
Please note that this is the anonimized version of the full report. Therefore several adjustments
have been made. For instance instead of using the pumping stations name, it has been called e.g.
’PSa’ (pumping station a). Also figures have been altered to display those new names. Finally
all the Attachments and Code has been removed, this caused in the report that if anywhere it
was linked to these removed Attachments to show up like ’??’ .
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Abstract
In this research we tried to find if it was possible to use Machine Learning
techniques in order to predict when a pumping station would experience
a serious defect. In order to do this we looked into three algorithms
(Random Forest, X-Gradient Boosting and Support Vector Machines)
and compared their performance on 13 pumping stations. Of those three
the X-Gradient Boosting had the highest F1-score most of the time.
And in all cases -despite some data issues- the certainty goes up. The
worst performing F1-score is on a pumping station where 7.95% of the
instances experiences a defect, and the reached precision and recall are
respectively 0.450 and 0.333. Therefore the conclusion of this research is
that Machine Learning can definitely help with predicting defects in the
sewer system. To find the algorithm and variables to do this best would
be a new research.
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Managers summary (en)

The main goal of this research paper is to find out whether Machine Learning can be used to
predict a defect in a sewer system in the upcoming three days with the measurements already
in place. This research found that it is -within limits- possible to do this. Of the algorithms
this research tried, the X-Gradient Boosting seems the most promising. However, when some
extra measurements would be added to the database (like energy-usage of the pumping station
and turbidity), the predictions would probably be even better.

Managers summary (nl)

Het belangrijkste doel van dit onderzoek is om erachter te komen of Machine Learning gebruikt
kan worden om een ernstige storing in het riool systeem in de komende drie dagen te kunnen
voorspellen. Dit onderzoek wijst erop dat dit -hetzij met mate- mogelijk is. Het algorithme
X-Gradient Boosting presteert het beste van de drie geteste modellen. Verder zouden de voor-
spellingen waarschijnlijk enorm verbeterd kunnen worden door een paar extra metingen op te
nemen in het systeem (zoals het energieverbruik van het gemaal en de troebelheid van het
water).
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Chapter 1

Introduction

1.1 Predictive maintenance

Predictive maintenance is quite a broad term used in many different contexts. But it has al-
ways something to do with knowing ahead of time when a part will require maintenance, so
‘unplanned downtime’ can be prevented.

Sometimes predictive maintenance is called the ‘fourth generation engineering’. The three pre-
dating generations of engineering are roughly (in order of occurrence): ‘fix it when it breaks’ [1],
‘replace it regularly so it will not break’ and ‘replace it when the expected life span is nearly at
its end / reached a certain state’. In this line predictive maintenance can be said to be: ‘replace
it when the data indicates it will break in the near future’.

Figure 1.1: Type of failures of parts shown throughout time [2]

Predictive maintenance has the potential to decrease costs. Looking at Figure 1.1 -depending
on how critical the system is- somewhere in the section ‘Constant Failure Rate’ the part will
be replaced. Which will be for a relatively small percentage of the parts the optimal moment:
just before they break down. However, if predictive maintenance is applied, ideally nearly all
parts will be replaced at this optimal point, because it is predicted for each part separately
when it will break down. This means that the downtime costs due to the early failures can
be drastically reduced. And that the parts do not have to be replaced until their optimal re-
place moment arrives. This avoids additional costs due to replacing a still well-functioning part.
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CHAPTER 1. INTRODUCTION

Currently ‘predictive maintenance’ is rising in popularity. Many sectors with assets are looking
into it, hoping to reduce the (often huge) costs of asset management. The replacement costs
alone of the sewer system in the Netherlands during the time 2010-2012 were 670 million euro
[3].

1.2 Machine learning

The term ‘Machine Learning’ (ML) dates back to 1959 [4]. ML comes down to letting the
computer ‘learn’ from historical data. Before ML existed, a ‘rule set’ had to be explicitly pro-
grammed in order for a computer to be able to draw conclusions based on data.

In general it can be stated with ML that more and better data leads to better results (informally
sometimes it is said: ‘garbage in garbage out’).

There are two major classes within ML: the first is ‘supervised’ and the second is ‘unsupervised’.
Supervised ML means that the data is already ‘labeled’. So the output is already known for a
large part of the data. This is not the case for unsupervised ML, which is often used to find
new patterns in the data. In this research it is already known whether a defect has taken place
or not, therefore the data is ’labeled’ and thus supervised learning will be applied.

To validate a supervised ML model, the dataset is divided into a training set and a test set.
While the model is training, it only gets to see the training data. Once the model is done
training, it will try to predict the outcome with the input variables from the test set. These
outputs can then be compared to the real output to draw a conclusion on the viability of the
model.

As stated in section 1.1, in order to do predictive maintenance, data are required to get an
indication on when a part will break down. In order to learn what aspects of the data form
indications for a nearing breakdown, ML is often used. Causing ML to be frequently used in
regards to predictive maintenance.

1.3 The sewer system

First and foremost sewer systems came into existence to protect the human population from
diseases. The oldest sewer pipe ever found dates back to 4000 B.C. [5]. However, the start of the
realization of the true importance of a well-functioning sewer system had to wait till the cholera
outbreak in London of 1858, when John Snow realized and showed that the outbreak was caused
by a single feacal contaminated water well [6]. After this realization the sewer systems around
the world have improved greatly. In The Netherlands there was already some primitive form of
waste management. But this big transformation to make sure nearly everyone is attached to
the waste management system only occurred around 1960 [7]. The modern day importance of
the sewer system is indicated by the fact that the British Medical Journal voted in 2007 ‘the
sanitary revolution’ as the most important medical milestone since 1840 [8].

In The Netherlands the dominant type of sewer system is the combined system. This entails
that domestic and industrial wastewater and storm water runoff from roofs and streets are
transported together in one sewer pipe to a wastewater treatment plant (WWTP). Due to lim-
ited storage and pumping capacity the system can get overloaded during heavy rainfall. In
order to make sure that no wastewater flows onto the streets or comes back up through toilets
in people’s homes, combined sewer overflows (CSOs) were introduced. At CSOs wastewater can

A.S.Bruyn Page 2 / 63



CHAPTER 1. INTRODUCTION

flow directly into the surface water if the water levels in the sewer system get too high. Alterna-
tive types of sewer systems exist, such as the (improved) separate sewer system, where polluted
(domestic) wastewater and more clean storm water runoff is transported through separate pipes.

The sewer system is generally divided in multiple smaller ‘units’ which are called ‘catchments’.
Each catchment collects the water and due to gravity the water flows to the lowest point of
that catchment. On this lowest point a pumping station is installed to pump the water into the
next catchment. The final catchment discharges directly into the WWTP.

A pumping station can consist of multiple pumps. For instance, with the combined system there
are usually at least two pumps to be energy sufficient. One (smaller) pump for the polluted
(domestic) wastewater, also called dry weather flow (dwf). And one (bigger) pump for the
storm water runoff, also called wet weather flow (wwf). Sometimes a spare of these pumps is
added, which can take over immediately in case a pump breaks down.

WWTP

Figure 1.2: The municipality of Utrecht divided into catchments, with the WWTP location in
red

This study focuses on the sewer system in the municipality of Utrecht. With almost 350,000
inhabitants [9] and a connected area of approximately 1.5 km21, the municipality of Utrecht is a
big sewer system in the Netherlands. This system is divided into 40 catchments as can be seen
in Figure 1.2. Similar to other areas in The Netherlands, the dominant type of sewer system is
the combined system.

1Estimate based on [10] page 27
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1.4 Problem statement

Due to the -possibly- massive cost reduction, many municipalities try to find ways to change
preventive (or sometimes even reactive) maintenance into predictive maintenance. This research
will try to find an answer to the question whether ML can help to move -with regard to sewer
systems- to predictive maintenance.

In order to predict a defect in the sewer system of Utrecht, a lot of data is needed: the more
the better. This data will be extracted from a database which was built in a pilot to measure
as much as possible in a sewer system. Six municipalities together started the group ‘Meten’
(‘Measuring’ in Dutch), which had the goal to create a database in which all the municipalities
collaborated. The municipality of Utrecht pragmatically started building a monitoring network
with corresponding database in 2006 [11]. Since then the monitoring network has been elabo-
rated, and settings have been altered2. For this reason only data since April 2013 will be taken
into consideration.

In 2016 Arjen Kruit looked into this very same database, hoping to be able to predict the defects
[12]. He indicated 8 major defects which cause a pumping station to completely stop working.
He used an XG boosting ML algorithm to predict the defects. Sadly his results were that no
pattern had been found to reliably predict such a defect. Looking at this result we wanted to
find the results when a few choices are made differently.

Shortly before this research was finished, another research got published which turned out to be
very helpful. Marly van der Meij published her ‘Predictief Onderhoud’ [13]. This research was
done on the same database. She looked into more detail at one specific pumping station. Her
scope was more the mechanical engineering one. However she did get extremely good results on
the pumping station she chose with the Random Forest algorithm. An effort will be made to use
her two most telling features too. It is important to note that the researches have been set up
very differently. She focussed on one pumping station in particular whereas this research looks
at several pumping stations. Secondly her data is aggregated per 10 minutes, and this research
aggregates the non-temporal data per day. Lastly regarding the defects, different choices have
been made.

It is unclear which model suits the data from the sewer system best in order to be able to -most
reliably- predict major defects in a pumping station. For this reason multiple models will be
tried. To start with an algorithm which looks at the data as if it is temporal data (looking at
the data as if it is a time series): the Long-Short Term Memory (LSTM)3 (see subsection 2.2.4).
In order to be able to compare results with Arjen Kruit [12] the X-Gradient Boasting (XGB)
algorithm will be tried (see subsection 2.2.2). Similarly to be able to compare with Marly van
der Meij [13] the Random Forest algorithm (RF) will be tried (see subsection 2.2.1). Last but
not least a completely different classifier will be tried: the Support Vector Machine (SVM) (see
subsection 2.2.3).

Once major defects in a pumping station can be predicted reliably three days in advance, un-
planned down-time can be prevented. And hopefully mechanics will no longer have to be called
in the middle of the night or during weekends to fix those defects. Another major advantage
would be that with knowledge on when a part will fail costs for Asset Management can be
reduced.

2For instance the predetermined starting level changes throughout time, an example can be seen in Figure 2.12.
3The researchers struggled so much with this model that in the end it was not run, see more on the struggles

in subsubsection 2.2.4.1
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To make the goals of this research paper explicit:

1.4.1 Main goal

Is it possible with “Machine learning” to predict a defect in a sewer system
in the upcoming three days given the measurements in the system.

1.4.2 Secondary goals

1) Which Machine Learning techniques are best suited for this goal?

2) Using experts advice and data analyses, what are the most
important characteristics to predict a possible failure of a sewer system?

1.5 Overview

The remainder of the report will start of with what Materials & Methodologies have been used.
Giving some insights in the starting point and the thought process on data there is to work with
(section 2.1), what ML techniques will be used (section 2.2), what software was used during
this research paper (section 2.3) and finally the methods used to get from the raw data to the
data used by the models (section 2.4). Then the results will be presented. Again, starting with
the importance of the data (section 3.1), followed by the importance of the set parameters in
the algorithms (section 3.2) to finish with the achieved predictions (section 3.3). Finally in the
discussion (chapter 4) the results will be discussed. The conclusion (section 5.1) will answer the
research questions and the recommendations (section 5.2) will give some recommendations and
some possible future research. Completely at the end some personal struggles throughout the
research paper will be talked about in the Peroration.
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Chapter 2

Materials & Methodologies

This chapter will cover all the materials at disposal, like the received data (section 2.1) and the
software used (section 2.3). Followed by the methods used on/with those materials to get to
the results, including ML techniques (section 2.2) and data handling (section 2.4).

2.1 Data

2.1.1 Original database

As mentioned in the introduction data from 1 April 20131 up till and including 31 December
2017 will be used. This database collects data on all 40 catchments (see Figure 1.2), with a to-
tal of 525 pumping stations. There are nearly 380 million measurements in total in the database.

In this database the following variables are present:

• Flow rate2: the number of m3 that passes through the sewer system per 5 minutes

• Groundwaterlevel3: in m above NAP4

• Precipitation5: in mm/5min

• Turbidity6: in FNU (= Formazine Nephelometric Unit)
A measure for how see-through the water is.

Figure 2.1: What does Turbidity look like? [14]

1In the orange box in Figure 2.12 it can be seen that the predetermined starting levels have been changed
2In Dutch: debiet
3In Dutch: grondwaterstand
4‘Normaal Amsterdams Peil’ or freely translated ‘normal waterlevel in Amsterdam’
5In Dutch: neerslag
6In Dutch: troebelheid
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• Level measurement7: measured as difference in m from NAP in the sewer system itself

• Groundwaterlevel uncorrected: ‘cm WK’ meaning freely translated ‘centimeter watercol-
umn’, which is a measurement of pressure

• Groundwaterlevel manually: measured as difference in m from NAP in the surface water

• Airpressure8: ‘cm WK’

• Temperature: in degree celcius

• Goundwater17: a variable with no unit or parameter. Concerning groundwater

• Waterlevel9: in ‘gr.C’10

• ciw20: a variable with no unit or parameter or system

Sadly after some analysis in the database, most of those variables turned out to be unusable
for several reasons. To start with, some were barely ever filled out. This was the case with
for instance turbidity: sensors should have been up on five different locations. But there were
only measurements for about two months on one location. This was quite a disappointment,
for nearly all experts said this should have been a great indicating factor. Another issue was
that many variables were not directly linkable to the location of a pump in the sewer system.
And given the size of the system, this could have given a quite wrong impression.

In the end all the following research has to focus on the two variables Flow rate and Level
measurement.

Also data on defects is collected in the database. In total there are nearly 3,000 different types
of defects, of which 75 actually took place in the chosen time frame.

2.1.2 Open source data

To enrich the database, both daily and hourly weather data have been collected from the KNMI
from 01-01-2012 up till and including 2017-12-31. The non-temporal methods will use the daily
data (??). Since for the non-temporal methods the data has already been aggregated per day.
LSTM will use the hourly data (??) despite the data for the LSTM being per minute. The
KNMI simply does not provide such detailed data.

Other open source data have been considered. Such as whether the pumping station is situated
in industry or living area. However due to time constraints this was not looked further into.

2.2 ML techniques

In search of a well-fitting model, four models will be tried and evaluated: Random Forest (RF),
XG-Boosting (XGB), Support Vector Machines (SVM) and Long-Short Term Memory (LSTM).
For all four models a grid search will be performed to make sure that the chosen parameters
are good.

7In Dutch: peilmeting
8In Dutch: luchtdruk
9In Dutch: waterstand

10Even the experts have no idea what ‘gr. C’ could stand for with regards to the waterlevel. It is therefore
assumed that this is a mistake in the documentation.
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The four models exist of two different ‘types’ of algorithms, one works with so-called ‘temporal’
data and three work with ‘non-temporal’ data. Temporal data is data about a situation at a
specific moment in time. Whereas non-temporal data can be aggregated.

Skewed data
The data is quite skewed, as can be seen in Table 2.5 and Table 2.6. So some attention should
go out to that aspect as well.

Originally the idea was to let all the models, data sources and parameter settings run and de-
termine via 5-fold cross-validation the average accuracy and the model with the highest score
would be the best. However, since the data is so skewed, it was decided to oversample the
minority. Doing this combined with cross-validation would result in a model over-sensitive to
exactly those settings with a defect because those instances would be copied over and over. This
situation is sketched in Figure 2.2.

Instead it has been decided to create a test set first with about 1/4 of the total defect instances
and total non-defect instances. And to only oversample the minority already in the training set.
This situation is sketched in Figure 2.3. Sadly this resulted in not using 5-fold cross validation,
as that would always result in situations similar to Figure 2.2.
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Figure 2.2: The test set has exactly the same
instances of defects, as where the model trains
on in the training set (1 & 2). Resulting in a
less reliable validation score.
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Figure 2.3: Now the test set contains no de-
fects with exactly the same instance as the train-
ing set. Resulting in a more reliable validation
score.
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2.2.1 Random Forest (RF)

A Random Forest is a Bagging of the predictors of the Decision Tree. Breiman explains it as:
‘Bagging predictors is a method for generating multiple versions of a predictor and using these
to get an aggregated predictor. The aggregation averages over the versions when predicting a
numerical outcome and does a plurality vote when predicting a class.’ [15]. Resulting in ‘What
one loses, with the trees, is a simple and interpretable structure. What one gains is increased
accuracy.’ [15].

In other words a Random Forest is a ’forest’ of Decision trees. Basically one creates a lot of
these Decision trees with a slightly randomized aspect to ensure they are not all exactly the
same. Then when a prediction needs to be made, all Decision trees are asked to ’vote’ for their
prediction. The prediction with the most votes will be the prediction given by the Random
Forest.

A Decision tree is a model which is built up from questions. So for instance if one were to try
and label a vehicle as either a car or a bicycle, an example might be:

Does the vehicle has
fewer than 3 wheels?

Predict
’Bicycle’

Predict
’Car’

yes no

Figure 2.4: Example of a decision tree

Naturally in a model most of the time the Decision trees are more elaborate than the given
example and have many more ‘levels’. But the idea remains the same.

Interesting to note here is that Marly van der Meij [13] also uses a Random Forest in her research.

There are 17 parameters which can be set in a Random Forest. Those are all given in ?? with
their explanation, defaults and range. In Table 2.1 all the values which will be tried in the
parameter grid search in order to find the ‘optimal values’ are shown.
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name grid search

n estimators { 5,50,500 }
criterion { ‘gini’, ‘entropy’ }

max features { ‘auto’; 0.25; 0.50; 0.75 }
max depth { ‘None’ }

min samples split { 2; 0.1 }
min samples leaf { 1; 0.1 }

min weight fraction leaf { 0 }
max leaf nodes { None }

min impurity decrease { 0; 0.25; 0.5 }
bootstrap { True; False }
oob score { True; False }

n jobs {1, -1}
random state { 0 }

verbose {False}
warm start { True; False}
class weight {‘balanced’}

Table 2.1: All the variables and the suggested parameter grid search

These parameters have been chosen for several reasons, all will be discussed shortly: Because
the number of Decision trees can influence the outcome a lot, it has been chosen to try a rather
broad range. Varying the n estimators from 5 trees to 500. Secondly the criterion will try
all possible options. For the maximum number of features (max features) to consider, the
best split, again a broad range has been decided upon, including the default. No limitation has
been set to the max depth of the tree. The min samples split is the absolute minimum - and
default - (2) has been chosen to be tried next to a 10% demand. In order to be able to look
at what effect this has. The same thought process is applied to min samples leaf also with
the minimum (1) and the 10% option. With regard to min weight fraction leaf it has been
chosen to set no demand on the weights of all the input samples required to be a leaf. Similarly
no limit has been set to max leaf nodes. On the other hand it has been chosen to try a spread
of different values for min impurity decrease to see if it matters: 0, 0.25 and 0.5. Bootstraps
simply tried all possibilities: True and False. Just like oob score. The n jobs tries both what
happens if the code is run on 1 core or on all cores. Random state simply has an integer to
place the seed. Verbose is False because during the parameter grid search no output is needed,
but this has no effect on the predictions. Nearing the end: warm start simply tries all options.
And finally class weight is set to ‘balanced’ because it is an unbalanced dataset.

2.2.2 X Gradient-Boosting (XGB)

Where a Random Forest is the bagging of several Decision Trees, XG-Boosting is the boosting
of a Decision Tree. ‘The term boosting refers to a family of algorithms that are able to convert
weak learners to strong learners’ [16]. ‘[XG-Boosting is] a scalable end-to-end tree boosting
system (...), which is used widely by data scientists to achieve state-of-the-art results on many
machine learning challenges.’ [17].

Noteworthy is that Arjen Kruit [12] also used XG-Boosting in his research.

In order to be able to set the correct parameters, a grid search will be done. The possible
variables are shown in ??. In Table 2.2 an overview is given of the parameter settings which
are taken into consideration in the grid search.
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name grid search

loss {‘deviance’, ‘exponential’}
learning rate { 0.01; 0.1; 1 }
n estimators { 10; 100 }
max depth { 3; 10 }
criterion { ‘friedman mse’; ‘mae’ }

min samples split { 2; 0.01 }
min samples leaf { 1; 0.01 }

min weight fraction leaf {0}
subsample { 0.50; 0.75; 1.0 }

max features { None; ‘sqrt’ }
max leaf nodes {None}

min impurity decrease { 0.0 ; 0.5 }
init {None}

verbose {0}
warm start { True; False }

random state {None}
presort {‘auto’}

Table 2.2: All the variables and the suggested parameter grid search

From first to last the reasoning behind the options chosen for the parameter grid search: starting
with loss: simply all the options are being tried. For learning rate a range has been chosen
which will be able to give an indication on how important this variable is. Next n estimators

since this is a trade-off with learning rate not too many values have been chosen. Only the
default and a lower value. With regard to max depth the default has been chosen and a larger
value since it depends on the interaction of the input variables, which is in this case quite
big (a pumping station will only start pumping -e.g. produce a Flow rate- when the Level
measurements is high enough). Looking at criterion the choice has been made to try both
‘types’, so a mean squared error and an mean absolute error. Since it states that the ‘fried-
man mse’ is usually better, these are the two options to try. Coming next min samples split

the default (and absolute minimum) of 2 has been chosen together with trying a 1% demand.
Following min samples leaf similarly to min samples split the default will be used, and one
other option: 1%. Next with min weight fraction leaf only the default value will be used.
Halfway, since the data is very skewed, multiple options will be tried for subsample: the default
and two smaller values, leading to a reduction of variance and an increase in bias. Following
max features will be tried basically ‘boundless’ and the option which is frequently given. Sim-
ilarly max leaf nodes will not be bound at all. With regards to min impurity decrease both
the default and quite a high demand will be given for splitting a node. No init will be used.
The verbose will be off, this has no effect on the model what so ever. The warm start will try
both options. And similarly to verbose the random state has no effect on the model. Finally
presort is mostly a variable which might reduce runtime, this is set to ‘auto’ so the computer
can speed things up as much as possible.

2.2.3 Support Vector Machine (SVM)

In 1963 Vladimir N. Vapnik and Alexey Ya. Chervonenkis published a paper with the basis for
SVM [18]. The idea is to divide the space of possibilities with a vector, which separates two
classes. Originally this could only be a linear vector. However, in 1992 a solution was proposed
using a ‘kernel trick’ to be able to have vectors which are not solely linear [19].
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Figure 2.5: Visual examples of how SVM can be used as a classifier (SVC = Support Vector
Classifier) [20]

SVM basically divides the realm of possibilities into ‘area’s’ with for each possible prediction
an area. Whenever an instance is in one of these area’s, the prediction will be that belonging
to that very area. In Figure 2.5 some visual examples are given.

SVM is used as one of the four algorithms to be tried and evaluated. This choice was made
because it is a binary classifier. It is already implemented in a package in Python (scikit) [20].
And because of the ’penalty’ variable it can be used in the case of skewed data [21]. On the
other hand SVM is prone to over-fitting if the parameters are not chosen correctly [22] and
SVM on itself does not give an indication of how ‘certain’ it is of its predictions. So to get
probabilistic outputs, extra steps are necessary, which would increase the runtime.

In order to be able to set the correct parameters, a grid search will be done. The possible
variables are shown in ??. In Table 2.3 an overview is given of the parameter settings which
are taken into consideration in the grid search.
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name grid search

C {0.01; 1.0; 5.0; 10.0; 15.0}
cache size {200MB}

class weight {‘balanced’}
coef0 {0; 1.0; 10.0}

decision function shape { ‘ovo’ }
degree { 1; 3; 5 }
gamma { ‘auto’; 1.0 ; 0.1; 0.001 }
kernel { ‘rbf’, ‘sigmoid’, ‘poly’, ‘linear’ }

max iter { -1 }
probability {False}

random state {None}
shrinking { True }

tol { 0.0001; 0.001; 0.01 }
verbose { False }

Table 2.3: All the variables and the suggested parameter grid search

The rationale behind the chosen values for the parameter grid search is as follows, starting
with C, the penalty parameter. Since the data is very skewed a high value is in order. Just
to make sure a low value has been chosen as well together with the default and some val-
ues in between. Second comes cache size which has been left at the default. Next the
class weight -again- since the data is very skewed this has been set to ‘balanced’. Next
the coef0 only significant with kernel ‘sigmoid’, two values next to the default are being tried.
For the decision function shape it has been decided to only try ‘ovo’ because there are only
two classes, so one-vs-one should do the trick. Followed by degree which is only useful for the
kernel setting ‘poly’, two values around the default and the default have been chosen to try. Now
gamma is a kernel coefficient used by multiple kernel options, so this one might be important,
for that reason four options are chosen to be tried. From the four possibilities regarding kernel

all options will be tried. For max iter nothing is set, the default will do. The probability is
False, this does not influence the algorithm, only the time it takes to run. For random state

it has been decided to simply leave it at the default as this should not have too much effect.
Leading on to shrinking, for which it was decided to go for the quickest solution with ‘True’.
The last important variable tol is the tolerance for the stopping criterion. This might make
big differences, for that reason three options have been chosen: the default, the defaul /10 and
the default × 10. Finally another non-important variable verbose: the model will not output
anything while running.

2.2.4 Long-Short Term Memory (LSTM)

LSTM is the temporal model. It is a Recurring Neural Network. “The Recurrent Neural Net-
work (RNN) is an extremely powerful sequence model that is often difficult to train. The Long
Short-Term Memory (LSTM) is a specific RNN architecture whose design makes it much eas-
ier to train. While wildly successful in practice, the LSTM’s architecture appears to be ad-hoc
so it is not clear if it is optimal, and the significance of its individual components is unclear” [23].

The easiest way to explain the LSTM is by using an intüıtive example. Say in frame two a
person is crying, this could be because he or she is sad or is hurt. However if now you get extra
information and know in frame one another person was attacking. It is straight away much
more likely that the person in frame two was crying because he/she was hurt.

This is what the LSTM does, it tries to learn (and remember) what is important information
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from previous states in order to be able to better understand the current. Or in the case of this
research, better predict the next.

In order to achieve this the LSTM looks at a batch of instances (in the small example above,
this batch was just 2: the current and the former frame). It looks through all the data, draws
conclusions. Where a normal Neural Network (NN) would now be done, the RNN ‘feeds’ these
conclusions back into a new NN (a visualization of this in Figure 2.6). Hence the ‘Recurrent’
part of the RNN.

LSTM LSTM LSTM
input output

Figure 2.6: A visual example of an LSTM with 3 ‘layers’

2.2.4.1 Challenges regarding the temporal model

It turned out to take a lot more time (nearly 7 times as much11) to get it up and running
compared to the other three models combined. This was due to a combination of several fac-
tors. First of all we had never worked with a temporal algorithm before. While we did work
with non-temporal algorithms before. Having to research how to work with temporal data. The
book ‘Machine Learning for the Quantified Self: On the Art of Learning from Sensory Data’ [24]
turned out to be very helpful. It soon became clear that for temporal data a separate section of
the database would be necessary. Since temporal data is so different from non-temporal data,
all the engineered features had to be re-written. At this point it was decided that, because
LSTM had already taken up much more time, those features would simply be left out of this
model.

Secondly -as often the case with deep learning- it was impossible to figure out what exactly
happens in the LSTM model. The uncertainty this brought was amplified by the unclear pack-
age documentation. In the end most information has been extracted from code-wise working
examples on the internet

Once the LSTM model was working, it turned out to work very different from the other three
models. The non-temporal models all have packages where the parameter inputs in one function
determine how the model is set up. But LSTM is a Recurrent Neural Network and for that
reason has many architectures. This caused that instead of having one function on which to
perform the parameter grid search, with LSTM this could theoretically be an infinite number
of functions. Resulting in an infinite number of models to search through for the parameter
grid search. Since we want to find the best fitting model looking from a data point of view, we

1120 days vs 3 days
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looked for a setup of the LSTM in which a parameter grid search was still possible. To achieve
this one major compromise had to be made: each ‘layer’ will be -parameter wise- exactly the
same. Because of this choice, the number of layers can be seen as another parameter which can
be tuned.

2.2.4.2 The proposed model

For a graphical representation of the workings of the LSTM model see Figure 2.7.

input ⇒

# nodes = 50
activation = ‘sigmoid’
return sequences=True
input shape=(x,y)

# nodes = 100
activation = ‘sigmoid’
return sequences=True

...

# nodes = 100
activation = ‘sigmoid’
inner activation =
‘hard sigmoid’

Dense(1
kernel initializer=‘normal’
activation=‘sigmoid’)

loss=‘binary crossentropy’
optimizer=‘adam’
metrics=[‘accuracy’]

train x, train y
epochs=2
batch size=100
validation data

drop 30%
of nodes
output =
new input

drop 20%
of nodes
output =
new input

drop 20%
of nodes
output =
new input

Figure 2.7: Inner workings of the LSTM combined with bits of the code

Only after all of these steps (of which each ’step’ is a single line in the code) can a prediction
be made.

It is unclear which variables the LSTM exactly has. With the use of the documentation, it was
hard to get examples working. And in working examples, parameters are needed which are not
documented (e.g. ‘inner activation’). But bring forth working code.

For this reason and all those mentioned above, a slightly alternative setup has been chosen for
the LSTM.

Proposal for parameter grid search LSTM
An unlimited number of recurring steps can be chosen. All with either similar or different
settings. With a % of nodes dropped to prevent over fitting or not. This results in an endless
number of possibilities. That is unable to be caught in a parameter grid search. In order to be
able to still perform a grid search, a number of assumptions will be made. The most impor-
tant being: all layers will get exactly the same set of values for the parameters. This creates
the option to have the number of layers as an additional parameter. Similarly what happens
between the layers is the same between each layer. We are aware that this setup might exclude
the optimal model.

The variables proposed to take into consideration with the grid search-LSTM are shown and
explained in ??. In Table 2.4 the values which will be tried in the grid search are shown.
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name grid search

n layers { 1, 2, 3}
steps to look back { 10, 60, 1440 }
activation { ‘sigmoid’ }
inner activation { ‘hard sigmoid’ }
units { 14, 81 }
kernel initializer { ‘random uniform’ }
loss { ‘binary crossentropy’ }
optimizer { ‘rmsprop’ }
epochs { 2, 3 }
batch size { 10, 60, 1440 }
unit fotget bias { True }
dropout { 0.2; 0.3}
threshold { 0.01; 0.1; 0.2 }

Table 2.4: All the variables settings which will be tested with regards to the LSTM model

The parameter n layers does not actually exist. But it was deemed important to be able
to take this parameter into consideration with the parameter grid search. For that reason it
has been programmed. In order to program it, some assumptions have been made: the nodes
(first - middle - final) will be created automatically, all with the same settings which have been
determined by the other parameters. N layers should actually not need more than 2 [25], so
for good measure 1, 2 and 3 are tried.

The steps to look back are chosen in such a manner that the look-back time will be respec-
tively 10 minutes, an hour and a day.

Furthermore the activation will be set to ’sigmoid’ because the end result should be between
0 and 1. For the same reason the inner activation will be ‘hard sigmoid’.

As for the number of nodes in the hidden layers (here called: units) [25]:

• The number of hidden neurons should be between the size of the input layer and the size
of the output layer.

• The number of hidden neurons should be 2/3 the size of the input layer, plus the size of
the output layer.

• The number of hidden neurons should be less than twice the size of the input layer.

The output layer size is simple: one float between 0 and 1, thus output layer size = 1
However the input layer size is more complex. This depends on the number of steps we look
back at. One timestep has two variables. Thus: input layer size = time steps × 2
Following the second rule, the formula should be something like:

units = floor

(
steps to look back× 2× 2

3
+ 1

)

Meaning:

steps to look back size input layer size output layer units

10 20 1 14
60 120 1 81

1440 2880 1 1921
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However this turned out to have an extremely negative effect on the run time12, for this reason
the number of units 1921 has been left out.

Kernel initializer will be set to ‘random uniform’ between 0 and 1. Because a scaler has
been used to set all the variables between 0 and 1.

For this same reason (results having to be between 0 and 1) the loss function will be set to
‘binary crossentropy’.

“This optimizer[red. ‘rmsprop’] is usually a good choice for recurrent neural networks.” [26] For
this reason the optimizer will be set to ‘rmsprop’.

To see whether epochs matter a lot to start with, the options 2 and 10 were chosen. However
during the running of the models it turned out that this slowed down the model too much13, so
therefore the options 2 and 3 have now been chosen: still there could be a difference, but the
time needed should be cut down by 7/12

14.

With batch size a similar reasoning as with steps to look back has been followed: 10 minutes,
an hour and a day are tried.

According to [23] “The LSTM with the large forget bias outperformed both the LSTM and the
GRU on almost all atsks[sic]”. For that reason the parameter unit forget bias is set to True.

The regularizers will not be used because the dropout will be used. To see if and what type of
effect this variable has, the number 0.2 and 0.3 will be tried.

Finally threshold: this variable does not exist for the LSTM model either, but has been created
for the grid search. Since there are very few defects, it is expected that a lower threshold works
better. For good measure some higher values will be tried too.

2.2.5 Comparing techniques

To be able to compare all the models and draw any conclusions from them, a validation method
has to be chosen. There are four optional validation metrics: accuracy, recall, precision and
F1-score.

The following abbreviations will be used:
TP = True Positive
TN = True Negative
FP = False Positive
FN = False Negative
Well-known from the confusion matrix15.

Accuracy
As it is important to predict correctly both when a part will go into defect and when it will

12This was tested on the first 10,000 instances of pumping station PSa. While all other variables were kept the
same and only the units where altered. Using 14 or 81 units took about 2 or 3 seconds per epoch, while using
1921 units it took 4124 seconds per epoch.

13After 36 hours only 128 out of the 649 possible parameter combinations had been tried for one data source

14 original nr − new number

original nr
=

2 + 10 − (2 + 3)

2 + 10
=

7

12
15https://en.wikipedia.org/wiki/Confusion_matrix

A.S.Bruyn Page 17 / 63

https://en.wikipedia.org/wiki/Confusion_matrix


CHAPTER 2. MATERIALS & METHODOLOGIES

not, the ‘accuracy’ has been chosen as one of the measurement to compare the models by.

accuracy =
TN + TP

TN + FN + TP + FP

Informally: ‘what percentage has been predicted correctly?’

Important to state here is that this metric makes it slightly more difficult to compare the
pumping stations among each other. Since the percentage of defects is not similar. Ranging
from only 1.56% to 15.78%, as can be seen in Table 2.6.

putnr # defects # days
with
starting
defects

total time in
defect

part of
the time
defect

% of
days with
starting
defect

PSa 45 23 3 days 4:22:14 0.18 1.33
PSb 163 85 129 days 8:43:4216 7.46 4.90
PSc 239 103 3 days 15:27:31 0.21 5.94
PSd 71 36 4 days 12:21:38 0.26 2.07
PSe 68 27 0 days 15:45:38 0.04 1.56
PSf 22 12 0 days 2:24:41 0.01 0.69
PSg 68 24 1 days 1:29:4 0.06 1.38
PSh 69 22 3 days 11:32:48 0.20 1.27
PSi 28 10 15 days 16:26:24 0.90 0.58
PSj 69 47 0 days 14:54:48 0.04 2.71
PSk 38 28 1 days 2:26:36 0.06 1.61
PSl 77 27 3 days 10:56:10 0.20 1.56
PSm 28 13 0 days 23:15:13 0.06 0.75

Table 2.5: General information on the number of defects per pumping station before data
preparation. The total number of days is 1,735.

16During the research it was found that the duration of the defects differed a lot in range. Most of them seemed
to take less than a day, so first the assumption was proposed that such a defect could take no longer than 24
hours and if it did, it probably meant the sign signing the defect off was missed. However after consulting an
expert this assumption was dropped, and no further assumptions were made with regards to the duration of a
defect. Resulting in one defect in pumping station PSb already taking 120 days.
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putnr after data preparation % of instances with defect in 3 days non-temporal data

PSa 60 / 1736 = 3.46 %
PSb 230 / 1736 = 13.25 %
PSc 274 / 1736 = 15.78 %
PSd 98 / 1736 = 5.65 %
PSe 77 / 1736 = 4.44 %
PSf 36 / 1736 = 2.07 %
PSg 66 / 1736 = 3.80 %
PSh 57 / 1736 = 3.28 %
PSi 27 / 1736 = 1.56 %
PSj 138 / 1736 = 7.95 %
PSk 77 / 1736 = 4.44 %
PSl 74 / 1736 = 4.26 %
PSm 39 / 1736 = 2.25 %

Table 2.6: General information on the number of defects per pumping station after data prepa-
ration

For this reason an accuracy of 90% for pumping station PSc would be an improvement, whereas
the same result for pumping station PSi would be worse than simply always predicting no-defect.

Recall
This metric returns how many of the defects are labeled correctly. However it does not measure
in any way if the non-defects are labeled correctly.

recall =
TP

TP + FN

If this metric is high it means that when the mechanic gets no signal saying there is a defect,
there will indeed not be a defect. But when he gets the signal that the pumping station might
break down, it could still only be a very low change on an actual defect.

Precision
This metric returns how many of the ‘labeled defects’ are actual defects.

precision =
TP

TP + FP

When the precision is high, it means that when a mechanic gets the signal that the pumping
station might go into defect, the pumping station probably will go into defect. However when
the model gives no sign, the pumping station could still be going into defect.

F1-score
As recall and precision have their downfalls, a new metric was brought to life, one which
combines the strengths of both: the F1-score.

F1 = 2× Precision× Recall

Precision + Recall

With a high F1-score the mechanic can feel at ease when he gets no alarm, and when he gets
the message a defect is drawing near, the defect is probably really drawing near.

Conclusion
As a final aim of this research is to no longer having to do unplanned work in the weekend or
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during the night due to an unforeseen defect, recall is definitely important. However if the model
predicts every instance as a defect - therefore having the highest possible recall- the model is
not trustworthy either. So some of the precision has to be taken into account as well. For this
reason it has been decided to focus on the F1-score as a comparative means between the models.

F1-score has a tendency to ‘follow’ first and for most whichever has the lowest score of precision
and recall (further down in the report some figures show this quite clearly, for instance Figure 3.2
and Figure 3.46). To find a somewhat meaningful ‘under bound’ for the F1-score, the following
steps will be taken for each pumping station separately:

1. Assume - because of the skewed data - that precision is going to be the biggest issue.
With this assumption and that a lower bound is being looked for, recall will be set to 1
for this calculation.

2. To get the value for precision, look at what value it would have if everything was predicted
to be a defect, these values can be found in Table 2.6.

3. Calculate the F1-score belonging to this situation. If the F1-score is better than this lower
bound, the model is returning a better precision.17

Following these steps results in the following:

putnr calculation Under bound F1-score

PSa 2× 0.0346 + 1

0.0346× 1
=0.0669

PSb 2× 0.1325 + 1

0.1325× 1
=0.2340

PSc 2× 0.1578 + 1

0.1578× 1
=0.2726

PSd 2× 0.0565 + 1

0.0565× 1
=0.1070

PSe 2× 0.0444 + 1

0.0444× 1
=0.0850

PSf 2× 0.0207 + 1

0.0207× 1
=0.0406

PSg 2× 0.0380 + 1

0.0380× 1
=0.0732

PSh 2× 0.0328 + 1

0.0328× 1
=0.0635

PSi 2× 0.0156 + 1

0.0156× 1
=0.0307

PSj 2× 0.0795 + 1

0.0795× 1
=0.1473

PSk 2× 0.0444 + 1

0.0444× 1
=0.0850

PSl 2× 0.0426 + 1

0.0426× 1
=0.0817

PSm 2× 0.0225 + 1

0.0225× 1
=0.0440

Table 2.7: F1-score under bound per pumping station

The highest lower bound -presented by pumping station PSc- is 0.2726. This will be the thresh-
old used later on the check how well the models perform.

17Since a recall or precision score of 1 is very exceptional, the model is most probably at this very F1-score
already doing better.
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An often used method of getting a lower bound is by using a ‘random prediction’ (50% will be
said to be defect at random). With pumping station PSc this resulted in a precision of 0.152 and
a recall of 0.485, creating an F1-score of 0.232. As this is even lower than the above mentioned
method returned, the threshold achieved by the first method will be used.

2.3 Software used

For completeness an overview of the software used with this research.

First of all PgAdmin18 (and with that psql) was used for all the database queries. Once all
the data was gathered, Python19 was used for most of the feature engineering, data processing,
running the models and creating the figures. During this process IDE gitbash20 was used. For
the report LATEX21 was used in TeXstudio22. For some final touches (like removing the Python-
title from figures) paint was use. And finally the empty values (Table 2.8), the important
features (Table 3.1), the average emptiness of important features (Table 3.2, Table 3.3) and the
maximal F1-scores (Figure 3.51) were all manually inserted into excel to be able to play around
easily on the search for insights.

2.4 Methodologies

2.4.1 Data preparation

2.4.1.1 Feature engineering

‘Feature Engineering Is The Key’ [27] as Pedro Domingos puts it. ‘Often, the raw data is not
in a form that is amenable to learning, but you can construct features from it that are.’ [27].
For this very reason the researchers had originally planned to take out a month to find all sort
of creative and possible meaningful features. However the process of getting the LSTM to work
(more on this see section 2.2.4.1) took a lot longer than anticipated. And had the time reserved
for feature engineering drastically shortened. For the same reason it has been decided to not
create any of these features for the LSTM, as that would probably again take a lot of time. For
the non-temporal models some features were engineered.

2.4.1.2 Non-temporal data

To start with, all the sensor data within the catchment of the current pumping station has been
aggregated into a minimum, maximum, average and the sum of all the values per day per sensor.

Secondly from the dates it has been extracted which weekday it was (Monday = 0, Sunday =
6). And a distinction has been made between workdays and weekend days. Thirdly the season
got extracted (winter =1, spring=2, summer=3, autumn = 4).

To add a bit more information on the flow measurements, two additional features have been
created, to start with ‘maximum 5 minute difference flow measurement’23 which keeps the max-
imum 5 minute difference of the flow measurements on that given day. The next being ‘num-
ber flow measurement turned on’ 24 which keeps track of the number of times the pumping

18https://www.pgadmin.org/
19https://www.anaconda.com/download/
20https://git-scm.com/downloads
21https://miktex.org/download
22https://www.texstudio.org/
23In Dutch: ‘debiet max 5 min’
24In Dutch: ‘debiet aantal keer aan’
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station had to switch on.

As mentioned in the introduction, the two most telling features from the research from Marly
van der Meij [13] have been added: defects ratio25 which is the average % of time the pump-
ingstation was in defect the past 3 days. A noteworthy major difference is that her research
aggregates the data per 10 minutes while the non-temporal data in this research is aggregated
per day. Her second important feature is ‘pumped’26 which entails the amount of water pumped
by the pumping station divided by the total time the pumping station was not in defect. It is
important to note here that Marly’s research also made different assumptions with regards to
the defects.

Finally the feature ‘dagen sinds leegpomp’ (‘days since emptying’ in Dutch) has been added.
The reason for this can be clearly seen in Figure 2.12. This figure is created with the outlier
detection code provided by [24]. The values in the red box (which has been manually added)
only happen when the pumping station is manually ’emptied’. This happens by sucking up
the remaining water and dirt. Instead of seeing these as outliers, it has been decided that this
’cleansing’ of the pumping station could have something to do with its defects. Being it for
better or worse. Therefore the number of days passed since the last cleansing has been added
as a feature.

2.4.1.3 Temporal data

In the case of the temporal data, only the measurements exactly on the given pumping station
are taken into consideration. This is done because temporal data is looked at as a time series.
And in this case there are already two time series effecting each other.

25In Dutch: ‘storingsratio’
26In Dutch: ’verpompt’
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Figure 2.8: Visual representation of the temporal time series of pumping station PSb. The red
vertical line represents a defect. It can be seen that as soon as the level measurement reaches a
certain level, the first pump starts pumping and the flow measurement jumps up. In the middle
it appears to be raining and a second pump starts to help pumping. In this particular time
interval a defect has even been ‘caught’.

2.4.1.4 Empty variables

The empty values have to be treated differently for the temporal and the non-temporal methods.
This is because the non-temporal methods can deal with ’gaps in time’ whereas the temporal
methods cannot deal with such gaps.

Non-temporal data
Since it turned out that quite a lot of data was missing for the non-temporal data (see Table 2.8)
the original plan of dropping each row with a missing variable did no longer seem like a good
solution. It was decided that when more than 25% of the data is missing, the column would be
all together dropped: having more than 1/4 ‘make-belief’ seems too much while still keeping a
decent number of variables. Secondly -to fill out the missing values- the choice has been made to
want to preserve as much as possible from the original ’distribution’ while having a logic reason
to choose that number. In the case of flow rate it was chosen to set this to 0, meaning: ’the
pumping station is currently not pumping’. For the level measurement this was a little bit more
tricky. But eventually it was decided to use the average of that particular level measurement
to fill the empty values with.

In Figure 2.9 and Figure 2.10 an example is given of how a level measurement was influenced
by these decisions. The boxplots show that the quantiles are barely altered. However the his-
togram shows that despite best efforts choosing only one value to input has its drawbacks.
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Figure 2.9: A comparing boxplot of a level measurement before and after the data preperation

Figure 2.10: A comparing histogram of a level measurement before and after the data prepera-
tion

For each chosen pumping station an overview has been created to show how many variables are
missing. This is only done for the non-temporal data. These can be found in the back. An
short overview has been created in Table 2.8. In general it can be said that a lot of data is
missing, which naturally leads to complications.
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pumping station average portion missing values table with missing value data

PSa 0.48 ??
PSb 0.40 ??
PSc 0.38 ??
PSd 0.36 ??
PSe 0.28 ??
PSf 0.28 ??
PSg 0.39 ??
PSh 0.48 ??
PSi 0.23 ??
PSj 0.07 ??
PSk 0.12 ??
PSl 0.12 ??
PSm 0.50 ??

Table 2.8: For each pumping station, the average portion of missing values and a link to the
table with the missing values per variable for the non-temporal data of that pumping station is
given

Temporal data
In case of the temporal method it is more difficult. Simply filling out a missing value is hard
since this is minute data. Neither is it possible to deduce the missing variable from surrounding
variables since most of the time if one variable is missing, all of them are missing. Only three
options remain: (1) interpolating all the gaps. In which case valid questions may rise on what
those values would actually mean. If minute data is linearly interpolated for multiple days. The
next option is (2) ‘cut’ the data where variables are missing and choose the biggest ‘chunk’ to
learn on. This would throw away a lot of potentially valuable data. The final option is (3) to
fill-out ‘weird’ numbers for the missing data, for instance ‘-999’. Hoping the algorithm would
learn that those numbers have no real meaning.

Originally option (3) was chosen. But early in the process this seemed to lead to very peculiar
results27. As we were very much opposed to ‘throwing away’ valuable data option, (1) seemed
the only one left. As early results indicated more reasonable results, the choice has been made
to go with option (1): interpolating the data.

2.4.1.5 Outliers

The outlier detection provided by [28] is used.

27All test instances were predicted to have exactly the same chance on a defect
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1-1-2012 31-12-2017

Figure 2.11: According to the code the outliers with regards to the flow measurements
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1-1-2012 31-12-2017

Figure 2.12: Outlier detection example of the level measurement of pumping station PSb. In
red the ‘outliers’ caused by emptying the pump manually. And in orange a visual result of
different settings of the predetermined starting level28.

In Figure 2.11 and Figure 2.12 the outliers of pumping station PSb can be seen according to the
code from [28]. It is interesting to note that the code and the domain experts differ profoundly
on this matter. Starting with the flow measurements. The code marked some points as outliers.
When looking more closely at the data together with a domain expert, she stated that those are
perfectly reasonable values. For that reason those ‘outliers’ have been deemed as false-positives.
And been treated as normal values.

As for the level measurement the opposite happened. The code marked no values as outliers.
However as soon as the domain expert saw this figure, she immediately called all the values
in the red box possible outliers. After some digging in the data it turned out those are points
where the pumping station is emptied. As this might carry important information with re-
gards to the defects, those values are left in. And in addition an extra feature is engineered:
‘dagen sinds leegpomp’ (see subsubsection 2.4.1.1).

2.4.2 Selecting the defects

Selecting the type of defects
The 75 defects in the database vary enormously in severity from a defect light bulb to a pumping
station which stops pumping. In this research the choice has been made to only look at the
severe cases where a pumping station stops pumping. Arjen Kruit [12] chose to only look at

28In Dutch: ‘inslagpeil’
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those severe defects as well. He narrowed it down to eight classes of defects, shown and explained
in Table 2.9.

defect name explanation

no pump available the pump has been shut down, usually this is done manually by
a mechanic

watchdog29 an energy event
thermal security slide event30

mainstream security the security on the main energy stream of the pump
flow rate measurement defect an event in the flow rate measurements
shuttle alarm the pump switches on and off too often and too quick in procession
power steering alarm energy sent to a specific part of the machine, only a little energy

is necessary
power failure no more energy is supplied. This often happens when outside of

the sewer system accidentally an energy supply line has been cut.

Table 2.9: The defects Arjen Kruit chose to predict

This set of defects is taken as the base set, and some minor differences are implemented. First of
all because the energy events usually have their origin outside of the sewer system, the chances
of being able to predict them with only sewer information are estimated to be low. For that
reason ‘watchdog’ and ‘power failure’ are chosen to be left outside the scope, and even though
they are major failures, no effort is made to predict those in this research.

Three other defects are major events too and have been included in this research. To start with
the defect ‘Opening and pump stopped’31, meaning as much as that the pump stopped working
and that the valve to keep the water from flowing back is open. So in this case the water can
go into the opposing direction of which it should go. Secondly the defect ‘Closing and pump
works’32, meaning that despite the pump pumping, this time the valve is closed and stopping
the water from flowing correctly. Finally the defect ‘Return flow notification’33, meaning that
the system detects water flowing in the wrong direction.

Creating the final list of defects to look at in Table 2.10.

defect name

no pump available
thermal security
mainstream security
flow rate measurement defect
shuttle alarm
power steering alarm
opening and pump stopped
closing and pump works
return flow notification

Table 2.10: The defects to be predicted

29In Dutch: ‘netwachter’
30In Dutch: ‘schuif event’
31In Dutch: ‘openmelding en pomp uit bedrijf’
32In Dutch: ‘dichtmelding en pomp in bedrijf’
33In Dutch: ‘retourflowbewaking’
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Cleaning the defects
Now the type of defects had been chosen, there was still some cleaning to be done. For instance
the data sometimes showed that a mechanic would go to a pump and until the mechanic left
again many defect messages would pass by: the mechanic manually restarted the pumps. Ob-
viously those are not the type of defects this model wants to predict. For this reason any defect
occurring when a mechanic is present is disregarded.

In very rare occasions it happened that no starting or no ending time was known regarding
a certain defect. Since the time a defect took is needed for the feature engineering (see sub-
subsection 2.4.1.1), an effort was first made to look at a possible common length that defects
took in order to fill that out. But this turned out not to be the case. And because it rarely
happened (some pumping stations had no occurrence of it), it was decided to simply disregard
those defects.

In the database, information on the priority of a defect is already included. Since the scope
of this research is limited to major defects, only the defects with the highest priority will be
predicted.

Furthermore, some of these defects were not only limited to the pumping stations alone. Since
this research really narrows down to pumping stations, all the defects occurring at another
location then where a pumping station is present were disregarded.

And finally, once the first notification of a defect was sent, it happened regularly that the same
notification would be sent over and over again every time with a few seconds or minutes in
between. The assumption has been made that those notifications were all the cause of one and
the same defect. For this reason only the first time a specific defect occurs on any given day
will be seen as a ‘real’ defect.

Comparing the defects in researches
To be able to better compare the results found in this research to the results found in the research
of Marly van der Meij [13], a quick comparison between the decisions made with regards to the
defects is in order. To start with, her research included more defects. Not only more types but
also including those with one priority level lower than this research does.

2.4.3 Selecting the pumping stations

Throughout time different types and brands of pumps have been installed in the sewer system.
Because of this not all pumps might have the same ‘indicators’ in their data to show an ap-
proaching defect. Therefore not all the pumps can be trained in the same model. In order to
keep this research within the time limit, the choice has been made to pick around 10 pumping
stations and look closer into those.

To select those 10 pumping stations, two demands have been made:

• This particular pumping station needs to go into defect at least 30 times (a bit over 1%
of the time).
We are aware that this causes a bias in the data. However it was deemed more important
to be able to give the models some defects to learn from.

• This pumping station needs to have both the Flow rate measurements and the Level
measurements.
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This left a list of 13 candidates presented in Table 2.11.

pumping stations

PSa PSh
PSb PSi
PSc PSj
PSd PSl
PSe PSk
PSf PSm
PSg

Table 2.11: List of 13 pumping stations who met all the demands

Since there is no ‘good’ method to make a viable distinction between those pumping stations,
the choice has been made to look into all 13 pumping stations.

Please note that during this part of the research, Marly van der Meij’s research [13] was not
yet published. After her research was published, some decisions on how to look at the defects
have been altered. In order to be able to use some important features of hers (see subsubsec-
tion 2.4.1.1), the duration of the defects was required. At the start this was not taken into
account. If a defect had no end time, it was deemed ‘no defect’. For that reason it is possible
that in Table 2.5 the pumping stations PSf, PSi and PSm have fewer than the here mentioned
30 defects.

Noteworthy is that Marly van der Meij’s research focusses on pumping station PSe. It will be
interesting to compare the results.

2.4.4 Selecting the final variables

Since all variables turned out to have an extremely low correlation with going into defect34, it
was decided to look at the feature importance function of the decision tree (Figure 2.4). This
is a feature which shows how important the decision tree deems which variable with regard to
‘splitting’ a node (in the example the split is done by the number of wheels of the vehicle). Only
variables with a feature importance > 0 are kept and fed to the actual models.

34Somewhere along the lines of: no ’absolute correlation’ being higher than 0.2
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Results

This chapter will display all the results. Starting with a comparison between the original data
and the data used, and which features were important (section 3.1). Moving onto, for each
algorithm, which parameters turned out to be most important (section 3.2). The predictions
made by the algorithms (section 3.3) and finally some insights which can be gained from these
predictions (subsection 3.3.1).

3.1 Data

3.1.1 Final dataset vs original dataset

Out of the 12 variables described in section 2.1 only two could be reliably used. Aggregating
their minute-data to daily-data. And out of the 525 pumping stations only 13 where chosen in
subsection 2.4.3 to look at, however all the data from the respective catchments could be used.
Resulting in using from the original nearly 380 million measurements just slightly less than 145
million. Also out of the nearly 3000 types of defects only 9 types are taken into consideration
as explained in subsection 2.4.2.

3.1.2 Feature importance

The figures ?? up till and including ?? show for each pumping station the 10 most important
features. Often defectsratio is the most important feature. At the same time it never reaches
over an importance of 0.25. And this is a scale from 0 to 1. So the result is still similar to the
correlations: no variable truly gives a lot of information.

In Table 3.1 it is shown whether a feature was in the top 10 most important features for that
pumping station. As each pumping station could have several level and flow measurements,
those were all ‘judged as one’, to look more at whether level or flow measurements were impor-
tant at all, or maybe always a certain aggregation form.

It can be seen that for each pumping station the defectsratio is important. This is straight
away the only feature which is important to all pumping stations. In general the level

measurement is used for each pumping station as well. But not all stations prefer the same
aggregation method. The most used aggregation method is the minimum level measurement,
which is important to all but one pumping station (PSl).

Another important feature, which is used by all the pumping stations but two (PSc and PSl),
is the days since emptying.
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Next are the maximum 5 minute difference flow measurement and the flow measurement.
Both are used by 8 pumping stations. As regards to the flow measurement the maximum seems
the most important aggregated value because it is used in 7 of the 8 cases, where all the others
are used less. The minimum was not important once.

The other values pumped, weekday and season are all used in less than half the cases. And
season even only once.
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level measurement flow measurement

PSa X X X X X
max min
avg

PSb X X X X X
max min
avg

PSc X
max min
avg sum

PSd X X X
max min
avg sum

max

PSe X X
min

avg sum
max
avg sum

PSf X X X X
max min

sum

PSg X X X X
max min
avg sum

max
sum

PSh X X X X
max min
avg

max
avg sum

PSi X X X
max min
avg sum

max

PSj X X X X
max min max

PSk X X X
max min
avg sum

PSl X X X
max
avg sum

max
sum

PSm X X X X
min

avg sum avg

Table 3.1: Overview of the important features for each pumping station. When a field is empty
it means that it is not one of the 10 most important features for that pumping station.

Interesting to note here is that the weather data imported from KNMI was not deemed impor-
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tant for any pumping station.

In order to be able to compare the results, the following two tables Table 3.2 and Table 3.3
contain the average emptiness of the variables which were deemed important and with that only
the features which were used. Two methods of averaging have been tried:

average emptiness =
sum of emptiness

number of important features

weighted average emptiness =

∑(
emptiness× importance

)
sum of importance

Furthermore the difference between these two tables is that Table 3.2 only takes the 10 most
important features into account whereas Table 3.3 takes all features into consideration with an
importance > 0.

putnr number of important features weighted average emptiness average emptiness
PSa 10 0.079 0.090
PSb 10 0.055 0.057
PSc 10 0.057 0.077
PSd 10 0.082 0.093
PSe 10 0.053 0.064
PSf 10 0.042 0.063
PSg 10 0.057 0.065
PSh 10 0.065 0.093
PSi 10 0.055 0.079
PSj 10 0.040 0.054
PSk 10 0.058 0.066
PSl 10 0.046 0.066
PSm 10 0.102 0.114

Table 3.2: This table contains only the features and the average emptiness of the 10 most
important features

putnr number of important features weighted average emptiness average emptiness
PSa 17 0.079 0.087
PSb 39 0.080 0.100
PSc 64 0.071 0.084
PSd 43 0.099 0.113
PSe 26 0.059 0.069
PSf 17 0.045 0.065
PSg 15 0.056 0.059
PSh 16 0.067 0.095
PSi 14 0.056 0.080
PSj 30 0.052 0.065
PSk 39 0.072 0.080
PSl 32 0.057 0.072
PSm 25 0.113 0.122

Table 3.3: This table contains the average emptiness of all the features with an importance
bigger than 0
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3.2 ML models

3.2.1 Models

In order to find the effect of differently filled out parameters with these models, the best model
(e.g. the model with the highest F1-score) with each algorithm-pumping station couple is cho-
sen. If multiple models share the best score, the first model is elected. Then all the parameters
are kept the same but one. This last parameter is changed into all possible values and the score
is compared. This is done for all the parameters.

Important to note here is that not all models could be taken into account. Some parame-
ter settings were not viable -resulting in no score- and in the cases where either the TN, FN
or the FP where 0, the F1-score returned a ‘nan’ value and could thus not be evaluated us-
ing this method. In this particular case not a lot is lost due to this, because in these cases it
means that at least either the recall or the precision is 0, and thus there would be a low F1-score.

3.2.1.1 RF

Some parameters simply have no effect whatsoever. For instance the n jobs and the warm start.
Which resulted in figures like Figure 3.1. Also the oob score had no result. However in 4
pumping stations any other value than the currently best value in combination with the other
parameters resulted in a nan-value for the F1-score.

Figure 3.1: The F1-score of -in this case- pumping station PSd. When the variable n jobs is
changed, nothing happens.

n estimators
This value seems to change a lot mostly between the values 5 and 50 and less so moving to-
wards 500. It seems as if the lines in general seem to move towards each other at some point.
Resulting in the idea in some cases that the optimal value is just outside the chosen parameters
(e.g. Figure 3.2). But sometimes it seems to be exactly within (Figure 3.3).
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Figure 3.2: The effect of n estimators on the
metrics for pumping station PSg

Figure 3.3: The effect of n estimators on the
metrics for pumping station PSi

criterion
Except for pumping stations PSa and PSm (Figure 3.4), entropy seems to be the better choice
in general. With all other pumping stations resulting in figures like Figure 3.5.

Figure 3.4: The effect of criterion on the metrics
for pumping station PSm

Figure 3.5: The effect of criterion on the metrics
for pumping station PSg

max features
Pumping station PSm only allowed for 0.5 and 0.75 to be tried, the other options resulted in
nan-values (Figure 3.6). In general this parameter seems to have a bigger influence on the pre-
cision and recall (and with that the F1-score) than on the accuracy. Further there is not much
to be said about it in general. It goes from quite rigid (Figure 3.7), to smooth and moving in
sync (Figure 3.8), to complementing each other (Figure 3.9).
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Figure 3.6: The effect of max features on the
metrics for pumping station PSm

Figure 3.7: The effect of max features on the
metrics for pumping station PSl

Figure 3.8: The effect of max features on the
metrics for pumping station PSe

Figure 3.9: The effect of max features on the
metrics for pumping station PSf

Interesting to note here is that apparently the catchment does not have a lot of influence
in this matter, as Figure 3.8 and Figure 3.9 are both from catchment 08.

min samples split
Only for two pumping stations (PSe and PSi) (Figure 3.10) is the value 0.1 best. In all other
cases 2.0 is the best. Import to note here is that 0.1 means 10% of the samples. Which is a lot
higher than 2. So in that sense the graph can easily be wrongly interpreted. Looking back it
would have been great to see what would happen if more values had been tried1. It seems like
possibly the point where recall and precision meet results in the best solution, Figure 3.11 is
one of the clearest examples.

1Running all algorithms with their settings already took little over a week (day and night). So no more values
were tried to not let the running take even more time.
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Figure 3.10: The effect of min samples split on
the metrics for pumping station PSi

Figure 3.11: The effect of min samples split on
the metrics for pumping station PSb

min samples leaf
In all cases 1.0 gives a better result than the 0.1, two examples are shown in Figure 3.12 and
Figure 3.13. Similar as to min samples split it is slightly deceiving that the 0.1 is to the left of
1.0 while being larger. So it could very well be that more than 1 would be better, as long as it
is less than about 10% of the data. Also a third value would have been very interesting.

Figure 3.12: The effect of min samples leaf on
the metrics for pumping station PSe

Figure 3.13: The effect of min samples leaf on
the metrics for pumping station PSm

min impurity decrease
Only for seven pumping stations (PSc, PSd, PSf, PSg, PSh, PSi and PSk) did more than one
value return a non-nan value, so only 7 pumping stations can be compared. Except for one
pumping station (PSi - Figure 3.14) the recall is low at 0.0 and increases drastically around 0.25
to maintain more or less similar afterwards. This is complemented by precision and F1-score
which start at their highest point on 0.0 and then drop in score to get similar results afterwards.
With nearly all values accuracy seems to not be effected too much, however this one has a huge
effect on accuracy. A more representative figure for the other 6 pumping stations is shown in
Figure 3.15.
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Figure 3.14: The effect of
min impurity decrease on the metrics for
pumping station PSi

Figure 3.15: The effect of
min impurity decrease on the metrics for
pumping station PSk

bootstrap
Only 4 models resulted in figures (PSa, PSb, PSe and PSl). For those 4 models (except PSa
where precision and recall are exactly alike and thus so is the F1-score - Figure 3.16), precision
seems to prefer False, and recall seems to prefer True, resulting in a nearly even F1-score, an
example is shown in Figure 3.17.

Figure 3.16: The effect of bootstrap on the met-
rics for pumping station PSa

Figure 3.17: The effect of bootstrap on the met-
rics for pumping station PSl

Summary
So ,to summarize, the features min samples split, min samples leaf and min impurity decrease

should be set not too big. In general entropy does the best work with regards to criterion and
n estimators and max features should really be tuned every time separately. All the other
features have (nearly) no effect, and can thus be disregarded.
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3.2.1.2 XGB

Also in the XGB algorithm there turned out to be a parameter with no effect: warm start. All
other parameters at least had a little bit of effect on some pumping stations. This algorithm
suffered the most of nan-values and with nearly every parameter there is at least one pumping
station for which the values could therefore not be compared.

loss
In this case the pumping station PSi has nan-values. Furthermore this parameter has little to
no effect on pumping stations PSh and PSj. On other pumping stations it does have effect,
but no general preference, some prefer deviance (like Figure 3.18), and other prefer exponential
(like Figure 3.19).

Figure 3.18: The effect of loss on the metrics
for pumping station PSe

Figure 3.19: The effect of loss on the metrics
for pumping station PSg

learning rate
Three pumping stations (PSi - Figure 3.20, PSk and PSm) had nan-scores when the value was
0.01. With nearly all other pumping stations there is a sharp ’hook’ at 0.1 with quite an effect
towards 0.01, an example is shown in Figure 3.21

Figure 3.20: The effect of learning rate on the
metrics for pumping station PSi

Figure 3.21: The effect of learning rate on the
metrics for pumping station PSj
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n estimators
Pumping station PSm had nan-values. Furthermore there is not really a comment ‘preference’.
In the case of pumping station PSa there is simply no effect. Three pumping stations (PSf, PSg
and PSi - Figure 3.22) prefer 10 and the other eight pumping stations perform better at 100,
an example shown in Figure 3.23.

Figure 3.22: The effect of n estimators on the
metrics for pumping station PSi

Figure 3.23: The effect of n estimators on the
metrics for pumping station PSc

max depth:
Pumping station PSk had nan-values. With only two pumping stations preferring a max depth
3 over 10 (PSe and PSf - Figure 3.24) it seems like in general 10 results in a better performance
(Figure 3.25).

Figure 3.24: The effect of max depth on the
metrics for pumping station PSe

Figure 3.25: The effect of max depth on the
metrics for pumping station PSg

Interesting to note here is that both pumping stations which prefer 3 are from the same catch-
ment (08).

criterion:
Both pumping station PSi and PSm returned nan-values. Except pumping station PSg (Fig-
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ure 3.26) all pumping stations perform better with the friedman mse criterion than with the
mae criterion. Also interesting to note is that in general accuracy does not seem to be extremely
influenced by this parameter, except with pumping station PSc (Figure 3.27).

Figure 3.26: The effect of criterion on the met-
rics for pumping station PSg

Figure 3.27: The effect of criterion on the met-
rics for pumping station PSc

min samples split
This parameter did not have any effect on seven pumping stations. There is only one pumping
station (PSk - Figure 3.28) which prefers 2.0 over 0.01. The remaining five (PSa, PSd, PSg, PSi
and PSm - Figure 3.29) all prefer 0.01 over 2.0. So in general little can be said, but it seems
like it does not matter a lot. And if it matters then 2.0 is preferred over 0.01.

Figure 3.28: The effect of min samples split on
the metrics for pumping station PSk

Figure 3.29: The effect of min samples split on
the metrics for pumping station PSa

min samples leaf
Both pumping station PSi and PSm returned nan-values. With pumping station PSf this vari-
able had no effect. And the remaining 10 pumping stations are perfectly divided: five pumping
stations (PSa, PSd, PSg, PSh and PSk - Figure 3.30) perform better with 1.0 and the other
five (PSb, PSc, PSe, PSj and PSl - Figure 3.31) perform better with 0.01.
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Figure 3.30: The effect of min samples leaf on
the metrics for pumping station PSk

Figure 3.31: The effect of min samples leaf on
the metrics for pumping station PSj

subsample
Pumping station PSg only has two values in the graph: 0.5 and 0.75, the 1.0 resulted in a nan-
value. On which value performs better the opinions are divided. five pumping stations perform
best with 0.5 (Figure 3.32). Three with 0.75 (Figure 3.33) and four with 1.0 (Figure 3.34). And
then pumping station PSi performs best with both 0.75 and 1.0 (Figure 3.35).

Figure 3.32: The effect of subsample on the
metrics for pumping station PSf

Figure 3.33: The effect of subsample on the
metrics for pumping station PSk
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Figure 3.34: The effect of subsample on the
metrics for pumping station PSm

Figure 3.35: The effect of subsample on the
metrics for pumping station PSi

max features
Pumping station PSm returned nan-values. In general ‘None’ seems to outperform ‘sqrt’ as
only three pumping stations perform better with the latter (Figure 3.36), and nine pumping
stations perform better with ‘None’ (Figure 3.37).

Figure 3.36: The effect of max features on the
metrics for pumping station PSe

Figure 3.37: The effect of max features on the
metrics for pumping station PSa

min impurity decrease
Pumping station PSg returned nan-values. Generally speaking it can be said that 0.5 outper-
forms 0. Only three pumping stations have no improvement towards 0 (Figure 3.38). All nine
other pumping stations perform better with 0 than with 0.5 (Figure 3.39).
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Figure 3.38: The effect of
min impurity decrease on the metrics for
pumping station PSc

Figure 3.39: The effect of
min impurity decrease on the metrics for
pumping station PSk

Summary
These parameters in general differ a lot more than with the RF. For that reason it is advised
to every time tune the parameters. Having said that, the variables loss, learning rate,
n estimators, min samples split and subsample all do matter, but not one value outperforms
the other options. So these variables will always have to be re-tuned. However max depth seems
to perform most of the time better with a depth of 10 over depth 3. It would be advised to
try and find if values higher then 10 and between 3 and 10 maybe perform even better. Next
criterion as the documentation already foretold, most of the time the option ‘friedman mse’
performed best. In the case of min samples split and min impurity decrease there is usually
not much effect, but if there is an effect it most of the time performs better with lower values.
Regarding max features it is generally best to choose ‘None’.

3.2.1.3 SVM

With SVM all variables had at least some effect. Furthermore no nan-values were returned.

C
The ‘penalty parameter’, for some pumping stations there is quite some effect (Figure 3.40),
whereas with other pumping stations there seems to be little effect (Figure 3.41). In any case
there seems to be no clear tendency for one to perform better in all cases.
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Figure 3.40: The effect of C on the metrics for
pumping station PSe

Figure 3.41: The effect of C on the metrics for
pumping station PSl

coef0
Three pumping stations display no effect when this parameter is changed (PSc, PSf and PSh).
The other pumping stations sometimes prefer higher coef0 (e.g. Figure 3.42) and sometimes
prefer lower values (Figure 3.43).

Figure 3.42: The effect of coef0 on the metrics
for pumping station PSj

Figure 3.43: The effect of coef0 on the metrics
for pumping station PSa

degree:
With exactly the same pumping stations2 as with coef0 there is no effect at all (PSc, PSf and
PSh). In general there is very little that can be said, it seems to be all over the place, two
examples are shown in Figure 3.44 and Figure 3.45.

2As degree is only used by the kernel ‘poly’ and coef0 only by ‘poly’ and ’sigmoid’, it might have something
to do with that
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Figure 3.44: The effect of degree on the metrics
for pumping station PSd

Figure 3.45: The effect of degree on the metrics
for pumping station PSl

gamma:
Because more values have been tried for this variable, it offered the opportunity to present
more interesting figures. And it did (Figure 3.46). Do note that due to the ‘auto’-option the
x-axis is not scaled as probably assumed. In general it seems like a lower gamma is better
for recall (there are only three exceptions: PSe, PSh and PSk), see Figure 3.47. It also has
quite an effect on accuracy, but less so on precision resulting in a lessened effect on the F1-score.

Figure 3.46: The effect of gamma on the metrics
for pumping station PSm

Figure 3.47: The effect of gamma on the metrics
for pumping station PSg

kernel:
Just as with gamma this parameter results in some interesting figures. In general it seems like
sigmoid is a good choice for recall, and bad for accuracy (Figure 3.49), with exceptions for
pumping stations PSh, PSi and PSm (Figure 3.48). Also the kernel does not have as much
effect on precision as on recall and accuracy resulting in not too much effect on F1-score either.
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Figure 3.48: The effect of kernel on the metrics
for pumping station PSi

Figure 3.49: The effect of kernel on the metrics
for pumping station PSl

tol:
This variable has nearly no effect, only with pumping station PSi there is a very small effect,
this is shown in Figure 3.50.

Figure 3.50: The effect of tol on the metrics for pumping station PSi

Summary
Tol seems to have very little effect in general. In the case of SVM many variables simply will
have to be tried every time because it depends on the pumping station what works best, this is
the case with C, coef0 and degree. This actually also counts for gamma and kernel, however a
lower gamma seems to be better for the recall. Similarly sigmoid kernel seems to be better for
recall. If F1-score is looked at the difference is not that big anymore, but might move towards
rbf or poly.
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3.2.1.4 LSTM

The code did seem to work. However with the data from the first pumping station (PSa)
with parameter options 144 a memory error occurred after which windows had apparently been
somehow corrupted as the computer would have a blue screen, restart back into the blue screen,
resulting in an infinite loop. Windows had to be re-installed. Due to time pressure and this last
result, this model has not been run any further. And thus no real conclusions can be deduced.
It would be interesting to see as future research how temporal models perform.

The first 143 parameter settings with regards to the LSTM model on pumping station PSa were
not as promising as the other models, with a maximum F1-score of 0.050. In total 648 settings
should have been tried, and only 143 were tried. So actually this F1-score says nothing yet.
Comparing these results to the lowest 100 or so results of the RF model on pumping station
PSa, those were only 0.060. So actually it gives very little indication on how good or bad the
LSTM might have performed.

3.2.1.5 Before oversampling minority

For all three algorithms there are models which return the remarkable result that -despite the
skewedness of the data- all instances are labeled ‘defect’. The first time all the models were run
was without the oversampling of the minority (as explained in the beginning of section 2.2).
Since this was an unexpected result some effort was put into finding what could have caused this.

For all three algorithms one model was elected with this weird result. And one by one all
parameters were looked at. This was done in a similar method as described in subsection 3.2.1:
in this case however the parameter was not altered, but removed (causing if a default was in
place, the default would be used).

For each algorithm a few parameters were found which could ‘undo’ this weird result. For
this reason it has been concluded that this was caused by a specific combination of parameter
choices. And was not further researched.

Following for each algorithm the model which was looked at and the parameter changes, which
caused a more expected result.
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name original value value with more expected result

n estimators 5
criterion ‘gini’

max features ‘auto’
max depth ‘None’

min samples split 2
min samples leaf 1

min weight fraction leaf 0
max leaf nodes None

min impurity decrease 0.25 0.0
bootstrap True
oob score True

n jobs 1
random state 0 None

verbose False
warm start True
class weight ‘balanced’ None

Table 3.4: Results of looking into one RF model which predicted all instances as ‘defect’ on
pumping station PSa

name original value value with more expected result

loss ‘deviance’
learning rate 1 0.1
n estimators 100
max depth 3
criterion ‘friedman mse’

min samples split 0.01 2
min samples leaf 1

min weight fraction leaf 0
subsample 0.50 1

max features None
max leaf nodes None

min impurity decrease 0.5 0.0
init None

verbose 0
warm start True

random state None
presort ‘auto’

Table 3.5: Results of looking into one XGB model which predicted all instances as ‘defect’ on
pumping station PSh
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name original value value with more expected result

C 5.0
cache size 200MB

class weight ‘balanced’ None
coef0 0

decision function shape ‘ovo’
degree 5 3
gamma ‘auto’
kernel ‘poly’ ‘rbf’

max iter -1
probability False

random state None
shrinking True

tol 0.01
verbose False

Table 3.6: Results of looking into one SVM model which predicted all instances as ‘defect’ on
pumping station PSe

3.3 Prediction

In Figure 3.51 the maximal F1-score reached for each pumping station is shown. The exact
values can be found in Table 3.7. The SVM performs worst for all pumping stations. In general
the XGB model performs best of the three models, only for two data sources does the RF
outperform the XGB. Also pumping station PSc seems to be the easiest to predict reliably.
Whereas pumping station PSj seems to present a more difficult case.

F1-score
pumping station max RF max SVM max XGB

PSa 0.500 0.294 0.571
PSb 0.530 0.373 0.608
PSc 0.612 0.545 0.617
PSd 0.467 0.219 0.485
PSe 0.340 0.224 0.483
PSf 0.250 0.187 0.435
PSg 0.500 0.167 0.522
PSh 0.519 0.186 0.552
PSi 0.600 0.222 0.500
PSj 0.350 0.316 0.383
PSk 0.320 0.314 0.500
PSl 0.480 0.261 0.600
PSm 0.545 0.172 0.462

Table 3.7: For each pumping station comparing the best F1-scores for all three models. To give
a first indication, the threshold is set on the lower bound found in subsection 2.2.5 ( 0.2726 ).
Green means ‘better than the threshold’ and red means ‘worse than threshold’. For visualisation
see Figure 3.51.
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0.2726

Figure 3.51: The maximal F1-Score for each pumping station by each method. This is the
visualization of Table 3.7. The red line is the threshold.
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best model scores
pumping station algorithm precision recall F1-score

PSa RF 0.500 0.500 0.500
PSa RF 0.833 0.357 0.500
PSa XGB 0.857 0.429 0.571
PSa SVM 0.250 0.357 0.294
PSb RF 0.667 0.440 0.530
PSb XGB 0.596 0.620 0.608
PSb SVM 0.252 0.720 0.373
PSc RF 0.607 0.617 0.612
PSc XGB 0.617 0.617 0.617
PSc SVM 0.447 0.700 0.545
PSd RF 0.636 0.368 0.467
PSd XGB 0.571 0.421 0.485
PSd SVM 0.127 0.789 0.219
PSe RF 0.276 0.444 0.340
PSe XGB 0.636 0.389 0.483
PSe SVM 0.135 0.667 0.224
PSf RF 0.500 0.167 0.250
PSf XGB 0.455 0.417 0.435
PSf SVM 0.150 0.250 0.187
PSg RF 0.600 0.429 0.500
PSg XGB 0.667 0.429 0.522
PSg SVM 0.109 0.357 0.167
PSh RF 0.538 0.500 0.519
PSh XGB 0.533 0.571 0.552
PSh SVM 0.108 0.643 0.186
PSi RF 0.600 0.600 0.600
PSi XGB 0.667 0.400 0.500
PSi SVM 0.250 0.200 0.222
PSj RF 0.538 0.259 0.350
PSj XGB 0.450 0.333 0.383
PSj SVM 0.245 0.444 0.316
PSk RF 0.571 0.222 0.320
PSk XGB 0.571 0.444 0.500
PSk SVM 0.242 0.444 0.314
PSl RF 0.857 0.333 0.480
PSl XGB 0.750 0.500 0.600
PSl SVM 0.214 0.333 0.261
PSm RF 0.667 0.462 0.545
PSm XGB 1.000 0.300 0.462
PSm SVM 0.096 0.846 0.172

Table 3.8: For each pumping station and each algorithm the best F1-score with the belonging
precision and recall. A visual representation is given in Figure 3.52, Figure 3.53 and Figure 3.54.
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Figure 3.52: The precision, recall and F1-score of the best models from the RF algorithm
according to the F1-score 3

a: Ordered by increasing F1-score b: Ordered by pumping station

Figure 3.53: The precision, recall and F1-score of the best models from the XGB algorithm
according to the F1-score

a: Ordered by increasing F1-score b: Ordered by pumping station

3In the RF algorithm two combinations of a precision and recall score resulted in exactly the same F1-score
at pumping station PSa, which also happened to be the best. For this reason there is a PSa 1 and PSa 2, so
both these combinations can be shown.
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Figure 3.54: The precision, recall and F1-score of the best models from the SVM algorithm
according to the F1-score

a: Ordered by increasing F1-score b: Ordered by pumping station

How the recall, precision and F1-score move together is visually shown in Figure 3.52, Figure 3.53
and Figure 3.54 respectively for the RF, XGB and SVM algorithm. Looking at those figures it
seems like RF and XGB favor precision over recall, and SVM seems to favor recall over precision.

3.3.1 Insights

F1-score & feature importance
What features were deemed top-10 important seems to have no direct link with the F1-score.

F1-score & empty variables
The F1-score and empty variables, be it in of all the variables, only the important variables
or the top 10 most important variables, do not seem to have anything to do with each other.
However what is interesting is to see is that both the important features and the top 10-features
seem to be bound by some sort of demand on the % of missing values. As shown in Figure 3.55
the percentage of empty variables in total differs a lot. But looking at the weighted average
and the average of both the important and the top-10 features, none of them pass the 12.2%
of missing values on average. Looking further into it the feature importance did not only look
at the missing values, some of the top-10 have more missing values than the minimum % of
missing values for that pumping station. However it seems safe to say that lower % of missing
values has a positive influence on being elected as an important feature.

This ‘demand’ from the data seems to be even more strict than what was demanded during
the data preparation, since there all features with more than 25% missing values have been
removed.
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Figure 3.55: The total percentage of missing values compared to the percentage of missing
values of the used features and the top-10 most important features

F1-score & Skewedness of the data
In Figure 3.56 the pumping stations are ordered from highest % minority to lowest. This
percentage is shown in the dark red line. The other three lines are the best F1-scores of each
algorithm. This plot seems to indicate that especially the SVM-algorithm suffers from skewed
data.
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Figure 3.56: The F1-scores of the different algorithms plotted together with the % of data which
is a minority

It also gives a possible explanation why pumping station PSc seems so much easier to predict
than other pumping stations. As it is the pumping station with the least skewed data.
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Discussion

4.1 Usefulness of the results

The usefulness of these results depends greatly on the necessary certainty. None of the models
catch all defects without some FP. But these models are definitely better than simply tossing
a coin. Any pumping station can be used for this example, but it has been chosen to work
with pumping station PSj because with that particular pumping station all algorithms had
some trouble. The XGB algorithm did perform best of the three. So with XGB 33.3% of the
defects will be called a defect, and when an instance is being called a defect, in 45% of the
cases it will actually turn out to be true. Comparing this to the number of instances which are
actually defect (7.95%), this still results in an increase in certainty about whether the situation
is heading for a defect or not. Such an increase in the pumping station which performed most
poorly is promising.

Depending on whether recall or precision is valued more, a different algorithm seems in place.
SVM seems to focus on recall, with seven pumping stations the maximum F1-score of the model
yields the highest precision of the three algorithms for that particular pumping station. How-
ever it has such a poor precision that the F1-score is generally lower. With both RF and XGB
the precision is better than the recall. XGB and RF seem to be about as good at precision.
However go with XGB when precision and recall are important, because XGB in general has
the highest F1-score.

4.2 Validity of results

Assumptions
Many assumptions have been made throughout this research. Here an effort is being made to
give an overview of these assumptions.

To start with, the problem statement already introduces a first assumption: the defects are
predictable 3 days in advance. It could very well be that a different amount of time would
produce better results. However for reasons stated in the problem statement it has been chosen
to continue with the 3 days assumption.

Another introduced assumption is the data aggregation per day. As a lot of fluctuation is going
on in the data, it could very well be that some important information is aggregated out of the
data by choosing this long time frame. An option which Marly van der Mei’s [13] research seems
to back up, by getting better results with the RF algorithm but aggregating the data per 10
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minutes.

A third assumption hides in the feature engineering. By choosing for a linear scale for both
the weekdays and the seasons, the ‘circularity’ of the data is completely lost. To the model
Sunday is as far away from Monday as possible, however in reality it is just as close to Monday
as Tuesday is. This assumption can cause that the model has a harder time figuring out if
something only happens on Sunday or Monday. This seems illogic because they are so far away
from each other. The assumption has been made due to time constraints.

The assumption has been made that the ‘outlier values’ of the level measurements (red box in
Figure 2.12) could better not be altered as they might present information. This was done next
to also creating the variable days since emptying, which arguably also holds this information.
It would be interesting to see what happens if those values are replaced by for instance the
predetermined ‘switch off’ level 1.

As choices had to be made and not ‘all’ model settings could be tried, the choice of which
settings to try automatically form some assumptions. It would be great to find what the results
of the models would be if more options could have been tried.

The choice to fill all empty values with one predetermined value includes some assumptions to
the model. If that value happens to be telling, this choice will definitely make it less telling
now. An assumption had to be made, another option could have been to perform a random
draw from the other values aiming to maintaining the distribution the same way it currently is.
Or -if more time could be invested- predict the missing value and use those.

Another assumption which has been made is that when more than 1/4 of the entries of a certain
variable are empty, the variable was no longer taken into consideration. This assumption could
potentially throw away valuable information. However as Figure 3.55 shows it seems like the
models themselves prefer an even lower threshold. For this reason this assumption probably did
not have that much effect.

An assumption with probably a huge impact is which type of defects are looked at. On this
database three researches have been done by now. The one by Arjen Kruit [12], Marly van der
Mei [13] and this research itself. All three have chosen to -partially- look at different defects.
Making it in essence somewhat difficult to compare them.

On the matter of defects another possible important assumption has been made: when a me-
chanic is present, no defects can occur.

Just like choosing which type of defects to look at, it is quite important which pumping stations
are looked at. 13 stations have been chosen to look at, based on their defect-rates and a min-
imum demand on the data. However questions may rise if the results for the chosen pumping
stations are therefore transferable to other pumping stations with either fewer defects and/or
less data.

And a final assumption is that the feature importance has been done before splitting the test
and the training set. This -in fact- causes an unfair advantage: a bit of the information held by
the data in the test set is being used to predict those same values.

Improvements

1The water level at which the pumping stations stop pumping again
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Next to the assumptions some improvements could be made to this research. Next to the al-
ready mentioned ones, possible improvements that have been thought of will be listed here.

To start with, no cross-fold validation was applied. This was done due to the combination of
a time-constraint and oversampling the minority. To be able to use all the data -as cross-fold
validation causes- would definitely improve the sturdiness of this research.

It would be great to see what the LSTM-algorithm would have produced as results. Especially
since it is a completely different look on things. It would definitely improve the research had
this algorithm been properly implemented and run.

Due to time constraints not as much time and effort could go to feature engineering as the
researchers would have liked to see. As this is often a vital part of ML, it is very well possible
that the results could be further improved by adding more possible features. One of the features
which could -for instance- be considered is whether a pumping station is situated in an industrial
or living area.

4.3 How transferable are the results?

With the difference in availability of the variables per catchment it is difficult if not impossible
to draw any conclusions on whether a method could be transferable. Luckily however there
are two sets of pumping stations which are in the same catchment, the first couple being PSe
and PSf and the second couple being PSk and PSl. Those couples have the same variables at
their disposal. With the same empty values. The only difference between each is the distance
between the pumping station and the respective measurement sensor. But even while looking
at the results of those couples, it does not seem like one can give any sort of indication on how
well the algorithms will perform on the other.

Without more information on the pumping station (for instance type, brand, age) it is difficult
to make any real statements here. But with the data at hand, this research seems to indicate
that the results are not transferable.

Marly van der Meij’s research [13] managed to get the following confusion matrix with the

RF algorithm on pumping station PSe:

predicted
0 1

real values 0 27673 2
1 22 275

Resulting in a recall

of 0.926, precision of 0.993 and F1-score of 0.958. A lot better than the results this research
manage to find. In her research she made many different assumptions than this research did.
For instance aggregating her data by 10 minutes instead of by day (also shown by many more
instances in her confusion matrix).
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Conclusion & Recommendations

5.1 Conclusion

So as far as the main goal went, the results indicate that it is possible to predict a defect in a
sewer system within the coming three days given the measurements in the system using Machine
Learning. Note that these results should only be seen as a show of the possibility with ML.
Before anything can be used in real-life it would be strongly advised to have another research
look for the best model and optimize that one for a more specified task at hands.

Looking at the first secondary goal: of the three algorithms/techniques tested in this research
it seems like XGB is best suited for this goal. But it could very well be that another method
would perform even better.

The final secondary goal: expert advice and data analyses give different indications on what the
most important characteristics are to predict a possible failure of a sewer system. To start with
the data analyses, this could only look at the data which was presented. It indicates that the
time spent in defect the past 3 days is an important feature, together with the time since the
last emptying of the pumping station. Secondly the level measurements seem to harbor more
information in this respect than the flow measurements. Now looking at what the experts told
us, energy consumption by the pumping station should have been a very important feature (but
was not present in the database), also how ‘clean’ the water is, should be an important factor.
The database did include turbidity measurements, but there were not enough of those to be
able to include them in this research. Therefore this will be a recommendation towards the
municipality of Utrecht, to put an effort into getting the energy consumption of the pumping
stations into the database as well as getting more (and more reliable) turbidity measurements.

5.2 Recommendations

The municipality of Utrecht could consider changing the ‘goal’ of their database. As we under-
stood it, currently the goal is to collect data whenever possible to see what can be done with
it later on [11]. However now three studies have been done on the data and questions have
been formed on what the municipality would like to get from this database. This gives more
information on what type of data are needed or could be useful and the reliability with which
these data are collected. If the goal is to predict defects with this data, it is recommended to
get the energy consumption of the pumping stations into the database as well as to get more
turbidity measurements. Also more continuity could improve the results. Currently there are
‘gaps’ in the data of several days (sometimes over two weeks at a time). Considering that some
measurements are done every minute, this forms a huge amount of missing data.
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In the very first month of this research, in the process of getting to know the data, all the
defects of all pumping stations had been combined in a single section of the database. This was
a relatively simple section as it would only look at the measurements directly at the pumping
station. With only a Decision Tree the following confusion matrix had already been achieved:

predicted
0 1

real values 0 4508 133
1 277 204

reaching a recall of 0.20, a precision of 0.35 and an F1-score of

0.26. No feature engineering, and for all the missing values simply the value ’0’ had been filled
out. As a starting point this seems quite promising, and for future research we suggest walking
this path. Quite possible with a more limited set of defaults, some feature engineering and more
advanced handling of missing data, this might prove very useful.

Instead of focusing on ‘most priority’ defects, it would be interesting to see if any of the defect
types maybe have a higher correlation with some data, and/or are better predictable. This
research could very much help understand the data better. And maybe the bigger defects can
be led back to a combination of smaller defects.

An interesting line of research would be to predict the level measurements and flow measure-
ments and fill the missing data with the predicted values. This could have a very different effect
than the chosen form in this research of simply interpolating the missing data.

This research tried to work with a temporal model (LSTM), but sadly no results could be drawn
from this in the end. As future research it could be very interesting to see what the results
would be. And whether looking at the data as a time-series has a positive effect on the results.

As stated before, not all possible engineered features have been taken into account. Other
possibilities that passed by, but could not be implemented were, to start with the groundwater
levels surrounding the pumping station. Tourist information on the number of people visiting
Utrecht. This might be interesting because experts expect that more litter means a higher
chance on defects, and more people might mean more litter.

Interesting features in the case of combining multiple pumping stations into one model might
be whether the location is near to a shopping mall or restaurants, or for instance closer to a
park. Probably within one city it will differ a lot, but if looked at a wider range the % of cal-
cium in the water might be telling. Similarly whether the majority of the ground is sand or clay.

In the case of choosing a smaller aggregation time than a whole day, interesting features might
include whether the time is during office hours or not.
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Peroration

It was interesting to do this ML research in a company with very little internal knowledge on
ML. The first and final mentors did know about ML. But the middle two have no knowledge on
ML. They had more domain knowledge. In ML, and in general when trying to get insights from
big data, it is always a challenge to maintain an useful balance between looking at the data and
implementing domain knowledge. It is a somewhat treacherous path because as researcher you
hope to find insights from the data which the domain experts do not know yet (and might even
expect to not be there at all). However you do not what to go on a wild goose chase either.
Looking at this research we feel we went astray from this path. In this case we let the knowledge
of the domain lead us away from promising results data-wise. As we mentioned we had -at the
start- some very promising results looking at all the pumping stations together. But according
to the domain experts this was not possible with this method and we stopped looking down
that path.

During the process of the research we have learned a lot. To start with the effect a mentor
has on the process. During the 7 months of research, we had at the company -due to different
circumstances- 4 different mentors. Each with their own expertise, experience and method of
mentoring. It takes quite some communication to bring a new mentor up to speed on where
you are currently in your research and why this is the chosen path. Also a new mentor always
brings in a new point of view, which is very valuable, but the later in the process this happens
the more difficult it is to still process it in the research.

Another aspect we got taught quite painfully is, as one of my mentors said: ‘The effort needed
for a part of the research should be in relation to what it contributes to the research’1. Looking
back at the LSTM we feel like we definitely lost this out of sight. It was a great idea to look
into. But as soon as we noticed that it took so much longer to get one model working than it
took the other three combined, we should have stopped and have a really hard thought about it.

1Freely translated from Dutch
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[23] Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of
recurrent network architectures. In Francis R. Bach and David M. Blei, editors, Proceedings
of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-
11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 2342–2350.
JMLR.org, 2015.

[24] Mark Hoogendoorn and Burkhardt Funk. Machine Learning for the Quantified Self - On the
Art of Learning from Sensory Data, volume 35 of Cognitive Systems Monographs. Springer,
2018.

[25] Jeff Heaton. The number of hidden layers, (accessed: 31-5-2018). https://www.

heatonresearch.com/2017/06/01/hidden-layers.html, (Blog).

[26] Keras. Keras documentation usage of optimizers, (accessed: 30-5-2018). https://keras.

io/optimizers/, (online documentation on package).

[27] Pedro M. Domingos. A few useful things to know about machine learning. Commun. ACM,
55(10):78–87, 2012.

[28] Mark Hoogendoorn and Burkhardt Funk. Machine learning for the quantified self - code,
2017 (accessed: 7-4-2018). https://ml4qs.org/source-code/, (website with the code
used in the book).

[29] scikit learn. 3.2.4.3.1. sklearn.ensemble.randomforestclassifier, (accessed: 23-5-
2018). http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html, (online documentation on package).

[30] scikit learn. 3.2.4.3.5. sklearn.ensemble.gradientboostingclassifier, (accessed: 25-
5-2018). http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

GradientBoostingClassifier.html, (online documentation on package).

A.S.Bruyn Page 65 / 63

http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
https://www.quora.com/What-are-some-pros-and-cons-of-Support-Vector-Machines
https://www.quora.com/What-are-some-pros-and-cons-of-Support-Vector-Machines
https://stats.stackexchange.com/questions/24437/advantages-and-disadvantages-of-svm
https://stats.stackexchange.com/questions/24437/advantages-and-disadvantages-of-svm
https://www.heatonresearch.com/2017/06/01/hidden-layers.html
https://www.heatonresearch.com/2017/06/01/hidden-layers.html
https://keras.io/optimizers/
https://keras.io/optimizers/
https://ml4qs.org/source-code/
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html


BIBLIOGRAPHY

[31] scikit learn. sklearn.svm.svc, (accessed: 9-5-2018). http://scikit-learn.org/stable/

modules/generated/sklearn.svm.SVC.html, (online documentation on package).

[32] Sagar Sharma. Epoch vs batch size vs iterations, (accessed: 30-5-2018). https:

//towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9,
(Blog).

[33] Keras. Keras documentation lstm, (accessed: 17-5-2018). https://keras.io/layers/

recurrent/#lstm, (online documentation on package).

[34] Keras. Keras documentation usage of loss functions, (accessed: 30-5-2018). https://

keras.io/losses/, (online documentation on package).

A.S.Bruyn Page 66 / 63

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9
https://keras.io/layers/recurrent/#lstm
https://keras.io/layers/recurrent/#lstm
https://keras.io/losses/
https://keras.io/losses/

	Introduction
	Predictive maintenance
	Machine learning
	The sewer system
	Problem statement
	Main goal
	Secondary goals

	Overview

	Materials & Methodologies
	Data
	Original database
	Open source data

	ML techniques
	Random Forest (RF)
	X Gradient-Boosting (XGB)
	Support Vector Machine (SVM)
	Long-Short Term Memory (LSTM)
	Challenges regarding the temporal model
	The proposed model

	Comparing techniques

	Software used
	Methodologies
	Data preparation
	Feature engineering
	Non-temporal data
	Temporal data
	Empty variables
	Outliers

	Selecting the defects
	Selecting the pumping stations
	Selecting the final variables


	Results
	Data
	Final dataset vs original dataset
	Feature importance

	ML models
	Models
	RF
	XGB
	SVM
	LSTM
	Before oversampling minority


	Prediction
	Insights


	Discussion
	Usefulness of the results
	Validity of results
	How transferable are the results?

	Conclusion & Recommendations
	Conclusion
	Recommendations

	Bibliography

