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Summary
Data is essential for a wide range of industrial branches. This can be observed in the private
sector such as Facebook and Google, but also in the public sector such as law enforcement.
The Dutch police is constantly innovating, trying to keep up with the exponential growth of
data which makes it difficult to efficiently extract relevant information from case evidence.
This efficiency can be achieved in computer vision technology, where we bestow human
tasks upon machines. The task of reading is performed by a computer through optical
character recognition. The quality of text recognition is mostly determined by image
quality. Noise such as uneven lighting, skewness and complex backgrounds affect text
recognition negatively. Visual data encountered by law enforcement is not only highly
variable in relevance, but also in image quality. Our study attempts to improve text
extraction from visual law enforcement data using various text recognition methodology.
We studied conventional methodology based on morphological image properties as well
as deep learning methodology, such as text detection with a fully convolutional neural
network. We implemented three previous works of which the first uses various clustering
algorithms to extract text, the second uses colour information to extract text and the third
detects text using a fully convolutional network. We recognize text using open source OCR
engine Tesseract. We optimized the parameters of the implemented pipelines and evaluated
their performances in terms of text extraction using different performance measures. We
showed that law enforcement data varies greatly in quality and thus requires a robust
method of text extraction. We observe that this robustness is found in deep learning
methodology, which generally outperforms conventional methodology. However, if the
application of text recognition is on specific data such as chat messages or driver’s licenses,
then it’s possible to tailor conventional methodology to achieve similar accuracy. We also
show that skew detection need to be addressed to improve text recognition quality. This
thesis gives new insights for improvement in law enforcement and is the first to compare
conventional and deep learning methodology in text extraction.
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Chapter 1

Introduction
Over the past decade there has been a dramatic increase in data. This increase is also
noticeable in law enforcement. The Dutch police is collecting large quantities of data from
confiscated electronic data carriers such as mobile phones, tablets and laptops. A laptop
currently has an average hard disk capacity of 2 terabytes (Roest et al., 2014), which
translates to storage for up to 620.000 images. Naturally, not all data is equally relevant
in a police investigation and it is highly undesirable to extract relevant information from
this data through manual investigation. A solution to this problem can be found in the
field of computer vision. Computer vision is a component of AI which, just like many
other fields in AI, aims to let computers perform human tasks (Robertson, 2013). One
of these tasks is the visual understanding of text from visual data. Optical character
recognition is the technology which translates text from visual data into machine-encoded
text by means of pattern recognition. This allows for business process optimization of a
detective investigating visual evidence, through automated text extraction. Other similar
technologies which contribute to optimize efficiency of Dutch police investigations are
object recognition, facial recognition and predictive analytics.

However, the digital visual evidence is not only notably variable in relevance but also
in image quality. This variability in image quality makes pattern recognition increasingly
difficult. Therefore, it will be harder to extract text in, for example, a photographed letter
in bad lighting than a machine born PDF file of that same letter. Factors found to be
influencing text extraction have been explored in several studies Farahmand et al., 2013.
Examples of these factors are noisy backgrounds, skewness of text and image resolution.

Text recognition has been studied by many researchers using conventional as well
as newer deep learning methodology. The studies using conventional methods propose
different preprocessing techniques for various types of noise. Additionally, these studies
research text extraction from specific types of documents, which lead to unambiguous
assumptions to be made within their domain. Furthermore, most of these studies use born

Figure 1.1: General pipeline of end-to-end text recognition process
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digital images as research data and thus contain relatively little noise. The studies using
deep learning techniques are more robust and propose text detection with full convolutional
neural networks from scene text images or text in the wild images. However, few writers
have been able to draw on any systematic research into optimization of automated text
extraction in a business process as described in our study. This paper attempts to answer
the main question:

How can we improve the quality of text extraction on law enforcement data?

In order to answer this question, we try to answer the following subquestions:

• Is there some form of homogeneity in law enforcement data?

• Is the use of conventional methodology in text extraction viable in comparison to
deep learning methodology?

• Does skew detection improve the accuracy of text recognition?

The main aim of this study is to optimize text extraction from digital visual evidence
confiscated by the Dutch police by systematically evaluating existing conventional and
deep learning methods for text extraction on real case data. The research data in this
thesis are twofold: the visual data containing text and the ground truth of this visual
data containing the textual elements of the images in the form of machine-encoded text.
The visual data is drawn from three main sources: photographs from a PGP encrypted
cellphone displaying various chat and email messages, a synthesized set using a driver’s
license and an open source text recognition dataset. The ground truths are manually
transcribed texts from the these datasets, which are required to quantify our results.

A systematic evaluation to measure the various image processing techniques is con-
ducted by creating several pipelines consisting of a number of consecutive phases, where
each phase represents a processing technique which copes with one of the previously men-
tioned troublesome visual properties. After preprocessing, text recognition is performed
using the open-source OCR engine Tesseract. This results in a number of output texts
per image equal to the number of pipelines. These output texts are compared to the
ground truth and the performance of the pipelines are determined with this comparison.
Besides quantitative evaluation of these pipelines, qualitative methods were also used in
this investigation.

Figure 1.1 shows that the output text after text recognition goes through post pro-
cessing. Post processing of the raw text output of OCR on law enforcement data is not in
the scope of this study. Furthermore, the thesis does not engage with text recognition of
non-Latin based languages or handwritten texts. This is due to the fact that the ground
truths are manually produced and thus require a native speaker of non-Latin based lan-
guages.
TROI is a small but significant team in the entire organization of the Dutch police (see
appendix A), which aims to efficiently extract relevant information from large quantities
of data. The findings of this study make an important contribution to optimize police
investigation process. Furthermore, the importance and originality of this study is that
it compares conventional methodology with newer deep learning methodology in the field
of computer vision. Previous studies have made comparisons between conventional ma-
chine learning and deep learning in classification tasks (“Comparing Deep Learning and
Conventional Machine Learning for Authorship Attribution and Text Generation”), and
reviewed deep learning methodology for feature extraction in text mining (Liang et al.,



2017), but no similar studies have been done for text extraction.

The overall structure of the study takes the form of six chapters, including this in-
troduction. The second chapter gives a summary of the literature used in this research.
Mainly three papers have been reviewed for the construction of the pipelines for text ex-
traction. Furthermore, we reviewed literature on various alternatives for the individual
steps of the pipelines. The third chapter gives an overview of the pipelines we used in this
study and elaborate on the individual steps of the pipelines including the rationale behind
each of them. The fourth chapter describes the experimental setup of this study and gives
a description of the data. The fifth chapter shows the results of this study and briefly
elaborates on these findings. The sixth chapter concludes and discusses the findings of
this study.



Chapter 2

Literature review
Pattern recognition has made it possible for machines to perform human tasks. In case
of optical character recognition, this is the task of reading (Eikvil, 1993). This is not
reading of the same machine-encoded text which one types on a computer, but scanned
documents, photographs of texts or just plain non-editable PDFs. Previous studies on
text extraction system often have a similar pipeline as shown in figure 1.1, where the
different steps in the pipelines can vary (Chaudhuri et al., 2017). One of the first steps
of the pipeline is segmentation or preprocessing. Chaudhuri et al., 2017 and Eikvil, 1993
describe segmentation as the process of distinguishing objects of interest from other objects
in the input image and preprocessing as noise removal. We mainly focus on these steps in
this study using law enforcement data. Following steps in the pipeline are classification of
individual characters and post processing the recognized text. Classification of characters
is done using methods of pattern recognition (Hamad et al., 2016). Many techniques are
studied for the task of optical character recognition, such as statistical tehcniques, support
vector machine algorithms, neural networks and many more (Hamad et al., 2016). The
simplest form of a post processing technique is the usage of a dictionary and correcting
accordingly. However, there exists a probability of losing critical information with these
techniques and thus do not include this step in our study. There are many fields in which
optical character recognition is applied, namely: receipt imaging, legal industry, banking,
health care and thus also law enforcement /(Hamad et al., 2016).

A considerable amount of literature has been published on OCR and more specifically,
image preprocessing to improve OCR accuracy. Farahmand et al., 2013 identified various
document image noises and proposes different methods to remove these noises. Examples
of these noises are ruled line noise, marginal noise, clutter noise, stroke like pattern noise,
background noise and salt and pepper noise. All these noises negatively affect accuracy
of text recognition engines, because they make it difficult for OCR engines to distinguish
relevant components from irrelevant components. Additionally, in this research the law
enforcement data is highly variable, therefore different images contain different noise and
thus require different preprocessing prior to OCR. In previous studies on automated text
extraction, different conventional methods based on image morphology were used to ex-
tract text from images (Böschen et al., 2017)(Nagabhushan, 2010). More recent studies
use deep learning methodology for text detection (Zhou et al., 2017). Our study aims to
provide a comparative evaluation through a pipeline structure with the methodology and
results from the previously mentioned studies on real life Dutch law enforcement data.

Böschen et al., 2017 compared various pipeline configurations for text extraction from
scholarly figures. In order to measure the impact of individual steps of the pipeline, dif-
ferent methods were used in each step of the pipeline. Then each possible configuration of
the pipeline was evaluated on text location detection and text recognition accuracy. The
next paragraph summarizes each step of the best performing pipeline of Böschen et al.,
2017.
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In the first step of the pipeline by Böschen et al., 2017 a colour quantization is performed
on the input image by first converting the image into a grayscale image. In the second
step of the pipeline this grayscale image is converted to a binary image. Binarization is a
frequently used technique in computer vision to extract the areas of interest by means of
thresholding the pixels of an image (Chaki et al., 2014). Böschen et al., 2017 uses adaptive
Otsu’s method for binarization. Otsu’s method determines the threshold for binarization
with variances between and in grayscale levels of pixels. In case of Böschen et al., 2017
an adaptive version of Otsu’s method was used, meaning that multiple thresholds were
determined locally at different segments of an image rather than one threshold for the
entire image. Additionally, several local adaptive thresholding techniques exist such as
Niblack’s method or Sauvola’s method, of which the latter is an improvement of the for-
mer (Chaki et al., 2014). In the third step, Böschen et al., 2017 labels each segment of
pixels by means of connected component labelling (CCL). CCL is an algorithm which gives
the same label to pixels who are interconnected. This results in connected components
which consist of text as well as non-text elements and their morphological properties (e.g.,
centroid coordinates, width and height of the components’ bounding box, area of the com-
ponent). In the fourth step of the pipeline, these morphological properties are used to
cluster similar connected components with the density-based spatial clustering of applica-
tions with noise algorithm (DBSCAN). Böschen et al., 2017 uses this algorithm with the
rationale that components with textual information share the same properties and that
various components containing noise are suppressed by the algorithm. In the fifth step,
Böschen et al., 2017 uses clustering to find individual text lines in the clusters produced
by DBSCAN. The clustering algorithm used in this step is the minimum spanning tree
angle-based clustering algorithm (Böschen et al., 2015). This algorithm uses components’
centre of mass coordinates to determine the minimum spanning tree in the image. Then
the histogram over the angles in the MST is calculated and edges with different orientation
from the main orientation are removed. Böschen et al., 2017 makes two assumptions with
the usage of the MST angle based clustering algorithm, namely that text components are
most likely close together and that these components have similar orientation. Unfortu-
nately, it is not possible to use these orientations for skew detection. In step 6 of the
pipeline, Böschen et al., 2017 uses single string orientation detection (Chiang et al., 2015)
as a method for skew detection. However, this method was not adopted in study. In the
final step of the pipeline, Böschen et al., 2017 suggests two OCR engines; Tesseract and
Ocropy. Even though slightly better results are obtained with Ocropy, this study uses
Tesseract for text recognition. This is because Tesseract is open source and allows room
for future research in training the underlying models. Additionally, Böschen et al., 2017
concludes no significant improvement in text recognition accuracy with various heuristic
approaches for post processing. Even though Böschen et al., 2017 claims not to make any
assumptions about the figures used in their study, they do make assumptions about the
images. Namely, the images are born digital and thus relatively contain little to no noise
in to data in our study.

Nagabhushan, 2010 proposes a multi-staged approach for text extraction from images
with noisy backgrounds. The first stage of the approach detects potential text regions
by means of edge detection. Canny edge detection is a widely used algorithm which can
detect edges in noisy images while suppressing noise (Nagabhushan, 2010). Subsequently,
Nagabhushan, 2010 labels the found regions with connected component labeling. These
labeled components consist of text regions and non-text regions. These regions are distin-
guished by defining text regions as components with holes in them and non-text regions
as components without holes. Therefore, these components without holes are removed.



In the second stage of the proposed approach, regions that are falsely assumed to be text
regions from the previous stage are removed. Nagabhushan, 2010 suggests to examine
the standard deviation of gray scale values in the connected component. This standard
deviation is expected to be low in non-text regions (only background pixels) and high
in text-regions (back- and foreground pixels). The third stage of the proposed approach
extraction of foreground text is done by means of thresholding each remaining labeled text
region. This threshold is determined per connected component based on the mean and
standard deviation in gray scale levels of that region. As a result pixels containing text
are converted to black (gray scale value 0) and others are white (gray scale value 255).
However, some black pixels might comprise of false foreground pixels. The fourth stage
detects these noisy regions by determining regions’ ratio of black pixel density to region
area. This ratio is compared to a threshold based on the average density of black pixels
throughout the binary image and through this comparison it is determined if the region
is considered noisy. The final stage reprocesses the noisy regions by redoing stage 1 (text
region detection) and stage 3 (foreground text extraction) on these noisy segments (and
thus creating multiple smaller segments). In their comprehensive study of text extraction
in noisy images, Nagabhushan, 2010 uses data which consists of scans of various types of
documents. However, the usage of a scanning machine for the data results in little nega-
tive impact on the image quality compared to the usage of a cellphone camera. Therefore,
this study attempts to research the usage of their methodology on law enforcement data
where image quality often is impacted.

Wu et al., 2008 suggests an algorithm for text line extraction based on morphology.
Firstly, the proposed system extracts features of text lines. Therefore, the assumptions are
made that text often has high contrast to background and that they generally have uniform
horizontal orientation. Secondly, from the resulting regions after feature extraction Wu
et al., 2008 selects potential text lines based on a set of rules. This rule-set consists of
requirements the regions’ morphology has to satisfy for it to be considered a potential text
line. Finally, the proposed algorithm verifies the potential text lines more elaborately with
criteria based on character sizes and the ratio of character width to height. Wu et al.,
2008 tested the proposed algorithm with a dataset of 100 images with various backgrounds,
lightings, fonts and text sizes. However, this dataset is similar to various text-in-the-wild
image datasets which are open source available with many text extraction competitions.
Therefore, the data used in the study by Wu et al., 2008 is not representative to law
enforcement data.

Zhou et al., 2017 proposes an approach of text detection by means of a full convolutional
neural network. With deep learning based methodology, such as a full convolutional neural
network, these features for text extraction are learned by the model from the training
data and thus does not make any assumptions about the data like with the conventional
methods proposed in the previously mentioned studies. In the case of law enforcement
data where the visual data is highly variable, it is intuitively desirable not to make any
assumptions about the data. The single neural network used by Zhou et al., 2017 produces
multiple geometries around predicted text locations and gives a confidence score for the
text enclosing geometries. By means of thresholding and non-maximal suppression, results
in a bounding box per predicted text instance in an image.

Another type of noise which can negatively impact the accuracy of optical character
recognition is skewness. Therefore, the detection and correction of skewness in document
are important issues which need to be addressed in the task of text extraction. Amin
et al., 2000 proposes a method of skew detection by analyzing entire blocks of text in a
document. The skew is determined for each text block with the Hough transform. Then



the skew for the whole document is the most frequent detected angle among the skews of
all text blocks. However, the Hough transform is computationally expensive. Therefore,
there are studies which propose modified versions of the Hough transform (Kumar et al.,
2012). Also most skew detection algorithms require multiple lines and words to use their
spacing for calculation of the document’s skew. Chiang et al., 2015 proposes the single-
string orientation detection algorithm (SSOD), which uses various morphological operators
and connected component analysis to determine the skew of individual strings.

For our study we used Tesseract for text recognition, which is an open-source OCR
engine which recognizes text through a multi-step pipeline (Smith, 2007). Similarly to the
pipelines of Böschen et al., 2017 and Nagabhushan, 2010, connected component analysis
is performed on a binary image. Older versions of Tesseract nest the connected compo-
nents into blobs, which are subsequently organized in text lines and their word spacing are
analyzed. However, the latest version of Tesseract uses long-short term memory neural
networks for finding text lines, which is a neural network often used deep learning appli-
cations which involve text such as: speech-to-text, text-to-image and image-to-text. The
found text lines are split up into words and the Tesseract attempts to recognize each word
with a classifier. This classifier uses pattern recognition to distinguish and classify the
characters correctly. Modernization attempts were made to recognize words with the use
of a convolutional neural network, but the results were disappointing (Smith, 2007).

Post processing algorithms such as Special Character Filtering per String proposed
by Sas et al., 2013 are not included in this study. This algorithm deletes an entire text
line if a repetition is found of special characters in that text line. In the case of law
enforcement data, it is possible to encounter data which contains many special characters
which contain valuable information. Examples are wallet addresses of cryptocurrency or
various code language used on dark web forums. Another reason to not include post
processing in this study, is the amount of slang contained by law enforcement data.

From the previously named literature, our study incorporates three works and sys-
tematically evaluates these works with law enforcement data. The three studies are that
of Böschen et al., 2017, Nagabhushan, 2010 and Zhou et al., 2017. Böschen et al., 2017
researches text extraction from (born-digital) academic figures using various clustering al-
gorithms. Nagabhushan, 2010 proposes a pipeline which extracts text from (born-digital)
images with noisy backgrounds using colour information. Zhou et al., 2017 uses a fully
convolutional neural network to predict the location and orientation of text regions in an
image. In Chapter 3 we elaborate on the used methodology of these studies. Additionally,
we propose a robust method for skew detection based on the previously described studies.



Chapter 3

Methods
Three studies are used to identify optimizations of OCR on law enforcement data. These
studies each have their own research scope and methodology which are elaborated on in
Chapter 2. Our study uses quantitative analysis to optimize the performance of these
studies’ methodology on law enforcement data. The design of this analysis takes form of
three general pipelines (see figure 3.1), each representing one of the studies described in
Chapter 2. In this chapter we further elaborate on the techniques used in each pipeline.
Then we give an overview of the data and discuss how this data was obtained. Finally,
we go over the evaluation method of the pipelines with different configurations.

The first pipeline of figure 3.1 converts a color image to a gray scale image. This
grayscale image is then converted to black and white using binarization/thresholding. Of
this binary image the connected components are found by heuristically checking pixel
connectivity. We calculated several morphological properties of these connected compo-
nents for finding potential text lines. These candidate text lines are found by using the
Density Based Spatial Clustering for Applications with Noise algorithm (DBSCAN). This
algorithm clusters components who lie closely together in the image and which satisfy the
minimum number of points per cluster. Components which do not meet this latter require-
ment are considered noise. Subsequently, we extract text lines from the candidate text
lines with the Minimum Spanning Tree angle based clustering algorithm. This algorithm
finds text lines based on the orientation of the components.

The second pipeline attempts to find the edges in the input image. These edges are di-
lated in vertical and horizontal direction. This results in a binary image with dilated white
edges. These edges are labeled by means of connected component labeling. Subsequently,
features are extracted and candidate text regions are produced. Based on variance in gray
scale intensities, text regions are selected. These regions are thresholded to according to
mean and standard deviation in gray scale values of that region. Additionally, the regions
which are considered noisy are reprocessed (see Chapter 2).

The third pipeline detects text using a full convolutional neural network. This neural
network predicts location and orientation of the input’s text regions. These text regions
are enclosed by a bounding box. Each of these predicted bounding boxes are thresholded

Figure 3.1: Text extraction pipelines
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using Otsu’s method.

3.1 Computer vision fundamentals

Computer vision starts with an input image I which consists of the most basic building
blocks: pixels. We define I(x, y) as the pixel’s colour value of image I at position (x, y).
For example, an image with a resolution of 500 × 500 contains 250,000 pixels. Each of
these pixels are either represented in grayscale or in colour (see figure 3.2). A grayscale
pixel only has one colour channel which can have a value between 0 and 255, where values
near 0 are darker than values closer to 255. A colour pixel has three colour channels;
one for red, one for green and one for blue. Each of these channels can also have a value
between 0 and 255. A red colour pixel has value 255 in the red channel and 0 in the other
two channels, a black colour pixel has value 0 in all three channels and a white colour
pixel has value 255 in all three channels. We have just described the RGB colour space.
Other colour spaces (such as sRGB, HSV, CMYK etc.) are not relevant for this study.

Figure 3.2: The original input image for the pipelines on the left and the gray scale
conversion on the right.

Furthermore, resolution is of importance in computer vision, because the number of
pixels of I is the amount of information the model receives as input. For text recognition,
a minimum text size is required for reasonable accuracy. A lower case character x with a
height below 10 pixels results in a very low recognition probability by the Tesseract engine
(Smith, 2007). However, if the resolution is too large, more pixels need to be processed.
This leads to longer computational times. For these two reasons, we scaled images in our
study to a width of 1000 pixels with original aspect ratio.

3.2 Image segmentation

Image segmentation is the process of clustering pixels based on properties of the image of
interest. Thus these clusters share the same image properties and are useful with tasks like



object recognition and optical character recognition. Two well known image segmentation
methods are explained in the subsections below, Thresholding and Canny Edge detection.

3.2.1 Thresholding

Optical character recognition by Tesseract is performed on binary images. Binarization is
one of several ways of segmenting an image. This method segments an image by separating
pixels into two classes: one class consisting of pixels representing the object and the other
of background pixels. Each of these classes is assigned one of two gray values; often the
foreground pixels have gray value 255 (white) and the background pixels have gray value
0 (black) (see figure 3.3). The assignment of one of the two gray values is determined by
thresholding the pixel on interest based on its grayscale level. A binary image B(x, y) of
a grayscale image I(x, y) with some threshold T can be defined as follows:

B(x, y) =

{
255 if I(x, y) ≥ T
0 otherwise

How threshold T is calculated, determines the type of thresholding. Generally, thresh-
olding can be divided into two types: global and local thresholding. Global thresholding
applies one threshold to the entire image, while local thresholding calculates multiple
thresholds for various parts of the image.

A well known global thresholding method is Otsu’s method, which clusters pixels based
on the variance in grayscale values of the image. Otsu’s method assumes the image consists
of two types of pixels foreground and background pixels. With P the image histogram,
the type probabilities of various grayscale level pixels are estimated as follows:

q1(t) =
t∑

j=0

P (j) and q2(t) =
255∑

j=t+1

P (j)

Each pixel type’s mean is given by:

µ1(t) =
t∑

j=0

j ∗ P (j)

q1(t)
and µ2(t) =

255∑
j=t+1

j ∗ P (j)

q2(t)

Then the optimal threshold t∗ is determined by maximizing the variance in grayscale
values between the two types of pixels (σ2b ) (or minimizing the variance in gray scale values
within the same pixel types (σ2w)).

σ2 = σ2b + σ2w

σ2w = q1(t)σ
2
1(t) + q2(t)σ

2
2(t)

σ2b = q1(t)[1− q1(t)][µ1(t)− µ2(t)]2

There also is also a local variant of Otsu’s method. In the first pipeline of our study,
we use local Otsu’s method where the same previously mentioned variances are calculated
locally by means of a kernel. This kernel is a rectangular window with dimension b × b
which slides over the image and determines the threshold for the pixels inside the kernel.
This adaptive/local thresholding was used in our study due to its better performance with
documents under different lighting conditions, light texture, blurriness and low resolutions
(see 2).

Wherem(B) is the mean in gray scale values of kernelB, δ(B) the standard deviation in
gray scale levels of B, k a control parameter of value [0.2, 0.5] and R the maximum standard



Figure 3.3: Binary images of the first, second and third pipeline from left to right respec-
tively.

deviation in gray scale values. We evaluate the performance of both local thresholding
methods.
In the second pipeline, we determine the threshold using the method of Nagabhushan,
2010 :

T (L) = m(L)− k ∗ δ(L)

Where L is connected component with label L. We determine the value of k with the
average gray scale values of the foreground and background pixels in component L, Vf (L)
and Vb(L) respectively. Then the value of k is determined by the author (Nagabhushan,
2010) as follows:

k =

{
0.05 if Vf (L) > Vb(L)
0.4 otherwise

In the third pipeline of the study, we evaluate Otsu’s binarization method per predicted
text region. We compare this variant of local Otsu’s method with Sauvola’s method.
Sauvola determines the threshold of the kernel B as follows:

T (B) = m(B) ∗
[
1 + k

(
δ(B)

R
− 1

)]
3.2.2 Canny edge detection

Another way of image segmentation is edge detection. One widely used edge detection
algorithm is that of Canny. Canny edge detection is a multi-step algorithm which detects
edges in an image while suppressing noise (see figure 3.4).

The first step of the algorithm is smoothing to remove noise. Smoothing in the Canny
edge detection algorithm is done by applying Gaussian filter on the image. This filter is
obtained by convolving each pixel of the image with a Gaussian kernel. The coefficients
of this kernel are calculated using a two-dimensional Gaussian function:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2

The second step of Canny’s edge detection determines gradients in the smoothed image.
These gradients are of larger magnitude where transitions of the image are more obvious
(i.e. the edges of an object in the image). The gradients are obtained by applying the



Sobel-operator which convolves each pixel of the smoothed image with the following kernels
(one for each direction):

KGx =

+1 0 −1
+2 0 −2
+1 0 −1

 KGy =

+1 +2 +1
0 0 0
−1 −2 −1


The magnitude of the gradients are determined by applying some distance measure, such
as Euclidean (eq. 3.1) or Manhattan (eq. 3.2), to the smoothed image’s gradients of both
directions:

|G| =
√
G2

x +G2
y (3.1)

|G| = |Gx|+ |Gy| (3.2)

The edges in an image are not specifically located by just the gradient magnitudes. There-
fore, the direction of the edges are determined as follows:

θ = arctan

(
|Gy|
|Gx|

)
The third step of the algorithm sharpens the blurry edges found in the previous step. This
is done by keeping the local maxima and discarding the rest in the image. Each pixel’s
magnitude is compared with (depending on their gradient’s direction) the magnitude of
neighboring pixels in an 8-connected neighborhood (see 3.4). Based on this comparison,
the pixel is either kept or discarded. The resulting image contains pixels with their corre-
sponding magnitudes.
The fourth step of the edge detection these pixels are suppressed by using double thresh-
olding. Noise suppression is done as follows: pixels with magnitudes smaller than Tlow are
suppressed, pixels with magnitudes larger than Thigh are converted white and pixels with
magnitudes in between the two thresholds are made gray. We have found no literature
on methods to determine the optimal values of the thresholds. Therefore in this study,
the high threshold, Thigh, is determined with Otsu’s method. The low threshold,Tlow, is
determined by simply multiplying Thigh with a ratio of 1

3 . Additionally, we experimented
with two different deterministic values for Tlow (85 and 127) while keeping Thigh constant
at 255.
The last step of Canny’s edge detection discards the weak pixels (pixels between Tlow and
Thigh) if they are not connected to a strong pixel (larger than Thigh). This can be done by
means of BLOB analysis with 8-connected neighborhood (see 3.4).



Figure 3.4: The binary image resulting from Canny’s edge detection algorithm from the
second pipeline (left) and the dilated edges (right).

3.3 Dilation

After segmentation, we use dilation on the binary image in the second pipeline. Dilation
is a mathematical operation which expands the foreground pixels in a binary image by
means of a kernel. As a result, holes in dilated components become smaller. We remove
components without holes after dilation in the second pipeline. This is due to the as-
sumption that components with holes contain text, while components without holes are
considered noise.
Mathematically we can define dilation as follows:

• Let X be the set of coordinates representing the binary image and K the set of
coordinates of the kernel

• Then let Kx be the translation with the origin at x

• The dilation of X by K is then the set of points x so that the intersection of Kx
with X is not empty.

Here the dimensions of K determine the expansion of foreground pixels in vertical and
horizontal direction.



Figure 3.5: The connected components labeled visually with each label a different colour.
Pipeline 1 on the left and pipeline 2 on the right.

3.4 Connected Component Labeling

For us to remove individual components based on their visual properties as described in
the previous section, we have to be able to select the individual components. Therefore, we
have to make the various components distinguishable. A very useful first step for making
this distinction is labeling connected components. Connected component labeling (CCL) is
an algorithm which assigns a label to each pixel equal to the labels of its connected neigh-
boring pixels (or a new label when there are no connected neighbor pixels with a label).
Figure 3.5 shows a visual representation of CCL used in the first two pipelines, where each
color is a label. The algorithm can label based on 4-connectivity or 8-connectivity, where
the latter considers diagonally connected pixels in addition to the neighboring pixels in
vertical and horizontal directions. As a result we have a labeled image with each label
corresponding to a connected component in the image (and the background having label
0). In the first pipeline, we compute some basic properties of these connected components
such as area, center of mass, width and height. These properties are used for various
clustering algorithms in this study, such as density based spatial clustering of applica-
tions with noise (see section 3.5.1) and minimum spanning tree angle based clustering (see
3.5.2). Furthermore, by labeling the components we can access component specific pixels
for numerous operations.

In the second pipeline, we select potential text regions based on the variance in gray
scale values per connected component. The rationale behind this is that regions with text
have a higher contrast between text and background, while regions without text have lower
contrast between their foreground and background pixels. Additionally, thresholding in the
second pipeline is done based on the mean and standard deviation in gray scale intensities
per connected component. The step before skew detection in the second pipeline, Reprocess
Noise’, repeats the previously mentioned steps once.



3.5 Text Line Extraction

In the first pipeline text lines are extracted in subsequent steps. Firstly, potential text
regions are extracted by means of a clustering algorithm called Density Based Spatial
Clustering of Applications with Noise, or DBSCAN. Secondly, individual text lines are
extracted from these potential text regions by means of Minimum Spanning Tree Angle
based clustering.

3.5.1 Density Based Spatial Clustering of Applications with Noise

After connected component labeling in the first pipeline, we use the area, width, height
and coordinates of the center of mass of each component as input for density based spatial
clustering of applications with noise (DBSCAN) to cluster the various image components
in a 4 dimensional space. DBSCAN is an algorithm which clusters based on the density
of the data points which need to be clustered. Text elements in an image are usually
grouped closely together and share the same visual properties, while noise components
are randomly located in the image and have various visual properties. Therefore, we
use this clustering algorithm over other algorithms. The algorithm’s parameters are ε,
the maximum distance between points in a cluster, and the minimum number of points
required to be considered a cluster. All points which are not clustered are most likely in
low density areas and are considered as noise. Resulting clusters can compose of text as
well as non-text elements and noise components are eliminated due to not satisfying the
minimum number of points for it to be considered a cluster or they are too far away from
other core points.

Figure 3.6: The created cluster by DBSCAN visually presented with each cluster a different
colour (left). The image resulting after MST angle based clustering (right).

3.5.2 MST Angle based Clustering

Following DBSCAN, individual text lines were found using the minimum spanning tree
angle based clustering algorithm. This algorithm is based on the rationale that elements
belonging to the same text lines are closer together than other elements and that the edges
between these elements have similar orientation.

The coordinates of the connected components’ center of mass allows us to represent an
image as a graph G. With this representation we construct the minimum spanning tree
C. In this MST we calculate the angles between the edges in each vertex with more than



one edge. The angles are determined by calculating the inverse cosine of the dot product
between the two edges divided by the product of the edges’ magnitudes:

α = cos−1

(
ē1 · ē2
|ē1| · |ē2|

)
If a vertex is a leaf (vertex with degree 1), we set the angle at 180 degrees. As a result
we have an angle matrix of n × n, with n the number of vertices in C. We calculate
a histogram over this matrix and remove all edges with angles deviating from the main
orientation. Lastly, we discard the vertices with no edges. Translating the resulting set of
vertices back to the image, results in an image with less non-text elements (according to
the rationale). Below you can find pseudo code of the algorithm (see algorithm 1).

Algorithm 1: MST Angle based Clustering

Data: Minimum Spanning Tree C(V,E)
Result: V (H) ⊆ V (C) with δ(H) > 0

1 initialization;
2 foreach v ∈ V (C) do
3 if d(v) > 1 then
4 foreach unique pair in E(v) do
5 Calculate angle

6 else
7 Set angle at 180 deg

8 Calculate histogram of angles ;
9 Discard e ∈ E(C) with angles deviating from main orientation;

10 Discard v ∈ V (C) with d(v) < 1

3.6 Text Detection with a Full Convolutional Neural Net-
work

At the base of the third pipeline is a full convolutional neural network, which is a neural
network which is widely used for object classification. Based on the pixel values pf the
input image, probabilities of each class are given for the object(s) of interest as output.
Convolutional neural networks adopt their architecture from the visual cortex, where a
set of cells look for specific features in the input the visual cortex receives. Similar to the
set of neuronal cells looking for specific regions in a system, the FCNN has components
with each their own specific tasks. These components are so called convolutional layers.

A convolutional layer is a kernel with certain dimensions consisting of weights which
slides, or convolves, over the input image. Firstly, for every convolution the input image
undergoes element-wise multiplication with the kernel. Secondly, the sum of these mul-
tiplications is calculated. Finally, resulting after all convolutions is a matrix with these
sums which is called the feature map. Note that this feature map has smaller dimensions
than the input image.

Next to convolutional layers, a FCNN consists also out of so-called pooling layers.
These pooling layers are used to reduce the spatial dimensions of the input image’s rep-
resentations in the network (Singh Kathait et al., 2018). As a result the network has



less information to work with, which leads to increased computational speed. Addition-
ally, the reduction of spatial information results in less parameters and thus decreases the
probability of over-fitting.

Each individual kernel can be seen as a feature identifier. These features are simple
image characteristics such as edges, colours, curves and so on. The sum of the multipli-
cations will be higher if a certain feature identifier extracts their feature. The weights of
the feature identifiers are adjusted to classify objects properly by means of training with
backpropagation. With backpropagation, the intial weights of the kernels are randomized.
Then a training image goes through the neural network in the forward pass. After the
forward pass, the output is determined and the error with the target value is calculated
with the loss function. An example of a loss function is the mean squared error. Based on
the loss, the weights are updated and backpropagation repeats again. This is done till the
error is minimized and reaches a threshold where no significant improvement is achieved.

In our study we use a pre-trained model called ResNet50, which is a convolutional
neural network which has already been trained on millions of images. For text detection,
a large number of feature maps are merged with the existing model. These feature maps
predict location and orientation of text regions. Figure 3.7 shows the an overview of the
network architecture used and a sample output of the model.

Figure 3.7: An overview of the FCN used for text detection on the left and the predicted
text regions by the FCN on the right.

3.7 Text Recognition

In this study, text recognition was performed using the open-source OCR engine Tesser-
act. The latest version of Tesseract firstly recognizes text lines with a Long Short-Term
Memory neural network. LSTM neural networks are a type of recurrent neural network,
which are often used for many different applications e.g. speech recognition, language
modelling, image-to-text translation. Because our study makes use of Tesseract purely
as text recognition module, we do not further elaborate on the full theory behind these
networks. The model data for Latin-based languages supplied with the latest version of



Tesseract is trained on roughly 400,000 text lines with 4500 various fonts. Since our re-
search scope does not include any font specific data, we chose not to (re-)train the LSTM
neural network. From the recognized text lines, words are extracted by analyzing the
spacing between text. This is a non-trivial task prior to word recognition (Smith, 2007).
Successfully extracted words are then chopped into separate characters. Subsequently,
these characters are recognized by a static classifier. An advantage of this static classifier
is its reduced sensitivity to different fonts. However, this reduced sensitivity results in
decreased ability to recognize text. Therefore, the output of the static classifier is used to
train an adaptive classifier which has a higher sensitivity to various fonts and thus often
used within each document (with fewer different fonts) to recognize text better. The two
classifiers merely differ in character normalization prior to classification (Smith, 2007).

3.8 Skew Detection

We have implemented a self-developed robust method for skew detection based on image
morphology at the end of the pipelines. This was done so that other noise components
cant affect skew detection. The first step of the skew detection is connected component
labeling on a copy of the segmented binary image. The second step removes very small
and very large components. The rationale behind this is that the resulting image contains
only words, which are used to determine the skew they are subject (Aradhya et al., 2006).
The third step of the skew detection encloses the remaining components with a bounding
boxes. A horizontal line is then connected with the most southern (lowest value of y)
located corner of a bounding box. Then the angle is calculated from the horizontal line
to the first side of the bounding box counterclockwise (see figure 3.8). The fifth step of
the skew detection corrects the skew with the median of all calculated angles. We chose
to take the median as corrected skew angle, because it is a robuster measure of central
tendency than the mean.

Figure 3.8: A word enclosed with a bounding box (blue) and the angle it makes with the
horizontal line (red)



Chapter 4

Experimental Setup
The first step in our experimental setup is data generation. In section 4.1 you can find
the description of the data and how the data was obtained. The second step is the im-
plementation of the pipelines described in chapter 3. We implemented three pipelines in
total, of which two use conventional methodology for text extraction and one uses a full
convolutional neural network for text detection. The third step of our setup is parameter
optimization. We optimize the parameters (if possible) or use different methodology in
each step of all pipelines. In section 4.2 we further elaborate on the different parame-
ter configurations. The final step is the evaluation of the text extracted from the three
pipelines with different parameter configurations. We explain the method to evaluate the
extracted texts with the ground truth in section 4.3 and elaborate on the used performance
measures. Furthermore, statistical analysis was performed on the obtained results to test
significance.

4.1 Description of the Data

Unfortunately it is not an option to use only public datasets with text-in-the-wild images
including ground truths, because this data has significantly different characteristics than
law enforcement data. Law enforcement data often consists of various documents with
different amounts of textual information. There is an excess of visual data extracted
from law enforcement seized material. In order to asses the quality of text recognition on
this data, we require the ground truths of these images. These ground truths contain all
textual information of an image with complete precision. Prior to this study there were
no ground truths available. Therefore, we generated ground truths for approximately
300 images. These images contain photographs of a PGP encrypted mobile phone. This
phone’s display shows various chat messages and email messages with varying amounts of
text and noise, which thus forms a representative dataset suitable for our research.

Additionally, we synthetically created a dataset with photographs of a driver’s license
with various lighting, background, angles and overall image quality. This synthetic dataset
is advantageous, because it requires only one ground truth for the entire set. We assessed
the quality of the various pipelines on a public dataset(with similar size to that of the
law enforcement data) and incorporated the results in this thesis even though the public
dataset is not representative to law enforcement data.
Furthermore, we randomly split each of the datasets (PGP dataset and driver’s license)
in 70% training data and 30% test data. This was done to give generality to the produced
results.
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4.2 Parameter Optimization

After implementing the pipelines, we heuristically optimize the parameters of each pipeline.
This heuristic approach of optimizing a parameter of an arbitrary pipeline, is done by
varying the value of a parameter in certain range, while keeping other parameters in that
pipeline constant. Thus, we assume that the individual parameters are independent from
each other. This independence assumption of the parameters is due to otherwise large
computational times. For the first pipeline, we optimize the two parameters of DBSCAN
(ε and minPts) and test the performance of the pipeline with and without MST angle
based clustering. The rationale behind the latter is that the algorithm assumes born dig-
ital images and thus might be affected by images rich in noise. For the second pipeline,
we test between various thresholds for the Canny edge detection algorithm. There was
no optimal method found in literature for determining the best thresholds for Canny edge
detection and it appears to be that the optimal threshold is data dependent. Further-
more, we varied the size of the kernel used with the dilation operation. Additionally, we
optimized the standard deviation that was used to remove false text regions based on gray
scale intensities. For the third pipeline, there were no parameters to optimize. However,
we evaluated two different thresholding methods, Otsu’s and Sauvola’s methods, for the
binarization of the predicted text instances. Table 4.1 gives an overview of all parameter
values that were used for each step of the pipelines.

Table 4.1: All the parameter values used for optimization of each step per pipeline.
Pipeline 1 Pipeline 2 Pipeline 3

DBSCAN MST Clustering Canny Edge Detection Dilation σ of gray scale values Thresholding

ε: 0.2, 0.4, 0.5, 0.6, 0.8, 1.0
With or without Tlow: Otsu, 85, 127 Kernel dimensions: 2, 3, 4, 5 10,20,30,40,50 Otsu or Sauvola

minPts: 2, 3, 4, 5, 7

Figure 4.1: An example of the Levenshtein distance between the words ’Saturday’ and
’Sunday’



4.3 Evaluation

In order to evaluate the various pipeline configurations and individual pipelines, we have to
compare the extracted texts with the ground truths. Therefore, the Levenshtein’s distance
was used in this study evaluate the difference of two texts. The Levenshtein’s distance
is the minimal number of operations that is required to change one string into another.
The operations which are taken into account are deletion, insertion and substitution.
Figure 4.2 shows an example of how to determine the Levenshtein’s distance to get from
the word ’Sunday’ to the word ’Saturday’. The previously mentioned operations can be
done on character level and on word level. However, the aim of our study is to optimize
text extraction in law enforcement data to make text in visual data searchable for a
detective. Therefore, the performance measures used in our study are all on word level.
The performance measures used in our study derive from the Levenshtein operations:

WER =
#deletions+ #insertions+ #substitutions

#words

Precision =
#correct

#correct+ #substitutions+ #insertions

Recall =
#correct

#correct+ #substitutions+ #deletions

We use the harmonic mean of the latter two measures as leading performance measure to
determine the optimal parameter configurations of the pipelines:

F −measure =
2 ∗ Precision ∗Recall
Precision+Recall

Finally, we perform a two-way ANOVA to determine weather there is a significant
difference in performance of the various pipelines between the different datasets. For
the two-way ANOVA there are three assumptions which need to be satisfied. Firstly,
the independence assumption is most likely satisfied if we look at our research setup.
Data generation most likely has not lead to dependent data samples, because we ensured
heterogeneity in the data by synthetically adding noise. Secondly, we used the Shapiro-
Wilks test to show we satisfy the normality assumption (p > 0.05). Finally, we tested
homogeneity of variance of the data with Levene’s test. The test was not significant and
therefore satisfied the assumption of equal variances.



Chapter 5

Results

5.1 Pipeline 1

In table 5.1 below, when we look at the F-measures we see that a value of ε = 0.4 produces
the best results for the first two datasets. This might be due to similarities in noise between
the two datasets. Both datasets are photographs made in resembling conditions of the
same PGP encrypted cellphone. For the third dataset all values of ε perform almost
equally well, except for ε = 0.2 just like for the the PGP datasets. These findings might
be due to the small sample size and thus insufficient heterogeneity in the datasets. This
parameter, ε, is the maximum distance of a component to be considered a core point for
a cluster. Thus, for ε = 0.2 DBSCAN might be subject to heavy text loss due to text not
grouped as dense to satisfy ε. And for values of ε that are too high, the clusters resulting
from DBSCAN might include too much noise which else have been ommited. Therefore,
for the best performing result over the data in this study we take ε = 0.4 as optimal
parameter value.

Table 5.1: Word-level benchmark averages of the first pipeline on training data with
various values for ε, the first parameter of DBSCAN.

PGP Chats PGP Emails Synthesized set
WER(%) Pr(%) R(%) F1(%) WER(%) Pr(%) R(%) F1(%) WER(%) Pr(%) R(%) F1(%)

0.2 117.20 4.40 4.67 4.45 88.23 6.20 6.35 6.21 119.46 3.61 2.64 2.72

0.4 106.36 31.45 45.41 36.82 83.00 49.74 65.26 56.10 118.67 13.98 11.09 11.18

0.5 108.82 30.68 45.69 36.37 86.51 45.16 64.89 52.89 117.96 11.55 11.35 10.58

0.6 104.46 30.92 45.71 36.55 76.65 43.93 64.24 51.80 108.49 11.26 11.20 10.20

0.8 103.35 29.71 45.23 35.49 77.29 43.61 63.89 51.43 109.55 13.25 12.25 10.97

1.0 104.87 28.36 44.07 34.14 77.77 42.04 63.88 50.36 114.67 12.111 12.93 11.71

Table 5.2 shows the best performance based on F-measures with a value of 4 for mini-
mum number of points per cluster for the PGP datasets. Again for the synthesized dataset,
the performance is uniformly distributed for all tested values for minPts. Therefore, we
most likely can make the same conclusions as with the parameter ε and use minPts = 4
as optimal parameter value.

Table 5.3 shows that the exclusion of the minimum spanning tree angle based algorithm
results in better text extraction. The reason for this could be that the algorithm was
developed in a study (Böschen et al., 2015) using born digital images as data, while our
data consist of analogously made photographs. Photographs are more likely subject to
noise, such as lighting differences and skewness, than born digital images. This noise
negatively impacts the clustering algorithm, due to the rationale behind the algorithm
which assumes closely grouped components which share the same orientation to be of the
same text line. A qualitative analysis of the algorithm (see figure 3.6) shows no decrease
in noise and potential text loss. Therefore, we do not use the algorithm in our final
evaluation.
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Table 5.2: Word-level benchmark averages of the first pipeline on training data with
various minimum samples per cluster, the second parameter of DBSCAN.

PGP Chats PGP Emails Synthesized set
WER(%) Pr(%) R(%) F1(%) WER(%) Pr(%) R(%) F1(%) WER(%) Pr(%) R(%) F1(%)

2 117.20 26.68 44.54 34.54 88.23 44.05 64.62 52.03 119.46 11.60 11.65 10.48

3 106.36 31.29 45.83 36.85 83.00 46.54 65.51 54.04 118.67 11.43 10.75 10.06

4 105.51 31.31 45.78 36.87 76.81 50.03 66.38 56.72 115.88 11.95 9.43 9.32

5 104.46 31.45 45.41 36.82 76.65 49.74 65.26 56.10 108.49 13.98 11.09 11.18

7 103.35 31.02 44.08 36.09 77.29 47.5 61.58 53.33 109.55 12.13 10.07 10.32

10 104.87 29.09 40.67 33.62 77.77 44.67 55.88 49.37 114.67 10.83 9.62 9.46

Table 5.3: Word-level benchmark averages of the first pipeline on training data with and
without minimum spanning tree angle based clustering.

PGP Chats PGP Emails Synthesized set
WER(%) Pr(%) R(%) F1(%) WER(%) Pr(%) R(%) F1(%) WER(%) Pr(%) R(%) F1(%)

MST 121.58 16.23 22.52 18.7 120.5 20.47 26.73 22.95 118.29 5.38 5.09 4.77

No MST 105.51 31.31 45.78 36.87 76.81 50.03 66.38 56.72 103.65 11.95 9.43 9.32

5.2 Pipeline 2

In table 5.4, we can see that the empirically obtained value of 85 for the low threshold in the
Canny edge detection algorithm is preferred over value 127 and the threshold determined
using Otsu’s method on the gray scale image. Especially with the synthesized dataset,
determining the threshold with Otsu’s method produces abysmal text extraction rates.
It is likely that the double thresholding with Otsu’s method does not suppress noise
sufficiently and thus make text extraction significantly harder. These results show, like
we found in our research, that there is no optimal method in determining these thresholds
and that is is highly case dependent. Therefore, we use the empirically found value 85 for
the low threshold (and 255 for the high threshold).

Table 5.4: Word-level benchmark averages of the second pipeline on training data with
various thresholding methods of the Canny edge detection algorithm.

PGP Chats PGP Emails Synthesized set
WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%)

Low T = 127 70.83 42.82 34.32 37.81 56.27 56.8 46.03 50.75 96.31 9.92 5.47 6.68

Low T = 85 70.23 44.09 34.79 38.58 56.13 57.12 46.13 50.94 95.29 11.45 5.51 6.94

Otsu 72.52 46.52 30.17 36.27 57.4 56.74 46.03 50.66 99.89 1.12 0.11 0.2

Based on the F-measures shown in table 5.5, we choose a kernel size of 3 in both
directions for the dilation operation prior to connected component analysis. Dilation
directly influences the following stage in the pipeline; connected component analysis. The
components resulting from CCL influence the remaining pipeline stages. If dilation is
performed with a too small kernel, then the connected components most likely contain
too little information for filtering based on standard deviation of grayscale intensities.
However, if the kernel used for dilation is too large then the connected components contain
too many pixels for thresholding to be performed correctly. Therefore, we can conclude
that dilation with a 3×3 kernel results in optimal connected components for text extraction
with pipeline 2.

In table 5.6, the F-measures do not seem to differ much with various values of the
standard deviation used for false text region removal for the PGP datasets. This means
that each connected component has great contrast between fore- and background pixels
with little noise, which results in little loss in text for every value for the standard de-



Table 5.5: Word-level benchmark averages of the second pipeline on training data for
different kernel values of the dilation operation.

PGP Chats PGP Emails Synthesized set
WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%)

2 101.33 22.38 28.53 24.98 82.94 35.67 44.85 39.64 103.8 7.2 4.83 5.3

3 76.09 34.4 35.26 34.64 66.55 43.81 48.03 45.7 94.72 12.97 6.45 8.16

4 74.3 40.21 29.3 33.61 57.65 53.36 46.12 49.36 96.27 12.31 5.73 7.2

5 81.65 35.27 18.96 24.34 64.28 52.97 38.6 44.46 98.19 9.71 4.71 5.92

viation in gray scale intensities. However, for the synthesized dataset best results are
produced with a standard deviation of 20. The most likely reason for this is that text
is not well distinguished from the background, which leads to loss of textual information
per connected component. For example, if the colors of text and background are similar,
then the difference in gray scale value would be smaller and thus lead to lower standard
deviation per connected component. Causing the model incorrectly remove the connected
component containing text. Therefore, to obtain optimal text extraction for all datasets
we choose a standard deviation of 20 as optimal parameter setting.

Table 5.6: Word-level benchmark averages of the second pipeline on training data with
various standard deviations in gray scale intensities used for removal of false text regions.

PGP Chats PGP Emails Synthesized set
WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%)

10 74.22 40.3 28.89 33.36 57.65 53.36 46.12 49.36 98.99 8.75 6.33 6.82

20 74.3 40.21 29.3 33.61 57.65 53.36 46.12 49.36 94.72 12.97 6.45 8.16

30 73.84 40.68 29.51 33.91 57.22 55.3 46.4 50.32 96.76 13.68 3.28 4.92

40 72.52 46.52 30.17 36.27 57.4 56.74 46.03 50.66 99.21 6.66 0.79 1.39

50 81.5 50.46 18.78 27.03 60.04 51.61 44.62 47.74 100.0 0 0 0

5.3 Pipeline 3

From table 5.7 we can observe that Otsu’s method outperforms Sauvola’s method in terms
of text extraction from law enforcement data. The predicted text regions from pipeline 3
eliminate a significant amount of noise, but create borders around these regions (see 3.3).
Sauvola’s method is great at handling lighting related noise, but is likely to be affected
by these borders. This is due to the kernel sliding over the image and mostly containing
large portions of background (see figure 3.7 and thus results in volatile thresholds for the
whole image. However, the contrast of pixels containing text and background pixels is
significantly increased for each predicted text region. Therefore, it is sufficient to apply
global Otsu’s method for each of these regions. Additionally, global thresholding requires
less computation time than adaptive thresholding.

Table 5.7: Word-level benchmark averages of the third pipeline on training data with
Otsu’s method and Sauvola’s method for thresholding.

PGP Chats PGP Emails Synthesized set
WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%)

Otsu 81.82 32.61 37.21 34.59 32.3 73.04 74.07 73.51 85.71 29.18 16.59 19.38

Sauvola 89.26 22.48 24.05 23.09 49.15 56.4 60.47 58.32 89.22 19.91 14.59 16.24



5.4 Optimal pipelines evaluation

We can see from table 5.8 that overall best performance, based on F-score, is achieved by
the third pipeline. With a two way ANOVA we show that the differences in performance
between all pipelines are significant and the quality of text extraction is most likely de-
pendent on the type of data. Furthermore, the p-value for interaction indicates that how
the performance of text extraction changes for different datasets is dependent on the type
of pipeline and vice versa. The ANOVA table can be found in Appendix B.

Table 5.8: Overview of the word-level benchmark averages of all pipelines on training data
with the found optimal parameter configurations.

PGP Chats PGP Emails Synthesized set
WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%)

Base 91.62 14.22 12.67 13.13 60.95 51.53 52.32 51.89 93.9 10.25 8.18 8.84

Pipeline 1 105.51 31.31 45.78 36.87 76.81 50.03 66.38 56.72 115.88 11.95 9.43 9.32

Pipeline 2 70.23 44.09 34.79 38.58 56.13 57.12 46.13 50.94 95.29 11.45 5.51 6.94

Pipeline 3 81.82 32.61 37.21 34.59 32.3 73.04 74.07 73.51 85.71 29.18 16.59 19.38

In table 5.9 we can see that skew detection probably does not improve text extraction
from the PGP datasets, while text is most likely better extracted from the synthesized
dataset with skew detection. This is due to the fact that the PGP datasets contain lit-
tle skewness compared to the synthesized dataset. The robustness of the skew detection
method causes the skew detection to wrongly attempt correct skew in the PGP datasets.
Table B.2 in Appendix B tells us that skew detection can significantly improve text extrac-
tion (p < 0.05) dependent on the training dataset, but significant difference in extracted
text can be found on the same dataset with or without skew detection (p > 0.05).

Table 5.9: Overview of the word-level benchmark averages of the third pipeline with and
without skew detection on training data.

PGP Chats PGP Emails Synthesized set
WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%)

Without skew detection 81.82 32.61 37.21 34.59 32.3 73.04 74.07 73.51 85.71 29.18 16.59 19.38

With skew detection 81.95 32.45 36.72 34.27 32.3 72.96 74.07 73.47 84.01 27.0 18.97 21.65

Table 5.10: Overview of the word-level benchmark averages of all pipelines on test data
with the found optimal parameter configurations.

PGP Chats PGP Emails Synthesized set Open source set
WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%)

Base 92.54 13.31 12.13 12.74 60.95 52.42 52.27 52.61 98.22 4.21 3.21 3.48 100 0 0 0

Pipeline 1 109.41 30.71 45.17 36.2 88.15 44.47 63.51 51.75 134.05 6.17 8.56 6.5 120.1 3.02 5.16 3,37

Pipeline 2 73.69 43.32 35.67 38.67 61.34 51.57 40.28 46.02 96.26 8.93 4.01 4.42 115.23 4.13 5.33 4,92

Pipeline 3 90.44 30.78 36.4 33.11 34.31 70.77 73.24 71.95 88.51 19.44 11.76 14.09 99.22 5.87 6.24 6,09

Tables 5.10 and 5.11 show that the test data follows the results of the train data,
except for the PGP chat dataset. This might be due to the small data sample in this
study. However, the differences between F-scores are little. Therefore, it is likely that
these results can be reproduced with other data. Additionally, the two way ANOVAs lead
to the same conclusions to be made about the significance of the test results as with the
train results (see tables B.3 and B.4).

Table 5.11: Overview of the word-level benchmark averages of the third pipeline with and
without skew detection on test data.

PGP Chats PGP Emails Synthesized set Open source set
WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%) WER(%) Pr(%) R(%) F-score(%)

Without skew detection 90.44 30.78 36.4 33.11 34.31 70.77 73.24 71.95 88.51 19.44 11.76 14.09 99.22 5.87 6.24 6,09

With skew detection 89.91 30.53 35.35 32.5 34.43 70.74 72.41 71.52 85.39 23.88 15.78 18.75 101.56 4.2 5.87 5.55



In conclusion, we find that pipeline 3 performs significantly better for the PGP email
dataset and for the driver license dataset. For the PGP chat dataset, it seems that
pipeline 2 is preferred over the other pipelines by small margins. However, pipeline 3
(only 1 parameter) is more robust than the other two pipelines (3 parameters). Therefore,
our preference goes to pipeline 3 for all datasets. Additionally, the heuristic method for
parameter optimization used in our study could lead to different results. However, this
most likely increases the probability on overfitting on our data, especially with the small
sample size.



Chapter 6

Conclusions and recommendations

6.1 Conclusions

The main goal of the current study was to examine optimizations of text extraction in law
enforcement data. This was done by studying law enforcement data and using methodology
from earlier studies about text extraction. We show in our study that there simultane-
ously exists homogeneity in the content of police data and also a significant amount of
heterogeneity in the quality of the police data which directly impacts the quality of text
extraction. We attempted to improve text extraction from law enforcement data, but were
limited to a small sample size. Our work can be applied to multiple practices in police
investigation. For instance, if the goal is to have optimal automated text extraction on the
entire visual database collected by the Dutch police, then no assumptions can be made on
image morphology. However, if there exists a certain scope in an investigation to optimize
text extraction from , for example, screenshots from chat applications, then it is possible
to define a certain template per screenshot and extract text more specifically per data
type.

We compared two previous studies based on conventional methodology for text ex-
traction and one previous study which detected text using a fully convolutional neural
network. With our research data, we showed that deep learning methodology surpasses
the performance of both conventional studies. This is most likely do to the fact that
conventional methodology requires certain assumptions to be made about the data for
feature extraction, while a full convolutional neural network learns these features during
the training phase. With this finding, we confirm again that there is no homogeneity in
image quality in law enforcement data. We also experimented text recognition without
segmentation (OCR with base Tesseract) and showed that preprocessing is required to
eliminate noise affecting text recognition accuracy.

Our research has shown that our proposed robust skew detection algorithm improves
text recognition accuracy in skewed law enforcement data. We will also extend future
research into skew detection with deep learning methodology. There is abundant more
room for further progress in text extraction from law enforcement data using deep learning
methodology.

This project is the first comprehensive assessment of text extraction on law enforce-
ment data, using conventional and deep learning methodology. This new understanding
should help improve automated text extraction from law enforcement data and thus police
investigation procedures. Limitations of this study are the small sample size of the data,
the usage of only Latin based lingual data and exclusion of handwritten data. Notwith-
standing the relatively limited sample, this work offers valuable insights in the possibilities
of automated text extraction in law enforcement data.
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6.2 Recommendations

The findings of this study provide insights for future research in text extraction using
deep learning methods. This methodology does not only have to be applied on text
segmentation, but can also be used for text recognition, skew detection and even post
processing. A reasonable approach to tackle the latter could be to develop a language
model for slang encountered in law enforcement data.

Continued efforts are needed to make multi-lingual data more accessible to include non
Latin based languages into text extraction. This can be achieved by means of a translator
or by narrowly cooperating with foreign colleague law enforcement with ongoing research
in similar fields.

Further research might explore the possibilities of handwritten text extraction. Poten-
tial solutions for handwritten text recognition also lie in deep learning methodology. The
challenge with handwritten data is also the availability of ground truth data.

Taken together, these findings support strong recommendations to further investigate
and experiment into deep learning methodology with text extraction. Additionally, if
practical applications have been envisioned on specific data, conventional methodology
can also provide improvement. This could be researched by categorizing various data
types, such as chats, emails, bank transfer, street signs and many more.
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Table B.1: Two-way ANOVA table of the average F-scores of the different pipelines and
train datasets

Source SS df MS F Prob>F

Pipeline 5.445 4 1.36139 112.28 1.014e-79

Dataset 40.890 2 20.4456 1686.28 0

Interaction 3.091 8 0.386 31.86 5.1358e-45

Error 12.731 1050 0.012

Total 62.158 1064

Table B.2: Two-way ANOVA table of the F-scores of the different train datasets with and
without skew detection

Source SS df MS F Prob>F

Pipeline 0.006 1 0.0066 0.473 0.491

Dataset 20.538 2 10.269 818.899 1.168e-145

Interaction 0.0181 2 0.009 0.721 0.486

Error 5.267 420 0.013

Total 25.829 425

Table B.3: Two-way ANOVA table of the average F-scores of the different pipelines and
test datasets

Source SS df MS F Prob>F

Pipeline 0.719 4 0.179 25.728 1.198e-19

Dataset 30.276 3 10.092 1443.156 1.782e-268

Interaction 1.683 12 0.140 20.0571 7.806e-37

Error 4.055 580 0.007

Total 36.734 599

Table B.4: Two-way ANOVA table of the F-scores of the different test datasets with and
without skew detection

Source SS df MS F Prob>F

Pipeline 0.002 1 0.002 0.365 0.545

Dataset 14.917 3 4.972 629.764 3.732e-111

Interaction 0.021 3 0.007 0.907 0.438

Error 1.831 232 0.0079

Total 16.774 239


