
Automatic Car Damage Recognition using
Convolutional Neural Networks

Author:

Jeffrey de Deijn

Internship report
MSc Business Analytics

March 29, 2018

Abstract

In this research convolutional neural networks are used to recognize whether a car on a given image

is damaged or not. Using transfer learning to take advantage of available models that are trained

on a more general object recognition task, very satisfactory performances have been achieved,

which indicate the great opportunities of this approach. In the end, also a promising attempt in

classifying car damages into a few different classes is presented. Along the way, the main focus

was on the influence of certain hyper-parameters and on seeking theoretically founded ways to

adapt them, all with the objective of progressing to satisfactory results as fast as possible. This

research open doors for future collaborations on image recognition projects in general and for the

car insurance field in particular.

Keywords: Computer vision, image recognition, deep learning, convolutional neural networks,
transfer learning, ImageNet.

PricewaterhouseCoopers Pensions,

Actuarial & Insurance Services B.V.

Postbus 90351

1006 BJ Amsterdam

Supervisor PwC:

M. Oeben, MSc

Vrije Universiteit Amsterdam

Faculty of Science

De Boelelaan 1081a

1081 HV Amsterdam

Supervisors VU:

Dr. M. Hoogendoorn
Prof.dr. R.D. van der Mei

mailto:jeffreydeijn@hotmail.com

MSc Internship report - J. de Deijn

Preface

The master programme of Business Analytics turned out to be an excellent preparation for starting

a professional career in the current data-driven world. All skills a data scientist is supposed to

have nowadays are developed, resulting in a solid basis to enter the professional field. Also the

combination with the Econometrics and Operations Research curriculum has proven its value.

This has revealed my passion in operations research, mathematical economics and data science, for

which I’m very grateful to everyone who contributed to this. This includes all teachers, supervisors

and peer students at the university and my former colleagues at PwC PAIS and i2i. Special thanks

are going to my supervisors Marvin Oeben (PwC) and Mark Hoogendoorn (VU), who have been

a great help during this graduation project, and to SURFsara for providing me access to their Lisa

GPU cluster, enabling me to perform my experiments. Finally, I also want to express my big

gratitude to my family and friends and, especially, my dear Romée for the great support during my

whole study time. It was not always easy, but they were always there for me when I needed them

and I couldn’t have done it without them.

Jeffrey de Deijn, Amsterdam, March 29, 2018

ii

MSc Internship report - J. de Deijn CONTENTS

Contents

1 Introduction 1
1.1 Research goals . 1

1.2 Literature review . 1

1.3 Project plan . 2

2 Background 3
2.1 Jayawardena’s approach . 3

2.2 Machine learning . 5

2.3 Convolutional neural networks . 6

2.3.1 Representation . 6

2.3.2 Evaluation . 10

2.3.3 Optimization . 13

2.3.4 Regularization . 16

2.3.5 Ensemble methods . 17

2.4 ImageNet . 19

2.4.1 The challenge . 19

2.4.2 Top-performing algorithms . 19

3 Research methodology 23

4 Data 25

5 Research approach 27
5.1 Transfer learning . 27

5.2 Experimental setup . 29

5.3 Learning strategy . 31

6 Experiments and results 34
6.1 Recognizing cars . 34

6.2 Recognizing damage . 38

6.3 Classifying, localizing and quantifying damage 42

7 Conclusions and recommendations 46
7.1 Conclusions . 46

7.2 Recommendations . 47

References 48

iii

MSc Internship report - J. de Deijn 1. INTRODUCTION

1 Introduction

1.1 Research goals

The field of computer vision has greatly developed during the last decade, mainly because of the

gain in computing power and available image datasets. In this research, we will explore and apply

current state-of-the-art techniques in this field to answer the question:

How accurately can we predict whether a car on a given image is damaged or not?

We do this research in cooperation with the Pensions, Actuarial & Insurance Services (PAIS) de-

partment of PwC Nederland, which is concerned with advisory and mediation activities in the

fields of pensions and insurances (PwC, 2015). PAIS also contains a small, but strong and am-

bitious team devoted to data science consulting, which wants to gain more experience in deep

learning applications (such as computer vision). The purpose of this desire is that it helps to con-

vince (new) clients of the capabilities of data science, both in general and specifically at PwC

PAIS. Our research clearly contributes to this goal by initiating work in computer vision within

PAIS, potentially attracting clients such as – but not only – insurance companies that want to

automate the processing of car damage claims.

1.2 Literature review

In fact, Jayawardena (2013) already dedicated his PhD thesis completely to automating vehicle

damage detection. He even developed prototype software that led to Controlexpert’s EasyClaim

app (Controlexpert, 2015). As we will see more extensively in Section 2.1, his approach requires

3D computer-aided design (CAD) models of the considered vehicle to identify how it would look

like if it were undamaged. The fact that we cannot obtain such 3D models (of sufficiently high

quality) is only one of the reasons why we are not able to replicate this research. However, ever

since Jayawardena finished his thesis there have been great developments in the application of

so-called convolutional neural networks (ConvNets) in computer vision. In particular, ConvNets

have proven their power in object recognition tasks, for which the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) serves as a benchmark (Russakovsky et al., 2015). We will see

in Section 2.4 that, from the moment the ConvNet of Krizhevsky et al. crushed all competition in

2012, no ILSVRC contestant has managed to obtain competitive results without using ConvNets

yet (ImageNet, 2017). For that reason, we choose to focus on applying ConvNets. As far as we

know, this is the first time that ConvNets are being applied in the specific context of car damage

recognition. Hence, our scientific contribution is to examine the capabilities of ConvNets in clas-

sifying car damage. In this process, we also test some strategies for learning and demonstrate how

certain hyper-parameters influence learning as well as the performance of the final model.

1

MSc Internship report - J. de Deijn 1. INTRODUCTION

1.3 Project plan

Being unaware of any past implementations of ConvNets in the context of car damage recognition,

it was difficult to predict a priori how far we could get within this research. We therefore decided

to divide the damage classification process into multiple steps, so that we can start with a relatively

easy task and increase complexity when we progress. That is, we will first develop a method to

classify whether a given image contains a car or not. Since the ILSVRC dataset also includes

images of many different types of vehicles and ConvNets perform well here, we expect this first

task to be a good warm-up task to examine our methods. After that, we proceed to our main task,

which is to classify whether a car is damaged or not. Since damages may look very different

depending on the type, location and severity of the damage, we expect this task to be much harder

than the first one. If we can perform relatively well on this task we can already be quite satisfied.

In the end, we will also do a few experiments to classify, localize and quantify a damage in order

to get an idea of how complexity increases here with respect to our main task. In the following,

Section 2 first discusses the related PhD thesis of Jayawardena (2013) in more detail, after which

it provides some background on all that is relevant for us to apply ConvNets. In addition, we will

elaborate on the ILSVRC and some of its top-performing contestants. Section 3 then states our

research methodology, which is inspired on the CRISP-DM standard, after which a description of

the data is given in Section 4. In Section 5 we specify our research approach, including a detailed

description of our tasks and a specification of our models and the way we implement them in our

experiments, of which we discuss the results in Section 6. Finally, we end with a conclusion and

some recommendations in Section 7.

2

MSc Internship report - J. de Deijn 2. BACKGROUND

2 Background

We will start this section by expanding on the most relevant related work, which is the PhD thesis

of Jayawardena (2013) introduced in Section 1.2. We will explain his overall approach and why

we are obliged to choose another direction. Then, we will give a brief introduction of machine

learning in Section 2.2, after which we discuss everything we need to know about ConvNets in

Section 2.3. Finally, Section 2.4 elaborates on ImageNet and some top-performing models of its

visual recognition challenge.

2.1 Jayawardena’s approach

As far as we know, the PhD thesis of Jayawardena (2013) is the only work in literature that aims

directly at automating vehicle damage detection using photographs. He considered the application

of standard computer vision techniques a very challenging task for this purpose and therefore

proposed the following approach.

3D pose estimation. Given an image of a known damaged vehicle, first a predefined 3D computer-

aided design (CAD) model of that vehicle is registered over the photograph. This results in a model

projection that serves as ground truth information, i.e., it identifies how the vehicle would look like

if it were undamaged. After removing the background of the image using the GrabCut method,

the optimal 3D pose is determined by minimizing a distance measure between the adapted image

and a full perspective 2D projection of the 3D model1. An illustration of this subtask is given in

Figure 2.1. Note that the given result is good but not ‘perfect’, while the 3D model seems quite

detailed. Visually perfect matches are achieved when using laser scanned 3D models that are even

more detailed. This indicates the importance of the quality of the available 3D model.

(a) Initial rough pose. (b) Final pose.

Figure 2.1: An experimental result of the robust 3D pose estimation procedure developed by Jayawardena

(2013), showing in yellow the poses before and after optimization.

1The 3D pose has seven degrees of freedom: three for both 3D rotation and shifting and one for scaling/zooming.

3

MSc Internship report - J. de Deijn 2. BACKGROUND

(a) Initialization. (b) Result.

Figure 2.2: An experimental result of the 3D

model assisted segmentation procedure developed

by Jayawardena (2013), showing the outlines op in

green, the initial curves φ0,p in red, and the resulting

curves φr,p in yellow.

3D model assisted segmentation. The sec-

ond step is to use the recovered 3D pose to

identify components of the vehicle, such as

doors and fenders. Since each part p is known

for the 3D model, it can be projected at the

3D pose to obtain a 2D outline op. After ap-

plying an erosion morphological operator to

get it inside the real boundary, this outline is

used to initialize an evolutionary (‘level set’)

method. This method makes the initial curve

φ0,p ‘evolve’ towards the real boundary of p

by exploiting the fact that the gradient on this

boundary theoretically tends to infinity. The resulting curve φr,p then identifies the desired part of

the vehicle in the original image. An illustration of this is given in Figure 2.2. Whereas the 3D

pose estimation is sensitive to the chosen GrabCut margin, a potential problem in the segmentation

process is the necessity of smoothing to prevent image noise from affecting the performance of the

level set method, while over-smoothing may cause the boundary to be missed completely.

Reflection detection. The final step is to compare the identified components of the vehicle with

the 3D model projection. It is assumed that image edges that are not present in the model can

either be classified as damage, or as inter-object reflection, which is often present due to the highly

reflective metallic bodies of vehicles. The unknown scene environment, including illumination and

the presence of surrounding objects, causes the amount and appearance of inter-object reflection

to be very divergent. For this reason, Jayawardena (2013) claims that applying standard computer

vision techniques is very challenging here. Instead, he proposes to first obtain corresponding edge

points between two photographs of the vehicle taken from different view points. Then, he seeks

to estimate a homography transformation H such that Hxi ≈ x′i for every pair of corresponding

points (xi, x′i) that is on the surface of the vehicle body, rather than being inter-object reflection.

Based on this, multiple variants of logistic regression are applied to classify whether an edge point

is caused by inter-object reflection. Finally, the remaining points can then be compared with the

segmentation results to isolate mild damage to the vehicle, such as scratches and peeled off paint.

It turns out that this method succeeds in recognizing damage as such, but also tends to incorrectly

classify reflection edge points as damage. Moreover, the obtained point correspondences tend to

be rather noisy at surfaces with a repetitive pattern (such as grilles), which often causes them to

be misclassified as reflection. Hence, there is still room for improvement. Unfortunately, only

visual results are reported while we will mainly look at numeric metrics, so therefore we can only

compare our performance with that of Jayawardena to a very limited extent.

4

MSc Internship report - J. de Deijn 2. BACKGROUND

Discussion. Since we do not possess a library of (high-quality) 3D CAD models for every vehi-

cle make and model, we are not able to replicate the method of Jayawardena (2013). However, the

fact that they followed this approach does not mean that no better approaches exist. We already

stated some weaknesses and limitations of their method, including their focus on mild damage

only. They do not explain this choice, but a plausible reason would be to exclude intrinsic damage

that cannot be deduced from images, making it easier to quantify the damage. Despite this argu-

ment, we choose not to restrict ourselves to mild damages, because it is not (yet) ruled out that

the possibilities of convolutional neural networks reach beyond this limited area. In the following

subsections, we will extensively describe this machine learning model and explain the choice for

this approach.

2.2 Machine learning

Machine learning is a major subfield of artificial intelligence (AI) that provides systems the ability

to learn to do some task from experience (i.e. training data) without being explicitly programmed

(Koza et al., 1996). It can be separated into (i) unsupervised learning, in which a function is learned

to describe patterns in the unlabelled training data, (ii) reinforcement learning, in which successful

strategies are learned from rewards and punishments (trial-and-error), and (iii) supervised learn-

ing, in which a computer program is learned from labelled training data in order to predict the true

labels of ‘new’ data (see Figure 2.3). Clearly, our task belongs to the latter category.

(a) Traditional programming (b) Supervised learning

Figure 2.3: Illustration of the idea of supervised learning (Domingos, 2017).

Depending on the type of output, supervised learning is often divided into regression (numeric

output) and classification (categorical output). Nowadays, many state-of-the-art models for clas-

sification come from deep learning, which is the family of machine learning methods that are

based on neural networks. For example, human performance can be approached (or beaten) on

typical AI tasks like speech recognition (e.g. Graves et al. (2013), using recurrent neural net-

works), natural language processing (e.g. Collobert et al. (2011), using unified neural networks)

and visual perception, for which we will see in Section 2.4 that current state-of-the-art models are

often based on ConvNets. In addition, the broader application of deep learning is also encouraged

by the recent technological developments, enabling the processing of increasing amounts of data

(in reasonable time) as well as the use of more complex models. Hence, it seems reasonable to

believe that ConvNets can potentially perform well in our image recognition task, while still being

efficient enough to evaluate in practical applications as well.

5

MSc Internship report - J. de Deijn 2. BACKGROUND

2.3 Convolutional neural networks

In discussing convolutional neural networks (ConvNets), we focus on the type of machine learning

that we will apply, which is classification. A classifier is a program that implements a so-called

score function. That means, given a data instance, it computes a score for all C possible classes.

The class with the highest score is then predicted to be the true class for that data instance. In

the special case that C = 2 (e.g. damaged versus undamaged), we call this binary classification.

An algorithm that returns a classifier based on a set of labelled training data (illustrated as the

computer in Figure 2.3b) is called a learner. In order to obtain some structure in choosing a

learner from the countless amounts of possibilities, Domingos (2012) characterizes learning as a

combination of three components: representation, evaluation and optimization. In the following,

we use this structure to discuss the components of ConvNets. We end this subsection with some

regularization and ensemble methods that apply to ConvNets in Sections 2.3.4 and 2.3.5.

2.3.1 Representation

Commonly referred to as the model, the representation of the learner is its most characteristic

component. It determines the hypothesis space of the learner, i.e., the set of classifiers it can learn.

The representation of a ConvNet is given by the architecture of the network. That is, a ConvNet is

represented by a set of nodes2 ordered in one or more layers that are connected in a feed-forward

manner (so without any cycles). Figure 2.4 gives an example of a regular neural network with a

depth of 3 (the number of non-input layers), where the two hidden layers each are of width 4 (the

number of nodes in a layer).

Figure 2.4: A three-layer neural network with three inputs, two hidden layers of four nodes each, and two

outputs. Notice that all connections are directed (so we may call them arcs) in a feed-forward fashion (from

left to right) and there are no connections between nodes that are in the same layer.

2By using the term ‘nodes’, we stress the network structure of the model. It is also common to use ‘neurons’,

stressing the analogy between neural networks and brains, or ‘units’ instead.

6

MSc Internship report - J. de Deijn 2. BACKGROUND

Feed-forward computation. Let each arc (i, j) have a weight wi,j ∈ R, where the receiving

node also has a bias bj ∈ R and an activation function fj : R→ R. In the example of Figure 2.4,

this means that the number of weights is 3 · 4 + 4 · 4 + 4 · 2 = 36. Including the biases, this gives

a total of 36+10 = 46 parameters, which is often used as a measure for the size of neural networks.

Let V` be the set of nodes in layer `, then the activation xj of node j ∈ V` can be computed by

xj = fj(bj +
∑

i∈V`−1
wi,jxi). A big advantage of this structure is that we only need one matrix-

vector multiplication per layer, after which we can compute the activation function for all nodes in

that layer at once. Note here that for efficiency purposes, it is important to assume that all nodes

within each layer have the same activation function.

Activation functions. In order to understand the importance of applying a non-linear activation

function between layers, note that repetitive linear matrix-vector operations, e.g. A2(A1x), can

also be done in one step, e.g. Ax with A = A2A1. Hence, multi-layer neural networks only make

sense when the activation functions used are non-linear. Moreover, Cybenko (1989) shows that

we can arbitrarily well approximate any function using a neural network with only one hidden

layer and any continuous sigmoidal (‘S-shaped’) activation function. An obvious example here is

the sigmoid (or logistic) function σ(x) = (1 + e−x)−1, which has a nice interpretation for binary

decisions as it ranges from 0 to 1. However, for optimization purposes the hyperbolic tangent

function tanh(x) = 2σ(2x) − 1 (a scaled variant of the sigmoid function) is slightly preferred.

Nevertheless, Ramachandran et al. (2017) find in a recent study that the current most successful

and widely-used activation function is the rectified linear unit (ReLU) function f(x) = max(0, x)

introduced by Nair and Hinton (2010). In the same study, Ramachandran et al. report promising

results with the so-called Swish function f(x) = x · σ(x), which is similar to the ReLU function,

but with the advantages of being smooth as well as having a non-zero left tail derivative. Plots of all

mentioned functions are displayed in Figure 2.5. Of course, many more activation function exist,

but for a more extensive review on this we refer to other literature, e.g. Schmidhuber (2015).

Figure 2.5: Left: The sigmoid and hyperbolic tangent function. Right: The ReLU and Swish function.

7

MSc Internship report - J. de Deijn 2. BACKGROUND

The input layer. We now continue with describing the different types of layers existing in Conv-

Nets, starting with the input layer. This layer contains one node for every feature we have in our

dataset. In computer vision, it is common practice to just use the raw Red-Green-Blue (RGB)

pixel values, possibly zero-centered and/or normalized, as input. This means we generally have

3D inputs of size width × height × 3. No further feature engineering is required to compare

images other than pixel-wise, because the structure of the model enables the learner to identify

valuable features automatically (which we will see later). Note that pixel-wise comparison is very

inappropriate, because in this way shifted, rotated or darkened versions of a picture are likely to

be classified as (very) different from the original picture, which obviously is not desirable.

Fully-connected layer. For regular neural networks (as in Figure 2.4), the input layer is usually

followed by one or more fully-connected layers, which means that every node is connected to all

nodes in the previous layer. The last fully-connected layer is called the output layer and has width

C, equal to the total number of classes so that the output of this layer represents class scores from

which we can predict the correct class. A big disadvantage of fully-connected layers is that the

number of weights quickly explodes when using image data. For example, suppose that we use

(rescaled) images of size 224× 224× 3, then we would have over 150 000 weights for every node

in the first layer. Therefore, other methods are required to reduce the number of weights in some

way. In the following, we discuss the two main layer types for ConvNets that can do this.

Figure 2.6: An illustration from Intel Labs

(2016) of a convolutional filter (the kernel),

which computes a weighted sum of every local

region of pixels it slides over.

Convolutional layer. In the convolutional layer,

introduced by LeCun et al. (1989), the number of

weights is reduced by linking each node to only a

limited part of its layer’s input. For example, con-

sider a convolutional layer with an input volume of

size W1 ×H1 × D1. Every node in this layer cor-

responds to a filter (or ‘kernel’) that connects it to

a local region of the image, as shown in Figure 2.6.

Typically, this filter is a square of size F ×F ×D1,

where F is called the receptive field. Note that the

depth of the filter is always equal to the depth of the

input volume, so the connection is only limited in

width and height. Every filter is used multiple times by sliding it over the whole input volume

(we refer to this as parameter sharing). Besides that this heavily reduces the number of learnable

parameters (with respect to computing different filters for every region), it is also reasonable to

expect that a feature that is useful to compute for one region, is also likely to be useful for other

regions. The way we slide the filters over the input volume is specified by:

8

MSc Internship report - J. de Deijn 2. BACKGROUND

1. the stride S, determining the number of (say) pixels we move at a time, and;

2. the amount of zero-padding P on the border (see Figure 2.7 for an example), which can be

used to control the width and height of the layer’s output volume (most commonly in such

a way that these are equal to the width and height of the input volume).

Figure 2.7: Consider an input volume of size 7 × 7 × D1 (in white, depth not il-

lustrated), a 3 × 3 filter (in green) with stride 1, and 1 border of zero-padding (in

grey). Thanks to the zero-padding, all pixels of the input volume (even those on the

border) are once the centre of the filter, resulting in an output volume of size 7×7×1

containing dot products between the filter and each of the connected regions.

In general, we can compute any number of filters K within a convolutional layer. Hence, the total

number of parameters (weights plus biases) in such a layer is (F 2D1 + 1)K. It can be shown that

the layer produces an output volume of size W2 ×H2 ×D2, where

W2 =
W1−F+2P

S + 1, H2 =
H1−F+2P

S + 1 and D2 = K (one depth slice per filter).

Note that the hyper-parameters F , S and P must be such that W2 and H2 are integers. Typical

choices are to take a small odd value for F , stride S = 1, and zero-padding of P = F−1
2 pixels.

These settings ensure that the output volume is equal to the input volume. Figure 2.8 gives some

examples of what convolutional filters can (learn to) do. Finally, as for fully-connected layers, the

output of each convolutional layer is ‘activated’ by some non-linear function.

(a) Original image.
0 0 0

0 1 0

0 0 0

(b) Blurred.
1 1 1

1 1 1

1 1 1

(c) Detect vertical edges.
0 0 0

−1 1 0

0 0 0

(d) Detect all edges.
0 1 0

1 −4 1

0 1 0

Figure 2.8: Examples from Steiner (2013) of some convolutional filters and their effect on the input

image. Every input pixel is once the centre of the filter (S = P = 1), so the first kernel does nothing

to the original image; The second averages over the surrounding pixels, creating a blurred variant; The

third detects differences with the left neighbour-pixels, which enhances vertical edges; The fourth detects

differences with all direct neighbour-pixels, which enhances all edges.

9

MSc Internship report - J. de Deijn 2. BACKGROUND

Pooling layer. Similar to the convolutional layer, the pooling layer connects nodes to local re-

gions of the input, using some receptive field F and stride S (usually no zero-padding). However,

instead of computing one or more filters, a pooling layer just computes a fixed function of each

connected region, independently per depth slice and without taking any dot products first. Hence,

no extra parameters are introduced in pooling layers. Whereas it formerly was more common to

compute averages, it has been shown that computing the maximum (max-pooling) works better in

practice, especially for cluttered images (Boureau et al., 2010). Supposing an input volume of size

W1 ×H1 ×D1, pooling results in an output volume of size W2 ×H2 ×D2, where

W2 =
W1−F

S + 1, H2 =
H1−F

S + 1 and D2 = D1 (reduction only in width and height).

Figure 2.9: An illustration of

max-pooling with F = S = 2 over

a single depth slice.

Note again that F and S must be such that W2 and H2 are in-

tegers. Karpathy (2017) claims that it is most common to use

receptive field F = 2 and stride S = 2, so that the input volume

is partitioned in disjunct 2×2 squares over which the maximum

is computed (see Figure 2.9). It is easy to see that this halves

both width and height, resulting in a 75% reduction of the acti-

vations. Besides this, he also claims that the only other pooling

setting seen regularly in practice is with F = 3 and S = 2

(called overlapping pooling). Pooling layers are usually inserted periodically in-between succes-

sive convolutional layers (as we will see in Section 2.4.2). Although many of the best performing

ConvNets nowadays still use pooling, it seems likely that it will be used less in the future. As

an alternative, Springenberg et al. (2014) proposes to use convolutional layers with a larger stride

once in a while.

2.3.2 Evaluation

The fundamental goal of machine learning is to generalize beyond the examples on which we

train a model (Domingos, 2012). An interesting consequence of this, is that we do not need to

fully optimize the training performance of the model. Doing this may even lead to overfitting,

which is the act (or ‘pitfall’) of fitting the noise of individual training examples instead of the

underlying patterns that are hidden in the full dataset (as in the right graph of Figure 2.10). This

problem can be tackled by splitting the available dataset in three separate sets (Ripley, 1996). First

we need a training set for optimizing the parameters of a specified model. Then, a validation set

can be used to provide an unbiased evaluation of the resulting classifier. Based on this, the hyper-

parameters of the model (e.g. the number of layers of a neural network) can be tuned in order to

improve performance. However, this validation performance also becomes more biased the more

the model has been tuned on the validation set. Therefore, a test set can be saved until the very end,

so that it can then be used to obtain an unbiased evaluation of the fully-specified classifier.

10

MSc Internship report - J. de Deijn 2. BACKGROUND

Figure 2.10: Left: A line is not flexible enough to capture the underlying pattern of this set of points

(underfitting). Center: A parabola follows the general pattern reasonably well while still having relatively

low complexity. Right: A high-order polynomial may fit the data perfectly, but is much more complex and,

moreover, it is likely to predict new data poorly (overfitting). The graphs are taken from Johnson (2013).

Cross-validation. Instead of reserving a part of the training data for validation, one can also

apply k-fold cross-validation. Here, we split the training data into k sets and use each of them as

a validation set once while training a model on the other ones. An advantage of this method (es-

pecially when the training set is small) is that we do not lose part of the training set for validation.

A major disadvantage is that it requires training k models to do one validation. When training is

computationally expensive – as will often be the case for ConvNets – it is therefore not a good

idea to take k large. On the other hand, the smaller we take k, the less accurate/smooth the results

are, so a good balance should be found here. However, to prevent these issues at all, it may in this

case be better to just use separate sets for training, validation and testing.

Loss functions. Besides the evaluation methods described above, we also need to determine

what evaluation function to use for comparing the performance of different classifiers. We make

a distinction between the evaluation function used internally by the learner for optimization (to

which we refer as the loss function) and the one used externally for reporting the performance of

the resulting classifier (to which we refer as the metric function).3 Obviously, both these functions

must be similar to each other in the sense that a classifier that ‘optimizes’ the loss function should

also perform well according to the metric function. For the loss function, it is important to choose

a differentiable function, because we will see in Section 2.3.3 that most common optimizers are

gradient-based. Examples include the so-called (squared) hinge loss, mean squared error (MSE)

and mean absolute percentage error (MAPE), but we will mainly use the mean cross-entropy loss.

For any data sample {xi}Ni=1, the mean cross-entropy loss L is defined as

L =
1

N

N∑
i=1

Li with Li = − log qyi .

3Different terminology is used ambiguously across the existing literature for referring to the (internal and external)

evaluation function. Other frequently used terms are cost-, score-, error- and objective function.

11

MSc Internship report - J. de Deijn 2. BACKGROUND

Here, qyi represents the predicted probability of xi being of the true class yi. Since we obviously

want to maximize (the logarithm of) this probability, we need the minus to obtain a loss function

to minimize. Recall from Section 2.3.1 that a ConvNets usually outputs class scores {sj}Cj=1, so

we need to convert these to class probabilities before can compute cross-entropies. In most studies

we will discuss in Section 2.4.2, this is done using the softmax function, which gives

Li = − log

(
esyi∑
j e

sj

)
.

In case of binary classification (with C = 2 classes), the softmax probabilities q reduce to

q1 =
es1

es1 + es0
=

es1−s1

es1−s1 + es0−s1
=

1

1 + e−s
, where s = s1 − s0,

and q0 = 1−q1. Hence, for binary classification it satisfies to output only one class score s, which

we can activate using the sigmoid function to obtain q1 = σ(s) = (1 + e−s)−1. Since the scores

sj are a weighted sum of the output layer’s input and we maximize the log-likelihood of {qyi}Ni=1,

this is equivalent to training a (multinomial) logistic regression classifier in the output layer.

Figure 2.11: A confusion matrix summarizes the

performance of a classifier. This illustration, taken

from Raschka (2014), assumes that either there are

only two classes or that we focus on the perfor-

mance for identifying a specific class.

Metric functions. Whereas the loss function

needs to be appropriate for optimization, the

metric function should primarily give an easy

to interpret measure of the model’s performance

and is therefore not necessarily differentiable.

Batista et al. (2004) observe that metric functions

are often based on confusion matrix elements

(see Figure 2.11). Possibly the most straight-

forward and well-known metric function is the

accuracy, measuring the fraction of all data in-

stances predicted correctly, i.e.,

Accuracy =
TP + TN

TP + TN + FP + FN
.

However, the accuracy is not always the best choice. For example, it gives a biased representation

of the performance when the dataset is unbalanced, which is the case when the great majority of

the instances is of one particular class. In that case, a classifier predicting only this class already

achieves very high accuracy, so it is better to choose another metric function here. A popular

choice here is the F1-score (see e.g. Chawla (2009)), which is defined as the harmonic mean of

recall (the fraction of true examples successfully recognized) and precision (the fraction of true

predictions actually being true), i.e.

Recall =
TP

TP + FN
, Precision =

TP
TP + FP

, and F1 = 2 · Recall · Precision
Recall + Precision

.

12

MSc Internship report - J. de Deijn 2. BACKGROUND

Figure 2.12: An illustration of the F1-score in

terms of recall and precision, where the colors

represent its value, from 0 (dark blue) to 1 (dark

red).

Figure 2.12 shows visually that both recall and pre-

cision must be high in order to achieve a good F1-

score. Note that recall and precision have contra-

dicting goals. For example, a recall of 1 can sim-

ply be achieved by always predicting true, but this

will give a maximal number of false positives, re-

sulting in poor precision. Achieving high perfor-

mance on both these metrics is therefore an indi-

cation for good overall performance. Another met-

ric function suitable also for unbalanced data is the

Matthews correlation coefficient (MCC) introduced

by Matthews (1975). Given some predicted and true

distributions P and Y , this is defined as

MCC =
Cov(P, Y)√
Var(P)Var(Y)

.

Although a general definition for multiclass problems is given by Gorodkin (2004), we will only

consider the binary implementation, in which case we can also define the MCC as

MCC =
TP · TN− FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

Note that, while the previous metrics all range between 0 and 1, the MCC ranges between−1 and 1

as it represents a correlation. That means, for example, that an F1-score of 0.9 is (roughly) as good

as an MCC of 0.8. We must keep this in mind when interpreting the results in Section 6.

2.3.3 Optimization

When the network architecture has been determined, the next step is to search for the best classifier

within the defined hypothesis space. That is, we search for the set of parameters that minimizes

the loss function. This can be interpreted as searching for the bottom of a high-dimensional op-

timization landscape. The applied optimization algorithm determines where we end up on this

landscape as well as how fast we get there. Because ConvNets generally induce complex, non-

convex loss functions, it is difficult to optimize them and to prevent getting stuck in a (poor) local

optimum (see Figure 2.13). Judd (1990) even shows that there is no polynomial algorithm that

guarantees to optimize a given neural network to such extent that it produces the correct output for

more than (only) two-thirds of the training data. As a consequence, we are also unable to prove

whether a given solution is optimal. However, we are often able to approach a sufficiently good

local optimum by running as many iterations of gradient descent as possible.

13

MSc Internship report - J. de Deijn 2. BACKGROUND

Figure 2.13: Convex functions (example left) are easier to minimize than non-convex functions (example

right), since any local minimum is then globally minimal as well (Zadeh, 2016).

Mini-batch gradient descent. The idea of gradient descent algorithms is that, given some point

on the optimization landscape, we check in which direction we need to go in order to obtain the

steepest descent, assuming an infinitesimal step size. Since datasets for deep learning models are

often large, it is often too computationally expensive to compute each of these steps based on the

full dataset. On the other hand, using only one training example per step is not efficient either,

because of the efficiency advantages of vectorized coding. Therefore, it is common to use batches

of some size B that balances both efficiency issues (usually some power of 2). The number of

epochs measures how many times we have gone through the full dataset during training. Now,

before we can start training, He et al. (2015) propose to initialize the weights randomly, using a

zero-mean Gaussian distribution with standard deviation
√
2/n for each weight matrix, where n

is the number of weights. Then, for each step we use one batch of training data to compute the

direction that is locally optimal. This direction relates to the gradient of the loss function, which

we can compute analytically in an efficient way using a method called back-propagation.

Figure 2.14: A back-propagation example with

loss function L(x, y, z) = (x + y)z and inputs

(x, y, z) = (−2, 5,−4). The green numbers repre-

sent the forward-pass, e.g. q = x+ y = −2 + 5 = 3.

The red numbers represent the backward-pass, e.g.

∂L/∂q = z = −4 and ∂L/∂x = ∂L/∂q · ∂q/∂x =

−4 · 1 = −4.

Back-propagation. For a given training

step, the back-propagation method introduced

by Rumelhart et al. (1986) starts by comput-

ing the loss function of the inputs in a system-

atic way, using a computational graph. This

is called the forward-pass. Figure 2.14 gives

an example for the case the loss function is

L(x, y, z) = (x+ y)z, where we first compute

q = x + y and only then L = qz. Now that

the loss is known, we can compute the gradient

of the loss function by repeatedly applying the

chain rule. That is, first we compute the gradi-

14

MSc Internship report - J. de Deijn 2. BACKGROUND

ent with respect to q, which we can then use to compute the others, e.g. ∂L/∂x = ∂L/∂q ·∂q/∂x.

This is called the backward-pass. Since the previous example is a bit over-simplified, we now

consider a more general and realistic case.4 Let x1 ∈ Rm×1 be an input vector for a two-layer

ConvNet and W1 ∈ Rm×n a weight matrix for the first layer. The output y1 ∈ Rn×1 of this

layer can be computed by y1 = WT
1 x1, which we then activate using function f1 (elementwise)

to obtain the input x2 = f1(y1) for the second layer.5 Similarly, we compute the output y2 of the

second layer as y2 = WT
2 x2 and the final loss L as L = f2(y2). Now, the goal is to retrieve the

gradient of the loss with respect to the (vectorized) weights. Starting at the end of the network and

using the chain rule repetitively, we get

∂L

∂ vec(W2)
=
∂f2
∂y2

∂y2
∂ vec(W2)

and
∂L

∂ vec(W1)
=
∂f2
∂y2

∂y2
∂x2

∂x2
∂y1

∂y1
∂ vec(W1)

.

The exact expressions of the resulting products of partial derivatives are not relevant for now,

but what is most important here is that they are all known. Hence, we can use this method to

compute the required gradients analytically in a relatively efficient way. These gradients can

then be used to update the weights to, hopefully, get closer to a (sub)optimal classifier (in terms

of the loss). That is, applying the regular gradient descent algorithm, we take a small step of

size α (called the learning rate) in the negative gradient direction (negative to go ‘downhill’).

Besides this gradient step, it is almost always possible to improve the convergence rate by using

momentum in the parameter update as well. The idea here is to repeat a fraction µ ∈ (0, 1) of

the step V taken in the previous iteration, since we expect that the gradient direction does not

change drastically over only one iteration. Assuming we take this momentum step µV anyway, it

then makes more sense to compute the gradient at W+µV instead of W . This is the idea of the

Nesterov accelerated gradient (NAG) update, introduced by Nesterov (1983), of which a simple

implementation developed by Sutskever (2013) is commonly applied in practice. Other, more

advanced, adaptive update algorithms exist that can tune the learning rate per parameter in each

training step, based on the magnitude of the gradient. A popular example is Adam (derived from

adaptive moment estimation), introduced by Kingma and Ba (2014). We refer interested readers

to this article for the details of this update algorithm.

Scaling the input data. A last remark on optimization is that the back-propagation algorithm

clarifies the importance of scaling the input data. For example, note that the local gradients of q

and z in Figure 2.14 can be simply computed by switching their input values, i.e., ∂L/∂q = z

and ∂L/∂z = q. This is the case for any pair of nodes preceding a so-called multiplication gate.

Therefore, if the input values are of very different scales, we may end up with a large gradient

for a small input value. As a result, we must be very conservative in specifying the learning rate,

which may significantly slow down learning, especially for the values having a larger scale.
4For a numeric example, we refer to Jay (2017).
5For simplicity, we assume appropriate dimensions of variables introduced from here on in this example.

15

MSc Internship report - J. de Deijn 2. BACKGROUND

2.3.4 Regularization

Regularization refers to controlling (or ‘regulating’) the complexity of the learned model, gener-

ally with the objective to prevent overfitting (recall Section 2.3.2). The most traditional way is to

add a regularization term to the loss function. Common choices here are to add λ1|w| (L1 regular-

ization), 1
2λ2w

2 (L2 regularization, multiplied by 1
2 to simplify the derivative) or a combination of

both (Elastic net regularization) for every weight w in the network. Karpathy (2017) claims that

L2 regularization can be expected to give the best performance in case we are not concerned with

explicit feature selection (which is the case for us). Another regularization technique is to directly

control the magnitude of the weights, so that their values stay within specified boundaries. This

is normally implemented by putting a max norm constraint on the weight vector of every neuron,

i.e., ‖~w‖2 < c with c typically around 3 or 4. In the next paragraphs, we additionally discuss some

more advanced regularization techniques that are frequently used in present practice for neural

network learners.

Dropout. Figure 2.15 illustrates the idea of dropout as introduced by Hinton et al. (2012). That

is, at every training step we sample from the full network by keeping each node independently with

some probability p (i.e., by ‘dropping out’ each node with probability 1−p). For example, we then

compute the activation of some node y as y = f(
∑N

i=1 aiwixi), where ai (i = 1, . . . , N) is the

outcome of a Bernoulli random variable A with Pr(A = 1) = p. Consequently, only the weights

wi for which ai = 1 are updated by the back-propagation algorithm. During testing, no dropout is

applied, so in order to match the expected output of each node to that during training, we multiply

each weight by p. Experiments of, among else, Dahl et al. (2013) and Simonyan and Zisserman

(2014) indicate that dropout may be very effective in some cases. It is common to apply dropout

after every fully-connected layer, with p = 0.5 as a reasonable default. As a last practical note,

Srivastava et al. (2014) claim that even higher improvements can be reached when using dropout

alongside max-norm regularization, large decaying learning rates and high momentum.

(a) Neural network before (left) and after

(right) applying dropout.

(b) Dropout during training (left) and testing (right).

Figure 2.15: Illustrations of dropout taken from Srivastava et al. (2014).

16

MSc Internship report - J. de Deijn 2. BACKGROUND

Batch normalization. An important problem that slows down training of neural networks, is

that the distribution of every layer’s input changes during training, due to the changing parameters

in the previous layers. Ioffe and Szegedy (2015) address this problem (which they refer to as the

internal covariate shift) by making the normalization of layer inputs part of the model architec-

ture. They call this batch normalization and the idea of this mechanism is to force the activations

throughout a network to better resemble a unit Gaussian distribution at the beginning of training.

It is therefore most logical to apply batch normalization immediately before every activation func-

tion. This results in that we can be less careful about the weight initialization and that we can use a

higher learning rate, speeding up learning (recall also the last paragraph of Section 2.3.3). Because

each training example is normalized differently in every epoch, depending on which other exam-

ples are in the same mini-batch, an additional effect of batch normalization is that it regularizes

the model, sometimes eliminating the need for dropout.

Stochastic depth. In order to speed up training for very deep networks (say over 100 layers),

Huang et al. (2016) propose a training procedure called stochastic depth.6 The idea is similar

to that of dropout, but instead of determining which nodes to keep during each training step, we

‘survive’ each layer ` with some probability p` and otherwise we bypass them with the identity

function. During testing no layers are dropped, but (similarly to dropout) we need to multiply the

activation input of layer ` by p` in order to match the expected output during training.

2.3.5 Ensemble methods

Finally, we can almost always improve performance a few percent by training multiple indepen-

dent models and then combining them using so-called ensemble methods. The hypothesis space

of an ensemble generally contains hypotheses that cannot be learned by the individual models,

which makes it more flexible. Usually, higher flexibility increases the risk of overfitting the train-

ing data (recall Figure 2.10). However, Ueda and Nakano (1996) show that ensemble methods can

reduce the (squared) bias and/or variance of the predictions, so these methods are now even used

for generalization purposes (see e.g. Yang and Browne (2004)). Moreover, Sollich and Krogh

(1996) find analytically that, in large ensembles, it is even advantageous to overfit the individual

models in order to maximize the variance-reduction effects. The disadvantage of ensembles is that

they are more computationally expensive to evaluate. This may especially become an issue when

one wants to deploy such ensembles. In that case, one may consider to follow the approach of

Hinton et al. (2014), who attempt to ‘distil’ the ensemble back to a single model by incorporating

the individual log-likelihoods into a modified objective. In the following paragraphs, we will dis-

cuss three popular methods for ensemble learning. However, keep in mind here that many more

ensemble methods exist (and are applied in practice as well).
6Since training such deep ConvNets is not required for our purposes, this paragraph is just for interested readers.

17

MSc Internship report - J. de Deijn 2. BACKGROUND

Bagging. Bootstrap aggregating (often abbreviated to bagging) is a method proposed by Breiman

(1996) that mainly improves the stability of the predictions. The idea of bagging is to bootstrap-

ping the training data, i.e., to take random samples (often with replacement) of the training data.

Typically, these samples are of the same size as the original dataset, but also smaller samples can

be used when the training set is large. Then, we fit a model on each of the samples and apply,

typically, majority voting (voting with equal weights) over all individual predictions in order to

determine the prediction of the ensemble. Only if perturbing the training set can significantly

change the constructed classifier, then bagging can improve accuracy as well.

Boosting. The idea of boosting is to create a single strong classifier from multiple weak ones.

Many algorithms have been developed that can be considered an instance of the boosting fam-

ily and their approach generally resembles bagging in many aspects. The main difference is that

sampling from the training set is not performed randomly. That is, boosting involves an iterative

process where every new sample contains the training instances that are most likely to be misclas-

sified by the previously trained models. This causes boosting to be better at reducing the bias than

bagging, but with the disadvantage of having a higher tendency to overfit the training data, be-

cause it is more sensitive to noise and outliers. A very popular boosting algorithm is the AdaBoost

(Adaptive Boosting) algorithm introduced by Freund and Schapire (1995). Here, in each step a

new model is trained on just the full training set, but with a weight on each of the N instances.

Initially, these weights are all set to 1/N and are then modified in each iteration: a weight is in-

creased when the corresponding data instance is misclassified and decreased otherwise. Finally,

the predictions of all weak classifiers are combined through a weighted majority vote.

Stacking. Stacked generalization (or stacking) is a more generic term referring to training a

model to combine the predictions of multiple weak classifiers (Wolpert, 1992). Note that bagging

and boosting can therefore be considered special cases of stacking as well, although here the weak

classifiers are combined by means of a fixed function. In stacking, the combiner model can be,

for example, a simple logistic regression model. To illustrate the potential performance of such

methods, the two best performing contestants of the Netflix prize7 both used a form of stacking

(Sill et al., 2009). However, this is not the type of task that we need to do. In the next subsection,

we therefore deepen into the visual recognition challenge of ImageNet.
7The Netflix prize is a competition that run from October 2006 to July 2009 in which one million US dollars were

awarded to the first contestant that improved the performance of Netflix’s own algorithm (called Cinematch) by at least

10% on predicting the user ratings for films, just based on previous ratings (so without any other information about the

users of films).

18

MSc Internship report - J. de Deijn 2. BACKGROUND

2.4 ImageNet

Quoting ImageNet (2017), “ImageNet is an ongoing research effort to provide researchers around

the world an easily accessible image database”. Their dataset is organized according to the seman-

tic hierarchy of WordNet’s English lexical database (Miller, 1995), which groups synonyms into

117 000 unordered sets (synsets). Every synset indentifies a distinct concept and all are interlinked

by means of conceptual relations, such as super-subordinate (e.g. motor vehicle – car) and part-

whole relations (e.g. chair – seat). ImageNet aims to provide around 1000 images for each of the

80 000 synsets corresponding to nouns (we refer to these synsets as ‘categories’). As of August

2014, ImageNet provides an average of 650 manually verified images for 21 841 categories, with

a total of 14 197 122 images (Russakovsky et al., 2015).

2.4.1 The challenge

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was first held in 2010. By

then, the ImageNet database contained 3.2 million images of 5247 categories (Deng et al., 2009).

A core task in the ILSVRC is image classification, i.e., to classify which object categories are

present on the provided images. As of 2011, the challenge additionally consists of the task to

specify locations of the present categories (by means of bounding boxes), but we will focus only

on image classification for now. Every year, the ILSVRC provided images of 1000 (varying)

object categories for classification, with a total of over 1.2 million images for training, 50 000

for validation and (at least) 100 000 for testing (Russakovsky et al., 2015). It is ensured that the

included categories contain images of high diversity in terms of (among else) object scale/size,

shape and color distinctiveness, and the amount of texture and image clutter. A submission was

supposed to contain a list of at most five category labels for each test image. The error for an

image equals the sum of incorrect classifications (both false positives and false negatives) divided

by the number of categories. The final score is the average error over all test images.

2.4.2 Top-performing algorithms

Table 2.1 summarizes how the performance on image classification has improved since the start of

the ILSVRC in 2010. In the first two years, no ConvNets were used at all, with XRCE happening

to be the best in these years. As the best non-ConvNet algorithm in 2012 (ISI, with 26.17%) scored

lower than XRCE, it seemed that no major improvements could be made. Luckily, SuperVision

showed differently, opening new doors with their relatively small ConvNet model. In the following

paragraphs, we will briefly describe some of the top-performing ConvNet architectures, beginning

with that of SuperVision. In the end, we should be able to see the general structure of successful

ConvNet implementations, which may be inspiring for constructing our own.

19

MSc Internship report - J. de Deijn 2. BACKGROUND

Table 2.1: All winners of the ILSVRC image classification task, including references to their correspond-

ing publications (no published work of Trimps-Soushen seems to exist).

Year Winning team Error

2010 NEC-UIUC (Lin et al., 2011) 28.19%

2011 XRCE (Sánchez and Perronnin, 2011) 25.77%

2012 SuperVision (Krizhevsky et al., 2012) 16.42%

2013 Clarifai (Zeiler and Fergus, 2013) 11.74%

2014 GoogLeNet (Szegedy et al., 2014) 6.66%

2015 MSRA (He et al., 2016) 3.57%

2016 Trimps-Soushen 2.99%

2017 WMW (Hu et al., 2017) 2.25%

SuperVision (2012). The groundbreaking algorithm of SuperVision (now also known as AlexNet)

is a ConvNet with only five convolutional layers followed by three fully-connected layers with a

total of 60 million parameters. The output of each layer is activated by a ReLU function and the

activations of the first two layers are normalized as well. In addition, max-pooling is applied after

the first, second and fifth convolutional layers. The last layer’s output is activated by a 1000-way

softmax function to obtain a probability distribution over all classes. For more details, we refer to

Krizhevsky et al. (2012).

Clarifai (2013). The algorithm of Clarifai (now also known as ZFNet) is largely based on

AlexNet. Zeiler and Fergus (2013) present a way to visualize the features that intermediate lay-

ers in a ConvNets have learned. They find that increasingly complex features are learned, from

just edges in the first convolutional layer(s) to shapes, collections of shapes, and so on in later

layers. They use these visualizations to detect weaknesses in SuperVision’s model, so that they

can improve upon these specific aspects. Most importantly, they decreased the stride and receptive

field of the first convolutional layer and increased the number of filters of the middle convolutional

layers.

VGG (2014). The runner-up of 2014 (scoring 7.33%) was the first to recognize the importance of

a ConvNet’s depth for its performance as well as the advantage of using receptive fields of at most

F = 3 in convolutional layers. This can be explained by the possibility to replicate any convolu-

tional layer with F = 5 (and odd) by two consecutive convolutional layers with F = 3. This even

increases the expressiveness of the model, because of the extra non-linearity between these layers.

Similarly, we can replicate a convolutional layer with F = 7 by 3 consecutive convolutional layers

with F = 3, and so on. Although they did not win the challenge, the VGGNet of Simonyan and

20

MSc Internship report - J. de Deijn 2. BACKGROUND

Zisserman (2014) is worth mentioning because of its appealingly homogeneous architecture. It

stacks five blocks of multiple convolutional layers, followed by three fully-connected layers and a

softmax output. A ReLU activation is applied after every layer and, in addition, each of the five

blocks is followed by a max-pooling layer. A downside of this ConvNet is that it has around 140

million parameters, making it computationally expensive to train and evaluate the model. Never-

theless, due to its simple but effective architecture, VGGNet has been an inspiration for many later

architectures.8

GoogLeNet (2014). The architecture of GoogLeNet is of similar depth as that of VGGNet, but

containing the more advanced Inception modules, introduced by Szegedy et al. (2014). Simply

stated, these modules compute multiple convolutional (and max-pooling) layers at once and con-

catenate the results, so that the model can determine itself which convolutions are most informa-

tive. Together with the use of less fully-connected layers (which are very expensive), this results

in a relatively efficient ConvNet of only 5 million parameters. GoogleNet also provides the basis

of popular models developed by Szegedy et al. (2015, 2016), where the latter also uses the ideas

of the 2015 ILSVRC winner.

MSRA (2015). Whereas all algorithms discussed so far use dropout around their last fully-

connected layer(s), the residual network (ResNet) of MSRA heavily uses batch normalization

instead, following the practice of Ioffe and Szegedy (2015). Although this allows deeper networks

to converge, it also exposes an additional problem called degradation: as the depth of networks

increases, both the training and test error tend to get saturated and then decrease (rapidly). He

et al. (2016) tackle this problem using residual learning: instead of aiming for a layer to learn an

output H(x), we aim for it to learn the change F (x) = H(x) − x with respect to the input x.

This can be done by short-cutting the input (using an identity mapping) alongside the actual (often

convolutional) layer. This solution allows MSRA to train a very deep ConvNet of over 150 layers.

As their ResNet ends with only one fully-connected layer (with softmax output), the number of

parameters is limited to just over 60 million, so it is computationally cheaper than VGGNet.

WMW (2017). The squeeze-and-excitation networks (SENets) of Hu et al. (2017) contribute to

the existing literature by focussing on channels (the depth dimension). They introduce the so-

called SE block, which explicitly models interdependencies between the channels. For details of

this model we refer to the given article.
8Besides the revolutionary paper of Krizhevsky et al. (2012), the paper of Simonyan and Zisserman (2014) is cited

more on Google Scholar than that of any other ILSVRC winner (over 43% more than its runner-up He et al. (2016) as

of Febraury 27, 2018).

21

MSc Internship report - J. de Deijn 2. BACKGROUND

Conclusion. Although very wide, but shallow ConvNets are good at fitting the training data, they

often do not generalize well. The advantage of multiple layers is that they can learn increasingly

complex features, so the current trend is to develop techniques that allow the training of deeper

ConvNets, often using ‘network-in-network’ architectures. Nevertheless, the global architecture

stays more or less the same, stacking multiple blocks of successive convolutional layers with

activated (ReLU) output, followed by max-pooling. After these blocks, the model is often ended

with a few fully-connected layers or, more recently, with an average-pooling layer and only one

fully-connected layer. In both cases, the output of the last layer is often activated by a softmax

function to obtain a probability distribution over the possible classes. Finally, batch normalization

is often required for training very deep ConvNets (with tens or hundreds of layers) and dropout is

still an appreciated technique for (further) reducing symptoms of overfitting.

22

MSc Internship report - J. de Deijn 3. RESEARCH METHODOLOGY

3 Research methodology

A typical machine learning project is an iterative process that can be divided in multiple phases.

The most well-known and widely-used model, called the cross-industry standard process for data

mining (CRISP-DM), is developed by Shearer (2000) and identifies six major phases, as illustrated

in Figure 3.1. We will briefly discuss for every phase what (generic) tasks it involves, both in

general and for us specifically. Besides the original paper of Shearer, we also use the explanation

of SV-Europe (2016) and the review of Wirth and Hipp (2000) as references for the following

paragraphs.

Figure 3.1: Process diagram from Wikipedia (2017) showing the relationship between the different phases

of CRISP-DM as well as the cyclic nature of such processes as a whole. For example, if we succeed in

recognizing cars, we will restart (part of) the process for recognizing car damage.

Business understanding The first goal is to determine the objectives of the project from a busi-

ness perspective. The importance of this initial phase is sometimes underestimated, which may

lead to putting a great deal of effort into producing the right answers to the wrong questions. Usu-

ally, this phase results in a project plan that states the current situation (including the available

resources, constraints and assumptions), the goals from both a business and technical perspective,

and of course a clear plan of how to achieve these goals. As we have already discussed most

of this in Section 1, we can be short on this here. We will discuss the available resources in

Section 5.2.

23

MSc Internship report - J. de Deijn 3. RESEARCH METHODOLOGY

Data understanding After the project plan is (largely) completed, the second phase starts with

the initial data collection. The acquisition methods and data sources must be reported clearly so

that future repetition is possible. Normally, the data must be explored extensively in order to get

familiar with its characteristics and to identify possible data quality problems. For us, however,

the data exploration part is very limited since the dataset just consists of images, which are to be

collected ourselves.

Data preparation In many data mining projects, the data preparation phase is the most time

consuming one, especially when the quality of the data is poor. This phase involves data selection

and cleaning as well as feature engineering, which is the process of creating new attributes (out

of the existing ones) that may contain valuable information and possibly improve the performance

of the model. This requires a great deal of domain knowledge, data understanding and creativity.

For us, the data preparation phase is also very time consuming, but this is mainly caused by the

necessity to label the data. Since ConvNets just require the (pixel representation of the) original

images as input, no data cleaning or feature engineering is required. We will discuss all our data

collection and preprocessing activities in Section 4.

Modelling When the data is ready, the modelling phase starts with splitting it into separate sets

for training, validation and testing. Then we can determine our learning approach (representation,

evaluation and optimization), optimize the parameters on the training data and use the validation

data to assess the resulting model. Since the fitted model may differ based on the settings of the

chosen learner (also called its hyper-parameters), we often keep iterating this process of model

building and assessing until we reach satisfactory performance. This is an important part of our

research, since it is interesting to observe how the performance changes as we tweak certain hyper-

parameters. The test data must remain untouched until the very end, so that it can be used to test

the final model without any overfitting bias. We will discuss all modelling choices in Section 5

and perform the actual experiments and results throughout Section 6.

Evaluation The evaluations done in the modelling phase were all of a technical nature, resulting

in a model that appears to be of high quality from a data analysis perspective. In this phase, the

results as well as the whole process towards them are evaluated from a business perspective, which

should in the end yield a decision on the use of these results. We will do this in Section 7.

Deployment In this final phase, a strategy is determined so that (typically) the user is able to

deploy the results as well as to monitor and maintain them. Although our results will not be imme-

diately deployed, we will give some recommendations on possible follow-up steps in Section 7. In

this case, also this report and the final presentation can be considered a part of deployment.

24

MSc Internship report - J. de Deijn 4. DATA

4 Data

Regarding our stepwise classification procedure, we need to obtain three datasets, containing re-

spectively images without cars, with undamaged cars, and with damaged cars. In the following

paragraphs, we describe the collected datasets.

1 – Images without cars. For images without cars, we use the Caltech-256 dataset of Griffin

et al. (2007). This dataset originally contains 30 607 images of 257 different categories (includ-

ing one ‘clutter’ category). We exclude nine categories9, remaining with 29 030 images without

cars. All these images are collected by downloading examples from Google Images and manually

screening out all inapplicable ones. The developers ensured that there are at least 80 images of

every category (with an average of 119) and that no rotated variants are contained. There exist

other datasets as well, but Caltech-256 seems most suitable for our purposes regarding its size and

diversity.

2 – Images with undamaged cars. The best and largest car image dataset that is openly available

is the Cars dataset of Krause et al. (2013). It contains 16 185 images of 196 different car models

and is originally created as a dataset for fine-grained classification, meaning that the classes are

very similar. For that reason, it only contains regular (passenger) cars, so no bigger vehicles like

vans, buses or trucks are included. This is a minor limitation of our research, which is also subtly

expressed in the title of this report, stating car instead of vehicle damage recognition.

3 – Images with damaged cars. No dataset of images with damaged cars has been found, so we

needed to create our own dataset here. Following the method of Griffin et al. (2007) for creating

Caltech-256, we ‘scraped’ Google Images (using Python) and downloaded all images yielding

from different queries. For the diversity of our dataset, we ensured that the obtained car damages

are of different types and severities. We manually checked all collected images and deleted the

inapplicable or duplicate ones. This was a very time consuming task, since the majority of the

images are cartoons, advertisements, featuring people too much or have other reasons for being

inappropriate. We stopped collecting after obtaining 1007 useful images, because at this point it

became hard to find queries that yield a substantial number of images that are not contained in

the dataset yet. In order to model the location, size and type of car damage as well, we manually

assigned labels to the resulting dataset, which is summarized in Table 4.1. We assigned only

one label of every category to each of the images. When, for example, the car on an image

is both dented and scratched, we assigned the one that stands out most. Note therefore that this
9Excluded categories: 031.car-tire, 050.covered-wagon, 130.license-plate, 145.motorbikes,

146.mountain-bike, 178.school-bus, 224.touring-bike, 229.tricycle, 252.car-side.

25

MSc Internship report - J. de Deijn 4. DATA

labelling contains some subjectivity. This also holds for labelling damages close to the (imaginary)

boundary between the side and front/rear of the car and, even more, for labelling the damage

size. Hence, we have to take this subjectivity bias into account when assessing the results in

Section 6.

Table 4.1: Assignment of the 1007 car damage images to the labels of each category.

Type

- dent: 391

- glass: 158

- hail: 83

- scratch: 375

Location

- front: 358

- rear: 263

- side: 373

- top: 13

Size

- large: 282

- medium: 426

- small: 299

Data augmentation. Before preprocessing the data, we apply some minor data augmentation,

which is the creation of additional images based on existing ones. This is especially useful for the

images of damaged cars, of which there are relatively few. A popular method is taking random

crops, but this is risky here because we may also crop the actual damage if it is close to the border.

Many other augmentation methods exist, such as rotating or shearing images and adapting colours,

but we only apply horizontal flipping in order to prevent that we overfit too much.

Data preprocessing. The only preprocessing we do before feeding the data into our models is

zero-centering and scaling, for reasons similar of that of batch normalization (recall Section 2.3.4),

which are also connected to the argument given at the end of Section 2.3.3. Therefore we divide

all pixel values by 255 (their maximal possible value) to get them all between 0 and 1, and then we

subtract the mean for each mini-batch we feed to our models. More preprocessing techniques exist,

such as decorrelating or normalizing the data using respectively principal component analysis

(PCA) and whitening, but it is not common to apply these to ConvNets (Karpathy, 2017).

26

MSc Internship report - J. de Deijn 5. RESEARCH APPROACH

5 Research approach

This section describes our approach of implementing ConvNets to tackle our tasks. First, Sec-

tion 5.1 explains generally how we can benefit from ConvNets trained on the ImageNet dataset

using transfer learning. Then, Section 5.2 gives more details on how we will initiate our experi-

ments and on which platforms we execute them. Finally, in Section 5.3 we discuss strategies on

how to assess a trained model in order to determine adaptations that are likely to improve it.

5.1 Transfer learning

In practice, it is very uncommon to have sufficient data and resources to successfully train a full

ConvNet from scratch, i.e., with random weight initialization. Karpathy (2017) advices:

“Don’t be a hero: Instead of rolling your own architecture for a problem, you should

look at whatever architecture currently works best on ImageNet, download a pre-

trained model and fine-tune it on your data. You should rarely ever have to train a

ConvNet from scratch or design one from scratch.”

Generally, transfer learning refers to storing the knowledge gained while solving one problem

and then use this to address another problem that is similar to the former one. In the context

of ConvNets, this comes down to obtaining complete (pre-trained) architectures and retraining

(or fine-tuning) a part of the model to serve our own purpose. We will follow the given advice

and choose from the ILSVRC top-performing models described in Section 2.4.2. That is, we

will initially use the VGGNet of Simonyan and Zisserman (2014) with sixteen ‘weight-layers’

(excluding, e.g., pooling layers introducing no additional weights), because of its relatively simple,

but effective architecture. We will refer to this representation as VGG16.

VGG16. The architecture of the original VGG16 model trained for the ILSVRC 2014 is sum-

marized in Table 5.1. Note that the majority of the 138 million parameters (almost 90%) comes

from the last three fully-connected layers. The model is optimized using mini-batch gradient de-

scent with batch size 256 and momentum 0.9. For preventing overfitting, L2 regularization with

λ2 = 5 · 10−4 is used as well as dropout with probability 0.5 in the first two fully-connected lay-

ers. The initial learning rate of 10−2 is divided by 10 every time the validation accuracy stopped

improving. Since we will use similar model architectures, these optimization settings are likely

to work well for us as well. However, besides experimenting with the optimization settings, we

also need to change the model architecture in order to be applicable for our specific tasks. The

next paragraph discusses different approaches for applying transfer learning, after which we will

elaborate on our own implementation in Section 5.2.

27

MSc Internship report - J. de Deijn 5. RESEARCH APPROACH

Table 5.1: A detailed description of the original VGG16 architecture for the ILSVRC. All images are

rescaled to 224 × 224 RGB pixels and zero-centered (no normalization). Then five blocks of two or three

convolutional layers with the same receptive field (e.g. F = 64 for the two convolutional layers in Block

1) and each of these blocks is ended by 2 × 2 max-pooling with stride 2, halving the width and height di-

mensions. The output of all convolutional and fully-connected (FC) layers is activated by a ReLU function,

except from the output layer (FC 3). Here, a softmax function is computed to get a probability distribution

over the 1000 possible classes.

Layer Description Output shape # Parameters

Input rescale image 224×224× 3 0M

Block 1 2xConv-64 112×112× 64 <1M

Block 2 2xConv-128 56× 56 × 128 <1M

Block 3 3xConv-256 28× 28 × 256 1M

Block 4 3xConv-512 14× 14 × 512 6M

Block 5 3xConv-512 7× 7 × 512 7M

FC 1 width-4096 4096 103M

FC 2 width-4096 4096 17M

FC 3 width-1000 1000 4M

Possible implementations. A potential disadvantage of VGG16 is that training it can take a long

time due to its relatively large size. However, we can solve this issue by retraining only a limited

part of the parameters. One possible way of doing this is to obtain the VGG16 model pre-trained

on ImageNet and drop only the output layer. The remaining network can then serve as a feature

extractor for our dataset. That is, for every training image we then compute a 4096-dimensional

feature vector by feeding it to the network, after which we can use these features to train a simple

(e.g. linear SVM or softmax) classifier. As an example, Razavian et al. (2014) successfully address

several visual recognition tasks with this approach. On the other hand, it is also possible to drop

more than only the last layer, or to just use the pre-trained model as an initialization and fine-tune

the parameters on the new dataset (or a combination of both). The best strategy depends on the

size of our dataset and its similarity to the ImageNet dataset on which the model is trained. For

example, when the new dataset is small, fine-tuning increases the risk of overfitting. Also, the

more the new dataset differs from the one on which the pre-trained model is based, the less likely

it is that especially the features learned by the later layers are transferable, i.e., useful for the new

task. This is demonstrated by Yosinski et al. (2014), who also show that successive convolutional

layers may contain fragile co-adapted features, meaning that this co-adaption could possibly not

be relearned by either of the layers when fixing the other, resulting in a performance drop. Not

only can this be recovered using fine-tuning, they even show that fine-tuning transferred features

can improve generalization (provided that there is sufficient data).

28

MSc Internship report - J. de Deijn 5. RESEARCH APPROACH

5.2 Experimental setup

In this subsection, we first give a more detailed description of the tasks we will tackle and which

datasets we will use for this. In addition, we explain our validation method and specify how we

will apply transfer learning in our context. Finally, we also discuss what tools and platforms we

used for implementation.

Tasks. As mentioned before, we divide our damage classification process into multiple steps.

For clarity, all different tasks and their possible outcomes are listed below.

Task 1. Recognizing cars: car or no car.

Task 2. Recognizing damage on car images: damaged or undamaged.

Task 3. Classifying the damage on car damage images:

a. Type: dented, glass damage, hail damage or scratched.

b. Location: at the front, rear, side or top of the car.

c. Size: large, medium or small.

For the first task, we will not use our dataset with damaged cars for training. The reason for this

is that images of damaged cars generally look somewhat different than those of undamaged cars,

e.g. more zoomed-in or even with heavily deformed cars. It is therefore interesting to test how

our model will perform on such images when it is trained to recognize (mostly) completely visible

and undamaged cars. Obviously, for the other tasks we exclude the images without cars, and for

the last three (sub)tasks also the images of damaged cars.

Data splitting. Since training ConvNets is computationally expensive, using cross-validation to

assess our models would take too much time. Therefore, we decided to split the data into separate

sets for training (50%), validation (30%) and testing (20%). Due to the small size of our dataset,

we need a relatively large part for validation and testing in order to keep enough examples to get

reliable performance indications. In the splitting of the dataset with images of damaged cars, we

ensured that all labels represent the given percentages as well as possible. The final splits are

summarized in Tables 5.2 and 5.3.

Table 5.2: Number of images per category for training, validation and testing (50-30-20% split).

Image category Total Training Validation Testing

No cars 29 030 14 515 8 709 5 806

Undamaged cars 16 185 8 093 4 855 3 237

Damaged cars 1 007 504 302 201

29

MSc Internship report - J. de Deijn 5. RESEARCH APPROACH

Table 5.3: Number of images per car damage category for training, validation and testing (50-30-20%

split, accurate to 0.1% weighted average absolute deviation).

Total Training Validation Testing

Type - dent 391 196 117 78

- glass 158 79 48 31

- hail 83 41 25 17

- scratch 375 188 112 75

Location - front 358 179 107 72

- rear 263 132 79 52

- side 373 187 112 74

- top 13 6 4 3

Size - large 282 141 85 56

- medium 426 213 128 85

- small 299 150 89 60

Total 1007 504 302 201

Learner specification. As announced in Section 5.1, we will apply transfer learning on VGG16.

Since our dataset is relatively similar to that of ImageNet, we expect that a big part of the pre-

trained model is transferable to our application. Therefore, we choose to keep the complete con-

volutional part of the model as it is and only retrain the fully-connected layers. Initially, we also

do not apply fine-tuning on the convolutional layers in order to prevent overfitting on our relatively

small dataset. For the first two fully-connected layers, we use a width of only 1024 in order to

reduce the number of parameters in these layers with almost 78%, from 120 to 27 million. Ob-

viously, the last fully-connected layer also becomes much smaller, since we have at most C = 4

classes in our applications (instead of C = 1000). When C = 2, as for recognizing cars and car

damage, we use a width of 1 instead of C in the last layer with sigmoid activation (as explained

in Section 2.3.2). All fully-connected layers are initialized randomly as no obvious transfer of

weights is possible due to their size being different from their respective original counterparts. We

stick to this framework in all our tasks and leave experimenting with other architectures for future

research. As stated in Section 1, we focus on tweaking certain hyper-parameters in order to find

out how they can influence the model’s performance. In particular, we will mainly experiment

with the batch size B, the learning rate α, and the amount of regularization (mainly dropout). In

addition, we will do a few experiments with the number of fully-connected layers, the types of

data preprocessing, and the fine-tuning of the convolutional part. In all cases, we will use a NAG

optimizer with Nesterov momentum parameter µ = 0.9 and a cross-entropy loss function, similar

to what Simonyan and Zisserman (2014) used for (pre-)training VGG16.

30

MSc Internship report - J. de Deijn 5. RESEARCH APPROACH

Implementation details. For developing our models, we decided to use Keras, which is a high-

level deep learning library written in Python that runs on top of (in our case) TensorFlow.10 It

enables fast experimentation with (recurrent and convolutional) neural networks and also contains

a collection of pre-trained deep learning models, among which VGG16. We can therefore just

import this model pre-trained on the ILSVRC-2014 dataset, drop the last fully-connected layers

and train a new classifier on top of the remaining network. We started computations on a local Intel

Core i7 CPU with 12GB RAM. However, the VGG16 model contains tens of millions of weights,

of which at least 25 million are to be optimized every time we want to train a model under certain

specifications. This takes so many iterations of our gradient descent optimizer to converge to a

good classifier, that training a model on our local CPU takes over a week. We therefore searched

for a GPU computing platform to speed up learning, which we found at SURFsara. They were

testing a new GPU cluster on their Lisa system and provided us access to this cluster (for which

we are very grateful). It has 23 Intel Xeon Bronze 3104 GPUs with 11GB GDDR5X (VRAM).

We could store up to 200GB of files on our account and training a model now took only up to a

few hours. For more details on the Lisa system, we refer to the website of SURFsara.

5.3 Learning strategy

Initial learner

Train k epochs

Good results? Adapt learner

Train longer

Final model

No

Yes

Figure 5.1: Illustration of our learning approach.

In all experiments following in Section 6, our

overall approach will be to start by train-

ing some specified initial model, matching

(largely) the initial learner as given in the pre-

vious subsection. We train this model for k

epochs, where k is small, but large enough for

allowing the learner to roughly converge. In

this way, we seek to prevent spending a large

amount of time on model specifications that al-

ready turn out to be bad in a relatively early

stage of training. As long as the validation

performance of the trained model is not satis-

factory, we adapt the hyper-parameters of the

learner and restart training for k epochs (again with random initialization of the fully-connected

layers). Once the validation performance is good, we train the corresponding model somewhat

longer (possibly with a reduced learning rate) to give it a chance to converge even closer to the

(local) optimum. Then, we take the model at the point at which the validation performance is best

as our final model. Finally, the test set is fed to this final model to get an unbiased estimate of the

model’s performance. This overall approach is illustrated in Figure 5.1.
10We use Keras version 2.1.3, in Python 2.7.14, with TensorFlow 1.5.0 as backend.

31

MSc Internship report - J. de Deijn 5. RESEARCH APPROACH

It is important to note that we train every learner only once. Therefore, it could be that one learner

(incorrectly) comes out better than another due to chance, since both initialization and optimization

involve randomness. Multiple trials would be necessary to enable stronger conclusions on some

learner being (significantly) better than another. Unfortunately, time constraints make this impos-

sible for us. In order to save more time, we use some diagnostics to adapt the hyper-parameters in

a theoretically founded way, hopefully leading us to a good learner faster. In the next paragraphs,

we discuss some good practices for this given by Karpathy (2017). In particular, this will allow us

to tweak the amount of regularization, the learning rate and the batch size more effectively.

Figure 5.2: Illustration of how the performance devel-

ops under strong or little overfitting (Karpathy, 2017).

Detecting overfitting. We can get an indi-

cation of the extent to which a classifier over-

fits the training data by plotting the chosen

metric function (e.g. accuracy) for both the

training and validation data and observing the

difference between the two, as shown in Fig-

ure 5.2. When the model overfits too much,

it is probably desirable to increase regulariza-

tion or, if possible, to collect more data. On

the other hand, when the performances for

training and validation are very similar, it is

affordable to overfit somewhat more in order

to improve the overall performance (e.g. by adding complexity to the model). Obviously, the loss

function can be used similarly for this purpose as well.

Figure 5.3: Illustration of how the loss develops un-

der different learning rates (Karpathy, 2017).

Detecting a bad learning rate. Figure 5.3

shows how we can also derive from the loss

development whether we need to change the

learning rate. When it is too low, the learner

often just converges to the closest local op-

timum and, moreover, does so very slowly.

High learning rates often induce a quick ini-

tial decay of loss, but are unlikely to end up in

a (local) optimum, because the steps taken in

the optimization landscape are too big. Karpa-

thy (2017) also states that, as a rule-of-thumb,

the average relative parameter update r should

satisfy r ≈ r∗ = 10−3. We will therefore

adapt the learning rate α after every epoch of training as αnew = αold · (10−3/r).

32

MSc Internship report - J. de Deijn 5. RESEARCH APPROACH

Figure 5.4: Example of how the loss per batch may

develop under a good learning rate, but somewhat low

batch size (Karpathy, 2017).

Detecting a bad batch size. Finally, it is in-

teresting to note that the development of the

loss function is also useful for assessing the

batch size. In Figure 5.4, a loss function is

plotted per mini-batch (so it shows the loss

after every step taken by the gradient descent

algorithm). The trend in this plot indicates

that the learning rate is probably good, but the

graph fluctuates heavily. This fluctuation in-

dicates that the batch size can be taken a little

higher, resulting in a smoother loss function

development due to each gradient descent step

being based on more data.

33

MSc Internship report - J. de Deijn 6. EXPERIMENTS AND RESULTS

6 Experiments and results

In this section we perform the actual experiments, starting with recognizing cars in Section 6.1 and

then increasing the complexity to recognizing car damage in Section 6.2 and, finally, classifying

also the type, location and severity of a recognized damage in Section 6.3. The results are given

and discussed along the way. In all experiments, we use the learner specification and strategy as

described in the previous section. Only the exact values of some hyper-parameters with which we

will experiment are given in this section, when we apply the corresponding model.

6.1 Recognizing cars

Initial model and adjusting the batch size and learning rate. Initially, we use an initial learn-

ing rate of α = 10−6, a batch size of B = 64 and we apply dropout with probability p = 0.75 of

a node being present during training in the first two fully-connected layers. Furthermore, we only

scale the input data (no zero-centering) and we train only the three fully-connected layers at the

end of the network. Finally, we assess our models using the accuracy metric, giving around 64%

performance when always predicting ‘no car’. Using these specifications, we train the models for

k = 25 epochs. A plot of the loss function per mini-batch for the initial model is given in Fig-

ure 6.1a. It looks similar to the one in Figure 5.4 regarding the amount of fluctuation, so we can

conclude here that we may increase the batch size. In addition, it stands out that the decreasing

trend looks linear for quite some time and weakens only after about 15 epochs, resembling the

blue curve in Figure 5.3. This indicates that the learning rate may be increased. Based on these

observations, we restart training the same model, but now with batch size B = 128 and aiming at

a higher average relative parameter update r∗ = 10−2, with an initial learning rate of α = 10−5.

The loss function of this second attempt is given in Figure 6.1b.

(a) B = 64, α = 10−6, r∗ = 10−3. (b) B = 128, α = 10−5, r∗ = 10−2.

Figure 6.1: The loss per mini-batch for the initial model as well as after the first adjustments as given.

34

MSc Internship report - J. de Deijn 6. EXPERIMENTS AND RESULTS

Comparing the two loss functions in Figure 6.1, multiple interesting differences can be observed.

First, we see the consequence of the random initialization of the fully-connected layers, as the

second loss function clearly starts lower than the first one. However, the first loss function has

already catched up in the first epoch, despite of that it has a smaller initial learning rate. This

indicates that a bad random initialization is not necessarily problematic, certainly when using

a small learning rate. On the other hand, the larger the learning rate, the higher is the risk of

diverging to a hopeless region of the optimization landscape when the random initialization is bad.

This can be detected quickly, since the loss function ‘explodes’ in this case (recall Figure 5.3).

We can replicate this behaviour by training three new models for a few epochs, all with the same

specification except from the learning rate. From the result in Figure 6.2, we conclude that it seems

safe to assume that, as long as the loss function does not explode, a single run of training gives a

reasonably good indication of the quality of a learner, regardless of its initialization.

Figure 6.2: Loss functions for three models, all with the same specifications as in Figure 6.1b except from

the learning rate, which is specified in the legend. Clearly, the learning rate corresponding to the blue line

is too large, that of the green one is somewhat small, and that of the orange one is good.

Another observation from Figure 6.1 is that the second loss function does not improve much

during the first epoch. This suggests that the initial learning rate may be too small with respect to

the desired average relative update r∗. This is confirmed by Figure 6.3b, showing an increasing

pattern for our learning rate, instead of a large, decreasing learning rate, which is commonly used

in literature (e.g. Srivastava et al. (2014); Simonyan and Zisserman (2014)). From Figure 6.3a we

conclude that the same holds for our initial model, so in both cases we could probably better use a

higher initial learning rate α. Since the overall trend in Figure 6.1b looks good, it seems better to

aim at an average relative parameter update of r∗ = 10−2 in this case.

35

MSc Internship report - J. de Deijn 6. EXPERIMENTS AND RESULTS

(a) B = 64, α = 10−6, r∗ = 10−3. (b) B = 128, α = 10−5, r∗ = 10−2.

Figure 6.3: The learning rate we used per epoch in training our first two models as given.

Drop fully-connected layer. Since the second model already has a validation accuracy of 98.75%,

we only try one more model. Here, we use one less fully-connected layer, as it is found that this

can be done without a significant performance downgrade (see e.g. Hoffer et al. (2018)), while

it reduces the number of (trainable) parameters. As for the second model, we use batch size

B = 128 and we aim at average relative update of r∗ = 10−2, but now with an initial learning rate

of α = 10−3. Figure 6.4b shows that the model heavily benefits from this higher initial learning

rate. With respect to the model from Figure 6.4a, it already converges to a reasonable fit during the

first epoch, resulting in a higher performance after 25 epochs as well, with a validation accuracy of

99.01% (recall from Figure 5.3 that this is not necessarily the case). Since this last model performs

best, we choose to train this one for some longer, aiming now at a smaller average relative update

r∗ = 10−3 as we already seem to be close to a (local) optimum. Based on the validation data, the

best model is reached after a total of 40 epochs, with an accuracy of 99.14%.

(a) α = 10−5, r∗ = 10−2, 3 FC layers. (b) α = 10−3, r∗ = 10−2, 2 FC layers.

Figure 6.4: The accuracy per epoch for the two given models. Note that, especially in earlier epochs, the

validation accuracy is sometimes higher than the training accuracy, which may indicate that the validation

data has lower inner variance, making it ‘easier’ to predict.

36

MSc Internship report - J. de Deijn 6. EXPERIMENTS AND RESULTS

Figure 6.5: Confusion matrix representing how well our

final model predicts whether the test images (exluding

those of the damaged cars) contain a car or not.

Results. The final model as described

above is evaluated on the test set, result-

ing in the confusion matrix in Figure 6.5.

From this figure, we can extract that the

test accuracy is 99.04%. Regarding that

our goal is only to demonstrate the poten-

tial power of (partially transferred) Conv-

Nets in this context, this is a satisfac-

tory performance. Although the images

of damaged cars are not used to train this

model, it also recognizes 89.1% of them

correctly as cars. Taking a look at the

false predictions, we see that the model

generally has difficulties with images of very low resolution, car types that are uncommon in the

training data (e.g. jeeps or sports cars), and car images with the viewpoint above the car. Regard-

ing the non-car false predictions, we see that four fire engine images are contained, which is a

category we apparently missed when excluding vehicle-like categories from the non-car dataset.

In addition, we find some images that are labelled as ‘no car’, but which do contain a car (see

Figure 6.6). Our model cannot really be blamed for being wrong here.

(a) Camel. (b) Kayak. (c) Traffic light.

Figure 6.6: Some non-car labelled images that have been predicted as car images. The original Caltech-256

label is given below the images. We can conclude that our model is not very wrong here.

37

MSc Internship report - J. de Deijn 6. EXPERIMENTS AND RESULTS

6.2 Recognizing damage

Initial model and zero-centering. Because of our observations in the previous subsection, we

immediately use only two fully-connected layers here. Since we only have 504 training images

with damaged cars, we initially use no dropout or other regularization technique. We first want to

see if the model can learn to perform well on the training set and what it then does for the validation

set. We start with a batch sizeB = 64, we aim at an average relative update r∗ = 10−3 with initial

learning rate α = 10−4 and we scale the input data as before. In our first experiments here, we

test the effect of zero-centering the input data. We train the models for k = 25 epochs, after which

we look how the different models perform based on the MCC metric, since only 5.8% of the

images contains a damaged car. The first results, shown in Figure 6.7, do not show big differences

between applying zero-centering on the input data or not. Since the variant with zero-centering has

Figure 6.7: The validation MCC of the initial model,

with and without zero-centering the input data. Both

end up around 0.8 after 25 epochs.

a slight advantage at the end (despite of a

worse initialization) and because Simonyan

and Zisserman (2014) also use it in their

VGGNet implementation, we decide to apply

zero-centering in all our further experiments.

An extensive analysis of whether this makes

a significant difference is beyond the scope of

this thesis, since our main goal is to show the

potential of ConvNets in this context, rather

than the exact specifications that work best. Fi-

nally, Figure 6.8 indicates that we may also ex-

periment with a higher batch size and learning

rate again.

(a) Without zero-centering. (b) With zero-centering.

Figure 6.8: The loss per mini-batch for the initial model. In both cases, the high amount of fluctuation and

slow decay indicate that we may experiment with larger batch sizes and learning rates.

38

MSc Internship report - J. de Deijn 6. EXPERIMENTS AND RESULTS

Adding regularization. First, the results in Figure 6.9 show that the initial model with a higher

batch size and learning rate quickly yields very promosing performance. However, it is also clear

that this model overfits the training data to such extent that the validation loss even tends to start

increasing. We therefore add dropout (with p = 0.5) in the first fully-connected layer and retrain

the model again. In addition, we also recover the model from Figure 6.9 after 16 epochs of training

(when its validation performance was highest) and continue training from there on, but now with

dropout (p = 0.5) and relative update r∗ = 10−3. Figure 6.10 shows that this regularization

has (in both cases) not the desired effect of increasing the validation performance. Figure 6.11

shows that the gap between training and validation performance did get smaller with respect to the

case without regularization (recall Figure 6.9), but primarily due to a lower training performance.

Nevertheless, model A here slightly improves to a validation MCC of 0.9328 after 46 epochs.

Figure 6.9: The loss (left) and MCC (right) of the initial model with zero-centering, but with higher batch

size B = 128, relative update r∗ = 10−2 and initial learning rate α = 10−3.

Figure 6.10: The loss (left) and MCC (right) for two models similar to the one in Figure 6.9, but with

dropout (p = 0.5) in the first fully-connected layer. The only difference is that one model (A) is initialized

using the model from Figure 6.9 after 16 epochs (from that point onwards using r∗ = 10−3) and the other

(B) is initialized randomly in the fully-connected layers and uses r∗ = 10−3 after 25 epochs.

39

MSc Internship report - J. de Deijn 6. EXPERIMENTS AND RESULTS

Figure 6.11: The loss (left) and MCC (right) of model B from Figure 6.10. The gap between training and

validation performance is smaller than for its equivalent without dropout from Figure 6.9, but this is mainly

due to a lower training performance. On the other hand, the validation loss does not tend to increase here.

Applying fine-tuning. The fact that regularization only reduces the training performance for the

previous models indicates that, in order to make it generalize better, we should: (i) collect more

data, (ii) make our model more complex (e.g. by adding more layers), or (iii) make the current

model more flexible by fine-tuning also the convolutional part of the network. Since collecting

more data is not really contributing to the goals of this research (as we do not need to deliver a

deployable tool) and we prefer to stick to our current architecture, we choose to try fine-tuning the

full model. This increases again the risk of overfitting, so we probably need strong regularization

in this case. We therefore use dropout with probability p = 0.25 of keeping a node. We further

use the same specifications as for the previous model, with the only other difference that we use

batch size B = 64 for implementation purposes (we get memory issues if we use a larger batch

size). Figure 6.13a shows that this model (C) is quite unstable and even diverges after some time.

Figure 6.12: The MCC of model A (recall Fig-

ure 6.10). The validation MCC has its peak after 46

epochs at 0.9328, where the training MCC is 0.9876.

A new model (D) with dropout ratio p = 0.5

(so weaker regularization), eventually diverges

as well, but it gives a very good validation

MCC of 0.9377 after 6 epochs. Hence, we

decide to retrain this model again from this

point onwards, but now with a lower relative

update r∗ = 10−3. Figure 6.13b shows that

this results in a more stable model, but further

improvements using fine-tuning seem hard to

achieve. Nevertheless, we note that the valida-

tion MCC after 6 epochs is slightly higher than

we achieved earlier with model A (0.9377 ver-

sus 0.9328). However, for model D the peak

40

MSc Internship report - J. de Deijn 6. EXPERIMENTS AND RESULTS

in validation MCC can also be partly due to luck, since it is ‘much’ higher here than in any other

epoch and even higher than the training MCC at that point as well. Since the performance of model

A looks more reliable in that sense (see Figure 6.12), we argue that this model is more likely to

generalize better. Hence, we choose model A (after 46 epochs of training) as our final model for

recognizing car damage.

(a) Models C and D. (b) Model D retrained after 6 epochs.

Figure 6.13: The MCC of models C and D with respective dropout rates p = 0.25 and p = 0.5 (left), and

the retrained variant of model D after 6 epochs (right) with a lower learning rate.

Figure 6.14: Confusion matrix representing how well our

final model predicts whether the cars on the test images are

damaged or not.

Results. The confusion matrix in Fig-

ure 6.14 shows the test performance of the

final model as described above. From this

figure, we can extract that the test MCC

is 0.9037. This scales to a 95.2% perfor-

mance, which is beyond our expectations.

Despite that only 5.8% of our images con-

tain damaged cars, our model has a recall

of 89.6%, meaning that it recognizes this

percentage of the damaged cars as such.

The test accuracy is 99.0%, but, as men-

tioned before, this is not a very reliable

metric here as always predicting ’undam-

aged’ would already give 94.2% accuracy. Looking at some examples of wrongly predicted images

(see e.g. Figure 6.15), we observe that the dataset contains images that are hard to predict (some-

times even for humans). These include, for instance, images of oddly posed, shaped or illuminated

cars and images with overlapping advertisements. Supposing that insurance companies are able

to obtain a much better image dataset, both in size and quality, we believe that our approach has

the potential to create models that perform well enough for deployment. Table 6.1 summarizes all

experiments performed in this subsection.

41

MSc Internship report - J. de Deijn 6. EXPERIMENTS AND RESULTS

Table 6.1: Summary of the experiments. More details of the learners are specified in the text.

Attempt 1 Attempt 2 Attempt 3 Model A Model B Model D

epochs (k) 25 25 25 50 50 25

batch size (B) 64 64 128 128 128 64

average relative update (r∗) 10−3 10−3 10−2 10−2/10−3 10−2/10−3 10−2

initial learning rate (α) 10−4 10−4 10−3 10−3 10−3 10−3

dropout (p) 1 1 1 1/0.5 0.5 0.5

zero-centering × X X X X X

fine-tuning × × × × × X

validation MCC 0.7989 0.807 0.9218 0.9328 0.9188 0.9377

(a) Missing license plate. (b) Advertisement. (c) Odd pose.

Figure 6.15: Some undamaged labelled images that have been predicted as damaged car images. This

illustrates that our dataset contains images that are hard to predict (for varying reasons).

6.3 Classifying, localizing and quantifying damage

Initial model. Since we have only 504 training images for the final three tasks (recall Table 5.3),

we assume that fine-tuning is not an option here. Moreover, we probably need strong regularization

even when we do not fine-tune the convolutional part of our models. To start with, we use dropout

with p = 0.5 in the first fully-connected layer of our usual architecture with only two fully-

connected layers. We apply both zero-centering and scaling on the input data, we use batch size

B = 64 and we aim at a relative update of r∗ = 10−2 with initial learning rate α = 10−3. Because

of the limited data, an epoch of training can be done much faster now, but we also need to train

for more epochs to converge. Initially, we therefore train all learners for 50 epochs here, which

can be done in around 15 minutes per learner. Since the data is not extremely unbalanced, the

accuracy metric suffices for now.11 From Figure 6.16, we can conclude that the results are not

(yet) as desirable, and that using a higher batch size B = 128 and a lower update ratio r∗ = 10−3

with initial learning rate α = 10−4 may stabilize the learning process, hopefully leading to higher

performances. These changes indeed turn out to have the desired effects, so we continue training

these models for a total of 500 epochs, giving the results as shown in Figure 6.17.
11In practice, other metrics are would be preferred in case we have under-represented categories (such as damage on

‘top’ of the car here). For example, generalizations of the MCC and F1-score exist for multi-class problems.

42

MSc Internship report - J. de Deijn 6. EXPERIMENTS AND RESULTS

(a) Type. (b) Location. (c) Size.

Figure 6.16: The accuracy of the initial model for classifying the type, location and size of the car damage.

All plots are very unstable, so we may need a higher batch size and/or use a lower learning rate.

(a) Type. (b) Location. (c) Size.

Figure 6.17: The accuracy of the initial model for classifying the type, location and size of the car damage,

but with higher batch size and lower learning rate than in Figure 6.16. The validation accuracy for classi-

fying the damage type peaks at 76.2% (after 235 epochs), for the location at 69.9% (after 240 epochs), and

for the size at 63.7% (after 408 epochs).

Adding regularization. We observe from Figure 6.17 that the previous model is able to fit the

training data very well, but without generalizing well enough to also achieve high validation per-

formance (although the results are already quite good regarding the amount of available data).

Therefore, the only experimenting we will do here is with the amount of regularization. As a first

attempt, we add batch normalization in the fully-connected layers, but the results in Figure 6.18

indicate that this is not a successful approach here. Apparently, this batch normalization deforms

the transferred features from the convolutional part in such a way that they lose a large part of their

information. We have to be careful with generalizing this result, but it at least suggests that, al-

though batch normalization can be a good regularizer when training models from scratch, it is not

always directly applicable when transferring models for which batch normalization was not part of

the original architecture. Hence, we choose to try dropout with a stronger rate p = 0.25, keeping

the rest of the model specifications equal to the model corresponding to Figure 6.17. The results

in Figure 6.19 show smaller gaps between training and validation accuracy, but only for the type

and location of damage the validation accuracy (slightly) increases using stronger dropout.

43

MSc Internship report - J. de Deijn 6. EXPERIMENTS AND RESULTS

(a) Type. (b) Location. (c) Size.

Figure 6.18: The accuracy of a similar model for classifying the type, location and size of the car damage

as in Figure 6.17, but with an extra fully-connected layer and batch normalization in the first two fully-

connected layers. We needed to use a lower batch size B = 64 here to prevent memory issues again.

(a) Type. (b) Location. (c) Size.

Figure 6.19: The accuracy of a similar model for classifying the type, location and size of the car damage

as in Figure 6.17, but with dropout rate p = 0.25. The validation accuracy for classifying the damage type

peaks at 77.7% (after 412 epochs), for the location at 70.3% (after 449 epochs), and for the size at 63.3%

(after 318 epochs).

Figure 6.20: Confusion matrix representing how

well our model predicts the type of car damage.

Figure 6.21: Confusion matrix representing how

well our model predicts the car damage location.

44

MSc Internship report - J. de Deijn 6. EXPERIMENTS AND RESULTS

Figure 6.22: Confusion matrix representing how

well our model predicts the size of a car damage.

Results. Figures 6.20 to 6.22 show the confu-

sion matrices resulting from evaluating the test

data. For all three tasks, we use the respective

models with dropout rate p = 0.25 as described

in Figure 6.19. Although the model with p = 0.5

has a slightly higher validation accuracy for pre-

dicting the size, we expect the one with p = 0.25

to generalize better in this case as well, since it

overfits less. For these multi-class problems, we

can compute the accuracy by counting the num-

ber of correctly predicted examples and divide it by 201, the size of our test set. This results in

that our model predicts the car damage type, location and size with respectively 75.1%, 68.7% and

54.2% accuracy. Apparently, there is a big difference between the difficulties of these three tasks.

This can be explained by the fact that the different types of damage are more discriminative than

that of the size. For example, the difference between a dent and broken glass is very clear, whereas

the boundary between medium and small damages is hard to define. In the latter case, there is also

a bias caused by subjectivity in the manual labelling process. This is the case for more categories,

such as dents and scratches, which often appear together, while we can only assign a single label

to each example. Also, it is hard to define the boundaries between a damage at the side of a car

and one at the front or rear. These biases clearly come back in the confusion matrices as well. The

only pair of categories that turns out difficult to distinct without having this subjectivity bias, is

damages at the front versus ones at the rear of a car, which is also not surprising since these can

look rather similar. Furthermore, Figure 6.23 give some examples of incorrectly predicted images.

The left one is just dented, showing a human mistake in labelling the image. The middle one has

a large scratch at the side (which may be hard to see), but the model predicts ‘rear’. This indicates

that the model may not predict the location of the damage itself, but rather the view of the car on

the image. The right one is an example of the described subjectivity issue, since we could also

label this image as ‘medium’ damage. Despite of these issues, the results give good hope that

ConvNets can potentially perform well on these tasks when there is more and better data.

(a) Type: hail. (b) Location: side. (c) Size: large.

Figure 6.23: Some examples with their original label that have been predicted incorrectly.

45

MSc Internship report - J. de Deijn 7. CONCLUSIONS AND RECOMMENDATIONS

7 Conclusions and recommendations

7.1 Conclusions

Recognizing car damage. We have taken some good first steps for the application of ConvNets

in the context of car damage recognition. Although recognizing cars has been done before, we

showed that it is relatively easy to achieve very good results here (99.0% accuracy) using transfer

learning. Recognizing car damage is a bit more difficult, partly because pre-trained models are

usually not trained on doing this task, but mainly because our image dataset for damaged cars

was very limited in size. Nevertheless, we achieved a Matthews correlation coefficient of 0.904

using our approach with transfer learning VGG16, so this has great potential to give excellent

performance when the dataset is richer, both in size and quality. In that sense, our mission to show

the potential of ConvNets in this context can be considered a success. We have even attempted

to take one step further: we classified the type, location and size of the damage with respectively

75.1%, 68.7% and 54.2% accuracy. This is much better than random (which would give around

33% accuracy in all cases), but large improvements have to be made here in order to get results

that are good enough for deployment. A larger and better image dataset is expected to enable the

training of much better models. Preferably, such a dataset should contain images that are actually

used for car damage claims, with labels representing more exact classifications of the damage.

Not only would this heavily reduce the subjectivity bias in the labels, but it would also allow more

detailed classifications than the few classes we used in our experiments.

Influence of hyper-parameters. We have seen that we can benefit from adapting the hyper-

parameters in a theoretically founded way, based on diagnostics. This allowed us to obtain good

results with a limited number of experiments. Especially, good specifications of the learning rate,

batch size and the amount of regularization can be determined efficiently by keeping track of the

loss and metric function during training. The smaller the learning rate and the larger the batch

size, the more stable the learning process is. On the other hand, a small learning rate does not

necessarily give better results and a large batch size is more computationally expensive. Dropout

is a very strong regularizer, but in future research it may also be interesting to try using dropout

alongside a (L2) regularization term. Batch normalization is probably only useful when training a

ConvNet from scratch or when the transferred model also used this during training. Fine-tuning

transfered parameters can give great results according to literature, but this was not the case for us

due to our limited dataset. Finally, we did not observe the added value of zero-centering the data

beforehand, while scaling was very important. When using transfer learning, our advice would be

to use the same types of data preprocessing as for pre-training the transfered model. Besides the

mentioned hyper-parameters, it may be interesting to experiment with other model architectures

and optimization algorithms in future work as well.

46

MSc Internship report - J. de Deijn 7. CONCLUSIONS AND RECOMMENDATIONS

7.2 Recommendations

Adding bounding boxes. Although we have attempted to give a few classifications of the dam-

age, our model for recognizing damage is still a bit of a ‘black box’, because it does not give an

indication of the reason why it gives a certain prediction. A possible approach for improving the

interpretability of the model is to add bounding boxes to our predictions. That is, when the model

predicts that the car on an image is damaged, we can add a box to indicate what rectangular area of

the image causes the model to predict ‘damaged’. This can be done relatively easy by evaluating

this image multiple times, each time making another rectangular area of the image black. When

the model changes its prediction to ‘undamaged’, we know that the presumed damage lies in this

covered area. Bounding boxes are also an additional element in the ILSVRC (since 2013 this task

is referred to as object detection), so inspiration of how this exactly works can be obtained, for

example, from the work of its best contestants again.

Combining ConvNets with Jayawardena’s work. Although we are not able to replicate the

full method of Jayawardena (2013) without the availability of 3D CAD models, we are able to

replicate the reflection detection part of their method. As mentioned in Section 2.1, this procedure

at least succeeds in classifying actual damages as edges on the surface of vehicle panels, which

means that all image edges that are classified as inter-object reflection are (almost) certainly not

damage. A possible approach in future research may therefore be to first apply local smoothing

on images around edges that are classified as reflection, before using these images as input for

ConvNet learners. This can be seen as a pre-processing operation that may help preventing the

learner to incorrectly classify reflections as damage.

Ensemble learning. We included a subsection on ensemble methods, because we expect that

they can further improve the results we achieved so far. We have not been able to apply these

methods yet, but especially boosting is intuitively a good addition to our approach as it can stimu-

late the learning of specific patterns that do not appear frequently, but that do need to be recognized

as damage. Future work can probably benefit from such methods.

Embrace and take advantage of the ample opportunities. Transfer learning provides great

opportunities for applying ConvNets to a wide variety of problems in practice. We have (once

again) demonstrated the only requirements here are that the right resources and sufficient data are

available. When, for example, clients in the car insurance industry are willing to cooperate in

providing primarily the required data, then PwC now has gained valuable knowledge and tools for

doing very interesting projects in increasing the efficiency and quality of, among else, parts of the

car damage claim handling process.

47

MSc Internship report - J. de Deijn REFERENCES

References

Batista, G. E., R. C. Prati, and M. C. Monard (2004). A study of the behavior of several methods

for balancing machine learning training data. ACM SIGKDD explorations newsletter 6(1), 20–

29.

Boureau, Y.-L., F. Bach, Y. LeCun, and J. Ponce (2010). Learning mid-level features for recog-

nition. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp.

2559–2566. IEEE.

Breiman, L. (1996). Bagging predictors. Machine learning 24(2), 123–140.

Chawla, N. V. (2009). Data mining for imbalanced datasets: An overview. In Data mining and

knowledge discovery handbook, pp. 875–886. Springer.

Collobert, R., J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa (2011). Natural

language processing (almost) from scratch. Journal of Machine Learning Research 12(Aug),

2493–2537.

Controlexpert (2015). EasyClaim - claims settlement in no time. Available:

www.controlexpert.com [Last accessed: 16 January 2018].

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of

control, signals and systems 2(4), 303–314.

Dahl, G. E., T. N. Sainath, and G. E. Hinton (2013). Improving deep neural networks for lvcsr

using rectified linear units and dropout. In Acoustics, Speech and Signal Processing (ICASSP),

2013 IEEE International Conference on, pp. 8609–8613. IEEE.

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009). Imagenet: A large-scale

hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.

IEEE Conference on, pp. 248–255. IEEE.

Domingos, P. (2012). A few useful things to know about machine learning. Communications of

the ACM 55(10), 78–87.

Domingos, P. (2017, October). Lecture notes in data mining / machine learning. Week

1: Introduction. Paul G. Allen School of computer science & engineering. Available:

www.courses.cs.washington.edu [Last accessed: 5 December 2017].

Freund, Y. and R. E. Schapire (1995). A desicion-theoretic generalization of on-line learning

and an application to boosting. In European conference on computational learning theory, pp.

23–37. Springer.

48

http://www2.controlexpert.com/en/products/for-insurance-companies/easyclaim/
https://courses.cs.washington.edu/courses/csep546/17au/slides/intro.pdf

MSc Internship report - J. de Deijn REFERENCES

Gorodkin, J. (2004). Comparing two k-category assignments by a k-category correlation coeffi-

cient. Computational biology and chemistry 28(5-6), 367–374.

Graves, A., A.-r. Mohamed, and G. Hinton (2013). Speech recognition with deep recurrent neural

networks. In Acoustics, speech and signal processing (icassp), 2013 ieee international confer-

ence on, pp. 6645–6649. IEEE.

Griffin, G., A. Holub, and P. Perona (2007). Caltech-256 object category dataset.

He, K., X. Zhang, S. Ren, and J. Sun (2015). Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification. In Proceedings of the IEEE international conference

on computer vision, pp. 1026–1034.

He, K., X. Zhang, S. Ren, and J. Sun (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778.

Hinton, G., O. Vinyals, and J. Dean (2014). Dark knowledge. Presented as the keynote in

BayLearn 2.

Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov (2012).

Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint

arXiv:1207.0580.

Hoffer, E., I. Hubara, and D. Soudry (2018). Fix your classifier: the marginal value of training the

last weight layer. In International Conference on Learning Representations.

Hu, J., L. Shen, and G. Sun (2017). Squeeze-and-excitation networks. arXiv preprint

arXiv:1709.01507.

Huang, G., Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger (2016). Deep networks with stochastic

depth. In European Conference on Computer Vision, pp. 646–661. Springer.

ImageNet (2017). ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Available:

www.image-net.org [Last accessed: 16 January 2018].

Intel Labs (2016). Bringing parallelism to the web with River Trail. Available:

www.intellabs.github.io [Last accessed: 24 February 2018].

Ioffe, S. and C. Szegedy (2015). Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–

456.

Jay, P. (2017). Back-propagation is very simple. Who made it complicated? Available:

www.becominghuman.ai [Last accessed: 28 February 2018].

Jayawardena, S. (2013). Image based automatic vehicle damage detection.

49

http://image-net.org/challenges/LSVRC
http://intellabs.github.io/RiverTrail/tutorial/
https://becominghuman.ai/back-propagation-is-very-simple-who-made-it-complicated-97b794c97e5c

MSc Internship report - J. de Deijn REFERENCES

Johnson, J. (2013, March). General regression and over fitting. Available:

www.shapeofdata.wordpress.com [Last accessed: 18 December 2017].

Judd, J. S. (1990). 4. The intractability of loading; 5. Subcases. In Neural network design and the

complexity of learning, pp. 38–55. MIT press.

Karpathy, A. (2017, Spring). Course notes of convolutional neural networks for visual recogni-

tion. Stanford University class CS231n. Available: www.cs231n.github.io [Last accessed: 8

December 2017].

Keras (2018). Keras: The python deep learning library. Available: www.keras.io [Last accessed:

28 February 2018].

Kingma, D. and J. Ba (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Koza, J. R., F. H. Bennett, D. Andre, and M. A. Keane (1996). Automated design of both the topol-

ogy and sizing of analog electrical circuits using genetic programming. In Artificial Intelligence

in Design’96, pp. 151–170. Springer.

Krause, J., M. Stark, J. Deng, and L. Fei-Fei (2013). 3d object representations for fine-grained

categorization. In 4th International IEEE Workshop on 3D Representation and Recognition

(3dRR-13), Sydney, Australia.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). Imagenet classification with deep convolu-

tional neural networks. In Advances in neural information processing systems, pp. 1097–1105.

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel

(1989). Backpropagation applied to handwritten zip code recognition. Neural computation 1(4),

541–551.

Lin, Y., F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. Huang (2011). Large-scale

image classification: fast feature extraction and svm training. In Computer Vision and Pattern

Recognition (CVPR), 2011 IEEE Conference on, pp. 1689–1696. IEEE.

Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of t4

phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure 405(2), 442–451.

Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of the ACM 38(11),

39–41.

Nair, V. and G. E. Hinton (2010). Rectified linear units improve restricted boltzmann machines. In

Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814.

Nesterov, Y. (1983). A method for unconstrained convex minimization problem with the rate of

convergence o (1/kˆ 2). In Doklady AN USSR, Volume 269, pp. 543–547.

50

https://shapeofdata.wordpress.com/2013/03/26/general-regression-and-over-fitting/
http://cs231n.github.io/
https://keras.io/

MSc Internship report - J. de Deijn REFERENCES

PwC (2015, January). Onze juridische structuur. Available: www.pwc.nl [Last accessed: 16

January 2018].

Python (2018). Python. Available: www.python.org [Last accessed: 28 February 2018].

Ramachandran, P., B. Zoph, and Q. V. Le (2017). Swish: a self-gated activation function. arXiv

preprint arXiv:1710.05941.

Raschka, S. (2014). Confusion matrix. Available: www.rasbt.github.io [Last accessed: 24 January

2018].

Razavian, A. S., H. Azizpour, J. Sullivan, and S. Carlsson (2014). Cnn features off-the-shelf: an

astounding baseline for recognition. In Computer Vision and Pattern Recognition Workshops

(CVPRW), 2014 IEEE Conference on, pp. 512–519. IEEE.

Ripley, B. D. (1996). Pattern recognition and neural networks, pp. 354. Cambridge university

press.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). Learning representations by back-

propagating errors. nature 323(6088), 533.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, et al. (2015). Imagenet large scale visual recognition challenge. International

Journal of Computer Vision 115(3), 211–252.

Sánchez, J. and F. Perronnin (2011). High-dimensional signature compression for large-scale im-

age classification. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference

on, pp. 1665–1672. IEEE.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks 61,

85–117.

Shearer, C. (2000). The crisp-dm model: the new blueprint for data mining. Journal of data

warehousing 5(4), 13–22.

Sill, J., G. Takács, L. Mackey, and D. Lin (2009). Feature-weighted linear stacking. arXiv preprint

arXiv:0911.0460.

Simonyan, K. and A. Zisserman (2014). Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

Sollich, P. and A. Krogh (1996). Learning with ensembles: How overfitting can be useful. In

Advances in neural information processing systems, pp. 190–196.

Springenberg, J. T., A. Dosovitskiy, T. Brox, and M. Riedmiller (2014). Striving for simplicity:

The all convolutional net. arXiv preprint arXiv:1412.6806.

51

https://www.pwc.nl/nl/onze-organisatie/pwc-in-nederland/onze-juridische-structuur.html
https://www.python.org/
https://rasbt.github.io/mlxtend/user_guide/evaluate/confusion_matrix/#example-3-multi-class-to-binary

MSc Internship report - J. de Deijn REFERENCES

Srivastava, N., G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014). Dropout:

a simple way to prevent neural networks from overfitting. Journal of machine learning re-

search 15(1), 1929–1958.

Steiner, J. (2013). The GIMP documentation. Available: www.docs.gimp.org [Last accessed: 25

February 2018].

SURFsara (2017). Description of the Lisa system. Available: www.surfsara.nl [Last accessed: 29

January 2018].

Sutskever, I. (2013). Training recurrent neural networks. University of Toronto, Toronto, Ont.,

Canada.

SV-Europe (2016). What is the CRISP-DM methodology? Smart Vision Europe. Available:

www.crisp-dm.eu [Last accessed: 5 December 2017].

Szegedy, C., S. Ioffe, V. Vanhoucke, and A. A. Alemi (2016). Inception-v4, inception-resnet and

the impact of residual connections on learning. In AAAI, Volume 4, pp. 12.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich (2014). Going deeper with convolutions. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 1–9.

Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna (2015). Rethinking the inception

architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 2818–2826.

TensorFlow (2018). TensorFlow: an open-source machine learning framework for everyone.

Available: www.tensorflow.org [Last accessed: 28 February 2018].

Ueda, N. and R. Nakano (1996). Generalization error of ensemble estimators. In Neural Networks,

1996., IEEE International Conference on, Volume 1, pp. 90–95. IEEE.

Wikipedia (2017). Cross-industry standard process for data mining. Available:

www.wikipedia.org [Last accessed: 27 February 2018].

Wirth, R. and J. Hipp (2000). CRISP-DM: Towards a standard process model for data mining.

In Proceedings of the 4th international conference on the practical applications of knowledge

discovery and data mining, pp. 29–39.

Wolpert, D. H. (1992). Stacked generalization. Neural networks 5(2), 241–259.

Yang, S. and A. Browne (2004). Neural network ensembles: combining multiple models for

enhanced performance using a multistage approach. Expert Systems 21(5), 279–288.

Yosinski, J., J. Clune, Y. Bengio, and H. Lipson (2014). How transferable are features in deep

neural networks? In Advances in neural information processing systems, pp. 3320–3328.

52

https://docs.gimp.org/index.html
https://userinfo.surfsara.nl/systems/lisa/description
http://crisp-dm.eu/reference-model/
https://www.tensorflow.org/
https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining

MSc Internship report - J. de Deijn REFERENCES

Zadeh, R. (2016, November). The hard thing about deep learning. Available: www.oreilly.com

[Last accessed: 12 December 2017].

Zeiler, M. D. and R. Fergus (2013). Visualizing and understanding convolutional networks. In

European conference on computer vision, pp. 818–833. Springer.

53

https://www.oreilly.com/ideas/the-hard-thing-about-deep-learning

	Contents
	Introduction
	Research goals
	Literature review
	Project plan

	Background
	Jayawardena's approach
	Machine learning
	Convolutional neural networks
	Representation
	Evaluation
	Optimization
	Regularization
	Ensemble methods

	ImageNet
	The challenge
	Top-performing algorithms

	Research methodology
	Data
	Research approach
	Transfer learning
	Experimental setup
	Learning strategy

	Experiments and results
	Recognizing cars
	Recognizing damage
	Classifying, localizing and quantifying damage

	Conclusions and recommendations
	Conclusions
	Recommendations

	References

