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Detecting offensive language using transfer learning

Abstract

Since 2004, the use of social media has been growing exponentially. Daily, there are
3.2 billion people who use social media, which is equal to 42% of the total population.
With the rise of social media, there is also a growing amount of offensive content
online. Anyone can use social media and there is no lack of people who spread hate
speech to attack minorities or individual people on platforms like Twitter.

Facebook and Twitter have been criticised that they take insufficient action to remove
offensive content on their platform. They are facing challenges as they try to remove
content based on their policies. They try to improve it, Twitter announced last month
that they will hide (but not remove) harmful tweets from public figures. While they
are trying to fix it, it is still a difficult problem due to the variety of language used in
social media.

This research focuses on detecting offensive language in social media using transfer
learning and comparing different methods. Many NLP tasks share common knowl-
edge about language, syntax and semantics. We will use transfer learning because it
has shown state-of-the-art results for many supervised NLP tasks. We will use the Of-
fensive Language Identification Dataset (OLID), which consists of 14K tweets to detect
offensive content in social media.

Word can be represented by word embeddings. These word embeddings will be used
as input for the models. We will use context-free embeddings (Word2Vec, GloVe,
fastText) and contextual embeddings (BERT). Our work will compare different models.
As a baseline, we will use a SVM. We will compare it to models which are often used
in the context of language, LSTM, and CNN. CNNs are good at finding key phrases
and LSTM networks work well for tasks like language modelling. Lastly, we will
use a state-of-the-art language model BERT. BERT is a model which is trained on a
large amount of text and therefore it can capture linguistic, syntactic and semantic
features.

Analysis of the results shows that BERT and CNN are the best performing models.
CNNs work well because tweets are short and they can pick up certain key phrases.
BERT is a very complicated model but can still be used, also for tweets. Based on these
results, we conclude that transfer learning, and especially, large pretrained models, can
be very useful to detect offensive language.
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1 1. Introduction

1 Introduction

Since 2004, social media has been growing exponentially (Maryam Mooshin, 2019).
People can share their opinions and express their feelings. For example, Twitter users
generate 500 million tweets per day and in 2019 they had a 14% year-over-year growth
of daily usage (Twitter, 2019). With this growth, there is also an increase in offensive
content. Recent research by Pew Research Center shows that a majority of the US
adults say that social media companies have a responsibility to remove this offensive
content. However, only one third are confident that these companies can determine
what offensive content should be removed. Besides that, a majority says that people
do not agree on what is seen as offensive language by other people (racist or sexist
language) (Center, 2019).

These worries are not groundless, social media companies are facing challenges as
they try to remove content based on their policies. Technology companies are under a
lot of pressure to better monitor and police their platforms for hate speech, violence,
abuse, and offensive language. The huge amount of user-generated content makes
it impossible to monitor all these posts manually. To combat hate speech, Germany
introduced a hate speech law. Since then German authorities say that they have issued
Facebook with a e2 million fine (Wong, 2019). Also, France adopted a bill to give
social media platforms 24 hours to remove hateful content (Kelly, 2019a).

For example, Facebook recently launched a new feature which asks users who try to
post offensive comments to reconsider their choices before they place a comment. In-
stagram encourages people to undo their hurtful comments or share something less
hurtful. They also launched a new feature which uses AI to notify people when their
comment may be considered harmful or offensive before it is posted (Thompson, 2017).
Twitter will hide but not remove harmful tweets from public figures. Users of the plat-
form will see a notification if a tweet violates the platform rules (Kelly, 2019b).

Automatic detection of offensive content in forums, blogs, and social media can be a
useful support for moderators of public platforms as well as users who could receive
warnings or could filter unwanted content. Language usage in social media is ex-
ceptionally varied, it could contain incorrect spellings, grammar mistakes, acronyms,
slang, or emojis. This makes understanding the context challenging.

In general, words can have multiple meanings. Meanings are dependent on the context
which they are in for humans this is a lot easier to distinguish than for computers.
Recent developments in NLP have made the once-insurmountable task of semantic
and contextual inference more tractable. For example, in the sentence ‘He ate an apple in
front of his Apple computer.’, the word ‘apple’ can have two meanings. The first one refers
to the brand of a laptop whereas the second one refers to a type of fruit. Earlier models
can not distinguish this, contrary to newer models which understand the context in
which the words are in.
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We will use a Twitter dataset for the detection of offensive language. As a baseline,
we will use a Support Vector Machine (SVM) model (Cortes & Vapnik, 1995). We will
compare it to models which are often used in the context of language: a Long Term-
Short Memory (LSTM) (Hochreiter & Schmidhuber, 1997) and a Convolutional Neural
Network (CNN) (Kim, 2014). At last, we will use a state-of-the-art model Bidirectional
Encoder from Transformers (BERT). BERT is a language model trained on a large text
corpus and therefore it can capture linguistic, syntactic, and semantic features.

Based on the objective of this research, the main goal of this research is as follows:

How can we use transfer learning to detect offensive content in social media?

We perform this research at Mobiquity, a consultancy company, and as such, they are
doing a wide variety of tasks to solve issues for their clients. Mobiquity sees this
internship as a knowledge-sharing task, bringing in new information to keep their
service up-to-date. A better understanding of language models could help to build
a chatbot, or a topic model, or help with other Natural Language Processing related
tasks.

This paper is organized as follows. Section 2 describes the related work. We will
explain in Section 3 how transfer learning can be used in NLP. Section 4 outlines
the methods we will use. Next, Section 5 describes the dataset alongside with data
analysis. Section 6 gives an overview of the experimental setup to find the optimal
hyperparameters. The results and evaluation of the methods are presented in Section
7. The conclusion and discussion of possible directions for future work are given in
Section 8.
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2 Related Work

There is a lot of research done on offensive language. Most of this research is focused
on a specific type of offensive content, such as aggression, abusive language (Nobata,
Tetreault, Thomas, Mehdad, & Chang, 2016), bullying (Xu, Jun, Zhu, & Bellmore,
2012), hate speech (Wang, Chen, Thirunarayan, & Sheth, 2014), (Djuric et al., 2015),
(Davidson, Warmsley, Macy, & Weber, 2017), (Zampieri et al., 2019) and offensive
language. There are different methods used for detecting different types of offensive
content. People have used machine learning models and different features such as
character n-grams, word-n-grams with TFIDF, and different word embeddings like
fastText and Glove.

However, there is a lack of consensus about the annotation of the different types of
offensive content. Something may be considered as hate speech (Waseem, 2016) while
others only define this as derogatory or offensive (Nobata et al., 2016). Therefore
in (Waseem, Davidson, Warmsley, & Weber, 2017) they propose a typology which
captures similarities and difference between hate speech, cyberbullying and online
abuse. They present a two-fold typology whether (i) the abuse is directed at a specific
target and (ii) the degree to which it is explicit.

Different tasks were published, TRAC (Trolling, Aggression and Cyberbullying) (Kumar,
Ojha, Malmasi, & Zampieri, 2018) published a shared task on Aggression Identifica-
tion to classify Facebook Posts and Comments in different types of aggression. The
best performing team used a LSTM with a RNN and CNN as features. The GermEval
(Wiegand, Siegel, & Ruppenhofer, 2018) shared task to identify offensive language in
German tweets. The goal is to detect offensive versus non-offensive tweets. The sec-
ond task is to distinguish if the offensive tweet is a profanity, insult or abuse. The
classifiers used for this task consist of non-neural types of which SVM is the most
common type; for the neural classifiers, CNN, LSTM, and GRU were used.

(Xu et al., 2012) did a study on detecting bullying in tweets. They used sentiment
and topic models to identify bullying in tweets. (Dadvar, Trieschnigg, Ordelman, & de
Jong, 2013) trained a cyberbullying classifier using content-based features, cyberbully-
ing features and user-based features. Their work showed that context and user-based
features cyberbullying improves the cyberbullying detection accuracy.

Hate speech is also a form of offensive language and is used to express hatred towards
a targeted group or is intended to be derogatory, to humiliate or to insult the members
of the group. It is difficult to distinguish hate speech from other offensive language be-
cause the differences are often based upon subtle linguistic distinctions. (Davidson et
al., 2017) researched the detection of hate speech. For the classification, they used syn-
tactic features (unigram, bigram trigram, Part-of-Speech) and non-linguistic features
(gender, ethnicity). They showed that in their case supervised approaches (Logistic Re-
gression and SVM) performed better than other models (naive Bayes, decision trees,
random forests).
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3 Background

Transfer learning is the transfer of knowledge from one task to another related task. It
is related to how humans learn as we do not learn everything from scratch, but instead,
we transfer knowledge from what we have learnt in the past for solving new tasks.
Transfer learning has a huge influence on computer vision (CV). When developing
neural network models it can save time and resources. It is common to use CV models
as the Oxford VGG Model (Simonyan & Zisserman, 2015), Google Inception Model
(Szegedy, Liu, Jia, Sermanet, & Reed, 2015) and Microsoft ResNet Model (?, ?), which
have been trained on a large image dataset instead of training models from scratch.
For example, ImageNet (Russakovsky, Deng, Su, Krause, & Satheesh, 2015) contains
1.2 million images with 1000 categories. This can be beneficial because these models
can learn low-features, such as edges, shapes and corners from images, which can be
shared across tasks.

For text, this is challenging, as the text is unstructured, noisy and very diverse. While
deep learning models also showed SOTA results for different NLP tasks, these mod-
els are usually trained from scratch, which requires large datasets. Gathering and
labelling data is expensive, often lacking high-quality annotated examples to train a
model. Transfer learning could solve this problem, by extracting useful knowledge
from different but related domains. In NLP, this is useful because many tasks share
common knowledge about language, syntax and semantics.

Recent developments in this field are said to be the ImageNet moment for NLP
(Sebastian Ruder, 2018). Empirically transfer learning showed SOTA for many su-
pervised NLP tasks (e.g. classification, information extraction, Q&A, etc) (Martin,
2019). Because models do not have to learn from scratch, in general, it can reach a
better performance with fewer data and computation time in comparison to models
which do not use transfer learning.

For the classification task, there are two methods which can be used: traditional ma-
chine learning and transfer learning. This section will describe the transfer learning
trends in NLP. Recent developments in the last year were in the field of language mod-
els, ELMo, ULMFit, OpenAI Transformer, and BERT, this section will describe the shift
in NLP and will explain what transfer learning is and how it is used.

3.1 Transfer Learning

Machine learning tasks can be learned from scratch, which takes a long time and
in general, you need to have a lot of data. Instead of learning a model from scratch,
transfer learning aims to extract and use the knowledge from one or more source tasks
for a target task. Figure 1 shows the difference between traditional machine learning
techniques and transfer learning techniques. Machine learning techniques train the
model from scratch on one task in a certain domain; this information cannot be used
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to train another task. With transfer learning, the aim is to transfer the knowledge
learned from source tasks and use this for a target task. The target task often has
less training data than the source tasks. (Pan & Yang, 2009) (Pitsilis, Ramampiaro, &
Langseth, 2018)

Figure 1: Traditional Machine Learning versus Transfer Learning

Notations:
In their paper, A Survey on Transfer Learning, (Pan & Yang, 2009) present a framework
to understand transfer learning. They use the concepts of a domain and a task in their
framework. The framework is defined as follows:

A domain D, is defined as D = {X , P(X)} where X is a feature space and P(X) a
marginal probability distribution, where X is a sample data point X = {x1, . . . , xn} ∈
X . A task, T, can be defined T = {Y , P(Y)}, a label space Y and a conditional
probability distribution P(Y|X). The function is learned from the training data, which
consists of pairs {xi, yi}, xi ∈ X , yi ∈ Y .

With these definitions and representations, we can define transfer learning as follows:
Given a source domain DS, a corresponding source task TS, as well as a target domain
DT and target task TT, transfer learning aims to improve the learning of the target con-
ditional probability distribution PT (YT|XT) in DT using the knowledge gained from
DS and TS, where DS 6= DT, or TS 6= TT.

Scenarios
Given the definition of the source and target domainsDS andDT whereD = {X , P(X)}
and source and target tasks TS and TT where T = {Y , P(Y), P(Y|X)}. There are dif-
ferent transfer learning scenarios based on the source and target conditions.

To give some intuition about the definitions we will use binary document classification
as a running-example. For document classification, X is the space of all term vectors,
xi is the i-th term vector corresponding some document and X is a particular learning
sample. The set of labels, Y , can be defined as {True, False} where yi is either True or
False.
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A domain is a pair D = {X , P(X)}, therefore either XS 6= XT or PS(X) 6= PT(X)
holds to meet the condition DS 6= DT. Which means that either the feature space of
the source and target domain are different or the marginal probability distributions
between the domains are different.

• XS 6= XT. The feature spaces of the sources and target domain are different, e.g.
the documents are described in different languages.

• P(XS) 6= P(XT). The marginal probability distributions of the source and target
tasks are different, e.g. the documents have different topics.

This also applies to a task. A task is defined as a pair T = {Y , P(Y|X)}. The condition
TS 6= TT either holds when YS 6= YT or P(YS|XS) 6= P(YT|XT) where YSi ∈ YS and
YTi ∈ YT.

• YS 6= YT. The label spaces between the source and target task are different, e.g.
the source domain and target domain have different labels.

• P(YS|XS) 6= P(YT|XT) where YSi ∈ YS and YTi ∈ YT. The conditional proba-
bility distributions between the tasks are different, e.g. the source and target
documents are very unbalanced.

It is a traditional machine learning model when the domains are the same and the
learning tasks are the same, DS = DT and TS = TT. (Pan & Yang, 2009)

Transfer learning in NLP can be used for many tasks. The pretraining tasks and
datasets are often unlabelled data. Target tasks are mostly supervised tasks and are
ranging from sentence or document classification (sentiment), sentence pair classifica-
tion, word level, structured prediction, and generation. For example, we could trans-
fer knowledge from Wikipedia documents to Twitter text, from English documents to
Chinese documents in a search engine, from webpages to images, etc.

Several pre-trained models used in transfer learning are based on NN with a multi-
layer architecture. We can use these models as feature-extractors or we can fine-tune
the pre-trained model. The feature-based approach extracts fixed features from the
pretrained model. This is mostly used when the data of the pre-trained model is
similar to the data of the target task.

Secondly, the architecture of the pre-trained network can be used and then fine-tuned.
The weights of the layers from the pre-trained model are discarded and the entire
model is retrained on the target data. This approach is used when there is a large
dataset for the given task but this data is not similar to the data were the pre-trained
model was trained on. Earlier features of a model might be able to detect more generic
features, for example in images it can detect edges and colour blobs. It is also possible
to freeze a certain layer or certain layers of a pre-trained model and then train the
other layers. This approach is used when the dataset is small and the datasets are not
very similar.
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3.2 Language Model

A Language Model (LM) is important in NLP. A LM can generate a probability dis-
tribution over sequences of words or provide word representations. This is important
because, to do this, it needs a lot of world knowledge and understanding of gram-
mar, semantics, and other elements of natural language. It can be used to predict the
next word given the given context. (Jing & Xu, 2019) (Ruder, 2019) (Kamath, Liu, &
Whitaker, 2019)

A traditional LM assigns probabilities to a sequence s of N words:

P(s) = P (w1w2 · · ·wN)

= P (w1) P (w2|w1) · · · P (wN |w1w2 · · ·wN−1) ,
(1)

where wi denotes the i-th word in sequence s.

The probability distribution over words or character sequences can be defined as the
product of the conditional probability of the next word given the previous words or
characters in the sequence (Jing & Xu, 2019) (Kamath et al., 2019).

The most used LM is the n-gram model. The probability of the sequence {w1, .., wt}
is given by the product of the conditional probabilities. The current state depends on
the previous k states.

P (wt|w1 · · ·wt−1) ≈ P (wt|wt−k · · ·wt−1) (2)

The problem with LMs is the curse of dimensionality, a word sequence on which
the model will be tested is likely to be different from all the word sequences seen
during training. The traditional approach based on n-grams in general only takes the
context of one or two consecutive words into account. It does not take into account
the similarity between words. To overcome the problem of the curse of dimensionality,
Neural Networks (NN), like the Feedforward Neural Network (FFNN), and RNN have
been introduced for language modelling. They can also handle sequences which were
not present in the training data. (Jing & Xu, 2019)

(Bengio, Ducharme, Vincent, & Jauvin, 2003) presented the first FFNN Language
Model. It learns a distributed representation for each word, a word vector also called
embedding. After FFNN, the RNN Language Model (RNNLM) was introduced by
(Mikolov, Karafiát, Burget, Černock, & Khudanpur, 2010) and Long Short-Term Mem-
ory (LSTM) (Sundermeyer, Schlüter, & Ney, 2012) Language Model was introduced,
see Section 4.
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3.3 Word Embeddings

When using machine learning models words need to be processed in a form of numeric
representation for the models to use them in the calculation. Word embeddings are
used to encode and represent an entity (document, sentence, word, graph), a fixed-
length vector. Word embeddings are typically used when applying NNs for NLP
tasks. Each word wi in the input sequence is mapped to a vector xi, which is called a
word embedding of each word. The word embeddings are put in a word embedding
matrix X ∈ R|V|×d, where V is the size of the vocabulary and d the dimension of the
word embedding. These are then used as features for a NN.

The simplest method of creating a word embedding is one-hot encoding or the Bag
of Words (BoW) approach. With one-hot encoding, each element in the vector cor-
responds to a word in the vocabulary of the corpus. If the word occurs in a given
document, the word corresponding to an index is marked as 1, else it is marked as 0.
As every element in the vector is associated with a word in the vocabulary, it will lead
to huge sparse word vectors. These word embeddings also do not capture the semantic
relationship between words. Instead of saying a word exists or not exists, BoW gives
the counts of each word in each document. Words are evenly weighted independently
of how frequent or in which context they occur. It only takes into consideration the
frequency of words in a document. However, some words might be more relevant
than others in most NLP tasks. To reflect how important a word is to a document
in a collection of documents, Term Frequency-Inverse Document Frequency (TFIDF)
is used. TFIDF gives weight to a word based on the context it occurs. It increases
proportionally to the number of times a word appears in a document adjusting for the
fact that some words appear more frequently than others.

wx,y = t fx,y × log(
N

d fx
), (3)

where t fx,y = frequency of x in y, d fx = number of documents containing x and N =
total number of documents . In other words, high frequency words may not pro-

vide much information gain while rare words can contribute more weight to the
model.

Another way to present words is with a fixed vector length which can capture context
and semantics, such as Word2Vec, Glove, fastText and ELMo. The three most common
models are Word2Vec, Glove and fastText. These models are based on the fact that
words which occur and are used in the same context tend to be semantically similar to
another and have a similar meaning. Those pre-trained word embedding techniques
are used to initialise the first layer of a NN.
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• Word2Vec Word2Vec uses a local context window, consisting of words in a de-
fined window of neighbouring words. It uses two different methods to learn
word embeddings: Continuous Bag-of-Words (CBOW) and Continuous Skip-
Gram Model. CBOW learns an embedding by predicting the current word given
the context, the surrounding words. The Skip-Gram Model learns an embedding
by predicting the surrounding words based on the context, the current word.
(Mikolov, Chen, Corrado, & Dean, 2013) (Mikolov, Sutskever, Chen, Corrado, &
Dean, 2013)

• GloVe GloVe is an extension of Word2Vec, it uses global corpus statistics for
word representations. GloVe learns word embeddings by dimensionality reduc-
tion of the co-occurrence count matrix. Instead of learning raw co-occurrence
probabilities, it learns ratios of co-occurrence probabilities to distinguish relevant
words from irrelevant words. (Pennington, Socher, & Manning, 2014) (Huang,
Socher, Manning, & Ng, 2012)

• fastText fastText is an extension of the Continuous Skip-Gram Model of Word2Vec.
It learns word representations using subword level embeddings. The previ-
ous methods ignore the morphology of the words and cannot handle out-of-
vocabulary words. This gives a disadvantage for languages with large vocabu-
laries and many rare words. There are some languages with a lot of different
inflected forms without morphology. For these words, it is difficult to learn a
good word representation. fastText improves the vector representation and takes
into account the morphology using subword units (character level information).
The words are split into a bag of n-gram characters. Each word is represented as
a bag of characters n-grams, plus a special boundary symbols <and> at the be-
ginning and end of words, plus the word w itself in the set of its n-grams. A word
is then represented by taking the sum of its character n-grams. (Joulin, Grave,
Bojanowski, & Mikolov, 2016) (Bojanowski, Grave, Joulin, & Mikolov, 2017)

Although these word embeddings capture some meaning, there are often words which
have different meanings depending on the context. These word embeddings can only
capture one meaning. A lot of data is required to disambiguate words and learn words
which were not seen before.
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4 Methodology

This section describes the different methods we use to detect offensive language in
social media. The baseline is a SVM model, see Section 4.1. The input features are a
BOW model with TFIDF weighting, see Section 3.3. We use a MLP as a basic neural
network, which we will describe in Section 4.2.1. We will expand this with a CNN
in Section 4.2.2 and a sequential network, LSTM, a type of RNN network, see Sec-
tion 4.2.3. CNNs are good at finding key phrases and RNNs work well for tasks like
language modelling. The input features for these models are context-free word em-
beddings. Lastly, in Section 4.5 we will compare this to a state-of-the-art model, BERT,
which uses contextual word embeddings.

4.1 Support Vector Machine

SVM (Cortes & Vapnik, 1995) is a model often used for classification. Every data item
is a point in an n-dimensional space, where n is the number of features. Classification
is performed by finding the hyper-planes that segregates the data in a given number
of classes using maximum margin separation.

Figure 2: Support Vector Machine

The data points can be defined as pairs:

(y1, x1) , . . . , (y`, x`) , yi ∈ {−1, 1} (4)

This is linearly separable if there exists a vector w and scalar b such that the following
inequalities hold:

w · xi + b ≥ 1 if yi = +1
w · xi + b ≤ −1 if yi = −1

(5)
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These equations can be written as:

yi (xi ·w + b)− 1 ≥ 0 ∀ i (6)

A hyperplane can be defined by:

f (x) = xT β + β0, (7)

where β is a unit vector ‖β‖ = 1, with bias β0.

The algorithm tries to find the margin M, the hyperplane that gives the largest min-
imum distance of the data points of the classes. The optimal separating hyperplane
maximises the margin of the data. The data points that separate the hyperplane and
lie on the margin are known as support vectors (Kamath et al., 2019). Figure 2 shows
the optimal separating hyperplane when two classes are linearly separable (Fletcher,
2008) (Cortes & Vapnik, 1995).

Maximising the margin, the largest distance between the hyperplane and the data in-
stances, is equivalent to minimising a function L(β) subject to given constraints.

minβ,β0
1
2‖β‖2, subject to yi

(
xT

i β + β0
)
≥ 1, i = 1, . . . , N (8)

Ideally, there is a hyperplane that separates classes in a way that they are non-overlapping.
This might not be possible, or it will result in an undesirable number of different
classes. In this case, the SVM tries to find a hyperplane that maximises the margin
and minimises the misclassifications. A slack variable is introduced which allow data
points to fall off the margin but penalises them when that happens. (Cortes & Vapnik,
1995)

min
β,β0

1
2
‖β‖2 + C

N

∑
i=1

ξi, subject to { yi (w · xi + b) ≥ 1− ξi, ∀ i
ξi ≥ 0

(9)

where C is the trade-off between the margin width and the misclassifications.
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4.2 Neural Networks

A neural network (NN) is a network of interconnected perceptrons. A perceptron is a
one-unit neural network and used a building block for more complex neural networks.
Each perceptron unit has an input (x), an output (y), and a set of weights (w), a bias
(b), and an activation function ( f ).

Figure 3: Computational Graph for a Perceptron

The weights and the bias are learned from the data. We can define a perceptron as
follows:

y = f (wx + b) (10)

In a general case, there are multiple inputs for a perceptron, x and w are vectors
and the product of x and w is replaced with a dot product. The activation function,
denoted by f , of typically a nonlinear function.

y = f (wx + b) (11)

An example of a NN is shown in Figure 4. A NN has 3 components, input layer,
hidden layer(s) and an output layer. In Figure 4, the input layer is fed with input data.
This is passed to the hidden layer(s). The nodes in the hidden layer(s) each compute
an activation based on the input, and pass this to the output layer. The node(s) in the
output layer computes the final output, based on the input from the previous hidden
layer.

Figure 4: Neural Network
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There are different types of activation functions, the most used activation functions
are: sigmoid, softmax, hyperbolic tangent, and rectified linear unit.

Sigmoid or logistic activation function σ, maps any arbitrary range of values to a value
between 0 and 1. This allows the output to be used as probabilities.

σ(x) =
1

1 + e−x (12)

Softmax activation function, like the softmax function, transforms the output between
0 and 1. However, the softmax function also divides each output by the sum of all the
outputs, it calculates the probabilities of the event over n possible classes.

f (xi) =
exi

∑j exj
(13)

Hyperbolic tangent (tanh) activation function outputs, maps a set of real values from
(−∞,+∞) to a value in a range from -1 to 1.

f (x) =
ex − e−x

ex + e−x (14)

Rectified linear unit (ReLU) activation function, clips the negative values to zero. It
outputs values between the range from 0 to infinity.

f (x) = max(0, x) (15)

The way various layer are connected is also called the architecture of a network. The
variables that define the architecture of a network are called hyperparameters. The
number of hidden layers, the activation function, learning rate and batch size, are a
couple of examples of hyperparameters. When training these networks the hyper-
parameters have to be optimised. Training the network is obtaining the parameters
such as the network weights and bias. The training goal is to minimise a certain loss
function. The loss function depends on the predicted output and the labels or values.
The training algorithm uses back-propagation to update weights and biases. The error
in the prediction is propagated backwards through the network. For the classifica-
tion tasks, we will use the cross-entropy loss. Cross-entropy computes the softmax
probabilities of the given classes. (Osinga, 2018) (Arumugam & Shanmugamani, 2018)
(McMahan & Rao, 2019)
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4.2.1 Multilayer Perceptron

MLP is a FFNN and consists of at least three layers: an input, an output and one or
more hidden layers. Each node in the layer, except for the input nodes, is a neuron
with a nonlinear activation function. The network is also fully connected, which means
that in a layer each node is connected to the other nodes in the network with a certain
weight wij.

Figure 5: Illustration of a MLP Network with two neurons

We can describe the network as:

h = g
(

W(1)x + b1

)
y = f

(
W(2)h + b2

)
,

(16)

where layer is parameterized with their weight matrix W and bias vector b. With h,
the hidden layer where g(x) is the activation function. The output of the network is y,
with f (x) the output function (Deng & Liu, 2018) (Ruder, 2019).
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4.2.2 Convolutional Neural Network

CNN is similar to an ordinary NN, but consists of multiple hidden layers and a filter
called a convolution layer. They are good in, for example, identifying objects, and
faces. CNNs were important for breakthroughs in image classification. An image can
be converted into an array of pixel values. Often it is described as a X × Y × Z array
of numbers. For example, a colour image with a size of 480× 480 is represented by
a 480× 480× 3 array, where 3 is the RGB value of the colour. Using a CNN to detect
faces in an image, the features you could extract are features such as a nose, mouth,
or pair of eyes in the image.

Figure 6: Architecture of a CNN for CV

The hidden layers of a CNN consist of different steps. The first step is a convolution,
convolution is a sliding window function applied to a matrix. The convolution, also
called filters, extracts features from the input image. A new matrix is formed by sliding
a filter over the image and multiplying this with another matrix. A CNN automatically
learns the values of its filters during the training process. After a convolution, a non-
linear activation function is used. Pooling is used to decrease the dimensionality of
the feature without losing important information. Figure 7 uses a 2× 2 window and
slides over the image and takes the maximum value in each region. The last layer of
the CNN is a dense layer with as input the features. The fully connected layer takes the
input from the layer and gives out an N-dimensional vector where N is the number of
classes. In Figure 6 the softmax function is used to convert the N-dimensional vectors
into a probability for each class. (Kulkarni & Shivananda, 2019)

Figure 7: Pooling CNN
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CNNs are also used for text classification and other NLP tasks. For text, the filters can
look over sequential words in a piece of text represented as n-grams with a 1xn filter.
A pooling method extracts the relevant n-grams for making a decision and the rest of
the network classifies the text based on this information.

A document can be represented as a real matrix A ∈ Rn×d, a concatenation of the
input word embeddings where n is the document length, the number of tokens in
the document. The dimension of a word embedding vector is denoted by d. The
document length is fixed, longer documents are truncated and the shorter documents
are padded with zeros. Therefore, the input layer is a sequence x containing n entries:
x1, x2, ..., xn. Each entry is represented by a d-dimensional vector: x1, .., xn ∈ Rn×d. For
text a CNN model can be used with multiple filters of different sizes where you can
look at bi-grams (a 1x2 filter), tri-grams (a 1x3 filter), or n-grams (a 1xn filter) within
the text.

To summarise, a common architecture for a CNN for text classification is an archi-
tecture where each word in a document is represented by an embedding vector. A
convolutional layer with m filters is applied which produces an m-dimensional vector
for each document n-gram. After the convolutional layer, a pooling strategy is used.
The extracted features from the filters are then passed to a fully connected softmax
layer. The output of this layer is the probability distribution over labels, see Figure
8.

Figure 8: Architecture of a CNN for NLP
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4.2.3 Recurrent Neural Network

With CNNs long-range dependencies are not captured. However, CNNs can detect
patterns of multiple adjacent words (e.g. bigram, trigram and fourgram). These pat-
terns could be expressions like ‘He hates’ (a bigram) and ‘You are awesome’ (a tri-
gram). RNN is a FFNN developed to work with sequences. Sequential input in a
text can, for example, be a sequence of words (sentences) or sequences of characters
(words). A RNN is a chain of simple neural layers that share the same parameters,
as shown in Figure 9. The output depends on the previous computations, the RNN
maintains a hidden state ht, which stands for the memory of the sequence at time step
t.

Figure 9: Unrolled RNN

A T length input sequence for a RNN can be defined as X, where X = {x1, x2, . . . , xT},
with xt ∈ RN a vector input at time t. The output is an ordered list of hidden states,
the ‘short-term’ memory of the RNN, h0, .., hT, with an initial hidden state h0 which
is initialised to all zeros. And it returns the output vectors {y1, . . . , yT}, which can
be used as input for the other RNN units. (Deng & Liu, 2018) (Ruder, 2019) (Tixier,
2018)

For every time step a RNN performs the following operations:

ht = σh (Whxt + Uhht−1 + bh)
yt = σy

(
Wyht + by

) (17)

where σh and σy are activation functions. The RNN modifies the previous hidden
states ht−1 by applying a transformation Uh. The new hidden state is obtained by a
transformation Wh to the current input xt. The output yt is produced for every time
step t. (Ruder, 2019)

In practice, RNNs have problems with learning longer-range dependencies due to
the vanishing/exploding gradient problem. When training the network, the gradient
values are used when updating the weights of the neural network. The recurrent
multiplication in the back-propagation step can cause either very large weights or
very small weights which will respectively cause the gradients to grow exponentially
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or shrink exponentially. When this is the case, the network will stop training and
does not learn anymore. If that happens, a RNN can forget what it has seen at the
beginning of longer sequences and therefore has a short-term memory.

There are many methods to combat the vanishing/exploding gradient problem, most
of them are focused on the initialisation or controlling the size of the propagated gra-
dients. The most common methods add additional gates to the RNNs. Two methods
are the LSTM or the GRU which can retain information over longer periods. (Nguyen,
2019a) (Nguyen, 2019b) (Ruder, 2019) (Deng & Liu, 2018)

4.2.4 Long Short-Term Memory

LSTM (Hochreiter & Schmidhuber, 1997) has a cell state, which can decide what
should be remembered and forgotten. The hidden state in the vanilla RNNs is com-
puted with a single layer ht = σ (Whxt + Uhht−1 + bh). Instead of a single layer,
a LSTM unit computes the hidden state using four interacting layers that give the
network the ability to remember or forget specific information about the preceding el-
ements in the sequence. The LSTM has a forget gate ft, an input gate it, and an output
gate ot. They are functions of the current input xt and the previous hidden state ht.
The gates interact with the previous cell state ct−1, the current input, the current cell
state ct. (Ruder, 2019) Figure 101 shows the operations in the LSTM cell.

Figure 10: LSTM Cell

1https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step
-explanation-44e9eb85bf21

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
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The LSTM cell is formally defined as:

ft = σ
(
W f xt + U f ht−1 + b f

)
it = σ (Wixt + Uiht−1 + bi)
ot = σ (Woxt + Uoht−1 + bo)
c̃t = tanh

(
Wgxt + Ught−1 + bg

)
ct = ft ◦ ct−1 + it ◦ gt
ht = ot ◦ tanh (ct) ,

(18)

where W and U are learned weight matrices, σ is the sigmoid activation function, tanh
the tanh activation function, ◦ the elementwise multiplication (Hadamard product),
and b the bias vectors.

The input, forget and output are called gates because of the sigmoid activation func-
tion. The values are passed through a sigmoid function which transforms the values
between a range 0 and 1. The forget gate (ft), that means that it will decide how much
the memory cell should forget (the previous state), is based on the previous hidden
state, and the current input. The input gate (it) determines what information is rel-
evant to add from the current step, the current input you want to let through. The
output gate (ot) determines what the next hidden state should be.

The ‘candidate’ hidden state (c̃t) is computed based on the current input and the
previous hidden state.

The internal memory, (ct) combines the previous memory (ct−1) and the new input.
The old memory could be ignored (forget gate all 0’s) or the new cell state could be
ignored (input gate set all to 0’s), but probably something in between this.

The output hidden state ht is computed based on the updated memory (ct) and the
output gate.
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4.2.5 Gated Recurrent Unit

GRU (Cho et al., 2014) is another gating structure for a RNN and similar to a LSTM
unit, only with fewer gates. GRU has two gates, a reset gate (rt) and a update gate (zt)
without internal memory ct, see Figure 112.

Figure 11: GRU Cell

The equations for the GRU are:

rt = σ (Wrxt + Urht−1 + br)
zt = σ (Wzxt + Uzht−1 + bz)
h̃t = tanh (Whxt + Uh (rt ◦ ht−1) + bh)
ht = (1− zt) ◦ h̃ + zt ◦ ht−1

(19)

The reset gate rt decides whether it ignores the previous hidden state. When the reset
gate is close to 0, the hidden state ignores the previous hidden state and only takes the
current input. The update gate zt decides whether the hidden state is updated with
a new hidden state, h̃t, which defines how much of the previous memory should be
kept. (Nguyen, 2019a) (Ruder, 2019)

2https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step
-explanation-44e9eb85bf21

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
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4.3 Attention

RNNs cannot capture information of very long sequences. Attention mechanisms
address this issue and are loosely based on how humans pay attention. For example,
if we would translate a long sentence from one language to another language, we will
focus on important parts of sequences or regions that we are translating. Attention
works similarly for NN. (Deng & Liu, 2018) (Tixier, 2018).

The attention mechanism was developed in the context of the encoder-decoder archi-
tectures for Neural Machine Translation (NMT) (Bahdanau, Cho, & Bengio, 2014) and
is also applied to other tasks such as image captioning. The traditional methods for
neural machine translation are methods based on an encoder-decoder architecture,
both of them are RNNs.

The encoder encodes the input into a fixed-length context vector. The fixed-length
context vector is the representation of the text. This context vector is then decoded
into the output sequence by the decoder, see Figure 12. (Bahdanau et al., 2014) (Deng
& Liu, 2018)

Figure 12: Neural Machine Translation by Jointly Learning to Align and Translate

The hidden states at time i takes three inputs:

• the previous hidden state of the decoder si−1,

• the prediction from the previous time step yi−1, and

• a context vector ci which weighs the appropriate hidden states for the given time
step.

For each hidden representation, an attention score αji is calculated. Based on the
attention scores for each hidden representation a context vector ci is calculated. The
hidden state of decoder, si, is computed by:

si = f (si−1, yi−1, ci) (20)
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The context vector ci depends on the annotations (h1, .., hTx). Each annotation hi con-
tains information about the whole input sequence, with a focus on the parts surround-
ing the i-th word of the input sequence.

The context vector ci is computed as the weighted sum of the annotations hi:

ci =
Tx

∑
j=1

αijhj (21)

The attention weights αij for each annotation hj is computed by:

αij =
exp

(
eij
)

∑Tx
k=1 exp (eik)

(22)

where
eij = a

(
si−1, hj

)
, (23)

is an alignment model and scores how well the inputs around the position j and the
output at position i match. The alignment model a is a FFNN.

With attention, instead of encoding the full source sentence into a fixed-length vector
decoder, it allows attending to different parts of the source sentence at each step of the
output generation. The models learn what to attend to based on the input sentence
and what it has produced so far.

4.4 Transformer Network

Sequence-to-sequence tasks are based on RNNs or CNNs with an encoder and a de-
coder structure. The best performing models use the attention mechanism to connect
the encoder and the decoder. Instead of using either recurrence or convolutions, the
Transformer (Vaswani et al., 2017) applies attention directly to the input. The Trans-
former achieves a higher performance for both the recurrent and the convolutional
models for machine translation. It does not rely on the memory of the RNNs from the
previous states but instead uses ‘multi-headed’ attention directly on the input embed-
dings. This allows the model to perform parallel computations and is, therefore, faster
to train. (Vaswani et al., 2017)

The Transformer network extends the mechanism of the traditional attention mecha-
nism. Instead of giving only the decoder access to the entire input sequence it pro-
cesses the input and output sentences as well. It allows the encoder and decoder to
directly model these dependencies of the encoder and the decoder, instead of going
from left-to-right using RNNs. The Transformer consists of an encoder and a decoder,
the architecture of the Transformers is given in Figure 13.

The encoder and the decoder have multiple layers of multi-head attention with resid-
ual connections and fully connected layers. A residual connection takes the input and
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Figure 13: Transformer Architecture

adds it to the output of the sub-network. Because the computations happen in paral-
lel, they use a masking technique in the decoder to prevent positions from attending
to subsequent positions. The output embeddings are also offset by one position, to
make sure that the predictions for position i can only depend on the known outputs
at positions smaller than i. The transformer achieves state-of-the-art results while
significantly improving the computation time because it is faster to train and more
parallelizable. (Vaswani et al., 2017) (Kamath et al., 2019)

Figure 14 shows the multi-head attention, which is defined by three input matrices. Let
Q, K, V be matrices of vectors of the queries, keys and values. The attention functions
used in Transformer is identical to dot-product attention, a commonly used attention
function, with an additional scaling factor of 1√

dk
. The attention mechanism used is

called the ‘Scaled Dot-Product Attention’, Figure 14.

The attention is calculated as follows:

Attention (Q, K, V) = softmax

(
QK>√

dk

)
V,

computes the dot product of the query and the keys, scaled by the
√

dk and normalised
by a softmax function to obtain the weights on the values. The weighted sum is
calculated by applying the weights of the values to the values.
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Figure 14: Scaled Dot-Product Attention (left) / Multi-Head Attention (right)

Instead of one attention function, the Transformer Network uses parallel attention
functions. The output values are then concatenated and projected.

The multi-head attention is defined as:

MultiHead (Q, K, V) = Concat ( head 1, . . . , head h)WO

where head i = Attention
(

QWQ
i , KWK

i , VWV
i

)
,

(24)

where the projections are parameters matrices WQ
i ∈ Rd model ×dk , WK

i ∈ Rd model ×dk , WV
i ∈

Rd model ×dv and WO ∈ Rhdv×dmodel .

4.5 Bidirectional Encoder Representations from Transformers

BERT is a state-of-the-art model for many NLP tasks. It is built upon recent work
in pre-training contextual representations, like ELMo (Peters et al., 2018) and ULMFit
(Howard & Ruder, 2018). Contextual representations from context-free representa-
tions. Context-free representations create a single word embedding representation for
each word in the vocabulary. Contextual representations, however, generate an em-
bedding representation of each word based on the context of the surrounding words.
BERT uses both the previous context and the next context of the word. It is the first
deeply bidirectional, unsupervised language representation, pretrained only using a
plain text corpus. (Jacob Devlin & Chang, 2018)

BERT is based on a language model, see Section 3.2. But instead of predicting the next
word after a sequence of words. BERT randomly masks words in the sentence and
predicts them.

Language models are typically from left-to-right:
‘the man went to a store’

P(the | <s>) · P(man|<s> the) · P(went|<s> the man) · . . .
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For downstream tasks, you mostly do not want to use a language model but get the
best representation for the words. If the contextual representation of each word is
only based on the context of the left words, information is missing. Additional to a
language model from left-to-right, a model from the right-to-left model can be trained.
The two representations for each word can be concatenated to use for the downstream
tasks.

P(store|</s>) · P(a|store </s>) · . . .

Instead of concatenation two representation of each word, one left-to-right and one
right-to-left, it would be better to train a single deeply bidirectional model. However,
it is not possible to train deep a bidirectional model as a language model. Doing so
would create a cycle, in which words can indirectly see themselves. See themselves
refers to the fact that it creates a circular reference where a word’s prediction is based
on the word itself, they can see themselves via the context of another word.

To train a deeply bidirectional LM and prevent words from seeing themselves, the
model was trained with a method which is called Masked LM. This is often called
a Cloze task. The Masked LM predicts, instead of the next for a sequence of words,
random words from within the sequence. A percentage of the words from the input is
masked and the task is to reconstruct those words from the context. BERT forces the
model to learn how to use information from the sentences when trying to guess the
missing words.

Input Embeddings
The input for BERT consists of token embeddings, segment embeddings, and position
embeddings. A sentence is tokenized and two extra tokens are added, one at the start
([CLS]) and one at the end of the sentence ([SEP]). The tokenization method uses word
pieces. (e.g. playing -> play + ##ing) instead of words. This helps to reduce the size
of the vocabulary and also maps the out-of-vocabulary words. Each word piece token
is converted into a 768-dimensional vector representation.

Transformers do not encode the sequential nature of the input. To address this prob-
lem, positional embeddings are added to let the model learn the sequential ordering
of the input. BERT learns a vector representation for each position, which helps to
determine the position of each word.

Because BERT can be trained on pairs of sentences, the segment embeddings are em-
beddings, which can distinguish between the first or the second sentences. It can,
therefore, learn a unique embedding for the first and the second sentence.
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The tokenised input sequence of length n will have three distinct representations:

• Token Embeddings

• Segment Embeddings

• Position Embeddings

To produce a single representation, these embeddings are summed element-wise with
shape (1, n, 768), see Figure 15.

Figure 15: BERT Input Representation

Masked Language Model
BERT uses the masked language model (MLM) to address the unidirectional con-
straints. It randomly masks a percentage of the input tokens and then predicts these
masked tokens. To prevent that the model only tries to predict when a [MASK] token
is present it replaces some masked tokens with random words to add some noise. A
data generator chooses 15% of the tokens at random and then it follows the following
procedure:

• 80%: Replace the word with the [MASK] token

• 10%: Replace the word with a random word

• 10%: Keep the word unchanged

Input: the man [MASK1] to [MASK2] store
Label: [MASK1] = went; [MASK2] = a

A Transformer encoder is used to predict the masked word, the final hidden states
corresponding to the masked position. To understand the relationships between sen-
tences, they use a binary classification task to pre-train a sentence relationship model.
The classification task is given two concatenated sentences, A and B, to predict if sen-
tence B comes after sentence A in the text.

Next Sentence Prediction
Next, to the MLM, BERT uses Next Sentence Prediction to model the relationship
between two sentences. If the input of the BERT model is two sentences, it separates
these two sentences with a [SEP] token.



27 4. Methodology

BERT gets then as input either a random next sentence or the actual next sentence and
has to try to predict whether the second sentence is random or not random.

Input: the man went to the store [SEP] he bought a gallon of milk
Label: IsNext

Input: the man went to the store [SEP] penguins are flightless birds
Label: NotNext

The model is trained on a big corpus, English Wikipedia (2,500M words) and the
BooksCorpus (800M words). To use the model for a downstream task, the model
can be fine-tuned using three or four epochs. BERT is based on a multiple layer
self-attention model, and then this model is fine-tuned by adding a classification
layer.

Attention Patterns
While BERT and other large NNs can achieve high performance, it is not clear what
aspects of language these models learn. Recent papers aim to investigate what aspects
of language, linguistic features BERT learns from the unlabelled data. A paper by
(Clark, Khandelwal, Levy, & Manning, 2019) shows that BERT learns specific linguistic
features by examining the output of the language models. Figure 16 gives examples
of different attentions patterns.

BERT’s attention heads show patterns such as attending to delimiter tokens, specific
positional offsets, or broadly attending over the whole sentence, with heads in the
same layer often showing similar behaviour. They also show that certain attention
heads capture syntax and co-reference. For example, they find heads that attend to the
direct objects of verbs, determiners of nouns, objects of prepositions, and co-referent
mentions. Lastly, they show that syntactic information is also captured in BERT’s at-
tention (Clark et al., 2019).

Figure 16: Example of Attention Patterns for Different Heads
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5 Data

In this section, we will describe the dataset in Section 5.1, a data analysis is given in
Section 5.2. The pre-processing steps will be discussed in Section 5.3.

5.1 Description

We will use the Offensive Language Identification Dataset (OLID) provided by (Zampieri
et al., 2019). OLID was created using a Twitter API searching for tweets containing
certain selected keyword patterns which are often used in offensive posts. These were
keyword patterns such as ‘she is’, ‘you are’, ‘he is’, and to:BreitBartNews. Also, tweets
which are marked as unsafe are used. The data has been annotated using a crowd-
sourcing platform. If there was 100% agreement, they considered it as an acceptable
annotation. If there was no annotator agreement, they asked for more annotations un-
til an agreement above 66% was reached. More information about the collection and
creation of the dataset can be found in (Zampieri et al., 2019).

OLID has a three-layer annotation scheme. The first layer of the annotation scheme is
the Offensive Language Detection, which identifies whether a tweet is offensive (OFF)
or non-offensive (NOT). The second layer of the annotation scheme is the Categorisa-
tion of Offensive Language, the type of offence is categorised in targeted (TIN) and
untargeted (INT) insults and threats. The third layer is the Offensive Target Identifi-
cation, the targets are categorised in individual (IND), group (GRP), and other (OTH).
(Zampieri et al., 2019)

The terms used for the categorisation of the tweets are defined as:

• Not Offensive (NOT): Posts that do not contain offence or profanities.

• Offensive (OFF): Posts that contain any form of non-acceptable language (pro-
fanity) or a targeted offence, veiled or direct. Including insults, threats, posts
containing profane language or swear words.

• Target Insult (TIN): Posts that contain insults/threats to an individual, group, or
others.

• Untargeted (UNT): Posts that contain insults/threats but are not targeted to a cer-
tain individual, group, or others.

• Individual (IND): (Cyberbullying) Posts which are targeted to an individual (named
individual, a famous person, or an unnamed participant).
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• Group (GRP): (Hate Speech) Posts that are targeted to a group of people based on
ethnicity, gender, sexual orientation, political, religious belief, or other common
characteristics.

• Other (OTH): Posts that are not targeted to an individual or a group (e.g. organ-
isation, situation, event, issue).

5.2 Exploratory Data Analysis

The dataset consists of 14,100 tweets with 13,240 as training data and the remaining
860 as test data. The columns in the dataset are id, tweet, subtask_a, subtask_b, and
subtak_c. Table 1 shows an example of the tweets in the dataset.

1. id: Unique identifier of a tweet

2. tweet: Tweet text

3. subtask_a: Offensive Language Detection (OFF, NOT)

4. subtask_b: Categorisation of Offensive Language (TIN, UNT)

5. subtask_c: Offensive Target Identification (IND, GRP, OTH)

Tweet A B C
@USER Yes you are but I was asking what is it about the movie ? NOT
@USER True point. Gun control is total bullshit. OFF UNT
@USER @USER Go home you’re drunk!!! @USER #MAGA #Trump2020 OFF TIN IND
@USER @USER @USER @USER @USER @USER You must be talking about hateful conservatives. OFF TIN GRP
@USER Awful OFF TIN OTH

Table 1: Examples of Tweets

The distribution of tweets in the three different classes is shown in Figure 17, which
show that the classes are quite imbalanced. The tweets that contain offensive language
are only around one third.

(a) Distribution Subtask A (b) Distribution Subtask B (c) Distribution Subtask C

Figure 17: Distribution Subtasks
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We might distinguish offensive tweet from non-offensive tweets if we take a look at the
content of the tweets. Figure 18 shows common words in the two given categories. On
the one hand, the two categories have certain words in common. On the other hand,
Figure 18a shows that offensive tweets contain more swear words and non-offensive
tweets talk more about Antifa.

(a) Offensive Tweets (b) Non-Offensive Tweets

Figure 18: Wordclouds OFF / NOT Tweets

Furthermore, we can take a look at certain properties of tweets and check if these
are different based on the category. Figure 19 shows that offensive tweets contain on
average more characters than non-offensive tweets.

Figure 19: Character Count per Tweet



31 5. Data

Hashtags
A hashtag (#) on Twitter is used to index keywords or topics on Twitter. A hashtag
is a tag consisting of a string of characters with a "#" symbol as a prefix. There are
no space delimiters in hashtags, which makes the segmentation not trivial. We will
analyse the hashtags to examine if hashtags influence the classification of the tweet.
Hashtags used in the Twitter dataset are given in Figure 20.

Figure 20: Wordcloud Hashtags

There are hashtags used where the meaning might not be clear. An overview of the
meaning of the most used hashtags is given below:

• #MAGA - Make America Great Again

• #Kavanaugh - American lawyer and jurist who is an Associate Justice of the
Supreme Court of the United States

• #WWG1WGA - Where We Go 1 We Go All

• #qanon - QAnon conspiracy theory that Deep State is determined to undermine
the presidency of Donald J. Trump.

• #antifa - Anti-fascism

• #kag - Keep America Great

• #tcot - Top Conservatives on Twitter
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We also wanted to compare the hashtags used in offensive tweets and non-offensive
tweets. The hashtags which are used the most for respectively non-offensive and
offensive tweets are given in Figure 21a and Figure 21b.

(a) Hashtags NOT (b) Hashtags OFF

Figure 21: Commonly Used Hashtags

We pre-process the hashtag and split them into proper words. For example, #Dissol-
veTheUnion is split into ‘dissolve the union’. We will use word segmentation, which
decides where the word boundaries are, which is useful when parsing hashtags. Word-
Segment 3 is a module for the word segmentation of English words and is based on
the book Beautiful Data (Segaran & Hammerbacher, 2009). This package returns word
segments of the hashtags. It contains uni-gram data including the most common
333,000 words and bi-gram data including the most common 250,000 phrases.

Emojis and emoticons
Emojis are often used in social media. The Oxford Dictionary defines an emoji as
‘A small digital image or icon used to express an idea or emotion’. Emoticons are
defined as ‘A representation of a facial expression such as a smile or frown, formed by
various combinations of keyboard characters and used to convey the writer’s feelings
or intended tone’. The presence of emojis is interesting because they often contain
some form of sentiment.

There are different emojis presented in the tweets. From the training set, 11% of the
tweets contain emojis. The most used emojis are given in Table 2. If a tweet contains
emojis, the tweet contains on average 2.4 emojis. There are 80 tweets which contain
emoticons (0.60%). There are only 18 unique emoticons used in the tweets. From the
offensive tweets, there are around 9.14% which contain emojis. From the non-offensive
tweets, there are slightly more tweets which contain emojis (12.3%). The top emojis
used in offensive tweets and non-offensive tweets are different. Therefore this might
be an indicator for identifying a tweet. The top used emojis in the offensive tweets are
emojis such as , , . Whereas for the non-offensive tweets this the emojis , , and

are used.

3http://www.grantjenks.com/docs/wordsegment/

http://www.grantjenks.com/docs/wordsegment/
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Emojis Count
546
378
213
135
102
89
83
79
71
68

Table 2: Top 10 Most Used Emojis

There are different strategies to incorporate emojis. Emoji embeddings can be used
alongside other word embeddings. Emoji2vec (Eisner, Rocktäschel, Augenstein, Bosn-
jak, & Riedel, 2016) pre-train emoji embeddings using positive and negative emoji
descriptions. Another strategy is to replace emojis are replaced by their textual de-
scriptions (Singh, Blanco, & Jin, 2019). They showed that this strategy outperforms
previous methods for irony detection and sentiment analysis.

During the pre-processing of the tweets, we will, therefore, replace emojis by their
textual description. We will use the emoji Unicodes with their CLDR Short Name. 4

To do this, we will use a customised version of the Python package emoji. 5 We did not
take into consideration the images with different skin tones and removed distinctions
based on the colour of the skin.

4https://www.unicode.org/emoji/charts-12.0/emoji-list.html
5 https://github.com/carpedm20/emoji/

https://www.unicode.org/emoji/charts-12.0/emoji-list.html
https://github.com/carpedm20/emoji/
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5.3 Pre-processing

A tweet contains unnecessary information which can be removed. We apply pre-
processing steps to clean the tweet. Based on the word embedding type we use, we
will apply different pre-processing steps.

SVM
For the SVM model we will use word count features (TFIDF), see Section 3.3, for the
TFIDF we use the following pre-processing steps:

• Remove emojis and emoticons.

• Remove Twitter handles (@USER).

• Remove URLs.

• Shorten repeated characters, extra white space or lengthened words and remove
repeated characters.

• Expand contractions by replacing the following words with the corresponding
words for example, what’s→ what is, I’m→ I am, etc.

• Convert words to lowercase.

• Remove stopwords.

MLP, CNN, LSTM
For the MLP, CNN, and LSTM we use pre-trained word embeddings (Word2Vec,
GloVe, and fastText). The pre-processing steps for these word embeddings are based
on the vocabulary from these word embeddings to reduce the out-of-vocabulary words.
When using deep learning NLP models, the preprocessing steps stopword removal
and stemming should not be used. When these steps are performed, valuable infor-
mation is lost.

When using the word embeddings, we preprocess the tweets to get the vocabulary as
close to the embeddings as possible. We based the preprocessing steps on minimis-
ing the list of out of vocabulary (OOV) words, which is the intersection between the
vocabulary and the word embeddings.

For GloVe, pre-trained word embeddings for Twitter, we will use the preprocessing
steps which they also use for preprocessing the tweets. The preprocessing steps for
GloVe are similar to the one provided in the Ruby script 6 for preprocessing Twitter
data.

6https://nlp.stanford.edu/projects/glove/preprocess-twitter.rb/

https://nlp.stanford.edu/projects/glove/preprocess-twitter.rb/
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• Replace Twitter handles (@USER) by <user>.

• Replace URLs by <url>.

• Replace numbers by <number>.

• Replace emoticons by their description <smile>, <lolface>, <sadface>, or <neu-
tralface>.

• Replace emojis with their textual description and remove skin tones.

• Segment hashtags in different words.

• Mark punctuation repetitions with <repeat>, e.g. "!!!" => "! <repeat>"

• Mark elongated words with <elong>, e.g. "wayyyy" => "way <elong>".

• Convert words to lowercase, and mark words in which all the letters are capital
letters.

• Replace contractions and slang.

Word2Vec with pre-trained vectors trained on part the of Google News dataset does
not have special pre-processing steps for Twitter data. We keep the same pre-processing
steps for the hashtags, converting words to lowercase, and replace contractions and
slang. The pre-processing steps for fastText, word trained on Common Crawl, are
similar to the one for Word2Vec.

• Replace Twitter handles (@USER) by user.

• Replace URLs by url.

• Replace numbers by hashtags, e.g. 20 is replaced by ## and 120 is replaced by
###.

• Replace emojis with their textual description and remove emoticons.

• Remove punctuation, most of the punctuation is not contained in the vocabulary
and therefore removed.

Table 3 shows the OOV coverage before preprocessing and after preprocessing.

Before preprocessing After preprocessing
Embedding Vocab Text Vocab Text
Word2Vec 45.93% 68.58% 85.78% 98.17%
Glove 29.57% 61.73% 91.60% 99.24%
fastText 53.39% 77.94% 88.00% 98.92%

Table 3: Vocabulary Coverage for Word2Vec, GloVe, fastText
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BERT
We took minimal preprocessing steps when using BERT. We only removed the USER
and URL, handled the emojis and emoticons and expanded the contractions.

The pipeline of the whole classification process is given in Figure 22. We start with the
text, perform tokenization and apply pre-processing steps, described in Section 5.3.
After the pre-processing, we extract different features based on the model which we
are going to use. We train the model with the given features. After model training, we
predict and evaluate with the use of labels annotated by humans.

Figure 22: Pipeline Overview
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6 Experimental Setup

This section describes the setup of the experiments. For each of the models, the pa-
rameters are tuned using Hyperopt. 7 The architectures of the models are described in
Section 6.1. The hyper-parameters search is performed using Bayesian optimisation,
which we will describe in Section 6.2.

To see how the models perform, we use a validation set. The training dataset was
split into a training (80%) and a validation set (20%). The test set was already pro-
vided.

6.1 Architecture

We use the models SVM, MLP, LSTM, CNN and BERT for the classification. The
models are implemented using Python and programmed using PyTorch. PyTorch is
an open-source machine learning library for Python, based on Torch. It was developed
by Facebook’s AI research group and is used for applications such as computer vision
and natural language processing. PyTorch is flexible and easy to write your layer types
and run on a GPU. For the SVM model, we used scikit-learn.

Step
Pre-processing See pre-processing steps
Feature Extraction TFID - Word Embeddings
Models SVM, MLP, LSTM, CNN, BERT
Classification OFF (Offensive), NOT (Not Offensive)

The pipeline for the classification is given in Figure 23.

Figure 23: Pipeline Architecture

7https://hyperopt.github.io/hyperopt/

https://hyperopt.github.io/hyperopt/
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The architecture of the different models consists of different layers. 8 The layers we
used are:

• Embedding layer
The embedding layer is used to store the word embeddings of a fixed dictionary
and size in a lookup table and retrieve them using the indices. The input of the
embedding layer is a list of indices, the size of the dictionary of the embeddings.
The output is the corresponding word embeddings, the size of each embedding
vector.

Parameters:

– num_embeddings: Size of the dictionary of embeddings

– embedding_dim: Size of each embedding vector

• Dropout layer
The dropout layer randomly zeroes some of the elements of the input with prob-
ability p,m using samples from a Bernoulli distribution.

Parameters:

– p: Probability of an element to be zeroed.

• Linear layer
The linear layer applies a linear transformation to the incoming data:
y = xAT + b.

Parameters:

– in_features: Size of each input sample

– out_features: Size of each output sample

8https://pytorch.org/docs/stable/nn.html

https://pytorch.org/docs/stable/nn.html
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• Convolution layer
The convolution layer applies a convolution over the input.

Parameters:

– in_channels: Number of channels in the input image

– out_channels: Number of channels produced by the convolution

– kernel_size: Size of the convolving kernel

• LSTM layer
The LSTM layer applies a multi-layer LSTM RNN to an input sequence.

Parameters:

– input_size: Number of expected features in the input x

– hidden_size: Number of features in the hidden state h

– num_layers: Number of recurrent layers

– dropout: Uses a Dropout layer on the outputs of each LSTM layer, except
the last layer.

– bidirectional: If True, the LSTM becomes bidirectional

MLP Architecture
The MLP architecture consists of an embedding layer and multiple linear layers, where
the last linear layer has an output dimension which is equal to the number of classes.
There are ReLU activation functions after every linear layer and in the second linear
layer, we use dropout. The dropout rate and the hidden dimension are both hyperpa-
rameters.

The architecture of the MLP is as follows:

• Embedding layer

• Linear Layer + ReLu: Embedding dimension (in_features), hidden dimension
(out_features)

• Dropout layer: Dropout rate

• Linear layer + ReLu: Hidden dimension (in_features), hidden dimension (out_features)

• Linear layer + ReLu: Hidden dimension (in_features), hidden dimension/2 (out_features)

• Linear layer (Output layer): Hidden dimension/2 (in_features), 2 neurons (out_features)



40 6. Experimental Setup

LSTM / LSTM Attention Architecture
The LSTM and the LSTM with attention architecture consist of an embedding layer,
followed by a LSTM layer and a linear layer, the output layer with a softmax activation
function. A dropout layer is added to the hidden layer to prevent overfitting.

The architecture of the LSTM is as follows:

• Embedding layer

• LSTM layer: embedding dimension (in_features)

• Linear layer (Output layer): hidden dimension (in_features), 2 neurons (out_features)

The architecture of the LSTM with attention is similar, after the LSTM layer an atten-
tion layer is applied.

CNN
For the CNN we handle the tweets as images. We create a matrix with the number of
rows equal to the maximum length of the tweet and the number of columns is equal to
the embedding dimension. For an image, we move the convolution filter horizontally
and vertically, for the text we only going to move vertically. The kernel size, size of
convolving kernel is a list of [2, 3, 4]. The number of consecutive words we are looking
over.

The CNN consist of an embedding layer, followed by a convolutional layer with differ-
ent filter sizes to capture information from 2-grams, 3-grams and 4-grams. The feature
maps produced by the convolutional layer are passed onto the Max pooling layer. We
used a pooling layer to extract the maximum value from the filters. A dropout layer is
added and lastly a linear layer to make a prediction.

The architecture of the CNN is as follows:

• Embedding layer

• Convolution layer + Max pooling: 1 (in_channels), embedding dimension (out_channels),
2/3/4 (kernel_size)

• Dropout: dropout

• Linear layer: embedding dim * filter sizes (in_features), 2 neurons (out_features)

BERT
We explored two different approaches, the fine-tuning approach and feature-based ap-
proach. The fine-tuning approach is to fine-tune the parameters of the model. With the
feature-based approach, you extract fixed features from the pretrained BERT model.
It extracts activations from one or more layer without fine-tuning any parameters. We
tried different feature-based approaches, took the second-to-last hidden, last hidden,
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weighted sum last four hidden, concatenate last four hidden, and a weighted sum of
all the 12 layers.

For the fine-tuning approach, we experimented with different classifiers architectures
on top of BERT, see Figure 24. 9

Figure 24: BERT Fine-Tuning

• Bert
Consists of BERT without any additional model on top.

• BertLinear
Consists of four linear layers with dropout and ReLU activation functions be-
tween the linear layers.

• BertNorm
Consists of a fully connected linear layer, a batch normalisation, a ReLU layer
and after that a linear layer.

• BertLSTM
Consists of a LSTM model on top of BERT.

9https://jalammar.github.io/illustrated-bert/

https://jalammar.github.io/illustrated-bert/
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6.2 Hyperparameters

We use Hyperopt for hyperparameter optimisation. Hyperopt a Python library for
optimising over awkward search spaces with real-valued, discrete, and conditional di-
mensions. Hyperopt provides an implementation for Tree-of-Parzen-Estimators (TPE)
which is a Bayesian optimisation method.

Hyperparameter optimization or tuning is choosing a set of optimal hyperparame-
ters for learning an algorithm. The goal of hyperparameter search is to find a set
of hyperparameters that gives an optimal model which minimises some predefined
loss function on a given test data. There are different approaches for hyperparameter
optimization. We will use Bayesian optimisation to obtain better results in fewer eval-
uations compared to grid search and random search. Bayesian optimisation chooses
parameters based on previous performance of the chosen parameters. Grid search
and random search spend a lot of time evaluating hyperparameters which are not
efficient. Bayesian hyperparameter optimisation builds a probability model of the ob-
jective function and uses this to select the most promising hyperparameters to evaluate
the objective function. (Snoek, Larochelle, & Adams, 2012)

Table 4 shows the parameter grid used for optimising the parameters. The models are
trained with 50 epochs with early stopping after 10 epochs and the batch size is set to
100. The loss function used is Adaptive Moment Estimation (Adam).

Model Parameter Grid

SVM

C: [0.001, 0.01, 0.1, 1, 10]
kernel: [’linear’, ’sigmoid’, ’poly’, ’rbf’]
degree: [1, 15, 1]
gamma: [0.001, 0.01, 0.1, 1]

MLP
learning_rate: [0.00001, 0.01, 0.00005]
hidden_dim: [50, 200, 10]
dropout: [0.01, 0.5, 0.005]

CNN
learning_rate: [0.00001, 0.01, 0.00005]
dropout: [0.01, 0.5, 0.005]

LSTM / LSTMAttention

learning_rate: [0.00001, 0.01, 0.00005]
hidden_dim: [50, 200, 10]
hidden_layers: [2, 10, 2]
dropout: [0.01, 0.5, 0.005]

BERT learning_rate: [5e-5, 3e-5, 2e-5]

Table 4: Hyperparameter Grid
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6.3 Evaluation

We evaluate the classification performance of the classifiers using the evaluation mea-
sures precision, recall, and F1-score. The evaluation measures are calculated for each
of the individual classes. The classes of the dataset are fairly imbalanced, therefore
we also compute the macro-average precision, recall, and F1-score. The macro-average
calculates the metrics for each class and takes the unweighted mean. We do not use
accuracy as it can be misleading for imbalanced data. Accuracy typically awards the
correct classification of the majority class.

These metrics are based on the confusion matrix given in Table 5.

Prediction
P N

A
ct

ua
l P

True Positives
(TP)

False Positives
(FP)

N
False Negatives

(FN)
True Negatives

(TN)

Table 5: Confusion Matrix

The terms used in the confusion matrix are defined as:

1. True Positives (TP): Prediction is positive and actual is true.
I.g.: Prediction tweet is offensive and actual tweet is also offensive.

2. True Negatives (TN): Prediction is negative and actual is true.
I.g.: Prediction is non-offensive and the actual tweet is offensive.

3. False Positives (FP): Prediction is positive and actual is false.
I.g.: Prediction is offensive and the actual tweet is non-offensive.

4. False Negatives (FN): Prediction is negative and actual is false.
I.g.: Prediction is non-offensive but the actual tweet is offensive.

Based on the confusion matrix, we will calculate the accuracy, precision, recall, and
F1-score.

The accuracy is the ratio of the correct predictions to the total predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(25)

The precision is the probability that given the predicted class of a sample, the sample
is correctly classified and shows how precise/accurate the model is.

Precision =
TP

TP + FP
(26)
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The recall is the probability that given a sample, the sample will be correctly classified
by the classifier.

Recall =
TP

TP + FN
(27)

The F1-score is the harmonic mean of precision and recall. It takes both the false
positives and false negatives into account.

F1-score = 2 · Precision · Recall
Precision + Recall

(28)
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7 Results

This section provides the results of the different models. First, we give an overview
of the optimal hyperparameters used for each model. Then, we will evaluate the
performance of the models using the found parameters on the test set.

7.1 Hyperparameters

After the preprocessing steps, the average number of words was around 45. Therefore
we chose to fix the sequence length of the tweets at 45. The number of features is
equal to the vocabulary. The models are trained with 50 epochs with early stopping
after 10 epochs. Which means that if the loss did not decrease after 10 epochs we
considered the optimisation process as finished. The batch size was set to 100 and the
Adam optimisation was used to update the network weights.

We performed Bayesian hyperparameter optimisation using 30 evaluations and the
given parameter grid given in Table 4. Table 6 shows the optimal hyperparameters
found using the hyperopt package. The results given in Section 7.2 are based on the
optimal parameters found.

Model Parameter Grid

SVM
C: 10
kernel: linear

MLP
learning_rate: 5.26e-4
hidden_dim: 120
dropout: 0.5

CNN
learning_rate: 4e-4
dropout: 0.31

LSTM

learning_rate: 1.17e-4
hidden_dim: 50
number_of_layers: 2
dropout: 0.5

LSTMAttention
learning_rate: 0.000179
hidden_dim: 100

BERT learning_rate: 3e-5

Table 6: Optimal Hyperparameters

For the SVM model, we will use a linear kernel. Which means that we will separate
the offensive from the non-offensive tweets in a linear way. We will use C=10 as the
penalty parameter of the error term. It is the parameter that tells the SVM optimisation
how much you want to avoid miss classifying each training values of C. For large
values of C, the optimisation will choose a smaller-margin hyperplane.
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The learning rate for the models is fairly low, which means that the learning process
of the process is also slower. The dropout rate for the models is similar except for the
LSTM model with attention. A dropout of 0.5 means that we will randomly drop out
50% by randomly of the nodes during training to reduce overfitting.

7.2 Model Comparison

Table 7 shows the results in terms of precision, recall and macro F1-score for the
classification task. We used the macro averaged F1 as a metric for the classification of
offensive language accounting for the high-class imbalance.

We experiment with different models and used different features with BOW with
TIFDF features for SVM model and we used the GloVe Twitter word embeddings for
the other four models. After experimenting with different word embeddings Glove
Twitter word embeddings gave the best or comparable results than the other word
embeddings.

We will evaluate the models based on the measures explained in Section 6.3. We found
that the best performing model is a CNN model, the second-best model is the BERT
model. The CNN model has a learning rate of 4e-4 and a dropout of 0.31. And the
BERT with a linear layer and batch normalisation has a learning rate of 3e-5.

If we would only use BERT without any other model on top, the recall of the offensive
tweets is low, 0.52. This means that it is not good at detection offensive posts. It did,
however, have a very high recall for the non-offensive tweets. This would mean that
BERT would classify most of the tweets as non-offensive. BertLinear, a model which
adds linear layers on top of BERT also had a very low recall for the offensive tweets,
0.48. The model BertNorm, the BERT model with a linear layer and batch normalisa-
tion gave the best performance in terms of the F1 score, and higher recall.

NOT OFF
Model P R F1 P R F1 Macro-F1
SVM 0.82 0.78 0.80 0.57 0.63 0.60 0.69
MLP 0.90 0.80 0.85 0.53 0.73 0.61 0.71
LSTM 0.89 0.82 0.85 0.60 0.73 0.66 0.74
CNN 0.91 0.87 0.89 0.72 0.79 0.75 0.81
BERT 0.92 0.86 0.89 0.62 0.78 0.69 0.78

Table 7: Evaluation Metrics
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The performance of the CNN model in terms of the macro-F1 score is slightly higher
than the BERT model. We could explain this because tweets are short and for a CNN
model it is then easier to find certain key phrases. BERT does not perform as well as
we would expect. This could be explained by the fact that the language used in tweets
is very different from the language used for training BERT. If we take a look at the
difference in performance between the non-offensive and offensive tweets, it shows
that the performance of the non-offensive tweets is similar. The precision and recall
are fairly similar. However, if we take a look at the offensive tweets we can see that
there is a drop of precision while using BERT. Which means that if we get an offensive
tweet it is often not correctly classified. Therefore, the BERT model is less accurate
than the CNN model but can still be used to detect offensive language.
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8 Conclusion

Detecting offensive language in social media is becoming more important. Because
of the nature of language, it is difficult to achieve high performance when detecting
it as such. Social media companies face a lot of challenges when detecting offensive
language.

In this paper, we use different transfer learning methods to detect the offensive lan-
guage in social media. The dataset we used was provided by (Zampieri et al., 2019)
and consists of a three-layer annotation scheme. Our approach focused on the recent
developments in NLP, which are based on language models. BERT is one of the new
state-of-the-art language models. With this research, we wanted to see if BERT will
give a big improvement over using word embeddings with a LSTM or CNN model.
BERT can identify offensive language, however, it performs slightly worse than a CNN
model.

Detecting offensive language is difficult. To tackle this problem, different state-of-the-
art methods are used. BERT and the CNN have shown to perform the best. BERT
might not perform as well as we would expect beforehand. Tweets are very short and
different from where BERT was trained on. The dataset is very imbalanced, further-
more, the dataset is quite small. Adding additional data to this dataset could improve
the performance.

We showed that transfer learning gives promising results. In reality, there does not
exist a lot of labelled data because it requires a lot of expensive human labour. In that
case, transfer learning is a good method to use for the task. Tuning the parameters and
exploring other more SOTA language models could be explored, which could possibly
lead to better performance.

Future Work
Offensive language contains a lot of emotions. Tweets also contain emojis. To use
the emoji we replaced the emoji with their meaning. We could do more research on
how to incorporate the emojis and if they really influence a lot whether something is
offensive or not.

BERT is one of the best language models created, and it performs ‘surprisingly well’
on a lot of different datasets. It requires world knowledge and common sense rea-
soning. Only, there is little evidence that language models can learn such features of
high-level natural language understanding. It could be that these methods are solving
a task by learning the wrong thing, also called the Clever Hans effect. We could be
sceptical about a near-human performance in high-level natural language understand-
ing tasks.

We can expect that models will just become bigger and bigger. After BERT there were
other models released such as the GPT-2, which is 24x the size of BERT. There is a lot
of new research done in the area of NLP. Newer methods such as XLNet (Yang et al.,
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2019), RoBERTa (Liu, Ott, Goyal, & Du, 2019) could be further explored.

The dataset is not really large. We could augment this dataset with other data. We
could also add more additional features and explore this more. Besides that, more
linguistic features could be added.
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