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Abstract 
In this thesis we present a state-of-the-art approach to accelerate Monte Carlo valuations of 
embedded options. Due to regulations and improved risk management, nested simulations (scenarios 
in scenarios) are becoming increasingly important for institutional investors like: insurance companies, 
pension funds and housing corporations. Preferably one wishes to use a framework in which multiple 
related problems of nested simulations can be accelerated with GPUs. We build such a framework 
using advanced CUDA features from NVidias Kepler and higher architectures. CUDA streams and 
Hyper-Queues enable the GPU to run  tasks effectively by running concurrent and overlapping CPU 
and GPU calculations. In addition, NVidias Multi Processing Service is used to handle offloading 
Monte Carlo valuations from different local processes to the GPU. Runtimes in the order of days of 
current implementations are reduced to the order of minutes. This broadens the horizon of the current 
nested simulation methodologies. Besides, the proposed framework is scales well with the number of 
compute nodes and GPUs per cluster. 
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1 Introduction 
One of the core businesses of Ortec Finance (OF) is performing asset liability studies for financial 
institutions like Pensions funds, (life) insurers and housing corporations. The software solutions and 
methodologies used in these studies are developed and maintained internally. A common way to 
analyze future cash flows, is by evaluating multiple scenarios of the economy on current positions and 
strategies of a client. By simulating the portfolio of assets and liabilities in the future one could forecast 
their balance sheets and analyze the behavior at tail events. These events are important to report to 
regulators. Because, regulations can for instance require institutional investors to provide for a certain 
capital in economic tail events. 
Many asset classes, such as real estate or positions on the money market are straightforward to value 
given an economic development, a real world scenario. However, some items in a portfolio cannot be 
explicitly priced. Take for instance a financial derivative, one could analytically determine the value by 
substituting the economic factors (e.g. current price underlying, market volatility and interest rate) in an 
analytical model. Nevertheless, analytical solutions to price derivatives are not always available and 
often not accurate enough. In these cases one must rely on other numerical methods. 
Financial derivatives included on balance sheets, are more common than one might think. They can 
be present within common commercial financial products like: issued mortgages, life insurances and 
pension plans. Often these products contain agreements with the characteristics of an option. We will 
refer to these products as embedded options. For example, a life insurance company can promise a 
minimum return to their policy holders. By eliminating the downside risk, this right has the 
characteristics of an option for the policy holder. The valuation of embedded options on a balance 
sheet should be accurate since  in extreme events these values can become dominant on the balance 
sheet [1] . 
The valuation of embedded options can be done with several techniques [2][3] . In this thesis we focus 
on Monte Carlo (MC) valuations. Although computationally intensive, a popular and straightforward 
way to value complex contracts is by using MC techniques. Within a real world simulation we get 
simulations within a simulation. The inner simulations are performed in what we call a risk neutral 
measure, consequently, they are called risk neutral simulations. The concept of performing risk neutral 
simulations within real world simulations is what we call nested simulations.  
Because of the computationally intensive nature of nested simulations, we will explore techniques to 
accelerate these simulations by offloading the inner simulations to GPUs. By empirical approach, we 
build a framework in which several nested simulation applications can be accelerated with the use of 
GPUs. 
The runtime of current implementations of methodologies concerning nested simulations, are in the 
order of days. This runtime eliminates the possibility to fine-tune and evaluate the current models 
thoroughly. 
The main question of this thesis is: Can we design a framework in which nested simulations and its 
applications can be accelerated to reasonable run times? Such a framework should allow model 
extensions to be implemented not only by GPGPU experts but mainly by researchers and consultants. 
In addition, the greatest common divisor between all nested simulation applications can be maintained 
centrally. Furthermore, faster runtimes will enable expansions to the methodologies, accuracy 
tweaking of calibration models and, finally, minimize the impact of nested simulations on the run time 
of current OF solutions. 
The design of this framework will make extensive use of a set of CUDA abstractions available in the 
latest NVidia architectures. CUDA streams [4], Hyper-Q [5],  and MPS [6] are used the efficiently 
offload simulations to the GPU.  
We focus on three nested simulation applications: First we accelerate the calibration of risk neutral 
simulation models. In this application millions of Monte Carlo option valuations are to be performed. 
Secondly, the generation of risk neutral scenario sets is offloaded to the GPU. As this involves 
generating many Gigabytes of data, the challenge is to manage memory transfers properly. For both 
applications the GPU acceleration resulted in runtimes in the order of minutes. Finally, a technical 
framework is proposed to effectively run nested simulations in existing scenario analysis applications. 
With a mock up model of such an application we achieved almost no performance loss in incorporating 



 

 

a nested simulation in  a scenario analysis. All this additional work can be handled by one or more 
GPUs. 
Besides this main subject, some broader questions will be answered in order to create a clear view on 
GPU computing and its use by OF competitors. 
The thesis is structured as follows: Firstly, an introduction and a survey are presented in which we 
generally discuss General Purpose GPU (GPGPU) computing. We also discuss the developments in 
competing companies applying HPC concepts. Moreover, the applicability of GPU computing is 
sketched for several OF solutions. Secondly, we describe the domain, nested simulation 
methodologies, in more detail. In chapter 4, we describe the GPU techniques which are used in the 
proposed framework. Subsequently, the nested simulation application and its framework are explained 
and, details on design and performance results are described. Finally, conclusions are presented and 
future work is proposed. 
 



 

 

General introduction GPGPU 
In this chapter we briefly explain some basic principles and developments in General Purpose GPU 
(GPGPU) computing. It will give the reader a helicopter view on the subject and its applicability. 
Practical subjects like programmability and performance concerns are discussed. 

1.1 HPC computing in general 
High performance computing (HPC) becomes more and more embedded in several industries. HPC is 
a general term for techniques which let applications run faster than they do on regular desktops or 
workstations. Think of a grid of regular desktops, a cluster of compute nodes or offloading parts of the 
calculations to other available hardware or even a combination off all. At the time of writing, the scope 
of HPC is still growing  and gets more accessible for small companies and even individuals. For 
example,  Amazon offers a on demand service for using different HPC instances like  GPU clusters,  
I/O clusters or storage optimized clusters. It’s not surprising that the scope of applications using such 
techniques is still growing.  
However, running legacy code on HPC solutions is not as easy as one might think. Since preparing 
legacy applications for HPC can be hard, the concepts of HPC are, at the moment of writing, only 
applied by early adaptors in the industry. Companies have  to consider the additional investment in 
developing and maintaining HPC applications against any performance gain. In Finance however, lots 
of the concepts of HPC seem to be accepted as proven technologies. This chapter will briefly explain 
and describe current developments and trends in the world of HPC and GPGPU in particular. 
 

1.2 Heterogeneous Computing 
When applications are using the computational power of other hardware besides the available CPUs 
we call the application architecture heterogeneous. Assigning chunks of code to other hardware can 
benefit the total computational time. Distributing computation tasks to other hardware enables the 
application to run certain tasks in parallel. This is what we call task parallelism. In addition, CPUs are 
designed for low latency and single threaded performance. So in order to run massively parallel Single 
instruction Multiple Threads (SIMT) algorithms one might need different well suited hardware. GPUs 
for instance, are designed for high throughput and massively data parallelism. So, the benefits of 
heterogeneous computing lie not so heavily on the fact you are able the task paralyze your application, 
but to assign computations to the most suitable hardware available. In the following section we 
describe those different types of hardware. 
 

1.2.1 Graphical processing units  
The development of GPUs is mainly driven be the demand of the entertainment industry. Vendors like 
NVidia and AMD, are heavily dependent on the gaming and video processing markets. General 
computations on GPUs started as a niche, nowadays it’s a widely accepted concept. Vendors have 
launched General purpose GPUs, like NVidia Tesla line in 2006, and are in the process of optimizing 
the hardware for general purpose computations.  
Originally, GPUs have to render each pixel of a screen for  example 60 times per second. This 
concept results in hardware which can handle a single instruction (render a pixel) to a large amount of 
data (1920 x 1080 pixels for example). Since the late nineties the instruction came more complex and 
as of now it is possible to perform full kernels GPUs  

Bottlenecks 
GPU computing is certainly not the holy grail of achieving significant performance speed ups. To give 
a summarized view on some considerations one could encounter programming GPUs, the next 
sections will briefly explain the main subjects to consider: 
 



 

 

Programmability 
Over the years programming languages offered some of its performance in exchange for 
programmability. Close to the iron languages like Fortran and C are despite of the relatively hard 
programming model still the fastest common languages available.  
GPUs however, cannot be instructed with common programming models, instead, they come with their 
own. NVidia for example, offers the CUDA  (Compute Unified Device Architecture ) programming 
model. As one can imagine, performance is a key feature of programming GPUs. So, programming 
them has in some extend similarities with programming instructions in C for example.  
The complexity of GPU programming is not caused by  the paradigms or the syntax but, programming 
this close to the iron. One should be aware of the hardware features of the GPU writing the 
instructions for. In order to fully utilize the compute capabilities of the GPU, developers creativity is 
often demanded. 
Figure 1 shows briefly the main workflow of offloading some instruction set to the GPU. 
 
 

 
Figure 1 Workflow GPGPU programming (source: "CUDA processing flow (En)" by Tosaka - Own work.) 

 
Memory bandwidth 
Vendors tempt to quote high peak performance number in terms of Giga or even Tera FLOPS 
(Floating point operations). But what often is observed, is that applications are not computationally 
bounded, but memory bounded. In other words, for the cores to fully utilize their number crunching 
capabilities they have to wait for memory traffic1. This often requires the programmer to utilize 

                                                      
1 The hardware extensively manages the workload by minimizing idle time of the processors. By replacing on hold warps with 
other warps. However, this still causes overhead.  



 

 

advanced memory optimizations in order to gain any performance gain what so ever. The programmer 
can for example use (among others) the following techniques: 
■ Program the shared memory usage2 
■ Coalesced memory access. 
We can expect that upcoming GPU generations will have an increased memory bandwidth. NVidia 
already announced a new generation, Pascal, which contains stacked memory. They expect to reach 
a memory bandwidth of around 1 Terabyte per second.  
 
Device – Host communication 
The device (GPU) memory is not the only bottleneck, communication between the host (CPU) and 
device runs traditionally over the PCIe bus. One can imagine that this is relatively slow. At the moment 
of writing there the main solutions for this bottleneck is: Overlap calculations and communication by 
using streams (CUDA) or queues (OpenCL). Van Werkhoven (2014) [7],  proposes a model to 
determine on forehand which technique is most likely to perform best. 
 
Error Correcting Code (ECC) 
Regular memory contains ECC to correct for bit flips. On GPUs however, this a feature which is only 
supported by the latest generations. ECC is a typical GPGPU feature and is not supported by 
commercial gaming cards. Ignoring bit flips can result in inconsistent results or system crashes. 
 
Single vs Double precision 
GPUs naturally do not support double precision calculations. Although most GPGPUs support double 
precision calculations, it comes with a significant performance penalty. Figure 2 displays this penalty. 
We observe a quite steep curve in the GPUs peak performance.  It seems that developments in this 
area, have still room to improve in comparison with the CPU performances. 
Furthermore for most scientific applications double precision computations are crucial. In our domain 
we evaluated the usage of single precision in section 4.5. 
 

                                                      
2 This is often a trade off with the hardware caching 



 

 

 
Figure 2 Performance comparison Single and double precision GPU and CPU (source: NVidia) 

Speed ups 
As Figure 1 shows, the theoretical speed up that can be achieved by performing calculation on GPUs 
instead of CPUs is roughly a factor 10. The reason why often higher speed ups are communicated is 
that commonly  the compared CPU implementation is not fully optimized. Besides, getting the 
maximum performance out of a CPU is very hard or next to impossible for most programming 
languages. 
 

1.2.2 Other accelerators 
A many core processor does not have to be from a GPU family. In 2012 Intel released the Xeon Phi 
coprocessor. Where GPUs are characterized by containing 1000s of slim cores the Xeon Phi has 60 
original Pentium based cores with a 4-way simultaneous multithreading. Nowadays, the Xeon Phi can 
be found within the first ranked super computer on top500.org, the thiane-2. Intel announced his next 
generation coprocessors ‘Knights landing’ to be released in 2015. Interesting is that it will not be an 
accelerator but a coprocessor and CPU in one3. This means that PCIe communication bottlenecks will 
be vanished. 
 

1.2.3 HPC in the cloud 
Multiple cloud computing providers offer a range of on demand HPC clusters. All in different flavors 
and sizes. This allows small companies or individuals to access HPC power on demand. 
Consequently you do not have to invest and maintain large clusters yourself. However, during the 
project it seemed that a ‘Amazon’-like on demand service are not commonly available for the latest 
generations NVidia GPUs. Nonetheless, there are some developments in  on-demand GPU cloud 
solutions at BitBrains4.  

                                                      
3 http://www.theplatform.net/2015/03/25/more-knights-landing-xeon-phi-secrets-unveiled/ 
4 http://www.bitbrains.nl/ 



 

 

2 Survey GPGPU Ortec Finance 
To give the reader a glance of GPU applications provided by companies in the domain in which OF 
operates, we briefly discuss several examples. A market watch on the subject is presented. 
Additionally, the usage of CUDA instead of other available programming models is discussed. 

2.1 GPGPU in finance market watch 
Confidential 

2.1.1 Outsourcing HPC solutions 
Confidential 

 

2.1.2 ‘Minimum effort’ HPC libraries/toolkits 
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2.1.3 In-house HPC developing 
Confidential 

 
 

2.2 Many core processing needs at OF 
At OF, most of the models depend on scenario analytics. Using macro-economic scenarios decision 
models for pension funds, real estate corporations and private wealth are exploited. Since each 
scenario is independent one should be able to paralyze its execution. This property matches well with 
the capabilities of many core processing. To investigate the need for HPC at OF we have constructed 
a business case which resembles most of the aspects existing models are dealing with: 
■ Real world scenario simulations 
■ Risk neutral scenario simulations 
■ Calibrating of models 
 
In chapter 3 more details on the business case will be explained 
 

2.3 Programming models 
Programming GPU capable applications can be done in various ways. We discuss broadly the 
different methods and point out some of the interesting ones. CUDA, the programming model of 
NVidia, turned out to matched best with our needs. 
For sake of the applications to be accelerated in this thesis, we are only interested in low level 
libraries. However, we point out some interesting developments in the field of more high level 
approaches. 
 

 

2.3.1 Low abstraction lightweight GPU programming toolkits 
In the world of GPUs there exists two major vendors: NVidia and AMD. CUDA (Compute Unified 
Device Architecture) is the programming model provided by NVidia. For this reason CUDA only 



 

 

supports NVidia hardware. OpenCL is CUDA’s main contestant. OpenCL differs mainly in the fact it is 
not a vendor specific programming model. Actually, it is not only supported on GPUs but also on 
CPUs, intel MIC processors and FPGAs. Although, in theory possible, one should not expect that 
running OpenCL kernels on different hardware can be done without any interference of the developer. 
Often hardware specific features are used when kernels are performance optimized. 
Programmability wise both NVidia and AMD provide Software Development Kits (SDK) which enables 
the user to profile and debug GPU kernels. However, the NVidia SDK seem to be more matured. The 
visual studio plugin can be of great use when taking GPU accelerated models in production. 
Performance wise there is no evidence that the portability nature of OpenCL affects its performance 
[8]. However, CUDA comes with a set of highly optimized math libraries like CUBLAS, CUFFT and 
CUSP. Although  OpenCL offers a few alternatives5 , they seem not as advanced as the CUDA 
supported libraries.  
So, programmability and performance wise CUDA has a small edge on OpenCL. While the portability 
nature of OpenCL can be very interesting running tasks on MIC architectures for example.  
The programmability was decisive for choosing CUDA. In addition, this project focusses only on GPUs 
other processor types are out of scope. 
 
 

2.3.2 High abstraction compiler-based approaches 
Where GPU kernels are automatically generated by compilers or language runtime systems, through 
the use of directives, algorithm templates, and sophisticated program analysis techniques, e.g., 
■ ArrayFire6 
■ OpenACC7 
■ NMath8 
 
ArrayFire 
Arrayfire stands out of the companies mentioned above. In addition to CUDA, it also offers OpenCL 
support. This enables users to access also AMD GPUs and Intel accelerators. Originally, ArrayFire 
offers a C/C++ library but a java and R wrappers are also publicly available. At the time of writing 
ArrayFire became an open source product. 
 
OpenACC 
With OpenACC one could accelerate legacy code by using pragmas, compiler directives. Under the 
hood its contains OpenCL. OpenACC is only compatible with C/C++ and Fortran. One can expect to 
accelerate simple operations on large amount of data almost effortless. However, when logic becomes 
more complicated on could observe significant lower speed ups. 
NMath 

Confidential 
 

2.4 GPU candidate applications OF 
In this section we highlight a few OF solutions and discuss whether GPU acceleration is applicable or 
not. If offloading calculations to the GPU is applicable one should also consider if it is worth the 
investment, since GPU code is much harder to produce and maintain then logic in common languages 
in .NET or Java. 

Confidential 
                                                      
5 http://streamcomputing.eu/blog/2014-01-16/OpenCL-alternatives-for-cuda-linear-algebra-libraries/ 
6 http://arrayfire.com/ 
7 http://www.openacc-standard.org/ 
8 http://www.centerspace.net/products/nmath 



 

 

 
 

2.5 Proposal commercial GPU architecture 
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3 Nested simulations 
In this section we briefly describe the context of the accelerated models.  As already mentioned, it is of 
great importance insurers to value their assets and liabilities by a market value instead of a the 
formerly used book value. By explaining a practical case  we shed some light on the concept of a 
embedded options. We shortly discuss why the market value of an embedded options in for instance 
life insurance product is hard to value consistent Within an ALM study.  
While using real world simulations for ALM, inner, risk neutral simulations are used for valuation. 
Market conditions of RW simulation nodes, should consistently be passed to the inner RN simulations. 
A methodology is described to let these inner simulations inherit consistent properties of its parent 
simulation node. 
 

3.1 Example: Interest rate guarantees (IRG) 
A life insurance product is essentially a contract in which fixed premiums from the insured are 
exchanged for a payment of a fixed amount in the future. Contracts like these are often bought as an 
retirement reserve. One can imagine that all kinds of flavors of this product are, or were, available in 
the market.  
 
IRG 
A significant amount of life insurance products contain IRG, unit linked and other profit sharing 
contracts for example. Interest rates tended to grow over time for a large period in history. In such a 
scenario the policy holder is better off investing on the market instead of signing the insurers’ contract. 
For this reason, insurers added a profit sharing clauses to their contracts. The effect on the policy 
holder benefits are best illustrated in Figure 3. The figure shows, that in exchange of a small margin in 
favorable markets the policy holder is protected against unfavorable market conditions. The orange 
line highlights the yearly pay off for the policy holder. The policy holders benefit has the characteristic 
of a put option, since the holder is protected against low or negative returns. 
In [9] some examples are given for these issued guarantees in legacy products: 
■ 4.00% in the Netherlands and Germany 
■ 4.75% in Belgium 
■ 5.00% in Italy 
 
Policy holders owning such policies in the current market conditions benefit quite significantly with risk-
free rates near to zero 
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Figure 3 IRG payoff for the policy holder 

In current market conditions, where interest rates are relatively low, life insurance products are not as 
popular anymore. Nevertheless, by the long maturing nature of this contracts, the gross amount of 
such products, listed as examples, on the balance sheet of an insurer today can be quite significant. 
 

3.2 Nested simulations for insurers 
Asset Liability Management (ALM) 
The International Association of Insurance Supervisors [10] formulates asset and liability management 
as: The practice of managing a business so that decisions and actions taken with respect to assets 
and liabilities are coordinated. At OF such ALM studies are performed for several categories of 
institutional investors. By evaluating the balance sheet over multiple scenarios and time steps, one 
can gain insight in possible future developments. Since as previously described profit sharing contract 
are among others common liabilities for insurers. Within  ALM it is of great importance to correctly 
value a portfolio of contracts like the profit sharing products we described since in certain market 
conditions their value can be dominant.   
 
Valuation methods 
The contract  used in our example can, under assumptions, be priced by valuation of the  fixed cash 
flows within. In Pelsser and Bouwknegt (2001) [11] a step by step explanation is presented on how 
such products can be priced.  
So, let us assume that, for a large set of insurance contracts their fair value can be determined by a 
portfolio containing derivatives. How do we value such portfolio within a macroeconomic simulation 
like we perform in ALS studies. A possible solution is to use analytical formulas. However, most of the 
contracts are simply too complex to be able to mathematically define without making rigorous 
assumptions. 
A common, but more computationally intensive method, is Monte Carlo (MC) simulation. Defined 
stochastic processes in financial models can be simulated and averaged. The accuracy of MC 
methods is a tradeoff between the number of scenarios and the computational time. Increasing the 
number of scenarios with a factor 𝑁 commonly reduces the standard error with √𝑁 [12]. Although 
there are methods available to increase the convergence, see [13].  
The measure in which financial models, for option pricing, are simulated is what we call the risk neutral 
measure. This is due to the fact that these models are based on the assumption of ‘no-arbitrage’. This 



 

 

assumption states, in its simplest form, that the expected return is equal to the risk-free rate [14]. 
Consequently the MC simulations in our models are referred to as risk neutral (RN) simulations. 
 
Nested simulation 
Figure 4 illustrates the concept of nested simulation. The blue lines represent a macro economic 
scenario in which, given a policy and an investment strategy, the balance sheet of an institutional 
investor is evaluated. Such a scenario we further refer to as a real-world scenario. Subsequently, the 
simulation is called a real-world (RW) simulation. Within each point on the blue line of the figure, the 
model needs to value all assets and liabilities, including a possible portfolio of complex financial 
products. The RN simulations for valuation are represented by the orange lines. To illustrate the 
computational intensity of nested simulation; it is common that a RW simulation consists of 2.000 
scenarios and 10 years. Consequently, 20.000 RN simulations have to be performed. For every  RN 
simulation; 10.000 scenarios and over 10.000 periods are the be calculated. In [2] and [3] some 
techniques are discussed to deal with this dimensions. Nevertheless in this work we solve this 
computational nature by offloading the RN simulations to the GPU, and accordingly don’t apply 
dimensions reduction techniques. 
 

 
Figure 4 Example of nested simulation concept 

3.3 Methodologies 
In this section we present the methodologies which explain the need of the calibration of nested 
simulation applications. We show how consistency between the real-world and risk-neutral measures 
is obtained. In addition, the calibration needs are described in more detail. 
 
Consistency 
The main challenge of nested simulation is, that all 20.000 RN simulations of the previous example 
differ by the fact that simulated market conditions differ in each RW node. When a RN simulation  is 
launched from a RW node, the model parameters of the RN simulation should capture all available 
information from the state of its parent RW simulation node, such as interest rate curves and implied 
volatilities. Accordingly, there is a need of a model that is able to let model parameters of a RN 
simulation inherit macroeconomic information of its parent RW simulation node. 

0 1 2 3 4 5 6 7 8 9 10

Time

Risk neutral set 'nested' 
in every real world node.

A real world 
scenario.



 

 

By parameters models we mean, among others: 
■ Current levels of risk-free rates 
■ Volatility levels 
■ Levels of correlation 
■ Mean reversion parameters 
 
Additionally, models can contain other specific parameters which no dot match the listed ones. The 
total number of parameters grows with the number of underlying assets for which financial models are 
calibrated. Currently, we deal with dozens of parameters per under lying asset.  
By performing time series analysis techniques one would be able to model RW scenarios for each 
model parameter. In order to create consistency, in theory it also possible to embed macroeconomic 
properties in the parameter scenarios. However, implicit relations between the parameters are hard to 
capture. Additionally, Extending the macro economic scenario set with dozens of scenario models is 
expensive to develop and maintain. 
 
Imposing structure to the model parameters 

Confidential 
 
 
Applications 
Since this application requires tens of thousands RN simulation over the complete available history, 
current implementations can run for days. In our work we offloaded the calibration to the GPU as is 
described in paragraph 5.1. Subsequently when a historic series of 𝑥 is extracted after the calibration, 
scenarios of 𝑥  are constructed by the DSG. Having such scenarios available one is able to generate 
RN scenarios sets, as described in paragraph 5.2. Moreover, RN valuations can consistently be 
performed within a ALM model like is described in paragraph 5.3. 
 

Equation 1 Dynamic Factor Model on Heston Euler model parameters 

Confidential 
 



 

 

4 GPU solution design  
In this section we describe the requirements of the nested simulation applications and  the techniques 
used to fulfill them. 

4.1 Requirements 
 
Usability 
The nested simulation applications built in this project have a significant functionality overlap. 
Therefore one of the requirements is to build a general framework which is easier to maintain and 
expand then using  separate models. In addition, the users of the models are not necessarily highly 
skilled in GPU computing or performance optimizations. The users should be able to expand and work 
with the models without having a thorough understanding of concepts like: coalesced memory access, 
GPU memory types, thread blocks and grids.  
 
Performance 
Besides the usability of the models, performance is another key requirement. Some of the nested 
simulation applications are still implemented for research purposes. Current implementations in Matlab 
and C++ are running in the order of days. To be able to further explore and tweak methodologies in 
this domain runtimes should be reduced significantly. Note that current models are not performance 
optimized. 
 

4.2 Python 
For prototyping purposes it is company policy to use Python. Python is an interpreted programming 
language, designed with the thought that code is read more often than it is written. One could expect a 
significant performance loss. However, Python becomes more and more accepted in the HPC 
industry. Implementations of Python functions are often in C or other low level languages. Even MKL9 
optimized methods are common. In addition, Python offers the ability to compile your programs in C 
with Cython. 
Python use in HPC is associated with wrappers on libraries like MPI10, openMP11, CUDA, OpenCL and 
so forth. In our work we experienced a significant gain in programmability using Python, and in 
combination with BLAS, HPC and MKL optimized libraries the performance loss of using Python is not 
significant in the applications described here, because over 90% of the work is offloaded to either 
CUDA or  other low level languages like C and MKL. 
 
PyCUDA 
PyCUDA12 is a CUDA wrapper for Python. It covers the full CUDA API and also has several useful 
abstractions in order to increase the readability. In comparison with CUDA in C++ a significant part of 
the memory management (e.g. Garbage collection) is handled under the hood. In additions PyCUDA 
offers a few more high level abstractions. However, in our design we stayed as close as possible to 
original CUDA host code. Abstractions like GPU arrays, arrays where every element represents a 
CUDA thread, are unused. Because abstractions like these are not available when one takes the 
prototype  in production.  
PyCUDA is publicly available and mainly developed by Andreas Klöckner, who also wrote a wrapper 
for OpenCL, PyOpenCL13. 

                                                      
9 MKL is intel optimized Math Kernel Library in which routines for Linear algebra, engineering and several other applications are 
implemented. 
10 http://open-mpi.org/ 
11 http://openmp.org/wp/ 
12 http://mathema.tician.de/software/pycuda/ 
13 http://mathema.tician.de/software/pyopencl/ 



 

 

4.3 CUDA Streams and kernel concurrency 
When having  the opportunity  of building a framework from scratch, one aims to generalize the 
problem as much as possible. The ambition to use generic building blocks for our logic lead to 
exploring the CUDA stream functionality. Also the concurrency features of streams matched well with 
our performance needs. After briefly discussing a traditional design, we explain some of the 
techniques used as backbone of the GPU accelerated applications. 
 

4.3.1 Design without streams and hyper-Q 
Traditionally a developer has to put a lot of thought in designing  heterogeneous applications that fully 
utilize the available hardware. We show by example some of the difficulties focusing on kernel 
concurrency and programmability. 
 
Kernel concurrency 
Within our applications, the tasks to be offloaded to the GPU have the characteristic of not fully 
utilizing the GPU on their own. In order  to increase GPU utilization multiple computational tasks have 
to run concurrently. Without the concept of streams, a custom implementation could become quite 
complex. 
One needs to fit the work of multiple computational tasks within a single kernel execution, an 
aggregated kernel. This routine  becomes  complicated  when for example: 
■ The input for a aggregated kernel launch comes from multiple processes or is not 

simultaneously available. 
■ If, as in our applications, a sequence of tasks is to be offloaded to the GPU, performance is 

heavily dependent on launch dimensions, Threads per block and blocks per grid. 
■ If the dimensions of the problem change, the aggregated kernel execution should by adjusted 

by hand which is difficult to administer or dynamically which is difficult to implement. 
 
Programmability 
The host code for getting full GPU utilization would be very specific  to the application and hardware. 
This makes such code hard to interpret, develop and maintain. In addition, one should customize 
device kernels to the sequence in which they are executed. Preferably one would be able to reuse 
certain kernels in a different setting. 
 
 

4.3.2 CUDA streams and Hyper-Queues 
To tackle the difficulties sketched in the previous section we developed a framework based on a set of 
CUDA features. The most important such feature is the usage of CUDA streams. 
Streams are an abstraction of a series of tasks for the GPU. By tasks, we mean: 
 
■ Memory copies, both device to host (D2H) as host to device (H2D); 
■ Synchronizations; 
■ Computational tasks (Kernels); 
 
The tasks in a stream are ordered FIFO. This gives a clean abstraction and therefore programmability 
to the problem. Within nested simulation, for example, we repeat a sequence of tasks for every 
scenario in every period. The stream gives us a useful abstraction of this sequence of tasks by 
supporting reuse and parameterization. 
The programmability gain is one example of the advantages of using streams in an application. 
Performance wise they have to following features: 



 

 

 
■ Streams can run concurrently under certain conditions. 
■ Tasks for different parts of the hardware within streams can, run concurrently: 

- Computationally tasks (kernels), executed on the GPUs stream processors 
- Memory copies (D2H and H2D), executed on the GPUs copy engines 

■ Stream launches can be  asynchronous, which provides the CPU to compute while  the GPU is 
running concurrently 

Requirements for concurrency 
We can define three types of concurrency: 
■ CPU – GPU concurrency 
■ Compute and memory overlap on GPU 
■ Concurrent Kernel execution 
 
CPU – GPU concurrency 
Stream launches are by default  asynchronous. However, memory copies are by default synchronous. 
Launching a stream with a regular memory copy will occupy the host thread. Nevertheless, under 
certain conditions streams containing memory copies can run concurrently [4]: 
■ Memory copies are initialized with the asynchronous API 

- The  ‘async’ functions contain an optional stream parameter. If one leaves this blank the 
default stream will be used. The default stream is always synchronous and thus breaks 
concurrency. 

■ Host memory allocations in copies are pinned or page-locked.  
Additionally, kernel launches should be invoked with the asynchronous API as well. 
One can break the CPU – GPU concurrency by synchronizing all GPU tasks to a point from which one 
would for instance transfer the intermediate or final results to the CPU. Obviously the program needs 
to make sure that all necessary work on the device is finished before communicating the results. If 
synchronization between device and host is required, this can be accomplished by either several 
CUDA synchronize methods or by implicit synchronization. The latter is the main attribute of the 
difficulty of working with streams. When host commands for the GPU are invoked without a stream, 
the GPU assigns a default streams. The default stream differs from all other launched streams by 
consuming the full resources. In other words if one accidently allocates a variable through the default 
stream, present concurrency will be broken. 
Furthermore pinning memory is not always obvious in a programming languages other than C and 
C++. In Python we used the Ctypes14 package to pin memory allocations. The reason why pinned 
memory is crucial for CPU – GPU is obvious, when the CPU is running separate calculations, the GPU 
needs reserved memory space to read or write from. If this memory space is not pinned, it could be 
that the OS will access and manipulates the memory. The driver will check these conditions, therefore 
concurrency between device and host is only possible if all host memory allocations access by the 
device or pinned. 
 
Compute and memory overlap 
Within a stream it is possible to overlap the memory transfers with computational work by invoking the 
tasks with the asynchronous API. If this is crucial for the application performance, one might try to 
chunk the work such the overlap is optimal. Furthermore, memory copies of stream  A can overlap the 
computations of stream B. 
 
 
 

                                                      
14 https://pypi.python.org/pypi/ctypes? 



 

 

Concurrent Kernel execution 
To schedule each launched stream the driver has a Queuing system in place. If resources are 
available, additional work is to be executed. When a stream arrives at the device in a work queue, it is 
scheduled by the CUDA Work Distributor (CWD). Latest developments in NVidia cards increase the 
concurrency possibilities of the streams within a work queue. This is accomplished by NVidia’s Hyper-
Q feature. 
 
Concurrent kernel execution is purely bounded by computational capacity and the device’s 
architecture. The latter is at the time of writing a dominant factor. Architecture Kepler and higher 
support hyper-Queuing [5]. He concept of the Hyper-Q is best illustrated in Figure 5 and Figure 6. The 
first figure shows the scheduled work for a Fermi GPU. The yellow circles highlight the possible 
overlap between to tasks. As one can observe from the figure, only two tasks can run concurrent on 
the Fermi architecture [16].The Hyper-Q feature displayed in  Figure 6, however, shows multiple 
concurrency dimensions. In fact, a Kepler device is capable of running 32 concurrent streams. 

 
Figure 5 Task queuing on Fermi architecture (source: CUDA streams, Best practices and common pitfalls 
– Justin Luitjens NVidia) 

 
Figure 6 Task queuing (Hyper-Q)  on Kepler architecture (source: CUDA streams, Best practices and 
common pitfalls – Justin Luitjens NVidia) 

Testing on Kepler devices, we observed that reducing the amounts of blocks in the kernel launch had 
the effect that concurrency indeed increased. However, at a certain, point the runtime increased as 
well. It turned out that when launch dimensions are reduced the concurrency increases and, at some 
point, the duration of a single tasks increases subsequently. This observation is important in two ways: 
First is states that we have to care less on optimal launch dimensions. Since lowering the resources 
per stream will increase concurrency and keeps the GPU at least as busy. We do not need NVidia’s 
Occupancy Calculator15 for example. And secondly, the framework does not suffer significant 
overhead. When streams are large enough to utilize the complete device, increasing duration results 
in increasing concurrency thus, it is a zero sum game. However, the latter only holds if there are a 
sufficient amount of streams to be executed by the device. 
In the proposed framework the hyper-Q feature will be essential since risk neutral simulations are 
‘small enough’ to run concurrently in groups of 4 to 16 streams. Consequently, the application will 
perform best on Kepler or higher architectures.  Figure 7 and Figure 8 illustrate a use case of Fermi 
versus Kepler architectures. Both figures display the concurrency of streams containing two 

                                                      
15 https://devtalk.nvidia.com/default/topic/368105/cuda-occupancy-calculator-helps-pick-optimal-thread-block-size/ 



 

 

subsequent kernels: A large ‘generatePaths’ kernel followed by the kernel ‘determinePayOff’. In Figure 
7 we observe a two way concurrency. However, because a relative small task is running concurrent 
with a much larger one hardware utilization in this case is very low. On the contrary, Figure 8, displays 
the benefits of the hyper-Q allowing higher concurrency between streams resulting in higher hardware 
utilizations. 
 

 
Figure 7 Stream concurrency NVidia Tesla C2050 (Fermi) – Visual profiler 

 
Figure 8 Stream concurrency on NVidia Tesla K20 (Kepler) - Visual profiler 

4.3.3 Employment of streams and Hyper-Q 
 
Figure 9 displays an overview on how streams  are used within the proposed framework. The figure 
shows, concurrency between host and device and between a number of streams. The hyper-Q takes 
care of optimal hardware utilization by scheduling the streams concurrently. By launching streams 
asynchronously the GPU calculations can overlap with CPU tasks. These tasks can consist of 
calculations, real-world simulation steps or memory flushing to hard drive as we see later in the 
document. Typically, the stream launching and the pre- and post-processing tasks described in the 
figure run in the order of milliseconds. For nested simulations, the challenge is to perform all risk 
neutral simulation tasks within the timeframe of a real world simulation.  



 

 

 
Figure 9 Basics concept of stream usage within framework 

Figure 9 shows the main concept of using the hyper-Q feature in our applications. As the figure shows, 
the CPU prepares the workload for the GPU and launches the work in streams to the device. The 
device receives the streams and stacks the work in a Hyper-Q. Note here that the issue order of the 
streams is not necessarily the order of execution. After all streams are launched by the CPU, the local 
process can continue other work while the device is running the tasks in the streams concurrently. As 
mentioned earlier, it is important to have all local memory allocations page-locked. If this is not the 
case, concurrency will break.  
Our applications are using the technical backbone displayed in Figure 9. The orange highlighted 
blocks are interchangeable and reusable between the applications. In the next chapter we will present 
multiple designs derived from the framework in Figure 9. 
The number of streams running concurrently on the device is bounded by the available resources. 
Because of this one should carefully consider the block and grid dimensions of computational tasks 
within a stream. Running a light task on a large grid will cause the stream to consume more resources 
then necessary and can result in insufficient hardware utilization.  
In our applications, the use of hardware resources is mainly determined by the number of scenarios 
used in the risk neutral measure and the number of options to price on a single scenario cloud. 
 

4.4 Multi-processing service (MPS) 
Previous work on offloading streams in a multithreaded or multiprocessing environment [17], showed 
significant GPU utilization in benchmark cases. In a similar way we implemented the ideas of [17] for 
Python processes. 
In order to launch streams from different processes to a single GPU, NVidia developed a multi-
processing service [6]. This software layer provides a context manager to handle work launched from 
different processes. MPS is exclusively available on Linux and is only provided with NVidia Tesla 
cards with compute capability 5 or higher. Although these restrictions limit applicability, it is a relatively 
cheap way to explore the concept of kernel offloading from multiple processes to a single GPU within 
a nested simulation. This is an important feature, since within nested simulation applications, the outer 
simulations can be performed on multiple cores or even multiple machines. In order to share one or 
more GPUs between these local or distributed processes, one needs a managing software layer. 
Because GPUs are connected to a single local process by something called a context. 
Figure 10 and Figure 11 show the basics of MPS. If two processes both  create their own contexts 
from which they launch computational work. The GPU scheduler needs to switch context, excluding 
any form of concurrency of the tasks from A and B, as Figure 10 shows. In principle, this is not on 
issue if the tasks from both processes are large enough to fully utilize the GPU. However, in our 
application we typically deal with smaller workloads. With nested simulation: real world simulations are 



 

 

typically run in a multi core setting. When each process of real world simulation launches streams for 
the GPU, the need of a service like MPS becomes clear.  
 

 
Figure 10 kernel offloading from multiple processes (source: NVidia MPS manual) 

 
 

 
Figure 11 Kernel offloading with MPS (source: NVidia MPS manual) 



 

 

 
 

Setting up MPS 
For setting up the MPS a Python class, MPSManager is designed. This class manages the 
initialization and termination with simple methods like start_server()  and stop_server(). Within this 
methods environmental variables are set as described in [6]  

Drawbacks 
One major drawback for this set up in our application is that memory is not shared between processes. 
The random numbers for instance, are allocated n times if, where n represents the number of 
processes which are associated with the MPS. The GPU virtualizes its memory in n partitions. For 
large simulation dimensions, this will result in out-of-memory errors. A way to deal with this problem is 
the usage of the Inter-process communication (IPC) feature of CUDA. We did not further investigate. 
this feature. Another, possibly more effective way is to design a service like MPS yourself. Given the 
OS and card limitations on the availability of MPS this might seem a good alternative for OF. 

4.5 Single vs. double precision 
GPUs are most effective in computational tasks that use single precision (SP). As Figure 2 already 
showed, one would like to keep calculations in single precision for two reasons: Most GPUs perform 
significantly better when using SP, and GPUs that support fast double precision (still at most half of 
the performance of SP) are very expensive. 
To investigate the effect of using SP instead of DP in our applications we examined the two main 
building blocks of the kernels: Path generation and the pay-off functions. 

Single precision in path generation 
First, we  compared the paths with the single precision paths generated by the CPU. We observed that 
the relative delta is less than 10−5 and the absolute delta is less than 10−8 for values in the interval 
[20-200]. So, even in SP, GPU results match CPU results. 
 
If we do the same comparison with  double precision CPU generated paths we observe slightly larger 
differences. In addition, the difference between both path sets seem to be normally distributed around 
zero as Figure 12 shows. But what is most important is that the statistical properties of the risk neutral 
scenarios are not affected by SP. Therefore we designed a test suite which can verify the arbitrage 
free conditions of generated paths. The tests discount the simulated values of the last period back to 
the initial period. If arbitrage free conditions are met by the Martingale property [14] the expected 
returns equal the risk free rate. 

 
Equation 2 Martingale property of MC paths 

Consequently  , when the mean of the discounted values equals the start value of the underlying, the 
test passes. These tests are also called Martingale test in literature. We can conclude that our GPU 
generated paths satisfy the arbitrage free conditions on all implemented models. These Martingale 
tests are incorporated in the unit test suite of the delivered Python packages. 



 

 

 
Figure 12 Histogram of the difference in the last period of sample Heston-Euler paths generated by the 
GPU (SP) and the CPU (DP) 

 

Pay-off function 
In the payoff function the sum of the payoff is returned. This procedure is sensitive to rounding errors 
caused by single precision usage. Truncation of each element before it is summed can result in an 
under estimation. For this reason, we used a reduce sum implementation which NVidia also used in 
their American option pricing example. By recursively summing items, the potential accumulated 
rounding error is of order 𝑂(log 𝑛) instead of order 𝑂(𝑛) when a naïve summation is performed [18].  
 



 

 

5 Applications 
During the master project, we developed two Python packages and made a mock up model to 
simulate the performance behavior of nested simulations in existing models. The released Python 
packages contain a framework to be used by the consultants and can be extended with different 
financial models. In the development process we started using an analytical traceable model: Black-
Scholes [19] (BS). By starting with this relative simple model first, we were able to unit test most of the 
simulation framework. After the BS implementation, the models were extended using more advanced 
models like Heston [20] and Cheyette [21]. Both extensions served as a use case for the applicability 
of the underlying technical architecture. In the following sections we discuss the three nested 
simulation applications and its design. Subsequently we evaluated its performance. Finally we recap 
on some guidelines for using the proposed framework for model extensions. 

5.1 Calibration model 
In order to absorb  the economic conditions from a real world scenario (the parent simulation) in the 
risk neutral simulation the model parameters of the risk neutral models should inherit properties of the 
state of its parent. As is explained in section 3.3, a Dynamic factor model (DFM) is used to incorporate 
time dependent and scenario dependent information in the model parameters. In the calibration 
process, we are interested in a constant 𝑎 and 𝑏 and a time depended variable 𝑥. We started to model 
the volatility of the BS model[19] in the DFM setting first. After covering most of the simulation logic 
with unit tests we extend the calibration model with a stochastic volatility model, Heston-Euler. The 
package  is released with an example script where monthly S&P 500 implied volatilities are calibrated 
with the DFM. In this case, we calibrated on 106 historic months of option data. 
 
The model consists of a few building blocks represented by Python classes, which are described 
further. 

5.1.1 Simulators 
In essence a simulator can be initialized with option data and simulation settings. A simulator contains 
the instruction set for the calibrator. In Figure 13 the simulator is passed to the calibration engine after 
de data preprocessing constructed it. Furthermore, results will be stored in the simulator object after 
the calibration process is finished. Currently, the abstract simulator is implemented in different flavors: 
■ Black-Scholes 
■ Heston – Euler (stochastic volatility) 
■ Heston – Euler - Cheyette   (stochastic volatility and interest rates) 
All simulators have a CPU and a GPU implementation.  
The GPU simulators contain the core of the proposed technical architecture. It is this class that is 
reused in all nested simulation applications. Implementing an additional simulator would imply that it 
can be used in other nested simulation applications. 

5.1.2 Evaluators 
In order to evaluate the goodness of fit, each evaluation method  is represented by a class. This is a 
clean way to pass evaluation methods into functions. Each evaluator is initialized by market data, 
passing the calibrated data to the evaluator it returns the goodness of fit. We implemented the 
following methods: 
■ Mean Absolute Errors (MAE) 
■ Sum of Squared Errors (SSE) 
■ Mean Relative Errors (MRE) 
■ R-squared  
■ Adjusted R-Squared 
■ Weighted SSE and MRE 



 

 

The weighted SSE and MRE is used during test runs. This method takes in to account, for example, 
that an absolute error of 2.00 on a value of 600 is less significant on the goodness of fit than when this 
error was observed on a value of 10.00. In addition, relatively large errors on small values (like a 10% 
error on 0.05) are also less significant on the measure then a 10% error on 200. 
 

5.1.3 Calibration Engines 
The Calibration engine can be initialized by passing the simulator, an evaluator, and the optimization 
method to apply. Currently, all minimizing optimizers from Pythons SciPy 16package are available. 
Most of them have efficient C implementations under the hood. Within this thesis we run all tests with 
the Powell method [22]. Powell’s method is an unconstrained non-gradient method. The latter seems 
important since the objective function was minimizing an error measure based on Monte Carlo 
valuations. Taking derivatives of this complex  function without any mathematical definition could result 
in false iterations caused by the standard error a MC value holds. 
Calibrating implied volatility data, we use the putt call parity in order to calculate both market put and 
call option values. Namely, calibrating only put or call values will result in implicit heavy weights for far 
in the money options. By calibrating on both, prices balance this effect by heaving in the money option 
prices over the whole moneyness spectrum. 
 

5.1.4 GPU details 
The orange highlighted parts in Figure 13 are GPU accelerated. This cycle is called thousands of 
times during the calibration. Consequently, it consumes more than 90% of the runtime. All logic in the 
highlighted sections of Figure 13 is located in the simulator class. 

 
Figure 13 GPU accelerated part of calibration 

Details on how the GPU offloading is done are displayed in Figure 14. This is a zoomed view on the 
orange highlighted proces of Figure 13. For every function evaluation, the model parameters have to 
be constructed first for all historic points. The CPU then launches a stream for every historic point. In 
our testcase have 106 months of historic quotes available. Each quote contains a volatility surface for 
5 maturities and 11 different strike values. The number of streams the CPU launches is determined by 
the maximum amount of global memory available to temporarily store the generated paths on the 
device. In the preprocessing step, this maximum amount is determined and memory is allocated 
accordingly. If the GPU global memory is not sufficient to allocate all paths for all streams the CPU 
chunks the workload and memory blocks are reused. 

                                                      
16 http://www.scipy.org/ 



 

 

Since the GPU can only run a limited number of streams concurrently, the work piles up in the hyper-
Q. Subsequently, the workschedueler schedules each stream untitl the queue is empty. Meanwhile, 
results of finished streams are transported back to the host and evaluated.After the CPU synchonizes 
with the GPU to make sure every historic point is calculated, the evaluator caluculates the goodness of 
fit. Finally, this measure is returned as the objective function result. The optimizer generates a new set 
of parameters and the sequence repeats itself.  

 
Figure 14 The usage of streams within the calibration process 

For performance measures, we choose to communicate the user time speed-up of one function 
evaluation. Although a function evaluation undergoes CPU logic as well it is a well understood time to 
communicate. Very important to note is that the CPU implementation is not optimized, and runs at 
least for this application single threaded. However, most of the logic runs in C or MKL optimized 
libraries. The runtime of a single function evaluation is captured and compared in Table 1. At first sight 
one could argue the need of acceleration when a function already runs in the order of seconds. 
However, because the optimizer is calling this function tens of thousands of times the impact of any 
optimization will be significant. 

5.1.5 Performance 

Run Path generations p/s Options p/s Function evaluation 

CPU    

Calibration 1.000 24 1317 4.38 (s) 

GPU    

Calibration 1.000 4.213 231.733 0.025 (s) 

Calibration 10.000 280 15.390 0.375 (s) 

Table 1 Calibration performance for a single function evaluation 

We managed to reduce the runtime of the calibration process from the order of days to the order of 
minutes. This results are very satisfying since one could further explore and expand  the methodology 
of the dimension reduction by the DFM and the nested simulations. 



 

 

5.2 Risk Neutral Scenario generator 
There are examples of clients which are interested in OF Risk Neutral (RN) scenarios only. Often such 
clients have fairly complex payoff functions of derivatives they want to interpreted the RN scenarios 
themselves. To be able to sell RN scenarios separately, one should  export the paths. For the GPU, 
this is a new challenge. The model uses a lot of components of the calibration model, however, no pay 
off kernels are included and large amounts of data have to be transferred. The latter is the biggest 
challenge since all data transfers are done over the PCIe bus. Since RN scenario sets can vary from 
64 GB to several terabytes these memory transfers a bottleneck. Accordingly, there is a great need to 
overlap memory transfers with computations.  
For storing such large sets of data we use the HDF517 format. This enables us to easily control 
flushing memory from RAM to the hard drive. In these applications, the RN set contains thousands of 
scenario clouds18. If a set of clouds are available in  RAM, the application can flush them to the RN set 
situated on the hard drive by a single command. 

 
Figure 15 Design RN scenario export 

 

5.2.1 GPU details 
Figure 15 displays the technical framework of the application. One should notice that the design is 
similar to the calibration model. The basics are the same, however, the CPU is managing hard drive 
transfers while the GPU is generating the scenarios. As in the calibration model the maximum number 
of streams (N) to be launched by the CPU is dynamically determined on the available resources. All 
local allocations are page locked so CPU and GPU concurrency is ensured. 
 

                                                      
17 http://www.hdfgroup.org/HDF5/ for more details on this format 
18 A scenario cloud is the possible evaluation of a asset class presented as a matrix with number of the scenarios as rows and 
the number of periods as columns, typically (10.000 by 3.600) 

http://www.hdfgroup.org/HDF5/


 

 

5.2.2 Performance 
There were no implementations available yet to compare the performance of our solution. Generating 
a RN set of 64 Gigabytes (GB) takes approximately 20 minutes on the GPU accelerated model.  
Subsequently, the model generates 50 MB of scenarios per second, this is more or less the maximum 
writing speed of HDF5 files to the systems hard drive19. Accordingly, we can conclude that for this 
application, the hard drive writing speed seem to be is the bottleneck. On could consider other hard 
drive architecture, but this is not in scope of the project.  

5.3 Nested Simulations 
Chapter 3, already described the need of nested simulation in practice. In current models from OF, the 
concept of nested simulation is not yet implemented. Instead, analytical estimations based on 
modelled implied volatilities are used. For this reason we build a mock up model of the ALS solution 
from OF. In this mockup model, outer simulations are performed by a sleep statement. Since we are 
interested in the impact of the performance we assumed three benchmark cases. They differ in the 
duration of a real world simulation step per scenario per period. We assumed durations of 75, 150 and 
300 milliseconds for respectively a light, medium and a heavy case.  
Figure 16 displays the concept of offloading risk neutral calculations to the GPU, in comparison with a 
sequential version. With this concept, the goal is to perform all risk neutral tasks within the runtime of a 
real world period. This way no performance loss will be observed. 

 
Figure 16 Task parallelism in a nested simulation 

In contrast with Figure 16, the current ALS solution (section 2.4) performs real world simulation in a 
multicore setting. This makes it more challenging to finish the offloaded risk neutral simulation within 
the duration of its parent real world simulation step. 
Again, we make use of the main concept of the framework previously used in the calibration and RN 
generation models. As Figure 17 shows, each process is launching streams for its risk neutral 
calculations tasks. We use the MPS functionality to manage all GPU requests from different 
processes. A daemon process is handling all GPU requests from its slave processes. The daemon 
process puts all the streams in a single hyper-Q. This results in concurrent stream execution over the 
different processes. 

                                                      
19 https://www.hdfgroup.org/projects/DirectChunkWrite/ 



 

 

If resources are not sufficient, streams stack within the hyper-Q. Again, page locked memory is crucial 
for performance, otherwise the CPU, running the real world simulation, and the GPU cannot run 
concurrently. 
 

 
Figure 17 Diagram nested simulation with MPS 

Within this framework, it is possible to not only include local but also external processes. When 
running the real world simulation over multiple machines, MPS will still be capable of sharing the GPU 
resources. Consequently, if the GPU is still underutilized by one machine, one could  distribute work to 
additional machines. This, however, is part of  future work and not in scope of  the thesis. In addition,  
the compatibility with multiple virtual machines sharing GPUs is of interest. 
On the other hand, if GPUs are being fully utilized, it is possible to add more GPUs. Running our 
models in a multi GPU setting is also part of future work. Because we already use streams, it is mainly 
a matter of distributing the streams and it allocations over multiple devices.  
 

5.3.1 Performance 
To get an idea of the performance of the proposed framework, the benchmark real world simulations 
are used (light, medium and heavy cases). While adding the additional work of a risk neutral 
simulation for each period and scenario of the real world simulation, we compare the measured 
performance with a theoretical performance, where we assume strong scaling, of the runtimes against 
the number of processors. 
 
 
 
 
 
 



 

 

We run the model with the following dimensions:  
■ Real world simulation: 

- Number of scenarios:  2.000 
- Number of periods:       5 

■ Risk neutral simulation: 
- Number of scenarios:  1.024 
- Number of periods:       12.000 

The theoretical reference runtimes and the measured times are displayed in Table 2. We observe that 
if the number of processes increases the GPU calculations become a bottleneck. Additionally when a 
real world simulation durations are high, The GPU is keeping up the work from up to 8 processes. 
 

 
Table 2 Left: Reference runtimes real world simulation mock-up model. Right: Actual runtimes with MPS  

Table 3 shows the relative performance losses on the real-world simulation runtimes of the mock-up 
models. In addition,  we propose the number of GPUs and compute nodes to be used when one aims 
to eliminate the performance loss. 

 
Table 3 Effect of nested simulation on reference runtimes 

The results in Table 3 indicate that, if resources can be scaled, the proposed architecture would in 
theory be able to reduce the performance impact of inner simulations to zero. Although, scalability of 
the architecture is not implemented yet we can conclude that the proposed architecture is most 
promising.  
 
Custom MPS 
Eventually, one would implemented a custom MPS-like service. By custom building such a service, the 
user has full control on memory allocations. Sharing memory allocations between processes running 
through MPS turned out to require NVidias Inter process communication  (IPC) feature. However, the 
usage of IPC with MPS is only available from NVidia toolkit 6.0 [17] or higher and since the DAS-4 
cluster20 runs on toolkit 5.5 [18] we were not able to run such implementations. Furthermore 
customizing MPS eliminates the requirement to run on NVidia tesla cards only. 

                                                      
20 http://www.cs.vu.nl/das4/ , This is the cluster on which most of our tests were run. 

Benchmark Case Light Medium Heavy Benchmark Case Light Medium Heavy

# Cores # Cores

1 750.0 1500.0 3000.0 1 736.9 1496.9 3078.3

2 375.0 750.0 1500.0 2 395.0 768.9 1519.4

4 187.5 375.0 750.0 4 221.3 390.9 763.9

8 93.8 187.5 375.0 8 221.4 233.6 385.4

16 46.9 93.8 187.5 16 199.8 205.7 236.0

Reference runtimes (s) Estimated runtime With MPS

Benchmark Case Light Medium Heavy

# Cores

1 0% 0% 3%

2 5% 3% 1%

4 18% 4% 2%

8 136% 25% 3%

16 326% 119% 26%

Add Compute nodes

Add 2 GPUs

Add 4 GPUs

Add 1 GPU

Performance penalty Nested simulation (MPS)

Add Compute nodes

Add 2 GPUs

Add 4 GPUs

Add 1 GPU

http://www.cs.vu.nl/das4/


 

 

5.4 Result Validations 
For the calibration models, it is of great importance that results can be validated and examined. In this 
section we shed some light on the result  analyzing and export submodules build for the calibration 
model. 
Singor et al [25] showed that for fitting historic S&P500 option data with the Heston model, the model 
parameters can be constructed by a linear combination of constants and the VIX index. In some way 
this is similar the DFM described in section 3.3. because it is also a linear combination of a time 
dependent variable. In other words: If the model is correct the decomposed vector 𝑥 should show a 
high correlation with the VIX index. Figure 18 displays that the VIX index is indeed highly correlated 
with the results of the calibrated values for 𝑥. This result both validates the model and the claim stated 
in [25] .  

 
Figure 18 Historic decomposed x against the VIX index 

After the calibration is done, all results are stored in a result analyzer. Since the calibrations are 
performed on option prices, the analyzer transforms them back to implied volatilities. Subsequently , 
statistics are calculated on every historic fit and on the complete set. To get a good glance of  the 
calibrations performance, the results are exported and molded into a report. An example of such a 
report is available in  
Appendix A: Example report. 
 

5.5 Guidelines for model extensions 
So far, we discussed three applications making use of the framework proposed in section 4.3.3. In this 
section we shortly recap designing guidelines for (future) model extensions. During the final stages of 
the project we extended the calibration model with the calibration of swaption data. This extension 
enabled the model to generate risk neutral interest rate scenarios consistently with the already 
available model for the S&P500. To implement this extensions we extended the current model in three 
areas: 
■ Adding new instrument types: Instead of plain vanilla European options one would for example 

be interested in more exotic one like swaptions. 
■ Adding underlying assets: We already discussed the S&P500 as underlying assets for plain 

vanilla European options.  Swaptions, however,  have multiple interest rates as underlying. 
■ Adding financial models:. By adding the swaption functionality we need a stochastic interest rate 

model. Multiple models are available,  we choose to use the Cheyette model [21], [26] in this 
case.  
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Per area we will address on high level some guidelines for future model modifications or extensions. 
The guidelines are summarized by bullets. 
 
Adding new instrument types 

Confidential 
 
Adding underlying assets 

Confidential 
 
Adding financial models 

Confidential 
 
Testing 
While adding new financial models it can be of great value to export the generated paths to the CPU 
during the development. This way one could develop test driven until all statistic properties of the 
newly generated paths match the expectations. 

 
 



 

 

6 Conclusions 
Nested simulation applications are becoming increasingly important for institutional investors. 
Combining real world simulations with risk neutral simulations enables asset and liability studies for 
balance sheets containing complex financial products. By example, we showed that a common 
financial product like a life insurance can contain such complexity. Due to the intensive 
computationally nature of nested simulation applications CPU implementations lack to ability to 
explore and develop methodologies on this subject. In this thesis we proposed a GPU accelerated 
simulation framework in which with we implanted three nested simulation applications. 
Allowing researchers to explore methodologies  in a GPU accelerated matter is often accompanied by 
high level libraries. However, for most of the applications, these libraries are not sufficient and low 
level implementations on the GPU are required. For instance, former implementations of the 
calibration model in Matlab were not running faster using Matlabs GPU arrays. Due to low array 
dimensions, the GPU was not fully utilized and the  memory transfer overhead became a dominant 
factor. Consequently, programmability often comes with a price: performance loss. In this thesis, we 
accelerated a set of financial applications by using a framework containing CUDA Streams, Hyper-Q 
and NVidias MPS. These features enabled us to build flexible simulation framework for financial 
nested simulations. The GPU accelerated simulation framework is applied in three nested simulation 
applications. The framework enables model extensions to be implemented fairly easy, as we observed 
during the extension of a stochastic interest rate model. 
Additionally,  the framework makes extensive use of features increasing kernel concurrency. We 
showed that running our models on GPU architectures Kepler or higher improves concurrency without 
observing overhead in cases where concurrency was limited. 
Furthermore, the CUDA stream abstraction enabled the user to have a clean host side framework 
which enables the user to effectively implement model extensions without having advanced knowledge 
of the GPU hardware. 
Each nested simulation application had its own challenges. Some creativity was needed in order to fit 
each application in the framework while utilizing the GPU capabilities effectively. For the Calibration 
model, achieving high concurrency in small scale computations was of great importance and the 
hyper-Q usage was crucial in achieving this concurrency. Implicit synchronizations, when one is not 
carefully following  the concurrency guidelines for streams, was the main difficulty during the 
implementation. 
The main challenge in the RN scenario generation was to overlap CPU an GPU computations. The 
Cache and flush mechanism on the CPU needed to run concurrently with the scenario generation on 
the GPU. By reusing pre allocated page-locked memory, we enabled such concurrency. The 
performance bottleneck for this application turned out to be the writing speed of the hard drive on the 
host. 
Building the mock-up model to simulate the performance for an existing OF solution we faced multiple 
local processes from which calculations had to be offloaded to the GPU. Traditionally NVidia’s MPS 
was built to share a GPU between MPI processes. We customized the MPS functionality in order to 
handle local Python processes instead. Herewith we achieved concurrency between stream owned by 
different local processes. 
The performance of the accelerated models satisfied the stakeholders to a large extend. In some 
cases runtimes were reduced by two orders of magnitude resulting in runtimes in the order of minutes 
instead of days. This time reduction allows researchers to further explore and refine methodologies in 
the domain of nested simulations.  
Finally, by proposing  a scalable architecture we claim that in theory the additional work of inner 
simulations for existing OF solutions does not necessarily have to impact the solutions runtime. Future 
work will focus on applying this theory in practice. Running our applications in a scalable cloud 
platform is of great use. When an application is dynamically able to manage GPU resources in a 
virtual environment, one would be able to take the concepts described in this thesis in production. 
Furthermore the calibration model will be extended in order to support a broader range of asset 
classes. 
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8 Appendix A: Example report 

 
Figure 19 Overview of Calibration result report 

Figure 19 shows an overview of the report the calibration model outputs. Surface plot of the market 
and calibrated volatility are presented for a user picked date. In addition, the error on the fit is shown in 
the red surface plot. The last four pages contain model parameters and goodness of fit over time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 


