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Universiteit Amsterdam. It is an exploratory research focused on automated outlier

detection in 4D IVIM MRI. To this day this remains a challenging task that lacks a

golden standard solution as it is an insufficiently recognized issue within the medical

field.

By contributing to the development of an automated outlier detection model in 4D

IVIM MRI data, this research endeavors to provide healthcare professionals with a

framework to resolve severe image quality issues as well as providing useful insights on

which methods are suited for this. Ultimately, this improvement in image quality is

crucial for unlocking the full potential of quantitative MRI in patient care.

This research was conducted at the quantitative MRI group of the MRI-physics group,

which is part of the Department of Radiology and Nuclear Medicine of the Amsterdam

UMC. This group researches and develops new approaches to AI-driven quantitative

MRI. Advanced deep learning methods are deployed in order to develop these ap-

proaches.
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Summary

Context. Intravoxel Incoherent Motion (IVIM) MRI provides a unique and powerful

tool for unraveling the complexities of tissue micro-structure and perfusion dynamics,

thereby advancing our understanding of physiological processes and enhancing clinical

management strategies. However, despite the methodological advancements and the

potential of IVIM MRI to revolutionize medical diagnostics and treatment monitoring,

the technique faces significant challenges and is therefore rarely used clinically. A

significant portion of studies indicate that the noise within quantitative MRI datasets

poses significant challenges to data acquisition, processing, and interpretation, which

testifies of the need for substantial improvement in both quality and reliability.

Goal. Therefore, in a clinical setting, we want to detect artifactual measurements,

such that these outliers can be filtered out or, ideally, re-measured. By contributing

to the development of an automated outlier detection model in 4D IVIM MRI data,

this research endeavors to provide healthcare professionals with a framework to resolve

severe image quality issues as well as providing useful insights on which methods are

suited for this. Ultimately, this improvement in image quality is crucial for unlocking

the full potential of quantitative MRI in patient care.

Method. To achieve the research goal, we firstly conduct a thorough literature review.

Hereafter, we propose our first model - an algorithm for automatically labeling our

data using absolute z-scores. By manually validating its performance, it functioned as

a proof-of-concept prior to developing the second model - a deep learning solution to

automated 4D outlier detection. As deep learning solution, we test four different fully-

connected Neural Networks (the base models) and three Convolutional Neural Networks

(CNNs). All models are evaluated on in-vivo data. The architectures’ performance as

well as their suitability to the problem at hand are analysed both quantitatively and

qualitatively.

Results. The results of our proposed data labeling algorithm exhibit a promising

potential in detecting outliers. By manually performing a visual inspection of these

outliers, we can conclude that especially interleaved motion artifacts are detected very

well. Although, the model is able to capture local artifacts too. The outcomes of this

model were sufficient to function as proof-of-concept and to provide pseudo-labels for

the deep learning models. The results of the deep learning models show the potential

suitability of these models to this problem by being able to achieve perfect training

performances. However, the models strongly suffer from overfitting. Therefore, the



validation performances are uncertain and unstable. Moreover, there is a large discrep-

ancy between the achieved training and validation performance. Our preferred model

is the CNNreps, which uses one input channel per repeated measurement and is trained

batch-wise. This model suffers least from overfitting, shows the greatest potential, is

least uncertain and offers the greatest flexibility in terms of restrictions to input data

and model tuning. Lastly, the effects of regularising the CNNs are examined. For the

CNNreps, adding regularisation reduces the overfit, but slightly increased the model’s

uncertainty.

Conclusions. In conclusion, we introduced a promising and novel approach to au-

tomatically label outliers in IVIM MRI data based on absolute z-scores. Since these

outliers highly correlated with the presence of artifacts, this approach functioned as a

proof-of-concept and therefore, the resulting labels could be used as pseudo-labels to

facilitate the development of deep learning alternatives. These deep learning alterna-

tives, in the form of fully-connected Neural Networks and CNNs, showed potential to

function as automated outlier detection model for IVIM MRI data, but need significant

improvement in order to ensure reliability. The main limitation of the current models

is the significant overfit. Further research should therefore prioritise resolving the over-

fitting issue to enable an in-depth analysis of the reliability and real-time applicability

of the models.
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1 Introduction

Diffusion-Weighted Imaging (DWI) (Le Bihan and Breton, 1985; Merboldt et al., 1985;

Taylor and Bushell, 1985; Le Bihan et al., 1986) has become a widely adopted imaging

technique over the past few years (Baliyan et al., 2016), as it is able to provide a unique

insight into white matter architecture. Unlike traditional MRI methods that primarily

focus on anatomical imaging, diffusion MRI (dMRI) provides insights into the dynamic

behavior of water molecules across tissue types at a microscopic level - diffusion. Its

unparalleled sensitivity to microstructural changes makes it primarily suited for di-

agnosing and monitoring conditions such as tumors, strokes, traumatic brain injury,

neurodegenerative and neuropsychiatric disorders (Soares et al., 2013; Sundgren et al.,

2004; Mori and Zhang, 2006).

A notable advancement within dMRI is Intra Voxel Incoherent Motion MRI (IVIM

MRI), which is an advanced dMRI technique designed to capture both diffusion and

perfusion phenomena within biological tissues (le Bihan et al., 1988). During an IVIM

MRI scan, the tissue is subjected to a series of magnetic field gradients, known as diffu-

sion gradients, in a particular direction. This sensitizes the MRI signal to the random

motion of water molecules - diffusion - in this direction. Additionally, IVIM MRI cap-

tures the signal changes caused by the movement of blood within the microvasculature,

known as perfusion (le Bihan et al., 1992).

By acquiring multiple images at varying diffusion sensitivities, typically quantified by

a parameter called the b-value (Le Bihan et al., 2001), a series of diffusion-weighted

images (DWIs) is obtained. The IVIM MRI acquisition protocol facilitates the sepa-

ration of diffusion and perfusion effects within each voxel, the three-dimensional units

of imaging (Lemke et al., 2010). At lower b-values, where the diffusion sensitization is

relatively low, the acquired signal is predominantly influenced by the perfusion-related

motion of water molecules (le Bihan et al., 1986). At higher b-values, diffusion effects

become more prominent and therefore, the acquired signal primarily represents the

diffusion-related motion of water molecules within the tissue (le Bihan et al., 1986; le

Bihan et al., 2008).

Through sophisticated mathematical modeling and analyzing the signal decay across

multiple b-values, IVIM MRI enables the extraction of quantitative parameters that
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characterize tissue micro-structure and perfusion properties. These parameters include

the diffusion coefficient (D), which describes the rate of water diffusion within the tis-

sue, the pseudo-diffusion coefficient (D*), which represents perfusion-related motion,

and the perfusion fraction (f ), which quantifies the proportion of perfusion-related sig-

nal contribution within the voxel (Callaghan et al., 1991).

The integration of diffusion and perfusion information within a single imaging modality

enables IVIM MRI to provide valuable insights into tissue micro-structure and vascu-

lar dynamics. This comprehensive assessment holds immense potential for clarifying

physiological processes, diagnosing pathological conditions, and monitoring treatment

responses in various clinical settings, particularly in oncology (le Bihan et al., 2008;

Detre et al., 1992).

In essence, IVIM MRI provides a unique and powerful tool for unraveling the complex-

ities of tissue micro-structure and perfusion dynamics, thereby advancing our under-

standing of physiological processes and enhancing clinical management strategies.

However, despite the methodological advancements and the potential of IVIM MRI to

revolutionize medical diagnostics and treatment monitoring (Cho et al., 2017; Zhu et al.,

2017; Ma et al., 2018; Klaassen et al., 2020), the technique faces significant challenges

and is therefore rarely used clinically (Kaandorp et al., 2021). A significant portion of

studies indicate that the noise within quantitative MRI datasets poses significant chal-

lenges to data acquisition, processing, and interpretation, which testifies of the need for

substantial improvement in both quality and reliability. Accurate parameter estimation

is challenged by various sources of uncertainty, primarily caused by the fact that dMRI

has low Signal-to-Noise Ratio (SNR) and resolution and is very susceptible to motion

(Farrell et al., 2007; Choi et al., 2011; Polders et al., 2011).

Therefore, dMRI data is often contaminated by various sources of artifacts. Without

any exclusion or correction of these artifacts, the results of any subsequent analysis

could be biased, making their interpretation unreliable (Bammer et al., 2003; Van Dijk

et al., 2012; Reuter et al., 2015). Hence, quality control (QC) is an essential step before

dMRI goes into further processing (Bastiani et al., 2019; Le Bihan et al., 2008; Tournier

et al., 2011; Pierpaoli, 2010; Soares et al., 2013; Ahmad et al., 2023).
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In practice, these quality issues have led to under-utilization of advanced models like

IVIM-DWI, which could provide more accurate measures of underlying physiology than

conventional models. Furthermore, most studies have been limited to basic parameters

due to data quality issues and in many cases, patients had to be excluded. A solution to

tackle these problems is a necessity in order to deploy the full potential of the promis-

ing technique, IVIM MRI. Therefore, in a clinical setting, we want to detect artifactual

measurements, such that these anomalies can be filtered out or, ideally, re-measured.

However, to this day quality control in dMRI remains an insufficiently recognized issue

within the dMRI research community as there are no commonly available, user-friendly

tools specifically engineered to address the issue of dMRI QC comprehensively. As a re-

sult, current dMRI studies often perform a poor job at dMRI QC (Oguz et al., 2014). It

is still a challenging and extremely laborious process, since quality control and artifact

identification are undertaken mostly by visual inspection (Samani et al., 2020) of all

volumes, or even slices, by experts. This process becomes infeasible when large datasets

are involved and quickly becomes a bottleneck for any dMRI study. Alternatively, peo-

ple opt for spot checking that may leave a lot of artifactual data in leading to incorrect

results. An additionally challenging characteristic of dMRI data is the inherently low

signal to noise ratio. Furthermore, it is a unavoidably subjective process, which makes

it prone to inter- and intra-observer variability (Bauer et al., 2013; Victoroff et al., 1994;

Samani et al., 2020). In conclusion, an efficient golden standard for quality control of

dMRI data is still absent in existing literature.

This makes a normalized and automated image-based artifact detection model, that can

replicate or exceed human performance, imperative for any dMRI processing pipeline

(Ettehadi et al., 2022; Rizwan-i-Haque et al., 2020). Such model would enhance assess-

ment and diagnosis efficiency, reduce variability, and improve reproducibility in order

to save time for medical professionals and provide reliable analysis and monitoring.

In recent years, deep learning techniques have emerged as a promising tool for both

outlier detection and image processing tasks, which makes it a natural choice for the

problem at hand. However, while deep learning models have demonstrated remarkable

success in solving general computer vision problems, they face specific challenges when

applied to MRI images. To this day outlier detection in 4D image-based data remains

a challenging task that lacks a golden standard solution.
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A first challenge is the previously mentioned sparsity of annotated data, which lim-

its resources for the validation of developed models, thereby impeding the research on

automated outlier detection in medical data. Moreover, in existing literature the vast

majority of models are either 2D or 3D outlier detection models, lacking solutions in

4D. This means that, in most cases, either the spatial or the temporal information is

analysed, whereas we hypothesize that exploiting spatio-temporal information could

enhance performance.

Despite these challenges, deep learning algorithms have shown promising results in

studies on image-based problems and outlier detection. Therefore, the objective of

this thesis is to devise novel approaches for automated outlier detection in IVIM MRI.

Ultimately, the goal is operation in real-time, allowing for immediate rescanning. In

particular, this would lead to enhanced image quality, but also increased efficiency in

terms of scanning logistics, thereby improving patient experience. To achieve this, the

thesis paper aims to answer the following research question: How can deep learning

techniques be used to accurately detect motion artifacts in 4D IVIM MRI?. For that,

the research is divided into the following sub-questions:

1. Can the residuals of an IVIM fitting algorithm direct us towards the presence of an

artifact?

2. Can deep learning techniques provide a reliable solution for automated outlier detec-

tion in IVIM MRI?

3. Can incorporating spatio-temporal information of the data enhance our models’ sen-

sitivity to detecting artifacts?

4. What is considered essential information to facilitate reliable detection?

In order to answer these questions, we first conduct a thorough literature review of

current state-of-the-art solutions to sub-problems of this research. Hereafter, we pro-

pose our first model - an algorithm for automatically labeling our data. By manually

validating its performance, it can function as a proof-of-concept prior to developing

the second model - a deep learning solution to automated 4D outlier detection. Both

models are evaluated on in-vivo data. The architecture’s performance as well as its

suitability to the problem at hand will be analysed both quantitatively and qualita-

tively. By contributing to the development of an automated outlier detection model in
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4D IVIM MRI data, this research endeavors to provide healthcare professionals with

a framework to resolve severe image quality issues as well as providing useful insights

on which methods are suited for this. Ultimately, this improvement in image quality is

crucial for unlocking the full potential of quantitative MRI in patient care.

I will be part of the quantitative MRI group of the MRI-physics group, which is part

of the Department of Radiology and Nuclear Medicine of the Amsterdam UMC. This

group researches and develops new approaches to AI-driven quantitative MRI. Ad-

vanced deep learning methods are deployed in order to develop these approaches.
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2 Literature Review

This literature review firstly examines the current main limitations of IVIM MRI, dis-

cussed in Section 2.1. In Section 2.2, we review literature on using deep learning tech-

niques for outlier detection. Moreover, in Section 2.3 we examine the topic of anomaly

detection in quantitative MRI.

2.1 IVIM challenges

2.1.1 Noise

There are various challenges in IVIM MRI regarding the acquisition. First of all, the

scale of voxel values in MR images is not standardized (Havaei et al., 2017). Grayscale

values can vary significantly depending on the type of MR machine used and the specific

acquisition protocol, leading to inconsistency across different hospitals. Secondly, there

is the so-called partial volume effect in MRI images, meaning that more than one class

of tissue type can occupy the same image pixel or voxel, which complicates segmenta-

tion and classification tasks. These pixels or voxels are commonly called mixels (Ruan

et al., 2000). But more importantly, IVIM MRI suffers from multiple sources of noise.

The nature of noise in IVIM MRI is multifaceted, encompassing various sources such

as thermal noise, electronic noise, and physiological motion artifacts (le Bihan et al.,

2008; Jones et al., 2013). Thermal noise, stemming from random thermal fluctuations

within MRI systems, contributes to baseline signal variability and undermines the fi-

delity of acquired data. Electronic noise, arising from the amplification and digitization

processes, further exacerbates signal distortions, particularly in low-SNR environments.

Additionally, motion artifacts induced by physiological processes, such as respiration

and cardiac pulsation, introduce spatio-temporal inconsistencies in IVIM MRI images,

confounding accurate signal analysis (Cheng et al., 2012; Veraart et al., 2016).

Multiple studies have investigated the impact of noise on IVIM MRI data quality, re-

vealing its detrimental effects on image resolution, signal-to-noise ratio (SNR), and

quantitative parameter estimation (Parker et al., 2023; Cheng et al., 2012; McVeigh

et al., 1985). High levels of noise can obscure subtle signal variations associated with

tissue micro-structure and perfusion, leading to unclear textures, blurry tissue borders,

and decreased diagnostic sensitivity and specificity. Moreover, noise-induced artifacts,
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such as blurring and ghosting, further degrade image quality and compromise the reli-

ability of IVIM MRI-based analyses (Lee et al., 2015; Dyvorne et al., 2013; Jones et al.

2004a). On top of that, the retrieval of true signal values from noise corrupted data is

far from trivial, both theoretically and practically (Gudbjartsson et al., 1995, Sijbers

et al., 1998).

Efforts to mitigate noise in IVIM MRI encompass a spectrum of techniques, rang-

ing from acquisition optimization to post-processing algorithms. Acquisition strategies

aimed at increasing SNR, such as higher field strengths, parallel imaging, and opti-

mized gradient designs, have shown promise in enhancing image quality and mitigating

the effects of noise (Barbieri et al., 2015). Furthermore, advanced denoising algo-

rithms, including wavelet-based methods, non-local means filtering, and deep learning

approaches, have been developed to suppress noise while preserving underlying signal

features in IVIM MRI datasets (van de Ville et al., 2007; Veraart et al., 2016; André

et al., 2014; Jones et al., 2004b; Baselice et al., 2017; Phophalia et al., 2017; Zhang et

al., 2015; Salimi-Khorshidi et al., 2014; Lysaker et al., 2003). These techniques offer

valuable insights into tissue microstructure and perfusion dynamics by enhancing the

robustness and accuracy of IVIM MRI-based analyses.

Noise in IVIM MRI presents significant challenges to data acquisition and analysis,

necessitating ongoing research efforts to develop effective noise reduction strategies. By

elucidating the nature of noise sources, exploring novel acquisition techniques, and re-

fining denoising algorithms, future studies aim to enhance the reliability and clinical

utility of IVIM MRI for investigating tissue microstructure and perfusion dynamics in

various physiological and pathological contexts.

2.1.2 Artifacts

Artifacts are a primary source of noise in dMRI. There are several kinds of artifacts in-

cluding motion, multi-band interleaving, Gibbs ringing, low signal to noise ratio (SNR),

ghosting, susceptibility, herringbone, and chemical shift (Wood et al., 1985; Smith et al.,

1991; Smith et al., 2010; Simmons et al., 1994; Schenck, 1996; Heiland, 2008; Moratal et

al., 2008; Krupa et al., 2015; Le Bihan et al., 2008). These artifacts stem from various

sources, including hardware limitations, physiological motion, and imaging parameters.
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Motion artifacts, such as ghosting and blurring, can result from patient movement dur-

ing scanning. Susceptibility artifacts arise from magnetic field inhomogeneities at tissue

interfaces, while geometric distortions may occur due to gradient non-linearity. Other

artifacts, such as chemical shift artifacts and aliasing artifacts, can further degrade im-

age quality and compromise data interpretation (Mesri et al., 2020; Bellon et al., 1986;

Mirowitz et al., 1999; Bernstein et al., 2006; Zhuo et al., 2006; Stadler et al., 2007;

Morelli et al., 2011).

Motion artifacts are very common in dMRI. The motion during scanning can result in

signal dropout from individual slices in a volume, in ghosting artifacts, or in artifacts

arising from stitching together misaligned data in acquisitions that use slice interleaving

or multi-band acceleration (Ahmad et al., 2023). An interleaved acquisition protocol

starts by acquiring, for instance, all even-numbered slices, hereafter all odd-numbered

slices are acquired. If there is patient motion between the two phases of acquisition,

consecutive even- and odd-numbered slices are misaligned, which causes jagged edges in

the coronal dimension. This misplacement of the signal is different from signal dropout,

also caused by intra-volume movement, which leads to direct loss of the signal (Graham

et al., 2018).

Efforts to mitigate artifacts in IVIM MRI involve hardware optimization, protocol re-

finement, and post-processing techniques. Hardware improvements, such as gradient

system upgrades and shimming techniques (Ratai et al., 2016), aim to reduce suscepti-

bility artifacts and magnetic field distortions. Optimized imaging protocols, including

motion correction algorithms and parallel imaging methods, help minimize motion-

related artifacts and improve image quality. Furthermore, advanced image processing

algorithms, such as distortion correction methods and noise reduction techniques, aid

in artifact suppression and enhance data fidelity (Duffy et al., 2021; Griswold et al.,

2002; Reese et al., 2003; Zaitsev et al., 2004; Weaver et al., 1992).

2.2 Deep learning for outlier detection

2.2.1 Image-based

Deep learning has dramatically transformed the landscape of outlier detection in im-

ages, providing advanced solutions to a challenge that spans numerous applications,
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from security surveillance to medical imaging diagnostics. Chandola et al. (2009) high-

light the application of anomaly detection across a wide range of domains and discuss

domain-specific challenges and requirements, hereby the authors emphasize the ver-

satility and necessity of anomaly detection techniques. Outlier or anomaly detection

in images refers to the identification of images or regions within images that deviate

significantly from the norm.

Anomaly detection methods can be categorized into different types based on the un-

derlying approach, including statistical methods, clustering-based methods, nearest

neighbor-based methods, and classification-based methods (Chandola et al., 2009).

Given the vast amount of image data generated daily and the complexity of defining

what constitutes an ”anomaly,” deep learning approaches offer a compelling advantage

due to their ability to learn robust high-level features from data, their scalability and

generalizability without explicit programming.

Convolutional Neural Networks (CNNs) are at the forefront of deep learning tech-

niques for image processing, including outlier detection. Their ability to automatically

and adaptively learn spatial hierarchies of image features from low- to high-level pat-

terns makes them particularly suited for identifying atypical patterns in visual data

(Krizhevsky et al., 2012; LeCun et al., 1998). In 2017, Schlegl et al. introduced

AnoGAN, a groundbreaking model that uses Generative Adversarial Networks (GANs)

for detecting anomalies in retinal images. AnoGAN learns to model the distribution of

normal images and then identifies anomalies based on the GAN’s ability to reconstruct

input images.

Moreover, U-Net (Ronneberger et al., 2015) approaches are amongst the most pop-

ular image-based outlier detection architectures. The U-Net is specifically designed

for image segmentation tasks and is computationally efficient because of its key fea-

ture: skip-connections. Furthermore, it can handle corrupted and missing data, learn

robust feature representations, and has a good balance between accuracy and computa-

tional efficiency. In 2022, Zhang et al. presented a noteworthy approach that leverages

the efficiency of skip-connections by introducing a skip connection training algorithm,

achieving very promising performance. In 2020, Ibtehaz et al. introduced the MultiRe-

sUNet, which aims to enhance the feature extraction capabilities of the original U-Net

architecture by incorporating multi-resolution blocks. This approach outperformed the
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state-of-the-art U-Net approaches, especially on segmenting complex and heterogeneous

biomedical images.

Autoencoders (AEs) are another popular tool for outlier detection in images. AEs

learn to compress and then reconstruct input data, with the hypothesis that anomalies

will have higher reconstruction errors. A major advantage of AEs is their fairly high

reconstruction resolution thanks to a supervised training signal coming from the recon-

struction objective (Baur et al., 2019). Notable is the work of Vincent et al. (2010),

which introduced the denoising autoencoder. This is a variant of the standard au-

toencoder, which is trained to reconstruct a clean input from a corrupted version. By

introducing a novel approach for learning through denoising, the authors have paved

the way for advancements in unsupervised learning and the development of deep neural

networks capable of capturing complex data representations. Moreover, Sakurada et al.

(2014) showed the effectiveness of this approach in anomaly detection by leveraging the

reconstruction error as an anomaly score. Furthermore, Gong et al. (2019) presented a

memory-augmented autoencoder (MemAE), which shows great effectiveness in detect-

ing anomalies across various different datasets.

Variational Autoencoders (VAEs) have also been extensively used for image-based out-

lier detection. In 2013, Kingma et al. introduced the VAE, which was a groundbreaking

approach in the field of machine learning and deep learning. VAEs, through their prob-

abilistic approach to encoding and decoding images, can effectively model the distribu-

tion of normal data. The VAE represents a significant advancement in the unsupervised

learning domain, specifically in generative modeling and latent variable models. Along-

side Kingma et al., Rezende et al. (2014) significantly contributed to the field of deep

learning and generative modeling by presenting a general and efficient framework for

variational inference and learning. Furthermore, An et al. (2015) demonstrated how

VAEs could be utilized to identify anomalies by examining the reconstruction prob-

ability. Images that cannot be reconstructed well are considered outliers. In 2019,

Zimmerer et al. and Guo et al. presented promising and robust approaches to unsu-

pervised anomaly localization using VAEs.

Despite the advances, deep learning for outlier detection in images faces several chal-

lenges. Data scarcity is a primary concern, as anomalies are by definition rare events,

making it difficult to obtain sufficient training data. Interpretability of deep learning
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models is another significant challenge, as understanding the basis for anomaly detec-

tion decisions is crucial for trust and actionability in many applications. Furthermore,

the high variability in what constitutes an anomaly across different domains compli-

cates the development of generalized models.

Semi-supervised and unsupervised learning models present a promising avenue for ad-

dressing the data scarcity issue, allowing for the effective use of large amounts of unla-

beled data. In conclusion, deep learning offers a powerful framework for outlier detec-

tion in images, capable of handling the complexity and high dimensionality of image

data. As the field progresses, the focus will likely shift towards developing more robust,

interpretable, and domain-adaptable models. Continued research in this area holds the

promise of significant advancements in automated surveillance, medical diagnostics, and

beyond.

2.2.2 Spatial, temporal, spatio-temporal

Deep learning methodologies often prioritize processing either spatial or temporal di-

mensions, yet the integration of spatio-temporal dynamics within model architectures

could significantly augment performance. Contemporary spatio-temporal deep learning

strategies predominantly employ CNNs to address spatial dimensions, diverging pri-

marily in their treatment of temporal aspects (Asadi-Aghbolaghi et al., 2017).

A first class of models uses 3D CNNs, which extend kernels to encapsulate the temporal

dimension (Liu et al., 2016). Pioneering work by Ji et al. in 2013 employed 3D CNNs

for human action recognition. In 2015, Tran et al. proposed the widely adopted C3D

architecture after investigating the use of 3D CNNs further on large-scale datasets.

Furthermore, Varol et al. (2018) explored the efficacy of long-term convolutions across

varying sequence lengths with 3D CNNs.

Given that 3D convolutions increase the model’s parameter count, more computation-

ally efficient strategies have been proposed. For instance, Sun et al. (2015) introduced

factorized convolutions that decompose the 3D kernel into separate 2D spatial and 1D

temporal components, applied in succession. This methodology was further advanced

by Qiu et al. (2017), who examined various residual block (He et al., 2016b) variants

11



for distinct spatial and temporal convolution operations. In 2018, Tran et al. unveiled a

3D CNN model employing mixed convolutional layers, with 3D convolutions restricted

to the model’s initial layers. An example of how using convolutions for temporal pro-

cessing has been applied in the medical domain is surgical video analysis (Funke et al.,

2019).

Alternatively, several architectures harness recurrent neural networks to model temporal

relationships, typically processing spatial dimensions with a 2D CNN before introduc-

ing a recurrent mechanism (Ordóñez et al., 2016). Donahue et al. (2015) and Yue-Hei

Ng et al. (2015) used this concept by feeding features from a 2D CNN into LSTM

(Hochreiter et al., 1997) layers. Pigou et al. (2018) explored various spatio-temporal

models, including CNN+LSTM configurations and temporal pooling, with applications

extending to medical analyses such as surgical video analysis (Jin et al., 2019) and force

estimation (Gao et al., 2018). Furthermore, the development of two-stream architec-

tures has been introduced, wherein a bifurcated convolutional pathway is employed:

one pathway is dedicated to processing spatial information through the analysis of in-

dividual frames, and the other pathway receives temporal information, for instance, in

the form of precomputed optical flow (Simonyan et al., 2014; Feichtenhofer et al., 2016;

Wang et al., 2016).

Additionally, various works have investigated the topic of Video Object Segmenta-

tion (VOS), which is in essence a spatio-temporal task. Noteworthy are the works of

Cheng et al. (2021a), Cheng et al. (2021b), Heo et al. (2021) and Oh et al. (2019).

These works all introduce a different methodology, each presenting an efficient and well-

performing approach to VOS. Furthermore, Kiran et al. (2018) provide an extensive

overview of deep learning based methods used for anomaly detection in videos.

Despite these advances, models capable of processing 4D spatio-temporal data remain

scarce. In the natural image domain, 3D spatial data captured by time-of-flight cameras

is frequently represented as depth maps, avoiding the need for direct 4D processing. El

Sallab et al. (2018) transformed sequences of 3D LiDAR point clouds into 2D projec-

tions for convolutional LSTM (Xingjian et al., 2015) processing, facilitating concurrent

spatial and temporal analysis. Additionally, Choy et al. (2019) advocated for sparse

4D convolutions to process 4D data directly from depth sensors.
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In the realm of medical imaging, 4D CNNs have been applied to tasks such as CT image

reconstruction (Clark et al., 2019), segmentation (Myronenko et al., 2020) and MRI re-

construction (Küstner et al., 2020). This area of research also includes image-to-image

translation (van de Leemput et al., 2020), functional MRI (fMRI) modeling (Zhao et

al., 2018), and fMRI-based disease classification (Bengs et al., 2019). Although these

methodologies demonstrate the potential of 4D deep learning, they have yet to exhibit

a definitive advantage over lower-dimensional, and thus typically more efficient, deep

learning approaches.

2.3 Anomaly detection in quantitative MRI

2.3.1 Segmentation

In recent years, deep learning techniques have emerged as a promising tool for accurately

detecting and classifying anomalies in medical images (Lundervold et al., 2019). The

number of publications on segmentation-based methods has grown exponentially over

the last decades (Havaei et al., 2017), testifying to the need and that it is still work-

in-progress. Recent studies have consistently shown the superiority of deep learning

approaches over traditional methods for medical image segmentation in MRI (Akkus et

al., 2017; Bernal et al., 2019; Garcia-Garcia et al., 2017; Havaei et al., 2017; Kamnitsas

et al., 2017; Pereira et al., 2016; Shen et al., 2017; Zhao et al., 2018; Zhou et al., 2019).

Initially, traditional machine learning techniques such as Support Vector Machine (SVM)

(Ciritsis et al., 2018; Schnell et al., 2009) and Non-Negative Matrix Factorization (NMF)

(Sun et al., 2019) were extensively applied in the realm of medical image analysis. More

recently, studies have started to utilize deep learning to further improve segmentation

performance. Of note are studies that utilized multilayer perceptron (MLP) (Hastie

et al., 2009) to perform MRI-based tissue segmentation (Bagher-Ebadian et al., 2011;

Golkov et al., 2016). Specifically, Golkov et al. (2016) showcased the efficacious de-

ployment of MLP for segmenting various tissue types using dMRI data. Furthermore,

Isensee et al. (2018) presented a robust and self-adapting framework on the basis of 2D

and 3D vanilla U-Nets: the nnU-Net, which achieved a high performance and general-

izability.

So far CNNs have been considered as a significant tool for medical segmentation, par-
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ticularly within the domain of multi-modal segmentation that integrates dMRI, demon-

strating substantial potential for enhanced tissue segmentation (Nie et al., 2018; Zhang

et al., 2015). However, the application of such methodologies remains dependent on the

accuracy of cross-modality registration necessary for compiling the multi-modal input

used for the segmentation.

Focusing on a more specific type of segmentation, namely artifact detection, the litera-

ture delineates techniques into two primary categories: those implemented during the

acquisition phase (Reese et al., 2003; Jezzard et al., 1995; Andersson et al., 2003; Golan

et al., 2018), which may involve alterations to the acquisition protocol or the gathering

of additional data, and post-processing strategies implemented after acquisition time

(Haselgrove et al., 1996; Jenkinson et al., 2001; Zimmerer et al., 2019). Post-processing

methods are predominantly used. Nonetheless, the absence of an objective ground

truth complicates the systematic evaluation of existing techniques, thereby inhibiting

end-users from making informed decisions. This limitation equally obstructs the devel-

opment of novel methodologies, as evidencing superiority over pre-existing approaches

poses a considerable challenge. (Graham et al., 2016).

2.3.2 Post-processing techniques

Considering post-processing techniques, it is perceptible that computerized approaches

for the quality control and identification of artifacts in dMRI data significantly alleviate

the challenge of manual inspection. Throughout the years, several tools for automated

quality control of dMRI data have been developed, including FSL (Jenkinson et al.,

2012; Andersson et al., 2016; Bastiani et al., 2019), DTIPrep (Oguz et al., 2014), DTI

Studio (Jiang et al., 2006), and TORTOISE (Pierpaoli et al., 2010). Subsequently, mul-

tiple statistical (Roalf et al., 2016) or Artificial Intelligence (AI) methodologies have

been proposed, aiming at enhancing quality control and the detection of artifacts in

dMRI data (Iglesias et al., 2017; Kelly et al., 2017; Alfaro-Almagro et al., 2018; Fantini

et al., 2018; Graham et al., 2018; Samani et al., 2020; Ahmad et al., 2023; Ettehadi et

al., 2021). The efficacy of such tools has been extensively evaluated in the works of Liu

et al. (2015) and Haddad et al. (2019).

Nevertheless, a notable limitation of these approaches is their specificity to particular
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artifact types, predominantly those induced by motion and eddy currents, as detailed

in various studies (Liu et al., 2015; Iglesias et al., 2017; Alfaro-Almagro et al., 2018;

Graham et al., 2018). This restriction is also applicable to tools like FSL EDDY, DTI

Studio, DTIPrep, and TORTOISE. (Ettehadi et al., 2022; Samani et al., 2020)

Conversely, Deep Learning (DL) methods such as QC Automator (Samani et al., 2019)

and Squeeze-and-Excitation CNNs (Ettehadi et al., 2022) have demonstrated excellent

performance in detecting a broader spectrum of artifacts. However, their validation on

patient data remains limited. Moreover, these approaches predominantly rely on 2D

deep learning models and require ground-truth annotations for each slice across every

volume. This imposes a significant workload on human annotators, particularly dur-

ing the model fine-tuning phase where annotated subsets are essential for processing

a previously unencountered dataset (Ahmad et al., 2023). This aspect underscores a

potential area for improvement in the deployment and optimization of DL models for

dMRI data quality control and artifact detection.

2.3.3 Models at acquisition time

Recent investigations have endeavored to develop and implement lightweight and ef-

ficient deep learning models that can be directly integrated into MRI hardware or

deployed on edge devices, aiming to enable real-time artifact detection. Typically, the

identification of corruption and subsequent data exclusion are executed during post-

processing tensor calculation. While this strategy proves to be effective, it inherently

results in a reduced SNR due to the exclusion of corrupted pixels. To mitigate the

effects of post-processing quality assurance measures, the implementation of real-time

monitoring for image quality, coupled with the reacquisition of images severely affected

by artifacts, emerges as a preferable solution. (Li et al., 2013)

Several critical considerations must be addressed when monitoring quality in real-time.

Primarily, the outlier assessment should happen on a slice-by-slice basis, diverging from

the pixel-by-pixel rejection methodology of post-processing techniques. Furthermore,

the establishment of an additional threshold for the permissible level of corruptness of

each slice is imperative to avoid an excessive increase in scan time. Despite the efficacy

of post-processing quality control measures, they are not without drawbacks, such as
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the reduction in SNR. Consequently, the concept of real-time quality monitoring and

the re-acquisition of corrupted images have been proposed, albeit with the acknowledg-

ment of increased scan durations. (Li et al., 2013)

In 2022, Gudovskiy et al. introduced a novel approach for real-time, unsupervised

anomaly detection and localization using conditional normalizing flows. The authors

propose CFLOW-AD, a model that leverages the power of conditional normalizing flows

for detecting anomalies in an unsupervised manner. CFLOW-AD had broad implica-

tions across numerous domains, including identifying anomalies in medical images. The

work of Gudovskiy et al. represents a significant advancement in the field of anomaly

detection, offering a practical solution that combines the efficiency of real-time process-

ing with the flexibility of unsupervised learning.

Moreover, Tokuda et al. (2008) introduced an innovative approach to 4D MRI by utiliz-

ing navigator-based respiratory signals for adaptive imaging. This method significantly

improves the utility of MRI in guided therapeutic applications by compensating for res-

piratory motion, which has been a major source of artifacts in thoracic and abdominal

imaging. By adaptively modifying the imaging parameters based on real-time respira-

tory motion, their technique enhances image quality and reduces the impact of patient

movement, thereby facilitating more accurate and effective MRI-guided interventions.

Although the authors did not specifically apply this approach to artifact detection, it

could function as an interesting approach to motion artifact identification.

Deep learning-based real-time artifact detection models represent a transformative ad-

vancement in qMRI, offering the potential to significantly improve image quality and

diagnostic reliability. While challenges persist, particularly concerning data diversity,

model generalization, and computational efficiency, ongoing research continues to ad-

dress these issues. Future advancements are expected to further consolidate the role of

DL in ensuring artifact-free qMRI acquisition, heralding a new era in medical imaging.
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3 Background

3.1 IVIM MRI

3.1.1 Acquisition

MRI functions through the application of a strong magnetic field, aligning the hydrogen

nuclei or protons within bodily tissues. Upon exposure to a radiofrequency pulse, these

protons absorb and subsequently re-emit energy, which is detected by highly sensitive

receivers. The measurement of these emitted signals enables MRI scanners to construct

very detailed images that reflect the spatial distribution of these signals throughout the

body.

IVIM MRI incorporates the effects of both diffusion and perfusion within a voxel, which

entails the acquisition of a series of diffusion-weighted images at varying levels of dif-

fusion weighting, quantified by the b-value. It is essential for IVIM MRI to acquire

the diffusion-weighted images across a spectrum of b-values. Lower b-values, typically

ranging from 0 to approximately 200 s/mm², predominantly capture signals related

to perfusion, thereby enhancing sensitivity to microcirculation. Conversely, higher b-

values primarily reflect the signals affected by diffusion. Employing varying b-values

enables the separation and quantification of diffusion and perfusion effects.

Models to analyze the signal decay should accommodate the non-Gaussian distribution

of noise within the image space. The signal detected by MRI scanners corresponds to

a summation of frequency encoding (FE) and phase encoding (PE) waves in k-space,

which is a mathematical space of spatial frequencies. By performing a Fourier transfor-

mation on the k-space, an image can be reconstructed. Given the Gaussian distribution

of noise in k-space, the resultant noise in image space follows a Rician distribution. This

type of noise becomes particularly evident at higher b-values, introducing a noise floor

that may lead to the underestimation of the perfusion fraction (f ).

3.1.2 b-values

The choice of b-value scheme in IVIM MRI highly influences image quality as well as the

level of uncertainty in parameter estimation. Determining an optimal set of b-values
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is a nuanced process influenced by the desired imaging outcomes, the specific tissue or

pathology under investigation, and technical limitations. The primary challenge lies

in balancing the need for sufficient diffusion weighting to distinguish tissue types and

pathological conditions against the inherent signal-to-noise ratio (SNR) trade-offs at

high b-values. Additionally, the heterogeneity of biological tissues necessitates a flexi-

ble approach to b-value selection, tailored to the specific imaging scenario.

Ongoing research into b-value optimization strategies continues to refine these tech-

niques, expanding their applicability and improving their contribution to diagnostic

imaging and tissue characterization. Despite extensive research efforts, the establish-

ment of a universally optimal b-value scheme for IVIM MRI has not yet been achieved.

However, significant progress has been made in tailoring b-value schemes to suit par-

ticular applications.

Various studies successfully derive a set of b-values that minimize error, however they

are often tailored to a limited set of IVIM parameters. On the other hand, adaptive

algorithms that dynamically adjust b-values based on real-time signal characteristics

are emerging, promising to enhance the robustness and reliability of diffusion and IVIM

MRI measurements. Furthermore, according to various studies, irregular sampling of

b-values yields optimal results in minimizing error in parameter estimates. These in-

sights highlight the significance of using a customized b-value scheme tailored to a

specific scenario.

3.1.3 Quantification

The extraction of quantitative parameters happens by fitting the measured signal decay

over the b-values with a suitable model. In this case, this is the bi-exponential model

described by the IVIM formula shown in Equation 1. In this formula, fp represents

the perfusion fraction, D and D∗ are, respectively, the diffusion and pseudo-diffusion

coefficient, S(b) is the signal strength measured at a specific b-value and S(0) is the

signal at b0. By employing a fitting algorithm, the resulting IVIM curve is obtained.

Because the magnitudes of D and D∗ are comparable, the IVIM formula can be solved,

resulting in estimates of the key parameters.
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S(b)

S(0)
= (1− fp)e

−bD + fpe
−bD∗

(1)

Limitations to the quantification process of IVIM MRI concern technical, standard-

ization and computational demands. For instance, the accurate fitting of the bi-

exponential model requires high-quality data and is sensitive to noise, especially at

high b-values. Therefore, future advancements in IVIM MRI quantification are likely

to focus on the development of more robust fitting algorithms, machine learning ap-

proaches for automated parameter estimation, and standardized protocols to facilitate

wider clinical adoption.

3.1.4 Fitting the curve

Typically, conventional Least-Squares (LSQ) fitting is used to estimate the parameter

maps. To enhance the robustness of fitting, segmented fitting approaches first apply

a low b-value threshold to separate perfusion and diffusion components, subsequently

performing piecewise fitting. This method reduces the influence of noise but may in-

troduce bias in parameter estimation.

State-of-the-art fitting algorithms include Bayesian fitting algorithms, such as Bayesian

Inference (BI). Bayesian approaches incorporate prior knowledge about the expected

parameter distributions to regularize the fitting process, potentially improving the sta-

bility and reliability of parameter estimates, especially in data with low signal-to-noise

ratios (SNR). However, these methods are computationally exhaustive.

Recent advances have seen the application of machine learning and deep learning for

IVIM parameter estimation. These models, trained on large datasets, can potentially

offer robust, automatic fitting across diverse tissue types and conditions. Noteworthy is

the approach presented by Barbieri et al., 2020, which is a Physics-Informed Deep Neu-

ral Network (PI-DNN) that is trained by minimizing the Mean Squared Error (MSE)

between the measured signal and the signal retrieved from the estimated parameters.

This approach outperforms the conventional LSQ and achieves a (marginally) better

performance than the Bayesian approach, while operating substantially faster.

A major limitation of the PI-DNN is that it requires the input data to have the same
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size. As there is no uniform b-value protocol, this is problematic for clinical adop-

tion. In order to resolve this issue, the signal decay curve can be modelled as a Neural

Controlled Differential Equation (NCDE), which is a continuous-time extension of Re-

current Neural Networks (RNNs) (Morrill et al., 2021). A neural network is used as

learning algorithm for the CDE, which preserves the computational efficiency of neural

networks but enhances user flexibility. Yet, it demonstrates consistent confidence in its

predictions, which introduces a significant concern concerning the model’s performance

on out-of-distribution data. Such circumstances could lead to images that vary from

reality, potentially resulting in incorrect clinical diagnoses.

3.2 Data

We use in-vivo data of 19 individual patients from multiple studies, which are stored

in a Neuroimaging Informatics Technology Initiative (NIfTI) format, which is a com-

mon data format for this type of data. The region of interest is the abdomen. The

data is acquired using a Philips 3.0T scanner and constitutes of the measured signal

decay as a function of the b-values, resulting in a 3D object over the timepoints of

the measurements. The 4D tensor is acquired on a per measurement per slice basis,

so each slice-measurement combination is unique. The measured signal ranges from

approximately 1 at b = 0 to near 0 for high b-values.

3.2.1 Characteristics

The studies used varying b-value protocols and x-, y- and z-dimensions. Therefore,

without any preprocessing the patients are not directly comparable. To obtain some

insights into the differences between studies, we explore the dimensions of each dataset,

which are previewed in Table 1.

For most studies, the x- and y-dimensions, which define the shape of a slice, are around

144. However, some studies for instance have a much smaller y-dimension than x-

dimension. Regarding the number of slices - the z-dimension, the value typically is

around 18. Some studies, however, contain up to 27 slices. The varying dimensions

lead to a highly fluctuating total number of voxels as well as the number of valid voxels,
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which strongly affect the computational demands required to analyse that patient.

Furthermore, the b-value protocols were variable, as can be observed in Table 2. Both

the values of the b itself as the number of repeated measurements for a specific b-value

strongly differ. Therefore, the signal decay curves of different patients do not neces-

sarily contain directly comparable information, since the type of information captured

heavily relies on the magnitude of b-value at hand. On top of that, the quality of the

scan also depends on the b-value scheme employed.

Lastly, the tissue region that is scanned during the acquisition varied per patient. This

does not directly influence the level of flexibility needed for the model architecture, as

is the case with the previously mentioned variations, yet the increased inter-patient

variability could decrease model performance.

Table 1: The x/y/z dimensions of the in-vivo data from 19 different studies and corre-
sponding numbers of (valid) voxels.

Patient Study x y Nr slices Total voxels Valid voxels

1 NAPAN/P1 144 144 18 373.248 85.126

2 NAPAN/P2 144 144 18 373.248 76.435

3 NAPAN/P3 144 144 18 373.248 83.112

4 NAPAN/P4 144 144 20 414.720 103.016

5 MIPA/P1 144 36 18 93.312 50.666

6 MIPA/P2 144 36 18 93.312 60.226

7 MIPA/P3 136 36 18 88.128 60.771

8 MATRIX/P1 142 36 18 92.016 44.351

9 ANCHOR/P1 256 256 27 1.769.472 653.635

10 ANCHOR/P2 256 256 27 1.769.472 617.044

11 ANCHOR/P3 256 256 27 1.769.472 720.123

12 ASAP volunteer/P1 144 144 18 373.248 81.795

13 NEPHROX/P1 144 144 18 373.248 203.396

14 NEPHROX/P2 144 144 18 373.248 190.930

15 Pyqmri kidney train/P2 176 176 18 557.568 118.173

16 Pyqmri kidney train/P4 176 176 18 557.568 126.131

17 REMP/P1 144 36 18 93.312 44.093

18 REMP/P2 119 36 18 77.112 43.406

19 REMP/P3 141 36 18 91.368 39.514
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Table 2: The b-value protocols employed in the 19 different studies.

Patient b-values Repetitions

1 [0, 5, 10, 25, 50, 75, 150, 450, 600] [9, 6, 6, 6, 6, 6, 6, 6, 6]

2 [0, 5, 10, 25, 50, 75, 150, 450, 600] [9, 6, 6, 6, 6, 6, 6, 6, 6]

3 [0, 5, 10, 25, 50, 75, 150, 450, 600] [9, 6, 6, 6, 6, 6, 6, 6, 6]

4 [0, 5, 10, 25, 50, 75, 150, 450, 600] [9, 6, 6, 6, 6, 6, 6, 6, 6]

5 [0, 10, 20, 30, 40, 50, 75, 100, 150, 250, 400, 600] [15, 9, 9, 9, 9, 9, 4, 12, 4, 4, 4, 16]

6 [0, 10, 20, 30, 40, 50, 75, 100, 150, 250, 400, 600] [15, 9, 9, 9, 9, 9, 4, 12, 4, 4, 4, 16]

7 [0, 10, 20, 30, 40, 50, 75, 100, 150, 250, 400, 600] [15, 9, 9, 9, 9, 9, 4, 12, 4, 4, 4, 16]

8 [0, 10, 20, 30, 40, 50, 75, 100, 150, 250, 400, 600] [15, 9, 9, 9, 9, 9, 4, 12, 4, 4, 4, 16]

9 [0, 1, 2, 5, 10, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500, 600, 700] [9, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

10 [0, 1, 2, 5, 10, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500, 600, 700] [9, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

11 [0, 1, 2, 5, 10, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500, 600, 700] [9, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

12 [0, 5, 10, 25, 50, 75, 150, 450, 600] [9, 6, 6, 6, 6, 6, 6, 6, 6]

13 [0, 2, 4, 8, 12, 18, 24, 32, 40, 50, 75, 110, 200, 300, 450, 600] [15, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 9, 9, 9, 9, 15]

14 [0, 2, 4, 8, 12, 18, 24, 32, 40, 50, 75, 110, 200, 300, 450, 600] [15, 9, 9, 9, 9, 9, 9, 9, 9, 9, 15, 9, 9, 9, 9, 15]

15 [0, 10, 20, 35, 50, 75, 100, 200, 400, 600] [16, 6, 6, 6, 6, 6, 6, 32, 32, 32]

16 [0, 0.1, 10, 20, 35, 50, 75, 100, 200, 400, 600] [1, 15, 6, 6, 6, 6, 6, 6, 32, 32, 32]

17 [0, 10, 20, 30, 40, 50, 75, 100, 150, 250, 400, 600] [15, 9, 9, 9, 9, 9, 4, 12, 4, 4, 4, 16]

18 [0, 10, 20, 30, 40, 50, 75, 100, 150, 250, 400, 600] [15, 9, 9, 9, 9, 9, 4, 12, 4, 4, 4, 16]

19 [0, 10, 20, 30, 40, 50, 75, 100, 150, 250, 400, 600] [15, 9, 9, 9, 9, 9, 4, 12, 4, 4, 4, 16]

3.2.2 Preprocessing

Firstly, the data needs to be preprocessed. We start by excluding background voxels

and noise by using a mask that filters voxels showing non-IVIM behavior. A main

criterion for IVIM behavior is that S0 is greater than the median of the signal. The

resulting voxels are referred to as the valid voxels.

Since the data is stored in the form of flat arrays of the valid voxels over the measure-

ments, the data has to be reshaped into multi-dimensional arrays. In order to do so, the

valid voxel array is firstly padded to a full voxel array, containing exactly x ∗ y voxels

per slice. This voxel array is then reshaped into an array with dimensions (x, y, z),

where the z-dimension represents the slices. Consequently, the voxels are divided over

the slices they belong to and their corresponding x- and y-coordinates are determined.
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4 Methods

The main objective of this research is to investigate if and how deep learning techniques

could be used to accurately and automatically detect artifacts in IVIM MRI. We di-

vided the research into four sub-questions to examine different aspects of the primary

objective. In this chapter, we elaborate on all the techniques used to retrieve answers

to the following four research questions:

1. Can the residuals of an IVIM fitting algorithm direct us towards the presence of

an artifact?

2. Can deep learning techniques provide a reliable solution for automated outlier

detection in IVIM MRI?

3. Can incorporating spatio-temporal information of the data enhance our models’

sensitivity to detecting artifacts?

4. What is considered essential information to facilitate reliable detection?

We conduct several experiments to be able to answer these questions, starting with

question 1. In order to find an answer to this question, we explore multiple approaches

to develop an architecture to automatically label the unlabeled IVIM MRI data. Dur-

ing this exploratory process, which is described in Section 4.1, we gain insights on the

(potential) correlation between the data’s residuals and the presence of artifacts. This

first algorithm aims to function as a proof-of-concept for connecting artifacts to outliers

and consequently automatically generates pseudo-labels for the input data to be used

for an automated model, facilitating the development a more advanced and efficient

second model. This second model is based on neural networks and aims to investigate

the potential benefits of using deep learning for 4D outlier detection in IVIM MRI.

To answer question 3, we compare the outcomes and performance of different versions of

the first model to the performances of spatial, temporal and spatio-temporal versions of

the second model, which are all based on neural networks. These models are described

in Sections 4.2.3 and 4.2.4.

In order to answer questions 2 and 4, we develop multiple versions of the deep learning-

based outlier detection model. By comparing these different variants, we obtain insights
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in which architecture is most suited for this task, how suitable the architectures actually

are and what information is essential to secure reliability. In Section 4.2, we extensively

elaborate on all versions of the outlier detection model and their evaluation criteria.

4.1 Data labeling

The goal in this first part is to develop a method to automatically label our data.

Specifically, the labels in question indicate whether a certain slice (in the z-dimension)

acquired during a given measurement is corrupted by artifacts or not. The aim is to

identify and flag problematic slice-timepoint pairs, which will be labeled as problem-

atic whenever they contain artifacts. These pairs are unique, which allows for direct

re-scanning of the specific affected measurement. This would enable to reduce the level

of distortion and improve the quality of the data.

In order to develop such a model, the relationship between outliers and artifacts should

be investigated first. Hence, the model firstly performs a voxel-wise Least Squares

fit to the in-vivo data in order to learn IVIM MRI specific parameters (D, D*, f and

S0). As a second fitting option, the voxel-wise IVIM-Net, which is a Physics-Informed

Deep Neural Network (PI-DNN) presented by Kaandorp et al., is used as fitting algo-

rithm. Because it is less prone to outliers, it could provide a more robust approach.

Furthermore, the measured signal intensities are divided by the value found at b = 0,

which exhibits minor fluctuations around 1, in order to normalize the data. This nor-

malization is common for the bi-exponential IVIM model in order to secure accurate

parameter estimation, as the signal intensities depend on the b-values used, tissue type

and specific imaging protocols.

After estimating the model parameters per voxel, as detailed in Section 3.1.4, the resid-

uals are computed per voxel per measurement. The resulting residuals are used to direct

us towards outliers, and hence potential artifacts. The performance of the two fitting

models on detecting outliers will be compared by manually inspecting and assessing the

high residual regions.
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4.1.1 Fitting methods

Least Squares (LSQ)

The goal of the Least Squares (LSQ) fitting is to find the best-fitting curve or line

through a set of points by minimizing the sum of the squares of the vertical deviations

(residuals) from each data point to the curve. The parameters of the IVIM model, which

determine the expected curve, are chosen to minimize the sum of squared residuals

(SSR), of which the equation is shown in Formula 2. In this formula, yi is the observed

value and ŷi is the predicted value of measurement i, which is computed using Formula

3, where bi is the b-value of measurement i. By summing over the squared residuals,

the value of SSR is obtained, which is minimized by using the curve fit function from

the SciPy.optimize package. During the optimization, the parameters are constrained

to physiologically plausible ranges of [0, 0.005], [0, 0.7], [0.005, 0.2] and [0.7, 1.3], for

D, fp, D
∗ and S(0) respectively.

SSR =
N∑
i=1

(yi − ŷi)
2 (2)

where

ŷi =
S(bi)

S(0)
= (1− fp)e

−biD + fpe
−biD

∗
(3)

A downside of LSQ is its sensitivity to outliers since it squares the residuals. An outlier

with a large deviation from the fitted model will have a disproportionately large squared

residual, heavily influencing the overall fit. Neural networks could provide a more robust

alternative, since they can be trained to recognize and minimize the influence of outliers

through mechanisms like dropout, which reduces the dependency on any single data

point, thus enhancing robustness. Moreover, generalization techniques add penalties

for large coefficients, discouraging the model from fitting outliers excessively and ensur-

ing that the model generalizes better to unseen data. Therefore, we consider IVIM-Net.

IVIM-Net

IVIM-Net is an unsupervised Physics-Informed Deep Neural Network (PI-DNN) ini-

tially proposed by Barbieri et al. in 2020, outperforming state-of-the-art IVIM fitting

approaches at that time. In 2021, Kaandorp et al. proposed a substantially improved
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version, the IVIM-Netoptim. In vivo, it showed significantly less noisy parameter maps

than conventional fitting algorithms. Therefore, it is more robust to outliers, which

makes it a more accurate and consistent IVIM fitting algorithm.

In Figure 1, the IVIM-Net architecture is depicted for different hyperparameter options.

Here, the DWI signal data serves as the input and is processed through two distinct

network architectures. In Design A, the network features a parallel configuration where

each IVIM parameter is individually predicted by dedicated fully connected layers.

Conversely, Design B uses a traditional single fully connected network approach. Blue

circles within the diagram represent neurons selected at random for dropout, which

helps prevent overfitting by omitting some network connections during training phases.

The output layer is comprised of four neurons, equipped with either absolute or sigmoid

activation functions that map directly to the IVIM parameters. The network then uses

these outputs to predict the IVIM signal, a crucial step that informs the computation

of the loss function.

Figure 1: Representation of the IVIM-Net network design. (Kaandorp et al., 2021)
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LSQ vs IVIM-Net

In order to evaluate the performance of the models using the different fitting algorithms,

we investigate the residuals and inspect the predicted labels visually. An example of

measured signal intensities with corresponding fitted IVIM curve for a given voxel is

visualised in Figure 2. Since IVIM-Net is more robust to outliers than the conventional

LSQ fitting, the distance between the curve and the outlier value will be enlarged and

therefore, we expect IVIM-Net to exhibit a higher sensitivity to detecting outliers.

Figure 2: Measured signal intensities with corresponding fitted IVIM curve for a given
voxel.

Implementation

Both fitting algorithms were already previously implemented by the research group,

and only require some adaptions to the specific task of outlier detection. For instance,

each measurement has to be considered independently, instead of aggregating measured

signals for a given b-value. Furthermore, the residuals need to be determined per voxel

per measurement, instead of solely considering the sum of squared residuals summed

over all measurements and slices.

The LSQ algorithm is implemented by using the scipy.optimize library. The model to

be fit is the bi-exponential IVIM model as described in Section 3.1.3. The loss function

that is used for fitting the curve is the Mean Squared Error (MSE) loss, of which

the formula is shown in Formula 4, where N is the voxel’s number of measurements.

While fitting the curve per voxel, the parameter estimates are determined by solving

the bi-exponential IVIM model.
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MSE =
SSR

N
(4)

The IVIM-Net is implemented using the PyTorch library, which is proven to be compu-

tationally efficient for deep learning tasks. We use the IVIM-Netoptim design to perform

a voxel-wise fit on all valid voxels per patient. Besides the background and noise mask

applied while preprocessing the data, voxels exhibiting non-IVIM-like behaviour are

filtered, according to the implementation of Kaandorp et al. (2021). The additional

criteria for valid voxels in this section are:

1. The 95th percentile of signals with b < 50 is smaller than 1.3.

2. The 95th percentile of signals with b > 50 is smaller than 1.2.

3. The 95th percentile of signals with b > 150 is smaller than 1.0

The loss function used is a physics-based loss function, shown in Formula 5, that com-

putes the root MSE (RMSE) loss between the measured signal and the predicted IVIM

signal. The predicted signal is obtained by inserting the predicted parameter estimates

into the normalized IVIM model. The network has a depth of 2 and a width that

equals the number of b-values. Furthermore, the model is trained during 1000 epochs

using the Adam optimizer with a learning rate of 0.00003, a batch size of 128 and a

maximum of 500 iterations per epoch. Moreover, there is an early stopping criterion

after 10 bad epochs, a dropout rate of 0.1, batch normalisation and Sigmoid activation

for the output.

loss =

√√√√ 1

N

N∑
i=0

(
yi
y0

− ŷi)2 (5)

with

ŷi = (1− f)e−bD + fe−bD∗
(6)

Consequently, after obtaining parameter estimates using both models, the residuals per

measurement are determined for each voxel by subtracting the predicted signal from
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the measured signal.

4.1.2 Scaling methods

The distribution of the resulting residuals, of which an example is visualised in Figure

3, is anticipated to be dependent on the b-value. This assumption is primarily under-

pinned by the fact that the distribution of noise evolves as the b-value increases. At

lower b-values, where the signal intensity is higher, the predominant source of noise is

background noise, typically following a Gaussian distribution. As the b-value increases,

the Signal-to-Noise Ratio (SNR) drops and the signal converges to a Rician noise floor.

Moreover, for certain types of artifacts we expect that they occur more often at higher

b-values, which increases the level of distortion. In the figure, we observe a decreasing

variance over the range of b-values, except at the highest b-value.

Figure 3: Residuals resulting from LSQ fitting a given voxel.

Secondly, the range of residuals is expected to vary across different Regions-Of-Interest

(ROIs). A given voxel, which captures one or more specific tissue type(s), may be more

or less susceptible to a particular artifact than another voxel. For instance, a voxel cen-

tered in the liver is generally more affected by respiratory motion compared to one in

the spinal cord. Furthermore, voxels located near tissue borders tend to be fuzzier and

more challenging to predict, which contributes to greater uncertainty in predictions,

resulting in a higher variance of the residuals.
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Therefore, we want to scale the residuals in a way that enables to quantitatively com-

pare residual values across different b-values and within various ROIs, as both the

b-value and voxel location correlate with the expected magnitudes of residuals. Hence,

cancelling out the dependency on the b-value and the location is an essential step to

facilitate an informed decision on which measurements are outliers. To achieve this, we

examine multiple scaling methods, which are described in subsequent paragraphs.

Relative residuals

Firstly, we explore relative residuals, which are retrieved by dividing the residuals for

each voxel for a certain b-value by the mean residual value of that voxel over all mea-

surements for that b-value. This is done by using Formula 7, where Rx,vox is the residual

value for voxel vox at measurement timepoint x. T is the set of all measurement time-

points and bx is the b-value at which measurement x was scanned. The resulting relative

residuals are then independent of the expected residual magnitudes per b-value.

relative Rx,vox =
Rx,vox

mean(Rvox ∈ TB)
(∀x ∈ T, vox ∈ V )

where, Rvox ∈ TB := Rt,vox

∣∣t ∈ T [bt = bx]

(7)

A downside of this method is that if the mean residual value - the denominator - has

a magnitude smaller than 1, the resulting relative residual value would be enlarged.

Especially if the mean value approaches 0, it would lead to dramatically enlarged, or

even exploding, relative residuals.

Min-max scaling

Hereafter, we explore the option of using a MinMaxScaler per group of measurements

with equal b-value (b-group), in order to control the value ranges and calibrate the

ranges between different b-groups. We want the minimum residual value to be 0 and

the maximum residual value to be 1. Hence, these are the range limits used during the

min-max scaling.

The scaled residuals are obtained using the equations previewed in Formula 8. First, the

residuals are standardized per b-group. Then, the min-max scaling happens through
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multiplying the standardized residual value by the predefined min-max range and

adding its lower bound.

standardized Rx,vox =
Rx,vox −min(Rvox ∈ TB)

max(Rvox ∈ TB)−min(Rvox ∈ TB)
(∀x ∈ T, vox ∈ V )

where, Rvox ∈ TB := Rt,vox

∣∣t ∈ T [bt = bx]

MinMax Rx,vox = standardized Rx,vox ∗ (max−min) +min

(8)

The forced range used in this method has the advantage of allowing for direct compar-

ison between different b-groups. However, scaling the residuals to a predefined range

can cause misleading results. Scaling the highest deviating residuals to (close to) 1

suggests that these residuals are most likely to be outliers. However, it does not tell us

how deviating these measurements truly are, since this information from the original

distribution is lost. Therefore, we need to be cautious with setting a predetermined

threshold to which the min-max scaled residuals will be subjected.

Absolute min-max scaling

Because we are interested in the absolute deviation, originating from a sudden and

unexpected signal dropout or increase, we test the absolute value of the MinMaxScaler

as a scaling method. This is done by taking the absolute values of the residuals, as

done in Formula 9, before applying the MinMaxScaler.

Rx,vox =
∣∣Rx,vox

∣∣ (∀x ∈ T, vox ∈ V ) (9)

We hypothesize that using the absolute residual values reduces the amount of informa-

tion lost by scaling the residuals into a fixed range. Using the previous method, the

smallest residual value (negative) will be scaled to 0, suggesting no deviation, which

is not true and leads to misinterpretations. Although the original distribution of the

residual data is preserved less compared to the previous method, we hypothesize that

using this method will yield more insightful results.

Z-score

Using the z-score is a commonly used scaling technique. It indicates the number of
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standard deviations that a certain measurement or value is above the mean. Therefore,

z-scores ranging between -2 and 2 are considered normal, as they encompass approx-

imately 95% of the data in a normal distribution. However, we consider the absolute

z-score, since we are again solely interested in the absolute deviation to label a value

as outlier.

In this research, the (absolute) z-score per voxel is computed in two different ways. The

first is by determining the z-score for that voxel over all measurements, for which the

formula is shown in Formula 10. The second is to compute it over all measurements with

an equal b-value, previewed in Formula 11. By using the second approach, the resulting

scores tell how deviating a certain value is within its b-group. More specifically, they

tell how many standard deviations it is away from the expected value for that voxel at

that b-value.

abs Zx,vox =

∣∣∣∣Rx,vox −mean(Rvox)

std(Rvox)

∣∣∣∣ (∀x ∈ T, vox ∈ V ) (10)

abs Zx,vox =

∣∣∣∣Rx,vox −mean(Rvox ∈ TB)

std(Rvox ∈ TB)

∣∣∣∣ (∀x ∈ T, vox ∈ V )

where, Rvox ∈ TB := Rt,vox

∣∣t ∈ T [bt = bx]

(11)

After determining a z-score per voxel per measurement, we compute the mean z-score

per slice per measurement in order to quantify the quality of that slice for that specific

measurement. If the mean z-score is above a certain threshold, the slice is labeled as

’poor’, meaning that it is corrupted to such an extent that it is favorable to filter it out

or re-scan it.

We hypothesize that high z-scores originating from the fitting algorithms will point us

towards outliers, which on their turn will likely point us to regions with a high artifact

potential. Hence, by finding a suitable scaling method for the residuals, the resulting

model is expected to aid us in the process of labeling in-vivo data, in an automatic way.

Threshold

Before being able to label slice-measurement pairs as poor, we need to determine a suit-
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able threshold. However, the choice of threshold is dependent on the eventual scaling

method to be used. The first three scaling methods might call for a threshold ratio

instead of a predetermined value. For the relative residuals, this is because the values

are not necessarily within a fixed range and can fluctuate quite a lot. For the (abso-

lute) min-max scaling, this is because the maximum value is equal for each b-group,

although the level of deviation can be very different. For the absolute z-score, however,

an equal value means an equal level of deviation. A voxel with a value above 2 means

that that certain measurement deviates more than expected and, therefore, more than

favorable. Considering the mean z-score value of a whole slice, we certainly do not want

the slice to, on average, deviate more than one standard deviation from the expected

residual value for that specific measurement. Therefore, we want the mean z-score of

a slice-timepoint pair to range between 0 and 1 for all b-groups. Hence, the threshold

for the mean z-score is 1 during this research.

In all cases, slice-measurement pairs with a mean scaled residual value greater than

the determined threshold are outputted as outliers. By qualitatively evaluating the

outputs, we try to validate this first model as a proof-of-concept that scaling residuals

could lead us to outliers that could point at artifacts. In that way, the z-scores gener-

ated by the first model could function as pseudo-labels for the data to be used in the

second model.

4.1.3 Local versus global

Moreover, in order to gain insights into the types or artifacts that are detected or labeled

as outliers, we investigate how local or global the deviation is. This is done by deter-

mining how many voxels in a specific slice at a specific measurement exhibit a scaled

residual value higher than the threshold, which leads to an integer value equalling the

sum of poor voxels within that slice. Since this value is expected to correlate with the

number of valid voxels present in that slice, the sum is divided by this number. More-

over, how many voxels are corrupted is expected to be somewhat correlated with how

corrupted the slice is. Therefore, the sum is consequently divided by the corresponding

mean scaled residual value of that slice. As a result, we obtain the ratio of corrupted

voxels within a slice that is independent of how corrupted the slice is.
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We hypothesize that the resulting ratio will differentiate local artifacts from global ar-

tifacts, which would provide insights into the type of artifact that is detected.

4.1.4 Evaluation

In order to evaluate the model’s performance in terms of how accurately it is able to

detect artifacts, a visual inspection is performed. This is done by manually labeling the

slices across all measurements using the labels previewed in Table 3. These artifacts

usually exhibit visually recognizable patterns in the scans, which are detailed in the

table.

Table 3: The artifact labels used during the visual inspection.

Artifact label Visual pattern

Interleaved Motion Artifact Interleaved pattern in coronal view

Motion Artifact Blurry or dislocated slice

Local Signal Dropout Black region

Local Increased Signal Bright region

Firstly, the data of a given patient is visualised using MeVisLab, which is a medical

image analysis and visualisation framework. The OrthoView2D method allows us to

visualise a slice from multiple views simultaneously. We are predominantly interested

in the axial view, which is the dimension the slices are acquired in during scanning,

since it provides the most valuable insights in locally deviating voxel regions. More-

over, it corresponds to exactly one measurement, since the measurements are acquired

slice-wise. However, the coronal view is very useful for detecting Interleaved Motion

Artifacts, since this type of artifact causes jagged edges in an interleaved pattern in the

coronal dimension, representing the dislocated slices. An example of two slices with

and without an artifact in both axial and coronal view is visualised in Figure 4. In

this figure, the yellow arrows are pointing at slices containing artifacts, which can be

recognized by the significantly darker regions.
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(a) Scans with heartbeat artifact. (b) Scans without artifact.

Figure 4: An example of two slices in axial and coronal view with (a) and without (b)
artifact. (Gurney-Champion, KWF Proposal)

The process is executed by for each slice looping through all timepoints, which repre-

sent the measurements in chronological order. At each timepoint, the current slice is

compared with (at least) its two neighboring slices as well as with the measurements of

the current slice at timepoints with an equal b-value to the current one. In the coronal

view, we check whether the current slice at the current timepoint is dislocated compared

to neighboring slices. Besides that, we check whether it contains any unexpectedly dark

or bright spots. Next, the slice-timepoint pairs are labeled using the labels from Table

3. An important note is that a pair can receive zero or more labels.

For the sake of time, we decided to evaluate, and therefore to manually label, the model

performance on the first three patients. We start by determining for each timepoint

whether it contains at least one poor slice and then comparing our verdict to the model’s

output. Subsequently, we visually inspect all slice-timepoint pairs that were labeled as

outliers by the model and label them according to the four previously mentioned arti-

fact labels.

Limitations to this approach of evaluation include the inevitable subjectivity, the labor-

intensity and therefore, the lack of scalability. However, because of the lack of ground

truth labels in our data, benchmarks or a golden standard solution, we for now consider
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this evaluation as sufficient to be able to draw a conclusion on whether the first model

could function as proof-of-concept. Eventually, we are seeking for similar patterns in

the slices labeled as outliers by the model and the slices labeled as containing artifacts

during the visual inspection. This would testify of a correlation between outliers de-

tected by our model and the presence of artifacts.

4.2 Outlier detection

In order to resolve the limitations inherent to deploying the previously proposed data

labeling model, such as the scalability, we aim to develop a deep learning approach

that approximates the performance achieved by our current ’golden standard’. Besides

striving for good performance, a primary criterion of deeming such a model successful

is the scalability, since this is a crucial aspect for clinical adoption. The first model

operates in essence on a per-patient per-voxel basis by running the fitting algorithms,

as well as deploying the scaling methods, voxel-wise. Furthermore, the model relies on

completeness of the data of a given patient to be able to scale the residuals in an in-

formed way, thereby ensuring reliability, giving that scaling incomplete (residual) data

could lead to biased results. Lastly, the first approach does not exploit all information

captured in the spatial dimension since it operates voxel-wise, whereas we hypothesize

that doing so could provide valuable insights.

Deep learning could address these limitations by providing a faster and more flexible

alternative. Therefore, we aim to develop a suitable deep learning model for automatic

4D outlier detection. This model takes the 4D IVIM MRI data as input, exploiting

both the spatial and the temporal dimensions. Subsequently, it tries to approximate

the previously obtained scaled residuals from the first model by learning the relation-

ship between signal intensities and scaled residuals.

4.2.1 Data preparation

Slices

First, the data needs some additional preparation on top of the preprocessing that has

been performed in Section 3.2.2. For each patient, we start by padding and/or crop-

ping the slices into a uniform shape of 144 × 144. If the original slice has a x- and/or
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y-dimension smaller than 144, we pad it by adding rows or columns containing zeros

to either side of the slice. If the slice is wider or higher than 144, we crop the slice by

removing an equal number of rows or columns from each side of the slice. Each padding

or cropping operation that is performed has to be passed on to the (valid) voxel arrays

too through adding and/or removing the voxels in question.

b-schemes

Moreover, we want to standardize the b-value schemes across the patients to enhance

the comparability. Therefore, we want to select a uniform b-value scheme of 9 unique

b-values with 6 repeated measurements per b-value, resulting in a total of 54 measure-

ments. This b-value scheme is chosen by balancing the greatest common denominator

across the patients and retaining as much data as possible. The selection procedure

starts by filtering all b-values that have at least 6 repetitions. If this results in 9 b-

values, these are returned as final b-values. If it results in more than 9 b-values, the

first 5 and last 4 b-values are selected, since this selection is deemed to cover the range

of b-values well.

If both scenarios are not the case, we combine remaining b-values until we reach 9

(combined) b-values with at least 6 repeated measurements each. We iterate through

the remaining b-values in an ascending order. As long as the (combined) number of

repetitions of the currently selected b-values combined is less than 6, we add the next

left-over b-value to the current selection. When the selection reaches 6 repetitions,

the new, combined b-value is determined by taking the weighted mean of the selected

b-values. For instance, if the selection contains 3 repeated measurements for b = 100

and 3 for b = 150, the newly combined b-value will be 125, with 6 repetitions. By

combining b-values in an ascending order, we aim to minimize the impact of adapting

the b-value scheme by ensuring that the combined b-values selections are as close to

each other as possible.

For all selected b-values we then take the 6 repetitions and we remove all measurements

acquired at other b-values or during other repetitions, which leaves us with exactly 54

measurements.

Multidimensional arrays

Thereafter, for each patient the data is reshaped into an array with shape (nr measurements,
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nr slices, x∗y). Moreover, the data is split per b-value and per b-value per slice, result-

ing in two arrays with shapes (nr bvalues, nr repetitions, nr voxels) and (nr bvalues,

nr repetitions, nr slices, x ∗ y) respectively. Furthermore, these arrays are reshaped in

order to obtain the data split per repetition and per repetition per slice, resulting in ar-

rays with shapes (nr repetitions, nr bvalues, nr voxels) and (nr repetitions, nr bvalues,

nr slices, x ∗ y).

Data labels

Regarding the data labels, we start by loading the scaled residual values that were out-

putted and stored by the first model. Loading theses values is done using a csv.reader.

These values are stored in an array with shape (nr measurements, nr slices, x, y), where

the number of measurements, x- and y-dimension are, at this point, the original and

unedited dimensions. Hereafter, this array is adapted according to the b-scheme stan-

dardization, cropping and padding as previously described. Furthermore, the scaled

residuals are split per b-value and the mean residual value per slice per b-value is de-

termined. Moreover, the slice labels are determined by subjecting the mean residual

value per slice to the predetermined threshold. These labels are stored in an array with

shape (nr measurements, nr slices), where the number of measurements at this point is

54.

Lastly, all measurements, and hence all previously obtained arrays, are ordered on as-

cending b-value, mimicking the signal decay curve.

4.2.2 Class imbalance

An important characteristic of the data that we need to take into account is the severe

class imbalance. Since we are interested in detecting artifacts, which is the positive

class, we want to focus on the minority class. Therefore, we need to account for this

imbalance by using classification metrics that have sufficient focus on the minority class.

For instance, a model’s accuracy can be very high even though only predicting negative

labels, as long as the class imbalance is strong enough. Therefore, we take both the

loss as the types of error made into account when evaluating the models presented in

the next sections.
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4.2.3 Baseline models

We start by implementing a baseline model in order to obtain a benchmark perfor-

mance. We use the simplest case, which is a fully-connected Neural Network (NN)

with one hidden layer that classifies slice-measurement pairs as outlier/no outlier. It

uses one patient per batch and takes the flattened voxel array as input, represented

as 1D tensor instead of a 2D slice. This has two major downsides. First, a significant

proportion of the spatial information is lost. Second, the fully-connected network will

have a large number of coefficients, which strongly affects the computational efficiency.

Furthermore, we hypothesize that this model is not complex enough to learn all the

hierarchies needed. Nevertheless, it is used to determine a benchmark for the expected

performance and to learn what architectural choices could improve model performance.

Therefore, we implement the baseline model and two more variants of it to investigate

how certain types of additional information affect the model performance.

Base classifier

The Base model is a fully-connected NN with one hidden layer that operates as a

classifier. It uses ReLU non-linearity, Sigmoid activation, a Binary Cross-Entropy

(BCE) loss function and Stochastic Gradient Descent (SGD) optimizer with a learning

rate of 0.01. The Sigmoid activation forces the output values to be between 0 and 1,

which is what we want for a classification task. Moreover, BCE loss is a commonly used

loss function for binary classification problems in machine learning, which measures the

performance of a classification model whose output is a probability value between 0 and

1. It calculates the difference between the true label (ground truth) and the predicted

probability assigned by the model, as defined in Formula 12. Here, N is the number

of samples, yi is the actual label - either 0 or 1 - of item i and pi is the predicted

probability of item i being 1.

lossBCE = − 1

N

N∑
i=0

[yilog(pi) + (1− yi)log(1− pi)] (12)

The model takes the signal decay per voxel as input and generates a binary label per slice

per measurement as output. Furthermore, a 15-4 train-test split is performed on the

pool of 19 patients. This results in a training array with shape (15, nr measurements,
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nr slices, x∗y) and testing array with shape (4, nr measurements, nr slices, x∗y). The
dimensions of the resulting model are:

• Input: (1, 54, 18, 20736)

• Hidden layer: (1, 54, 18, 20736) → (1, 54, 18, 20736)

• Output: (1, 54, 18, 20736) → (1, 54, 18, 1)

Two-class model

In a first attempt to compensate for the class imbalance, we implement the Two-class

model. This model classifies each slice for every measurement into either the ’outlier’

or ’no outlier’ class. In order to do so, we make a few adaptions to the Base model.

First, the Sigmoid activation is changed into a Softmax activation, such that for each

instance the sum of the two output classes is exactly 1. Second, we use a Weighted

BCE loss function, of which the formula is previewed in Formula 13, to account for the

class imbalance. In this formula, w0 and w1 are the weights assigned to the positive and

negative classes, respectively. This modification helps in focusing the training process

more on the minority class, which is often underrepresented and thus typically less

accurately predicted.

lossweightedBCE = − 1

N

N∑
i=0

[w1 ∗ yilog(pi) + w0 ∗ (1− yi)log(1− pi)] (13)

The resulting dimensions of the Two-class model are:

• Input: (1, 54, 18, 20736)

• Hidden layer: (1, 54, 18, 20736) → (1, 54, 18, 20736)

• Output: (1, 54, 18, 20736) → (1, 54, 18, 2)

Grouped b model

In order to exploit the knowledge we have about the b-value at which a specific measure-

ment is acquired, we implement the Grouped b model. This model has a separate input

channel per b-value, which facilitates the model to learn features per channel. The data
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has 9 unique b-values, which means that the model has 9 input channels. The number

of repeated measurements per b-value is 6. Therefore, the resulting Grouped b model

has the following dimensions:

• Input: (1, 9, 6, 18, 20736)

• Hidden layer: (1, 9, 6, 18, 20736) → (1, 9, 6, 18, 20736)

• Output: (1, 9, 6, 18, 20736) → (1, 9, 6, 18, 1)

Base regressor

Since we expect the Base model to be insufficiently complex to learn the relationship

between signal intensities as input and a binary outlier label as output, we investigate

whether learning a scaled residual values per voxel enhances performance. This is

done by adapting the Base model by using a Mean Squared Error (MSE) loss function

instead of the BCE loss function. Furthermore, for each voxel the Base regressor aims

to approximate the scaled residual values over the measurements. The dimensions of

the resulting Base regressor are:

• Input: (1, 54, 18, 20736)

• Hidden layer: (1, 54, 18, 20736) → (1, 54, 18, 20736)

• Output: (1, 54, 18, 20736) → (1, 54, 18, 20736)

Loss masking

In order to improve the Base regressor’s efficiency, we use a loss mask when applying

the MSE loss function. This mask filters irrelevant voxels, which enables the model

to solely learn on valid voxels. This reduces the run time and minimizes the influence

of irrelevant voxels on the learning process. The mask is generated by filtering the

non-numeric, in this case np.nan, values in the data.

Training

The training is performed on a GPU. The models are trained using their corresponding

loss function for various numbers of epochs, depending on their speed of convergence.

The training algorithm we use is outlined in Algorithm 1. During every epoch, we
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start by shuffling the training data and generating the training and validation batches.

Patients 4, 5, 11 and 12 are always used for validation, the 15 remaining patients form

the training set. The consistency in the train-validation split allows us to compare the

performances of different runs or models.

During every epoch, we loop through all batches (patients in this case) in the training set

and all batches in the validation set exactly once. For each training batch we take one

training step, which starts by predicting its label for each slice-timepoint pair present in

the batch. Using these predicted labels, we compute the loss and performance metrics,

and store these. Then, we backpropagate the loss and update the weights of the model

accordingly. After doing this for each batch, we determine the mean training loss over

the batches and the mean training metrics, and we store these for the current epoch.
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Algorithm 1 Training loop NN

for epoch in epochs do

load data ▷ training data is shuffled
for batch in train loader do

predict values for current batch

compute loss

compute performance metrics

store loss

store metrics

backpropagate loss

update weights

store training loss ▷ mean over training batches

store training metrics ▷ mean over training batches
for batch in val loader do

predict values for current batch

compute loss

compute performance metrics

store loss

store metrics
store validation loss ▷ mean over validation batches

store validation metrics ▷ mean over validation batches
return training results, validation results

Validation

Hereafter, we loop through the validation batches. Again, during each iteration we

predict the labels for the current batch, we compute the corresponding loss and metrics

and we store them. After this loop, we again determine the mean loss and metrics for

the validation phase and we store them.

In the end, this training process aims to optimize the model parameters to approximate

the labels obtained by the model presented in Section 4.1. Furthermore, the outputs

of the models are qualitatively evaluated by visualizing the distributions of true and

predicted labels.
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4.2.4 CNN architectures

Among the various deep learning techniques, CNN is the most widely used as it is very

similar to conventional NN. Unlike a typical NN, CNN processes an image as input and

has three-dimensional arrangement of neurons that connect with a small region of the

preceding layer rather than the entire layer, which makes the CNN computationally

efficient. Therefore, CNNs are at the forefront of deep learning techniques for image

processing, including outlier detection. Their ability to automatically and adaptively

learn spatial hierarchies of image features from low- to high-level patterns makes them

particularly suited for identifying atypical patterns in visual data.

The CNN consists of multiple layers including a convolutional layer, a non-linear ac-

tivation layer such as a Rectified Linear Unit (ReLU) layer, a pooling layer or a fully

connected layer. The convolutional layer performs a convolution operation between pix-

els of the input image and a filter, producing volumes of feature maps that capture the

features extracted by the filter. The ReLU layer introduces non-linearity by applying

the function f(x) = max(0, x) to the input values, which increases non-linearity and

accelerates training. The pooling layer reduces the spatial dimensions of the image by

down-sampling the input values, which lowers computational costs and helps prevent

overfitting while being translation invariant, as the operations depend on neighboring

pixels. Typically, the last layer of a CNN is a fully connected layer, which resembles

the hidden layers of a traditional NN in the sense that all neurons are connected to

those in the preceding layer.

In this section, we present three different CNNs that each exploit the data along a

different dimension. Moreover, we combine the outputs of the spatial and the temporal

CNN in order to mimic spatio-temporal predictions. Each model takes the normalized

signal intensities as input and aims to approximate the mean scaled residual value per

slice as output.

Our model architecture is based on LeNet (LeCun et al., 1998). It is constituted by two

subsequent blocks that each consist of two convolutional layers with ReLU activation

followed by one Max pooling layer. After these two blocks, there are two fully connected

layers, of which the first has a ReLU activation and Dropout. The exact dimensions of

each layer are detailed per model separately.
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CNN - channel per slice

The first CNN, of which the network architecture is visualised in Figure 5, processes the

data by using a separate input channel per slice. Through this architecture, the CNN

exploits the spatial information contained in each slice by performing 2D convolutions.

The spatial information contained in the slice-dimension is captured, since each channel

contributes to all nodes in the following layer.

The input data shape depends on the size and depth (channels) of our input images.

Therefore, the shape of our input tensors is (1, 18, 144, 144). The output tensors have

a shape of (1, 18, 1, 1). All intermediate dimensions can be found in the figure. This

model allows a varying number of measurements as input, since each measurement is

treated as separate tensor. Hence, in this case the full input tensor has a shape of

(54, 18, 144, 144) per patient and the shape of the output tensor is (54, 18, 1, 1).

The number of slices, however, has to be equal for all patients, since it determines the

number of input channels of the model.

Figure 5: Representation of the CNN - channel per slice network design.

CNN - channel per measurement

The second CNN, of which the network architecture is visualised in Figure 6, processes

the data by using a separate input channel per measurement. This CNN also exploits

the spatial information within slices by performing 2D convolutions. However, this

CNN captures the temporal information contained in the measurement-dimension in-

stead of the spatial information from the slice-dimension.
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The input data shape depends on the size of our input images and the number of

measurements. Therefore, the shape of our input tensors is (1, 54, 144, 144). The

output tensors have a shape of (1, 54, 1, 1). Again, all intermediate dimensions can be

found in the figure. This model allows varying numbers of slices as input, but requires

the number of slices to be equal for all patients. The full input and output tensors per

patient have a shape of (18, 54, 144, 144) and (18, 54, 1, 1), respectively.

Figure 6: Representation of the CNN - channel per measurement network design.

CNN - channel per repetition

The third CNN, of which the network architecture is visualised in Figure 7, processes

the data by using a separate input channel per repeated measurement per b-value, re-

ferred to as repetition. This CNN again exploits the spatial information within slices

by performing 2D convolutions. However, this specific CNN captures the temporal in-

formation contained in the repetition-dimension.

The input data shape depends on the size of our input images and the number of

repetitions per b-value. Therefore, the shape of our input tensors for this CNN is (1,

6, 144, 144). The output tensors have a shape of (1, 6, 1, 1). Again, all intermediate

dimensions can be found in the figure. This model requires the b-schemes to be uniform

for all patients. The full input and output tensors per batch have a shape of (batch size,

6, 144, 144) and (batch size, 6, 1, 1), respectively.
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Figure 7: Representation of the CNN - channel per repetition network design.

Loss function

The CNNs are trained using the Mean Squared Error (MSE) loss function. The purpose

of the training process is to minimize the MSE loss, thereby minimizing the (squared)

difference between the actual scaled residuals and the predicted scaled residuals. The

formula of the MSE can be found in Formula 14, where ŷi are the predicted mean

scaled residuals of batch element i, yi are the actual mean scaled residuals and N is the

number of elements in the current batch.

lossMSE =
1

N

N∑
i=0

(ŷi − yi)
2 (14)

Training

The training algorithm we use is the one previously outlined in Algorithm 1. Again,

patients 4, 5, 11 and 12 are used for validation and the 15 remaining patients form

the training set. For the CNNslices (CNN - channel per slice) and the CNNmeas (CNN

- channel per measurement) models holds that one batch equals one patient. For the

CNNreps (CNN - channel per repetition) models holds that one batch equals 64 inde-

pendent tensors sampled from the data pool in order to increase regularization and

enhance generalizability.

We expect that batch-wise training and shuffling the training data after each epoch will

cause some regularization. This regularization arises from the fact that overfitting to

a noisy batch will lead to decreased performance in other batches. Furthermore, as a

form of L2 regularization, we use the weight decay parameter of the Adam optimizer.
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Adding weight decay can help prevent overfitting by ensuring that the regularization is

adapted along with the learning rates. We compare the models with and without this

form of regularization.

During every epoch, we loop through all batches in the training set and all batches

in the validation set exactly once. For each training batch, we take one training step,

which starts by predicting the mean scaled residual value for each slice-timepoint pair

present in the batch. Using these predicted values, we compute the MSE loss and per-

formance metrics, and store these. Then, we backpropagate the loss and update the

weights of the model accordingly. After doing this for every batch, we determine the

mean training loss and mean training metrics over the batches, and we store these for

the current epoch.

Validation

Hereafter, we loop through the validation batches. Again, during each iteration we pre-

dict the values for the current batch, we compute the corresponding loss and metrics

and we store them. After this loop, we again determine the mean loss and metrics for

the validation phase and we store them.

In the end, this training process aims to optimize the model parameters to approximate

the scaled residual values obtained through the ’golden standard’ model. Furthermore,

the outputs of the models are qualitatively evaluated by visualizing the distributions of

the ground truth and the predicted values.

4.2.5 Evaluation

Performance metrics

The resulting models will be evaluated on how well they detect artifacts. The main ob-

jective is to approximate the ’golden standard’ performance as achieved by the model

presented in Section 4.1. As a baseline model, we use the Base model described in

Section 4.2.3. In order to evaluate the performances of the models, we deploy several

performance metrics, each assessing a different facet of the performance. All metrics

are detailed in the next paragraphs.
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Accuracy

Accuracy, as defined in Formula 15, represents the ratio of items that are classified

correctly. In this formula, TP and TN are the number of True Positives and True

Negatives, respectively. FP is the number of False Positives and FN is the number of

False Negatives. It is the most basic performance metric, however it has the limitation

to misrepresent performance in case of class imbalance. In such a case, a higher accuracy

for the dominating class will overshadow the lower accuracy associated with the minority

class thus providing biased results.

Accuracy =
TP + TN

TP + FP + FN + TN
(15)

Sensitivity

Sensitivity is also known as the recall or the true positive rate, which is the probability

of a positive label, conditioned on the class truly being positive. Therefore, it represents

the proportion of poor slices in the ground truth that were correctly identified by the

model and hence, it is computed using the formula shown in Formula 16. The sensitivity

metric provides insights in the types of misclassification made by the model, since it is

sensitive to under-classification as that results in low sensitivities.

Sensitivity =
TP

TP + FN
(16)

Precision

Precision, as defined in Formula 17, represents the proportion of the poor slices as

labeled by the model that match with the ground truth poor slices. Over-classification

results in low precision scores and therefore, precision is a useful performance metric

for our research.

Precision =
TP

TP + FP
(17)

F1-score

Another performance measure that is used is the Dice score (F1-score). This is a com-
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mon metric for medical image segmentation and classification tasks and measures the

similarity between predicted labels and their ground truth. It determines the harmonic

mean of the precision and sensitivity, as defined in Formula 18. High values for both

measures means that the predicted classification labels match with the ground truth

both in terms of detecting which slices are poor and the correctness of these slices’

positive labels.

F1 = 2 ∗ Precision ∗ Sensitivity
Precision+ Sensitivity

(18)

Weighted F1-score

The weighted F1-score is used to evaluate the performance of a classification model

where there are imbalanced classes. It is particularly useful in scenarios where each

class contributes unequally to the overall model accuracy, and it is important to consider

the size (weight) of each class when calculating the metric. For a model dealing with

multiple classes, the weighted F1-score is calculated by taking the F1-scores of each

class and averaging them, weighting each by the proportion of true instances of each

class, as defined in Formula 19. Here, C represents the number of classes, which is

two in our case, the negative and positive classes. ni is the number of items in class

i, N is the total number of items over all classes and F1i is the F1-score of class i.

The weighted F1-score provides a more accurate measure of model performance across

all classes by considering both the abundance of each class and the individual class

performance, thus offering a more nuanced view than simple unweighted F1-score.

WeightedF1 =
C∑
i=0

(
ni

N
∗ F1i) (19)

Criteria

All performance metrics range between 0 and 1, and for all holds the higher, the better.

What are considered good values for these metrics highly depend on the specific task,

the nature and quality of the data, model architecture et cetera. Therefore, there is

no specific benchmark for these values. Also, the type of task determines performance

priorities. For some tasks, avoiding a false negative might be just as important as
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achieving a high accuracy. In this case, the main goal is achieving a high F1-score and

sensitivity, since a misclassification is not disastrous or life-threatening in our case, but

we do aim to detect as many (true) artifacts as possible.

Eventually, the model that achieves the best performance is preferred. Moreover, we

perform a thorough analysis that evaluates the models on how well they could solve

the problem of detecting outliers. Finally, potential shortcomings of the model in

terms of computational complexity and scalability, which are essential for potential

clinical adoption, will be taken into account. For example, a long execution time would

be disastrous for clinical adoption. After finishing this research, it should be clear

whether these types of model architectures could provide a solution to the problem of

automated artifact detection in 4D IVIM MRI, such that the research group can decide

on continuing this research or seeking for any other solution.
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5 Results

In this chapter we discuss the results obtained by the previously introduced models.

We elaborate on the results of each model and highlight the key outcomes.

This chapter is divided into five different sections. First of all, we highlight the re-

sults of fitting the IVIM model and scaling the resulting residuals of the data labeling

part described in Section 4.1. Hereafter, we investigate the outlier-artifact correlation

by considering relevant results from the same section. Subsequently, we highlight the

results from the deep learning models, obtained by the base models, as described in

Section 4.2.3, and the CNNs, as in Section 4.2.4. Besides that, we discuss the potential

benefits of using deep learning. Next, we try to assess the influence of incorporating

spatio-temporal information into the models through considering the insights obtained

from both parts of this research - the data labeling and the outlier detection. Finally,

we discuss two primary criteria regarding the real-time applicability of the models.

The results of each model are evaluated both quantitatively and qualitatively using the

criteria described in Sections 4.1.4 and 4.2.5.

5.1 Data labeling

5.1.1 Fitting the curve

Influence of fitting algorithm

In this section, we highlight the results of the fitting algorithms applied to patient 1.

Both fitting algorithms - LSQ and IVIM-Net - are deployed on the patient’s valid voxels,

of which the mask is previewed in Figure 8.
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Figure 8: Valid voxel mask for patient 1.

After fitting the measured signal decay for each valid voxel, their resulting IVIM curves

and corresponding IVIM parameters are obtained. In Figure 9, for both fitting al-

gorithms both the measured signal and the predicted signal are visualised for voxel

number 1000. What can be concluded from these figures is that at first sight the two

curves look very similar. By analysing the two curves for multiple voxels and patients,

we could observe minor differences between the shapes of the LSQ curve and IVIM-Net

curve at the lowest b-values. These predicted values seemed less affected by the most

extreme signal intensities measured at their corresponding b-values. At higher b-values

the difference between the two curves, however, were very minimal. Summarising, we

observe negligible differences between the two fitting algorithms in terms of the shape

of the resulting curves.

53



(a) LSQ fit (b) IVIM-Net fit

Figure 9: True values and predicted IVIM curve for voxel nr. 1000 of patient 1 - using
LSQ (a) and IVIM-Net (b) fitting

Residuals

If we consider the residuals and especially the mean residual values per b-value, which

are visualised for one given voxel in Figure 10, we observe the same negligible differences

between the two fitting algorithms as before. Specifically, the mean residual values of

the first few b-values show a minimally deviating pattern.

(a) Residuals from the LSQ fit (b) Residuals from the IVIM-Net fit.

Figure 10: Residuals resulting from the fit of voxel nr. 1000 of patient 1 - using LSQ
(a) and IVIM-Net (b) fitting

An important note is that the training process of the IVIM-Net is computationally more
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exhaustive compared to one of the LSQ fitting algorithm. Besides that, the differences

are insignificant. Moreover, we are not specifically interested in absolute parameter or

residual values but primarily in the way a measured signal intensity relates to the other

signal intensities at that b-value, which is not expressed as an independent value but as

a relationship or proportion. We observed during the experiments that the differences

between the two algorithms vanished when applying the scaling methods and combining

this with the computational demands of the algorithms, we decided to continue with

the LSQ fitting algorithm. Therefore, from here on all the results in Sections 4.1 and

5.2 are obtained by using the LSQ fitting algorithm.

5.1.2 Scaling the residuals

As expected, by visually inspecting the sum of squared residuals for various slices and

patients, we observed that the sum of squared residuals, as visualised for a given slice

and patient in Figure 11, correlated with the measured signal intensities. This is due to

the fact that if the signal in a certain tissue type is stronger and the percentage deviation

remains indifferent, the resulting absolute residuals will be greater. Evidently, the sum

of squared residuals will be too then. This correlation clouds our judgement on which

measurement is an outlier an which is not, as it will direct us towards high-signal regions

instead of highly deviating regions. Therefore, we explore different methods for scaling

the residuals, which are detailed in the next paragraphs.
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Figure 11: Sum of squared residuals over the measurements of slice 10 for patient 1.

As a final remark, we observed that the magnitude of the b-value, and hence the sig-

nal intensity, is anti-correlated with the variance of the residuals. For instance, when

looking at the plots in Figure 10 again, this can be noticed by the decreasing spread

as the b-value increases. This can be explained by the fact if the signal weakens, and

the percentage error, constituted by for instance background noise, remains stable, the

absolute deviation will be smaller.

Relative residuals

The first scaling method that we discuss is the relative residuals. As hypothesized, this

scaling method leads to exploding values at b-values where the mean residual value is

close to 0. This is, for instance, the case for voxel number 1000 of patient 1 at b = 0,

as can be observed in Figure 12a, where the highest relative residual value is around

7.5∗106. This makes sense, since the mean residual value in Figure 10b is approximately

0. This issue was observed multiple times when visually inspecting various voxels and

patients.

If we consider the relative residual values for the other b-values in some more detail,

which are visualised in Figure 12b, we can conclude that the method proves quite effec-

tive outside those problematic cases. The ranges of the residuals at different b-values
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are already significantly more comparable. Originally, the residual values ranged from

around -45 to 40, this range has been limited to approximately 0 to 12. Furthermore,

the mean relative residual values lie within approximately 2 and 7 instead of the -10

and 10 from the original range. Moreover, the distribution of the magnitude of the

spread has shifted, which is especially visible at b = 75 and b = 150.

(a) Relative residuals (b) Relative residuals (with y-limit)

Figure 12: Relative residuals of voxel nr. 1000 of patient 1 - without y-limit (a) and
with y-limit (b) for plotting

MinMax residuals

When considering the residuals scaled by using the MinMaxScaler, as visualised in Fig-

ure 13 for a given voxel and patient, the first thing that stands out are the boundaries

at y = 0 and y = 1. These are the forced limits of the scaled residuals that we earlier

mentioned as a potential limitation of this method. We see that for every b-value the

smallest value is located at 0 and the largest at 1. This suggests that each scaled resid-

ual value of 1 at a certain b-value is equally deviating, which is not true, as we learned

in the previous paragraphs. This issue recurred in nearly all the voxels and patients

that we visually inspected. Therefore, this method is rather misleading and the results

can be misinterpreted very easily.

Evidently, a strength of this method is the fixed range, and therefore the comparable

magnitudes. However, the level of corruption of the original distributions and hence

the misleading magnitudes outweigh the benefit of having comparable magnitudes.
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Figure 13: MinMax scaled residuals patient 1.

Absolute MinMax residuals

The absolute MinMax residuals are slightly less misleading, since a value close to 0

represents the smallest absolute residual value, which is actually close to 0, opposed to

the regular MinMax residuals where a value close to 0 represents the smallest residual

value, which is around -40 for some b-values. However, the insinuated equality in devi-

ation between scaled residuals with an equal value remains unchanged and is therefore

still a major limitation to this method.

Figure 14: Absolute MinMax scaled residuals patient 1.

Absolute z-score

We explore two variants of the absolute z-score. The first is determined by normalizing
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the residuals over all measurements for that voxel. Through analysing the resulting

residuals, as visualised for voxel number 1000 in Figure 15, we observed that they are

still correlated with the b-value. This can be observed by the recognizable pattern in

spread over the b-values. This is not surprising as we normalize over all measurements,

hence over all signal intensities, and do not account for the b-value at which a certain

measurement is obtained.

Figure 15: Z-score (normalized over all measurements) patient 1.

The second z-score variant is obtained by normalizing the residuals per b-value. Its

outcomes for voxel number 1000 can be found in Figure 16. We observed by inspecting

various voxels and patients that the previous correlation between the z-scores and the

b-values has seemingly disappeared. This observation is underpinned by the fact that

the mean z-scores per b-value are approximately aligned. Furthermore, the spread is

quite evenly distributed compared to before. Therefore, this scaling method seems to

be a suitable approach for our research.
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Figure 16: Z-score (normalized per b-value) patient 1.

By deploying latter scaling method, we are able to successfully eliminate the depen-

dency on the b-value, which allows us to make a fair comparison between the residuals

of different b-groups, which was the objective of scaling the residuals.

A downside of using the z-score is that it limits the number of ’bad measurements’

that we filter. It functions as an indication on how deviating a given measurement

is from the other measurements at that b-value, but that does not tell how poor the

measurements at that b-value actually are. If the standard deviation of that b-group is

extremely high and the spread of the measured signal intensities is therefore very large,

the z-score will not necessarily capture this and the majority of these measurements

will have a z-score below one. Namely, a high z-score is only obtained when a certain

measurements deviates much more than the others within that group. Therefore, a

z-score will not always tell how good or poor a measurement is, it just indicates how it

compares to the others within that b-group.

5.2 Investigating the outlier-artifact correlation

Since we aim to find slice-timepoint pairs that are corrupted by artifacts, we consider

the mean z-score per slice as a quality measure instead of a z-score per voxel. The

obtained values for patient 1 are visualised in Figure 17. Note that these measurements

are not chronologically sorted, but on ascending b-value. On the x-axis, we see the

b-value for that certain measurement and which repeated measurement it is. On the
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y-axis, we see the slices. Hence, each square equals one unique measurement for a cer-

tain slice.

The brighter and yellower the square is, the higher the mean z-score, which ranges

from approximately 0.6 to 1.3. A column containing multiple bright squares therefore

indicates that that measurement is poor compared to the other measurements at that

b-value.

Patient 1

Figure 17: Mean z-score per slice/timepoint pair for patient 1.

In this figure we can distinguish an interleaved pattern. This pattern arises because of

the acquisition protocol. Typically, during such protocol odd-numbered slices are for

instance scanned firstly and even-numbered slices are scanned afterwards. If there is

patient motion (e.g. respiratory motion) in the two phases of scanning, the slices will

be dislocated when stacking them alternately. This dislocation results in jagged edges

in the coronal orientation, as visualised in Figure 18a, and an interleaved pattern as

present in the figure.
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(a) An interleaved acquisition pattern from patient 1.

(b) A regular acquisition pattern from patient 1.

Figure 18: Two examples of an interleaved (a) and regular (b) acquisition pattern from
patient 1.

If we filter the pairs with a mean z-score higher than 1 - our pre-determined threshold,

we obtain the pattern displayed in Figure 19, which represents the pairs that are deemed

outliers by the model. This leaves us with the question whether the outlier pairs lead

us towards the presence of artifacts in that slice. This question can be answered by

performing a manual inspection on the slice-timepoint pairs, of which the results are

discussed in Section 5.2.2.
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Figure 19: Slice/timepoint pairs with mean z-score > threshold for patient 1.

Patient 2

If we consider the mean z-scores obtained for patient 2, which can be found in Figure

20, we can again recognize the interleaved pattern. However, it is less visible than for

patient 1. Furthermore, although most pairs have a slightly lower score than the ones

of patient 1, the range is enlarged and ranges to approximately 1.9. On a side note, the

first column is the only column that contains scores above 1.6.

Figure 20: Mean z-score per slice/timepoint pair for patient 2.

If we filter the outlier pairs, we obtain the figure shown in Figure 21. Considering these
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measurements in chronological order, as shown in Figure 22, we see that the interleaved

pattern disappears in the last 22 measurements. A reason for this could be that the

patient adhered to the instructions more closely than during the preceding series of

measurements. Such instructions could for instance be breath-holding instead of free

breathing.

Figure 21: Slice/timepoint pairs with mean z-score > threshold for patient 2.

Figure 22: Slice/timepoint pairs with mean z-score > threshold (in chronological order)
for patient 2.

Patient 3

For patient 3, for which the mean z-scores are visualised in Figure 23, the range is
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slightly tighter. The highest score is about 1.2, which is just above the threshold.

Furthermore, we again observe an interleaved pattern.

Figure 23: Mean z-score per slice/timepoint pair for patient 3.

If we consider the outliers, as shown in Figure 24, the interleaved pattern slightly

disappears as the outliers show quite some randomness.

Figure 24: Slice/timepoint pairs with mean z-score > threshold for patient 3.

Patient 4

Patient 4 has an even tighter range of mean z-scores, as can be seen in Figure 25. There
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are very few scores greater than the threshold, as is underpinned by Figure 26 and the

fact that the highest score is approximately 1.15. If we compare these outliers to the

ones from patient 1, we see both a different number of outliers and a different pattern

in which they appear. Furthermore, except for the second to last column that contains

outliers, all other columns do not contain outliers across the full range of slices, which

is the case for, for instance, interleaved motion artifacts. However, the columns mostly

contain singular outlier slices, which hints at a different type of artifacts.

Figure 25: Mean z-score per slice/timepoint pair for patient 4.

Figure 26: Slice/timepoint pairs with mean z-score > threshold for patient 4.
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5.2.1 Local versus global

In order to gain insights in which types of artifact are detected in an outlier slice, we

explore how locally or globally the artifact is caused. To assess this, we deploy the

method described in Section 4.1.3. While doing so, we firstly visualise the results ob-

tained by computing the sum of voxels with a z-score greater than our threshold per

slice and dividing it by the mean z-score of that slice. We refer to this as the normalized

sum. This sum is determined for each slice-timepoint pair that was labeled as outlier.

Patient 1

In Figure 27, the resulting normalized sum per outlier pair is visualised for patient 1.

If we analyse the values in this figure, we suspect a correlation between the number of

valid voxels in a certain slice and the normalized sum obtained, because of the trend of

lower values in the top part of the figure compared to the higher values for the slices

in the middle. Furthermore, by taking the sum of voxels without accounting for the

number of valid voxels in the slice, we obtain absolute values of which we are not able

to tell how these values relate to each other.

Figure 27: Normalized sum of voxels with a z-score > threshold per outlier slice for
patient 1.

Therefore, we decided to divide this value by the number of valid voxels per slice, which

results in a ratio of outlier voxels, as visualised in Figure 28. In theory, this value now

ranges between 0 and 1. However, for patient 1 the values range from approximately
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0.41 to just above 0.52. The trend that we noticed before has disappeared, which means

that the resulting values now show us the proportion of the slice that causes the slice

to be an outlier.

The far right column contains one of the highest ratios, which means that this outlier is

caused more globally than for instance the one for slice 5 in the first column. Moreover,

apart from some fluctuations, the values remain comparable and besides that, there is

no clear trend in the rest of the columns. Although, in Figure 19 we observed lower

values for the columns in the right part of the figure compared to the ones in the middle.

Hence, we can state that the level of distortion decreases over these columns, but the

ratio of outlier voxels remains roughly the same. During the manual inspection, of which

the results are discussed in Section 5.2.2, we will explore the images corresponding to

some of these outliers in order to investigate the differences.

Figure 28: Ratio of voxels with a z-score > threshold per outlier slice for patient 1.

Patient 2

Considering patient 2, of which the ratios are visualised in Figure 29, we see that the

range is wider than for patient 1, ranging from around 0.39 to 0.60. Furthermore, we

observe significantly lower values in the first column than in the rest of the columns.

However, in Figure 21 we observed the highest values in the first column, which suggest

that the lowest ratio of voxels causes most distortion, with mean z-scores up to almost

2. Hence, the outliers at this timepoint are caused rather locally by highly deviating
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regions. Furthermore, we observe similar behaviour to patient 1 in terms of a decreasing

mean z-score as we move to the right of the figure coupled with a ratio that remains

stable.

Figure 29: Ratio of voxels with a z-score > threshold per outlier slice for patient 2.

Patient 3

If we look at the ratios for patient 3, as visualised in Figure 30, we observe more

randomness and therefore, fewer trends. The only clear pattern that we can distinguish

is the center column (50.0, 0) which contains bright colors, and therefore high values,

for almost every odd-numbered slice. This suggests an interleaved motion artifact.

Furthermore, the values in this figure range from around 0.41 to almost 0.54, which is

similar to patient 1.
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Figure 30: Ratio of voxels with a z-score > threshold per outlier slice for patient 3.

Patient 4

For patient 4, the ratios are visualised in Figure 31. If we compare these results to the

ones in Figure 25, we see that the highest values in both figures are centered around

the columns of the first and second measurement for b = 5, i.e. (5.0, 0) and (5.0, 1),

and the single outlier at b = 450. Furthermore, we again observe an increasing ratio as

the b-value increases paired with a stable mean z-score, which means that the outlier

becomes more global. Lastly, the range is narrow, ranging from approximately 0.455

to 0.52.

Figure 31: Ratio of voxels with a z-score > threshold per outlier slice for patient 4.
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5.2.2 Manual inspection

In order to evaluate the performance of this first model, we perform a manual inspec-

tion. The procedure we follow is described in Section 4.1.4. The first part of this

inspection focuses on assessing the model performance in terms of how well it detects

outliers and happens through visual inspection of the measurements. In the second

part, we consider a selection of measurements that either have a very high or low mean

z-score or are very globally or locally caused. This part provides us with insights into

which types of artifact are detected by the model.

Evaluation

For this part, the results can be found in Appendix A. The artifact labels that we use

are the ones detailed in Table 3. Furthermore, Table 6 shows the labels for patient 1 re-

sulting from the visual inspection for the 28 slice-timepoint pairs with the highest mean

z-scores. Conversely, Table 7 shows the results for the 34 pairs with a mean z-score of

just above the threshold, which makes them minimal outliers. Furthermore, Table 8

shows for all timepoints whether they contain at least one outlier slice according to the

visual inspection (second column) and the model (third column).

By analysing the first two tables, we can conclude that there is a high correlation

between the outliers as labeled by the model and the artifacts as labeled during the

inspection, since each outlier, also the minimal ones, contains at least one artifact. If we

look at the third table, the first thing we notice is that the patterns look quite similar.

If we observe them in a bit more detail, we do see some differences, however. Especially

the labels for timepoints 41 until 47 differ. In summary, 4 of the 26 ’poor’ timepoints

are not labeled as poor (false negatives) and 1 of the 23 timepoints is falsely labeled as

poor (false positives). Overall, around 85% of the poor timepoints is detected and less

than 5% has a false ’poor’ label.

Local vs global

In this part, we start by visually inspecting three measurements of patient 1 with an

equal b-value, of which the third has a high mean z-score and was therefore labeled as

outlier. These measurements are visualised in Figure 32, in which the left plots show-

case the z-score per voxel for slice 9 at b-value 25. The right images show the measured

signal intensities during these measurements. Since the measurements have an equal
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b-value, we would expect them to be very similar, which is not the case per se. We can

see from the bottom left figure, which is the outlier measurement, that the outlier is

caused rather globally, since the yellow areas (high values) are visible over the whole

slice. In the upper figure, we see a local deviation in the center of the bottom part of

the plot. However, because the rest of the plot has rather low z-scores, the resulting

mean z-score of the slice was not high enough to be labeled as outlier.

If we look at the scans on the right side of the figure, we can clearly recognize the

deviating regions indicated by the z-score plots on the left. For the upper scan, we

clearly distinguish the brighter region in the center of the bottom part. In the bottom

scan, we are able to distinguish the patterns too. However, in this case we recognize

both signal increase as signal dropout. The bright yellow region just left from the

middle of the plot can be recognized in the scan by the brighter region. The bright

yellow half circle below, however, can only be noticed in the scan by comparing the

bright region to the circles in the other two scans, which are bigger. Hence, this is a

decrease in signal. The same holds for the center part of the scan, which is darker for

the bottom scan than for the other two. Lastly, the two separate bright yellow regions

on either side of the abdomen, which are the arms, are not clearly visible in the scans

on the right. However, if we look close enough, we can see that in the bottom scan the

arms are even darker than in the two upper scans, which explains the higher z-scores.
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Figure 32: A global outlier example from patient 1 for b=25.

Next, we explore three measurements for slice 9 of patient 1 at a b-value of 50, which

are visualised in Figure 33. Evidently, we observe a locally deviating region in the

middle plot of the left side of the figure, showcasing a z-score of more than 2. However,

since this deviation is very local and multiple parts of the slice contain values below 1,

the resulting mean z-score is just below 1 - our threshold. Therefore, this measurement

was not labeled as outlier, nor were the other two measurements.
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Figure 33: An example of a local high z-score region from patient 1 for b=50 (no outlier
slice.

In Figure 34, we see a local and a global artifact from patient 1. Figure 28 showed

the highest ratio for the global artifact visualised in Figure 34b and a rather low ratio

for the local artifact previewed in Figure 34a. The scans on the left are scanned at a

b-value of 75, the ones on the right at a value of 600. The artifacts occur in the middle

row of the figure and are indicated by the red arrows. For the local artifact we observe

a locally increased signal intensity in the bottom part of the scan. The global artifact

can be recognized by the large dark region in the center of the scan, caused by signal

dropout.
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(a) A local artifact from patient 1. (b) A global artifact from patient 1.

Figure 34: Two examples of a local (a) and global (b) artifact from patient 1.

Summarising the results obtained by performing the visual inspection, we can conclude

that there is a high correlation between the mean z-scores and the artifacts. Moreover,

the interleaved motion artifacts are detected very well. However, the model is able to

capture local artifacts too. Since the aim of this model is to function as proof-of-concept

and provide pseudo-labels for the second part of the research, these results are sufficient

for now to advance to the second part of the research.

5.3 Deep learning to the rescue?

In order to develop a more advanced and more efficient alternative, which does not

necessarily rely on completeness of the patient’s data, we try to answer the question

whether deep learning can provide a reliable solution to automated outlier detection in

4D IVIM MRI. Therefore, in Section 5.3.1 we start by analysing the performances of

the base models described in Section 4.2.3. The training and validation performance

curves of these models can be found in Appendix B. Subsequently, in Section 5.3.2 we

analyse the performances of the models detailed in Section 4.2.4. In Appendix C, the
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performance curves and outputs of the CNN’s are detailed.

The base models are trained according to the procedure described in Section 4.2.3. For

the CNNs, the training process is detailed in Section . All models are trained on a GPU.

5.3.1 Base models

Firstly, we consider the performances and outputs of the base models in order to de-

termine a baseline performance. The baseline model is the Base classifier, which is

highlighted in the next section. Hereafter, we analyse two variants on this model, the

Two-class model and the Grouped b model. Lastly, we consider the Base regressor.

We expect the base models to not be efficient enough, yet complex enough to yield both

a good training and validation performance. However, they provide us with insights in

a baseline performance and therefore, allow us to assess the differences in performance

when adjusting the model architecture.

Base classifier

The results of the Base classifier are visualised in Appendix B.1. If we consider the

training and validation loss, visualised in Figure 49, we notice that the validation loss

starts increasing after around only 10 epochs. This means that the model starts over-

fitting from that point and therefore, it becomes worse. But, if we take a look at the

performance metrics visualised in Figures 50 until 54, we can conclude that what the

model has learned during the first 10 epochs is negligible. It is likely that the model is

at that point still in its local minimum where all predicted labels are 0.

If we continue the training process, and thus continue overfitting, we do see that for

instance the validation sensitivity and F1-score keep improving. Therefore, the model

improves at predicting a positive label - outlier in our case, but the labels are not nec-

essarily correct. So, it predicts more positive labels, yet it also becomes less certain in

predicting the labels. Furthermore, the overfit results in a large discrepancy between

the training and validation performance, as exemplified by the sensitivity curves, which

show a similar pattern but approach values of, respectively, 1 and 0.3.
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Lastly, we inspect the predicted values versus the true labels for the four validation

patients, as visualised in Figure 56, where the blue dots represent the true outlier la-

bels and the red dots are the values predicted by the model. Here, we observe that for

the first two patients the model’s predicted values are in general too low. The third

patient’s values look decent. The ones of the fourth patient do so too, however, there

are many values in the center part of the plot. The more values there are in this region,

the more values are close around 0.5. Predictions around 0.5 are the most uncertain

ones, since a minor change in value could result in an opposite class label. Therefore,

the predictions for validation patient 4 look rather uncertain.

Two-class model

For the Two-class model, the results are detailed in Appendix B.2. By analysing the

performance curves, and especially the loss curves, we can conclude that this model

exhibits similar behaviour to the base classifier. However, for this model the overfitting

starts after around 40 epochs. Furthermore, the training loss is much higher compared

to the previous model. The validation loss is initially much higher too, but converges

to a comparable value. It is important to note that the loss for the two models is based

on a different loss function, namely BCE and weighted BCE respectively. This hinders

direct comparison between the loss of the models.

Two other performance metrics that stand out are the extremely low values in the

validation F1-score plot (Figure 61b) and validation sensitivity plot (Figure 61b). If

we compare them with their training counterparts, this is accentuated even more. Al-

though both metrics keep improving over the epochs, the performance on these metrics

is very poor. Furthermore, the validation precision curve, shown in Figure 62b, is in-

teresting since it fluctuates quite a bit and does not improve overall.

If we compare the predicted values with the true values, as visualised in Figure 64a,

we observe that the model performs poorly on all validation patients. For patient 3, it

stands out that the model solely predicts values close to 0. Although this patient seems

to have very few positive labels in its true data, this still is undesired behaviour. The

predicted values for the first and fourth patient are in general too low. Moreover, the

predictions for patients 1, 2 and 4 seem very uncertain, since many of them are in the

center part of the plot.
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Grouped b model

Regarding the results of the Grouped b model, as detailed in Appendix B.3, we can

conclude that the model again suffers from overfitting. By observing the loss, as visu-

alised in Figure 65, we see that the overfitting starts after approximately 70 epochs,

which is seven times slower than the base classifier. Furthermore, the overfit is smaller,

as can be seen by the final value of the validation loss which is around 0.38, versus 0.62

from the base model. Moreover, their minimum is almost equal, but is reached during

a different epoch.

In this case, the validation F1-score does not keep improving while overfitting, nor does

the precision, which both show a very similar pattern. As for the first two models, the

validation F1-score for the grouped b model is again very poor. The validation sensi-

tivity is as low as for the two-class model, and therefore much lower than for the base

classifier. Furthermore, the validation precision is much worse than for both previous

models.

In line with the validation curves that were worse than the ones from the previous

models, the predicted values versus true values shown in Figure 72 exhibit a poor per-

formance. The predicted values for the first two patients are (almost) all 0 or close to

0. For the third and fourth patient, the model predicts values over the whole range

from 0 to 1, which is good. However, by looking at the distribution of these values, we

can conclude that the model is very uncertain.

Base regressor

Because these first three models show a strong overfit and yield a rather poor per-

formance, we wanted to test whether using a regressor to predict a z-score per voxel

instead of classifying a whole slice at once would enhance performance through aiding

the model by providing an intermediate step. However, after implementing the base

regressor, we noticed that training the model takes approximately one hour per itera-

tion, which makes the model infeasible for clinical adoption in real-time. Therefore, we

decided to not continue with this model.
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5.3.2 CNNs

In order to facilitate multi-dimensional inputs instead of the flattened voxel tensors

used in the base models and thereby enhancing efficiency, we test the three CNN’s de-

scribed in Section 4.2.4. These models aim to approximate the mean z-scores as closely

as possible by minimizing the MSE loss. The classification metrics are determined by

subjecting the predicted values to our threshold and subsequently computing the met-

ric in question. Firstly, we analyse the results of the three separate models. Then,

we compare the performances of the three models. For each model, we consider the

performances both with and without L2-regularization.

CNN - channel per slice

First, we consider the CNNslices model, of which the performance curves and outputs

can be found in Appendix C.1. If we analyse the training and validation loss for the

model without (Figure 73) and with (Figure 74) L2-regularization, we observe an in-

creased training loss for the regularized model. The validation loss, however, yields an

equal score, although the shapes of the curves are different. The regularized model has

a more unstable validation curve that seems to start increasing in the last 50 epochs.

The model without regularization seems to stabilize after 250 epochs. Furthermore, the

training and validation losses converge to very similar values, which implies that the

level of overfitting has clearly decreased compared to the base models.

Moreover, the other metrics exhibit similar behaviour. If we consider for instance the

accuracy, as shown in Figure 75 and 76, we observe a decreased performance for the

model with regularization. Furthermore, as the training process progresses, the model’s

predictions become slightly more certain. As expected, the regularized model is slightly

more uncertain during training. All four curves yield a high accuracy, but the instabil-

ity of the curves is undesirable.

The differences between training and validation performance become clear when looking

at the F1-score, sensitivity and precision, which are visualised in Figures 77, 78 and 81

until 84. In these figures, we observe high discrepancies between the training and val-

idation performance for the model without regularization. For the regularized model,

these differences are much smaller, which means that the regularization is effective for

preventing overfitting.
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Overall, the L2-regularization does not seem to enhance the performance of the CNNslices

model in terms of boosting the performance metrics. However, it does reduce the over-

fit, which is useful too.

If we inspect the validation outputs, as visualized in Figure 87 until 96, this claim is con-

firmed. When observing the true versus predicted plots shown in the first two figures,

we see that the spread in these plots is smaller for the regularized model. However, ide-

ally we want the datapoints to lie on the diagonal line starting in the origin and ending

at the top right part of the graph. This is not the case, since the points in the plots are

located on a horizontal line, if we distinguish a line at all. This indicates that the range

of predicted values is much tighter than the range of true values. Therefore, the more

extreme a true value is, the higher the deviation is between the true and predicted value.

Next, we consider the predicted, true and difference in mean z-scores per slice-timepoint

pair. We cannot distinguish clear similarities between the patterns in the predicted and

true plots per patient, for both the model with and without regularization. If we com-

pare the two variants to each other, we do notice a difference in predicted patterns.

The regularized model seems to predict similar patterns for validation patients 1, 3 and

4, although their true values do not match. Therefore, we suspect that the regularized

model suffers from too much regularization, which causes the model to make similar

predictions for different inputs. Either way, the regularized model does not adapt suf-

ficiently to new data.

CNN - channel per measurement

The second model to be discussed is the CNNmeas model, of which the results are high-

lighted in Appendix C.2. We start by considering the loss curves, which are shown

in Figure 97 and 98. When analysing these curves, we again observe a decrease in

training performance for the regularized model. Furthermore, although both validation

losses exhibit similar values, their trends differ. The model without regularization has

a decreasing loss curve, while the regularized model leads to an increasing validation

loss. On the other hand, the difference in values between training and validation for

the model without regularization is much larger than for the model with regularization,

which suggests that adding regularization to the model will lead to a smaller overfit.
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If we look at the accuracy, as visualised in Figure 99 and 100, we observe similar be-

haviour. The performance on the training accuracy is worse for the regularized model.

Also, the validation accuracy increases over the epochs for the model without regular-

ization and decreases for the regularized model. However, the training and validation

values are more comparable for the model with than without regularization.

For the F1-scores, visualised in Figure 101 and 102, it is clear that the regularization

worsens the model’s uncertainty. This can be seen by the increase in variance. Further-

more, the training scores are much lower for the regularized model. However, the overfit

is smaller and the F1-score is increasing over the epochs, as opposed to the F1-score of

the model without regularization.

When considering the weighted F1-score (Figure 103 and 104) and the sensitivity (Fig-

ure 105 and 106), we notice that the regularized model becomes more uncertain as the

epochs increase, while the model without regularization becomes more certain, which

can be seen by the evolving variance. However, for the sensitivity the regularized model

does show a more promising trend compared to the model without regularization.

Moreover, the precision, as detailed in Figure 107 and 108, does show a significantly

worse performance for both the training and validation precision of the regularized

model. The only improvement is that the regularized model exhibits a lower variance.

When analysing the validation outputs, as visualized in Figure 111 until 120, the first

thing that stands out in the true versus predicted plots is the fact that the spread

increases when adding the regularization. Furthermore, the points do not follow a hor-

izontal trend anymore.

If we consider the plots per slice-timepoint pair, we immediately notice that the pat-

terns show much more resemblance. Apart from the fact that the predicted values

often have a narrower range, we can clearly recognise parts of the true value pattern in

the predicted values. The model without regularization shows greater overlap between

these patterns than when adding regularization.

CNN - channel per repetition

Next, we analyse the CNNreps model, of which the performance curves and outputs are
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highlighted in Appendix C.3. This model is not directly comparable to the previous

two CNN’s because of the difference in sampling strategy. The batches that are used for

training this model do not consist of the full set of tensors of one given patient, but are

constituted by sampling 64 tensors from a pool of tensors of all training patients, slices

and b-values together. Each tensor thus represents the six repeated measurements for

that specific patient, slice and b-value. Furthermore, it is important to note that the

regularized model is trained for 1500 epochs instead of the 500 epochs for the model

without regularization.

The first thing that stands out when inspecting the performance curves is that espe-

cially the training curves are much stabler and show less uncertainty compared to the

previous two CNN’s. This can be explained by the fact that the tensors within a batch

differ more than the tensors within a patient. Therefore, the model is immediately

forced to learn to generalize, which makes that its performance does not rely on over-

fitting on one patient, or one fixed batch of tensors, before fitting the next patient.

If we consider the loss curves, which are visualized in Figure 121 and 122, we notice

very smooth curves. However, we do notice that the validation curves do not improve

over the epochs. Moreover, the training loss for the regularized model is slightly higher

than for the model without regularization, but the validation losses are almost identical.

Hence, the regularization brings minimal improvement to the overfit, but does increase

the uncertainty.

Considering the accuracy, highlighted in Figure 123 and 124, we again observe a worse

training performance after regularizing the model. Furthermore, the regularization

clearly increases the variance. However, although being much more uncertain, the vali-

dation accuracy for the regularized model is higher. Therefore, the discrepancy between

training and validation performance for the regularized model is decreased.

Regarding the F1-score, which is visualized in Figure 125 and 126, we again observe a

decrease in training performance when regularizing the model. Furthermore, the vali-

dation score and the variance worsen too. For the remaining performance metrics, we

observe the same behaviour.

If we inspect the validation outputs, which are visualized in Figure 135 until 144, we can
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conclude from the true versus predicted plots that the positioning of the points is sig-

nificantly better, especially for the model without regularization. The datapoints show

a diagonal trend, where we aim for. However, they do show quite some spread, which

testifies of uncertainty while predicting. The spread slightly decreases when adding

regularization, although the resulting predictions are often a bit too low.

We conclude that the regularization affects the speed of convergence, since after 500

epochs the regularized curves have not converged as much as the curves from the model

without regularization have after the same number of epochs. Therefore, it also delays

the overfitting. However, this unfortunately does not result in the model achieving

better validation performances in the meantime when comparing it to the ones of the

model without regularization. Hence, we can conclude that the regularization just chal-

lenges the model by adding extra randomness, and fails in forcing the model to learn

to generalize to new data.

However, because of the delayed overfitting the model can be trained for more epochs,

which results in predicted patterns that look more similar to the actual patterns in

the data. This can be noticed when comparing Figure 137b until 140c to Figure 141b

until 144c. Apart from the fact that the predicted values are often not in the exact

same range as the actual values, we can visually recognize similar patterns between the

predicted and true values.

3 CNNs

In this section we compare the performances and outcomes of the three previously dis-

cussed CNN’s - both without and with regularization - in order to pass judgement on

which model performs best. Besides the aforementioned difference in sampling strategy,

the models are trained using identical settings to allow for a fair comparison.

Starting with the loss, which is visualised in Figure 35 and 36, we immediately notice

the difference in smoothness of the curves between the models. As mentioned before,

the CNNreps model exhibits a much smoother learning process, which involves less un-

certainty. Without regularization this model outperforms the CNNslices model in terms

of training loss, while showing an almost equal performance to CNNmeas except for the

level of uncertainty.
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When adding the regularization, CNNmeas suddenly shows the worst training loss.

CNNreps clearly outperforms the other two models if we consider the regularized ver-

sions and CNNslices scores precisely in between the other two models.

If we consider the validation losses, CNNreps evidently shows the worst loss for the

models without regularization, yielding a value almost twice as high as the CNNmeas

validation loss. This time the CNNslices starts off worst, but begins to outperform

CNNslices after around 150 epochs. The latter shows a slightly increasing trend, which

hints at overfitting. Moreover, the regularized versions of these models exhibit similar

behaviour for the validation loss. However, in this case both CNNslices and CNNmeas

have increasing curves and CNNreps has a curve that starts decreasing slightly after the

first 150 epochs.

(a) Training loss (b) Validation loss

Figure 35: Training and validation loss of the 3 CNN variants (MSE loss)
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(a) Training loss - with regularization (b) Validation loss - with regularization

Figure 36: Training and validation loss of the 3 CNN variants - with regularization
(MSE loss)

If we consider the accuracy, which is visualized in Figure 37 and 38, we observe very

similar behaviour for the training curves as for the loss training curves.

Regarding the validation accuracy, CNNmeas again outperforms the other models. For

the models without regularization, it is the only model with an increasing accuracy

curve. Moreover, CNNslices has a much larger variance than the other models, espe-

cially with regularization.

(a) Training accuracy (b) Validation accuracy

Figure 37: Training and validation accuracy of the 3 CNN variants (MSE loss)
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(a) Training accuracy - with regularization
(b) Validation accuracy - with regulariza-
tion

Figure 38: Training and validation accuracy of the 3 CNN variants - with regularization
(MSE loss)

For the F1-score, which is previewed in Figure 39 and 40, we observe different patterns.

The training curves for the model without regularization do have the same order as

for the accuracy, but the CNNslices curve has a deviating shape during the first half of

the epochs. For the regularized curves, the CNNmeas model performs best at the start.

However, as the epochs pass, the CNNreps strongly outperforms the other two models.

Furthermore, the CNNslices surpasses the CNNmeas after around 300 epochs.

If we consider the validation performance on the F1-score, we can obviously conclude

that the CNNreps model’s performance, both without and with regularization, highly

exceeds the performances of the other two models. Without regularization the CNNmeas

model firstly outperforms the CNNslices model, but they converge towards each other

eventually. With regularization, CNNslices outperforms CNNmeas. However, during

the last 100 epochs CNNmeas starts increasing slightly and therefore approximates the

CNNslices curve.

The validation F1-score of CNNmeas decreases when regularizing the model. For CNNslices,

it increases and for CNNreps there is almost no difference.
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(a) Training F1-score (b) Validation F1-score

Figure 39: Training and validation F1-score of the 3 CNN variants (MSE loss)

(a) Training F1-score - with regularization
(b) Validation F1-score - with regulariza-
tion

Figure 40: Training and validation F1-score of the 3 CNN variants - with regularization
(MSE loss)

The weighted F1-score, as previewed in Figure 41 and 42, exhibits nearly identical

patterns to the accuracy, and therefore the previously discussed observations and con-

clusions in that paragraph hold for this metric too.
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(a) Training weighted F1-score (b) Validation weighted F1-score

Figure 41: Training and validation weighted F1-score of the 3 CNN variants (MSE loss)

(a) Training weighted F1-score - with reg-
ularization

(b) Validation weighted F1-score - with
regularization

Figure 42: Training and validation weighted F1-score of the 3 CNN variants - with
regularization (MSE loss)

By observing the sensitivity, highlighted in Figure 43 and 44, we can conclude that

regularizing the models badly influences the training sensitivity. The validation sen-

sitivity remains rather stable, although the trends of the curves do change. Where

CNNslices and CNNmeas without regularization do not necessarily have increasing val-

idation curves, their regularized counterparts do show an increase over the epochs.

However, the level of uncertainty in the validation curves of these two models is very

high. This means that although the model becomes better at predicting positive labels,

it does not necessarily become more certain in predicting these labels. We expect this
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to be reflected in the precision curves.

(a) Training sensitivity (b) Validation sensitivity

Figure 43: Training and validation sensitivity of the 3 CNN variants (MSE loss)

(a) Training sensitivity - with regulariza-
tion

(b) Validation sensitivity - with regular-
ization

Figure 44: Training and validation sensitivity of the 3 CNN variants - with regulariza-
tion (MSE loss)

If we consider the precision, which can be found in Figure 45 and 46, we see that

especially CNNslices’s precision is affected by the regularization. Both the training

and validation precision nearly halve when adding regularization to the model. In

this case, the regularization leads to a smaller variance, which is contrary to most of

the earlier-mentioned performances. Furthermore, the CNNreps model outperforms the
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other models in both the training and validation phase.

Moreover, as we expected the validation precision remains stable over the epochs. Ex-

cept for a slightly increasing validation curve for the CNNreps model with regularization,

all other curves do not exhibit an increasing trend. This means that the models’ pre-

dictions do not become more certain and therefore, the models have difficulties with

learning to adapt to new data.

(a) Training precision (b) Validation precision

Figure 45: Training and validation precision of the 3 CNN variants (MSE loss)

(a) Training precision - with regularization
(b) Validation precision - with regulariza-
tion

Figure 46: Training and validation precision of the 3 CNN variants - with regularization
(MSE loss)
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Lastly, we consider the precision versus sensitivity plots previewed in Figure 47 and 48.

Ideally, we want to reach the top right corner of the plot, which embodies a model that

is very good at correctly detecting outliers. Therefore, the training curves for the mod-

els without regularization testify of a good performance. If we consider the validation

counterpart, however, we observe a poor performance. Especially since the differences

between the training and validation curves are huge.

If we consider the regularized versions of the models, we observe a similar training

pattern for CNNreps compared to the model without regularization. The validation

patterns are quite similar too, although the regularized version achieves a slightly lower

precision and slightly higher variance. For CNNmeas, the training performance signifi-

cantly dropped when adding the regularization, yielding scores that are half as good as

without the regularization. Although the variance decreases for the validation phase of

the regularized version of this model, the achieved scores do too. Lastly, we consider

the CNNslices model, for which the training performance is badly influenced by the reg-

ularization too. Furthermore, the regularization does not seem to affect the validation

performance much.

(a) Training precision vs sensitivity (b) Validation precision vs sensitivity

Figure 47: Training and validation precision vs sensitivity of the 3 CNN variants (MSE
loss)
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(a) Training precision vs sensitivity - with
regularization

(b) Validation precision vs sensitivity -
with regularization

Figure 48: Training and validation precision vs sensitivity of the 3 CNN variants - with
regularization (MSE loss)

Finally, we discuss which model is preferred. Having considered all the metrics and

outputs, and taking into account our previously determined success criteria (Section

4.2.5), we prefer the CNNreps model. This choice is motivated by a few arguments.

First of all, our aim was to develop a model that excels at correctly detecting outliers.

Therefore, we mainly focus on the precision and sensitivity. Since the F1-score is a

harmonic mean of these two metrics, we also strive for a high F1-score. Having consid-

ered these metrics in the foregoing paragraphs, we conclude that CNNreps outperforms

the other models in terms of these metrics. Additionally, CNNreps demonstrates signifi-

cantly more stable performance curves, which means a smoother training and validation

process, and consequently, less uncertainty.

Secondly, CNNreps suffers less from overfitting. As a result, the difference between

training and validation performance is smaller, which is important since we are inter-

ested in the model’s performance on new data. Because of the reduced overfitting, its

validation curves keep improving over the epochs, which is not the case for the other

two models. Therefore, it pays to continue training the model.

Moreover, CNNreps offers more flexibility both in terms of input data and model tun-

ing. Since the model uses a data pool of all patients, slices and b-values together, it
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does not rely on completeness of a patient’s data. The only requirement for the ten-

sors in the batch is to have six repeated measurements and equal slice shapes. Besides

that, it does not matter how many patients there are and how many slices or b-values

they contain, which makes the model more flexible compared to the other two CNNs.

This also reduces the amount of lost data. Furthermore, the model can be tuned by

varying the batch size or the sampling strategy. Additionally, the model can be opti-

mised by tuning the model hyperparameters, as is the case for the other two models too.

Lastly, adding regularization to the model reduces the overfit. However, the regularized

model seems to exhibit slightly more uncertainty. Furthermore, the regularization does

not necessarily enhance the model performance, since the metrics are quite similar.

On the other hand, by the end of the 500 epochs, the validation curves for the regu-

larized model demonstrate a more apparent increase than those of the model without

regularization. Accordingly, the regularized model has greater potential for improved

performance with further training.

After the two CNNreps variants, the CNNmeas without regularization would be our

model of preference. Overall, the model’s prediction range is in general somewhat too

low and narrow, resulting in an excess of negative labels and strongly affecting the per-

formance metrics. However, if we consider the predicted values per slice-timepoint pair

and compare them to their true counterparts, we can conclude that the model does well

at learning and predicting the patterns in the data. During validation, the predicted

patterns show significant similarities to the actual data, which suggests that the model

is suitable for the task at hand.

5.4 The influence of incorporating spatio-temporal informa-

tion

To examine the effects of the treatment of spatial, temporal and spatio-temporal infor-

mation on the models’ sensitivity to detecting artifacts, we discuss the relevant outcomes

of the scaling methods, local versus global part and the neural networks, which each

treat the data’s dimensions differently.
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5.4.1 Scaling methods

By fitting the IVIM model and scaling the residuals voxel-wise, we solely exploit the

temporal information. Using the knowledge we have about the b-value at which a

certain slice is measured by grouping the timepoints with an equal b-value, allows us

to scale the residuals to facilitate a fair comparison between measurements of differ-

ent b-groups. Furthermore, this fair comparison enhances the model’s sensitivity to

detecting outliers, since the level of expected distortion depends on the b-value. For

instance, at a b-value with a low level of distortion, medium deviations are not labeled

as unexpectedly large without accounting for the expected level of distortion.

The spatial information is only incorporated by considering the mean z-score per slice

for each measurement, instead of per voxel. This is a rather simplified representation,

since all information contained in the slice is aggregated. However, in this case the sim-

plification is not necessarily problematic, since we are interested in filtering the most

distorted slices, in order to remeasure them. Therefore, a mean z-score suffices for this

purpose, since it quantifies how distorted the slice as a whole is. This means that a

very poor local region or a slightly distorted global region could result in an equal mean

z-score, which is not a problem because we want to eliminate both phenomena.

5.4.2 Local versus global

Taking into account the spatial information about how many voxels in the slice are out-

liers certainly provides additional and useful information, especially when considering

the normalized ratio of outlier voxels. However, this information primarily provides us

with knowledge on which type of artifact is detected and does not necessarily enhance

the model’s performance in terms of improving the sensitivity to detecting artifacts.

If we would switch to a multi-class classification model in order to label the main type

of artifact present in the slice, we hypothesize that including the normalized ratio as

additional input could enhance the model’s sensitivity to detect certain types of arti-

facts, namely, the local ones.
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5.4.3 Convolutions

When comparing the base models which take flattened voxel tensors as input to the

CNNs that take 2D slices as input and combining all results, we can conclude that the

CNNs outperform the base models. The base models are much more prone to overfit-

ting than the CNNs are. They seem to have difficulties with learning how to generalise

to new data, which hints at failing to recognise patterns in the data. This might be

due to the loss of information about the slice structure when flattening the voxel tensor.

An important remark to make is that the base models function as classifiers and the

CNNs as regressors. However, indirectly they have the same objective of minimising

the difference between predicted z-labels/mean z-scores and true z-labels/mean z-scores.

Since the performance metrics for both types of models are computed by using the z-

labels, which are either directly predicted or obtained by subjecting the mean z-scores

to the threshold, we are able to compare the performances of all models rather directly.

Therefore, the differences in model architectures seem rather small and a significant

proportion of the aforementioned performance improvement seems to be due to using

convolutions in order to retain the slice structure.

Purely in terms of enhancing the sensitivity, the effect of using 2D slices is not that

clearly visible. The base models converge to sensitivities of around, respectively, 0.3,

0.1 and 0.12. The CNNs yield sensitivities of 0.2 (versus 0.2 with regularization), 0.08

(versus 0.1) and 0.33 (versus 0.25). Overall, the CNNs obtain slightly higher sensitiv-

ity scores, but the differences are small. However, paired with these sensitivities, the

CNNs do exhibit significantly higher precisions. This is relevant to the aim of correctly

detecting as many artifacts as possible.

Considering the influence of which dimension is handled through the separate input

channels, we discuss the assumptions made for the three CNN architectures and their

effects. Starting with CNNslices, which assumes independence between the measure-

ments. Each input channel is responsible for one of the slices and learns its features

by considering a batch of measurements for that slice. Subsequently, the learned fea-

tures are passed on to all entries in the next layer of the network. Therefore, the slice

dimension is incorporated in the next layers. Since the convolutions happen within the

slices, the network exploits all three spatial dimension.

95



Conversely, the CNNmeas has an input channel per measurement and assumes inde-

pendence between the slices. Similarly, it exploits the two dimensions present in a

slice, moreover it exploits the temporal information present in the measurements. The

CNNreps has a comparable architecture, since it uses an input channel per repeated

measurement of a certain b-value and the repeated measurements constitute a tempo-

ral dimension too. However, now the temporal information is grouped and split per

b-value. Therefore, it assumes independence between the slices as well as the different

b-groups.

Comparing the different ways of treating the spatial and temporal dimensions, we can

state that incorporating the information we have about the b-values by splitting the

timepoints on their b-value enhances the sensitivity significantly. We cannot assign

all improvement to this additional source of information, because of the difference in

batching strategies between the models. However, it does seem beneficial to treat the

repetitions through input channels and therefore, assume independence between the

measurements of different b-values and the slices. By using this approach, we exploit

two spatial dimensions, the slice structure, and one temporal dimension, the repetitions.

Furthermore, CNNmeas outperforms CNNslices at capturing the patterns in the data,

although the latter achieves a higher sensitivity. This can be explained by the fact that

CNNmeas assumes independence between the slices, where CNNslices does not. Since

the aforementioned interleaved pattern highly distorts the relationship between two

consecutive slices, we hypothesize that it is highly confusing for the model to learn this

relationship. We we have to learn this relationship, if we do not assume independence

between these slices. Between the measurements there is much less distortion, which

makes it easier to learn this relationship.

5.5 Real-time applicability

An important aspect of the model to discuss is the real-time applicability. Therefore,

we consider the computational efficiency and the reliability of the models.
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5.5.1 Computational efficiency

Data labeling

The first step in the data labeling part of the research is fitting the patients to retrieve

the IVIM parameters and corresponding residuals. As detailed earlier, we tested two

different fitting algorithms - LSQ and IVIM-Net, and discovered that IVIM-Net was

more computationally exhaustive while not significantly improving the model’s ability

to detect outliers. In Table 4, we can see the increased runtime for IVIM-Net compared

to LSQ when fitting patient 1, which is computationally-wise a relatively non-exhaustive

patient for its relatively low number of valid voxels to be fit. As a reference, patient 1

has about 85.000 valid voxels, while patient 11, for instance, has 720.000 valid voxels

to be fit, which highly enlarges the difference in runtime between the two fitting al-

gorithms. This difference in efficiency underpins our choice to continue with LSQ fitting.

Table 4: Computational demands of fitting patient 1 by using LSQ/IVIM-Net as fitting
algorithm.

Fitting algorithm Runtime

LSQ 3 min 17 sec

IVIM-Net 3 min 55 sec

After deploying the LSQ algorithm, which takes some time to fit the patients initially,

we still have to preprocess the data, scale the residuals and visualise the outcomes. All

these steps evidently increase the computational demands. Moreover, this approach

relies on completeness of the data in order to scale the residuals well-foundedly, which

implies that we would have to perform a full scan before this algorithm could be de-

ployed. Subsequently, we would fit the data and generate the z-scores in order to decide

on which slice-timepoint pair(s) need to be re-measured. Therefore, this process has

to be as efficient as possible to avoid delaying the total scanning procedure exorbitantly.

Furthermore, this algorithm operates on one patients at a time, the current patient,

which means that the data always has to be fit and processed in real-time starting

from zero. Conversely, the neural networks from the second part could be trained on

historical data and applied to the data of the current patient, subsequently.
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Outlier detection

This part starts by fitting all patients that form the training and validation data once

using the data labeling algorithm and storing the resulting z-scores. Hence, the start-

up phase is computationally exhaustive. However, after the z-scores have been written

to the dedicated output files, we can easily access them at any time. From there on,

the idea is to train the model on the data of these patients - the historical data, and

subsequently predict the z-scores for the current patient in real-time. Thus, it is not

necessary to start from zero every time, which highly increases the efficiency and hence,

decreases the runtime.

In Table 5, the runtime in minutes for the full training and validation phase are detailed

for all seven neural networks. The models are trained during 500 epochs. The first six

models iterate over the 19 patients, while the CNNreps iterates over the 42 batches that

we sampled. Furthermore, the number of tensors per iteration differs and so does the

tensor shape. As mentioned before, the Base regressor takes about an hour per epoch,

which makes it infeasible for the purpose of our research.

Considering the remaining six models, we can conclude that the two-class model and

grouped b model have the shortest runtime and CNNreps the longest. However, CNNreps

executes more than twice as many iterations as the other models. Furthermore, CNNreps

is the most memory-efficient and CNNmeas the least, because of its large number of in-

put channels.

Table 5: Computational demands of the base models and CNNs when trained on a
40GB GPU.

Model Epochs Iterations Batch size Parameters Runtime (min)

Base regressor 500 19 (54, 18) 860.0M 1h/epoch

Base classifier 500 19 (54, 18) 430.0M 12

Two-class model 500 19 (54, 18) 430.0M 7.5

Grouped b model 500 19 (54, 18) 430.0M 7.75

CNNslices 500 19 54 24.0M 10

CNNmeas 500 19 18 72.5M 12

CNNreps 500 42 64 11.2M 16
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As long as the models suffer from overfitting, on the other hand, we cannot draw any fi-

nal conclusions on how the computational demands relate to real-time application. One

of the potential resolutions for the overfitting is to use more training data. Evidently,

this would increase the computational demands and hence, the runtime. However, this

could also accelerate the convergence towards a good validation performance, which

might lead to a smaller number of required epochs.

5.5.2 Reliability

Since we have not been able to resolve the overfitting of the models during the time

span of this research, we were not able to investigate the reliability of the predictions in

depth. Therefore, we cannot draw informed conclusions on what information is essen-

tial in order to facilitate reliable detection. However, in the next paragraphs we discuss

a few relevant insights we obtained throughout the process.

As previously noted, having complete patient data is crucial for ensuring reliability

when scaling residuals in the data labeling part. Incomplete data can lead to biased

z-scores, which undermines the reliability of the resulting outliers. Therefore, it is es-

sential to consider all measurements when determining the z-scores.

For the outlier detection part of this research, we state that the more similar the pa-

tients’ dimensions and b-schemes are, the more reliable the predictions will be. Varying

dimensions lead to, for instance, padded slices or the loss of information. Furthermore,

differences in b-schemes lead to higher variability in the data, which complicate the

model’s learning process, enhance uncertainty and hence, weaken reliability. This can

be explained by the fact that the b-schemes are decisive for which information is cap-

tured during the measurements. Furthermore, the CNNreps model for example requires

uniform b-schemes to ensure six repeated measurements per b-value. The more devi-

ating a given b-scheme is, the more it will be corrupted by our previously described

method for uniformity in the b-schemes. Logically, increased corruption leads to de-

creased reliability.

Considering the essential information for the base models, we can state that the only

requirement is that the shape of the slices is 144x144, leading to a flattened voxel tensor
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of length 20.736. The number of measurements and number of slices are not restricted,

since these dimensions are treated determine the batch size.

Moreover, we consider the essential information for the CNNs. First of all, all three

CNNs require the patients to have slices of shape 144x144. For CNNslices, it is essential

to have exactly 18 slices per patient, since the network consists of 18 separate input

channels. Likewise, CNNmeas needs exactly 54 measurements for the input channels.

Conversely, CNNreps requires exactly 6 repeated measurements, which is ensured by

making the b-schemes uniform. Besides that, this model treats the data batch-wise in-

stead of per patient, which enhances the flexibility of the model regarding the required

completeness of the data.
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6 Conclusion and recommendations

6.1 Conclusions

This project has focused on answering the question of how deep learning techniques can

be used to accurately detect artifacts in 4D IVIM MRI. This was done by answering the

four subquestions, of which we summarize the main conclusions in the next paragraphs.

1. Can the residuals of an IVIM fitting algorithm direct us towards the presence of an

artifact?

We can conclude that the residuals of an IVIM fitting algorithm, LSQ in this case, can

direct us towards the presence of an artifact. We discovered that scaling the residu-

als of different b-groups by using the absolute z-score is a suitable approach to enable

this. Additionally, this approach demonstrates promising potential to operate as an

automated data labeling model, thereby alleviating the shortage of labeled data in the

medical field. Moreover, it could provide pseudo-labels for our unlabeled data, twhich

would facilitate the development of deep learning alternatives.

2. Can deep learning techniques provide a reliable solution for automated outlier detec-

tion in IVIM MRI?

We believe that deep learning techniques can provide a reliable solution for automated

outlier detection in IVIM MRI. However, we have not succeeded in developing a deep

learning alternative that approaches the performance of our data labeling model yet.

The main reason for this is the significant overfit of the models, which we have not been

able to resolve during the time span of this project. However, the models are able to

achieve a perfect training performance for all deployed metrics, which testifies of their

potential to provide a reliable solution for this task. Furthermore, the deep learning

models show potential to operate in real-time by providing a faster alternative that is

promising in terms of scalability and generalizability. Moreover, they are able to handle

higher-dimensional data, which minimizes the loss of spatial and temporal information.

However, further research is necessary to be able to provide a definite answer on the

reliability of the deep learning models in this research.

101



Summarizing, the deep learning models provide an alternative that outperforms the

data labeling model regarding their suitability to clinical adoption. Incorporating spa-

tial context could potentially improve the models’ performance in detecting outliers.

However, due to the unresolved overfitting, the models cannot yet serve as the promis-

ing alternative they could be, as they are currently unreliable.

3. Can incorporating spatio-temporal information of the data enhance our models’ sen-

sitivity to detecting artifacts?

Upon reviewing the influence of the integration of spatial, temporal, and spatio-temporal

information on a model’s sensitivity to detecting artifacts, we discovered that preserving

the 2D structure (x- and y-dimension) of the slices enhances the model’s performance.

Furthermore, the predictions of the models that treated the slices as independent, for

instance CNNmeas and CNNreps, exhibited patterns significantly more similar to those

in the actual data. This implies that the slice-dimension (z-dimension) is less essential

to incorporate in the deep learning models than the other dimensions. Furthermore, we

observed that including the knowledge we have on the b-values improves the model’s

performance. However, it would be interesting to further investigate the inclusion of

spatio-temporal information, for instance by examining the effects of using 3D convo-

lutions.

4. What is considered essential information to facilitate reliable detection?

As previously stated, we are not able to draw definite conclusions on what is considered

as essential information to facilitate reliable detection because of the overfitting issue.

Beyond the architectural requirements of each model for essential information, resolving

the overfitting issue is necessary before we can further explore for instance the required

number of measurements for reliability. Investigating this topic in depth would provide

us with valuable insights on the applicability of the models in real-time.

In conclusion, we developed a model that is able to automatically label our data and

filter the artifacts, which was a primary goal of this research. In existing literature,

the lack of a golden standard solution to this problem is addressed as a key bottleneck

in the research area of automated outlier detection in medical data. The solution that

we proposed - the absolute z-score model - is still absent in existing literature and can
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therefore be seen as a contribution.

Our attempt to develop a more efficient deep learning alternative to our proposed golden

standard model that is able to achieve a comparable performance did not succeed dur-

ing the time span of this project. Nevertheless, the developed deep learning models

exhibit potential to effectively function as automated outlier detection model for IVIM

MRI data. In order to answer the question whether these models could indeed provide

a reliable solution to this task, further research is needed. This research should focus

on resolving the overfitting issue first to facilitate a fair assessment of the performance

of the models.

Ultimately, the deep learning models provided us with valuable insights regarding suit-

ability of the models to clinical practice. Moreover, these models are more efficient and

have an enhanced scalability and generalizability. Furthermore, they do not rely on

completeness of the patient’s data, which increases their flexibility and enhances their

clinical applicability.

6.2 Limitations

There are several limitations inherent in this research. First of all, the nature of this

research is exploratory. Therefore, we focused on exploring new approaches to auto-

mated outlier detection in 4D IVIM MRI. The lack of existing literature on this specific

topic testifies of the need and the complexity of this task. Due to the limited amount

of time, our aim was to implement the intended approaches and investigate and asses

their potential and suitability to this task. As a consequence, the validation of the

models’ performances is limited.

Given the limitations associated with specific architectural choices of the models, we

begin with the absolute z-score. As previously detailed, using the z-score limits the

number of poor labels predicted. The z-score functions as an indication of how deviat-

ing a given measurement is from the other measurements in that b-group, but does not

necessarily tell how poor these measurements actually are. Therefore, only the worst

few measurements in that b-group can and will have a z-score greater than one. Hence,

eventually we filter the worst few measurements per b-value, although some of them
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might not be among the worst few measurements overall. Conversely, we might not

filter some measurements of a b-group that should have been filtered when considering

their quality globally.

A primary limitation of the deep learning models is the required uniformity in slice

shapes and b-schemes, and for some models the number of slices or measurements.

This limitation reduces the flexibility in input data and hence, the generalizability.

Furthermore, ensuring dimensional uniformity between the patients leads to reduced

data quality due to loss of information and data corruption.

Another limitation at this point is the runtime. Most of the proposed deep learn-

ing models require between 10 and 16 minutes for the training and validation process.

Combined with a comparable scan time in real-time, this runtime is too long for clinical

adoption. Moreover, adding more training data to the models, which is one of the pro-

posed resolutions to the overfitting issue, would increase the computational demands,

but might also decrease the number of epochs needed for convergence. Therefore, we

cannot draw a definite conclusion on the length of the runtime yet.

Lastly, the overfitting issue of the deep learning models is the major limitation. All

deep learning models strongly overfit on the training data. The discrepancy between

training and validation performance is large and the validation performance is noisy

and unstable. Therefore, all deep learning models are currently unreliable, which hin-

ders us in assessing their performance, feasibility and potential.

One of the reasons that the models overfit is probably the class imbalance in the training

data. The class imbalance, originating from the fact that the majority of mean z-scores

is lower than one, leads to the models overfitting the majority class, which leads to

a poor generalization to unseen data - the validation data. As a result, the models

struggle to predict high mean z-scores, resulting in predicted scores that are often too

low in general. This observation aligns with our analysis of the models’ results.
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6.3 Future research

Future work on improving the proposed deep learning models should prioritize resolv-

ing the overfitting issue. An obvious first step would be to assemble more training

data. Alternatively, we could try learning the z-score for each voxel and then calculate

the mean z-score, rather than learning the mean z-score directly. While this approach

would increase computational demands, it would also expand the amount of training

data. Moreover, it could be more difficult for the models to learn features from the

aggregated and simplified mean z-scores than from the original voxel-specific z-scores.

If the previously suggested changes do not adequately resolve the overfitting, we pro-

pose exploring options to address the class imbalance in the data to reduce overfitting.

Options to consider include data augmentation techniques or, for instance, oversam-

pling the minority class. Otherwise, we could consider using alternative loss functions,

such as focal dice loss, which is particularly suited for imbalanced data.

For optimizing the models, tuning the hyperparameters can enhance their performance.

Among other parameters, the learning rate, dropout, and regularization rate can be

tuned using, for instance, a coarse-to-fine optimization approach. Moreover, optimiz-

ing the efficiency of the model architectures through additional research could further

reduce the runtime.

Furthermore, in order to treat the spatial information in the slices in more detail, it

might also be interesting to test a patch-wise learning approach instead of predicting a

value per slice. Because of the limited time available, we could not test this approach.

However, we hypothesize that treating the spatial information in the slice patch-wise,

rather than reducing it to a single value, could primarily enhance the model’s ability

to detect local artifacts. By narrowing the region for which the z-score is aggregated,

the resulting mean z-scores will become more precise. Imagine a very small artifactual

region within a slice that predominantly contains low z-scores. Depending on the dis-

tortion level in the artifact, this will likely lead to a mean z-score below our threshold,

causing the local artifact to go undetected.

An interesting extension of our approach would be to consider multiple orientations

of the data when determining the outliers. In this way, we could leverage the 3D in-
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formation from the neighborhood. This can be done, for instance, by training three

separate 2D CNNs using 2D slices from three different orientations: axial, coronal and

sagittal. Subsequently, the final predictions can be determined by taking the average

of the probabilities across the three orientations. In our case, especially incorporating

the coronal orientation might be interesting, as the interleaved motion artifacts are

most distinctly visible in the coronal view. Therefore, this extension could enhance the

sensitivity to detecting this type of artifact.

Additionally, it would be valuable to investigate extensions that facilitate flexible input

dimensions, such as Neural Controlled Differential Equations (NCDE). This would re-

move the restriction of requiring an equal number of units in the dimension processed

by the input channels for each tensor. For instance, it would no longer be necessary to

require uniform b-schemes to ensure each input tensor has an equal number of repeated

measurements to match the input channels. This extension would therefore highly

enhance the models’ flexibility and generalizability, which means improved real-time

applicability.

A final suggestion for a possible extension of the models is extending them from 2D to

3D CNNs as three-dimensional convolutions are particularly suited to capture spatio-

temporal information. A downside of using 3D CNNs is the increased computational

demands, sometimes without a significant improvement in performance. An efficient

and promising alternative is to investigate 2D+1 CNNs, which split the convolutions

into a spatial 2D convolution and a temporal 1D convolution.

In conclusion, future research on improving the proposed neural networks should pri-

oritize resolving the overfitting issue. Besides this, the models could be improved by

addressing class imbalance, tuning hyperparameters and optimizing efficiency. More-

over, there are several interesting and promising potential extensions that could enhance

various aspects of the models’ performance. Improving the models and thereby obtain-

ing reliable predictions would allow for an in-depth investigation into their real-time

applicability.
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magnétique nucléaire. C. R. Acad. Sci., 301, 1109–1112.

Le Bihan, D. (2003). Looking into the functional architecture of the brain

with diffusion MRI. Nature Reviews Neuroscience, 4, 469–480. doi:

https://doi.org/10.1038/nrn1119

Le Bihan, D. (2008). Intravoxel incoherent motion perfusion MR imaging: a wake-up

call. Radiology, 249 (3), 748–752. doi: https://doi.org/10.1148/radiol.2493081301

Le Bihan, D., et al. (1986). MR imaging of intravoxel incoherent motions: application

to diffusion and perfusion in neurologic disorders. Radiology, 161 (2), 401-407.

Le Bihan, D., et al. (1988). Separation of diffusion and perfusion in intravoxel inco-

herent motion MR imaging. Radiology, 168, 497-505.

Le Bihan, D., et al. (1992). The capillary network: a link between IVIM and classical

perfusion. Magnetic Resonance in Medicine, 27 (1), 171-178.

Le Bihan, D., et al. (2001). Diffusion tensor imaging: concepts and applications. J.

Magn. Reson. Imaging, 13, 534–546.

114



LeCun, Y., et al. (1998). Gradient-based learning applied to document recognition.

Proc. IEEE, 86 (11), 2278-2324. doi: 10.1109/5.726791.

Lee, Y., et al. (2015). Intravoxel incoherent motion diffusion-weighted MR imaging

of the liver: effect of triggering methods on regional variability and measurement

repeatability of quantitative parameters. Radiology, 274 (2), 405-415.

Lemke, A., et al. (2010). An in vivo verification of the intravoxel incoherent motion

effect in diffusion-weighted imaging of the abdomen. Magn. Reson. Med., 64 (6),

1580-1585. doi: https://doi.org/10.1002/mrm.22565.

Li, Y., et al. (2013). Image Corruption Detection in Diffusion Tensor Imaging

for Post-Processing and Real-Time Monitoring. PLOS ONE, 8 (10), e49764.

https://doi.org/10.1371/journal.pone.0049764

Liu, B., et al. (2015). Comparison of quality control software tools for diffusion tensor

imaging. Magn. Reson. Imaging, 33, 276–285. 10.1016/j.mri.2014.10.011.

Liu, Z., et al. (2016). 3D-based deep convolutional neural network for action recogni-

tion with depth sequences. Image and Vision Computing, 55, 93–100.

Lundervold, A., et al. (2019). An overview of deep learning in medical imag-

ing focusing on MRI. Zeitschrift für Medizinische Physik, 29 (2), 102-127. doi:

10.1016/j.zemedi.2018.11.002.

Lysaker, M., et al. (2003). Noise removal using fourth-order partial differential equation

with applications to medical magnetic resonance images in space and time. IEEE

Trans. Image. Process., 12, 1579-1590.

Ma, W., et al. (2018). Quantitative parameters of intravoxel incoherent motion diffu-

sion weighted imaging (IVIM-DWI): potential application in predicting patholog-

ical grades of pancreatic ductal adenocarcinoma. Quant. Imaging Med. Surg., 8,

301-310.

McVeigh, E., et al. (1985). Noise and filtration in magnetic resonance imaging. Med.

Phys., 12, 586-591.

Merboldt, K., et al. (1985). Self-diffusion NMR imaging using stimulated echoes. J.

Magn. Reson., 64, 479–486.

115



Mesri, H., et al. (2020). The adverse effect of gradient nonlinearities on dif-

fusion MRI: From voxels to group studies. Neuroimage, 205, 116127. doi:

10.1016/j.neuroimage.2019.116127

Mirowitz, S. (1999). MR imaging artifacts. Challenges and solutions. Magn. Reson.

Imaging Clin. N. Am., 7 (4), 717–732.

Moratal, D., et al. (2008). k-Space tutorial: an MRI educational tool for a better

understanding of kspace. Biomedical imaging and intervention journal, 4 (1).

Morelli, J., et al. (2011). An image-based approach to understanding the physics of MR

artifacts. Radiographics, 31 (3), 849–866. https://doi.org/10.1148/rg.313105115

Mori, S., and Zhang, J. (2006). Principles of diffusion tensor imaging and its applica-

tions to basic neuroscience research. Neuron, 51, 527–539.

Morrill, J., et al. (2021). Neural Controlled Differential Equations for Online Prediction

Tasks. ArXiv, abs/2106.11028. doi:10.48550/arXiv.2106.11028.

Myronenko, A., et al. (2020). 4d cnn for semantic segmentation of car-

diac volumetric sequences. Statistical Atlases and Computational Models of

the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full

Quantification Challenges, Springer International Publishing, 72–80. doi:

https://doi.org/10.48550/arXiv.1906.07295

Nie, D., et al. (2018). 3-D fully convolutional networks for multimodal isointense

infant brain image segmentation. IEEE Trans. Cybern., 49 (3), 1123-1136. doi:

10.1109/TCYB.2018.2797905.

Oguz, I., et al. (2014). DTIPrep: quality control of diffusion-weighted images. Front.

neuroinformatics, 8.

Oh, S., et al. (2019). Video object segmentation using space-time memory networks.

Proceedings of the IEEE/CVF International Conference on Computer Vision,

9226–9235.
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Appendix

A Labeling the data - manual inspection

Table 6: Artifact labels resulting from the visual inspection of the 28 slice-timepoint
pairs with the highest mean z-scores for patient 1.

t Slice Interleaved Motion Artifact Motion Artifact Local Signal Dropout Local Increased Signal

36 9 x x x

11 x x x

3 x x x

1 x x x

5 x x x

17 x x x

7 x x x

25 10 x x x

8 x x x

6 x x x

4 x x x

12 x x x

16 x x

39 10 x x x

8 x x x

4 x x x

2 x x x

54 9 x x

37 10 x x x

12 x x x

8 x x x

17 8 x x x

10 x x

1 13 x x x

17 x x

11 x x x

7 x x x

5 x x x
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Table 7: Artifact labels resulting from the visual inspection of 34 slice-timepoint pairs
with a mean z-score of just above the threshold (minimal outliers) for patient 1.

t Slice Interleaved Motion Artifact Motion Artifact Local Signal Dropout Local Increased Signal

45 7 x x x

9 x x x

17 x x x

46 0 x x

2 x

12 x x x

16 x x

41 7 x x x

28 1 x x x

3 x x x

5 x x x

7 x x x

13 x x x

15 x x x

17 x x

27 0 x x x

2 x x x

4 x x x

6 x x x

8 x x x

12 x x x

14 x x

21 13 x x x

16 3 x x x

5 x x x

13 x x x

1 1 x x

3 x x

3 1 x x x

3 x x x

9 x x x

7 0 x x

2 x x

4 x x
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Table 8: Visual inspection label versus model output label per timepoint about whether
they contain at least one outlier slice (label ’poor’) for patient 1.

t poor (visual inspection) poor (predicted by model)

0

1 x x

2

3 x x

4

5 x

6

7 x x

8

9 x x

10

11

12 x x

13

14

15

16 x x

17 x x

18

19

20

21 x x

22

23 x x

24

25 x x

26

27 x x

28 x x

29

30 x x

31

32

33

34

35

36 x x

37 x x

38

39 x x

40 x x

41 x

42 x

43 x

44

45 x x

46 x x

47 x

48

49

50

51 x x

52

53 x x

54 x x

55

56
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B Training and validation performance of the Base models

The training and validation performance curves and outputs belonging to Section 5.3.1.

B.1 Base classifier

The training and validation performances of the Base classifier.

Loss

(a) Training loss (b) Validation loss

Figure 49: Training and validation loss Base classifier (BCE loss)

Accuracy

(a) Training accuracy (b) Validation accuracy

Figure 50: Training and validation accuracy Base classifier (BCE loss)
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F1-score

(a) Training F1-score (b) Validation F1-score

Figure 51: Training and validation F1-score Base classifier (BCE loss)

Weighted F1-score

(a) Training weighted F1-score (b) Validation weighted F1-score

Figure 52: Training and validation weighted F1-score Base classifier (BCE loss)

127



Sensitivity

(a) Training sensitivity (b) Validation sensitivity

Figure 53: Training and validation sensitivity Base classifier (BCE loss)

Precision

(a) Training precision (b) Validation precision

Figure 54: Training and validation precision Base classifier (BCE loss)
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Precision vs sensitivity

(a) Training precision vs sensitivity (b) Validation precision vs sensitivity

Figure 55: Training and validation precision vs sensitivity Base classifier (BCE loss)

True vs predicted

(a) True vs predicted for patient 1 (b) True vs predicted for patient 2

(c) True vs predicted for patient 3 (d) True vs predicted for patient 4

Figure 56: True values vs predicted values for all 4 validation patients Base classifier
(BCE loss)
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B.2 Two-class model

The training and validation performances of the Two-class model.

Loss

(a) Training loss (b) Validation loss

Figure 57: Training and validation loss Two-class model (wBCE loss)

Accuracy

(a) Training accuracy (b) Validation accuracy

Figure 58: Training and validation accuracy Two-class model (wBCE loss)
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F1-score

(a) Training F1-score (b) Validation F1-score

Figure 59: Training and validation F1-score Two-class model (wBCE loss)

Weighted F1-score

(a) Training weighted F1-score (b) Validation weighted F1-score

Figure 60: Training and validation weighted F1-score Two-class model (wBCE loss)
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Sensitivity

(a) Training sensitivity (b) Validation sensitivity

Figure 61: Training and validation sensitivity Two-class model (wBCE loss)

Precision

(a) Training precision (b) Validation precision

Figure 62: Training and validation precision Two-class model (wBCE loss)
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Precision vs sensitivity

(a) Training precision vs sensitivity (b) Validation precision vs sensitivity

Figure 63: Training and validation precision vs sensitivity two-class model (wBCE loss)

True vs predicted

(a) True vs predicted for patient 1 (b) True vs predicted for patient 2

(c) True vs predicted for patient 3 (d) True vs predicted for patient 4

Figure 64: True values vs predicted values for all 4 validation patients two-class model
(wBCE loss)
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B.3 Grouped b model

The training and validation performances of the Grouped b model.

Loss

(a) Training loss (b) Validation loss

Figure 65: Training and validation loss Grouped b model (BCE loss)

Accuracy

(a) Training accuracy (b) Validation accuracy

Figure 66: Training and validation accuracy Grouped b model (BCE loss)
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F1-score

(a) Training F1-score (b) Validation F1-score

Figure 67: Training and validation F1-score Grouped b model (BCE loss)

Weighted F1-score

(a) Training weighted F1-score (b) Validation weighted F1-score

Figure 68: Training and validation weighted F1-score Grouped b model (BCE loss)
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Sensitivity

(a) Training sensitivity (b) Validation sensitivity

Figure 69: Training and validation sensitivity Grouped b model (BCE loss)

Precision

(a) Training precision (b) Validation precision

Figure 70: Training and validation precision Grouped b model (BCE loss)
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Precision vs sensitivity

(a) Training precision vs sensitivity (b) Validation precision vs sensitivity

Figure 71: Training and validation precision vs sensitivity Grouped b model (BCE loss)

True vs predicted

(a) True vs predicted for patient 1 (b) True vs predicted for patient 2

(c) True vs predicted for patient 3 (d) True vs predicted for patient 4

Figure 72: True values vs predicted values for all 4 validation patients Grouped b model
(BCE loss)
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C Training and validation performance of the CNNs

The training and validation performance curves and outputs belonging to Section 5.3.2.

C.1 CNN - channel per slice

The training and validation performances of the CNNslices and regularized CNNslices.

Loss

(a) Training loss (b) Validation loss

Figure 73: Training and validation loss CNNslices (MSE loss)

Loss - with regularization

(a) Training loss - with regularization (b) Validation loss - with regularization

Figure 74: Training and validation loss CNNslices - with regularization (MSE loss)
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Accuracy

(a) Training accuracy (b) Validation accuracy

Figure 75: Training and validation accuracy CNNslices (MSE loss)

Accuracy - with regularization

(a) Training accuracy - with regularization
(b) Validation accuracy - with regulariza-
tion

Figure 76: Training and validation accuracy CNNslices - with regularization (MSE loss)

139



F1-score

(a) Training F1-score (b) Validation F1-score

Figure 77: Training and validation F1-score CNNslices (MSE loss)

F1-score - with regularization

(a) Training F1-score - with regularization
(b) Validation F1-score - with regulariza-
tion

Figure 78: Training and validation F1-score CNNslices - with regularization (MSE loss)
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Weighted F1-score

(a) Training weighted F1-score (b) Validation weighted F1-score

Figure 79: Training and validation weighted F1-score CNNslices (MSE loss)

Weighted F1-score - with regularization

(a) Training weighted F1-score - with reg-
ularization

(b) Validation weighted F1-score - with
regularization

Figure 80: Training and validation weighted F1-score CNNslices - with regularization
(MSE loss)
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Sensitivity

(a) Training sensitivity (b) Validation sensitivity

Figure 81: Training and validation sensitivity CNNslices (MSE loss)

Sensitivity - with regularization

(a) Training sensitivity - with regulariza-
tion

(b) Validation sensitivity - with regular-
ization

Figure 82: Training and validation sensitivity CNNslices - with regularization (MSE
loss)
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Precision

(a) Training precision (b) Validation precision

Figure 83: Training and validation precision CNNslices (MSE loss)

Precision - with regularization

(a) Training precision - with regularization
(b) Validation precision - with regulariza-
tion

Figure 84: Training and validation precision CNNslices - with regularization (MSE loss)
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Precision vs sensitivity

(a) Training precision vs sensitivity (b) Validation precision vs sensitivity

Figure 85: Training and validation precision vs sensitivity CNNslices (MSE loss)

Precision vs sensitivity - with regularization

(a) Training precision vs sensitivity - with
regularization

(b) Validation precision vs sensitivity -
with regularization

Figure 86: Training and validation precision vs sensitivity CNNslices - with regulariza-
tion (MSE loss)
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True vs predicted

(a) True vs predicted for patient 1 (b) True vs predicted for patient 2

(c) True vs predicted for patient 3 (d) True vs predicted for patient 4

Figure 87: True values vs predicted values for all 4 validation patients CNNslices (MSE
loss)
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True vs predicted - with regularization

(a) True vs predicted for patient 1 - with
regularization

(b) True vs predicted for patient 2 - with
regularization

(c) True vs predicted for patient 3 - with
regularization

(d) True vs predicted for patient 4 - with
regularization

Figure 88: True values vs predicted values for all 4 validation patients CNNslices - with
regularization (MSE loss)
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Inspect outputs

(a) Predicted mean Z-scores - test patient 1

(b) True mean Z-scores - test patient 1

(c) Difference (Pred - True) in mean Z-scores - test patient 1

Figure 89: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test patient 1 - CNNslices (MSE loss)
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(a) Predicted mean Z-scores - test patient 2

(b) True mean Z-scores - test patient 2

(c) Difference (Pred - True) in mean Z-scores - test patient 2

Figure 90: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test patient 2 - CNNslices (MSE loss)
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(a) Predicted mean Z-scores - test patient 3

(b) True mean Z-scores - test patient 3

(c) Difference (Pred - True) in mean Z-scores - test patient 3

Figure 91: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test patient 3 - CNNslices (MSE loss)
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(a) Predicted mean Z-scores - test patient 4

(b) True mean Z-scores - test patient 4

(c) Difference (Pred - True) in mean Z-scores - test patient 4

Figure 92: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test patient 4 - CNNslices (MSE loss)
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Inspect outputs - with regularization

(a) Predicted mean Z-scores - with regularization - test patient 1

(b) True mean Z-scores - with regularization - test patient 1

(c) Difference (Pred - True) in mean Z-scores - with regularization - test patient 1

Figure 93: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test patient 1 - CNNslices - with regularization (MSE loss)
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(a) Predicted mean Z-scores - with regularization - test patient 2

(b) True mean Z-scores - with regularization - test patient 2

(c) Difference (Pred - True) in mean Z-scores - with regularization - test patient 2

Figure 94: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test patient 2 - CNNslices - with regularization (MSE loss)
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(a) Predicted mean Z-scores - with regularization - test patient 3

(b) True mean Z-scores - with regularization - test patient 3

(c) Difference (Pred - True) in mean Z-scores - with regularization - test patient 3

Figure 95: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test patient 3 - CNNslices - with regularization (MSE loss)
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(a) Predicted mean Z-scores - with regularization - test patient 4

(b) True mean Z-scores - with regularization - test patient 4

(c) Difference (Pred - True) in mean Z-scores - with regularization - test patient 4

Figure 96: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test patient 4 - CNNslices - with regularization (MSE loss)
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C.2 CNN - channel per measurement

The training and validation performances of the CNNmeas and regularized CNNmeas.

Loss

(a) Training loss (b) Validation loss

Figure 97: Training and validation loss CNNmeas (MSE loss)

Loss - with regularization

(a) Training loss - with regularization (b) Validation loss - with regularization

Figure 98: Training and validation loss CNNmeas - with regularization (MSE loss)
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Accuracy

(a) Training accuracy (b) Validation accuracy

Figure 99: Training and validation accuracy CNNmeas (MSE loss)

Accuracy - with regularization

(a) Training accuracy - with regularization
(b) Validation accuracy - with regulariza-
tion

Figure 100: Training and validation accuracy CNNmeas - with regularization (MSE loss)
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F1-score

(a) Training F1-score (b) Validation F1-score

Figure 101: Training and validation F1-score CNNmeas (MSE loss)

F1-score - with regularization

(a) Training F1-score - with regularization
(b) Validation F1-score - with regulariza-
tion

Figure 102: Training and validation F1-score CNNmeas - with regularization (MSE loss)
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Weighted F1-score

(a) Training weighted F1-score (b) Validation weighted F1-score

Figure 103: Training and validation weighted F1-score CNNmeas (MSE loss)

Weighted F1-score - with regularization

(a) Training weighted F1-score - with reg-
ularization

(b) Validation weighted F1-score - with
regularization

Figure 104: Training and validation weighted F1-score CNNmeas - with regularization
(MSE loss)
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Sensitivity

(a) Training sensitivity (b) Validation sensitivity

Figure 105: Training and validation sensitivity CNNmeas (MSE loss)

Sensitivity - with regularization

(a) Training sensitivity - with regulariza-
tion

(b) Validation sensitivity - with regular-
ization

Figure 106: Training and validation sensitivity CNNmeas - with regularization (MSE
loss)
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Precision

(a) Training precision (b) Validation precision

Figure 107: Training and validation precision CNNmeas (MSE loss)

Precision - with regularization

(a) Training precision - with regularization
(b) Validation precision - with regulariza-
tion

Figure 108: Training and validation precision CNNmeas - with regularization (MSE loss)
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Precision vs sensitivity

(a) Training precision vs sensitivity (b) Validation precision vs sensitivity

Figure 109: Training and validation precision vs sensitivity CNNmeas (MSE loss)

Precision vs sensitivity - with regularization

(a) Training precision vs sensitivity - with
regularization

(b) Validation precision vs sensitivity -
with regularization

Figure 110: Training and validation precision vs sensitivity CNNmeas - with regulariza-
tion (MSE loss)
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True vs predicted

(a) True vs predicted for patient 1 (b) True vs predicted for patient 2

(c) True vs predicted for patient 3 (d) True vs predicted for patient 4

Figure 111: True values vs predicted values for all 4 validation patients CNNmeas (MSE
loss)
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True vs predicted - with regularization

(a) True vs predicted for patient 1 - with
regularization

(b) True vs predicted for patient 2 - with
regularization

(c) True vs predicted for patient 3 - with
regularization

(d) True vs predicted for patient 4 - with
regularization

Figure 112: True values vs predicted values for all 4 validation patients CNNmeas - with
regularization (MSE loss)
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Inspect outputs

(a) Predicted mean Z-scores - test patient 1

(b) True mean Z-scores - test patient 1

(c) Difference (Pred - True) in mean Z-scores - test patient 1

Figure 113: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test patient 1 - CNNmeas (MSE loss)
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(a) Predicted mean Z-scores - test patient 2

(b) True mean Z-scores - test patient 2

(c) Difference (Pred - True) in mean Z-scores - test patient 2

Figure 114: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test patient 2 - CNNmeas (MSE loss)
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(a) Predicted mean Z-scores - test patient 3

(b) True mean Z-scores - test patient 3

(c) Difference (Pred - True) in mean Z-scores - test patient 3

Figure 115: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test patient 3 - CNNmeas (MSE loss)
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(a) Predicted mean Z-scores - test patient 4

(b) True mean Z-scores - test patient 4

(c) Difference (Pred - True) in mean Z-scores - test patient 4

Figure 116: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test patient 4 - CNNmeas (MSE loss)
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Inspect outputs - with regularization

(a) Predicted mean Z-scores - with regularization - test patient 1

(b) True mean Z-scores - with regularization - test patient 1

(c) Difference (Pred - True) in mean Z-scores - with regularization - test patient 1

Figure 117: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test patient 1 - CNNmeas - with regularization (MSE loss)
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(a) Predicted mean Z-scores - with regularization - test patient 2

(b) True mean Z-scores - with regularization - test patient 2

(c) Difference (Pred - True) in mean Z-scores - with regularization - test patient 2

Figure 118: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test patient 2 - CNNmeas - with regularization (MSE loss)
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(a) Predicted mean Z-scores - with regularization - test patient 3

(b) True mean Z-scores - with regularization - test patient 3

(c) Difference (Pred - True) in mean Z-scores - with regularization - test
patient 3

Figure 119: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test patient 3 - CNNmeas - with regularization (MSE loss)
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(a) Predicted mean Z-scores - with regularization - test patient 4

(b) True mean Z-scores - with regularization - test patient 4

(c) Difference (Pred - True) in mean Z-scores - with regularization - test patient 4

Figure 120: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test patient 4 - CNNmeas - with regularization (MSE loss)
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C.3 CNN - channel per repetition

The training and validation performances of the CNNreps and regularized CNNreps.

Loss

(a) Training loss (b) Validation loss

Figure 121: Training and validation loss CNNreps model (MSE loss)

Loss - with regularization

(a) Training loss - with regularization (b) Validation loss - with regularization

Figure 122: Training and validation loss CNNreps model - with regularization (MSE
loss)
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Accuracy

(a) Training accuracy (b) Validation accuracy

Figure 123: Training and validation accuracy CNNreps model (MSE loss)

Accuracy - with regularization

(a) Training accuracy - with regularization
(b) Validation accuracy - with regulariza-
tion

Figure 124: Training and validation accuracy CNNreps model - with regularization
(MSE loss)
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F1-score

(a) Training F1-score (b) Validation F1-score

Figure 125: Training and validation F1-score CNNreps model (MSE loss)

F1-score - with regularization

(a) Training F1-score - with regularization
(b) Validation F1-score - with regulariza-
tion

Figure 126: Training and validation F1-score CNNreps model - with regularization (MSE
loss)
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Weighted F1-score

(a) Training weighted F1-score (b) Validation weighted F1-score

Figure 127: Training and validation weighted F1-score CNNreps model (MSE loss)

Weighted F1-score - with regularization

(a) Training weighted F1-score - with reg-
ularization

(b) Validation weighted F1-score - with
regularization

Figure 128: Training and validation weighted F1-score CNNreps model - with regular-
ization (MSE loss)
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Sensitivity

(a) Training sensitivity (b) Validation sensitivity

Figure 129: Training and validation sensitivity CNNreps model (MSE loss)

Sensitivity - with regularization

(a) Training sensitivity - with regulariza-
tion

(b) Validation sensitivity - with regular-
ization

Figure 130: Training and validation sensitivity CNNreps model - with regularization
(MSE loss)
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Precision

(a) Training precision (b) Validation precision

Figure 131: Training and validation precision CNNreps model (MSE loss)

Precision - with regularization

(a) Training precision - with regularization
(b) Validation precision - with regulariza-
tion

Figure 132: Training and validation precision CNNreps model - with regularization
(MSE loss)
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Precision vs sensitivity

(a) Training precision vs sensitivity (b) Validation precision vs sensitivity

Figure 133: Training and validation precision vs sensitivity CNNreps model (MSE loss)

Precision vs sensitivity - with regularization

(a) Training precision vs sensitivity - with
regularization

(b) Validation precision vs sensitivity -
with regularization

Figure 134: Training and validation precision vs sensitivity CNNreps model - with reg-
ularization (MSE loss)
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True vs predicted

(a) True vs predicted for patient 1 (b) True vs predicted for patient 2

(c) True vs predicted for patient 3 (d) True vs predicted for patient 4

Figure 135: True values vs predicted values for all 4 validation patients CNNreps model
(MSE loss)
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True vs predicted - with regularization

(a) True vs predicted for patient 1 - with
regularization

(b) True vs predicted for patient 2 - with
regularization

(c) True vs predicted for patient 3 - with
regularization

(d) True vs predicted for patient 4 - with
regularization

Figure 136: True values vs predicted values for all 4 validation patients CNNreps model
- with regularization (MSE loss)
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Inspect outputs

(a) Predicted mean Z-scores - test batch 1

(b) True mean Z-scores - test batch 1

(c) Difference (Pred - True) in mean Z-scores - test batch 1

Figure 137: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test batch 1 - CNNreps model (MSE loss)
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(a) Predicted mean Z-scores - test batch 2

(b) True mean Z-scores - test batch 2

(c) Difference (Pred - True) in mean Z-scores - test batch 2

Figure 138: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test batch 2 - CNNreps model (MSE loss)
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(a) Predicted mean Z-scores - test batch 3

(b) True mean Z-scores - test batch 3

(c) Difference (Pred - True) in mean Z-scores - test batch 3

Figure 139: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test batch 3 - CNNreps model (MSE loss)
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(a) Predicted mean Z-scores - test batch 4

(b) True mean Z-scores - test batch 4

(c) Difference (Pred - True) in mean Z-scores - test batch 4

Figure 140: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test batch 4 - CNNreps model (MSE loss)
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Inspect outputs - with regularization

(a) Predicted mean Z-scores - with regularization - test batch 1

(b) True mean Z-scores - with regularization - test batch 1

(c) Difference (Pred - True) in mean Z-scores - with regularization - test batch 1

Figure 141: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test batch 1 - CNNreps model - with regularization (MSE loss)
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(a) Predicted mean Z-scores - with regularization - test batch 2

(b) True mean Z-scores - with regularization - test batch 2

(c) Difference (Pred - True) in mean Z-scores - with regularization - test batch 2

Figure 142: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test batch 2 - CNNreps model - with regularization (MSE loss)
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(a) Predicted mean Z-scores - with regularization - test batch 3

(b) True mean Z-scores - with regularization - test batch 3

(c) Difference (Pred - True) in mean Z-scores - with regularization - test batch 3

Figure 143: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test batch 3 - CNNreps model - with regularization (MSE loss)
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(a) Predicted mean Z-scores - with regularization - test batch 4

(b) True mean Z-scores - with regularization - test batch 4

(c) Difference (Pred - True) in mean Z-scores - with regularization - test batch 4

Figure 144: Predicted, true and difference in mean Z-score per slice/timepoint pair for
test batch 4 - CNNreps model - with regularization (MSE loss)
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