGRAPHY

[43] H. Xu et al. “Differential Evolution Algorithm for the Optimization of the

Vehicle Routing Problem in Logistics”. In: 2012 Eighth International Con-

ference on Computational Intelligence and Security. 2012, pp. 48–51. doi:

10.1109/CIS.2012.19.

95

https://doi.org/10.1109/CIS.2012.19

Additional Figures

Whole Foods Market Results by Pool Point

The following graphics depict scores for the optimization algorithms at each pool

point or pair from the data provided by Whole Foods Market. Notably, from one

day to the next, the best performing algorithm changes even at the same pool

point.

Figure 10.1: Performance of the Optimizers for Pool Point 4 over 5 dates in

February 2024

96

BIBLIOGRAPHY

Figure 10.2: Performance of the Optimizers for Pool Point 5 over 5 dates in

February 2024

Figure 10.3: Performance of the Optimizers for Pool Point 2 over 5 dates in

February 2024

97

BIBLIOGRAPHY

Figure 10.4: Performance of the Optimizers for Pool Points 1 and 3 combined over

5 dates in February 2024

98

Appendix

Figure 11.5: Pickup Locations in Red and Dropoff Locations in Green for Synthetic

Data used in Distance Approximation Testing

Figure 11.6: Pickup Locations in Red and Dropoff Locations in Green for WFM

Data used in Distance Approximation Testing

99

BIBLIOGRAPHY

Figure 11.7: Similarity of Each Distance Matrix to Google Maps API Predictions

Figure 11.8: Similarity of Each Distance Matrix to Google Maps API Predictions

100

BIBLIOGRAPHY

Figure 11.9: 95% Confidence Interval on Similarity

Figure 11.10: Optimizer Scenario with 50 Orders and 2 Pool Points

Figure 11.11: Optimizer Solution using FTL Only Algorithm

101

BIBLIOGRAPHY

Figure 11.12: Optimizer Solution with All Routes Required to Travel through a

Pool Point

Figure 11.13: Optimizer Solution after a single run of the OR Tools model

Figure 11.14: Optimizer Solution after using the Iterative UCB LNS Algorithm

102

BIBLIOGRAPHY

Figure 11.15: UCB LNS Algorithm Solution to a Scenario with 3 Pool Points

103

	Introduction
	Shipwell
	Whole Foods Market
	Pool Distribution Freight Networks
	Objective and Research Questions

	Related Work
	Pickup and Delivery Problem (PDP)
	Hybrid Heuristic Algorithms with Local Neighborhood Search
	Genetic Algorithms (GA)
	Learning-Based Optimization (LBO)

	Intermediary Points
	Trans-Shipments and Large Neighborhood Search
	Multi-Echelon Vehicle Routing Problem

	Key Takeaways

	Data
	Whole Foods Market Data
	Order Sheets
	Data Statistics
	Feature Processing
	Data Partitioning
	Order Clustering

	Synthetic Data
	Pool Points and Destinations
	Pickup Distributions
	Order Sizes

	Scenario Creation

	Driving Distances
	Driving Distance Approximation
	OSMnx Node Networks
	Zip Code Clustering
	Major City Matrix

	Route Matrix Testing

	Modeling
	Mathematical Formulation
	Sets, Parameters, and Variables
	Objective Function
	Constraints

	OR Tools
	Single Echelon Restructure
	Post-Processing
	Node Structure

	Iterative OR Tools
	Optimization Loop

	Gurobi
	Pre-solved Scenarios
	Node Structure and Multi-Echelon Behavior

	Optimization
	OR Tools
	First Solution Strategies
	Search Metaheuristics
	Iterative Model

	Gurobi
	Presolved Scenarios
	Branch-and-Bound
	MIP Heuristics

	Self-Imposed Limitations

	Experimental Setup
	OR Tools Iterative Run Parameter Testing
	Upper Confidence Bound Selection Large Neighborhood Search Algorithm Testing
	Benchmarks
	Testing Schematic

	Results and Discussion
	Optimizer Parameters
	First Solution Strategies
	Search Metaheuristics
	Destroy Operators

	Pool Distribution Optimization Performance
	Final Testing Results
	Solution Patterns
	Research Insights

	Conclusion and Future Research
	Conclusion
	Limitations and Future Research

