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Abstract

Context. In the fast-paced and competitive Dutch dairy market, companies like

Royal FrieslandCampina continuously seek innovative approaches to enhance

their new product development strategies and increase the success rates of new

product launches. While qualitative methods have traditionally been employed

and are still the current way of working, there is an increased need to lever-

age sales data and competitor insights to predict the success of new product

introductions in this fast moving consumer goods industry.

Goal. The goal of this research is to explore a possible method for predicting

the success of new product launches in the dairy food market using a vari-

ety of machine learning methods, including logistic regression, support vector

machines, decision trees and random forest. The study focuses on the Dutch

market and aims to develop predictive models that can classify successful prod-

ucts relative to their direct competitors, possibly aiding the company in future

decision making.

Method. To achieve the research goal, a comprehensive dataset containing

historical sales data, competitor information, and time-based features is con-

structed. Feature engineering techniques are employed to extract relevant tem-

poral patterns from the data and transform features into useable format. Vari-

ous machine learning algorithms are implemented by training and validating on

the dataset. The models are evaluated using appropriate performance metrics

such as F1-Score, precision, recall and ROC AUC.

Results. The results conclude that the developed machine learning models ex-

hibit moderate to promising predictive capabilities in determining the success

of new product launches in the dutch dairy market. The time-based features,

created through feature engineering, provide valuable insights into the temporal

dynamics of the market and contribute significantly to the models’ predictive

performance. Branding shows to be of high importance shown by the impact



encoded feature. The Random Forest model performs best overall with accept-

able F1-Scores.

Conclusions. This research touches upon the effectiveness of different machine

learning methods in predicting the success of new product launches in the dutch

dairy market. By using historical sales data, these models could be further

improved to provide a valuable decision support for new product development

strategies. The introduction of time-based features enhances the models’ ability

to capture temporal patterns and improve predictions. The findings of this

study form a basis to eventually enable companies like Royal FrieslandCampina

to make more data-driven decisions, optimize resource allocation, and increase

the likelihood of successful product introductions, ultimately improving market

competitiveness.
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1

Introduction

The retail food & beverage industry is characterized by rapidly changing consumer pref-

erences, intense competition, and an ever-evolving global marketplace. To remain compet-

itive and meet emerging market demands, companies within this sector must constantly

innovate their product offerings. New product development (NPD) plays a pivotal role in

this dynamic context, acting as a cornerstone for growth, market share gains, and long-term

sustainability.

Several studies have underscored the significance of NPD in the retail food & beverage

domain. In the food industry, innovation is not just crucial for profitability but also for the

survival of enterprises in an intensely competitive market(2). Furthermore, the tendency to

buy new products has been strongly associated with consumer loyalty and repeat purchase

behavior in the research of Steenkamp and Gielens (2003) (3). They argue that successful

NPD can enhance brand loyalty and drive premium pricing strategies (3).

The introduction of new products allows retailers the opportunity to differentiate them-

selves in a crowded marketplace. As Porter (1980) emphasizes in his work on competitive

business strategy, differentiation through product innovation serves as a powerful strategic

tool, particularly in situations where competing based solely on price becomes untenable

(4).

Moreover, in the dairy sector, the diversification of consumer preferred tastes has neces-

sitated a constant flow of new product introductions. Companies are increasingly seeking

ways to serve specialized market segments and offer differentiated flavors and textures.

The variety of cultures, fermenting processes, and ingredient mix-ins further amplify the

breadth of options available. Guiltinan (1999) suggests that the pace and quality of new

product introductions are key determinants of market success in such segments (5).
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1.1 Problem statement

As the complexity of consumer preferences grows, leveraging advanced technologies such

as machine learning becomes imperative. Machine learning, with its ability to analyze vast

and complex datasets, offers a valuable tool in understanding and predicting consumer

preferences, allowing for more targeted and successful product innovations (6). This is

particularly relevant in the food and beverage sector, where companies are constantly

looking for ways to innovate and capture new market opportunities.

In conclusion, NPD is essential for companies in the retail food & beverage industries.

Whether it is to meet the shifting tastes of consumers, outpace competitors, or carve out a

distinct market position, innovative product development remains at the heart of strategic

growth.

1.1 Problem statement

The scope of this research is the Dutch market, given its distinctiveness in product

portfolio, brands, and categories. It is important to emphasize that the Dutch market

holds particular significance for RoyalFrieslandCampina (RFC) due to its status as the

company’s home market and a major contributor to its revenue.

This thesis aims to explore the potential of machine learning in predicting new product

success based on historical data in three specific categories within the Dutch market:

Spoonable Yoghurts, Drinking Yoghurts, and Quarks. To achieve this, we utilize historical

sales data provided by XXX.

Product success in this context is determined by two Key Performance Indicators (KPIs):

Weighted Distribution (WD) and Rotation. The former, WD, assesses the product’s avail-

ability across various geographical areas and retail channels within the Dutch market. The

other KPI, Rotation, delves into the product’s purchasing frequency by Dutch consumers.

By analyzing these metrics, we aim to reveal the determinants of success for new products

in product categories.

The ultimate outcome of this research will be insights into which factors are most impor-

tant for product success and a classification of which products are likely to succeed. While

it is possible to compile a top 50 list of potential successful products for further evaluation,

it is suggested that such a comprehensive review might be more fitting for future studies.

Using machine learning combined with historical data, we seek to uncover the various fac-

tors that influence product success, possibly aiding RFC’s future decision-making in the

Dutch market.

2



1.2 Organization

1.2 Organization

RoyalFrieslandCampina, commonly known as RFC, is a leading player in the dairy in-

dustry headquartered in the Netherlands with a vast global reach. As a pioneer in the

dairy industry, their portfolio is diverse, boasting products like spoonable yoghurts, drink-

ing yoghurts, and quarks. In order to remain competitive and meet evolving consumer

demands, RFC is constantly exploring new product ideas and concepts. The success of

these new products is often uncertain, as it depends on a range of factors such as product

features, distribution channels, and consumer preferences.

My internship took place at RFC’s office in Amersfoort, diving deep into the product

success dynamics within the Dutch dairy sector. The research was spearheaded by a

specialized team, known for their knack in leveraging data to inform product strategies.

The ultimate aim of this research is to look into the possibilities to equip RFC with data-

driven insights that will minimize product launch risks and optimize chances of winning in

the ever-competitive dairy landscape of the Netherlands.

1.3 Thesis outline

Following the introduction, Chapter 2 provides background information on the defini-

tions of successful product launches and introduces relevant machine learning and feature

selection models.

Chapter 3, the literature review, highlights important and recent research related to

product launches and NPD processes. The role and development of classification models

in this area are also discussed.

In Chapter 4, we turn to the methodology. This chapter describes our dataset, its

exploration, engineering, preprocessing, and the selection of key features for our research

project. It explains the various models, their evaluation methods, and the overall approach

taken to predict product launch success.

Chapter 5 presents the results. This chapter analyzes the performance of the machine

learning models used, compares different models, and discusses the significance of various

features.

Chapter 6 is the conclusion, where the findings related to product launches in the Dutch

dairy market are summarized.

Chapter 7 offers a discussion on the study, touching upon its limitations and giving

recommendations, while also suggesting potential directions for future research.
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2

Background

The introduction of a new product to the market is a complex and capital intensive

process, starting with an idea and ending with a market launch and subsequent evaluation

of success. This section describes this intricate process within the context of the dairy

industry in the Netherlands, followed by a description of the machine learning methods

used in this research to forecast the market success of new dairy products. The models

used include Logistic Regression, Support Vector Machines, Single-layer Perceptrons, De-

cision Trees, Random Forests, Extreme Gradient Boosting (XGBoost) and Light Gradient

Boosting Machine (LightGBM)

2.1 New product development

The process of bringing a new product to the market is a challenging task, characterized

by sequential stages, each being important to the product’s eventual success. As outlined

by Harmancioglu et al. (7), the process can be broken down in a series of core steps. These

stages, visualized in figure 2.1, offer a comprehensive overview of the NPD process:

1. Idea generation and screening; At the outset, new product ideas emerge from diverse

sources, including in-house teams, customers, competitors, and market research. Not

all ideas move forward; only those with potential market and technical feasibility

proceed (8).

2. Concept development and testing; Selected ideas proceed to form product concepts.

These undergo testing among consumer groups to identify the target market and

determine market acceptance (9).

4



2.2 NPD success

3. Product design and development; Concepts form into prototypes during this phase.

Refinements are made based on feedback, ensuring the product aligns with industry

standards and all important consumer expectations (10).

4. Pre-launch checks and launch; Before its market debut, the product undergoes rig-

orous quality tests. Then the launch date is discussed with retail and promotional

activities are determined (7).

5. Post-launch review; After launching, the product undergoes a detailed review where

actual market outcomes are compared with initial expectations, leading to any nec-

essary corrective actions. The post-launch review also prioritizes ‘voice-of-customer’

feedback, ensuring the product aligns closely with real-world customer preferences

and reactions (11).

Figure 2.1: New product development process.

2.2 NPD success

The launching a new product is a step-by-step process where each step plays a crucial

role in how well the product performs. When looking at past research, it is clear that

two things really matter: doing well in each phase, especially when making, testing, and

introducing the product, and always keeping an eye on what customers want (12). This

means listening to customers, knowing what is happening in the market, and understanding

what the competition is up to (13). While it is good to know what the market in general

5



2.2 NPD success

wants, Von Hippel et al. state that it is equally as important to listen to specific customers

who have clear and innovative ideas about what they want, customers often referred to as

‘Lead Users’ (14).

In the Dutch dairy sector, determining the success of product launches is a complex task.

For the purposes of this research project, guided by the preferences of the host company,

the emphasis is on actual sales performance. Two KPIs, namely Weighted Distribution

(WD) and Rotation, stand out as most important factors for determining success. WD

represents a percentage metric of the stores the product is sold in, adjusted for the size and

significance of individual stores in the Netherlands. Rotation, on the other hand, serves

as an indicator of consumer preference, indicating the average units sold per store for a

particular product. These metrics, compared to relative market performance, form the

basis of gauging the market success of new dairy products in this study. Figure 2.2 below

provides a general visualization of how products can be categorized as being successful or

not, based on their relative performance in terms of Rotation and WD.

Figure 2.2: New product success based on relative market performance.
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2.3 Machine learning models

2.3 Machine learning models

Machine learning can be compared to cooking, if you start with good quality ingredients

(data), you are more likely to create a tasty dish (accurate predictions). In other words:

“Garbage in, Garbage out" (GIGO), meaning that if you train a model with poor data,

you will probably get poor predictions (15).

It is crucial to consider that there is no one-size-fits-all recipe in machine learning. This

phenomenon is often referred to as “No Free Lunch", meaning there is no single model that

is superior for every task (16). Often multiple different models are tried to see which one

works best for the specific problem. After all, whether simple or complex, every model

comes with its strengths and challenges.

In this thesis, the project is focusing on supervised learning, where we give the model

both the ingredients (data) and the recipe (algorithm) to help it make predictions. Both

tree-based and linear models are explored to see which one is the best fit for our data and

task.

2.3.1 Linear models

2.3.1.1 Logistic Regression (LR)

Logistic Regression employs a linear model for making predictions. Unlike linear regres-

sion, which predicts continuous values, Logistic Regression is used for predicting probabil-

ities. It utilizes a logistic or sigmoid function to transform a linear combination of features

into a value between 0 and 1, often referred to as the probability of an outcome (17).

The relation can be mathematically represented as:

log

(
π

1− π

)
= β0 + β1X1 + β2X2 + ...+ βmXm (2.1)

In this equation, π
1−π denotes the odds, the ratio of probabilities (17). The coefficients βi

represent the weights for each corresponding feature, Xi, being the value of the feature

(18). The term β0 serves as a reference point or often called intercept term, indicating the

baseline (18).

One of the main advantages of this model is its clear interpretative nature of its predic-

tions (19). A drawback of the model is that it supposes a linearity between the features and

their log odds, this condition is often not fulfilled in real-world data (19). The model allows

for certain hyperparameters to be tuned, striking a balance between model simplicity and

its fit to training data.
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2.3 Machine learning models

Hyperparameters:

- Regularization Type: Determines the type of regularization applied. Options are L1

(Lasso) and L2 (Ridge). L1 tends to zero out insignificant features, while L2 shrinks

coefficient magnitudes.

- C (Inverse Regularization Strength): A continuous value typically ranging between 0.01

and 100. A smaller value signifies stronger regularization.

2.3.1.2 Support Vector Machine (SVM)

Support Vector Machines (SVMs) represent a powerful classification model when working

with high-dimensional spaces (20). An SVM tries to find the optimal hyperplane for

separating the data into classes, with achieving a high as possible margin between class

members (21). The data points closest to this hyperplane, the so-called support vectors,

are fundamental in shaping this decision boundary. In its essence, SVM can be viewed as

a Maximum Margin Classifier due to its unique ability to minimize empirical classification

errors while maximizing geometric margins (21).

However, while SVMs excel in high-dimensional spaces and maintain resilience against

outliers, their computational demands can render them less appropriate for datasets of

considerable size (20). The model’s performance and decision boundaries are influenced by

key hyperparameters, which dictate the relationship between bias and variance, the nature

of the decision boundary, and the training process’s termination criteria (20).

Hyperparameters:

- Kernel: Defines the decision boundary type. Options include Linear, RBF, Polynomial,

and Sigmoid. The kernel function assesses sample similarities.

- C (Regularization Strength): Represents the penalty parameter of the error term. A

lower C value yields a smoother decision boundary, leaning towards higher bias. Conversely,

a higher value focuses on correct classification of training examples but may run the risk

of over-fitting.

- Gamma: This kernel coefficient is applicable to RBF, Polynomial, and Sigmoid kernels.

It defines the ‘influence’ of each training sample within the feature space. A lower value

suggests a widespread influence, whereas a larger value suggests influence to a closer range.

- Tolerance: A threshold for the stopping criterion, ensuring the solver achieves a speci-

fied precision.

- Maximum Iterations: Sets the limit on iterations during model fitting.

8



2.3 Machine learning models

2.3.1.3 Single-layer Perceptron (SLP)

Being a simple neural network, the Single-layer Perceptron (SLP) is often used for clas-

sification and prediction tasks (22). The SLP consists of multiple inputs, often denoted

by an input vector X = {X1, X2, . . . , Xn}, and produces a singular output, O (23). The

output is calculated as:

Ouput = f(V TX + v0) (2.2)

where f(net) symbolizes a non-linear activation function, commonly a sigmoid function

defined as

f(net) =
1

1 + exp(−net)
(2.3)

The terms v0 and V = {V1, V2, . . . , Vp} represent the bias and weights of the perceptron,

respectively (22).

By computing a weighted aggregate of its inputs, augmented by a bias, the perceptron

determines an activation. If the sigmoid function is used, the output is compared to the

treshold value of 0.5 (22).

The linear decision boundary of the perceptron allows it to distinguish between two

classes based on feature coordinates. However, it is essential to remember the perceptron’s

limitations, such as its inability to handle non-linearly separable data (22).

Hyperparameters:

- Max Epochs: The upper limit on the number of iterations over the training data set.

- Alpha (L2 Regularization Parameter): Penalizes larger weights to reduce over-fitting.

- Convergence Tolerance: Specifies the precision threshold triggering solver termination.

- Early Stopping: Option to halt training upon lack of validation score enhancement.

- Initial Learning Rate: Sets the onset rate for model learning.

- Solver: Choice between methods like ADAM and SGD to optimize weights, each having

its set of hyperparameters.

For ADAM:

- Beta1 / Beta2: Exponential decay rates for initial and secondary moment estimations.

- Epsilon: A small value to prevent division by zero during optimization.

For SGD:

- Momentum: Enhances SGD speed and damps oscillations.

- Learning Rate Annealing: Adjusts the learning rate over time.

- Power_t: The exponent for inverse scaling learning rate.
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2.3.2 Tree-based models

2.3.2.1 Decision Tree (DT)

The Decision Tree models is often referred to as an intuitive decision-making processes

often visualized as flowcharts, like in Figure 2.3 (24). Within this model, features are

depicted as internal nodes, the branches represent decision rules, and the outcomes are

illustrated at the leaf nodes (25).

Figure 2.3: Example of a decision tree model (24).

The DT partitions data by selecting features that yield the highest information gain, try-

ing to split the data subsets into perfectly seperated leaf nodes (25). One strong advantage

of this model is its visual interpretabilty and its ability at managing both numerical and

categorical data (24). It is important to note that the model can be prone to overfitting,

especially with deeper trees that mimic the training data too closely. The importance of

tuning hyperparameters, like the tree’s depth and minimum samples for a split, should not

be overstated as they play a crucial role in the model’s predictive performance (24).

The mathematical formulation of DT, especially with criteria like entropy or the Gini

impurity, illustrate the rationale behind determining splits. For instance, entropy can be

represented as:

Entropy(S) = −p+ log2(p+)− p− log2(p−) (2.4)

where p+ and p− signify the proportions of positive and negative samples, respectively

(25).

Similarly, the Gini impurity is defined as:

Impurity(S) = 1− (p2+ + p2−) (2.5)
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The Gini impurity quantifies the disorder in a set, with higher values denoting greater

impurity (25).

Hyperparameters:

- Maximum Depth: Limits the tree’s growth potential, controlling its complexity.

- Criterion: Methodology for assessing the quality of a split. Options are “Gini” and

“Entropy” as discussed above.

- Min. Samples per Leaf: Minimum number of samples necessary in a leaf node, influ-

encing the tree’s granularity.

- Split Strategy: Strategic approach used for split selection at each node. Options in-

clude “Best”, which opts for the most optimal split, and “Random”, which selects the best

arbitrary split.

2.3.2.2 Random Forest (RF)

The Random Forest model is an bagging ensemble technique that builds upon the idea of

using multiple ‘simple’ decision trees to provide a more robust prediction (21). An example

of this can be seen below in Figure 2.4

Figure 2.4: Example of a random forest model (26).

Instead of relying on a single tree, the RF model takes into account the outcomes of

multiple trees, each constructed using a randomized subset of the data and features. The

predictions from these trees are combined through a simple majority voting mechanism

for classification tasks (21). This approach reduces overfitting, increases model robustness

and results in better prediction accuracy at the expense of interpretability (27).

Hyperparameters:

- Number of trees: Specifies the total number of trees in the forest.

- Feature sampling strategy: Determines the approach to feature sampling, such as fixed

proportion or square root.

11
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- Proportion of features to sample: A value typically ranging between 0.1 and 0.7, dic-

tating the fraction of features considered during each split.

- Maximum depth of tree: Maximum depth of each tree in the forest.

- Minimum samples per leaf: Sets the least amount of samples that a leaf node can have.

2.3.2.3 Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting, or XGBoost, is a potent classification model employing the

boosting ensemble technique. It sequentially optimizes decision trees to correct previous

trees’ errors, minimizing a specific loss function, as shown in Figure 2.5. This approach

ensures an enhancement in computational efficiency, a graceful handling of missing data,

and effective in-built regularization techniques, making XGBoost a robust tool in diverse

scenarios (28).

Figure 2.5: Sequential optimization in XGBoost model (29)

.

Regularization in XGBoost not only diminishes the risks of overfitting but also strikes

a balance between model accuracy and complexity. One notable hyperparameter in XG-

Boost is the booster method. DART (Dropouts meet Multiple Additive Regression Trees)

mitigates over-specialization in traditional MART (Multiple Additive Regression Trees),

a scenario where late-added trees adversely influence few instances, reducing the model’s

performance on unseen data (30). Through the innovative use of dropouts, DART enhances

the model’s generalization capabilities and sensitivity to initial trees, resulting in improved

performance across various tasks with large-scale datasets (30). Below an extensive list of

hyperparameters is briefly explained.

Hyperparameters:

- Booster: Options include Gradient Boosted Trees and DART.

- Tree method: Options include Exact, Approx, Histogram and Automatic, with the

latter relying on heuristics and dataset shape for selection.

- Maximum number of trees: Maximum total trees in the ensemble.

12
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- Early Stopping: Enables early termination to prevent potential overfitting.

- Early stopping rounds: Number of rounds without improvement before stopping.

- Max tree depth: Maximum depth of a tree.

- Learning rate: Step size at each iteration.

- Max delta step: Limits the maximum step size during weight optimization.

- L1 & L2 regularization: Regularization terms added to the objective function.

- Gamma: Minimum loss reduction to make a split.

- Minimum child weight: Minimum sum of instance weights required in a child node.

- Subsample ratio: Ratio of training data sampled for building trees.

- Columns subsample ratio for trees: Ratio of features sampled for constructing each

tree.

- Columns subsample ratio for splits/levels: Ratio of features sampled for each split.

2.3.2.4 Light Gradient Boosting Machine (LightGBM)

Light Gradient Boosting Machine, or LightGBM, is another gradient boosting model

based on the decision tree algorithm. The model is especially useful for large datasets as

it is designed for distributed and efficient training (31). Figure 2.6 illustrates a schematic

representation of the model, emphasizing its leaf-wise growth approach in tree building as

opposed to complete level-wise in XGBoost for example.

Figure 2.6: Leaf-wise tree growth in LightGBM (32).

As stated, the approach in XGBoost is level-wise tree growth, as LightGBM adopts

a leaf-wise algorithm it can achieve lower loss than its counterpart, leading to improved

accuracy (31). However, this also causes a higher risk of overfitting on smaller datasets, and

careful tuning of hyperparameters is required to prevent this issue (31). Below, essential

hyperparameters different from XGBoost are outlined and briefly explained.

Hyperparameters:
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- Number of leaves: Maximum number of leaves in one tree. This is unique as it’s directly

related to LightGBM’s leaf-wise tree growth, and it’s crucial for the model’s performance

and speed.

- Minimum split gain: Minimum loss reduction required to make a further split. It

provides a criterion for making additional partitioning of leaves.

- Minimum leaf samples: Minimum required instances in a leaf.

- Bagging fraction and frequency: Subsample ratio and frequency of data used during

training.

2.3.3 Ensemble modelling

In machine learning, the term ‘Ensemble modelling’ refers to the combined decision

of multiple models to try and enhance overall performance. This could be compared to

collective intelligence or ‘wisdom of crowds’, where often a large group of people tend to

make very accurate estimates or judgments (33).

One crucial advantage of this method is its ability to lower the risk of over-fitting and

increase performance by utilizing the strengths of each of the integrated models (34).

However, ensemble modelling also comes with drawbacks such as increased difficulty of

results interpretation, one example for this is RF models (35).

Recent and commonly used techniques are bagging, boosting and stacking (36). Bagging

uses multiple predictors trained on different dataset subsamples, used in for example the

RF model (36). Boosting, sequentially trains weak learners to correct predecessors’ errors,

exemplified in methods like XGBoost or LightGBM (36). Stacking combines predictions

from diverse algorithms (36).

In this research project, the stacking technique is implemented with the majority vot-

ing technique, meaning the final classification is determined by the majority vote of the

individual models (37). A visual representation of this can be seen below in Figure 2.7.

2.4 Feature selection techniques

Feature selection, a crucial pre-processing step in the world of machine learning, is used

to try and avoid superfluous and repetitive data. The process often improves the results

from learning algorithms, making them not only more accurate but also easier to under-

stand (39). With data dimensionality expanding exponentially in recent years, efficiency

and effectiveness have become challenges for traditional feature selection and extraction
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Figure 2.7: Schematic representation of majority vote ensemble classification(38).

methods, as discussed by Hall and Holmes (2003) (40). Various strategies have been intro-

duced in machine learning and pattern recognition to improve the performance of learning

algorithms and increase the predictive accuracy of classifiers.

In this study, we focus on three distinctive yet effective feature selection methods: Cor-

relation with Target, Tree-based Feature Selection, and LASSO Regression. Each of these

has been analyzed and recognized in previous literature for their unique strengths in the

feature selection process.

The Correlation with Target approach is straightforward yet effective. It selects features

that exhibit a strong Pearson correlation with the target variable, guaranteeing that the

chosen features significantly linearly relate to the target, thereby serving as a solid basis

for training models (41). A set threshold for minimum absolute correlation makes this a

solid systematic process.

Introducing a more dynamic approach, the Tree-based Feature Selection technique starts

by creating a Random Forest model for target prediction, subsequently selecting the most

important features that contribute to the model’s predictive accuracy (42). Eventually only

the features with the highest significance are selected and used for training the models.

While this method is insightful, it has a drawback in the fact that it tends to favor features

with multiple categories.

Lastly, the LASSO Regression method is used. LASSO, or Least Absolute Shrinkage and

Selection Operator, not only performs regularization but also selects the most important

features by penalizing the coefficients of regression variables, which reduces variance with-

out significantly increasing bias, especially in data with fewer observations and numerous

features (43). In the research project, 3-fold cross-validation is used in this method to
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precisely identify the optimal regularization term, making sure that features with non-

zero coefficients, which are essential for the model, are retained, enhancing the model’s

predictive accuracy avoiding overfitting.

Using the above mentioned methods, this research project aims to identify essential

features that enhance the model’s predictive power and highlight underlying data relation-

ships.

16



3

Literature

Understanding the success of new product development and launches is a difficult chal-

lenge with a lot of variables that come into play. Various research approaches and method-

ologies have been employed to grasp, assess, and forecast the performance of new products

in the market. Recognizing this broad topic, this literature review is mainly focused on

examining papers that have researched new product development and innovation in this

space as well as on examining papers that have utilized machine learning (ML) models to

predict future success or demand of new launches.

This literature study aims to provide relevant insights for the overall research by con-

centrating on works that have leveraged ML techniques such as classification for predictive

analysis. This section will methodically explore the existing body of knowledge, assessing

the applicability and effectiveness of different ML models and feature selection methods in

the context of pre-launch success prediction.

3.1 New product development fast moving consumer goods

In their 2002 work, Traill and Meulenberg (2) explored innovation dynamics within Eu-

ropean food manufacturing, having their doubts on the split between ‘demand-pull’ and

‘technology-push’ models. They emphasized the need for a more varied framework consid-

ering company culture, strategic orientation, and structural variables like market type and

company size to fully understand innovation trajectories. The relevance of this work to my

research is profound, it gives a broader context on what might be important to take into

account while launching new products or services. Traill and Meulenberg’s (2) insights aid

in refining the feature engineering process of the models by underscoring the importance of
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a company’s innovation orientation—product, process, or market. Incorporating these as-

pects as quantitative variables could offer a potential enhancement in predictive accuracy.

Additionally, their observations on the impact of product quality on development align

with the possible approach of categorizing products on brand-level to determine success.

Together these qualitative and quantitative analyses make for a holistic view of product

launch outcomes. Overall, their findings underscore the necessity of a diversified approach

in predictive modeling, a principle that informs and enhances my own methodology.

In his 1999 paper, Nijssen analyzed the multifaceted challenges and outcomes associated

with line extensions in the consumer goods sector (44). He questioned the efficacy of using

established brand names for new product introductions, especially when there is strong

market competition, enhanced retailer power, and the evolving behaviour of consumers

(44). The research is based on a survey of industry professionals and suggest that that

the risk of cannibalization is significant and quality enhancements often do not add to

success whereas new flavors and packaging might (44). Nijssen’s findings are invaluable

and his research around line extensions and therefore incremental innovation in products

aligns with my own research. My research relies on historical sales data to forecast new

product performance, which leads to the fact that the researched and created models of my

work will be able to forecast for smaller changes or adjustments in products better than

radical innovations. His identification of successful line extension characteristics—namely

new flavors and packaging variations—provides a solid foundation for developing predic-

tive features within my models (44). Just as Nijssen points out the potential pitfalls of

cannibalization and the minimal value addition of some line extensions, perfect models

must also differentiate between features that truly drive sales versus those that merely

redistribute existing demand among similar products (44).

3.2 Machine learning studies

The 2017 paper by Quader et al. provides valuable insights into the application of

machine learning for predicting movie success, offering parallels to my own research on

product launch predictions (45). Employing SVM and Neural Networks, the study suc-

cessfully forecasts box office performance using historical data from IMDb and similar

sources, emphasizing pre-release features like budget and IMDb votes. This approach mir-

rors my use of historical sales data to predict new product success, although I focus on

binary classification rather than the multi-tiered success categories used in their research.

Both studies recognize the significance of pre-launch features, but the movie success model
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also contemplates post-release factors and wider economic conditions, suggesting avenues

for my research to explore, such as the impact of market dynamics on product adoption.

Their concept of ‘one away’ prediction accuracy also presents an intriguing alternative

metric for evaluating predictive performance. The findings in the film industry under-

score the potential of machine learning applications across various domains, highlighting

opportunities for enhancing the predictive robustness of my models.

In a 2023 study, Arampatzis et al. look into pre-launch forecasting of new product sales

in the fashion industry, a task similar to my own research (46). Their study employs a

range of similar ML models, including Decision Trees, XGBoost, LightGBM, and Random

Forest, leveraging product features as variables for predictions as in my research. Next

to that, they have access to an extra feature which portrays the potential sales if the

product had been launched earlier, this aids the models predictions and is something

not available in my research. They provide a forecast of sales volumes in the first six

weeks after launch, whereas I utilize historical sales data to categorize the first 26 weeks

of a product launch being successful or not. The diversity in analytical methods used

is a common thread in our research, reflecting a departure from a one-method-fits-all

mentality to embrace a more explorative and comprehensive approach. In contrast to their

study, my research does not focus on deep learning techniques and while they implement

bayesian optimization or grid search, depending on the model, my research utilizes random

search for hyperparameter optimization next to using K-fold Cross-Validation to ensure

the robustness and generalizability of the predictive models.

In 2020, Narayanan et al. studied pre-launch product success prediction by leveraging the

vast expanse of electronic Word of Mouth (e-WOM) data to forecast outcomes in the elec-

tronics domain (47). They implemented a Multithreaded Hash-join Resilient Distributed

Dataset (MHRDD), which not only refines data quality by eradicating redundancies but

also enhances prediction model performance. The study shows the significance of e-WOM

data, including encompassing reviews, comments, and ratings, in shaping product quality

and market success. Their research aligns with the trajectory of my research, which also

harnesses ML techniques, but instead focussing on historical sales data. While Narayanan

et al. integrate customer feedback into their models, my study is restricted by the absence

of such direct consumer insights, focusing instead on quantifiable sales records and product

features. The employment of similar machine learning methods, like Decision Trees and

XGBoost, bridges our studies. However, the inclusion of product reviews and additional

e-WOM data in Narayanan et al.’s model presents a layer of consumer sentiment analysis

absent from my research. This dimension introduces a potential step for future research,
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where exploring such qualitative data could improve the prediction capabilities for products

where historical sales data is scarce or non-representative, particularly for groundbreak-

ing innovations. While both studies look into their unique datasets, consumer-generated

content versus historical sales data, the overarching goal to decipher the code of product

launch success through ML unites them.
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4

Methodology

This chapter starts by presenting a detailed overview and comprehension of the datasets

utilized in our research. Following this, we describe the sequential methodology used to

prepare and extend the available data in order to be able to run the explained models

on the resulting datasets. Next, the steps towards achieving insightful results in order to

address the research goal are discussed.

4.1 Data

4.1.1 Data Description

4.1.2 Data Preparation

4.1.2.1 Unique product keys

4.1.2.2 Product characteristics data

4.1.2.3 New products

4.1.2.4 Handling missing values

4.1.2.5 Brand mapping

4.1.2.6 Feature Engineering

4.1.3 Binary Classification

4.1.4 Data preprocessing

4.1.4.1 Scaling Numerical Data

Scaling numerical values is a step that can not be forgotten as it ensures equal con-

tribution of different features to a model’s predictions. This study employed two scal-
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ing approaches for scaling numerical data: Minimum-Maximum (Min-Max) scaling and

Average-Standard Deviation (Avg-Std) scaling.

Minimum-Maximum Scaling: Min-Max scaling normalizes the data within the range

[0, 1]. Despite its benefits, it is sensitive to outliers due to the direct use of the minimum

and maximum values. The normalization is given by the formula:

y =
x−min(x)

max(x)−min(x)
(4.1)

where x represents the original value, and y is the normalized value.

Average-Standard Deviation Scaling: Also known as Z-score normalization, Avg-Std

scaling centers the data around the mean with a standard deviation of one. This method is

more robust against outliers and maintains the shape of the original distribution, making

it suitable for normally distributed features. The standardization formula is:

y =
x− x̄

σ
(4.2)

where x is the original feature value, y is the standardized value, x̄ is the mean, and σ is

the standard deviation.

Avg-Std scaling proved to be slightly more effective in our modeling process, likely due

to its resilience to outliers and the preservation of the distribution’s shape.

4.1.4.2 Handling High Cardinality: Impact Encoding

As discussed above, the categorical feature ‘Brand’ has very high cardinality. There-

fore, one-hot encoding was determined to be impractical. Instead, impact encoding was

used, which combines the brand-specific mean with the overall mean, providing a more

generalizable encoding method. The impact encoded value is calculated as follows:

Impact encoded value =
n · Ȳcat +m · Ȳ

n+m
(4.3)

where Ȳcat is the category mean, Ȳ is the global mean, n is the number of samples in

the category, and m is a smoothing parameter that moderates the influence of the global

mean. This encoding technique is especially beneficial for categories with limited samples

as these are shifted more towards the overall mean, this reduces the risk of overfitting and

enhances the model’s ability to generalize.
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4.2 Training, Validation and Test data split

In order to perform the modelling for this study, the data has been divided into dis-

tinct subsets to train, validate, and test the predictive models. The division is based

on a time-based 5-fold cross-validation method, ensuring that the temporal order of the

data is preserved. This approach is particularly crucial for our dataset as it is inherently

time-series, with the created variable ‘WeekinData’ ranging from 1 to 283 serving as the

chronological marker.

The 5-fold cross-validation technique with overlap is employed during the hyperparam-

eter tuning phase. This method allows us to validate the model’s performance across

different time periods, ensuring that our findings are robust and not merely tailored to

a specific moment in time. This method partitions the data into five overlapping folds,

where each fold serves as a validation set once while the data preceding the validation set

forms the training set. This process is shown in 4.1 below where blue is always the training

set and green always the validation set.

Figure 4.1: Time-based 5-fold training, validation and test set

In terms of the overall dataset, an 80/20 split ratio for training and testing is chosen.

This ratio is chosen to provide a substantial amount of data for the model to learn from

in the training set, while still reserving a considerable portion for final evaluation on the

test set. The split is conducted in a chronological manner, where the first 80% of instances

sorted on ‘WeekinData’ is allocated for training, and the remaining 20% for testing.

The integrity of the time-ordering is maintained throughout the data splitting process.

This means that the model is always trained on past data and tested on future data

relative to the training set. This is critical for time-series forecasting and ensures that the
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evaluation of the model is realistic and actually works similar as how the model would

perform when deployed in a real-world setting.

Overall, data splitting process is designed to optimize model performance and general-

ization. It respects the temporal nature of the data and aligns with the best practices for

time-series analysis.

4.3 Feature Selection

In this study, three different feature selection methods were evaluated independently to

identify the most effective approach for the predictive models. These methods include Cor-

relation with Target, Tree-based Feature Selection, and LASSO Regression. Each method

was applied separately, and their outcomes were compared to determine which technique

offered the most valuable insights for model enhancement.

The first method, Correlation with Target, operates on a straightforward yet powerful

principle. It selects features based on their Pearson correlation with the target variable.

This approach ensures that the chosen features have a significant linear relationship with

the target, providing a strong foundation for model training. In this research, a set thresh-

old for the minimum absolute correlation was employed to select the top 25 features,

making the selection process both systematic and focused.

Next, the Tree-based Feature Selection technique was implemented. This method involves

creating a Random Forest model, which in this study consists of 30 trees with a depth of

10, to predict the target variable. The model then identifies and keeps the top 25 most

important features based on their contribution to the model’s predictive accuracy. While

insightful and powerful, this method tends to favor features with multiple categories, which

is a consideration in interpreting the results.

Lastly, LASSO Regression was utilized. LASSO (Least Absolute Shrinkage and Selec-

tion Operator) is known for its functionality of both regularization and feature selection.

This method penalizes the coefficients of regression variables, reducing variance without

significantly increasing bias. This is particularly useful in scenarios with fewer observations

and numerous features. In this study, a 3-fold cross-validation approach was adopted to

determine the optimal regularization term from the set {0.01, 0.1, 1, 10, 100}. The pro-

cess ensures that only features with non-zero coefficients, which are deemed essential, are

retained in the final model.

The primary objective of exploring these three methods was not to combine their results

but to compare their effectiveness in selecting the most relevant features.
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Correlation with Target offers a straightforward, linear perspective. Tree-based Feature

Selection provides an insight based on ensemble learning. LASSO Regression combines

regularization with feature selection, beneficial for high-dimensional data.

By analyzing the outcomes of each method separately, the study aimed to identify which

approach best aligns with the specific characteristics of our dataset and the modeling

objectives.

4.4 Hyperparameter tuning

In this study, the Random Search approach for hyperparameter tuning was used. Hy-

perparameter tuning is a critical step in optimizing the performance of machine learning

models. It involves experimenting with various settings to find the most effective combi-

nation of parameters for a given model.

Random Search is an efficient and practical alternative to Grid Search, especially when

dealing with large parameter spaces or constraints on computational resources (48). Unlike

Grid Search, which tests all possible combinations within the parameter space, Random

Search selects random combinations of hyperparameters to evaluate. This approach can

often result in comparable or superior results to Grid Search with significantly less com-

putational overhead (48).

For this research, the search space limit was set to 50, balancing the breadth of the hyper-

parameter exploration with the practical constraints of computational resources. This limit

makes sure that there is a thorough examination of the parameter space while preventing

excessively long search times. The search was unconstrained by time limits, allowing the

exploration process to be thorough and unbiased towards quicker, potentially less effective

combinations. This approach ensures that the hyperparameter tuning is comprehensive

and considers a wide range of potential model configurations.

The tuning process utilized a time-ordered 5-fold cross-validation with overlap, as pre-

viously discussed in Figure 4.1. This method of cross-validation maintains the temporal

ordering of the data, which is crucial for time-series analysis. It resembles a realistic ass-

esement of the model’s performance over time, similar to how it would be implemented in

a real world situation and avoids potential data leakage. The focus was on optimizing the

models parameters for a higher F1-Score rather than accuracy. This decision was made

due to the presence of class imbalance within the dataset. F1-Score, which harmonizes pre-

cision and recall, offers a more balanced metric in scenarios where each class’s performance

is important.
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4.5 Experimental setup

In this section, we describe the setup for the twelve different experiments including the

different pre-processing and scaling steps, discussing the machine learning models used

and the different hyperparameters subject to tuning. The setup for all the models are

presented in the tables below. The hyperparameters are tuned as discussed in section 4.4,

the features are selected with three different methods as discussed in section 4.3 and the

features are pre-processed in the different ways explained in section 4.1.4.

Logistic Regression A well-known basic model in the area of statistical modeling, Lo-

gistic Regression was chosen for its simplicity and efficiency in binary classification tasks.

It also serves as a baseline model to which the performance of more complex algorithms

can be compared. The different hyperparameters and ranges can be seen below in Table

4.1.

Parameter Description Search Range
or Value

Regularization Type Determines the type of regularization applied. L1 (Lasso)
tends to zero out less significant features, while L2 (Ridge)
shrinks coefficient magnitudes.

{L1, L2}

C (Inverse Regular-
ization Strength)

A continuous value that controls the strength of regular-
ization. A smaller value signifies stronger regularization.

{0.01, ..., 100}

Table 4.1: Description of hyperparameters for the Logistic Regression model

Support Vector Machine The Support Vector Machine (SVM) model, known for its

effectiveness in high-dimensional spaces, was included for its robustness and versatility in

handling both linear and non-linear boundaries. The hyperparameter Gamma was fixed at

scale, to be the inverse of #features∗variance, the hyperparameter Tolerance, a threshold

for the stopping criterion to achieve desired solver precision, was fixed at 0.001 and the

Maximum number of iterations was set to unlimited. The other hyperparameters to be

tuned are can be seen in Table 4.2 below.

Single-layer Perceptron For the Single-layer Perceptron model, a specific set of hyper-

parameters was chosen to facilitate effective training without the need for extensive tuning.

The model utilized a hidden layer size fixed at 10 with the ReLU activation function. The
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Parameter Description Search Range
or Value

Kernel Defines the decision boundary type with options including
Linear, RBF, Polynomial, and Sigmoid. The kernel func-
tion evaluates the similarity between samples.

Linear, RBF,
Polynomial,
Sigmoid

C (Regularization
Strength)

Represents the error term’s penalty parameter. A lower C
value smooths the decision boundary for higher bias, while
a higher value aims for correct classification of training ex-
amples, risking over-fitting.

[0.1, 10]

Gamma The kernel coefficient for RBF, Polynomial, and Sigmoid
kernels, affecting each training sample’s influence in the fea-
ture space. Lower values indicate a wider influence, while
larger values are more localized.

Scale

Table 4.2: Description of hyperparameters for the SVM model

training process was guided by a maximum iteration limit of 200, ensuring sufficient learn-

ing while trying to prevent overfitting. The L2 regularization parameter (Alpha) was set

to 0.001, adding a penalty to larger weights to also avoid overfitting.

The convergence of the model was controlled with a tolerance threshold of 0.0001, and

early stopping was enabled to halt training if there was no significant improvement in the

validation score, avoiding unnecessary further optimization. The initial learning rate was

fixed at 0.001.

Regarding the optimization solver, two approaches were experimented with: ADAM

and SGD (Stochastic Gradient Descent). For ADAM, the exponential decay rates for the

first and second moment estimations (Beta_1 and Beta_2 ) were fixed at 0.9 and 0.999,

respectively, with an Epsilon value of 1e-8 to prevent division by zero. In the case of SGD,

the momentum was set at 0.8 to enhance the speed of convergence and dampen oscillations,

with the learning rate following a ‘constant’ annealing schedule. The Power_t exponent

for the inverse scaling learning rate was set at 0.5, and Nesterov momentum was utilized

to further refine the optimization process.

Both ADAM and SGD solvers were tested to determine their effectiveness in weight

optimization, providing a comparative perspective on their impact on the model’s perfor-

mance.
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4.5 Experimental setup

Decision Tree The Decision Tree model was selected for its interpretability and the ease

with which it handles feature interactions, providing clear insights into decision-making

processes. The hyperparameters and their search space can be seen in Table 4.3.

Parameter Description Search Range
or Value

Maximum Depth Limits the tree’s growth potential, controlling its complex-
ity. A deeper tree captures more details but risks overfit-
ting.

{3, ..., 10}

Criterion Methodology for assessing the quality of a split. Gini im-
purity measures the frequency at which any element of the
dataset will be mislabeled when randomly labeled, whereas
Entropy is a measure of the purity of the split.

{Gini, Entropy}

Min. Samples per
Leaf

Minimum number of samples necessary in a leaf node, in-
fluencing the tree’s granularity and its ability to capture
fine details in the data.

{1, ..., 20}

Split Strategy Strategic approach used for split selection at each node.
“Best” opts for the most optimal split, while “Random”
selects a random split.

{Best, Ran-
dom}

Table 4.3: Description of hyperparameters for the Decision Tree model

Random Forest The Random Forest model, an ensemble of decision trees, is known for

its high accuracy and tendency to avoid overfitting, making it an ideal candidate for this

study. The hyperparameter values and search ranges can be seen below in Table 4.4.

Extreme Gradient Boosting The XGBoost model was chosen for its state-of-the-art

performance in numerous machine learning competitions. Its speed and efficiency make it

a powerful tool to use on our dataset. The maximum number of trees in the ensemble,

dictating the model’s complexity, was set to 300. Early stopping was enabled with four

rounds before stopping to avoid overfitting. The large amount of hyperparameters tuned

can be seen in Table 4.5.

Light Gradient Boosting Machine The Light Gradient Boosting Machine (LGBM)

is renowned for its performance and speed, especially on large datasets, it was included for

testing purposes and possibility to perform as well as or better than other models. Similar
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4.5 Experimental setup

Parameter Description Search Range
or Value

Number of Trees Specifies the total number of trees in the forest, impacting
the model’s accuracy and computational complexity.

{80, ..., 120}

Feature Sampling
Strategy

Determines the approach to feature sampling, like a fixed
proportion of features used in each tree.

Fixed propor-
tion

Proportion of Fea-
tures to Sample

Dictates the fraction of features considered for each split,
influencing model accuracy and overfitting.

{0.1, ..., 0.7}

Maximum Depth of
Tree

Maximum depth allowed for each tree, affecting the model’s
complexity and potential for overfitting.

{6, ..., 20}

Minimum Samples
per Leaf

The minimum number of samples required in a leaf node,
influencing the granularity of the model.

{1, ..., 20}

Table 4.4: Description of hyperparameters for the Random Forest model

Parameter Description Search Range
or Value

Booster Booster method, options include Gradient Boosted Trees
(GBT) and DART for the boosting process.

{GBT, DART}

Max Tree Depth The maximum depth of a single tree, affecting the model’s
ability to capture data complexities.

{3, ..., 10}

Learning Rate The step size at each iteration, a crucial parameter influ-
encing the convergence of the model.

{0.1, ..., 0.5}

L1 Regularization L1 regularization term added to the objective function to
encourage sparsity.

{0, ..., 1}

L2 Regularization L2 regularization term, which encourages smaller and more
generalized weights in the model.

{0.01, ..., 1}

Gamma The minimum loss reduction required for making a new
split in the tree.

{0, ..., 1}

Minimum Child
Weight

Minimum sum of instance weights needed in a child node,
influencing the decision to make further splits.

{0.5, ..., 5}

Subsample Ratio Proportion of training data sampled for building each tree,
affecting variance and bias.

{0.5, ..., 1}

Columns Subsample
Ratio for Trees

Ratio of features sampled for constructing each tree, aiding
in feature selection.

{0.5, ..., 1}

Table 4.5: Description of hyperparameters for the XGBoost model
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4.5 Experimental setup

to the XGBoost model, early stopping was enabled with four rounds before stopping to

avoid overfitting. The hyperparameters tuned can be seen below in Table 4.6.

Parameter Description Search Range
or Value

Max Number of
Trees

Specifies the upper limit on the number of trees in the
ensemble.

{50, ..., 200}

Number of Leaves Determines the maximum number of leaves per tree. Af-
fects model complexity and overfitting risk.

{20, ..., 500}

Learning Rate Controls the step size at each iteration of the model train-
ing.

{0.1, ..., 0.2}

L1 Regularization L1 regularization term (Lasso), encouraging sparsity in the
model.

{0, ..., 1}

L2 Regularization L2 regularization term (Ridge), penalizing the magnitude
of coefficients.

{0, ..., 1}

Minimal Gain for
Split

The minimum gain required for executing a split in the
tree.

{0, ..., 1}

Min Sum of In-
stance Weight in a
Child

Sets the minimum sum of instance weights (hessian) needed
in a child.

{0.001, ..., 1}

Columns Subsample
Ratio for Trees

The ratio of features used for constructing each tree, af-
fecting feature selection and model variance.

{0.5, ..., 1}

Table 4.6: Description of hyperparameters for the LightGBM model
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4.6 Model Evaluation

4.6 Model Evaluation

Evaluating the performance of machine learning models with labelled data that has a

class imbalance requires a careful selection of performance metrics to look at. Traditional

measures like accuracy may not be sufficient in such scenarios as this would not give a

fair result in highly imbalanced classes. Therefore, this study employs a range of metrics,

including confusion matrices, F1-Score, precision, recall, and ROC-AUC, to provide a

comprehensive assessment of model performance.

4.6.1 Confusion Matrix Analysis

As a start, confusion matrices are used to visualize each model’s performance. These

matrices offer a detailed breakdown of predictions into four categories: True Positives

(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) as can been

seen below in Figure 4.2. They are particularly useful in understanding how well the models

perform in identifying the minority class and in revealing the balance between sensitivity

(recall) and specificity.

Figure 4.2: Visual representation confusion matrix (1).

4.6.2 F1-Score, Precision, and Recall

Building upon the visual insights from confusion matrices, the F1-Score is selected as

the primary metric for model comparison. It is the harmonic mean of precision and recall,

providing a single metric that accounts for both the precision (the ratio of correctly pre-

dicted positive observations to the total predicted positive observations) and recall (the
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4.6 Model Evaluation

ratio of correctly predicted positive observations to all observations in the actual class).

The equations for precision and recall can be derived directly from the confusion matrix

as follows:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(4.4)

The F1-Score can then be calculated as:

F1 = 2× Precision×Recall

Precision+Recall
(4.5)

4.6.3 ROC-AUC Curve

In addition to the F1-Score, precision and recall, the Receiver Operating Characteristic

(ROC) curve and its corresponding Area Under the Curve (AUC-ROC) are utilized. The

ROC curve plots the True Positive Rate (Recall) against the False Positive Rate, providing

insights into the model’s performance across various thresholds. While the ROC-AUC is

a popular metric, it is interpreted with caution in imbalanced datasets.

Together, these metrics together with the visual insights from the confusion matrices,

create a robust and comprehensive evaluation of the models. They ensure that the selected

model not only performs well across various thresholds but also addresses the specific

challenges posed by the imbalanced nature of the dataset.
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5

Results

5.1 Model performance on Spoonable Yoghurts

The modelling on the Spoonable Yoghurts dataset was extensive, using a variety of

machine learning models tuned through an iterative hyperparameter tuning process. The

evaluation of these models was conducted through a series of 12 experiments, each varying

in feature selection, scaling techniques, and impact encoding values for the ‘Brand’ feature.

This comprehensive approach was used to find the most effective combination of pre-

processing and model tuning to accurately predict the target variable.

5.1.1 Experimentation Framework

With the objective of maximizing model performance and achieving the best results, the

experimentation was structured around three choices in the preprocessing step:

• Feature Selection: Utilizing three distinct methods, as detailed in the methodology

section 4.

• Feature Scaling: Using two different scaling techniques allowed for tests on how

normalized data in different ways could influence performance.

• Brand Impact Encoding: The ‘Brand’ feature was encoded using two different smooth-

ing factors, 52 and 104, to assess the impact of the level of smoothing on model

performance.

The combination of these paramterers led to 12 unique experimental settings, each pro-

viding valuable insights into the modeling process. The specifics of these experiments can

be seen in Table ?? in Appendix A. The performance of each model was assessed using
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5.2 Main Experiment

the metrics discussed earlier in section 4 to get a broad view of predictive power, including

F1-Score, accuracy, precision, recall, and ROC AUC. These metrics were collected and

have all been combined in comprehensive tables for ease of comparison. All results for

each experiment and model can be seen in the Appendix A.

5.2 Main Experiment

The focus is on the experiment that stood out for its superior performance, using tree-

based feature selection, Avg/Std feature scaling to limit the effect of outliers and a smooth-

ing factor of 104 for the impact encoded ‘Brand’ feature to improve generalisation and avoid

overfitting of brands that had a small number of product launches. This section provides

an in-depth analysis of the models within this experimental set-up.

5.2.1 Model-wise Performance Analysis

The breakdown of each model’s performance is shown by the discussed metrics and confu-

sion matrices that together offer a good view of each model’s efficacy. F1-Scores, accuracy,

precision, recall, and ROC AUC values provide quantifiable benchmarks for evaluating

the effectiveness of the models. These metrics not only show the models’ abilities to pre-

dict accurately but also give insights into the trade-offs between different types of errors

they make. Additionally, the feature importance provide information on which predictors

within the model have the most weight in influencing the outcome, offering insights into

the decision making progress which could be interesting for the intern company. The con-

fusion matrices are a clear visual tool for understanding the models’ classification accuracy

by presenting the correct and incorrect predictions in a format that’s easy to interpret,

highlighting the models’ strengths and weaknesses in distinguishing between classes. The

ROC AUC curves shown in Figure XXX further enrich this analysis by representing the

trade-off between the true positive rate and the false positive rate at various thresholds.

These curves are a testament to the models’ ability to balance sensitivity and specificity,

ultimately guiding the selection of an appropriate threshold for classification.
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5.2.1.1 Linear regression
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