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Summary 

This work consists of two subjects, the determination of the volume by aerostatic weighing and find-
ing the best weighing scheme for the weighing series. 
 
The first part of this work addresses the joint determination of the mass and volume of weights by 
means of aerostatic weighing. Metrology institutes use special weight sets for the calibration of 
weights with various nominal masses. All weights and calibrated weighing equipments used in daily 
practice are metrologically traceable to the international mass standard, the ‘Grand K’, which is stored 
at the Bureau des Poids et Mesures (BIPM) in France. The 'Grand K' is a small cylinder, made of 
platinum-iridium of which is agreed that it is exactly 1 kg. For mass calibration, NMi VSL has a 
platinum-iridium copy of the International mass standard, known as PtIr53. Because platinum-iridium 
is sensitive to erosion and above all has a higher density than the stainless steel weights used in the 
industry, mass calibrations are usually done with mass standards made of stainless steel. However for 
the calibration of these stainless steel mass standards the PtIr53 must be used and because of the dif-
ference in density,  the air buoyancy leads to an apparent mass difference of approximately 100 mg. 
This effect can be accounted for if the air density at the time of weighing and the volume of the 
weight are known.  
 
The volume determination of weights can be done by once-only hydrostatic weighing or by aerostatic 
weighing. During hydrostatic weighing the weight is immersed in water.  There is need for an alterna-
tive method to determine the volume, as not all artefacts can be immersed in water. Furthermore, even 
for weights that can be immersed, there are negative effects, such as, e.g., the surface effects of water 
on the artefact’s surface (adsorption) and the long time that the artefact needs to stabilise and equili-
brate with the humidity from air,. Aerostatic weighing might be such an alternative method.  
 
The principle of aerostatic weighing is that the apparent mass difference between two artefacts is re-
corded as a function of the air density. In practice, there is another variable that may influence the 
measurement, namely the temperature. The temperature not only influences the air density, but also 
the volumes (through cubic expansion) of the artefacts, so that this second order effect needs to be 
taken into account too. By plotting the apparent mass as a function of the air density and fitting a 
straight line through the data, the mass and volume differences can be determined . An algorithm has 
been developed and implemented to perform this regression. In order to propagate the uncertainty as-
sociated with the input variables (mass difference and air density), generalised distance regression is 
used, which weighs the points in the dataset on the basis of the uncertainty associated with the input 
quantities. The regression method has been augmented to take care of effects of the ambient tempera-
ture on the volume of the artefacts. 
 
The first results from aerostatic weighing suggest that the range of the air density, which can be influ-
enced during weighing, should be expanded for a better regression. 
 
The second part of this work concerns finding the best weighing scheme in weighing series. 
Weighing using a substitution method based on the principle of de Borda is commonly used in mass 
calibration. Mass calibration is done by comparing an unknown weight with a reference mass standard 
by alternatively placing them on a balance. This is called Borda weighing. Usually, an assembly of 
weight(s) is calibrated against a (single) calibrated artefact. This calibration is realised by using a 
weighing scheme, i.e., different combinations of weights that are compared among one another. Such 
a weighing scheme can be designed in numerous ways. In practice, it is often seen that there is a long-
standing tradition of using a particular scheme. In this work, the weighing scheme used in the Nether-
lands for primary calibration is subjected to a rigorous mathematical optimisation, to determine the 
weighing scheme that produces the most accurate calibration of the weights under measurement.  
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The optimisation is carried out by first modelling the uncertainty structure of the mass differences 
experimentally obtained in each Borda sequence. The structure of the resulting covariance matrix is 
the basis for determining the mass difference in each of the Borda sequences forming the weighing 
scheme. Several constraints have been put in the optimisation to exclude undesired solutions, such as 
practically unfeasible weighing schemes. For practical reasons, the number of Borda sequences has 
been limited to 14 and the number of repeated weighings in a sequence has been restricted to 30.  
Two different loss functions have been defined to allow judging the various weighing schemes. One is 
based on the absolute variances of the calibrated weights, whereas the second is based on the relative 
variances. 
 
Although the modelling of the data structure is much more transparent than the currently used method 
of uncertainty evaluation, the uncertainties estimated with the new model seem to be too small in view 
of the results. Two important uncertainty components are likely to be responsible for this discrepancy: 
the effects of convection and centre of gravity. It is not known to what extent these effects lead to cor-
relations in the dataset; these correlations however appear to be very important in the uncertainty 
structure. This problem could not be resolved in due course of this work, so that the optimum weigh-
ing scheme could not be determined. 
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1 Introduction 

Nederlands Meetinstituut (NMi) is a company active in measurement, calibration, testing and certifi-
cation.   
The main activities of NMi are: 
- Guardian of the metrological infrastructure in the Netherlands  (NMi VSL) 
- Testing and certification institute     (NMi Certin) 
- Market Surveillance       (NMi Verispect) 

 
NMi van Swinden Laboratory (NMi VSL) is the Dutch national standard institute. It keeps and main-
tains the present Dutch measurement standards and develops new measurement standards and refer-
ence materials. 
  
The section Mass of the department Mass and Related Quantities is dealing with the improvement of 
calibration methods for mass measurement. Mass measurements play an important role in trade, in-
dustry, laboratory and process control. In many instances the accuracy of these measurements is es-
sential with regard to safety, health and cost. Furthermore, several other frequently measured 
quantities like pressure, force, viscosity and density are derived from mass. This has led to an increas-
ing demand for accurate measurement techniques and traceability in mass. 
 

 
Figure 1: Organisation chart of NMi BV 

The Department of  Mass had two projects asking for a mathematical solution for a measurement 
problem. The two problems are related to each other. The first one concerns aerostatic weighing and 
the second the determination of the optimal weighing schemes.  
 
Usually hydrostatic weighing is used to determine the volume of weights. For many other objects this 
method is not possible and therefore geometrical measurement or density data from the manufacturer 
is used to compute the volume. This determination is often not very accurate. Other disadvantages of 
hydrostatic weighing include the surface effects of water on the artefact’s surface (adsorption) and the 
long time that the artefact needs to stabilise and equilibrate with the humidity from air. Considering 
the importance of the volume for the determination of the mass, there is need for an alternative 
method to determine the volume. 
 
Aerostatic weighing might be such an alternative method. During aerostatic weighing objects are not 
submerged in water, but in air of different densities. By measuring the apparent mass differences, the 
volume can be calculated. Aerostatic weighing can be used in weighing schemes; this is not done yet, 
as the method needs first to be fully validated. The work presented here is a key element in the valida-
tion of aerostatic weighing. 
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For the calibration of weights with various nominal masses, metrology institutes use special weight 
sets. For instance the decade from 1000 g to 100 g is 'covered' by six weights: 1000 g, 500 g, 2 x 200 
g and 2 x 100 g. In order to be able to distinguish between weights with the same nominal mass, a 
small dot is used to mark one of them. So one can speak of 100 g and 100 g•. 
 
The mass of each individual weight of the set can be determined by direct comparison with a mass 
standard of identical nominal mass or by using a weighing scheme. At the highest level of metrology 
only the national mass standard made of platinum-iridium is available. This mass standard has a 
nominal value of 1000 g and cannot be used for the determination of e.g. the mass of a 200 g weight 
by using direct comparison. So at this level weighing schemes must be used. 
 
A weighing scheme is an overdetermined system of weighing equations. The scheme consists of sev-
eral mass comparisons carried out with certain combinations of weights. In this scheme the mass 
standard with known mass also participates. With a very accurate balance the mass differences of the 
weighing equations are measured. The best weighing series has to be found. 
 
This work is subdivided into two parts: volume determination with aerostatic weighing (chapter 3) 
and the evaluation of weighing schemes (chapter 4). The background of the statistics used, and some 
concepts from mass metrology are the subject of chapter 2. Finally, in chapter 5 the conclusions are 
given. The report is concluded by the reference section, list of symbols, list of matrices and all appen-
dices. They contain the CIPM-81/91 equation, the mass difference, hydrostatic weighing, matrix fac-
torisations, the Gauss-Jordan elimination and the results of the weighing series. All the datasets for 
aerostatic weighing and weighing schemes are available on the accompanying CD. 
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2 Calibration, uncertainty and traceability 

2.1 Calibration 
The calibration of unknown weights is usually achieved by direct comparison against a reference 
standard of the same nominal value. Where necessary, the use of a group of reference standards, 
which total the nominal value of the unknown weight, is acceptable. To be able to perform mass cali-
brations of the highest accuracy, NMi VSL maintains many high-level mass reference standards, 
among which the national mass standard of the Netherlands, the platinum-iridium kilogram nr. 53.  
With these mass standards and several very sensitive balances, NMi VSL can calibrate mass standards 
with accuracy class E1 to M1. To determinate whether a weight belongs to a certain accuracy class, 
the density of the weight (depends on material), the surface, the magnetic properties, the shape of the 
weight (marks on the weight) and the maximum deviation from the nominal mass are of importance. 
Class E1 is the highest accuracy class and therefore the above mentioned properties must meet the 
strictest requirements. 
 

For the highest level of mass calibrations, simply taking the value displayed by the balance is not ac-
curate enough. These calibrations are done by determining the mass difference between a weight and 
an appropriate mass standard. This can be done by direct comparison or, in case of a set of weights, 
by a weighing scheme. The unknown mass of the weight can thus be calculated from the well known 
mass of the standard taking into account the effects of air buoyancy, the altitude-dependency of the 
gravitational force, convection, electrical and magnetic force. For example: if 500 g, 200 g, 200 g•, 
100 g and 100 g• have to be calibrated against a 1 kg weight, this can be done by a scheme of equa-
tions in which two assemblies of weights with the same nominal mass are compared. 

2.2 Uncertainty 
The calibration of a weight must be accompanied by an estimate of the uncertainty of the calibration if 
the weight is to be used as the basis for a valid mass measurement. The calibration uncertainty will 
include contributions arising from the calibration of the mass standards used, the performance of the 
balance, the variability of the weighing process and the deviations of air and the density of the 
weights from the conventional values. In some cases these contributions may be insignificant – never-
theless they must be demonstrated. 
 
Many improvements have been made to decrease the measurement uncertainty further by using auto-
matic weighing devices (AWDs) and an airtight container to keep the air buoyancy nearly constant 
during the measurements. 
Table 1: The NMi uses the following four automatic weighing devices: 

Balance Decade 
1AWD  1 – 10 kg 

1000HK  100 g – 1000 g 
2AWD  1 – 100 g (1 – 10 g, 10 – 100 g) 
3AWD  0,1 mg – 1000 mg (0,1 mg – 1 mg, 1 mg – 10 mg, 10 mg – 100 mg, 100 mg – 1000 mg) 

2.2.1 Uncertainty propagation 

Many measurements are done indirectly, that is, several (input) quantities are measured and the meas-
urand, the quantity to be measured, is subsequently calculated using a measurement model. Such a 
model is often explicit, that is, of the form  
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If the uncertainty associated with the n input quantities xi are known, the uncertainty associated with y 
can be expressed as follows using the uncertainty propagation formula 
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is called the sensitivity coefficient. The sensitivity coefficient is the partial derivative of the measure-
ment model f with respect to one of the input quantities xi. It expresses the sensitivity of the uncer-
tainty in y for the uncertainty in xi.  

The uncertainty propagation formula does not make any assumptions concerning existing dependen-
cies between the input quantities xi. In fact, the second double summation contains the terms in the 
expression for the standard uncertainty of y that are due to covariances between any pair of xi, xj. If 
two variables are independent, then their covariance is zero. If all input quantities are mutually inde-
pendent, then the uncertainty propagation formula may be written as 

 ( ) ( )∑=
i

ii xucyu 222  

The uncertainty propagation formula can be written in matrix form as follows: 

( ) Tcc xVyu =2  

where cT denotes the transpose of the row vector c and the covariance matrix is denoted by Vx.  

2.3 Traceability 
All weights and calibrated weighing equipment used in daily practice are traceable to the international 
mass standard, the ‘Grand K’, which is stored at the Bureau des Poids et Mesures (BIPM) in France. 
The 'Grand K' is a small cylinder, made of platinum-iridium of which is agreed that it is precisely 
1 kg. Hereby mass is the last quantity with a tangible object as primary standard. 
 
For mass calibration, the NMi VSL has a platinum-iridium copy of the International mass standard. 
This Dutch mass standard, the PtIr53, is sent regularly to the BIPM for calibration versus the interna-
tional mass standard. Because platinum-iridium is sensitive to erosion and above all has a higher den-
sity than the steel weights used in industry, mass calibrations are done with mass standards made of 
stainless steel. The mass standards made of stainless steel of the NMi VSL are calibrated regularly 
versus the PtIr53 and are divided in reference and working standards. The working standards are used 
for calibrations for the industry and the working standards are calibrated with the reference standards 
each one or two years. 
 
The traceability chain for mass starts at the International mass standard ("Grand K"). Via the Dutch 
PtIr53, the reference/working standards of NMi VSL and the standards in various RvA accredited 
laboratories, the traceability chain ends at the weights and weighing equipment used by industry, 
shops, test laboratories and at home. At each calibration however, the uncertainties of the used mass 
standard, the measurement and the environment factors must be taken into account, so the uncertain-
ties increase at each step down the chain. 
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Figure 2: Traceability chain 
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3 Aerostatic weighing 

3.1 Problem description 
In very accurate calibration of mass standards, as well as the weighing of voluminous objects, the air 
buoyancy plays an important role. Especially at the second step of the traceability chain (see figure 2), 
at which the platinum-iridium kilogram is compared to a stainless steel kilogram, because due to the 
great difference in density, there is a great difference in volume. The density of the platinum-iridium 
kilogram is much greater than that of the stainless steel kilogram. In this case, the air buoyancy leads 
to an apparent mass difference of approximately 100 mg. This effect can be calculated with the air 
density and the volume of the weight1     

 
For the calculation of the air 
density the CIPM-81/91 
equation (Appendix A) is 
used. The uncertainty 
associated with the model is 
approx. 10-4 relative. In 
absolute terms, the 
uncertainty associated with 
the air density ρ is given by 

( ) ρρ ⋅= −410u . 

To prevent a significant 
increase in the uncertainty 
due to air buoyancy, the 
uncertainty associated with 
the volume of a stainless steel 
weight should be less than 
2⋅10-5 relative. 

To determine the volume of weights, hydrostatic weighing is commonly used (see Appendix C). 
Weighing, using the results of such a hydrostatic weighing, will hereafter be referenced as the “tradi-
tional method”. For many other objects this method is 
not possible and therefore geometrical measurement or 
density data from the manufacturer is used to compute 
the volume. This method is often not very accurate. 
Other disadvantages of hydrostatic weighing include the 
surface effects of water on the artefact’s surface 
(adsorption) and the long time that the artefact needs to 
stabilise and equilibrate with the humidity from air. 
Furthermore not all artefacts can be immersed in water. 
An example of such an artefact, an adjustable weight, 
can be seen in Figure 4. Considering the importance of 
the volume for the determination of the mass, there is 
need for an alternative method to determine the volume. 

Aerostatic weighing might be such an alternative 
method. It has a great advantage over hydrostatic 
                                                      
1 Law of Archimedes: the buoyancy force on an object is equal to the weight of the volume of material that is 
displaced 

Figure 3: Comparison of a stainless steel work standard with the PtIr53  

Figure 4: Adjustable weight (example of
an artefact that cannot be immersed in
water) 
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weighing in that aerostatic weighing allows calibrating weights that cannot be immersed in water.  
Aerostatic weighing can be practised on all artefacts. The principle of aerostatic weighing is that the 
apparent mass difference between two artefacts is recorded as a function of the air density. In practice, 
there is another variable that may 
influence the measurement, namely 
the temperature. The temperature not 
only influences the air density, but 
also the volumes of the artefacts, so 
that it needs be taken into account.  
 
The goal is to use the existing 
arrangement of the airtight container 
for aerostatic weighing. The existing 
airtight container is equipped with a 
means to control the temperature 
using a thermostat bath and a pressure 
regulator.  The air density hereby 
varies +/- 10% by changing the 
pressure / temperature in the airtight 
container, after which the volume of 
the object can be calculated from the apparent mass differences. For the mass measurements a Mettler 
HK1000 MC comparator is used, the most accurate balance in the range of 100 to 1000 g. To deter-
mine the air density, the environmental conditions are measured using existing equipment. The 
method offers good possibilities to meet the uncertainty demand for accurate measurements, without 
the disadvantages of the current methods. 

3.2 Modelling 

The true mass Tm~  of a test weight can be related to its apparent mass Tm , its volume at 20oC VT and 
its cubic expansion coefficient γT as follows: 

)20(~ −++= tVVmm TTTTT ργρ ,  (1) 

where ρ  is the air density and t  is the temperature. The second term in the model accounts for air 
buoyancy, whereas the third accounts for the temperature effect on the weight’s volume. 

Likewise, the true mass of the reference weight Rm~  can be expressed in terms of its true mass mR and 
volume VR: 

)20(~ −++= tVVmm RRRRR ργρ ,  (2) 

where the subscript “R” is used to indicate that the variables now refer to the reference weight.  

Subtraction of (2) from (1) leads then to 

)20()()(~~ −−+−+−=− tVVVVmmmm RRTTRTRTRT ργγρ  (3) 

The only two variables unknown are VT and Tm~ . Hence, the regression problem should provide val-
ues and uncertainties for these two parameters. By defining 

( )20−=Δ tt  (4) 

the model equation can be improved in behaviour during fitting, as otherwise the fitting problem may 
become close to singular for measurements close to t = 20°C (reference temperature). It is often the 
case that when going from an implicit expression to an explicit expression there is a preferred choice 

  
Figure 5: airtight container
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(depending on the particular circumstances) and that some choices are excluded because the equations 
become singular in some way. Sometimes an implicit form is preferable even when an explicit form 
can be deduced from it because the former has better numerical stability [1]. 

Considering that the apparent masses mT and mR are recorded as a function of the air density, and de-
fining 

RTj mmm −=Δ , 

and 

RTT mmm ~~~ −=Δ , 

equation (3) can be written as 

( ) )20()(~ −−+−+Δ=Δ jjRRTTjRTjT tVVVVmm ργγρ  (5) 

The regression has now RTT mmm ~~~ −=Δ  instead of Tm~ as regression parameter.  

The input variables in the regression analysis are: the air density jρ , the temperature jt  and the mass 

difference jmΔ . The output quantities are VT–VR and Tm~Δ . 

The air density is calculated from the environmental conditions (air pressure, temperature, humidity 
and CO2 mole fraction) using the 1981/1991 equation (Appendix A).  

The second input parameter for the regression analysis is the temperature. This is due to the fact that 
the volume of an object depends on the temperature.  

))20(1.(o20
−+= tVV

Ct γ  

where tV  is the volume of the object at temperature t , 
C

V o20
is the volume at 20oC and γ  the cubic 

thermal expansion coefficient.  

The temperature is determined by measuring the resistance of 
two NTC (negative temperature coefficient) thermistors with a 
Prema multimeter. The thermistors are encased in aluminium 
and the wiring is protected by plastic tube. Coloured dots pro-
vide identification. One thermistor is positioned near the top of 
the weight under test and the other near the bottom of the 
weight (see the arrows in Figure 6). The average temperature 
of both thermistors is used as input for the regression analysis, 
but also used to calculate the air density which is also used as 
input for the regression analysis.  

This means that temperature and air density are correlated. Be-
cause both thermistors are calibrated together against the same 
temperature standard and the same multimeter measures their 
resistance, there will also be a correlation between the tem-
peratures thus measured.  

The last input variable for the regression is the mass difference between mass standard and test weight 
determined by Borda-weighing (see Appendix B). 

Equation (5) may be rewritten as 

( ) ( ){ } jjTTRRTRTj tVVVVmm ργγ Δ−+−+Δ=Δ ~ . (6) 

 

Figure 6: set-up of two thermistors 
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Figure 7: Mass difference vs air density 

In Figure 7 the measured mass is plotted as function of the air density. It is almost a straight line, so 
there is a linear relation between the mass difference and the air density. 

The calibration results are to be expressed at 20°C. Measurements at temperatures (slightly) differing 
from this reference temperature should not only address changes in air density, but also in the volume 
of the weights. Options for addressing the temperature-effect are a multivariate regression or adjusting 
the apparent mass of the artefact for volume change. Because the temperature-effect is very small, the 
second option is chosen.  

The algorithm now runs as follows. First assume that  

0=Δ jt  for all j 

Then equation (6) can be written as  

( ) jTRTj VVmm ρ−+Δ=Δ ~ .  

Generalised Distance Regression (GDR) is used to estimate the value for  

( )TR VVV −=Δ .  

Because RV is known, TV can be calculated as follows:  

VVV RT Δ−= . 

Use this value of TV  to calculate the correction term jδ  given by  

( )( )jTTRRj tVV Δ−= γγδ  for each j.  

Equation (6) can now be written as 

( ){ } jjTRTj VVmm ρδ+−+Δ=Δ ~  (7) 

Equation (7) can be written as 
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( ) ( ) TjTRjjj mVVm ~Δ+−=−Δ ρρδ  (8) 

The left–hand side of (8) is considered as the new measured value. Equation (8) is used to obtain a 
new value for ( )TR VV −  using GDR.  

3.3 Solving the regression problem 

The equation Tjj mVm ~. Δ+Δ=Δ ρ has to be solved and is of the form: baxy jj +=  

All variables have uncertainty. To propagate the uncertainty we do a weighted fit (regression).  
We can solve the equation above with GDR. 
 

Tjj mVm ~. Δ+Δ=Δ ρ can also be written as 01. aam jj +=Δ ρ , where 0a and 1a  are the regression 
coefficients. 

In matrix-form it becomes: aXm .=Δ , where ⎥
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The Ordinary Least Squares (OLS) method is used to calculate the start values for a . 

3.3.1 Ordinary Least Squares  

The flowchart of OLS is shown in Figure 9. 
 
We have the function ( ),;axy ϕ=  (9) 

where ( ) ( )∑
=

=
m

j
jj xax

1
; ϕϕ a , y denotes the dependent variable, x denotes the independent variable. 

 The functions jϕ  are for polynomials of the type ( ) 1−= j
j xxϕ . 

The objective of any regression method is to find the set parameters a that minimises the residuals f. 
The difference ii yy ˆ− is called a residual. Introduce 

( )
( )

( )⎥
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=
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c

ϕ

ϕ
ϕ

...
2

1

                           (10) 

then the predicted value iŷ is given by the vector product acT
i=iŷ . 

Different approaches for minimising the residuals can be used, here the least squares minimisation is 
used. In least squares, the sum of the squared residuals is minimised. Hence, the least squares mini-
misation problem can be formulated as follows:  



  

  - 18 -
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The vector of residuals f can be defined as 
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The sum of squared residuals is equivalent to the vector product ff T , which is equivalent to 
2

2
f , the 

2–norm of f. Hence, the minimisation problem as defined in (11) can be written as 

∑
=

−
n

i
C

1

2

2
min ay . (12) 

Given the function F(a),  
( ) ffa T=F  

at the solution â , the partial derivatives with respect to aj are zero, i.e., 
( ) 0=

∂

ja
F a

. (13) 

The partial derivatives with respect to aj of the regression function are the elements of the vector ci. 
Hence, each row of the matrix C contains the partial derivates of ϕ with respect to aj for a given value 
of xi. From the condition (13) the normal equations can be derived, which in matrix form read as  

ya TT CCC = . 

Multiplication on both sides with the matrix product ( ) 1−CCT gives an expression for a 

( ) ya TT CCC 1−
=  

but this expression is hardly usable as a basis for developing a numerically stable method for obtain-
ing the solution vector â . 
 
For applications where the associated uncertainty of measurement plays a role, the approach outlined 
needs augmenting. Firstly, it needs to be considered that the input vectors x and y are accompanied by 
associated uncertainty matrices Ux and Uy. In OLS, only the uncertainties associated with y are con-
sidered . 
If the yi are mutually independent, then the covariance matrix Uy contains on the diagonal the vari-
ances ( )iyu 2 . The weights wi assigned to the points are the reciproques of the standard uncertainties. 
The minimisation problem now becomes 

( )∑
=

−
n

i
ii yw

1

22min acT
i  (14) 

with wi = 1/u(yi). The vector y and matrix C are affected by these weights. Algorithms used for un-
weighted regression can also be used for weighted regression by applying them to iii ywy =~  and 

ijiij CwC =
~

. 
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More generally, when the vector y has a joint multivariate distribution that can be characterised by 
covariance matrix V, then the minimisation problem can be stated as 

( ) ( )ayay
a

CVC T −− −1min  (15) 

which leads, when solved, to a Gauss-Markov estimator a.  

The weighted vector y~ and matrix C~ can be calculated as follows. If V has a Cholesky decomposition 
(see Appendix D) TLLV = , where L is lower triangular. Then put 

yy 1~ −= L  (16) 

and  

CLC 1~ −= . (17) 

Rather than inverting L, the equation 

yy =~L  

is solved instead by means of, e.g., back substitution. The formation of C~  can be done in a similar 
way. The minimisation problem can now be stated as 

( ) ( )ayay
a

CC
T ~~~~min −−  

which is nothing else than solving the overdetermined system of equations 

ay C~~ = . (18) 

From a couple of algorithms, two algorithms for solving this system of equations have been imple-
mented: QR–factorisation and singular value decomposition (SVD), see Appendix D. Both algorithms 
rely on the orthogonal decomposition of the matrix C~ . These two algorithms have been chosen be-
cause they are numerically very stable in comparison to the other algorithms like Gauss-Jordan elimi-
nation and LU decomposition. 

When using QR, C~  can be decomposed as 

⎥
⎦

⎤
⎢
⎣

⎡
=

0

~~~ RQC ,  

where Q~ is an n × n orthogonal matrix and R~  is an m × m upper triangular matrix. Using the fact that 

xx =TQ~ , one gets 

a
q
q

ayay
2

1
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=−=−

0

~
~
~~~~~~~ RCQQC TT ,  

where 1q~ are the first n and 2
~q are the second m – n elements of y~~TQ . The minimisation problem is 

solved if a solves the upper triangular system 

1qa ~~ =R . 

The covariance matrix associated with a is given by 
( )T

a UUV 2σ= ,  
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where U solves the upper triangular system  
IUR =~

,  

where I is the identity matrix. 
The second approach for solving the regression problem also starts with the formation of y~ and C~ , 

followed by singular value decomposition of C~  to solve the overdetermined system ya ~~
=C . The 

SVD of matrix C~  is given by  
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where U is an n × m column orthogonal matrix, the matrix W is an m × m diagonal matrix containing 
the singular values, and V is an m × m orthogonal matrix.  
Given 

TUWV=C~  

the inverse of C~  can be expressed as 
( )[ ] TUV jWC 1diag~ 1 =−  

and hence, given the system 
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the solution a can be expressed as follows 
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The covariance matrix Va associated with the solution parameters a is given by ( ) 12 ~~ −
= CCV T

a σ  

The matrix product on the right-hand side can be expressed in terms of the matrices generated by 
SVD as follows 

( ) T2VVW−−
=

1~~ CCT . 

A value for σ2 can be obtained from 

mn −
=

2

22ˆ
f

σ ,  
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where f is the vector of residuals, defined as 
ayf C~~ −= . 

 
Data points are fitted to a best fit line, which is the line that minimizes the sum of the square residuals. 
For OLS the residual is the vertical distance from each data point. 
 
 

 
 
Figure 8: Residuals OLS 
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Figure 9: Flowchart of OLS 

3.3.2 Generalised Distance regression 

The flowchart of GDR is shown in Figure 11. 
 
Given the regression model 

( )a;xy ϕ=  (19) 

a predicted value for y can be related to a predicted value of x as follows ( )a;ˆˆ xy ϕ= . 

The minimisation problem in Generalised Distance Regression can be expressed as  
( ) ( )
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min 1

ˆ

ϕϕ
tU ,  (20) 

where the uncertainty matrix Ut is given by 
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In those cases, where there is no dependence between x and y, this expression reduces to 

⎥
⎦

⎤
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0
0

. 

The vector of residuals is defined as 

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

xx
ya;x

a;xf
ˆ
ˆ

ˆ
ϕ

. 

The solution of the minimisation problem can be rephrased as follows. The covariance matrix can be 
factorised using a Cholesky factorisation  T

t LLU = , followed by solving the lower triangular systems 

ff =
~L  and JJL =~

, where J is the Jacobian matrix.  

The Jacobian matrix is given by 
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which can be written in shorthand as  

⎥
⎦

⎤
⎢
⎣

⎡
=

0I
JJ

J ax ,  

where Jx is the diagonal matrix with elements  

( ) ( )a;ˆ
ˆ

, i
i

x x
x

iiJ
∂
∂

=
ϕ

  

and Ja is the n × m matrix with elements  

( ) ( )a;ˆ, j
j

a x
a

jiJ
∂
∂

=
ϕ

. 

I is the n × n identity matrix and 0 is the n × m null matrix. 
The regression problem (15) can now be stated as 

( ) ( )a;xfa;xf T

xa,
ˆ~ˆ~min

ˆ
. (21) 
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The regression problem must be solved iteratively. A suitable algorithm for this minimisation is the 
Gauss-Newton minimisation, which requires to solve at each iteration, in the least squares sense the 
system 

fp ~~ −=J  

which is equivalent to minimising  

2

~~min fp
p

+J . 

The solution of this set of equations is either done by means of QR–decomposition or by SVD. If us-
ing QR, the first step is to decompose the Jacobian  

⎥
⎦

⎤
⎢
⎣

⎡
=

0

~~~ RQJ  

followed by solving the upper triangular system 

1fp ˆ~ =R ,  

where 1f̂ is the first n + m elements of f~TQ . 
 
If using SVD, the first step is to decompose the Jacobian  
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Given 
TUWV=J~  

the inverse of J~  can be expressed as 
( )[ ] TUV jWJ 1diag~ 1 =−  

and hence, given the system 
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the solution a can be expressed as follows 
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The update vector p can be used to update the solution vector 
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⎥
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⎤
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⎣

⎡
=

a
x
ˆ
ˆ

ζ̂  

This update is as follows 
pαζζ += newnew

ˆˆ  

where α is the step size. In classical Gauss-Newton, 1=α , and this choice works usually well for 
regression problems. 
 
The step size is by default in accordance to the classical Gauss-Newton minimisation. If the proposed 
step leads to an increase in the object function f, then the following step size is used 

r
r

3
161 −+

=α  

where 
( )

( ) 2

2

2

2

ζ

ζ

f

pf +
=r . 

 
GDR is weighted Orthogonal Distance Regression (ODR). For ODR the residual is the perpendicular 
distance from the best fit line. 
 

 
Figure 10: Residuals ODR 
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Figure 11: Flowchart of GDR 

3.4 Gauss-Newton algorithm 
Non-linear least squares problems are generally solved using some variant of the Gauss-Newton algo-
rithm, which will be briefly described below. 
 
Given m non-linear functions )(afi of parameters a , we wish to minimise 

ffafaF T
m

i
i == ∑

=

)()(
1

2 ,  
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where 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)(

)(1

af

af
f

m

M ,  

with respect to parameters ( )T
naaa ,...,1= where m ≥  n. 

 
If J is the associated Jacobian matrix defined at an estimate a  of the solution parameters by  

j

i
ij a

f
J

∂
∂

= , 

then an updated estimate is given by pa + , where p (known as the Gauss-Newton step) solves the 
matrix equation fJp −= in the least squares sense. This is a linear least squares problem and can be 
solved using an orthogonal factorisation approach. 

 
In practice, the update step is often of the form ptaa += where the step length parameter t  is cho-
sen to ensure there is a sufficient decrease in the value of the objective function )(aF at each iteration 
[2]. 
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Figure 12: Flowchart of algorithm 

3.5 Results 
The uncertainty of the mass difference does not contain the effect of the convection because the un-
certainty in the mass difference would become too big to do a good fit. This might cause the fitting 
problem to be “ ill conditioned”. In other words, small changes in (one of) the coefficients of the solu-
tion, in this case the mass difference, can have drastic effects on the results, which makes iterating the 
solution to a small residual difficult.  Because the uncertainty contribution of the convection is inde-
pendent of air density and temperature, the uncertainty of it can be added later.  
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Figure 13: Measured mass difference plotted as function of the air density (Test2_v2) 

In Figure 13 the mass difference is plotted as a function of the air density .There is a great dispersion 
in the measured mass differences, possibly due to convection or instability of the balance. This disper-
sion is covered by the uncertainty in the mass difference when the convection is taken along. Each 
measurement series has its own colour, so it is easy to see which series gives the most information. In 
this measurement period the airtight container is regularly opened and the temperature is adjusted. 
Each time that the container is opened the (air) pressure changes and because of this the air density 
changes. 
The file Test2_v2 is composed with the results of a number of long measurements-runs. The data of 
Test2_v2 can be found on the accompanying CD. In Test2_v2, the 1S4-1000g is used as reference 
weight and the 4S4-1000g as weight under test. In the uncertainty of the mass difference, the uncer-
tainty of convection is included. The runs in this file cover a small range of the air density. 
 

 
Figure 14: Mass difference fitted as function of the air density, where the 1S4-1000g is used as reference mass  
piece and the 4S4-1000g as weight under test 
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In Figure 14 it can be seen that the line constructed from the values obtained by the traditional method 
lies above the regression line of aerostatic weighing. This means that the mass difference m~Δ  ob-
tained by the traditional method (0,712 mg) is greater than that obtained by aerostatic weighing (0,596 
mg). The difference between the traditional method and aerostatic weighing is 0,116 mg. At present 
we can not explain this difference. 

 

The uncertainty of the convection can be expressed as  

3
05,0)( =convmu δ . 

The uncertainty of the convection can be added to the uncertainty of the mass.  
22 )()~()( convmumumassu δ+Δ= . 

In the tables below, )( convmu δ is included in the )(massu . 

 
Table 2: Values obtained by the traditional method 

Weight Mass [mg] u(mass) [mg] Volume [cm3] u(volume) [cm3] 
Reference weight (1S3) 1,047 0,1095 126,235 0,0063 

Test weight (2S3) 0,519 0,0465 125,169 0,0104 
Difference -0,528 0,119 1,066 0,0122 

 
Table 3: Values obtained by aerostatic weighing (Test2_v2) 

Weight Mass [mg] u(mass) [mg] Volume [cm3] u(volume) [cm3] 
Reference weight (1S3) 1,047 0,1095 126,235 0,0063 

Test weight (2S3) 0,462 0,1172 125,22 0,0101 
Difference -0,585 0,0419 1,015 0,0079 

 
Table 4: Mass difference and difference in volume obtained by the traditional method and aerostatic weighing 

Weighing method Mass difference 
[mg] 

u(mass difference) 
[mg] 

Volume difference 
[cm3] 

u(volume difference) 
[cm3] 

Traditional method -0,528 0,119 1,066 0,0122 
Aerostatic weighing -0,585 0,0419 1,015 0,0079 

 

The standardized error is often used to determine the equivalence of measurements: 

 

( )
( )22 )()(2 weighingaerostaticumethodltraditionau

weighingaerostaticvaluemethodltraditionavalueEn
+⋅

−
=
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( )
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585,0528,0)~(
22

==
+⋅

+−
=Δ TmEn .

( )
( ) ( )( ) 7,1

03,0
051,0

0079,00122,02

015,1066,1)(
22

==
+⋅

−
=ΔVEn . 

If 1<En  than the difference is acceptable. The En value for the difference in true mass is acceptable, 
but the En value for the difference in volume is not acceptable.  

When the value of the difference in true mass is known, the value of the true mass of the test weight 
can be calculated:  

TRT mmm ~~~ Δ+=   

      = 1,047 mg – 0,585 mg 
      = 0,462 mg 
with uncertainty ( ) ( )( ) 1172,00,0419 0,1095 22 =+ mg. 

When the value of the difference in volume is known than the volume of the test weight can be calcu-
lated: 

VVV RT Δ−=  

     = 126,235 cm3 – 1,015 cm3 
     = 125,220 cm3 
with uncertainty ( ) ( )( ) 0101,00,00790,0063 22 =+ cm3. 

Table 5: True mass and volume of test weight obtained by the traditional method and aerostatic weighing 
(Test2_v2) 

Weighing method True mass of test 
weight [mg] 

u(mass of test 
weight) [mg] 

Volume of test 
weight [cm3] 

u(volume of test 
weight ) [cm3] 

Traditional method 0,519 0,0465 125,169 0,0104 
Aerostatic weighing 0,462 0,1172 125,22 0,0101 

 

 
Figure 15: Deviation of the true mass of T (Test2_v2) 
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Figure 16: Deviation of the volume of T (Test2_v2) 

In Figure 15 it can be seen that the true mass of T obtained by aerostatic weighing falls within the 
confidence interval of the true mass of T obtained by the traditional method and that uncertainty ob-
tained by aerostatic weighing  lies totally in the confidence interval of the true mass of T obtained by 
the traditional method. In Figure 16 it can be seen that the volume of T obtained by aerostatic weigh-
ing and its uncertainty are not within the confidence interval of T obtained by the traditional method.  
 
The basic measures of the goodness of fit are the coefficient of determination and the residual. The 
coefficient of determination r 2 is the fraction of the y-variable that is explained by the variation of the 
x-variable; it ranges from 0 to 1.Residuals are defined as the difference between the observed values 
of the dependent variable and the values that are predicted by the model.  
 
Here the residuals are used to measure the goodness of fit. To calculate fit parameters for a linear 
model, the sum of the squares of the residuals are minimised to produce a good fit. This is called a 
least-squares fit. 
You can gain insight into the "goodness" of a fit by examining a plot of the residuals: if the residual 
plot has a pattern, this indicates that the model does not properly fit the data. 
 
The fit is good if the following conditions hold: 
- x-residuals: )(.ˆ xukxx <−  

- y-residuals: )(.ˆ yukyy <−  

where usually k =2 is taken, corresponding with a normal or t-distribution and 95% level of confi-
dence. 
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Figure 17: Graph of the relative y-residuals of Test2_v2 

 

 
Figure 18: Graph of the relative x-residuals of Test2_v2 

In Figure 17 it can be seen that the relative y-residuals lie between [ ]5.0,5.0−  and in Figure 18 it can 
be seen that the relative x-residuals lie between [ ]2.0,5.0− .  In the graph of the relative y-residuals it 
can be seen that the residuals are scattered around and in the graph of the relative x-residuals the re-
siduals mostly lie between [ ]1.0,1.0− . This fit can be remarked as a good one, because the relative 
residuals lie between [ ]0.2,0.2− . 
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Figure 19: Graph of y-residuals (incl. effect of convection) of Test2_v2 

In Figure 19 it can be seen that the relative y-residuals inclusive the effect of convection lie between 
[ ]2.0,4.0− . The y- residuals without the effect of convection (Figure 17) mostly lie between 
[ ]5.0,5.0− .This indicates that the convection plays an important role. 
 
Apart from the Test2_v2 data, also another dataset has been obtained from measurements. The data of 
this Test3_v1 can be found on the accompanying CD. In Test3_v1, the 1S3-1000g is used as reference 
weight and the 2S3-1000g as weight under test. In the uncertainty of the mass difference, the uncer-
tainty of the convection is included. The runs at this file cover a bigger range of the air density. At the 
beginning the airtight container was closed and the air pressure within was increased. The temperature 
was kept at 20 oC  but due to a small leak, the air pressure slowly decreased at a nearly constant and 
very slow rate. As long as the leaking is slow, the thermostat bath can keep the temperature constant 
and the air density of each group is almost constant. In the ideal situation, after each two groups a lit-
tle bit air would be let out, wait for stabilization and then there can be measured again.  
But this is not possible yet. 
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Test3_v1: Traditional method vs aerostatic weighing
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Figure 20: Mass difference fitted as function of the air density, where the 1S3-1000g is used as reference mass  
piece and the 2S3-1000g as weight under test 

Figure 20 once again shows that the line constructed out of the values obtained by the traditional 
method lies above the regression line of aerostatic weighing. The mass difference obtained by the tra-
ditional method is 1,518 mg and the mass difference obtained by aerostatic weighing is 1,499 mg. The 
difference between the traditional method and aerostatic weighing is 0,019 mg. The difference is less 
than for Test2_v2 but we still can not explain this difference. 
Table 6: Values obtained by the traditional method 

Weight Mass [mg] u(mass) [mg] Volume [cm3] u(volume) [cm3] 
Reference weight (1S3) -0,018 0,013 126,250 0,006 

Test weight (2S3) 0,245 0,047 125,169 0,010 
Difference 0,263 0,0488 1,081 0,0117 

 
Table 7: Values obtained by aerostatic weighing (Test3_v1) 

Weight Mass [mg] u(mass) [mg] Volume [cm3] u(volume) [cm3] 
Reference weight (1S3) -0,018 0,013 126,250 0,006 

Test weight (2S3) 0,203 0,0431 125,149 0,0074 
Difference 0,221 0,0411 1,101 0,0043 

 
Table 8: Mass difference and difference in volume obtained by the traditional method and aerostatic weighing 

Weighing method Mass difference 
[mg] 

u(mass difference) 
[mg] 

Volume difference 
[cm3] 

u(volume difference) 
[cm3] 

Traditional method 0,263 0,0488 1,081 0,0117 
Aerostatic weighing 0,221 0,0411 1,101 0,0043 
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The En values for the difference is true mass  and the difference in volume  indicate that the observed 
differences between the two methods are smaller than the associated uncertainties.  
 
The value of the true mass of the test weight can be calculated by:  

TRT mmm ~~~ Δ+=   

      = 0,018 mg + 0,221 mg 
      = 0,203 mg 
with uncertainty ( ) ( )( ) 0431,00,04110,013 22 =+ mg. 

 
The volume of the test weight can be calculated by: 

VVV RT Δ−=  

     = 126,250 cm3 – 1,101 cm3 
     = 125,149 cm3. 
with uncertainty ( ) ( )( ) 0074,00,00430,006 22 =+ cm3. 

Table 9: True mass and volume of test weight obtained by the traditional method and aerostatic weighing 
(Test3_v1) 

Weighing method True mass of test 
weight [mg] 

u(mass of test 
weight) [mg] 

Volume of test 
weight [cm3] 

u(volume of test 
weight ) [cm3] 

Traditional method 0,245 0,047 125,169 0,010 
Aerostatic weighing 0,203 0,043 125,149 0,0074 

 

 
Figure 21: Deviation of the true mass (Test3_v1) 
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Figure 22: Deviation of the volume of T (Test3_v1) 

In Figure 21 it can be seen that the true mass of T obtained by aerostatic weighing lies in the confi-
dence interval of the true mass of T obtained by the traditional method. Likewise, in Figure 22 it can 
be seen that both volume estimates are consistent with one another (within their respective uncertain-
ties).  
 
There is more evidence needed for demonstrating consistency between the two weighing methods. 
The mathematical modelling and the algorithms used seem to be appropriate for the purpose of ob-
taining the differences in true mass and volume from aerostatic weighing data. 
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Figure 23: Graph of relative y-residuals of Test3_v1 
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Figure 24: Graph of the relative x-residuals of Test3_v1 

In Figure 23 it can be seen that the relative y-residuals lie between [ ]0.2,5.2−  and in Figure 24 it can 
be seen that the relative x-residuals lie between [ ]3.0,2.0− .  In the graph of the relative y-residuals it 
can be seen that the residuals mostly lie around [ ]0.1,0.1−  and in the graph of the relative x-residuals 
the residuals mostly lie between [ ]1.0,1.0− .  This fit can also be remarked as a good one. 
 

 
Figure 25: Graph of y-residuals (incl. effect of convection) of Test3_v1 
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In Figure 25 it can be seen that the relative y-residuals inclusive the effect of convection mostly lie 
between [ ]1.0,1.0− . The y- residuals without the effect of convection (Figure 23) mostly lie between 
[ ]0.1,0.1− .This indicates that the convection plays an important role. 
 
After analyzing both datasets it can be concluded that: 

 the accuracy of the regression improves with increasing the air density range 
 the algorithm used for obtaining the regression coefficients performs well 
 the residual plot of Test3_v1 has a small pattern, this indicates that the model does completely 

describes the data 
 The difference in volume seems to be the most vulnerable part of the comparison of the two 

weighing methods; more measurements are needed to demonstrate the validity of aerostatic 
weighing. 
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4 Weighing series 

4.1 Problem description 
For the calibration of weights, NMi VSL uses special weight sets. For practical reasons these sets con-
tain only a limited number of mass standards with specially selected nominal masses. For instance 10 
kg, 5 kg, 2 x 2 kg, 2 x 1 kg, 500 g, 2 x 200 g, .... 2 x 1 mg. In order to be able to distinguish between 
weights with the same nominal mass, a small dot is used to mark one of them. So one can speak of 
100 g and 100 g•. Of course the nominal mass of a weight is only an approximate value of the actual 
mass and during the calibration this actual mass is determined. By convention the calibration result is 
expressed as the mass difference between actual and nominal mass. 
 
The actual mass of an individual weight can be determined by direct comparison with a mass standard 
of equal nominal mass. In case no such mass standard is available also a combination of mass stan-
dards can be used of which the total mass is equal to the nominal mass of the weight under test. A 
(combination of) mass standard(s) is called the reference weight. The comparison of test weight and 
reference weight is done by means of a very accurate electronic balance, because for high classed 
weights the differences between actual and nominal mass are very small. 
 
Of course, the actual masses of the mass standards must be determined as well. To achieve the small-
est uncertainty, these masses must be determined using the Dutch National mass standard, PtIr532. 
However, this standard has a nominal mass of 1000 g and can not be used for the calibration of e.g. a 
200 g weight by means of direct comparison. In this case, so called weighing schemes must be used. 
 
In a weighing scheme several (combinations of) weights are compared with other (combinations of) 
weights. For example the 1000 g weight is compared with a combination of 500 g, 200 g,  
200 g• and 100 g weights. To determine the resulting mass difference more accurately, each individ-
ual weighing is performed several times in a sequence which is called a Borda weighing. The mass 
difference Δm1 can be expressed as a mathematical equation : 
 
Δm1 = m1000 – (m500 + m200 + m200• + m100) 

 
For practical reasons the 'reference' and 'test' combination can not both contain the same weight. And 
by selecting an overdetermined set of equations, the unknown masses m500 to m100 can be computed 
from the known mass m1000. An example of a weighing scheme is shown in Table 10. 
 
Table 10: Example of a weighing scheme 

Reference combination Test combination 
1000 g 500 g, 200 g, 200 g•, 100 g 
1000 g 500 g, 200 g, 200 g•, 100 g• 
500 g 200 g, 200 g•, 100 g 
200 g 100 g, 100 g• 
200 g +100 g 200 g•, 100 g• 
100 g 100 g• 

                                                      
2 In practice the PtIr53 is used as little as possible to minimise contamination and wear. So in the first step of the dissemina-
tion of the mass scale, the PtIr53 is compared to several stainless steel kilograms in a special weighing scheme called a 
Kohlrausch series for 5 equal nominal masses. From this the actual masses of four stainless steel kilograms is calculated. 
One of these stainless steel kilograms is subsequently used as reference weight in a weighing series for non-equal nominal 
masses as described in this project. 
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It has been shown that the weighing scheme is table 10 is not the most optimal scheme. The aim of 
this project is to determine the most optimal scheme, that is, the one resulting in the smallest mass 
uncertainties. To do this three steps must be taken : 
 
- modelling of single weighing result 
- determining mass difference of a individual equation 
- combining equations to compute the unknown masses. 

4.2 Modelling of a single weighing result 
The mass difference between a reference and test combination is determined from several single 
weighings. Determination of a weighing result is more than simply writing down the balance indica-
tion. The balance indication must be corrected for the effects of the air buoyancy, the centre of grav-
ity, resolution, convection, the drift of the balance and in case of small weights the use of a pad. This 
can be expressed by : 

padidriftconviresXCOGibuoii xxxxxxxx Δ+Δ+++Δ+Δ+= ,,,,
* δδ   

where  

ix  denotes the corrected mass,  

*
ix  the reading (repeatability),  

ibuox ,Δ  the correction for the air buoyancy,  

XCOGx ,Δ  the correction for the centre of gravity, 

iresx ,δ  the correction for resolution  , 

convxδ  the correction for convection   , 

idriftx ,Δ  the correction for the drift of the balance , 

and padxΔ  is the pad correction in case of small weights3. 

These effects and their contribution to the uncertainty will be described in more detail in the following 
paragraphs. 
 
Air buoyancy 
Any weighing in air is influenced by air buoyancy. As a balance measures the forceapplied to its 
scale, the balance display indicates the difference between gravitational mass and air 
buoyancy. The air buoyancy can be calculated using the Archimedes' Law and if also the expansion is 
taken into account this results in: 
 

).1(., TVx XXiibuo Δ+=Δ γρ 4,  

where  
ρ  is the air density ( 3.2,1 −≈ mkg ),  

                                                      
3 The letter Δ is used for the corrections that have a non-zero value. Corrections, which usually have value zero but impact 
the uncertainty are denoted by a δ. This distinction is not strict, and has no impact on how the effects are treated when estab-
lishing and uncertainty budget. 
4 For odd cycles, X,I, = Reference, for even cycles, X,I =T (weight under test) 
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Vx is the volume of the weight,  
γ  is the cubic expansion coefficient and  

TΔ the difference in temperature.  
 
The uncertainty associated with the air buoyancy ( buou ) can be expressed as: 
 

)()()()1()()1( 22222222222222 TuVuTVVuTuTVu XXiXXiXXiiXXbuo Δ+Δ+Δ++Δ+= γργργρργ . 

 
Because the weighings are done at 20°C, 0≈ΔT , a simplification of the model is justified which re-
sults in:  

Xiibuo Vx ., ρ=Δ   

The associated uncertainty can now be expressed as: 

))(.)(.( 2222
iXXibuo uVVuu ρρ += .  

 
Centre of gravity 
The centre of gravity of the reference weight(s) and the weight(s) under test are usually different. It 
depends on, e.g., the geometry of the weight(s) used. The correction XCOGx ,Δ  also depends on the 
mass of the weight.   

By gΔ  we denote the gradient in gravity )..10.161,3( 119 −−−= mmkgN , by g we denote the gravity 
( 1.8124,9 −= kgN ). Then: 

g
hmg

x XX
XCOG

⋅⋅Δ
=Δ ,   

where, mX  is the mass of the weight and hX is the height of the weight.  

The uncertainty of the centre of gravity then can be formulated as:  

g
u

mgu lh
nomCOG ..Δ= ,  

where mnom is the nominal mass in kg and 
lhu is the uncertainty in height. 

 
Resolution 
Each balance reading has a correction due to the finite resolution of the display of the mass balance. 
The uncertainty of the resolution is  

2
dures = ,  

where d is the sensitivity of the last decimal. 
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Table 11: the sensitivity of the last decimal of each balance. 

Balance d 
1AWD  0,1 mg 
2AWD  0,001 mg 

1000HK  0,001 mg 
3AWD  0,0001 mg 

 
Convection 
Convection is the airflow induced by small differences in T in the surroundings of the balance. To 
some extent, such differences can be caused by, e.g., the heat produced by the balance itself.  
 
The uncertainty of convection can be calculated by:  

nomconvconv mFu .= ,  

where 810.5 −=convF  for weights of accuracy class E1 and nomm  is 
the nominal mass in grams.      

 
Drift of the balance 
The drift of the balance is a gradual trend in the data. By 
calculating the difference in mass from subsequent weighings of 
the assemblies R and T, the linear component of the drift is 
effectively eliminated. 

Because some of the weights are very small, e.g. 0,1 mg-1000 mg, 
a pad is used to put the weight on it. In figure 26 a pan of an AWD can be seen.  

It is impossible to put a small weight on it, without it falling off. So a pad has to be used. A pad with a 
50 mg weight on it can be seen in figure 27. 

 
Uncertainty matrix 
The uncertainty matrix Vx can be formed as follows:  

padconvbuoCOGresxx VVVVVVV +++++= * ,  

where Vres, VCOG , Vbuo, Vconv,Vpad are the uncertainty matrices of the 
resolution, centre of gravity, air buoyancy, convection and pad 
respectively.  

)( 2
' IsdiagV

x
=   

and s2 is the repeatability variance of the reading *i
x  

 
To determine the value of s2 the following assumptions are made: 
- time is proportional to index 
- drift effects are the same for T and R 
- Model function for drift T = model function for drift R, apart from intercept 

 

Figure 26: pan of AWD 

Figure 27: pad with weight of 50 mg 
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After analyzing the data of the drift in Microsoft Excel it was clear that the data fitted a polynomial of 
degree 3 the best. So the assumption has been made that ϕ  is a polynomial of degree 3. 

32 ].3[].2[].1[]0[* tatataax
R

+++=  

].4[].3[].2[].1[ 32
* atatatax

T
+++=  

 
To obtain a, apply QR factorisation on aCx rr .=  and solve this in the least squares sense. 
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The residuals f

v
can be computed from  

aCxf vvv
.* −=  

The repeatability variance of the reading *i
x  is given by [ ]alengthflength

f
s vr

−
=

2

22                                                        

Now that s2 is known, the matrix xV  can be formed . xV  is then needed to calculate matrix mVΔ , the 

uncertainty matrix associated with mΔ , and is given by T
xm BVBV ..=Δ . 

4.3 Mass difference in a Borda sequence 
The mass difference between two (combinations of) weights is determined by means of a Borda-
cycle. During this cycle the reference weight and the test weight are placed alternately on the balance 
scale. Naturally also combinations can be used as either reference 'weight' R or test 'weight' T. There 
are several variations for Borda-cycles, e.g. RTTR, TRRT, TRT or RTRTR. NMi VSL used the RTR 
variant with maximum correlation, because it has been shown that this cycle effectively eliminates the 
drift of the balance while requiring not too many single weighings. 
 
Differences in mass are calculated by: 
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The process is also shown in Figure 28 and can be comprised 
in one formula: 
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++
+ +−−=Δ jjj

j
j xxxm  21 −≤≤ kj  

Thus from n  weightings 2−n mass differences can be obtained.  

During the measurement the balance generally drifts and this results in gradually changing single 
weighing results. As long as the drift is the same for reference and test 'weight', this should have little 
effect in the mass difference provided the computation of the mass difference is such that the drift is 
effectively eliminated. Generally the balance drift is linear and the RTR cycle described above does 
eliminate the drift sufficiently. 
 
Due to various effects and uncertainties each single individual weighing deviates a little bit (from the 
actual value. This means that the individual measured mass differences Δmj deviates a little from the 
actual mass difference Δμi. The deviation of the single weighings is denoted as εi and the mass differ-
ences obtained by the RTR Borda-cycle can then be written in matrix notation as : 
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εμ kBm +Δ=Δ 1  (22) 

 
To illustrate how to calculate an estimate for μΔ , apply Cholesky factorization on T

kk BB such that  

k
T
kk

T
kk DBBLL :==  

This is always possible because kD is symmetric and positive definite. Now multiply Equation (22) 

by 1−
kL : 

εμ kkkk BLLmL 111 1 −−− +Δ=Δ         (23) 

Equation (23) corresponds to a standard linear model 
 

,εβ += XY  

with μβ Δ==Δ= −− ,1, 11
kk LXmLY . For this model the least squares estimator is given by [5] 

Figure 28: RTR weighing  procedure 
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4.4 Combination of results from a set of Borda sequences 
A weighing scheme consists of several equations, each the result of comparing different combinations 
of weights. An overdetermined set of equations is then used to calculate the unknown masses μ1, μ2, 
μ3, μ4 en μ5  from the mass μ0 of one known standard which was part of several combinations. 

The overdetermined set of equations can be written in matrix notation as shown in the next example. 
The values of the matrix have to be either –1, 0 or 1. The –1 indicates that a weight is used as refer-
ence, a 0 means the weight is not used in the equation and a 1 shows that the weight is used as part of 
the test combination. 
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Because the total nominal mass of the 'reference' combination always equals that of the 'test' combina-
tion, the entry for μ0 can be determined by the other series and can therefore be omitted.  
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The vector μΔ  has the following form: 
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Compared to μ , μΔ  is small. 
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Suppose having a combination of weights characterized by a row vector ( )51,..., www = . Define for 
convenience ( ) ( ),1.0,1.0,2.0,2.0,5.0,1,,,,, 543210 =MMMMMM so ,ii M≈μ for 50 ≤≤ i .  

Define i
i

i wMw ∑
=

−=
5

1
0 . 

Then 0w  has to be either –1,0 or 1. This means that there are essentially only ten possible choices of 
w, not taking into account interchanging between the standard set and the test set (this corresponds to 
taking –w). These ten possible combinations are given in the following matrix W: 
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Two methods have been used to calculate the deviation from the nominal mass and will be described 
below. 
 
Method 1: 
 
If we take k measurements in the RTR-procedure, we see that equation (23) corresponds to: 
 

εμ kBwm +Δ=Δ 1  (24) 

Equation (24) corresponds to a standard linear model 

,εβ += XY  

with μβ Δ==Δ= ,1, wXmY .  

μΔ  can be estimated by repeating the RTR-procedure for a suitable set of different combinations. 

A choice of different combinations of weights is called a weighing scheme.  
A weighing scheme can be represented by a matrix A, consisting of different rows ( )lA , which corre-
sponds to rows from matrix W. The matrix A consist of max. 14 rows. Each row in A corresponds to 

30.max=k  measurements.  
 
Using a block-matrix notation equation (24) becomes: 
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To illustrate how to calculate an estimate for μΔ , apply Cholesky factorization on mVΔ : 

m
T VLL Δ=  

To obtain μΔ , apply QR factorisation on μΔ= .~~ XY  and solve this in the least squares sense, where 

YLY .~ 1−=  

and 

XLX .~ 1−= ,  

where  

mY Δ=   

and 

AX .1=  

⎥
⎦

⎤
⎢
⎣

⎡
=

0

~~~ RQX  

μΔV , the uncertainty matrix associated with the solution parameters μΔ , is given by  

TUUV =Δμ , 

where U is the solution of the upper triangular system 
IUR =0

~
. 
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Figure 2929: Flowchart of Method 1 

 
Method 2: 
 
Method 2 can be divided in method 2a (Figure 30) and method 2b (Figure 31). Method 2a gives the 
solution of the system aXY .~~ = . The matrix mVΔ  is decomposed to form LLT; L is subsequently used 
to weigh X and Y and solve the above mentioned system.  

 
To illustrate how to calculate an estimate for a, apply Cholesky factorization on mVΔ : 

m
T VLL Δ=  

To obtain a , solve aXY .~~ =  , where   
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YLY .~ 1−= ,  

XLX .~ 1−=  

and  

XX
YXa

T

T

~~
~~

= ,  

where 

mY Δ=   

and 

1=X  

aV , the uncertainty matrix associated with the solution parameters a , is given by  

( ) 1~~ −
= XXV T

a  

Method 2b  calculates, from the results from each of the weighing series the mass differences of the 
weights solving the linear system μΔ= .~~ Aa . Where a~  is the weighted vector of mass differences 

obtained from processing series by weighing the weighing results; A~  is the weighted matrix of the 
weighing series (= the weighing scheme). μΔ  is the solution vector containing the deviations from 
nominal mass of the weights. It has the dimension 5: 500 g, 200 g, 200 g·, 100 g, 100 g·. 

 
To illustrate how to calculate an estimate for μΔ , apply Cholesky factorization on aV : 

a
T VLL =  

To obtain μΔ , apply QR factorisation on μΔ= .~~ Aa  and solve this in the least squares sense, where 

aLa .~ 1−=   

and  

ALA .~ 1−= ,  

where 

a is the parameter obtained by method 2a  

and  

A the matrix of the weighing series 

⎥
⎦

⎤
⎢
⎣

⎡
=

0

~~~ RQA  

μΔV , the uncertainty matrix associated with the solution parameters μΔ , is given by  

TUUV =Δμ , 

where U is the solution of the upper triangular system 
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IUR =0
~

. 

The diagonal of μΔV  gives us the variances of the separate estimators for 51 ,..., μμ ΔΔ .  The weighing 
scheme A is chosen, such that the variances are minimized in some way. Minimizing the absolute er-
ror gives us the following “loss function”: 

∑
=

Δ=
5

1
)(

i
ii

VAL μ  

It is wise to minimize the relative error in each weight ,  so the sum of squares of the relative errors is 
used as a measure of inaccuracy. Minimizing the relative error gives us the following “loss function”: 

( ) ∑
=

Δ

Δ
=

5

1
2

i i

ii
V

AL
μ

μ  

In the above-mentioned methods the QR factorization is used to solve the system μΔ= .XY . 

To obtain μΔ  Singular Value Decomposition can also be applied on μΔ= .~~ XY  or μΔ= .~~ Aa  and 

by solving this in the least squares sense, we get TVSUX ..~ = or TVSUA ..~
=  
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Figure 300: Flowchart of method 2a 
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Figure 31: Flowchart of method 2b 

4.5 Results 
Presently NMi uses Gauss-Jordan elimination for the determination of the mass. Gauss-Jordan elimi-
nation is a method to find the matrix inverse and is a variation of the Gaussian elimination. Gaussian 
elimination is used to solve large linear systems numerically. The procedure, which can be found in 
Appendix E, is numerically unstable unless pivoting (exchanging rows and columns as appropriate) is 
used. To avoid matrix inverse the Cholesky decomposition is used to decompose the matrix which is 
numerically very stable, without any pivoting at all. Once the matrix is decomposed, backsubstitution 
can be used to solve the linear equation. 
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Both methods (1,2a and 2b) provide the same value for the deviations from the nominal mass of the 
weights. 
Method 1 : μΔ⋅⋅=Δ Am 1  

Method 2: μΔ⋅⋅=Δ Am 1  

• Method 2a: am ⋅=Δ 1  

• Method 2b: μΔ⋅= Aa  

The difference between method 1 and method 2 is that method 1 only give results for the deviations 
from the nominal mass of the weights ( μΔ ) and method 2 also gives the mass differences obtained 
from processing series by weighing the weighing results ( mΔ ). 

 
The datasets of weighing series: BWSData 02-07 (100 mg-1000 mg) and Crosscheck1S3 WS1-WS6 
(10 g-100 g) can be found on the accompanying cd. BWS stands for Borda Weighing Scheme. 
 
In the datasets BWSData_02, BWSData_06 and Crosscheck1S3 –WS3 matrix W has the following 
form: 

⎟
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In these datasets in the matrix W the equations 5 and 6 are not used and the equations 1 and 2 are used 
twice. In the dataset Crosscheck1S3-WS4 the matrix W has the following form: 
 

⎟
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In this case the matrix W does not contain the equations 7 and 10. 
In the remaining datasets the original matrix W, containing all the equations (once only), is used. 
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Table 12: deviations from the nominal mass of the weights of 100mg-1000mg from datasets BWSData 02-07 

Test Weight            Delta µ  [mg]         u(delta µ)  [mg] 
  Gauss-Jordan Borda weighingGauss-JordanBorda weighing 
  -0,008473 -0,008528 0,00027 0,000046 
  -0,008635 -0,008695 0,00038 0,000066 
  -0,008431 -0,008481 0,00036 0,000058 
BWSData-500 mg -0,008317 -0,008257 0,00039 0,000058 
  -0,008345 -0,008334 0,00032 0,000045 
  -0,008402 -0,008387 0,00040 0,000056 
  -0,011519 -0,011528 0,00035 0,000065 
  -0,011303 -0,011322 0,00027 0,000047 
  -0,011361 -0,011369 0,00025 0,000038 
BWSData-200 mg -0,011176 -0,011157 0,00026 0,000040 
  -0,012152 -0,012156 0,00030 0,000044 
  -0,012160 -0,012146 0,00024 0,000040 
  -0,036571 -0,036610 0,00033 0,000064 
  -0,036175 -0,036167 0,00026 0,000044 
  -0,036087 -0,036108 0,00025 0,000039 
BWSData-200 mg· -0,036155 -0,036150 0,00026 0,000040 
  -0,037109 -0,037118 0,00027 0,000041 
  -0,037040 -0,037058 0,00024 0,000038 
  0,021748 0,021769 0,00027 0,000051 
  0,021752 0,021739 0,00030 0,000049 
  0,021778 0,021790 0,00028 0,000042 
BWSData-100 mg 0,021800 0,021851 0,00027 0,000043 
  0,021701 0,021722 0,00032 0,000049 
  0,021548 0,021566 0,00030 0,000045 
  0,007272 0,007270 0,00026 0,000050 
  0,006743 0,006732 0,00029 0,000047 
  0,006601 0,006589 0,00026 0,000039 
BWSData-100 mg· 0,006691 0,006678 0,00026 0,000042 
  0,006616 0,006618 0,00033 0,000048 
  0,006717 0,006714 0,00028 0,000043 
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Table 13: deviations from the nominal mass of the weights of 10g-100g from datasets Crosscheck1S3 WS1- 
WS6 

Test Weight            Delta µ [mg]         u(delta µ) [mg] 
  Gauss-Jordan Borda WeighingGauss-JordanBorda Weighing 
  0,627600 0,627793 0,00970 0,001183 
  0,627900 0,627996 0,01000 0,001230 
  0,628800 0,628264 0,00980 0,000968 
Crosscheck1S3-50 g 0,628100 0,628250 0,01000 0,001292 
  0,628200 0,628310 0,00980 0,001202 
  0,627500 0,627648 0,00974 0,001179 
  0,369000 0,368955 0,00410 0,000553 
  0,368700 0,368902 0,00420 0,000556 
  0,368800 0,368705 0,00430 0,000591 
Crosscheck1S3-20 g 0,368600 0,368828 0,00450 0,000661 
  0,369700 0,369783 0,00410 0,000553 
  0,369500 0,369445 0,00413 0,000544 
  -0,091300 -0,091165 0,00410 0,000581 
  -0,091500 -0,091503 0,00420 0,000560 
  -0,092000 -0,091961 0,00420 0,000539 
Crosscheck1S3-20 g· -0,091600 -0,091850 0,00450 0,000663 
  -0,091300 -0,091393 0,00410 0,000563 
  -0,091400 -0,091295 0,00411 0,000541 
  0,142900 0,142575 0,00260 0,000475 
  0,142800 0,142945 0,00260 0,000425 
  0,144600 0,144393 0,00310 0,000683 
Crosscheck1S3-10 g 0,144000 0,144067 0,00300 0,000593 
  0,143100 0,143045 0,00240 0,000401 
  0,143600 0,143418 0,00245 0,000395 
  0,121300 0,121172 0,00260 0,000473 
  0,120400 0,120495 0,00260 0,000424 
  0,119400 0,119635 0,00320 0,000696 
Crosscheck1S3-10 g· 0,119800 0,120071 0,00360 0,000611 
  0,120700 0,120739 0,00250 0,000403 
  0,120900 0,121188 0,00240 0,000395 
 
The results gained by the datasets can be found in Appendix F. The uncertainty of μΔ  determined by 
Borda weighing is much smaller than the uncertainty determined by Gauss-Jordan. All the values for 

μΔ  determined by Gauss-Jordan lie in the uncertainty of μΔ determined by Borda weighing, this 
holds for all datasets. 
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Table 14: Mass differences of the weights 100mg-1000mg 

        Dataset      Mass difference  [mg]     u(mass difference)  [mg] 
  Gauss-Jordan Borda Weighing Gauss-Jordan Borda Weighing 
  -0.035148 -0.035111 0.000734 0.000193 
  -0.03441 -0.034523 0.000373 0.000141 
  -0.049434 -0.049493 0.000389 0.000123 
  -0.049416 -0.049484 0.000335 0.000112 
BWSData_02: -0.018039 -0.018029 0.000235 0.000098 
  -0.032193 -0.032204 0.000221 0.000083 
  -0.025192 -0.025259 0.000391 0.000145 
  0.040673 0.040736 0.000383 0.000142 
  0.065506 0.065496 0.000304 0.000135 
  -0.01452 -0.014541 0.00021 0.000080 
  -0.034783 -0.034718 0.000612 0.000171 
  -0.049262 -0.049338 0.000308 0.000110 
  -0.017068 -0.017020 0.000308 0.000120 
  -0.032132 -0.032109 0.000376 0.000142 
BWSData_03: -0.039959 -0.039911 0.000284 0.000104 
  -0.00996 -0.010000 0.000284 0.000129 
  -0.024547 -0.024621 0.000404 0.000141 
  0.039831 0.039883 0.000448 0.000148 
  0.064648 0.064592 0.000352 0.000107 
  -0.015148 -0.015163 0.000347 0.000118 
  -0.033987 -0.033880 0.000557 0.000151 
  -0.049309 -0.049487 0.000295 0.000097 
  -0.017105 -0.017109 0.000363 0.000129 
  -0.032506 -0.032472 0.003 0.000105 
BWSData_04: -0.039734 -0.039725 0.000401 0.000132 
  -0.009567 -0.009573 0.000415 0.000136 
  -0.024752 -0.024784 0.000262 0.000087 
  0.039703 0.039722 0.000255 0.000078 
  0.0645 0.064519 0.000239 0.000087 
  -0.015138 -0.015152 0.000423 0.000110 
  -0.033573 -0.033409 0.000386 0.000107 
  -0.049118 -0.049150 0.000296 0.000100 
  -0.017016 -0.017059 0.000548 0.000149 
  -0.03241 -0.032452 0.000364 0.000111 
BWSData_05: -0.040066 -0.040067 0.000297 0.000100 
  -0.009969 -0.009980 0.000434 0.000127 
  -0.024876 -0.024938 0.000287 0.000104 
  0.039573 0.039631 0.000311 0.000104 
  0.064732 0.064737 0.0003 0.000108 
  -0.015002 -0.015024 0.00025 0.000105 
  -0.035688 -0.035627 0.00058 0.000174 
  -0.035892 -0.035905 0.000333 0.000103 
  -0.051106 -0.051118 0.000443 0.000123 
  -0.051004 -0.050976 0.00028 0.000089 



  

  - 58 -

        Dataset      Mass difference  [mg]     u(mass difference)  [mg] 
  Gauss-Jordan Borda Weighing Gauss-Jordan Borda Weighing 
BWSData_06: -0.019324 -0.019317 0.000356 0.000096 
  -0.034196 -0.034207 0.000348 0.000103 
  -0.024993 -0.025006 0.000253 0.000078 
  0.040586 0.040609 0.000456 0.000125 
  0.065387 0.065393 0.000264 0.000095 
  -0.015107 -0.015176 0.000444 0.000134 
  -0.035899 -0.035812 0.000619 0.000147 
  -0.050934 -0.050974 0.000348 0.000098 
  -0.019182 -0.019202 0.000383 0.000113 
  -0.034132 -0.034144 0.00033 0.000102 
BWSData_07: -0.039617 -0.039603 0.000401 0.000138 
  -0.01023 -0.010244 0.000476 0.000145 
  -0.024872 -0.024913 0.00016 0.000080 
  0.040415 0.040433 0.000316 0.000109 
  0.065311 0.065333 0.00026 0.000089 
  -0.014927 -0.014905 0.000429 0.000127 
 
Table 15: mass differences of the weights 10g-100g 

        Dataset      Mass difference  [mg]     u(mass difference)  [mg] 
  Gauss-Jordan Borda Weighing Gauss-Jordan Borda Weighing 
  0.72193 0.722203 0.001775 0.002957 
  0.698775 0.698708 0.001767 0.002962 
  -0.206451 -0.207261 0.001793 0.001575 
  -0.229133 -0.228992 0.001882 0.001548 
Crosscheck1S3-WS1 -0.481336 -0.481125 0.001625 0.001041 
  -0.439015 -0.438794 0.001561 0.000996 
  -0.46028 -0.460012 0.001593 0.000845 
  -0.105501 -0.105587 0.002305 0.000925 
  0.356384 0.356333 0.002548 0.001790 
  -0.021733 -0.021520 0.001678 0.000673 
  0.72202 0.722367 0.002774 0.003027 
  0.697758 0.697869 0.002379 0.003018 
  -0.207949 -0.207836 0.003921 0.001758 
  -0.230189 -0.229933 0.002958 0.001687 
Crosscheck1S3-WS2 -0.482178 -0.482151 0.001673 0.001002 
  -0.438074 -0.437997 0.001905 0.001024 
  -0.46126 -0.460349 0.001599 0.000759 
  -0.105894 -0.105919 0.001495 0.000777 
  0.355743 0.355485 0.002209 0.000846 
  -0.022709 -0.022899 0.001839 0.000807 
  0.7223 0.722993 0.002793 0.002947 
  0.724041 0.723324 0.00183 0.002948 
  0.697909 0.697809 0.002109 0.002962 
  0.695912 0.695708 0.00391 0.003164 
Crosscheck1S3-WS3 -0.208281 -0.208529 0.002094 0.001643 
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        Dataset      Mass difference  [mg]     u(mass difference)  [mg] 
  Gauss-Jordan Borda Weighing Gauss-Jordan Borda Weighing 
  -0.230435 -0.230149 0.003535 0.001828 
  -0.46076 -0.460742 0.001326 0.000825 
  -0.104696 -0.104382 0.004869 0.001626 
  0.355988 0.355894 0.001806 0.000926 
  -0.025466 -0.025470 0.00385 0.001436 
  0.722064 0.722700 0.00229 0.002978 
  0.69783 0.697766 0.005664 0.003415 
  -0.206874 -0.206890 0.002826 0.001756 
Crosscheck1S3-WS4 -0.231532 -0.231561 0.003831 0.001872 
(Muylwijk serie) -0.484392 -0.484433 0.002964 0.001400 
  -0.436518 -0.436757 0.004784 0.001736 
  -0.104822 -0.104752 0.001399 0.000783 
  0.355349 0.356055 0.001817 0.000823 
  0.723169 0.723611 0.001679 0.002977 
  0.699214 0.699557 0.002373 0.003006 
  -0.206958 -0.206999 0.002325 0.001626 
  -0.229064 -0.229059 0.002257 0.001607 
Crosscheck1S3-WS5 -0.4831 -0.483605 0.001204 0.000987 
  -0.438431 -0.438508 0.001675 0.001116 
  -0.461276 -0.461218 0.001476 0.000919 
  -0.106179 -0.106061 0.001528 0.000733 
  0.355702 0.355272 0.001983 0.000911 
  -0.022448 -0.022141 0.001767 0.000595 
  0.7232 0.723517 0.002241 0.002943 
  0.698929 0.698680 0.001572 0.002949 
  -0.205455 -0.205488 0.001927 0.001566 
  -0.228629 -0.228898 0.001462 0.001560 
Crosscheck1S3-WS6 -0.48284 -0.482763 0.002197 0.001056 
  -0.437989 -0.438151 0.002374 0.001064 
  -0.461219 -0.461109 0.001947 0.000793 
  -0.105111 -0.104786 0.001509 0.000812 
  0.356062 0.355854 0.00117 0.000752 
  -0.022341 -0.022045 0.001544 0.000596 
 
The uncertainty of mΔ  determined by Borda weighing is also much smaller than the uncertainty de-
termined by Gauss-Jordan. All the values for mΔ  determined by Gauss-Jordan lie in the uncertainty 
of mΔ  determined by Borda weighing, this also holds for all datasets. 

On the base of the results using these datasets it can be said that the value of μΔ  and mΔ  determined 
by Borda weighing are good but that the uncertainty of μΔ  and mΔ determined by Borda weighing  
are too small.  
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Table 16: Relative weighted residuals of  100mg-1000mg 

Equation #02 #03 #04 #05 #06 #07 
1 -1,11 -1,60 1,91 2,85 1,49 1,46 
2 2,66 1,03 -1,21 -2,65 -0,19 -0,98 
3 -0,78 0,29 0,75 0,95 -1,04 0,44 
4 -0,77 -0,34 -0,61 -0,71 0,16 -0,40 
5 -1,93 -0,57 1,63 0,98 -1,03 1,16 
6 1,64 -1,26 -0,27 -1,26 1,11 -1,27 
7 -1,22 1,58 -0,53 0,53 -0,56 -0,02 
8 1,19 0,60 -0,34 -0,53 0,90 0,06 
9 -1,13 -0,43 0,38 0,54 -0,68 -0,05 

10 -0,52 -1,33 0,45 1,41 -0,53 -0,42 
 
 Table 17: Relative weighted residuals of 10g-100g 

Equation #01 #02 #03 #04 #05 #06 
1 0,35 0,34 0,20 0,14 0,29 0,44 
2 -0,35 -0,34 0,31 -0,16 -0,29 -0,44 
3 0,11 -0,10 0,06 0,18 -0,08 0,38 
4 -0,10 0,10 -0,61 -0,19 0,08 -0,38 
5 0,38 0,70 -0,85 0,17 -0,12 0,20 
6 -0,08 -0,04 0,95 -0,04 0,32 0,34 
7 0,13 0,07 -0,09 -0,08 -0,05 -0,46 
8 -0,41 -0,59 0,18 0,081 -0,08 0,07 
9 0,79 0,64 -0,10  0,10 -0,06 

10 -0,17 -0,56 -0,50   0,28 0,31 
 
The fit can be remarked as a good one, because the residuals of both datasets lie between [-2.0,2.0]. 
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5 Conclusions 

Instead of hydrostatic weighing there is need of an alternative method to determine the volume of 
weights. This, because for hydrostatic weighing the weight is immersed in water and not all weights 
can be immersed in water. Aerostatic weighing might be such an alternative method, because it allows 
calibrating weights and other artefacts that cannot be immersed in water. The principle of aerostatic 
weighing is that the apparent mass difference between two artefacts is recorded as a function of the air 
density. In practice, there is another variable that may influence the measurement, namely the tem-
perature. The temperature not only influences the air density, but also the volumes (cubic expansion) 
of the artefacts, so that influence needs to be taken into account.  
 
An algorithm has been developed and implemented to process the results from aerostatic weighing. A 
least squares regression method has been implemented that does not rely on the assumption that one 
of the coordinates is without uncertainty. In order to propagate the uncertainty associated with the in-
put variables (mass difference and air density), generalised distance regression is used, which weighs 
the points in the dataset on the basis of the uncertainty associated with the input quantities. The algo-
rithm also takes care of effects of the ambient temperature on the volume of the artefacts. 
 
The difference in true mass of T obtained by aerostatic weighing lies in the confidence interval of the 
difference in true mass of T obtained by hydrostatic weighing. The difference of the volume of T ob-
tained by aerostatic weighing does not lie in the confidence interval of the difference in volume of T 
obtained by hydrostatic weighing, On the basis of only two datasets it can not be said that the value of 
the difference in true mass and the difference in volume of T calculated by aerostatic weighing is 
good or not. We need more datasets and calculations of the value of the difference in true mass and 
the difference in volume of T to do so. 
After analyzing both datasets of aerostatic weighing it can be concluded that for a better regression 
the range covered by the air density, the range,  must be expanded. 
 
Mass calibration is done by comparing an unknown weight with a reference mass standard by alterna-
tively placing them on a balance, this is called Borda weighing. Usually, an assembly of weight(s) is 
calibrated against a (single,) already calibrated artefact. This calibration is realised by using a weigh-
ing scheme, i.e., different combinations of weights that are compared among one another. Such a 
weighing scheme can be designed in numerous ways. The weighing scheme used in the Netherlands 
for primary calibration is subjected to a rigorous mathematical optimisation. 
 
The optimisation is carried out by first modelling the uncertainty structure of the mass differences 
experimentally obtained in each Borda sequence. The structure of the resulting covariance matrix is 
the basis for determining the mass difference in each of the Borda sequences forming the weighing 
scheme. Several constraints have been put in the optimisation to exclude undesired solutions, such as 
practically unfeasible weighing schemes. The number of Borda sequences has been limited to 14 and 
the number of repeated weighings in a sequence has been restricted to 30. The Gauss-Jordan elimina-
tion is used by the NMi for the determination of the mass. 
 
The results are that the uncertainty of the deviation from the nominal mass of the weights and the dif-
ference in mass determined by Borda weighing is much smaller than the uncertainty determined by 
Gauss-Jordan. All the values for the deviation from the nominal mass of the weights and the differ-
ence in mass determined by Gauss-Jordan lie in the uncertainty determined by Borda weighing, this 
holds for all datasets. After analyzing the datasets of the weighing series it can be concluded that the 
value of the deviation from the nominal mass of the weights and the difference in mass obtained with 
the new model are good but that the uncertainty seems too small in comparison with the observed 
mass differences. As a result, it was impossible to perform the optimisation and to determine the op-
timum weighing scheme. 
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List of symbols 

a  Vector containing the regression coefficients 

f  Vector of residuals 

f~  Vector of weighted residuals 

ϕ  Regression function 

J  Jacobian matrix 

J~  Weighted Jacobian matrix 

L  Lower triangular matrix (from Cholesky factorisation) 

p  Vector containing an update to the regression coefficients 

Q  Orthogonal matrix (from QR–factorisation) 

R  Upper triangular matrix (from QR–factorisation) 

u  Standard uncertainty 

U  Expanded uncertainty 

V  Covariance matrix 

x  Vector of independent variables 

x̂   Vector of predicted independent variables 

y  Vector of dependent variables 

ŷ   Vector of predicted dependent variables 
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List of matrices  

 

Matrix   a matrix is a rectangular table of numbers. Matrices are used to describe 
lineair equations,  keep track of the coefficients of lineair transformations and 
to record data that depend on two parameters. Matrices can be added, multi-
plied and decomposed in various ways 
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Block matrix  a matrix partitioned in sub-matrices called blocks 
 
Diagonal matrix a square matrix with all entries off the main diagonal equal to zero 
 
Block diagonal matrix a block matrix with entries only on the diagonal 
 
Identity matrix a diagonal matrix, with all entries on the main equal to 1, and the rest 0  
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Orthogonal matrix a matrix whose inverse is equal to its transpose, TAA =−1  

Square matrix a matrix that have the same number of rows and columns 

Covariance matrix Covariance is a parameter that indicates the extent to which two random vari-
ables co-vary, it measures the tendency. The covariance between two compo-
nents iX and iY  is denoted by ( )ji XX ,cov  or ∑ ji, and is defined by the 

expectation  ( ) ( )( )[ ]jjiiji XXEXX μμ −−=,cov , where iμ and jμ  are 

the means of iX and iY . Covariance are symmetric, so ∑∑ = ijji ,, . The 

covariance of any component iX with itself is that component’s variance  

( ) ( )[ ] ( )iiiji XXEXX var,cov 2 =−= μ . A covariance matrix given that 
summarizes all the covariance’s of  a vector X : 
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Transpose of a matrix The transpose of a matrix is formed by turning rows into columns and col-
umns into rows. 
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Inverse of a matrix The inverse of a square matrix A , is a matrix 1−A  such that IAA =−1  
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Vector  a vector is a row or column of numbers 
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Appendix A:   CIPM-81/91equation 

The CIPM-81/91 equation reads as follows: 
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w
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a 11ρ          A-1 

where ρ  denotes the air density, Ma the molar mass of air, Mw the molar mass of water, Z the com-
pressibility, R the ideal gas constant, and p the pressure. The symbols in equation (C-1) can be ex-
pressed as follows 

p
p

fhx
sat

moi ⋅=           A-2 

where h is the relative humidity, f is an enrichment factor, psat is the vapour pressure of water at satu-
ration and p is the pressure. The enrichment factor f can be expressed as 

278 106.51014.300062.1 tpf −− ⋅+⋅+=         A-3 

where t is the temperature in degrees Celsius. The saturation pressure of water has been expressed as 
follows 
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D

CBTATp sat 2exp          A-4 

The coefficients of this equation (A, B, C, and D) are given in table 1 and T is the absolute tempera-
ture in Kelvin. If instead of the humidity, the dewpoint temperature is measured, equation A-2, A-3 
and A-4 must be replaced by 

p

p
fx dp
dpmoi =           A-5 

278 106510143000621 dpdp tpf −− ⋅+⋅+= ...        A-6 
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with Tdp and tdp the dewpoint temperature in Kelvin and Celsius respectively. 
 
The molar mass of air (Ma) can be expressed as 

( )[ ] 3100004,0011,129635,28
2

−⋅−+= COa xM        A-8 

where Ma is the mole fraction of dry air in g/mol. xCO2 is the mole fraction CO2 in the air. The equa-
tion for the compressibility of air reads as 

( ) ( )[ ] ( )2
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T
p
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Equation (A-1) is the best fit of several measurements and thus causes an uncertainty in the air density 
due to the equation itself. According to [1] this (average) relative standard uncertainty is 1·10-4. This 
extra uncertainty is not taken into account for normal mass calibrations on the principle that if every-
body neglects it, there is no effect on the comparison between masses. However, when the air density 
is used in aerostatic weighing to calculate the volume of weights, this uncertainty component can not 
be ignored any longer [4]. 
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Table 18: Values of the coefficients used in equations 

Coefficient Unit Value 
R J mol-1 K-1 8.314510 
A K-2 1.2378847⋅10-5 
B K-1 -1.9121316⋅10-2 
C  33.93711047 
D K -6.3431645⋅103 
a0 K Pa-1 1.58123⋅10-6 
a1 Pa-1 -2.9331⋅10-8 
a2 K-1 Pa-1 1.1043⋅10-10 
b0 K Pa-1 5.707⋅10-6 
b1 Pa-1 -2.051⋅10-8 
c0 K Pa-1 1.9898⋅10-4 
c1 Pa-1 -2.376⋅10-6 
d K2 Pa-2 1.83⋅10-11 
e K2 Pa-2 -0.765⋅10-8 
Mw g mol-1 18.0152 
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Appendix B:   Mass difference 

 
The last input variable for the regression is the mass difference between mass standard and test weight 
determined by Borda-weighing. For ordinary mass calibrations the mass differences need to be cor-
rected for air buoyancy. For aerostatic weighing the uncorrected mass difference jmΔ is required 

TR mmm −=Δ  
where Rm is the balance reading when the mass standard is weighed and Tm  the balance reading 
when the test weight is on the scale. The mass standard and test weight placed alternately on the bal-
ance scale (using the so-called RTR method) and the whole weighing process, including reading the 
balance and environmental conditions, is automatized. 
Because the display value of a balance always shows a small drift, a single balance reading for mass 
standard and test weight would not be representative. Therefore 11 weighings of the mass standard 
and 10 for the test weight are performed per cyclus (also called a group). After each cyclus of 21 
weighings the process is repeated. The mass differences between individual weighings of a cyclus are 
determined by 
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From the the 21 weighings per cyclus, 19 mass differences can be determined and this results in an 
average mass difference mΔ  for the cyclus  
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m
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n

i
j∑

=

Δ
=Δ 1           

In this case n = 19. Mass measurements are independent from the other input variables, so no correla-
tions have to be taken into account. Though mass measurement cycli are independent of each other, 
there is a correlation between the individual mass differences within a group. With a correction factor 
for this correlation can be calculated. This correction factor approaches unity when the number of 
measurements increases. So because each cyclus contains 19 correlated measurements, this correction 
factor is generally negligible.  
To incorporate an extra 'safety margin' also the 'normal' standard deviation s  calculated by 
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is used in stead of  σ , the standard deviation to the mean, which is given by 

n
s

=σ           

In principle the same approach will be used for aerostatic weighing, because apart from the volumes, 
also the true mass will be determined and it is best to use the same approach for the uncertainty analy-
sis for all mass calibrations, regardless the method. Because of this 'safety margin' and the relative 
large number of measurements per cyclus, the correction factor due to correlations will be assumed 
negligible for now [4]. 
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Appendix C:   Hydrostatic weighing 

 
By determination of the conventional mass of an object in air and then in double distillated water, the 
air buoyancy and thus the volume and density of an object can be determined with the founded differ-
ence in mass. A different type of balance is used for the weighings. This balance is adjusted to ac-
complish hydrostatic weighings and is placed above a glass with double distillated water (see Fig. 32). 
 

 
Figure 312: Hydrostatic weighing 

To determine the volume of weights we mostly make use of once-only hydrostatic weighing. The dis-
advantage of hydrostatic weighing is that measurements cannot be repeated without losing the ‘his-
tory’ of the weights. Since by immersing in water the ‘grow ‘ at the outer layer will be washed away 
and the regularly grow pattern will be disturbed. 
 
Due to the disadvantages of hydrostatic weighing, aerostatic weighing is developed. This measure-
ment is repeatable; the accuracy is comparable and is possibly even bigger than hydrostatic weighing. 
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Appendix D:  Matrix factorisations 

Cholesky decomposition  
If a square matrix A  happens to be symmetric and positive definite, associated linear equations are 
often solved using Cholesky decomposition [3]. Symmetric means that jiij aa =  for nji ,...,1, = , 

while positive definite means that 0>vAvT  for all vectors v . 

Cholesky decomposition constructs a lower triangular matrix L whose transpose TL can itself serve as 
the upper triangular part.  

ALLT =  

This factorization is sometimes referred to as “taking the square root” of the matrix A . The compo-
nents of TL are of course related to that of L  by  
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T
ij LL =  

If we write out the equation ALLT = , we obtain the following formula for the entries of L : 
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QR factorisation  

Assume having the following overdetermined system ya =X . 

The QR-factorisation of matrix X  is given by 

⎥
⎦

⎤
⎢
⎣

⎡
=

0
R

QX  

where X is an n × n orthogonal matrix and R  is an m × m upper triangular matrix. Using the fact that 
xx =TQ , one gets 
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where 1q are the first n and 2q are the second m – n elements of yTQ . The minimisation problem is 
solved if a solves the upper triangular system 

1qa =R  

The covariance matrix associated with a is given by 
( )T

a UUV 2σ=  

where U solves the upper triangular system  
IRU =  
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where I is the identity matrix. 
 

Singular Value Decomposition 

Assume having the following overdetermined system ya =X .  

The SVD of matrix X  is given by  
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where U is an n × m column orthogonal matrix, the matrix W is an m × m diagonal matrix containing 
the singular values, and V is an m × m orthogonal matrix.  
 
Given 

TUWV=X  

the inverse of X  can be expressed as 
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and hence, given the system 
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the solution a can be expressed as follows 
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The covariance matrix Va associated with the solution parameters a is given by ( ) 12 −
= XXV T

a σ . 



  

  - 72 -

Appendix E:  Gauss-Jordan Elimination 

Solving linear equations numerically is done by manipulating the given matrix using the elementary 
row operations to put the matrix into row echelon form [7]. To be in row echelon form, a matrix must 
conform to the following criteria:  

 If a row does not consist entirely of zeros, then the first non zero number in the row is a 1.(the 
leading 1)  

 If there are any rows entirely made up of zeros, then they are grouped at the bottom of the 
matrix.  

 In any two successive rows that do not consist entirely of zeros, the leading 1 in the lower row 
occurs farther to the right that the leading 1 in the higher row.  

 
From this form, the solution is easily(relatively) derived. The variation made in the Gauss-Jordan 
method is called back substitution. Back substitution consists of taking a row echelon matrix and op-
erating on it in reverse order. Normally the matrix is simplified from top to bottom to achieve row 
echelon form. When Gauss-Jordan has finished, all that remains in the matrix is a main diagonal of 
ones and the augmentation, this matrix is now in reduced row echelon form. For a matrix to be in re-
duced row echelon form, it must be in row echelon form and submit to one added criteria: 
 

 Each column that contains a leading 1 has zeros everywhere else. 
 
Since the matrix is representing the coefficients of the given variables in the system, the augmentation 
now represents the values of each of those variables. The solution to the system can now be found by 
inspection and no additional work is required. Consider the following example:  
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The solution to this linear system is x = 3, y = 1, and z = 2.  
There are some problems that could arise while searching for these solutions. If the lines are parallel 
then they will not intersect and thus provide no solution. In three dimensions the problem of skewing 
is possible. Lines are skewed if they lie in parallel planes yet have different slopes. If this problem 
occurs, it will made evident in the matrix by a row (or more than one) of zeros being present when the 
matrix is in row echelon form. Another problem that may arise is a division by zero. If a zero is 
placed in the main diagonal of the row being operated on, when you divide that row by the diagonal 
number the division by zero error will occur. To trap this error, simply check the diagonal number 
being worked with. If it is zero, exchange that row with the row below it. Exchanging rows is a legal 
elementary row operation.  
 
If a matrix is ill-conditioned, bad round off errors may occur. Since a large number of multiplications 
and divisions are performed, if the numbers are not of relative size then round off error will be appar-
ent. If the matrix is small then the error won't have time to propagate; but if the matrix is large, the 
round off error could deem the output solution unreliable.  
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Appendix F:  Results datasets weighing series 

 

Deviation from the nominal mass of  500 mg

-0.0100

-0.0095

-0.0090

-0.0085

-0.0080

-0.0075

-0.0070
0 1 2 3 4 5 6 7

dataset

de
lta

 µ
  [

m
g]

Borda Weighing
Gauss-Jordan

 
 

Deviation from the nominal mass of 200 mg

-0.0124

-0.0122

-0.0120

-0.0118

-0.0116

-0.0114

-0.0112

-0.0110
0 1 2 3 4 5 6 7

dataset

de
lta

 µ
  [

m
g]

Borda Weighing
Gauss-Jordan

 
 

Deviation from the nominal mass of 200 mg·

-0.0374
-0.0372
-0.0370
-0.0368
-0.0366
-0.0364
-0.0362
-0.0360
-0.0358

0 1 2 3 4 5 6 7

dataset

de
lta

 µ
  [

m
g]

Borda Weighing
Gauss-Jordan

 
 



  

  - 75 -

Deviation from the nominal mass of 100 mg
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Deviation from the nominal mass of 20 g
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