

Cover illustrations
Top: Satellite imagery of Mongu,
Zambia with building outlines as
predicted by a Mask R-CNN model.

Bottom: Aerial imagery of Heerlen, the
Netherlands with building outlines as
predicted by a (Res)U-net model.

B U I L D I N G D E T E C T I O N O N A E R I A L I M A G E R Y
U S I N G C O N V O L U T I O N A L N E U R A L N E T W O R K S

on the robustness of mask r-cnn and u-net

A thesis submitted to the Vrije Universiteit Amsterdam in partial fulfillment
of the requirements for the degree of

Master of Science in Business Analytics

by

Bernard Matthias Bronmans

April 2019

Bernard Matthias Bronmans: Building detection on aerial imagery (2019)

cbn This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

Supervisors: Dr. Peter Bloem
Msc. Rein van ’t Veer

Co-reader: Dr. Ger Koole
Company supervisors: ir. Sven Briels (Readar)

Msc. Arjen Crince (510)

Vrije Universiteit Amsterdam
Faculty of Science
De Boelelaan 1081a
1081 HV Amsterdam

Readar
Maliestraat 3

3581 SH Utrecht

510 - An initiative of
The Netherlands Red Cross
Anna van Saksenlaan 50

2593 HT Den Haag

http://creativecommons.org/licenses/by/4.0/

S U M M A R Y

Mapping buildings on aerial imagery is a task often performed manually. This is currently
the case for Readar, a company which extracts building and rooftop related information
from aerial imagery, and the Missing Maps initiative and the 510 data team of the Nether-
lands Red Cross Society (NRCS). The goal of Missing Maps and the 510 data team is to
map uncharted areas using satellite imagery to assist humanitarian aid projects.

In this report two perspectives are taken on the building localization task: First, we as-
sume it is an object detection task and implement an object detection Convolutional Neu-
ral Network (CNN) called Mask R-CNN. Secondly, we regard the building localization
task as an image segmentation task and implement a CNN called U-net. The robustness
of both CNNs is tested with regards to geographical location, image resolution and build-
ing geometry. Data used includes imagery from four continents in 10, 30 or 60 cm ground
resolution.

The Mask R-CNN model has shown to be surprisingly geographically robust. A Mask
R-CNN model trained on a dataset located in North America managed to obtain a 0.98

precision and 0.60 recall score (building-wise) on a dataset containing 29,000 buildings
over 67 km2 of imagery of the Zambian city of Mongu in 48 minutes without any retrain-
ing or adjustments. Furthermore the model showed promising results on test sets located
in Malawi, Peru and the Netherlands. However, the Mask R-CNN model proved to be
sensitive to the combination of building size and image resolution, making the model in-
herently sensitive to image resolution. Mask R-CNN also has a limited range of expected
building aspect ratios. These are sufficient for the vast majority of detached buildings but
reduce performance on connected buildings with similar rooftops which are common in
densely built areas. For the use case of the Red Cross, the limitations of this Mask R-CNN
model are compensated for by its geographical robustness.

The U-net model showed a moderate geographical robustness, with a model trained on
the same North American dataset scoring 0.63 on precision and 0.62 on recall (pixel-wise)
on parts of the Zambian city of Lusaka. However, contrary to Mask R-CNN, the U-net
architecture is more robust to image resolution and does not have any limitations with
regards to building geometry. This is allows the U-net to perform well in densely built
areas, resulting in a 0.81 score on precision and 0.86 on recall (pixel-wise) on the Dutch
city of Heerlen, translating to a 0.81 score on precision and 0.92 on recall (building-wise).
The efficiency of the U-net model and its robustness with respect to image resolution and
building geometry make it suitable for the use case of Readar.

Another conclusion is that performance of both CNNs is heavily influenced by the
quality of the annotated ground truth labels, image quality and the alignment between
the ground truth and the imagery. For a given area of interest lacking accurate ground
truth labelling, it might be recommended to train a CNN on a dataset of higher quality
from a different area. This internship introduces transfer validation sets which monitor
the transferability of a model to a different dataset during the training process. Other
main recommendations include the addition of height data as model input for Readar
and for the Missing Maps project to improve registration of the active imagery source
used during the manual mapping process.

v

P R E FA C E

You now have the thesis in front of you that is my final project of the Master’s programme
Business Analytics at the Vrije Universiteit Amsterdam. The decision to study Business An-
alytics, or as I prefer the legacy name “Bedrijfswiskunde en Informatica” (roughly “Applied
Mathematics and Computer Sciences”), has proven to be the right one for me.

At Business Analytics, the graduation thesis is part of an internship where the obtained
knowledge and skills are put into practice to have a real, positive impact on a business case.
This internship was a collaboration between Readar and the 510 data team of the Netherlands
Red Cross Society. The mutual desire between Readar and 510 was to automatically detect
buildings on aerial imagery. Both parties were interested in exploring the potential of Ma-
chine Learning techniques for this objective. The past few months have been a fun, inspiring
and enriching learning experience for me and allowed me to meet some great people.

I would like to express my gratitude for everyone supporting me during my internship. Spe-
cial thanks go to my supervisors at the Vrije Universiteit, Peter Bloem and Rein van ‘t Veer for
providing me with weekly guidance and valuable feedback. I would also like to thank Readar
for offering this opportunity to me and for providing an impressive amount of resources in
terms of compute power, availability of high-quality data and a great daily lunch. In partic-
ular, I’d like to thank Sven Briels for his technical supervision and Jean-Michel Renders for
sharing his Machine Learning expertise with me. The 510 data team of The Netherlands Red
Cross Society provided me with an inspiring environment and a humbling amount of interest
in the progress of my internship. From 510, I would specifically like to thank Arjen Crince and
Jurg Wilbrink for their much appreciated knowledge and assistance on all geo-information
related challenges on my path. Special thanks also go to Koos Krijnders, for providing me
with the opportunity to present my work at the International Institute for Geo-Information
Science and Earth Observation and his warm hospitality in general. I also gratefully look
back on valuable discussions and knowledge sharing sessions on the subject of automated
building detection with the DeepVGI team within 510.

Bernard Bronmans

Utrecht, March 2019

vii

C O N T E N T S

1 introduction 1

1.1 Background . 1

1.2 Use Cases . 2

1.3 Objective . 3

1.4 Research questions . 4

1.5 Problem Analysis . 5

1.6 Report structure . 8

2 literature review 9

2.1 Computer Vision in general . 9

2.2 Convolutional Neural Networks . 9

2.3 Applications . 10

2.4 Computer Vision for building detection on aerial imagery 11

2.5 Model selection and research question refinement 12

3 machine learning 13

3.1 Chapter Overview . 13

3.2 Artificial Neural Networks . 13

3.3 Convolutional Neural Networks . 19

3.4 Model Training . 23

3.5 Datasets . 26

3.6 Loss functions . 27

3.7 Performance metrics . 29

3.8 Training optimization . 30

3.9 Architectures: ResU-net, U-net and Mask R-CNN 32

4 data 39

4.1 Chapter overview . 39

4.2 crowdAI . 40

4.3 Bing Maps & OpenStreetMap . 41

4.4 Readar . 45

4.5 Conclusion . 46

5 mask r-cnn 47

5.1 Chapter overview . 47

5.2 Implementation . 47

5.3 Geographical robustness . 53

5.4 Malawi . 53

5.5 Zambia . 58

5.6 Peru . 60

5.7 The Netherlands . 63

5.8 Review of transfer learning intentions . 64

5.9 Conclusion . 65

6 resu-net 67

6.1 Chapter overview . 67

6.2 Implementation . 67

6.3 Geographical robustness . 70

6.4 Resolution robustness . 74

ix

x contents

6.5 Building geometry robustness . 78

6.6 Building-wise evaluation . 79

6.7 Conclusion . 84

7 conclusion 87

7.1 Objective and research questions . 87

7.2 Comparison Mask R-CNN and ResU-net . 89

8 recommendations 91

8.1 General recommendations . 91

8.2 Recommendations to 510 and Missing Maps . 91

8.3 Recommendations to Readar . 92

a appendix: technical setup 99

a.1 Dataset locations and sizes . 99

a.2 Technical environment . 100

a.3 Hyperparameters Mask R-CNN . 101

a.4 Hyperparameters ResU-net . 105

b appendix: visual samples 107

b.1 crowdAI imagery . 107

b.2 Mask R-CNN on Zambia . 108

b.3 OSM and Mask R-CNN on Zambia, Mongu . 109

b.4 Mask R-CNN on the Netherlands, Amersfoort, 10cm 111

b.5 ResU-net on the Netherlands, Heerlen, 10 and 30 cm 112

b.6 ResU-net on the Netherlands, Heerlen, 30 cm . 117

b.7 Vectorized ResU-net on the Netherlands, Amersfoort, 10 cm 118

b.8 Vectorized ResU-net on the Netherlands, Heerlen, 10 cm 119

A C R O N Y M S

AP Average Precision .47

AR Average Recall . 47

BAG Basis Administratie Gebouwen . 2

BCE Binary Cross Entropy . 28

BGT Basisregistratie Grootschalige Topografie . 2

CNN Convolutional Neural Network . 9

COCO Common Objects in Context . 47

CPU Central Processing Unit . 9

FCN Fully Convolutional Network . 11

GPU Graphics Processing Unit . 9

ILSVRC ImageNet Large Scale Visual Recognition Challenge . 9

IoU Intersection over Union . 28

Mask R-CNN Mask Region-based Convolutional Neural Network . 11

MLP Multilayer perceptron. .13

NMS non-maximum suppression . 35

NLRC Netherlands Red Cross Society .1

OSM OpenStreetMap. .39

ReLU Rectified Linear Unit . 17

ResU-net Residual U-net . 67

RGB Red Green Blue . 19

RPN Region Proposal Network . 35

SGD Stochastic Gradient Descent . 25

TTA Test Time Augmentation . 31

xi

1 I N T R O D U C T I O N

1.1 background

Missing Maps
In August 2014 a new commercial satellite was launched, called WorldView-3 by DigitalGlobe.
This satellite was the first in its kind to provide global coverage for imagery with a 31 cm
ground resolution. This high-resolution imagery is detailed enough to accurately recognize
individual buildings.

A few months later, in November 2014 the Missing Maps project was started. Missing Maps
is an initiative in which volunteers can map areas in the developing world that have not been
mapped yet. The mapping is done based on satellite imagery, where the WorldView-3 satel-
lite is one of the main imagery providers. The aim of Missing Maps is to assist humanitarian
aid projects by improving the geographic information available for active and future project
areas. The results of the mapping are published in OpenStreetMap, a platform for open map
data. The objective of Missing Maps is stated as follows:

“To map the most vulnerable places in the developing world, in order that inter-
national and local NGOs and individuals can use the maps and data to better
respond to crises affecting the areas.”

510
Currently, Missing Maps is being maintained by the 510 data team, associated with the
Netherlands Red Cross Society (NLRC). The 510 data team aims to improve the quality and
effectiveness of humanitarian aid by gathering, processing and analyzing data. The name 510

refers to the total surface area of the earth in million square kilometres. The mission state-
ment from 510:

“Shape the future of humanitarian aid by converting data into understanding, and
put it in the hands of humanitarian relief workers, decision makers and people
affected, so that they can better prepare for and cope with disasters and crises.“

The 510 team has been following the progress being made in the area of Machine Learning,
especially in the field of Computer Vision. Given the fact that mapping individual buildings
on satellite imagery requires a lot of manual effort, the idea persists within the 510 team that
Computer Vision models could at one point drastically increase the speed of large-scale map-
ping projects.

1

2 introduction

Readar
That same idea is also being held by Readar. Readar is a company founded in 2015 which
extracts building and rooftop data from aerial imagery. Readar offers services including
3-dimensional volume models for buildings, asbestos detection on building rooftops, solar
panel detection and solar panel potential assessment. These services require prior knowledge
about the location of buildings. At the moment, the locations of buildings in the Nether-
lands is extracted from databases from the Netherlands’ cadastre, land registry and mapping
agency, known as Kadaster: The Basis Administratie Gebouwen (BAG) and Basisregistratie
Grootschalige Topografie (BGT) databases are maintained by Kadaster and together contain
information about all registered buildings in the Netherlands.

1.2 use cases

1.2.1 Use case - Readar

Manual mapping is accurate, but slow. For a commercial party such as Readar, this manual
labor comprises a significant part of the costs in the services it offers. It is also preferable to
be independent of external data sources for building locations. Currently, the BAG and BGT

are the main external data sources for building locations in the Netherlands. When looking
abroad, the data quality of the counterpart of the Dutch Kadaster is generally worse and
sometimes not openly available.

In the Netherlands, each municipality has the responsibility of keeping the BAG and BGT

databases up to date within their administrative border. This decentralized approach results
in varying data quality and an inconsistent appliance of rules and processes for updating the
databases. Therefore, one service of Readar is change detection or ‘bijkaarteren’ in Dutch. For
this service, Readar will report to their client all manually detected buildings on the aerial
imagery that are not listed in one of Kadasters databases and will report all buildings that
are intrinsically different to their listing. If Readar could automatically and reliably detect
buildings on aerial imagery, Readar:

• Would be less dependent on the data maintained by Kadaster,

• Would have a commercial advantage by reducing costs for the change detection service,

• Could expand operations internationally by generating their own competitive building
dataset.

1.2.2 Use case - 510 & Missing Maps

For the Missing Maps initiative which runs on volunteers, the advantages of having an auto-
mated building detection model would be twofold:

1. In the case of a (natural) disaster affecting a large, insufficiently mapped area, within
hours a quick assessment could be made on the location and number of people affected
for the initial disaster aid response.

2. Preselecting the inhabited parts of raw satellite imagery which should be mapped is
another task that is currently performed manually but could be potentially automated.

1.3 objective 3

If Missing Maps would have an automated building detection algorithm for satellite imagery,
it would be possible to:

• Provide a population density assessment of the affected area in case of a (natural) disas-
ter within hours,

• Automate the currently manual preselection of raw satellite imagery,

• Potentially reduce the workload of volunteers by automatically mapping first and let
the volunteers only correct mistakes made by the automated model.

1.3 objective

Even though the use cases for Readar and the Missing Maps initiative are significantly differ-
ent, their objective is the same. The Missing Maps initiative is mainly interested in building
detection in the developing world whereas Readar interests lie in the developed world. There-
fore, a robust model is required that is able to detect buildings worldwide. This sets the scope
of this internship:

Robust building detection on aerial imagery using Deep Learning

In practical terms, it is preferred that as few adjustments to the building detection model are
necessary for the model to perform at a satisfactory level on any location or aerial imagery.
In this internship, satellite imagery is included in the umbrella term of aerial imagery. The
main component of this internship will be to gain knowledge about the capabilities of Deep
Learning and Computer Vision on the subject of the detection of buildings on aerial imagery.
In order to provide this knowledge, Computer Vision models will be applied to data provided
by the 510 team of the NLRC and Readar. This provides a relevant in-house case study for
both organizations to give an indication to what extent Deep Learning can aid them in their
activities. The aim is that the knowledge provided by this internship will guide both organi-
sations in developing a well-fitting, realistic strategy for potential further implementation of
Computer Vision techniques in related activities.

Both Readar and the 510 team of the NLRC have been working with Machine Learning for
other projects, but no automated building detection model performed at satisfactory levels
at the time this internship commenced. In order to obtain the required insights about robust
building detection using Deep Learning, the practical objective of this internship is stated as
follows:

The development of a robust Deep Learning model capable of worldwide build-
ing detection on aerial imagery.

Since this is an explorative study, well-written documentation of any Deep Learning model
is more important than its performance. The internship can be considered a success when
both Readar and the 510 team of the NLRC have enough knowledge to make well-informed
decisions on the topic of Deep Learning and its applicability for their respective organizational
objectives.

4 introduction

1.4 research questions

The robustness of a Deep Learning model will be explored with respect to three characteris-
tics of the input data: Geographical location, building geometry and image resolution. This leads
to the following three research questions:

1. What is the robustness of a Deep Learning model with respect to the geographical
location of the input data?

2. What is the robustness of a Deep Learning model with respect to the resolution of aerial
imagery?

3. What is the robustness of a Deep Learning model with respect to building geometry?

The generic term “a Deep Learning model” is used on purpose at this point because a wide
range of Deep Learning models available. In order to limit the scope of this report, a model
selection will be conducted. Section 1.5 contains an exploration on suitable computer vision
task types and the corresponding model types. The current state of the art architecture for
each task type is investigated in the second chapter. Promising architectures are selected for
implementation at the end of chapter two, allowing us to refine the research questions in
Section 2.5.

1.4.1 Definitions

A few key phrases that are used widely throughout the report are clarified here.

Building: The smallest structural unit that is roofed and functions independently. Under this
definition a row of connected residences or terraced homes consists of multiple buildings in-
stead of one large building.

Robustness: A term measuring the impact on the performance of the model given a change
in one aspect of the input data. The larger the change in a certain aspect and the smaller the
impact on performance, the more robust a model is considered to be regarding that aspect.

Geographical location: The location of the area covered by the dataset. Location is an em-
bodiment of important visual features such as presence of potentially obstructing vegetation,
presence of objects visually similar to buildings, prevalent architectural styles used and over-
all image scenery in the given location.

Geographical robustness: The geographical robustness of a Deep Learning model is determined
by the difference in its performance on datasets with a different geographical location. A test
dataset geographically similar to the training dataset is used to obtain a baseline and this is
compared with performance on test datasets geographically different to the training dataset.

Image resolution: The ground surface distance covered per side of a pixel in the image.

1.5 problem analysis 5

Image resolution robustness: The image resolution robustness of a Deep Learning model is
determined by the difference in its performance on a dataset at various resolutions. A test
dataset using the same image resolution as the training dataset is used to obtain a baseline
and this is compared with performance on the same test dataset with an artificially altered
image resolution.

Building geometry: A selection of geometric characteristics of a building. In this internship the
shape, size and orientation of a building will be covered by the term “building geometry”.

Building geometry robustness: The image resolution robustness of a Deep Learning model is
determined by the difference in its performance on buildings with varying sizes, shapes and
orientations. The procedures of evaluating the robustness of a model to those three aspects
are explained further on in this report.

1.5 problem analysis

1.5.1 Information requirements

A thorough understanding is required of the type of information that should be extracted by
a building detection model. This information dictates the task to be solved and determines
the appropriate performance metric. For example, if the number of buildings in a given
image needs to be predicted, the model output could consist of a single integer and the per-
formance metric could simply be the absolute deviation from the correct number of buildings.

Given the aim of this internship, the main information requirement is the location of in-
dividual buildings. The method of embedding location information is equally important:
Many options are available, e.g. using the coordinate of the centroid of the building, using
a bounding box surrounding the building outline or using a random coordinate within the
building outline. The first two examples have a distinct preference over the last one. Us-
ing building centroids provides consistent location information, in contrast to using random
points within the building outlines. Bounding boxes contain information about the expected
size and aspect ratio of the building.

The secondary information requirements are the size and outline of individual buildings.
Note that a building outline contains the information about building size but that a building
size does not infer any usable information about the building outline. Tasks and performance
metrics are non-trivial if information about location and size are desired, as is the case in this
internship. Therefore, it is critical to have a clear understanding of the various task types
used in the field of computer vision. Most models perform one specific type of task, limiting
the options during model selection based on the task that need to be solved.

6 introduction

Figure 1.1: Object recognition task types. Source: [30]

1.5.2 Task types

First the distinction needs to be made between single-class and multi-class models. In multi-
class models, the model can predict one of several classes of objects, e.g. “cat”, “dog”, “bird”
and “other”. Single-class models counter-intuitively require two classes: The class of interest
and its opposite counterpart, e.g. “building” and “no building”. Single-class models are for
that reason also known as binary models. Note that from a technical point of view the multi-
class and single-class models are equivalent, with the only difference being that the number
of classes is two for single-class models and above two for multi-class models. For the task
of building detection, we are looking for a binary model. Figure 1.1 illustrates the main task
types for image recognition, which are explained in more detail below.

In image classification the entire image belongs to one class. Therefore, a prerequisite for
image classification is that each image contains only one class, so e.g. either “cat” or “dog”
but not both. There can be multiple objects of the given class in the image, e.g. multiple cats.
The model predicts for each class the probability of being shown.

In semantic segmentation, also known as image segmentation, a prediction is made for every
single pixel of the image. Similarly to image classification, the model output consists of the
class-wise probabilities for each pixel, resulting in a pixel mask for each class.

In object localization and object detection, a bounding box is generated around the outline of
the object of the class that is predicted. The differences between the object detection and the
localization tasks are minimal and poorly defined. The two terms are sometimes used inter-
changeably, but the term object localization often focuses on a single object from a single class
(find the cat) whereas object detection is generally used to describe multi-class localization
(find all cats ánd dogs). Since the scope of this internship is limited to one class (“building”)
but multiple objects, the object detection terminology will be used from here on.

In instance segmentation, the objective is to find the pixels belonging to each unique instance
of the detected classes. For every instance, the model predicts a separate pixel mask.

Side-note: One entity of a class can either be referred to as an “object” or an “instance”. For
disambiguation, the term “instance” is used when the uniqueness and identifiability to other
entities of the same class is relevant. The term “object” is used when the identifiability of an
entity is not required.

1.5 problem analysis 7

Task type Multi-class question Model output

Image classification Which class is shown? C probabilities
Image segmentation To which class belongs this pixel? C pixel masks
Object localization Where is the object roughly? 1 bounding box
Object detection Where are the objects roughly? N bounding boxes
Instance segmentation To which instance belongs this pixel (if any)? N pixel masks

Table 1.1: Generic task overview, with C the number of classes and N the number of detected objects
or instances in the image.

Task type Single-class question Model output

Image classification Are there any buildings? 1 probability
Image segmentation Does this pixel belong to a building? 1 pixel mask
Object localization Where is the building roughly? 1 bounding box
Object detection Where are the buildings roughly? N bounding boxes
Instance segmentation To which building belongs this pixel (if any)? N pixel masks

Table 1.2: Specific binary task overview, with N the number of detected buildings in the image.

Table 1.1 provides a generic image recognition task overview and Table 1.2 specifies this
overview for building detection. Since the objective is to find the rough locations (bounding
boxes) and outlines (pixel masks) of buildings on aerial imagery, the image classification task
does not provide the desired kind of information except for pre-selecting images based on
signs of inhabitation alluded to earlier on in Section 1.2.2. Instead, this report will focus on
object detection, image segmentation and instance segmentation.

1.5.3 Task selection

Each task has its own implications and consequences. For example, object detection and im-
age segmentation are vastly different in nature and therefore require differing approaches.
Object detection requires locating the entire object at once. To detect the entire object, some
global and high-level information about the contents of the image is required, while the more
fine-grained information such as the exact object outline is less relevant to score well on the
object detection task. In contrast, image segmentation predicts on pixel-level. This requires
having an increased focus on the precise location of borders between classes, implicating a
higher dependency on local information. With image segmentation there is no need for inte-
gral object detection, reducing the relative importance of understanding global characteristics
of the image. The instance segmentation task is the hardest task of the three. It combines the
challenges of the object detection and image segmentation tasks.

Given the aim of this internship, where localization is the primary objective, the object
detection, image segmentation and instance segmentation tasks are all considered to be
suitable tasks. The object detection task has the lowest information extraction demand and
is likely to be the most achievable task of the three. The instance segmentation task has the
highest information extraction demand and is likely to be the most ambitious of the three.

8 introduction

1.6 report structure

Chapter two contains a problem analysis in which the problem is clearly defined and a lit-
erature review on the application of Deep Learning models on image recognition in general
and on building detection from aerial imagery specifically. Chapter three contains a technical
overview of Convolutional Neural Networks and the ResNet, Mask R-CNN and U-net archi-
tectures. Chapter four provides more details on the available imagery and data sources. The
Mask R-CNN architecture is implemented and tested on robustness in Chapter five. Chapter
six contains an implementation of the U-net architecture and includes robustness experiments.
The main findings are summarized in the concluding chapter seven. Chapter eight translates
the main findings into practical implications and recommendations to Readar and the 510

team of the NLRC.

2 L I T E R AT U R E R E V I E W

In this chapter, a literature review is held on the Computer Vision area in general. This is
followed by an overview of the state of the art architectures for the object detection, image
segmentation and instance segmentation tasks. After a literature review is conducted on
the subject of building detection on aerial imagery using Computer Vision, the chapter is
concluded by selecting the most promising architectures for implementation.

2.1 computer vision in general

Figure 2.1 shows the progress being made by Computer Vision models on the yearly ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [54]. In the ImageNet challenge, models
have to predict for each image in the test set of 50,000 images which object class from the 1,000

possible object classes is shown. As this has been one of the most popular and prestigious
challenges in terms of image recognition, an overview of the development of the Computer
Vision field in is obtained by looking at the winners of the ImageNet classification challenge.

2.2 convolutional neural networks

All of the winners of the ImageNet ILSVRC challenge in the most recent years have used a
Convolutional Neural Network (CNN). A CNN is a Neural Network which uses convolutional
layers based on the mathematical convolution arithmetic operation instead of traditional fully-
connected layers in regular Neural Networks.

The first paper with the idea of convolutional layers was published in 1980 by Fukushima
[10]. The first proper implementation of a CNN by LeCun et al. in 1989 [37] is widely
regarded as the predecessor of contemporary CNNs. Interest in the CNN architecture de-
creased over time as it had a high computational cost. However, in 2010 Ciresan [4] showed
the advantages of running a CNN on a Graphics Processing Unit (GPU) instead of the stan-
dard Central Processing Unit (CPU) which made the model much more potent and interest
in CNNs was renewed. In 2012, AlexNet [36] won the ImageNet challenge, beating all com-
petitors and previous results by a wide margin as shown in Figure 2.1. AlexNet was trained
using multiple GPUs and had a lot more layers than previous CNN models. Because of the
large number of layers, AlexNet can be considered the first Deep Learning CNN network.
CNNs have been the dominant model type in all kinds of Computer Vision challenges since
2012. Winners of the 2013 and 2014 edition, ZFNet [66] and GoogLeNet [57] respectively,
made several efficiency improvements on the AlexNet architecture and added more layers
and used more computational resources.

9

10 literature review

Figure 2.1: Error rate of the winning submission of the yearly ImageNet Large Scale Visual Recogni-
tion challenge. Source: [34]

The winner of the 2015 edition, Kaiming He, developed a novel model architecture and
named it a Residual Neural Network or simply ResNet [21]. The ResNet model was the first
model to defeat the human performance benchmark. Winners of the 2016 and 2017 challenges,
the ResNeXt [60] and SE-ResNeXt [23] models adapted the successful ResNet architecture for
even higher performance at the cost of increased model complexity and therefore higher com-
putational costs.

Although the performance of the original ResNet architecture has been surpassed many
times since 2015, these results have been predominantly achieved by adaptations of said
ResNet. Therefore, the ResNet architecture can still be considered the state-of-the-art base
architecture at the moment of writing this report. A technical overview of the ResNet archi-
tecture is given in Section 3.9.1. The last ImageNet ILSVRC was held in 2017. The reason
for discontinuation, stated the challenge organizers, is that nearly all participants in 2017

outperformed the human benchmark. 1

2.3 applications

Computer Vision models are being implemented for a wide range of applications. The com-
bination of well performing Computer Vision models and the availability of high-resolution
satellite imagery have allowed for new remote sensing applications. There is a broad range
of applications in terms of size and scope. Examples include large-scale monitoring of de-
forestation [51], poverty mapping [59] and natural disaster damage assessment [35] to tasks
requiring a higher level of detail such as building detection [68, 14, 3, 67, 50, 27, 63], road
mapping [49] and solar panel detection [65].

1 https://www.newscientist.com/article/2127131-new-computer-vision-challenge-wants-to-teach-robots-to-see-in-

3d/

https://www.newscientist.com/article/2127131-new-computer-vision-challenge-wants-to-teach-robots-to-see-in-3d/
https://www.newscientist.com/article/2127131-new-computer-vision-challenge-wants-to-teach-robots-to-see-in-3d/

2.4 computer vision for building detection on aerial imagery 11

2.4 computer vision for building detection on aerial im-
agery

Building detection on aerial imagery is a extensively researched topic within the Computer
Vision area. With numerous Machine Learning challenges dedicated to this topic, interest
has been relatively high. There have been three yearly editions of the SpaceNet challenge [56]
and a fourth has been announced in October 2018. INRIA has been hosting a continuous chal-
lenge on building detection since 2017 [46]. Online Machine Learning platform Kaggle has
hosted many image recognition challenges, among which the Dstl Satellite Imagery Feature
Detection challenge in spring 2017. In this challenge satellite imagery had to be segmented
into ten possible classes, one of which was buildings [8]. Facebook has hosted the DeepGlobe
challenge, on the subjects of road extraction, building detection and land classification on
satellite imagery in spring 2018 [9]. Online Machine Learning platform CrowdAI has hosted
a challenge over the summer of 2018 on building detection, the Mapping Challenge [25].

These challenges, often offering a financial reward for the top performing participants,
attracted many participants. Analyzing the models or model descriptions published post-
challenge by the top performing participants provides insight into the state of the art building
detection models. For the building detection challenge of the DeepGlobe contest, the three
highest scoring participants [68, 14, 27] used three different model architectures. Ohleyer [50]
applied several different models on the data of the INRIA challenge for a direct comparison.
Besides the public data challenges, there are other sources which contribute to the exploration
of the topic of building detection on satellite imagery. Interest from both commercial and sci-
entific institutions leads to an increasing volume of publications on this topic [3, 67, 63, 64].

Looking at the types of models that are used for these building detection challenges and
related image recognition challenges, a trend can be distilled in terms of network architecture.
Over the past few years, most models used by top classifying participants fall into the cate-
gory of Fully Convolutional Network (FCN) [44], which excel in the image segmentation task.
The most popular architecture within the category of Fully Convolutional Networks is the
U-net [53]. The U-net was introduced in 2015 but still is used by winning solutions for recent
image recognition challenges [26, 17, 55]. Adaptations from the U-net architecture have been
created, often integrating the residual skip connections introduced by the ResNet model into
the U-net. One example is the Linknet model [2] which yields comparable results with the
U-net model but requires less computational resources [14]. Since the Linknet model is an
adaptation from the U-net architecture, the U-net model can still be considered the state of
the art model for image segmentation.

The Mask Region-based Convolutional Neural Network (Mask R-CNN) model [19] was intro-
duced in December 2016 and performs the object detection and instance segmentation task
simultaneously. It does not fit into the Fully Convolutional Network model category, but
is part of the family of (two-stage) region-based convolutional networks. The Mask R-CNN
model has proven to be competitive with the U-net model and other Fully Convolutional
Neural networks in challenges held in 2017 and 2018 [55, 61]. In terms of performance on
the object detection task, the Mask R-CNN model competes with a family of models called
Single Shot Detectors (SSD) including models such as RetinaNet [40] and the third generation
of the YOLO single shot detector [52]. For the instance segmentation task however, the Mask
R-CNN model currently is the undisputed state of the art model.

12 literature review

2.5 model selection and research question refinement

The U-net and Mask R-CNN architectures have been identified as top performing models for
the three relevant image recognition task types for this internship. Both models are imple-
mented and compared to each other in Chapter 7. The technical aspects of these two models
are looked at in the next chapter. The selection of the two architectures allows us to transform
the three broadly defined research questions from Section 1.4 into two sets of specific research
questions:

1. What is the robustness of a Mask R-CNN model with respect to the geographical loca-
tion of the input data?

2. What is the robustness of a Mask R-CNN model with respect to the resolution of aerial
imagery?

3. What is the robustness of a Mask R-CNN model with respect to building geometry?

4. What is the robustness of a U-net model with respect to the geographical location of the
input data?

5. What is the robustness of a U-net model with respect to the resolution of aerial imagery?

6. What is the robustness of a U-net model with respect to building geometry?

The experiments to provide answers to these research questions are described in Chapters 5

and 6.

3 M A C H I N E L E A R N I N G

3.1 chapter overview

Section 3.2 of this chapter provides an overview of the main technical aspects of Artificial
Neural Networks. The sub-class of Artificial Neural Networks used for image recognition
tasks, known as Convolutional Neural Networks (CNNs) is covered in Section 3.3. From Sec-
tion 3.4, the relevant aspects of a Neural Network from a functional perspective are covered:
The process of fitting a Neural Network to a dataset in practice is explained in Sections 3.4
to 3.8. The final section elaborates on the network architectures of three CNN models that
were identified as state-of-the-art in the literature review of chapter two. The design rationale
behind the architectures of the ResNet model, the U-net model and the Mask R-CNN model
is explained in Section 3.9.

3.2 artificial neural networks

Artificial Neural Networks are often simply called Neural Networks for brevity. The first
topics in this section look at Neural Networks from a structural point of view, explaining the
fundamental concepts.

3.2.1 Neural Network Structure

The hierarchical structure of a neural network is relatively comprehensible: A neural network
consists of multiple layers and each layer consists of one or more artificial neurons, as shown
in Figure 3.1. The artificial neuron, or simply neuron, is the elementary unit of a neural net-
work.

If each layer in a neural network receives its input from preceding layers only, and thus
the network does not contain any feedback loops, the network can be categorized as a feed-
forward neural network. In a traditional neural network architecture, each layer receives its
input from the directly preceding layer and sends the output to the directly succeeding layer
as is the case in Figure 3.1. This classic feedforward neural network architecture is sometimes
referred to as a Multilayer perceptron (MLP) for historic reasons, but this term is technically
incorrect. The original MLP network consisted of neurons known as perceptrons which apply
a linear, binary activation function, hence its name. Contemporary neural networks often use
non-linear, continuous activation functions instead [16].

The number of neurons of each layer and the total number of layers in the network are
important hyperparameters in the design of a neural network. Section 3.2.3 shows that the
number of neurons in the input layer is determined by the input data and the number of
neurons in the output layer is determined by the prediction type.

13

14 machine learning

Figure 3.1: A schematic overview of a Neural Network, where circles depict artificial neurons,
columns depict layers and arrows represent connections. Source: [7]

The number of hidden layers and the number of neurons in those layers are not restricted
and these hyperparameters have to be carefully set. The combination of these hyperparam-
eters determines the number of weights in the network which is a strong indicator for the
complexity of the model.

3.2.2 Artificial Neurons

The artificial neuron was first introduced in 1943 by Warren McCulloch and Walter Pitts
[47]. A schematic overview is illustrated in Figure 3.2. The neuron transforms the input by
taking a weighted sum over the input signal, followed by applying a non-linear activation
function. From a mathematical perspective: For any neuron, given m variable inputs with
values x1, ..., xm there are m corresponding weights w1, ..., wm indicating the influence of that
input on the output. Each input value is multiplied with its corresponding weight and to this
result an additional weight b is added which is known as the bias. The resulting value v is
used as input to the activation function ϕ, yielding:

y = ϕ(
m

∑
j=1

wjxj + b)

or equivalently, in vector notation where x is the column vector of input values and w the
row vector of weights:

y = ϕ(w · x + b)

3.2.3 Layers

The number of layers in a network is known as the depth of the network. A network normally
consists of an input layer, a number of hidden layers and an output layer. When each neuron
in a layer receives input from all neurons in the preceding layer, the layer is said to be fully
connected.

3.2 artificial neural networks 15

Figure 3.2: Schematic overview of a neuron. Source: [7]

Input layer
The first layer of a network is known as the input layer, all intermediate layers are called hid-
den layers and the final layer is called the output layer. The neurons in the input layer deviate
from the default behaviour as they directly send the data they receive unaltered towards the
next layer. For each neuron in the input layer, we simply note y = x.

Hidden layers
The intermediate layers are called hidden layers because their output is immediately propa-
gated to the next layer and not directly accessible or visible to the user of the network. In
most situations, the bulk of the connections in a network are found in the hidden layers. The
hidden layers have the objective to find meaningful patterns and interactions between the in-
put values required for making accurate predictions. Assume a fully connected hidden layer
l contains n neurons, we know that for the kth neuron in vector notation:

yk = ϕ(wk · x + bk)

For layer l, combining weight vectors w1, ...w,n yields weight matrix w(l) of size k by m where
element wkm is the weight belonging to the mth input of neuron k. Similarly, writing the bias
scalars b1, ..., bn as column vector b(l) and writing the output scalars y1, ..., yn as column vector
y(l), allows all computations in the entire layer to be expressed as:

y(l) = ϕ(w(l)x + b(l))

Remember that the output of layer l − 1 is the input of layer l. Assuming that each hidden
layer uses the same activation function ϕ, we can rewrite the previous equation to:

y(l) = ϕ(w(l)y(l−1) + b(l))

16 machine learning

Note that for brevity, the bias of a neuron can be included in its weight vector by introducing
a superficial constant input x0 = 1 and incorporating the bias as a new weight vector w0.
In the weight matrix w00 = b and all other elements of the newly introduced row w0j and
column wi0 are set to zero. This shortens the notation of neuron k to yk = ϕ(wk · x), and the
notation of layer l to:

y(l) = ϕ(w(l)y(l−1))

which will be used from here on.

Output layer
The predictions of a neural network are generated in the output layer. As a consequence, the
desired number of predictions determines the number of neurons in this layer. For example,
in the case of the image classification task with c classes, there must be exactly c neurons in
the output layer as each neuron will represent a class. The desired format of the predictions
influences the activation function in the output layer.

3.2.4 Activation functions

A neural network that exclusively applies linear activation functions is only capable of learn-
ing linear combinations of the input values. Consider a Neural Network that uses the identity
function (x) = x as activation function, which is equivalent with not using any activation func-
tion. Each layer performs y(l) = ϕ(w(l)y(l−1)) = w(l)y(l−1) and a neural network of n layers
can be described by:

y = w(n)w(n−1), ..., w(1)x

or

y = (
n

∏
l=1

w(l))x

If we combine this with linear algebra theory that any valid multiplication of two matrices
yields a matrix, all weight matrices could be multiplied with each other in the correct order
and the result would be a single weight matrix. The entire network could thus be expressed
a y = wx where w is a weight matrix of size k by m. This is equivalent to a neural network
without hidden layers, capable of performing nothing more than a single linear transforma-
tion on the input. Obviously, this model can only create a simplistic representation of the
interactions between the input and therefore its predictive power will be poor for non-linear
prediction tasks.

If we extend the thought experiment to a model where the activation function of each layer
is any linear function, the model can be expressed as a sequence of matrix multiplications
and activation functions. A network with three layers excluding the input layer could be
expressed as:

y = ϕ(w(3) ϕ(w(2) ϕ(w(1)x)))

3.2 artificial neural networks 17

Figure 3.3: The sigmoid function with x on the x-axis and f(x) on the y-axis. Source: [58]

This is a sequence of linear transformations. Any linear transformation can be written as
a matrix multiplication, as is proven in Chapter 2.2 of Goodfellow et al. [15]. Rewriting the
activation functions as matrix multiplications will again yield a sequence of matrix multipli-
cations and analogous to the previous experiment we end up with a neural network that can
be simplified to a single linear transformation.

To allow the network to represent non-linear interactions between the input values, the
model needs to be able to perform non-linear transformations. The activation function is
included as an essential ingredient to the network architecture to provide this non-linearity.
Many different activation functions exist. The activation of the output layer depends on the
task to be performed. In the case of a binary classification task, the output layer of the neural
net commonly uses the logistic sigmoid activation function. The logistic sigmoid function, or
simply sigmoid function, is defined as:

f (x) =
1

1 + e−x

One of the appealing properties of the sigmoid is that it squeezes any real, continuous
value to the (0, 1) domain as shown in Figure 3.3. By scaling the output between 0 and 1, the
sigmoid activation function allows us to interpret the output of the layer as probabilities.

Historically, the sigmoid function was also used as activation function for the hidden lay-
ers. The sigmoid activation lost popularity as activation function for the hidden layers once
networks became deeper. Undesirable properties of the sigmoid activation function cause
difficulties with training a deep network, which is known as the vanishing gradient problem
[13]. The hyperbolic tangent function f (x) = tanh(x) also is a popular activation function
but holds the same undesirable properties for deep networks [13]. Nowadays, the most com-
monly used activation function is the Rectified Linear Unit (ReLU) [16]. The ReLU function is
defined as:

f (x) = max(x)

18 machine learning

Figure 3.4: The ReLU activation function. Source: [42]

It is popular for its simplicity as it just sets all negative values to zero as shown in Figure 3.4.
This allows for effectively training a deep neural network with ReLU activations as it does
not suffer as badly from the vanishing gradient problem as networks using the sigmoid and
hyperbolic tangent [13]. Other increasingly popular activation functions include the PReLU
(Parametric ReLU) [20], ELU (Exponential Linear Unit) [5] and the LeakyReLU [45].

3.2.5 Model evaluation

The combination of the network architecture and its weights forms a model. In order to mea-
sure the quality of the predictions of a model, evaluation functions are required. Evaluation
comes from two perspectives: The first viewpoint is based on the available data, model and
objective function; the second viewpoint is based on the intended use case. The loss function
is a measurement for the first perspective, and performance metrics are measurements for the
second viewpoint.

The loss function is designed to describe the difference between the predictions and desired
output; the lower the loss value, the better the model performs. A general form of the loss
function L is L(y, ŷ) = |y − ŷ|, where y is the correct output belonging to a sample known
as the ground truth and y is the prediction of the model. During training, the model is op-
timized by updating the weights of the model to minimize the loss function. It is important
to note that the loss function does not only evaluate the quality of the predictions, but also
dictates how the model should be changed to improve during the training process. A proper
loss function should meet several criteria: It should properly describe the residual between
the prediction and desired output, must be differentiable and should be evaluated in a com-
putationally efficient way. These requirements are a direct result of the way a neural network
is trained, which is described in Section 3.4.2. Because of these requirements, the loss func-
tion is often a proxy of the desired performance objective. However, this is no problem as the
desired performance objective can be described by performance metrics.

In Machine Learning, a performance metric is a more direct measurement of the predictive
qualities of the model with regards to its intended use case. A performance metric is only
used to quantify the quality of the predictions, without influencing the training process in
any way. As an example, for this internship the percentage of correctly detected buildings is
an insightful metric. Image segmentation techniques provide pixel-wise instead of building-
wise output. It is possible to aggregate pixel-wise output into building-wise statistics but this
requires discrete, non-continuous functions which are non-differentiable.

3.3 convolutional neural networks 19

This indicates that the loss function should likely be a pixel-wise evaluation function.
Building-wise statistics such as the number of correctly detected buildings cannot be ex-
pressed in a continuous, differentiable function and are therefore ineligible to be used as
a loss function. However, these statistics can be evaluated as a performance metric.

3.3 convolutional neural networks

Traditional Neural networks such as the MLP are extremely inefficient in image recognition
tasks as there is no predefined spatial context within or between fully connected layers. It is
theoretically possible for MLPs to perform this image recognition tasks, but due to aforemen-
tioned efficiency issues they are not used in practice. The convolutional layer was designed
specifically to tackle image recognition tasks, utilizing the spatial relation between a pixel
and its surrounding neighbours. In contrast to a fully connected layer, a convolutional layer
has an inductive bias that the ordering of the inputs in a spatial layout contains meaningful
relations. A network where the hidden layers consist of only convolutional and pooling layers
(explained in Section 3.3.2) is known as a convolutional neural network or CNN. If the output
layer is also a convolutional or pooling layer, the network is known as a fully convolutional
network, or FCN.

3.3.1 Convolutional Layer

Assume that the dimensions of the input for a convolutional layers are Hin x Win x Cin, where
Hin, Win and Cin denote the height, width and number of channels of the input. Images
generally consist of three channels: Each channel contains the intensity values for either red,
green or blue, also known as the Red Green Blue (RGB) colour values.

A convolutional layer consists of a number of filters. A filter, sometimes also referred to as a
kernel, is a set of spatially ordered weights. Each filter contains H f ilter x W f ilter x Cin weights
representing height, width and channel depth respectively. Any odd filter size is applicable
in CNNs for the height and width dimensions but the channel dimension always equals the
number of input channels. Odd filters sizes are used for the height and width because they
are symmetric around the center pixel, known as source pixel. Even filter sizes also yield
valid results, but it would lead to asymmetrical results. The 3 x 3 x Cin configuration for the
filter dimensions is commonly used and is abbreviated to a 3 x 3 conv. A filter of size 3 x 3
has a receptive field size of 3 on the input for that layer. Each filter slides over the input as a
sliding window. At every position, the convolution is calculated between the receptive field
and the filter. The output of a convolution is called a feature, and all features from a filter
combined are called a feature map as shown in Figure 3.5. Given that each filter applied to the
input of the layer yields one feature map, the output dimensions for the entire convolutional
layer are Hout x Wout x Cout where Cout equals the number of filters in the layer. The values of
Hout and Wout depend on the way the filter slides over the input. This is influenced by two
parameters: the stride S and padding P of the convolutional layer.

The stride S determines the “step-size” of the sliding window of the filter. The default
value is S = 1, where the filter is shifted by one pixel every time it is moved to its new
position. If S = 2, the window is moved by two pixels in the same direction, reducing the
size of the feature map compared to S = 1.

20 machine learning

Figure 3.5: Top left: Example input of 5 x 5 x 1, and a filter of 3 x 3 x 1. Top right: The filter applied to
the first position and the convolved feature. Bottom left: The filter applied to the second
position and the first two convolved features. Bottom right: The complete resulting feature
map. Source: [6]

The example in Figure 3.5 uses S = 1, yielding a 3 x 3 feature map. If it used S = 2 the
resulting feature map would be 2 x 2 in size. Without padding, thus P = 0, for any 3 x 3 or
larger convolutional layer Hin > Hout and Win > Wout respectively. Sometimes, it is desirable
to retain the image dimensions, or Hin = Hout and Win = Wout. This can be achieved by
artificially adding pixels around the borders of the input, which is known as padding as
illustrated in Figure 3.6. The most common form of padding is zero-padding where the
added pixels have a value of zero for all channels but other options are to repeat the values
of the pixel at the border or to mirror pixels near the border. Combining all this, the feature
map size of a convolutional layer can be calculated by the following formulae:

Hout =
Hin − H f ilter + 2P

S
+ 1

Wout =
Win − W f ilter + 2P

S
+ 1

By reusing the same filter (set of weights) on multiple positions of the input, the number of
learnable weights in the network stays relatively low, a concept known as parameter sharing.
One convolutional layer generally consists of multiple filters allowing it to recognize multiple
different patterns. For example, the illustration of Figure 3.7 contains ten filters.

A filter does not use any information from the input image outside the current input window,
or in other words, a filter is location agnostic. Reusing a location agnostic filter in a slid-
ing window approach has the beneficial consequence that the filter provides the exact same
output to any specific input window regardless of the window’s location in the input image.

3.3 convolutional neural networks 21

Figure 3.6: A 3 x 3 filter with S = 1, P = 1. Source: [6]

Figure 3.7: An example highlighting one of ten 5 x 5 filters of a convolutional layer applied to a
32 x 32 x 3 input with same-padding. Source: [6]

This property combined with the spatial information contained in the resulting feature map
makes a convolutional layer spatially equivariant: A function is spatially equivariant when a
spatial translation of the input yields an equivalent translation in the output. For example,
if a building is shifted a bit to the right in an input image, the prediction for that building
would be unaltered itself but its location proportionally shifted to the right in the output map.

3.3.2 Pooling Layer

The feature representations of the input data tend to become more complex as the signal
progresses through the layers allowing for a more diverse set of features. To effectively uti-
lize this effect, the number of features per layer can be progressively increased in the deeper
layers. This comes at an increased computational cost, which can be compensated for by
progressively reducing the number of pixels per layer. The functionality of a pooling layer
is to reduce the spatial dimensionality of its input, also known as downsampling. The main
motivation for reducing the dimensionality is to reduce memory footprint and computational
costs for any subsequent layers.

22 machine learning

Figure 3.8: Pooling reduces the dimensionality of the input volume. In this case, by a factor of 4.
Source: [31]

Figure 3.9: An example of max pooling. Source: [31]

There are several different types of pooling layer, of which max pooling and average pool-
ing are the most common. Similarly to convolutional layers, they consist of a filter which
slides over the input and use the stride S and padding P parameters. The max pooling layer
returns the maximum of all values in the input window. The average pooling layer returns
the average of all values in the input window. Pooling layers do not have a source pixel and
therefore there is no benefit of using odd filter sizes over even filter sizes. The most common
form of pooling is a 2 x 2 x 1 filter applied with stride S = 2 and padding P = 0, reducing
both the width and height by a factor of two whilst maintaining the same number of features,
as shown in Figure 3.8.

By introducing max pooling layers to the network architecture, a bit of translation invari-
ance is being introduced to the model. Translation invariance is when any translation of the
input of a function is not translated to its output. For example, when a building is moved
a bit to the right in an input image, an object detection model that is translation equivariant
would shift the prediction for the building proportionally to the right. In the same situation,
a translation invariant model merely predicting the presence of buildings would provide the
same, unaltered output.

3.4 model training 23

3.4 model training

There are multiple methods to train a model. The most widely used method, backpropagation
in the form of stochastic gradient descent, will be explained in the sections below.

3.4.1 Initialization

The weights of an untrained neural network are generally initialized randomly as no informa-
tion about the data is known to the model yet at this point. However, the network structure
is known at this point. So although the initialization of the weights is performed randomly,
there are ways to intelligently initialize the weights based on the architecture of the model.
In order to tackle the vanishing gradient problem, an initialization distribution was proposed
by Xavier Glorot and Yoshua Bengio [12], known as Xavier or Glorot initialization:

w(j) ∼ Uni f orm[−
√

6√
nj−1 + nj

,

√
6√

nj−1 + nj
]

where nj represents the number of neurons in layer j. For deep networks using the ReLU ac-
tivation function in the hidden layers, He [20] showed that the following initialization scheme
is more effective:

w(j) ∼ Gaussian(mean = 0, st.dev. =

√
2

nj−1
)

3.4.2 Gradient Descent

There are multiple ways to train a model, from which the gradient descent is currently the
most common optimization method for neural networks and will therefore be used in this
report. Most of this section and the notation used is based on Goodfellow et al. [15]. In
gradient descent, a model is trained by repeatedly performing two steps iteratively: forward
propagation and backward propagation.

In forward propagation, input samples, denoted as x, are fed to the neural network and
their signal is propagated through each layer of the network. Denote the values of all trainable
parameters of the network as θ. Denote the model itself as a function f (x, θ). The outcome
of f (x, θ), say ŷ, is compared with the desired output y to calculate the loss provided by the
loss function L following the general formula:

L(y, ŷ) = |y− ŷ|

substituting the model function f (x, θ) results in:

L(y, f (x, θ)) = |y− f (x, θ)|

Note that x and y are fixed values describing the data so optimization of L is performed by
changing in the backward propagation step. The objective of gradient descent is to find such
that the average expected value of L is minimized over all samples in the dataset. Ideally, the
objective would be to minimize the function L over the true underlying data distribution of
the data. Since this data distribution often is unknown, the empirical distribution described
by all data samples is used to optimize on instead.

24 machine learning

Denote the expected loss value of L for samples coming from the empirical distribution of
the dataset as J(θ). The aim of the gradient descent algorithm is to find the lowest possible
value for J(θ). In an ideal scenario gradient descent would find the global minimum of J(θ)

of zero, but the algorithm cannot provide any guarantees on convergence to the global min-
imum. This is because most loss functions L are non-convex; i.e. the second derivative of
L is not equal or greater than zero in the entire domain. Non-convex functions can contain
multiple local minima and saddle points, which are points where the first derivative of L is
zero.

The idea behind backward propagation, or backpropagation, is to determine the gradient
of L with respect to θ. This gradient describes an approximation of the change in L given a
change in the weights. Once this gradient is known, the weights can be updated in such a
way that L decreases. The gradient of L with respect to θ is denoted as:

∇θ L =
δL
δθ

Calculating this partial derivative of the loss function with respect to every single weight in
the neural network can be very computationally demanding. In practice, it is performed in an
efficient way by applying the chain rule on the Jacobian matrix of each layer of the network.
The chain rule states, that for z = f (y) and y = g(x):

δz
δx

=
δz
δy
· δy

δx

where δy
δx is the Jacobian of g(x) and δz

δy is the Jacobian of y(x). The same principle holds
for calculating the gradients of a neural network. When the gradient of layer j is known, the
gradient for layer j− 1 can be calculated using the chain rule. The gradient of the weights
w(j) for hidden layer j can then be calculated recursively as follows:

δL
δw(j)

=
δL

δy(j)
· δy(j)

δx(j)
· δx(j)

δw(j)

This can be expanded by expressing δL
δy(j) as a function of δL

δy(j+1) :

δL
δw(j)

= (
δL

δy(j+1)
· δy(j+1)

δx(j+1)
· δx(j+1)

δy(j)
) · δy(j)

δx(j)
· δx(j)

δw(j)

By expanding δL
δy(j+1) in the same way we obtain:

δL
δw(j)

= ((
δL

δy(j+2)
· δy(j+2)

δx(j+2)
· δy(j+2)

δx(j+1)
) · δy(j+1)

δx(j+1)
· δx(j+1)

δy(j)
) · δy(j)

δx(j)
· δx(j)

δw(j)

Repeating this step allows us to express the gradient of the weights of any hidden layer as a
function of δL

δŷ and the Jacobian matrices of any intermediate layers. Gradients following the

form of δx(j+1)

δy(j) are trivial to calculate as the output of layer j is the input of layer j + 1. From

y(j) = x(j+1) it follows that δx(j+1)

δy(j) = 1 which allows us to discard terms following this pattern.

3.4 model training 25

This way, we can express the gradients of L with respect to the weights of layer j as:

δL
δw(l)

=
δL
δŷ
· (δy(l)

δx(l)
· δy(l−1)

δx(l−1)
· . . . · δy(j+1)

δx(j+1)
· δy(j)

δx(j)
) · δx(j)

δw(j)

For the output layer of a neural network, the gradient is simply the gradient of the loss func-
tion with respect to ŷ: δL

δw(l) . This explains the requirement for a differentiable loss function if
a training algorithm based on gradient descent is used. By temporarily storing the Jacobian
matrix for each layer once calculated, each Jacobian has to be only determined once per itera-
tion of the gradient descent algorithm which is computationally efficient.

The aim is to minimize L thus the weights of the network are updated by moving in the
reverse direction of the gradient. The second step of the backpropagation phase is to perform
the following update:

θ ← θ − η∇θ L(θ)

In this update rule, η is a hyperparameter known as the learning rate, deciding the “step
size” of the update. A single subsequent application of the feedforward propagation and
backward propagation is defined as an iteration. The process of feedforward propagation and
backpropagation is applied iteratively until a stopping criterion is met. Stopping criteria can
for example be based on reaching a low enough threshold value of J, lacking improvements
of J over multiple iterations or reaching a predefined maximum number of iterations.

3.4.3 Stochastic gradient descent

As we noticed earlier, L is a function depending on x, y and θ. The calculated gradient ∇θ L(θ)

is based on the data samples (x, y) used to calculate L. Calculating the gradient of the loss
function based on only one single sample per iteration results in inaccurate approximations of
the gradient of the entire underlying data distribution. This yields suboptimal performance
and large differences between the gradients of different iterations causing unstable conver-
gence behaviour. On the other hand, it is computationally expensive to calculate the average
∇θ L(θ) for all samples in the dataset at each iteration of the gradient descent algorithm when
the dataset is large. Instead, the gradient is approximated by using a subset of samples from
the training dataset. This is known as Stochastic Gradient Descent (SGD). In stochastic gra-
dient descent, the entire dataset is split in subsets of a predefined size. Each subset of data
samples used to calculate the gradient for one iteration is referred to as a batch and the pre-
defined batch size is a hyperparameter of the model. One epoch is defined as SGD looping
through all unique batches in the dataset exactly once.

3.4.4 Momentum

One improvement to the SGD algorithm is the addition of momentum. The idea of momentum
is to include an exponentially decaying moving average of previous gradients into the update
of the weights. This stabilizes the updates and allows the SGD algorithm to escape local
minima more easily.

26 machine learning

Figure 3.10: Difference between classic momentum and Nesterov momentum. Source: [32]

Let γ be a hyperparameter in the range of [0, 1] denoting the relative weight of the previous
updates. If the update in iteration t is called vt, the new update rule including momentum is
given by:

vt ← γvt−1 − η∇θ L(θ)

θ ← θ + vt

Nesterov momentum
Recently, Nesterov momentum has been gaining in popularity. The intuition behind the Nes-
terov momentum is relatively straightforward: Momentum will update the current position
from θ to θ + γvt−1 so it makes more sense to calculate the gradient of L with respect to the
current batch at that position instead of the current position. As visualized in Figure 3.10, the
gradient is not calculated using the current position L(θ), but at the position L(θ + γvt−1),
yielding the new update rule:

vt ← γvt−1 − η∇θ L(θ + γvt−1)

θ ← θ + vt

3.5 datasets

A traditional Machine Learning experiment requires a dataset to be split in three subsets: a
training set for training the model, a validation set for evaluating performance during train-
ing and optimizing hyperparameters between training sessions on unseen data, and a test set
to evaluate the best performing version of the model on new unseen data which the model
has not been indirectly or implicitly optimized for.

For a model to be able to detect models worldwide, it requires the model to have a generic
representation of buildings. Buildings come in all sizes and shapes, and have different ar-
chitectural styles in different parts of the world. From a Machine Learning perspective, this
means that the “building” class has many possible representations. In other words, the data
domain is large. For a model to correctly predict all buildings, a generic representation of the
“building” class is required.

There are two ways to achieve this: The first, ideal approach is to provide training sam-
ples from the “building” class representing the entire domain. This requires that all types of

3.6 loss functions 27

buildings must be included in the training set. This is theoretically possible, but in practice it
is impossible to create such a dataset. It would be extremely difficult to conclusively define
all types of buildings in every relevant respect, and it would be extremely hard to create a
database containing multiple samples for every entry of this inclusive list of building types.
The second option is to use a subset of the domain as training set, and prevent the model from
learning the specific characteristics of the subset. The second option is explored in this report.

For traditional Machine Learning models, the objective is to obtain the best possible fit on
the underlying distribution of the training set. In this case however, the objective is to obtain
the best possible fit on a wider data distribution. The assumption is made that a perfect fit
on the distribution of the training data, which is a subset of the wider distribution, is too
specific and therefore a sub-optimal fit for this objective. A method to measure the fit of
the model on the wider distribution during the training process is proposed in Section 3.5.1.
These measurements provide insights on the generalizability on the wider distribution of all
model checkpoints. This allows for an informed decision on selecting a model with the best
fit to the generic “building” class.

3.5.1 Transfer validation sets

A standard Machine Learning experiment requires three datasets: A train set for training the
model, a validation set for evaluating performance during training on unseen data and a test
set to evaluate the best performing version of the model on new unseen data which the model
has not been indirectly or implicitly optimized for. For the following experiment, the transfer
validation set is introduced as a new type of dataset.

The purpose of an transfer validation set is to evaluate performance on another data dis-
tribution during training at the end of each epoch, similar to the standard validation set.
Design decisions such as hyperparameter selection and decisions made during the training
procedure such as early stopping are still made based on the performance on the standard
validation set. The purpose of introducing these transfer validation sets is to measure the
generalizability of the model on instances of another distribution during training. A test set
only provides information about the generalizability after training has finished, and often
only for the checkpoint where the fit on the standard validation set is optimal. In contrast, a
transfer validation set provides this generalizability information during the training process.
The transfer validation set allows to select the most appropriate model checkpoint in terms of
generalizability to another data distribution. Following the argumentation for the necessity
of a test set because of implicit optimization on the standard validation set, each transfer
validation set also requires a test set from the same data distribution.

3.6 loss functions

The importance of using the right loss function has been briefly highlighted in Section 3.2.5.
A few popular loss functions for segmentation tasks are described in this section. These
loss functions are defined for a single prediction. In image segmentation tasks, each pixel
in the input image equals one prediction. Since one image is considered to be one sample,
the average loss of all pixels in an image is reported as the sample-wise loss for brevity in
segmentation tasks.

28 machine learning

3.6.1 Cross-entropy loss

Cross-entropy loss is a popular loss function. Given that there are C classes to distinguish
from each other, with ground truth label y and prediction ŷ the cross-entropy loss function
CE can be defined as:

CE = −
C

∑
c=1

yc log(ŷc)

Recall that for detecting buildings, we are interested in one type of object and thus the prob-
lem space contains two classes: “building” and “no building”. In the specific case of two
classes to predict, the cross-entropy loss function is also known as Binary Cross Entropy (BCE).
For binary ground truth value y and continuous prediction value ŷ the BCE is defined as:

BCE = −y log(ŷ) + (1− y) log(1− ŷ)

Note that the BCE is only a valid loss for values y in range (0, 1]. When using the BCE loss
function, it is therefore common to use the sigmoid activation function in the output layer of
the neural network to map the network output to the desired (0, 1) range.

3.6.2 Jaccard loss

Given two sets A and B the Jaccard index, which is also known as the Intersection over
Union (IoU) is defined as:

Jaccard index =
Intersection

Union
=
|A ⋂

B|
|A ⋃

B|
For binary ground truth vector y and binary prediction vector ŷ the Jaccard index is defined
as:

Jaccard index =
∑ yiŷi

∑ yi + ∑ ŷi + ∑ yiŷi + ε

Here ε is a small value ensuring that the function is well-defined around zero when there are
no positives in the ground truth vector or binary prediction vector. The Jaccard index is a
performance metric. The corresponding Jaccard loss function is defined as:

Jaccard loss = 1 − Jaccard index

This definition cannot be directly used as a loss function for a neural network however as ŷ
must be differentiable and therefore cannot be binary. If the softmax activation function is
used in the output layer of the neural network, we know that ŷ is differentiable and will be in
the range of (0, 1). The Jaccard index can be approximated using the continuous probability
vector ŷ instead of a binarized ŷ. An advantage of this approximation over binarizing the
continuous output based on a classification threshold is that the certainty of the prediction
influences the outcome of the approximated Jaccard index. An advantage of the Jaccard loss
function over the binary cross-entropy loss is that the Jaccard loss function is insensitive to
class imbalance whereas the cross-entropy loss is sensitive to class imbalance issues [40].

3.7 performance metrics 29

3.6.3 Dice loss

The Dice coefficient is formally known as Sørensen-Dice or Dice similarity coefficient. The
Dice coefficient is defined as:

Dice index = 2 · ∑ yiŷi

∑ yi + ∑ ŷi + ε

Similarly to the Jaccard index, the Dice index can be approximated by using the output of the
softmax activation function as continuous probability vector ŷ instead of a binarized version
of ŷ. The Dice index is a performance metric. The corresponding Dice loss function is defined
as:

Dice loss = 1 − Dice index

The relation between the Jaccard index and the Dice index can be expressed in the following
way:

Jaccard index =
Dice index

2 − Dice Index

3.6.4 L2 loss

The L2 loss function is used as a means of regularization and is used as a secondary loss
function in conjunction with another loss function. The L2 loss function simply sums the
squared weights of the network, as shown in its definition:

L2(W) = λ ∑
w∈W

w2

with W the weight matrix of the neural network and λ a hyperparameter. In a neural network
minimizing loss function Lloss(y, ŷ), adding the L2 loss yields a new composite loss function
Ltotal to be optimized instead:

Ltotal = Lloss(y, ŷ) + LL2(W)

The L2 loss penalizes large weights, discouraging the optimization method to let weights to
grow explosively large. The largest weights have the largest relative contributions to the L2

loss, because their relative magnitude is even further augmented by the quadratic penalty
function. As stated in Section 3.2.2 the weights resemble the relative importance of that
weight in the network. By discouraging the use of relatively large weights, the L2 loss tries to
prevent that only a few weights have a dominant influence on the predictions of the neural
network, rendering all other weights practically irrelevant.

3.7 performance metrics

Similarly to the loss function, performance metrics are indicators of the model performance
to be evaluated during training and testing the model. Performance metrics are often intro-
duced because the loss function is limited in its ability to report the relevant performance
measurements.

30 machine learning

Ground truth: building Ground truth: no building

Prediction: building True positive (TP) False positive (FP)
Prediction: no building False negative (FN) True negative (TN)

Table 3.1: A confusion matrix classifying predictions given a binary task

3.7.1 Precision and recall

Predictions of a model performing the classification task should be accurate in two distinct
ways. In binary classification there are positives (e.g. “building”) and negatives (e.g. “no
building”). The binarized predictions can be categorized in a so-called confusion matrix as
shown in Table Table 3.1. When predictions are real valued instead of binary, a classification
threshold can be applied on these values to obtain binarized predictions. To measure the
quality of the predictions of a model, the precision performance metric is often used, which is
defined as:

Precision =
True positives

True positives + False positives
The precision measures which part of the predicted buildings are in fact a building. A model
that only predicts buildings when it has a high confidence that its predictions are correct, will
yield a high precision score. To measure the sensitivity, the recall performance metric is also
often used, which is defined as:

Recall =
True positives

True positives + False negatives
Recall measures which part of all buildings are correctly detected as being a building. Models
generating many positive predictions will miss relatively few buildings yielding a high recall
score.

3.7.2 F1 score

The F1 score is a metric which balances the precision and recall performance metrics. The F1

score is the harmonic mean of the precision and recall and is defined as:

F1 = 2 · precision · recall
precision + recall

A model optimized for the F1 score will seek a balance between precision and recall.

3.7.3 Intersection over Union and Dice index

The IoU is also known as the Jaccard index as mentioned in Section 3.6.2. Similarly, the Dice
index as described in Section 3.6.3 can also be used as a performance metric.

3.8 training optimization

There are many techniques which can aid the training process, i.e. by increasing the speed of
convergence, reducing computational complexity or improving the quality of the model. A
few of the most commonly used techniques are described in this section.

3.8 training optimization 31

3.8.1 Batch normalization

The use of batches in stochastic gradient descent allows for another optimization technique
called batch normalization. Batch normalization is often applied on the intermediate output
of each hidden layer of a neural network. All output values y(j) for layer j are normalized by
dividing by the standard deviation and subtracting the mean value of y(j) for all samples in
the batch combined. This ensures that the magnitude of the values y(j) stay within a certain
magnitude, which has a stabilizing effect on the gradients during the backpropagation phase.
This stabilization allows for the usage of larger learning rates without experiencing gradients
exploding in magnitude. Stable, regularized gradients result in stable, regularized weight
updates, thus batch normalization also has a regularizing effect on the weights of the network
[28].

3.8.2 Augmentations

The true data distribution is approximated by the empirical data distribution provided by the
training samples. Using more training samples will increase the quality of this approximation,
allowing the model to obtain a better fit to the true data distribution. The number of data
samples available to train on is finite in the vast majority of cases, and often limited by data
collection limitations. A popular technique is to artificially increase the number of training
samples by creating a multitude of variations of the available training samples. For image
datasets, these variations can be created by changing the orientation of the sample, cropping,
resizing or blurring the image, or performing other affine transformations on the image. The
gist of data augmentation is that the artificially augmented samples remain a representative
sample of the data distribution the model should fit.

Another welcome effect of using data augmentation is that the variation introduced by the
artificially augmented samples often increases the robustness of the model to these variations.
As a result, the generalizability of the model often improves.

Augmentations can not only be used during the training phase, it can also be used when
inferencing on new unseen data. This is known as Test Time Augmentation (TTA). Given a
sample, normally it is fed to the model in inference mode resulting in predictions for that
sample. With test-time augmentation, a number of augmented samples is created based on
the unseen sample. These augmented samples and the original sample are all fed to the
model in inference mode. The resulting predictions are merged, i.e. by averaging them, to
create the final prediction for the original sample.

3.8.3 Pretraining

Another method to optimize the training process is by using a pretrained model. Training
a CNN model to its fullest extent from random initialized weights is often computationally
expensive without any guarantee that a global minimum will be eventually reached. No
guarantees can be given on the optimization of neural networks due to the stochastic nature
of weight initialization and stochastic gradient descent in combination with non-convex loss
functions.

32 machine learning

A pretrained model is a set of weights coming from a model that has been extensively
trained on the same or a similar task. These weights already have meaningful values in rela-
tion to each other. Especially the weights from the first few layers in the network are valuable
as they are already trained to describe general, conceptually simple patterns. The last few lay-
ers are more class or task specific and contain filters that won’t be directly reusable, but even
these have meaningful values in relation to filters in adjacent layers which is helpful when
training the model to perform a different task [18]. As a result, models based on pretrained
models often outperform randomly initialized models.

One particular popular source for pretrained models is the ILSVRC ImageNet Large Scale
Visual Recognition challenge [54] which is described in section Section 2.1. The size and
quality of the ImageNet dataset in combination with the variety in the many objects classes
results in well-performing models of which the filters of the first few layers are relatively
generic in nature. The weights of models trained on the ImageNet class are therefore relatively
well-transferable to other image recognition tasks [18].

3.8.4 Overfitting and early stopping

Allowing a model to learn too many specific details about the training set is known as over-
fitting. An overfitting model performs well on samples from the training set, but fails to
generalize on the underlying distribution of the data. Hence, an overfitting model will per-
form worse on validation or test data, even when the validation and test set come from the
same distribution as the training set. To prevent overfitting it is crucial to either have training
data of the same distribution as the data that the model will be used on, or to restrain the
model in its learning capability.

A signature indication of overfitting is a steadily decreasing training loss while the loss on
the validation set does not decrease for several subsequent epochs. As the name suggests,
early stopping stops the training of a model when certain predetermined criteria are met. To
prevent overfitting, early stopping can be used to stop the training when the validation loss
does not decrease for a predefined number of subsequent epochs.

3.9 architectures: resu-net, u-net and mask r-cnn

Three popular CNN architectures are described in this section. The ResNet architecture is
a base architecture that many other architectures incorporate. The U-net architecture is a
popular architecture for image segmentation and the Mask R-CNN architecture is popular for
object detection and instance segmentation tasks.

3.9.1 ResNet

The ResNet classification models [21] are a popular base architecture of many convolutional
neural networks. The power of a ResNet model is that it reformulates the mapping it attempts
to learn. If H(x) is the desired mapping to be learned by convolutional layers in a CNN, then
a Residual Unit instead attempts to learn the residual function F(x) = H(x)− x.

3.9 architectures: resu-net, u-net and mask r-cnn 33

Figure 3.11: On the left a residual unit containing two 3 x 3 conv layers with 64 filters learning the
residual function F(x) = H(x)− x and a skip connection performing the identity map-
ping. On the right: A bottleneck residual unit containing three conv layers where the 256

input filters are first reduced to 64 to lower the computational cost of the 3 x 3 conv and
restored to 256 filters afterwards. Source: [21]

Figure 3.12: Overview of architectures of ResNet models with 18, 34, 50, 101 and 152 layers respec-
tively when using input images of 224 x 224 pixels. Source: [21]

To provide the desired output, a skip connection which performs the identity mapping is
added to the network, as shown in Figure 3.11. He [22] shows that it is easier to optimize a
residual function F(x) compared to the original function H(x) and that the identity mappings
aid the gradient flow throughout the layers during the training process. A ResNet model con-
tains multiple residual units. ResNets up to 34 layers contain up to 17 traditional Residual
Units consisting of two 3 x 3 conv layers each, whereas deeper ResNets utilize so called Resid-
ual bottleneck blocks which consist of a 1 x 1, a 3 x 3 and a 1 x 1 conv layer subsequently. In
Figure 3.12 the architectures of multiple common ResNet models are displayed.

The ResNet architecture requires that the width and height of the input image are both
multitude of 25 = 32 pixels. The requirement of the input image to be a multiple of 32

is to ensure an integer number of pixels, even at the deepest levels of the network. In the
ResNet architecture, the input image is downsampled five times by pooling layers reducing
each image dimension by a factor of 2 as shown in Figure 3.12. If the dimensions of the input
image are no multitude of 32, then the image can be padded first as explained in Section 3.3.1
to increase its dimensions to a multitude of 32.

34 machine learning

Figure 3.13: The U-net architecture. Source: [53]

3.9.2 U-net

The U-net architecture is shown in Figure 3.13. The U-net consists of two parts. The left side
is called the encoder, in which information from the input image is being encoded using an
increasing number of filters per layer at a decreasing spatial resolution. The purpose of the
encoder is to obtain a high-level representation of the image. The encoder consists of several
3 x 3 conv layers followed by ReLU activations and 2 x 2 max-pooling operations for downsam-
pling. At each downsampling step, the number of filters used by the conv layers is doubled.
The right side of the U-net is called the decoder. The purpose of the decoder is to translate the
features generated by the encoder into an accurate high-resolution feature map. The decoder
consists of several 3 x 3 conv layers followed by ReLU activations and strided convolutional
layers which upsample the resolution by 2 x 2. After each strided convolution, the number of
features per conv layer is halved.

The grey horizontal arrows in Figure 3.13 represent so called skip connections, where the
intermediate feature maps of the encoder are sent to symmetrically-equivalent layer in the
decoder. In the decoder, these high resolution feature maps coming from the encoder are
concatenated with the high-level representation from the deepest layer of the encoder. Com-
bining spatially rich information with contextually rich information allows the decoder to
create an accurate high-resolution feature map based on high-level features. There is no pre-
defined loss function for a U-net. The most widely used image segmentation loss functions
are mentioned in Section 3.6.

Sometimes, the encoder of the U-net is replaced by other popular encoding architectures
such as models from the ResNet family because they are more powerful. When the encoder
is replaced by a ResNet, the new hybrid architecture is called a ResU-net. Similar to the
U-net, the outbound skip connections in the ResNet are inserted right before the resolution
is downsampled. The final 1 x 1 average pool layer with softmax activation of the ResNet is
discarded. A ResNet reduces the resolution five times in total whereas the U-net reduces the
dimensions only four times. This is solved in the first two layers of the ResNet where both
layers reduce the resolution: only the second layer contains an outbound skip connection.

3.9 architectures: resu-net, u-net and mask r-cnn 35

Figure 3.14: The Mask R-CNN architecture. Source: [24], adapted]

3.9.3 Mask R-CNN

Mask R-CNN is a two-stage object detection model. Its architecture is shown in Figure 3.14.
The first part of the Mask R-CNN architecture is a ResNet backbone. By default the ResNet-
101 model is used as backbone, optionally in conjunction with a Feature Pyramid Network
[39]. The output of this backbone is a feature map. The next step is the Region Proposal
Network, which uses the feature map to determine which regions are most likely to contain
an object of interest.

The Region Proposal Network (RPN), generates a large number of anchor boxes. These an-
chor boxes are generated around positions in the image using predetermined intervals called
anchors. The anchor boxes are generated by predetermined aspect ratios and scales. Any
number of scales and up to three ratios can be used, with default values for the aspect ratios
being 0.5 (horizontally oriented rectangle), 1 (square) and 2 (vertically oriented rectangle).
Figure 3.15 illustrates a set of generated anchors generated by the Region Proposal Network
using three scales and three ratios. In Mask R-CNN, for each anchor box, the average activa-
tion value of the feature map within the anchor box is calculated. By default the 2000 anchor
boxes with the highest average activation values are stored, the others are discarded.

These 2000 anchor boxes with the relative highest probability of containing an object are
called proposals (Figure 3.16). The proposals are all transformed to squares of the same
dimension (a hyperparameter, usually 28x28 or 56x56 pixels) so they can be evaluated equiv-
alently by the second part of the architecture. This transformation is performed by the
RoIAlign layer.

The resized proposals are sent to the three network heads. The classification head predicts
for each class the likelihood that the main object in the proposal is of the given class. The
exact location and size of each proposal is refined using a box regression head, which predicts
the required shift in location and window size to obtain the best possible fit to the object.
To remove overlapping proposals, class-wise non-maximum suppression (NMS) is applied to
discard all the lower-scoring overlapping proposals and retain only the highest scoring non-
overlapping proposals as shown in Figure 3.17. The mask head predicts on a pixel-level
which pixels belong to the object of interest and which are background pixels, resulting in
a pixel mask of the object shown in Figure 3.18. The outcome of Mask R-CNN is shown in
Figure 3.19.

36 machine learning

Figure 3.15: Figure 3.15: Nine anchor boxes generated centred on an anchor at (320, 320) using three
anchor scales (160, 240 and 480) and three anchor ratios (0.5, 1 and 2). Source: [11]

Figure 3.16: The proposals generated by the Region Proposal Network. Source: [1]

3.9 architectures: resu-net, u-net and mask r-cnn 37

Figure 3.17: The results of the box and classification heads after applying non-maximum suppression
to remove overlapping proposals. The original proposals are shown with dotted lines
whereas refinements made by the box regression head are shown as solid boxes. The
highest scoring class and the corresponding predicted certainty of the classification are
also shown. Source: [1]

Figure 3.18: Pixel-wise predictions of the mask head for the refined proposals. Source: [1]

Figure 3.19: The final result of the Mask R-CNN algorithm. Source: [1]

4 DATA

4.1 chapter overview

For this internship, three data sources were used as shown in Table 4.1. The crowdAI dataset
is a homogeneous, well-prepared dataset of a fixed size containing images from most likely
the United States. The crowdAI dataset is selected because of its large size combined with a
high data quality and consistency, especially with regards to the ground truth labelling and
alignment. The data source consisting of Bing Maps and OpenStreetMap (OSM) is selected
because it theoretically provides worldwide coverage, allowing for the creation of datasets of
any custom size in any desired geographical area. The Readar data source is used because of
its high resolution imagery and high quality annotations whilst being sufficiently large. The
exact area definitions (geometries) can be found in Appendix A.1. A list of all datasets is
provided in Table 4.2.

Source Image size Resolution Geographical coverage Topography
(pixels) (cm)

crowdAI 300 x 300 30 Unknown (probably U.S.) Mainly detached buildings
Bing Maps & OSM 256 x 256 30 Worldwide Location dependent
Readar 1536 x 1536 10 The Netherlands Mainly connected buildings

Table 4.1: Data sources overview.

Dataset Data source Images Resolution Ground truth issues

crowdAI train crowdAI 280,741 30 None
crowdAI validation 60,317 30 None
crowdAI test 60,697 30 None

Malawi, Nsanje Bing Maps & OSM 38,046 60 No ground truth available
Malawi, Nsanje 201 30 No ground truth available
Peru, Equitos 880 30 No ground truth available
Zambia, LusakaNorth 3360 30 Temporal gap
Zambia, LusakaWest 3168 30 Temporal gap
Zambia, Zambezi 3679 30 Temporal gap, misaligned
Zambia, Kalabo 749 30 No ground truth available
Zambia, Mongu 11,273 30 None

Amersfoort Readar 3498 10 Minor temporal gap, parallax effect
Arnhem 4751 10 Minor temporal gap, parallax effect
Breda 3496 10 Minor temporal gap, parallax effect
Maastricht 1870 10 Minor temporal gap, parallax effect
Molenwaard 2628 10 Minor temporal gap, parallax effect
Heerlen 3819 10 Minor temporal gap, parallax effect

Table 4.2: Datasets overview.

4.2 crowdai 39

Figure 4.1: Left: Two sample images from the crowdAI dataset. Right: Sample images including
ground truth annotation. Source: [25]

4.2 crowdai

CrowdAI is an online platform that aims to solve real-world problems by hosting Artificial
Intelligence challenges. In the summer of 2018, crowdAI hosted the Mapping Challenge [25].
The goal of the Mapping Challenge is to detect buildings on satellite imagery. The imagery
is provided as 300 by 300 pixel RGB images in jpeg format with a 30 centimeter ground reso-
lution. A training set, validation set and test set were provided. The training set consists of
280,741 images with corresponding ground truth masks, the validation set consists of 60,317

images with corresponding ground truth masks and the test set contains 60,697 images with-
out a ground truth. Every image contains at least one (part of a) building, with an average of
8.5 buildings per image. The average building size is 2344 pixels, thus on average buildings
comprise around 20,000 of the 90,000 pixels per image, or roughly 22.22 percent. The ground
truth is of excellent quality as the labels were manually created based on the imagery. The
majority of the buildings in the data set are individual, freestanding buildings as shown in
Figure 4.1. The dataset seems to be relatively homogeneous, meaning there is a low diversity
in background scenery, building architecture and rooftop types.

40 data

Figure 4.2: An overview of the vintage of Bing Maps imagery made in January 2017. Source: [38].

No geographical information was provided on the location of the imagery to prevent par-
ticipants of the challenge to use external data sources of the same area to gain an unfair
advantage. However, when looking at the characteristics of the imagery there is a strong sus-
picion that the imagery originates from the south-western part of the United States. Worth
mentioning is that the Mapping Challenge was set up in collaboration with the Humanity &
Inclusion organization to aid the Missing Maps project.

4.3 bing maps & openstreetmap

Datasets can also be created by combining publicly available data. The Missing Maps ini-
tiative uploads validated map data created by volunteers to the OpenStreetMap platform.
Microsoft Bing also supports the OpenStreetMap platform and integrates the information in
their Bing Maps service.

4.3.1 Bing Maps imagery

Bing Maps satellite imagery is available worldwide, but the quality and characteristics of the
imagery differs between areas as the imagery provided by Bing Maps is a combination of
various imagery sources. Although Bing Maps provides satellite imagery worldwide, only
for most inhabited areas a 240 centimeter or better ground resolution is offered. For rural
areas, the highest ground resolution available is often 60 cm. A ground resolution of 30 cm is
almost always available for urban areas. Imagery is available as 256 by 256 pixel RGB images
in jpeg format. For a handful of selected cities, special aerial imagery is available with a 15

cm ground resolution. Figure 4.2, published by Lesiv et al. [38], provides a global overview
made in January 2017 of the availability of satellite imagery on Bing Maps with a ground
resolution smaller than 5 meters.

4.3 bing maps & openstreetmap 41

4.3.2 OpenStreetMap ground truth

The OpenStreetMap data quality varies between locations, and often depends on the origin
of the data. The origin of OpenStreetMap information could be some external dataset: often
snapshots from cadastral databases or other official geospatial datasets are uploaded in bulk
to OSM. For these data sources, we can assume that all data is georeferenced in a consistent
way. In case of misalignment of the ground truth to Bing Maps imagery, a global shift on
OSM data from this source will completely remove or significantly reduce the misalignment.

The origin of OSM data could also be manual mapping by volunteers. Local knowledge
of volunteers affects the quality of the mapping. Sometimes volunteers map local areas they
know well, often they map distant areas they have never visited in person and completely
rely on satellite imagery. The imagery source used during the mapping is another important
factor in the quality of manually mapped OSM data. Bing Maps and Digital Globe imagery
is available worldwide with additional sources available depending on the area. From all
available imagery sources available by default to volunteers, only the Bing Maps imagery can
be used for this internship due to licencing issues. Therefore, the optimal situation for man-
ually mapped OSM data is when Bing Maps is used as imagery source, or when the same
underlying source imagery is used. In these cases, there is no misalignment between the
ground truth and Bing Maps imagery. In all other cases, there could be misalignment issues
as shown in Figure 4.3. The Missing Maps volunteers and other OpenStreetMap contributors
have complete freedom in the selection of the parts they map. To further complicate matters,
mappers can decide for themselves which imagery source they use and switch to another
source whenever they like. There is no administration of the imagery source used during the
mapping process, rendering the appliance of global shifts based on imagery source impossi-
ble. This results in an inconsistently georeferenced data set in OpenStreetMap, with varying
degrees of misalignment.

For the Netherlands, snapshots from the BAG and BGT databases are regularly used to up-
date OpenStreetMap, ensuring that the OpenStreetMap data is almost identical to the BAG
and BGT databases from Kadaster with respect to buildings. In Section 1.2.1 potential issues
with the data collection of the BAG and BGT databases are highlighted.

4.3.3 Temporal gap

An important issue when combining the Bing Maps imagery with OpenStreetMap data as
ground truth is a temporal disparity between the data. The OpenStreetMap database is up-
dated continuously and aims to reflect the current situation as accurately as possible, while
Bing Maps imagery provides a snapshot from the situation in the past. As Figure 4.2 orig-
inating from Lesiv et al. [38] shows, for most parts in the world this results in a temporal
gap of 5 to 7 years. All building construction and deconstruction during this period causes
mismatches in the dataset. There is a history available for OpenStreetMap but historic ver-
sions often provide significantly lower coverage causing large gaps in the ground truth. The
assumption is made that the inaccuracies introduced by the temporal mismatch have less
impact on the dataset quality than using older datasets with lower coverage. Because of this
assumption, the choice was made to use the latest version of the OpenStreetMap database.

42 data

Figure 4.3: Left: Samples from Bing Maps imagery, right: OpenStreetMap building outlines plotted
on Bing Maps imagery. Location in descending order: Hulsberg, Limburg, Netherlands,
30 cm resolution - Augsburg, Bayern, Germany, 15 cm resolution - Nsanje, Nsanje, Malawi,
30 cm resolution.

4.3 bing maps & openstreetmap 43

Figure 4.4: Sample from OSM ground truth labels overlaid on Bing Maps satellite imagery of Nsanje
at 30 cm resolution. The imagery does not show any buildings belonging to the two most
upper instances. There also is a consistent misalignment between the ground truth labels
and the imagery.

Figure 4.5: Sample from OSM ground truth labels overlaid on Bing Maps satellite imagery of Nsanje at
30 cm resolution. Some labels are properly aligned with the imagery, whereas some others
are misaligned. One large building in the bottom left corner of the imagery is not labelled
in the ground truth and in the top left corner the ground truth contains an incorrect label.

4.3.4 Dataset: Nsanje, Malawi

Two datasets for Nsanje in Malawi are available. The largest dataset contains 38,046 images
and has a 60 cm resolution with no ground truth available. The vast majority of the images
in this dataset do not contain buildings. The smaller dataset contains 201 images at a 30 cm
resolution and OpenStreetMap labels as ground truth. Roughly half of all images in this set
contain at least one building. However, Figure 4.4 and Figure 4.5 highlight some of the issues
with the alignment between Bing Maps imagery and OSM ground truth labels.

44 data

Figure 4.6: This sample image illustrates the quality of Readar’s aerial imagery and ground truth
labels. This also illustrates the parallax effect, revealing the building facades.

4.4 readar

Readar provides a private, in-house dataset using aerial imagery of the Netherlands. The
ground resolution of the imagery is 10 cm and any custom tile size can be selected to crop
RGB images in TIFF format from the imagery. The aerial imagery has been created by flying
over the Netherlands on several different days in 2017. In this case, a tile size of 1536 by 1536

pixels was used. Figure 4.6 shows a sample of this dataset.

4.4.1 Temporal gap

Readar also has its own database of buildings, consisting of the BAG and BGT databases from
Kadaster and buildings manually detected on aerial imagery. The database of Readar is
updated several times per year. The database covers the entire Netherlands, resulting in
a substantial portion of connected, terraced housing which is common in the Netherlands.
Similarly to the Bing imagery and OpenStreetMap data, there is a temporal gap between the
imagery and the building database. In this case the temporal gap is between one and two
years, which is significantly lower compared to the five to seven years of the other dataset.

4.5 conclusion 45

Similarly to the Bing Maps data source, the choice is made to use the latest version of
the building database. In this case, it is caused by the addition of the manually mapped
buildings. The manually mapped buildings have been added for a number of municipalities
in the weeks or months after the aerial imagery was created. Reducing the temporal gap by
selecting a historical version of the Readar database close to the creation date of the aerial
imagery would exclude these manually mapped buildings. The assumption is made that
including the manually mapped buildings is more beneficial to the overall datasource quality
than reducing the temporal mismatch, leading to the choice of using the latest version of the
Readar building database.

4.4.2 Parallax effect

The Readar imagery is non-orthorectified aerial imagery obtained from cameras attached to
aeroplanes. Non-orthorectified imagery indicates that no post processing has been applied on
the imagery to correct for optical distortions caused by the perspective and view angle of the
camera. One of these distortions is known as the parallax effect. Figure 4.6 shows the parallax
effect on a sample image from the Readar imagery. The parallax effect causes a misalignment
issue between the optical building outline and the ground truth label. The ground truth label
accurately describes the location of the base of the building. The displacement of the roof and
the optical size of the facade scale linearly to the height of the building.

4.5 conclusion

There are three data sources each used for their own merits: The crowdAI datasource is
valuable because of its size and excellent image and label quality. The combination of Bing
Maps imagery and OpenStreetMap labels is theoretically available worldwide, allowing us to
create datasets for any region in the world. In practice, the availability and quality of both the
imagery and the OpenStreetMap labels very between regions. The Readar datasource is large
although limited in geographical scope. Its aerial imagery has the highest resolution and the
ground truth is generally of good quality.

5 M A S K R - C N N

5.1 chapter overview

The Mask R-CNN architecture has been identified as one of the most promising architectures for
the object detection task and has the added benefit that it simultaneously performs the more
ambitious instance segmentation task. This chapter contains details on the implementation
of the Mask R-CNN architecture for this internship. A transfer learning experiment without
retraining is set up where a model is trained on crowdAI’s Mapping Challenge dataset and
tested on different locations. These tests are used to infer the robustness of Mask R-CNN with
respect to geographical location, imagery resolution and building geometry. Details about the
technical environment can be found in Appendix A.2.

5.2 implementation

The open-source implementation of the Mask R-CNN architecture published by Matterport
is used [1]. The model is trained on the crowdAI train set. Initially, the model was run with
the default hyperparameter settings.

5.2.1 Preprocessing

The model is trained on the crowdAI dataset, using the crowdAI train set to train on and the
crowdAI validation set to validate the model on. The images are 300 by 300 pixels, but the
Mask R-CNN architecture includes a ResNet backbone which requires that the input image
is a multitude of 25 = 32 pixels as explained in Section 3.9.1. Therefore reflection-padding is
applied on the images to increase the dimensions from 300 by 300 to 320 by 320 pixels.

5.2.2 Initial results on crowdAI Mapping Challenge dataset

After training the model, the resulting model was inferenced with default hyperparameter
settings on the crowdAI validation set as no ground truth labels were provided for the test
set of the crowdAI dataset. A visual sample of the predictions is provided in Figure 5.1, the
quantitative results are shown in Table 5.1, following the widely-used Common Objects in
Context (COCO) evaluation format [41]. According to the format of COCO, objects smaller
than 322 pixels are considered small, objects between 322 pixels and 962 pixels fall into the
medium sized category and objects above 962 pixels are considered to be large. The Average
Precision (AP) and Average Recall (AR) are calculated at certain Intersection over Union thresh-
olds to determine the amount of overlap required between the prediction and the ground
truth label to classify the prediction as a successful positive detection.

5.2 implementation 47

Figure 5.1: Left: Sample images from the crowdAI test set, with reflection-padding applied. Right:
Predictions of Mask R-CNN using default parameters. The dotted line visualizes the
bounding box, the area within the solid line is the predicted pixel mask and the num-
ber represents the certainty of the prediction.

48 mask r-cnn

Initial results on the crowdAI validation set

Performance metric Area Score

AP @IoU=0.50:0.95 all 0.395

AP @IoU=0.50 all 0.680

AP @IoU=0.75 all 0.432

AP @IoU=0.50:0.95 small 0.135

AP @IoU=0.50:0.95 medium 0.551

AP @IoU=0.50:0.95 large 0.508

AR @IoU=0.50:0.95 all 0.458

AR @IoU=0.50:0.95 small 0.185

AR @IoU=0.50:0.95 medium 0.629

AR @IoU=0.50:0.95 large 0.653

Table 5.1: Evaluation scores of Mask R-CNN model with default parameters applied on the crowdAI
Mapping Challenge validation set.

An average AP or average AR is calculated by averaging scores obtained at multiple thresh-
olds for the Intersection over Union. COCO reports AP and AR @IoU=0.50:0.95, which is the
average AP or AR measured starting at IoU = 0.5 increasing with steps of 0.05 to 0.95.

5.2.3 Hyperparameter optimization

The complete list of hyperparameter settings can be found in Appendix A.3. For some of the
hyperparameters a basic grid search was performed, not to just find the optimal values for
fitting this dataset, but also to obtain an indication of the influence of these hyperparameters
on the model’s performance. Most hyperparameters use the default settings, but those that
deviate from the default values are described here. The RPN anchor scales hyperparameter is
used to describe the expected range of building surface sizes in pixels whilst the RPN anchor
ratios hyperparameter describe the expected aspect ratios.

RPN anchor scales
This appeared to be the most influential hyperparameter as changing this hyperparameter
yielded the largest performance increase. This hyperparameter determines the sizes of the
anchor boxes generated by the Region Proposal Network. The default values were 32, 64,
128, 256 and 512 indicating that the smallest square anchor boxes are 32 by 32 pixels and the
largest square anchor boxes are 512 by 512 pixels large. With the default settings, the small-
est anchor boxes contain an area of 322 = 1024 pixels or 9.62 = 92.16 square meters given
imagery with a 30 cm resolution.

The bounding boxes obtain a score based on the average activation value of all pixels within
the bounding box and only the highest scoring anchor boxes are kept. With a sigmoid acti-
vation function in the final output layer, the activation value of a pixel directly corresponds
which the probability of being part of a building. This means that anchor boxes which fit
tightly around a predicted building generally have the highest scores. Anchor boxes which
only partly overlap a predicted building and anchor boxes with a wide fit around a building
receive lower scores due to having a lower average activation value.

5.2 implementation 49

The average building size in the crowdAI dataset is 2344 pixels with over 20 percent of
all buildings being smaller than 1024 pixels. Buildings substantially smaller than 1024 pixels
are overlaid by wide fitting anchor boxes, resulting in relatively low scores for these anchor
boxes. This is problematic because all but the highest scoring anchor boxes are discarded.
Another issue with the default RPN anchor scales is that the largest anchor boxes are 512

by 512 pixels. The entire image is only 320 by 320 pixels large, rendering this anchor scale
useless. For those two reasons the RPN anchor scales were adjusted to 8, 16, 32, 64, 128 and
256. Of all hyperparameter adjustments, this change had the largest performance on the main
performance metric. The performance metric AP@IoU0.5 improved by ∼ 0.10 from ∼ 0.68 to
∼ 0.78. This roughly equates an increase in correct predictions by 10 percentage points.

RPN anchor ratios
The RPN anchor ratios are meant to describe the aspect ratios of the objects to detect. The
anchor ratio is defined as the length of the anchor box divided by its height. A value of one
results in a square anchor box; values above 1 yield a rectangle with a vertical orientation
whereas values below 1 yield rectangles with a horizontal orientation. At each anchor point
and for each anchor scale, three anchor boxes are generated following the anchor ratios of
this hyperparameter. Evidently buildings in general do not have any predefined shape or
aspect ratio which makes it challenging to find suitable values are applicable worldwide. The
default values of the RPN anchor ratios are [0.5, 1, 2]. The options [0.6, 1, 1.67], [0.4, 1, 2.5],
[0.33, 1, 3] and [0.25, 1, 4] have been applied on the crowdAI’s validation set as well but did
not yield improvements over the default values. For the tested options the performance in
terms of AP@IoU0.5 decreased by 0.012, 0.003, 0.014 and 0.037 respectively.

Batch size
A batch size of 5 is used for training. Out-of-memory errors occurred at larger batch sizes.
No batch normalization was used due to the small batch size.

Learning rate
A constant, relatively small learning rate η of 10e-6 is used to train. The default training
schedule starts with a learning rate of 0.02, which is reduced by a factor 10 after 40 and 120

epochs. Training is slower compared to the default training schedule but when using a small
batch size the training process is more stable with lower learning rates.

L2 regularization / Weight decay
In this case, using Stochastic Gradient Descent in combination with momentum, Weight de-
cay is the exact same thing as L2 regularization described in Section 3.6.4. L2 regularization
is used to regularize the weights of the model and prevent overfitting. The default value of
weight decay parameter λ was increased from 0.0001 to 0.1 with the intention to improve
the generalizability of the model and increasing its base performance on other datasets. The
value of 0.1 was chosen because for that value the L2 norm constitutes roughly 7 to 8 percent
of the total loss, hopefully giving it a significant but not dominant impact on the training
process. Changing this hyperparameter did not seem to affect the performance on the crow-
dAI dataset during training, obtaining similar loss values (excluding the L2 loss) compared
to using the default value of 0.0001.

50 mask r-cnn

Mean pixel value
Machine Learning algorithms tend to perform better when the input channels are normal-
ized and zero-centered [33]. Subtracting the channel-wise mean pixel value is one way of
zero-centering the input data. The mean value of each colour channel of the training set is
calculated to obtain the most accurate approximation of the underlying data without leaking
information from the validation or test set into the training process. The exact effect on per-
formance of the model caused by zero-centering is unknown in this case as it was applied
from the very first run onwards. Investigation into the exact magnitude of this effect falls
outside the scope of this internship.

5.2.4 Filling failed masks

As seen in the upper right image in Figure 5.1, sometimes the mask head of the Mask R-CNN
model fails to generate an accurate pixel mask within the bounding box. In the upper image
a building is detected in the lower right corner of the image. This building is predicted to
be a building with 1.000 certainty and the predicted bounding box seems to be reasonable
accurate. However, in the pixel mask a tree that is overlapping with the rooftop is predicted
to be the building. For a small shed that is detected to be a building with a 0.995 certainty
relatively central in the image, the mask head failed to produce a pixel mask at all.

To address this issue, a post-processing step dealing with this issue was included in the
pipeline. Since the bounding boxes are generally well fitting, they are used as a reference to
find pixel masks which are smaller than expected. If a pixel mask is 10 times as small as the
area covered by the corresponding bounding box, it is considered to be a failed mask. Failed
masks are replaced by the area of the bounding box. This is a guaranteed overestimation of
the correct pixel mask of the building and therefore the area is shrunk by five percent. In
the crowdAI test dataset, 2.7 percent off all pixel masks were replaced. In datasets with Bing
Maps as imagery source, this percentage was significantly lower, generally being in the range
of 0.2 to 0.5 percent. The cause for this disparity is unknown but falls outside the scope of
this internship.

5.2.5 Test Time Augmentation

As an enhancement to the Mask R-CNN model, TTA was implemented. The predictions of
eight differing image orientations are combined to obtain the TTA results. The eight unique
orientations are obtained by horizontally flipping the image and performing rotations on both
the original image and the flipped image. Both images are rotated by 0, 90, 180 and 270 de-
grees.

The predictions for these eight unique orientations all slightly differ from each other. The
intention is that the combining these predictions yield an improved prediction compared to
a single prediction based on the original image. When overlapping detections are combined,
they are merged. A new certainty score of this merged prediction is determined by summing
the certainty scores of each overlapping detection multiplied by their respective size in pixels
and dividing this by the number of pixels in the merged prediction. The new certainty score
is not bounded in the range of [0, 1] anymore but can exceed 1.

5.2 implementation 51

Optimized results on the crowdAI validation set

Performance metric Area Score Improvement

AP @IoU=0.50:0.95 all 0.478 0.083 (+21.0%)
AP @IoU=0.50 all 0.795 0.115 (+16.9%)
AP @IoU=0.75 all 0.545 0.113 (+26.1%)
AP @IoU=0.50:0.95 small 0.236 0.101 (+74.8%)
AP @IoU=0.50:0.95 medium 0.615 0.064 (+11.6%)
AP @IoU=0.50:0.95 large 0.591 0.083 (+16.3%)
AR @IoU=0.50:0.95 all 0.554 0.096 (+21.0%)
AR @IoU=0.50:0.95 small 0.338 0.153 (+82.7%)
AR @IoU=0.50:0.95 medium 0.691 0.062 (+9.9%)
AR @IoU=0.50:0.95 large 0.683 0.030 (+4.6%)

Table 5.2: Evaluation scores of Mask R-CNN model with adjusted hyperparameters applied on the
crowdAI Mapping Challenge validation set, compared with the initial results

Results on the crowdAI test set

Metric Area Score

AP @IoU=0.50 all 0.802
AR @IoU=0.50 all 0.850

Table 5.3: Evaluation scores of Mask R-CNN model applied on the crowdAI test set.

5.2.6 Optimized results on crowdAI Mapping Challenge dataset

With the optimized parameters, the model has again been evaluated on the crowdAI vali-
dation set. The results are shown and compared with the initial results in Table 5.2. To
participate in the crowdAI Mapping Challenge competition, the predictions on the test set
had be uploaded to crowdAI’s servers where they would be evaluated on Average Precision
@IoU=0.50 and Average Recall @IoU=0.50 as performance metrics.

As shown in Table 5.3, this Mask R-CNN model scored 0.802 at Average Precision@IoU=0.50

and 0.850 at Average Recall@IoU=0.50, resulting in a 15th place out of 54 competitors. Worth
mentioning is that the model that obtained second place also used Matterports Mask R-CNN
implementation [1] scoring 0.937 at the Average Precision@IoU=0.50 metric and 0.959 at the
Average Recall@IoU=0.50 metric [61]. This difference in performance can be explained by the
underlying incentives: For this internship there is no intention of winning the Mapping Chal-
lenge competition but a submission is made merely to obtain the performance of the model
on the test set. Secondly, the broader objective of this internship is to create a model that is
reusable in other geographical areas. Therefore, it is not of interest to extensively optimize
the hyperparameters or make other adaptations to the model in order to obtain a perfect fit
to this specific dataset.

52 mask r-cnn

5.3 geographical robustness

One way to obtain a method for worldwide building detection is the appliance of transfer
learning. The basis of transfer learning is an existing model that is trained on an extensive,
high-quality dataset for a similar, related task. This model is retrained on a (potentially small)
dataset specific to its new task in order to adapt the model to perform well at this new task. In
the case of this internship, the crowdAI dataset forms an excellent base due to its size, quality
and similarity in task to create a base model for building detection using transfer learning.

To obtain a baseline for the performance of the unaltered model, is is first applied to predict
buildings on imagery of different geographical areas around the world without any transfer
learning or other adjustments. These locations are:

• Malawi: Nsanje

• Zambia: Zambezi, Kalabo, Zambia, Mongu

• Peru: Equitos

• The Netherlands: Amersfoort

The imagery source used is Bing Maps for all locations except Amersfoort in the Netherlands.
These locations are selected based on the intended use cases. Amersfoort is selected as a test
area for the use case of Readar which has a geographical focus on Western Europe. Both Miss-
ing Maps and the 510 team of the NLRC have a worldwide scope. Composing an exhaustive
selection of areas representing the global scope is not an option due to practical limitations in
terms of available resources and time. Instead, areas of currently active projects within Miss-
ing Maps and the 510 data team are selected instead as an approximation of the intended
global scope. Areas in Zambia and Peru are selected based on active mapping projects of
Missing Maps. Imagery of Malawi is already available within the 510 team originating from
a similar Deep Learning project.

5.4 malawi

The 510 team of the NLRC has been running projects in the Nsanje region in the south of
Malawi and already has imagery from Bing Maps available for this region at a 60 cm resolu-
tion, making it a suitable region to test the Mask R-CNN model on. For the Nsanje region
there is no proper ground truth due to misalignment issues between the OpenStreetMap data
and the Bing Maps imagery. The lack of aligned ground truth labels mean that only a visual
inspection can be made to assess the prediction quality.

Since the predictions are used for visual inspection only, a subset of 433 random images of
the original 38,046 images is used. To obtain a performance baseline, no changes are made to
the model at the inference stage. Only one adjustment has been made: the dimension of the
input images has been changed from 320 to 256 pixels, the native dimension of the images
from the Bing Maps imagery. Visual inspection of the predictions of the Mask R-CNN model
provides a mixed view: There seem to be false positives as a number of detections appear to
be shrubbery or trees instead of a building. On the other hand, in images containing build-
ings such as the third sample of Figure 5.2, most of the detections seem to be buildings.

5.4 malawi 53

Figure 5.2: Left: Three sample images of 153.6 by 153.6 meters from the 60 cm resolution Bing Maps
imagery of the Nsanje region in Malawi. Right: Mask R-CNN predictions on those images.
Only predictions with a certainty above 0.5 have been plotted.

54 mask r-cnn

One conclusion of the visual inspection on the initial results of 433 images is that larger
buildings are more likely to be detected than smaller buildings. Results on the crowdAI
dataset showed the importance of having anchor scales for the region proposal network that
fit the size distribution of the objects to be detected. With this in mind, the average building
size of the misaligned, but properly scaled ground truth labels was calculated to be 47 pixels
at 60 cm resolution and 187 pixels at 30 cm resolution. This is a large deviation from the
distribution of building sizes the model was trained on, which averaged 2344 pixels.

5.4.1 Image resolution robustness experiment

To solve the discrepancy between the crowdAI building size distribution and Nsanje building
size distribution, either the region proposal anchor sizes or the building size distribution itself
has to be adjusted. Changing the region proposal anchors would require retraining on data
with a similar building size distribution which is unpractical. The more robust solution is to
artificially upsample the Bing Maps imagery to ensure the building sizes are similar to that
of the crowdAI dataset. The hypothesis is that when the number of pixels is increased by a
factor of average crowdAI building size

average Nsanje building size = 2344
187 ≈ 12.5, performance of the model will be optimal for

the 30 cm resolution imagery. This means both dimensions should be increased by a factor of√
12 ≈ 3.5 from 256 to 256 · 3.5 ≈ 900 pixels. The dimensions of the 60 cm resolution imagery

should be increased by a factor of ∼ 7 for a minimal discrepancy between the train and test
building sizes.

For completeness, predictions are made at various upsample scales. Both dimensions of the
satellite imagery are upsampled by a factor of 2, 3, 4, 5, 7 and 10 using bilinear interpolation
resulting in an increase in pixels of 2

2, 3
2, 4

2, 5
2, 7

2 and 10
2 respectively.

5.4.2 Image resolution robustness results

The predictions of the Mask R-CNN model on the upsampled imagery are shown in Fig-
ure 5.3. A clear trend is shown: A larger upsampling factor results in a larger number of
detections. The increase in detections mainly stem from smaller buildings. Imagery that was
upsampled by a factor 10 has the most predictions, but also the smallest average predicted
building size. One observation of the imagery is that there are many buildings with an area
below 4 square meters, which might serve as chicken pens or tool sheds. These buildings are
likely uninhabited and for that reason not of interest to the Red Cross. The average building
size obviously increases when those small buildings are excluded, requiring a lower upsam-
pling ratio. Visual inspection of the predictions indicates that an upsampling factor of 5 yields
the best results on imagery of 60 cm resolution. An upsampling factor of 2.5 is used for im-
agery on 30 cm resolution. Some results are shown in Figure 5.4, additional visualizations of
predictions can be found in Appendix B.2.

No independent, unbiased assessment could be made on the robustness of the model with
respect to image resolution due to the inevitable influence of building sizes and anchor scales
hyperparameter. This experiment mainly exposed the interaction between resolution and the
region proposal network of Mask R-CNN. Particularly the influence of the anchor box scales
hyperparameter is highlighted.

5.4 malawi 55

Figure 5.3: Mask R-CNN predictions on different upsampling scales. From left to right and top to
bottom the upsampling ratios are 2, 3, 4, 5, 7 and 10 respectively.

56 mask r-cnn

Figure 5.4: Left: Samples of 230.4 by 230.4 meters from imagery of Nsanje at 30 cm resolution. Right:
TTA predictions of Mask R-CNN on imagery upsampled by a factor of 2.5.

5.5 zambia 57

The first conclusion of this showcase of Mask R-CNN on Malawi is that the model seems to
handle the geographical differences between crowdAI and Malawi relatively well. The second
conclusion is that the Mask R-CNN architecture itself is not robust with respect to resolution,
or more accurately, its interaction with object size. However, by resizing the image based on
the expected object size, a better fit can be achieved at inference time. Artificially increasing
the resolution slows down the inference speed but does not require retraining. Issues arise
when the resolution of the test imagery should be downsampled to fit the expected object
size distribution as downsampling decreases the quality of the imagery.

5.5 zambia

The North-Western province of Zambia is being mapped for a project within the 510 team.
In order to provide an impression of the expected quality of automated building detection,
the city of Zambezi has been selected as a test set for the Mask R-CNN model. Bing Maps
imagery is available at a 30 cm ground resolution for the city of Zambezi. As a second African
location, it is used to show the generalizability of the model and to further evaluate the pre-
dictive potential of this model on imagery of the African continent.

The assumption is made that the distribution of the building sizes in Zambezi in Zambia
is similar to that of Nsanje in Malawi. Hence, the imagery of Zambezi is upsampled by
the same ratios as used for Nsanje. Three sample predictions made by the Mask R-CNN
model on imagery from Zambezi are shown in Figure 5.5. Although no quantification of the
performance could be made due to a lacking ground truth, Missing Maps project managers
evaluated the performance on Zambezi as “promising” for providing an initial impression on
building density.

The same routine has been followed for two other cities in Zambia. 30 cm resolution
imagery is also available on Bing Maps for the cities of Kalabo and Lusaka to analyze the
consistency of the model. Kalabo is relatively similar to Zambezi but Lusaka is a larger and
more densely built city. Additional sample imagery and corresponding predictions of Kalabo
and Lusaka can be found in Appendix B.2, confirming the consistency of the model.

5.5.1 Geographical robustness experiment

To accurately quantify the performance of the model, a ground truth of decent quality is
required. For the previous locations, OpenStreetMap data did not meet those requirements,
mainly due to misalignment issues. The Zambian city of Mongu was selected for a compar-
ison between the Mask R-CNN model and human mappers. Mongu was recently manually
mapped and extensively checked for errors by experienced mappers to ensure a high quality
standard. Not all buildings were mapped based on Bing Maps imagery causing a temporal
gap in the dataset as described in Chapter 4. However, all mapped buildings were consis-
tently aligned with the Bing Maps imagery during the quality checks. This resulted in a
usable ground truth for Mongu to quantify the quality of the predictions.

58 mask r-cnn

Figure 5.5: Left: Samples of 230.4 by 230.4 meters from imagery of Zambezi at 30 cm resolution. Right:
TTA predictions of Mask R-CNN on imagery upsampled by a factor of 2.5.

5.6 peru 59

Figure 5.6: Breakdown of Mask R-CNN recall at 0.9806 precision based on minimum building size for
predictions on Mongu, Zambia.

5.5.2 Geographical robustness results

Running the model through 11,273 images combined spanning approximately 67 km2 took 48

minutes. The main results over the entire dataset of 29,061 buildings in the ground truth and
17,863 predictions are presented in Table 5.4 and Figure 5.6. The model obtained a precision of
∼ 0.98 and a recall of ∼ 0.60. Visual samples of the satellite imagery, OpenStreetMap ground
truth and predictions can be found in Appendix B.3. A breakdown of the recall at various
minimum ground truth building sizes in Table 5.4 shows that building size is an important
factor for the chance of detection.

These quantitative results on the city of Mongu combined by empirical tests on different
locations in Zambia affirm the previously cautious conclusion that the model is able to predict
buildings in African locations based on a training set located in North-America.

5.6 peru

After testing the model on two African countries, a new continent was selected. Managers
of the Missing Maps project mentioned that manually mapping Equitos in Peru proved to
be challenging. Wondering if the Mask R-CNN model could potentially aid the mapping
process, Equitos was selected to see how the model would cope with the dense building style
common in Peru. Because the area was being actively mapped by the Missing Maps project,
no validated ground truth was available in OpenStreetMap at the time the model was tested
on Equitos. Bing Maps satellite imagery was available at a 30 cm resolution for the city of
Equitos. The dataset contains 880 tiles of 256 by 256 pixels.

60 mask r-cnn

Precision and recall on Mongu, Zambia

Performance metric Min. building size Score

Precision 0m2 0.9806
Recall 0m2 0.6027
Recall 5 m2

0.6208

Recall 10 m2
0.6962

Recall 15 m2
0.7581

Recall 20 m2
0.8165

Recall 25 m2
0.8458

Recall 30 m2
0.8616

Recall 35 m2
0.8770

Recall 40 m2
0.8945

Recall 45 m2
0.9034

Recall 50 m2
0.9171

Table 5.4: Performance metrics of the Mask R-CNN model on Mongu, Zambia.

Although the Mask R-CNN model attempts to perform the instance segmentation task
mentioned in Section 1.5.2, building rooftops apparently often lack distinguishability. In
these cases it causes the model to fail at the instance segmentation task. Instead, it will com-
bine multiple connected buildings into one prediction. Looking how buildings are densely
grouped together in Equitos using the same rooftop materials, this leads to the assumption
that the expected average building size is large. As a result, no upsampling is performed
on the imagery of Equitos and the native resolution is used instead. A visualization of the
predictions seems to indicate a high precision but relatively low recall. Three sample predic-
tions made by the Mask R-CNN model on imagery from Equitos are shown in Figure 5.7.
Suspicions are that the low recall is a result of an aggressive removal of overlapping bound-
ing boxes by the NMS. The potential issue of aggressive removal of overlapping bounding
boxes seems to be especially prevalent in the images where the streets and buildings have a
diagonal orientation.

5.6.1 Building geometry robustness experiment

For buildings with a diagonal orientation, a tight-fitting bounding box has to be relatively
large compared to the building itself. This bounding box might overlap with bounding boxes
of buildings in close proximity. When the overlap between bounding boxes measured by
the Intersection over Union exceeds a predefined threshold, the NMS algorithm discards all
predictions except the one with the maximum certainty score with the intention of removing
duplicate predictions.

In Mask R-CNN, a default value for the non-maximum suppression threshold of 0.7 is used.
By increasing this threshold, a larger overlap between bounding boxes is allowed, theoreti-
cally resulting in a larger number of partly-overlapping detections. Adjusting this threshold
does not require retraining of the model as it only influences the prediction phase. To inves-
tigate whether the default value of this threshold is limiting the performance of the model,
the model is tested again with values of 0.3, 0.5 and 0.8 for the non-maximum suppression
threshold.

5.6 peru 61

Figure 5.7: Left: Samples of 230.4 by 230.4 meters from imagery of Equitos at 30 cm resolution. Right:
TTA predictions of Mask R-CNN on the original imagery.

62 mask r-cnn

Figure 5.8: Left: TTA predictions with a 0.3 NMS threshold. Right: TTA predictions with a 0.8 NMS
threshold.

5.6.2 Building geometry robustness results

A test with a NMS threshold value of 0.9 was aborted prematurely due to excessive prediction
file sizes (prediction file sizes exceeding 1 GB per image). One sample comparing predictions
using a 0.3 and a 0.8 NMS threshold is shown in Figure 5.8. Predictions made with the
adjusted NMS thresholds appear to demonstrate that for densely populated environments
the Mask R-CNN model is sensitive to the NMS and minimum detection thresholds. Visual
inspection on a subset of 90 images of 768 by 768 pixels seems to indicate an improved
recall with similar precision with a higher NMS threshold. The conclusion is that the in-
built non-maximum suppression module of Mask R-CNN does not only remove duplicate
predictions of a single building, but also suppresses detections of unique buildings in densely
built areas due to overlapping bounding boxes. Visual inspection implies that this occurs
more frequently in images where buildings and streets have a diagonal orientation.

5.7 the netherlands

Amersfoort is a densely populated city in the Netherlands with many connected buildings.
Following the behaviour of the model observed on imagery of Equitos, the non-maximum
suppression threshold is set at 0.8. The imagery of Amersfoort has a 10 cm resolution and a
unsubstantiated assumption is made that the building size distribution of Amersfoort is sim-
ilar to that of the crowdAI dataset. Therefore, a scaling factor of 0.33 is used to downsample
the imagery of Amersfoort to a 30 cm resolution equal to the crowdAI image resolution using
bilinear interpolation. Samples of predictions on imagery of the original 10 cm resolution can
be found in Appendix B.4, a sample from predictions on the imagery downsampled to 30 cm
is shown in Figure 5.9.

5.8 review of transfer learning intentions 63

Figure 5.9: Left: Sample of 153.6 by 153.6 meters from imagery of Amersfoort at 10 cm resolution.
Right: TTA predictions of Mask R-CNN on the sample image downsampled to 30 cm,
plotted on the original 10 cm imagery.

The first observation is that the precision of the model for Amersfoort is lower than for
any other previous test set. Not only are more false positives observed, i.e. water or roads
classified as building, but the pixel masks of predictions containing a building seem to include
a larger percentage of non-building pixels. The nature of the Dutch building style with many
buildings having identical rooftops connected to each other might have an undesired effect
on the predictions: the larger anchor box sizes obtain relatively high certainty scores in the
RPN. The subsequent RoIAlign layer resizes all proposals of the RPN to 56 by 56 pixels (the
“mini-mask”). For large proposals, this is a significant reduction in resolution. This might
explain the relatively poor pixel-wise performance by the mask head of Mask R-CNN.

5.8 review of transfer learning intentions

The original intention was to determine a performance baseline measuring the geographi-
cal robustness of the model without retraining. The underlying thought was that retraining
would be required to achieve satisfactory performance. Previous sections of this chapter
showcase a model that already performs at a satisfying level without any retraining. Due to
varying data quality and misalignment issues discussed in Chapter 4, retraining the model
on Bing maps imagery and OpenStreetMap labels could possibly reduce the performance of
a model trained on the large and accurate crowdAI’s Mapping Challenge dataset.

There is also a more general argument against retraining the model: From a process-
oriented perspective the argument is that retraining a model requires a new dataset resem-
bling the area of interest. Finding or creating such a dataset costs time and effort. The effort
and time required to obtain a dataset of good quality and sufficient size would significantly
delay deployment of the retrained model. This delay negates the benefits of a rapid auto-
mated mapping method.

64 mask r-cnn

5.9 conclusion

Data alignment issues prevented proper quantification of the results, except for the crowdAI
dataset and a manually curated dataset of Mongu in Zambia. Visual inspection of predictions
in different scenarios generated enough insights to provide a cautious empirical verdict.

5.9.1 Robustness evaluation

The first impression is that the Mask R-CNN model performs remarkably well without re-
training when testing on different geographical locations. This chapter also demonstrates the
influence of the region proposal network of the Mask R-CNN architecture. In particular the
influence of the anchor scales used to generate anchor boxes is highlighted. In certain cases,
the performance of the model suffers when there is a mismatch between the anchor boxes and
building geometry. This is mainly noticeable in densely populated areas. For all locations the
interaction between the anchor scales setting, imagery resolution and building size distribu-
tion seems to be a dominating factor in the performance of the Mask R-CNN architecture.

Empirical verdict on robustness:

• Mask R-CNN is robust with respect to geographical location, as a model trained on
an North American dataset can successfully detect buildings on imagery of locations in
Africa, South America and Europe. On 29,061 buildings in Mongu, Zambia, the model
obtained a building-wise precision of ∼ 0.98 and a recall of ∼ 0.60.

• Mask R-CNN is not robust with respect to image resolution, but only because the
model is sensitive to the interaction between the anchor scales hyperparameter, image
resolution and building size distribution. Due to the influence of this interaction, no
unbiased assessment could be made on the image resolution robustness of Mask R-
CNN.

• Mask R-CNN is not robust with respect to building geometry. Not only is the model
sensitive to the building size distribution, but dealing with a large variety in building
shapes and orientations also appears to be challenging when the model is limited to
three anchor ratios.

5.9.2 Task evaluation

Especially the sensitivity to building geometry is an issue caused by the region proposal net-
work. These sensitivity issues can only be solved by removing the region proposal layer. Re-
moving the region proposal layer has the consequence that no bounding boxes are generated
and that the object detection task cannot be performed anymore. Therefore, the conclusion
of this chapter is that the object detection task is not the most suitable task to perform in this
case.

The image segmentation task does not require bounding boxes but works on a pixel-based
level. Performing only the image segmentation task will hopefully yield a model that is more
robust with respect to both resolution and building geometry. The U-net has been identified
in Section 2.4 as the state-of-the-art architecture for performing image segmentation. In the
next chapter, the U-net architecture is implemented to review its performance.

6 R E S U - N E T

6.1 chapter overview

In this chapter an adaptation of the popular U-net architecture is implemented called Residual
U-net (ResU-net). The ResU-net architecture is a less complex architecture performing the im-
age segmentation task and contains fewer hyperparameters compared to the Mask R-CNN
architecture. The ResU-net architecture is implemented with the intention of mitigating the
sensitivity issues of Mask R-CNN with respect to building geometry. These sensitivity issues
arise mainly in densely built locations such as The Netherlands. This, combined with the
availability with high quality data, is the reason why the performance of the ResU-net will be
mainly evaluated on the Netherlands. The idea is that a less complex architecture contains
fewer limitations resulting in a more robust model, especially with regards to building size
and aspect ratio.

Besides details on the implementation of the ResU-net architecture, this chapter contains
experiments to quantify the robustness of the ResU-net architecture with respect to geograph-
ical location, image resolution and building geometry.

6.2 implementation

A ResU-net architecture is a traditional U-net structure in which the encoder of U-net is
replaced by a ResNet model excluding the final fully-connected classification layer. For the
implementation of the ResU-net architecture the Python library segmentation models [62] is
used. The segmentation models library contains multiple architectures and for each architecture
a model with weights pretrained on ImageNet as explained in section Section 3.8.3. The initial
ResU-net model is trained on Readar’s in-house data. In this case, Readar’s data is preferred
over crowdAI’s Mapping Challenge dataset as it allows for a manual selection of suitable
datasets and due to a larger presence of densely built environments. Readar’s imagery is
downsampled from 10 to 30 cm for fair benchmarking purposes. Details about the technical
environment can be found in Appendix A.2.

6.2.1 Readar data

Five areas each roughly spanning one Dutch municipality are selected to together form a
dataset. These areas are Amersfoort, Arnhem, Breda, Maastricht and Molenwaard which
combined contain 16,243 images of 1536 by 1536 pixels at a 10 cm resolution, spanning 383

km2. The validation set consists of 20 percent of each area and for the test set 10 percent of
each area is held out. A dataset of the city of Heerlen consisting of 3436 images is used as an
external dataset to test the geographical robustness of the model.

65

66 resu-net

6.2.2 Preprocessing

No preprocessing is used except for subtracting the mean pixel values of each training set to
zero-center the input data.

6.2.3 Hyperparameters

Appendix A.4 contains an overview of all hyperparameters used. Most hyperparameters of
the ResU-net model are related to its training schedule. There is one architectural hyper-
parameter determining the number of layers in the ResNet. In this case, experiments are
conducted with a ResNet50 containing 50 layers (detailed architecture in Section 3.9.1). The
certainty threshold for binarizing the output of the sigmoid activation function of the final
layer is also a hyperparameter, set at 0.5. The ResU-net architecture has no predefined cost
function so the cost function can also be regarded as a hyperparameter. In this case, the
Jaccard loss function is used as described in Section 3.6.2. Stochastic gradient descent with
Nesterov momentum is used as optimizer. An initial learning rate η of 0.1 is used with a
Nesterov momentum γ of 0.8. If the validation loss does not improve over three subsequent
epochs, the learning rate is multiplied by 0.3 and training is stopped when there is no im-
provement over 10 subsequent epochs.

6.2.4 Train augmentations

Random crops of size 448 by 448 pixels are taken out of the training samples of 1536 by 1536

pixels. The images are cropped to allow a larger batch size. The larger batch size increases
the diversity in scenery within one batch, making the batch more representative for the entire
data domain which increases performance. Larger batch sizes also increase the effectiveness
of batch normalization. Another advantage is that random crops prevents overfitting as the
number of unique image samples provided to the model during training greatly increases.

Each cropped image is then horizontally flipped with a 50 percent chance and rotated by
0, 90, 180 or 270 degrees with a 25 percent probability for each option. This orientation aug-
mentation increases the number of unique training samples by a factor of eight and hopefully
increases the robustness of the model with regards to object orientation.

6.2.5 Test-time augmentations

The predictions of eight unique image orientations are combined to obtain the TTA results.
The eight unique orientations are obtained by horizontally flipping the image and performing
rotations on both the original image and the flipped image. Both images are rotated by 0,
90, 180 and 270 degrees. After the predictions of the individual images are binarized, the
predictions are rotated and flipped back to the original orientation. The eight resulting pixel
masks are combined by averaging them pixel-wise.

6.2.6 Initial results on Readar dataset

The results of the initial test performed at a downsampled resolution of 30 cm are shown
in Table 6.1, including test results on an external dataset, the Dutch city of Heerlen. TTA
predictions of a sample from the test set are visualized in Figure 6.1.

6.2 implementation 67

Results on the Readar dataset at 30 cm

Dataset IoU Precision Recall

Train set 0.795 0.876 0.893

Validation set 0.746 0.849 0.858

Test set 0.752 0.850 0.866

Heerlen 0.664 0.755 0.834

Table 6.1: Pixel-wise evaluation scores of ResU-net model trained and tested on Readar’s data with
the imagery downsampled to a 30 cm resolution.

Figure 6.1: Top: Sample image of 153.6 by 72.2 meters from the test set showing the Amersfoort mu-
nicipality at 10 cm resolution. Bottom: TTA ResU-net predictions inferenced on imagery
downsampled to 30 cm resolution but plotted over the original 10 cm imagery. A darker
red color indicates a higher predicted probability of the underlying pixel being a building.
Only predictions above a 0.2 probability are plotted.

68 resu-net

6.3 geographical robustness

In this Section, two experiments will be conducted. The first experiment will closely resem-
ble the geographical robustness experiment conducted with Mask R-CNN. The aim of the
second experiment is to investigate the added value of inferring a model’s transfer learning
capabilities during training.

6.3.1 Geographical robustness experiment setup

In order to obtain an indication of the robustness of the ResU-net architecture, it will be
trained on the crowdAI training set which is located in the United States and tested on the
dataset of the Zambian city of Mongu. In order to obtain a fair comparison between the
performance of the Mask R-CNN architecture and the ResU-net architecture, the setup of
the geographical robustness experiment described in Section 5.5.1 will be as accurately repro-
duced but with the ResU-net architecture replacing the Mask R-CNN architecture.

6.3.2 Geographical robustness results

Running the ResU-net model trained on the crowdAI train set through the 11,273 images of
the Mongu dataset which span approximately 67 km2 took 27 minutes. The main results
over the entire dataset of 29,061 buildings in the ground truth and 108,119 predictions larger
than 32 pixels are presented in Table 6.2 and Figure 6.2. With a precision of 0.2688 and a
recall of 0.295 on the Mongu dataset, the quality of the predictions of this model seem to be
insufficient for direct application of the model on other data distributions on a satisfactory
level.

Figure 6.2: Breakdown of ResU-net recall at 0.2688 precision based on minimum building size for
predictions on Mongu, Zambia.

6.3 geographical robustness 69

Precision and recall on Mongu, Zambia

Performance metric Min. building size Score

Precision 0m2 0.2688
Recall 0m2 0.2958
Recall 5 m2

0.3045

Recall 10 m2
0.3551

Recall 15 m2
0.4217

Recall 20 m2
0.4752

Recall 25 m2
0.5212

Recall 30 m2
0.5590

Recall 35 m2
0.5891

Recall 40 m2
0.6157

Recall 45 m2
0.6381

Recall 50 m2
0.6639

Table 6.2: Performance metrics of the ResU-net model on Mongu, Zambia.

Figure 6.3: Left: Sample imagery of 72.8 by 72.8 meters from Mongu, Zambia. Right: ResU-net TTA
predictions.

70 resu-net

6.3.3 Transfer learning experiment setup

For this internship, the objective is to obtain a model that is capable of worldwide building
detection. Therefore, the following experiment will be conducted with all imagery using a 30

cm resolution which requires downsampling the 10 cm resolution Readar imagery.

The rationale behind the experiment shown in Table 6.3 is that it will exhibit the general-
ization capabilities when training and validating on one data distribution (crowdAI) but also
evaluating every epoch on two additional data distributions (the Netherlands and Zambia).
In this experiment, the purpose of these transfer validation sets is to measure the generaliz-
ability of the model on instances of the broader distribution of the “building” class during
training. Two transfer validation sets are introduced for this experiment. To infer the model
performance during training on the Netherlands, the validation dataset from Readar is used.
The model checkpoints belonging to the final epoch and the epoch with the lowest loss on
the Readar validation set and will be used to test on the Readar test set. For Zambia a similar
approach is taken: The Bing Maps LusakaNorth is used for evaluating the transferability of
the model during the training process and the final model checkpoint and best performing
model checkpoint on LusakaNorth are applied to the Bing Maps LusakaWest set as test set.

Experimental setup using transfer validation sets

Train set Validation set Transfer validation sets Test sets

crowdAI train crowdAI validation Readar validation Readar test
LusakaNorth LusakaWest

Table 6.3: Overview of geographical generalization experiment using ResU-net.

6.3.4 Transfer learning experiment results

The performance of the ResU-net model on the different datasets during training is plotted in
Figure 6.4 and Figure 6.5. The first observation from these results is that performance on both
transfer validation sets seems volatile. However, for the LusakaNorth transfer validation set
a clear trend of increasing loss values and decreasing performance measures can be distilled.
Thus of all model checkpoints, the model checkpoint of the first epoch will likely perform
best on the LusakaWest test set. For the Readar transfer validation set, the Jaccard loss is
the lowest at epoch 5 and the binary cross entropy loss the lowest at epoch 3. The model
checkpoint of epoch 4 is selected to apply on the Readar test set because both the binary cross
entropy and Jaccard loss values are close to their minima at that epoch. Table 6.4 contains the
performance on the two test sets using their respective optimal model checkpoints.

6.3 geographical robustness 71

Figure 6.4: Jaccard loss function and binary cross-entropy of ResU-net training session on crowdAI
with transfer validation sets from Lusaka and Readar.

Figure 6.5: Intersection over Union of ResU-net training session on crowdAI with evaluation sets from
Lusaka and Readar.

Figure 6.6 shows the predictions of the crowdAI trained model on a sample image of
LusakaWest. This experiment indicates that ResU-net model does not seem to achieve the
same level of geographical robustness as Mask R-CNN. One potential reason might be that
the mask, box and classifier heads of Mask R-CNN receive a fixed amount of proposals to
evaluate, even when activation values in the feature map generated by the convolutional
backbone are low. This might possibly introduce a bias towards predicting buildings but ad-
ditional research is required to investigate the true underlying cause.

In addition to testing the geographical robustness of the ResU-net model, this experiment
shows that transfer validation sets can be effectively used to monitor the direct transferability
of a model to other datasets during the training process. This information allows to make
an informed model selection, resulting in a reduction of the Jaccard loss function of 0.676−
0.558 = 0.118 for the Lusaka test set and 0.606− 0.568 = 0.038 for the Readar test set.

72 resu-net

Figure 6.6: Left: Sample of 76.8 by 76.8 meters from Bing imagery of LusakaWest. Centre: TTA
predictions of the first epoch of ResU-net trained on the crowdAI dataset. Right: TTA
predictions of the last epoch of ResU-net trained on the the crowdAI dataset.

Transfer learning results on the Lusaka and Readar datasets

Jaccard loss BCE IoU Precision Recall

Lusaka datasets
Epoch 1 Transfer validation set 0.547 0.8 0.458 0.638 0.620

Test set 0.558 0.821 0.440 0.603 0.619

Epoch 18 Transfer validation set 0.688 1.43 0.311 0.872 0.327

Test set 0.676 1.406 0.331 0.875 0.347

Readar datasets
Epoch 4 Transfer validation set 0.565 0.660 0.436 0.560 0.671

Test set 0.568 0.678 0.432 0.551 0.667

Epoch 18 Transfer validation set 0.602 1.029 0.399 0.472 0.730

Test set 0.606 1.041 0.393 0.458 0.736

Table 6.4: Evaluation scores of ResU-net trained and validated on crowdAI data and evaluated on
Bing Maps + OSM data and Readar data.

6.4 resolution robustness

An experiment is set up to measure the influence of image resolution on the quality of perfor-
mance of CNNs. Experiments on image resolution using Mask R-CNN are influenced by the
Region Proposal Network module of Mask R-CNN. The ResU-net model or any other FCN is
more suitable for this experiment as it only contains core elements of a CNN: convolutional
and pooling layers.

The ResU-net model is more suitable for this type of experiment compared to Mask R-CNN
as the latter uses anchor box sizes as a hyperparameter which inherently influence the results
of the Mask R-CNN model. The ResU-net model does not contain any hyperparameter with
respect to object size. Hence, the ResU-net model is preferred in this case to safeguard the
experimental results from any unwanted influences inferred by the anchor box size hyperpa-
rameter of Mask R-CNN.

6.4 resolution robustness 73

6.4.1 Image quality experiment

To obtain a baseline for the performance at different ground level resolutions, the following
experiment is set up: the model is trained on the Readar dataset twice: Once resized to 30 cm
ground resolution using bilinear interpolation and once maintaining the original 10 cm reso-
lution. The experimental environment is kept identical between both experiments except for
the resolution of the input data. The intention of this experiment is to measure the difference
in performance between imagery of various resolutions.

Altering the resolution has two side effects that must be kept in mind: First, both training
and testing the model will theoretically be nine times as slow with the 10 cm resolution
experiment compared to the 30 cm resolution experiment. Secondly, the receptive field size
of a CNN is measured in pixels. The 10 cm resolution experiment will have a higher level of
detail available, but its effective receptive field size in meters will be three times lower in both
dimensions, reducing the amount of spatial context available to extract information from.

6.4.2 Image quality results

In Table 6.5 a comparison is made between the predictions of the ResU-net model trained on
10 cm imagery compared to 30 cm imagery. Interestingly, the model trained on 10 cm im-
agery did not outperform the model trained on 30 cm imagery based on these performance
metrics. The expectation was that the 10 cm imagery would yield more accurate predictions.
A visualisation of the predictions provides clues to the underlying reasons for this lack of im-
provement. Figure 6.7 shows the comparison in performance on a close-up image containing
some common residential buildings and small sheds. As expected, the 10 cm model shows a
strongly improved recall for sheds and smaller buildings. The predictions of the 10 cm model
also trace the building outlines more closely and seem to contain fewer false positives.

Results on the Readar dataset at 10 cm

Dataset IoU Precision Recall

Train set (10cm) 0.803 (+1.0%) 0.876 (+0.0%) 0.904 (+1.2%)
Validation set (10cm) 0.728 (-2.4%) 0.830 (-2.2%) 0.850 (-0.9%)
Test set (10cm) 0.722 (-3.9%) 0.809 (-4.8%) 0.859 (-0.8%)
Heerlen (10cm) 0.662 (-0.3%) 0.755 (+0.0%) 0.830 (-0.5%)

Table 6.5: Evaluation scores of ResU-net model trained, validated and tested on Readar’s data using
the native 10 cm resolution imagery, compared to the results on imagery downsampled to
30 cm.

Figure 6.8 explains why the pixel-wise performance metrics do not show an improvement
over the 30 cm model: The 10 cm performs worse on the larger buildings. The certainty of
the predictions on the flats is slightly lower on average and it misses large parts of one large
building in the lower right corner. Since pixel-wise performance metrics are used, the influ-
ence of a building on the performance metrics directly correspond with its size. Missing one
large building can negate the positive effect of correctly detecting a multitude of small sheds,
which is exactly what seems to be happening. In line with expectations, the conclusion is that
the 10 cm model outperforms the 30 cm model on detecting smaller buildings whereas the
30cm model performs better at detecting the entirety of larger buildings.

74 resu-net

Figure 6.7: Left: A 88.6 by 88.6 meter 10 cm resolution image of Heerlen containing predictions of a
model trained and tested on 30 cm imagery. Right: Predictions of a model trained and
tested on 10 cm imagery.

Figure 6.8: Left: A 153.6 by 153.6 meter 10 cm resolution image of Heerlen containing predictions of
a model trained and tested on 30 cm imagery. Right: Predictions of a model trained and
tested on 10 cm imagery.

6.4 resolution robustness 75

For the use case of this model, building-wise statistics are more relevant. A breakdown
based on size is especially of interest. Smaller buildings have a relatively low coverage in ex-
isting maps whereas most of the largest buildings are generally properly mapped. Section 6.6
provides some building-wise statistics.

6.4.3 Resolution robustness experiments

To measure the robustness of the ResU-net architecture with respect to image resolution, the
model which was trained on the 10 cm resolution train set is tested on the 30 cm resolution
test set and vice versa. The expectation is that the performance of both models suffers greatly
when testing on a resolution deviating from the training resolution. The model trained on 30

cm and tested on 10 cm is expected to outperform the other model for two reasons: The first
reason is that the average building size of the 10 cm resolution is nine times larger compared
to the 30 cm resolution and larger buildings have shown to be easier to detect. The second
reason is that it is easier to score well on a test set of 10 cm resolution because of the higher
level of detail compared to the 30 cm test set the other model has to predict on.

6.4.4 Resolution robustness results

Table 6.6 combines the results of the resolution robustness experiments with the earlier exper-
iments performed in this chapter. As expected, the experiments where the test set resolution
differs from the train and validation set resolution show significantly reduced performance.
Predictions for all four experiments are visualized for comparison in Appendix B.5.

Experiment Train & validation Test IoU Precision Recall
resolution resolution

1 30 cm 30 cm 0.752 0.850 0.866

2 10 cm 10 cm 0.722 0.809 0.859

3 30 cm 10 cm 0.483 0.633 0.671

4 10 cm 30 cm 0.201 0.704 0.220

Table 6.6: Overview of test scores of the ResU-net model trained and tested on Readar data.

76 resu-net

6.5 building geometry robustness

Most CNN models are to a certain extent sensitive to object orientation. The sensitivity
to orientation can be used as an advantage when the available dataset is limited in size.
Popular data augmentation techniques include image rotation and image flipping to increase
the number of unique images available to either train or test on. Artificially increasing the
size of the training set this way can increase performance and should theoretically make
the model more orientation robust. Combining predictions of the same image at different
orientations is known as TTA. TTA acts as an ensembling method to increase the performance
at test time. These augmentation techniques are commonly used, with the increase in overall
model performance being the most widely reported quantifier on the effectiveness of these
techniques.

6.5.1 Building geometry robustness experiment

In this experiment, not the model performance but the orientation robustness is quantified.
The most direct way to quantify the orientation sensitivity of a model is to measure the
pixel-wise differences between predictions for the same model on the same image at different
orientations. The influence of augmentations during training and during testing is measured
by the following setup. Two ResU-net models will be trained with the same default settings,
except that one model uses the orientation augmentations described in Section 6.2.4 during
training and the other model does not. When testing on the Heerlen dataset, test time aug-
mentation will be applied using these eight orientations and the prediction for every unique
orientation is stored individually. Training and testing for both models is conducted on a 30

cm resolution.

When evaluating differences between the eight unique orientations, the predicted proba-
bilities for each unique orientation are binarized with a cut-off threshold at 0.5. A pixel is
predicted unanimously if the predictions for all orientations are either all positive (8 positive
predictions) or all negative (0 positive predictions). The mean percentage of unanimously
predicted pixels will be the quantitative measure for the orientation robustness of the model.

6.5.2 Building orientation robustness results

Table 6.7 shows the comparison between the model trained with image orientation augmen-
tations and the model trained without these augmentations. The model without train aug-
mentations has slightly more consistent predictions between orientations. With this model,
93.49 percent of all pixels receive the same evaluation from all eight orientations against 93.00

percent of the model trained with orientation augmentations. The pixels unanimously pre-
dicted to be negative (no building) are the main contributors to this figure with 89.64 and
89.43 percent of all pixels respectively are unanimously predicted to be negative. Figure 6.9
shows a breakdown of the cases where at least one of the eight predictions is positive. The
model with train augmentations seems to be more sensitive to object orientation as there is
more disagreement in predictions between different orientations of the same image.

6.6 building-wise evaluation 77

Figure 6.9: Visualization of the distribution of positive predictions per pixel on the Heerlen dataset
of one ResU-net model trained with orientation augmentations and one model trained
without.

Model Train loss Val. loss Test loss All positive All negative Unanimous
(Jaccard) (Jaccard) (Jaccard) predictions (freq) predictions (freq) predictions (freq)

With augm. 0.2252 0.2542 0.336 0.0337 0.8964 0.9301

Without augm. 0.2266 0.2535 0.333 0.0406 0.8943 0.9349

Table 6.7: Comparison of predictions on Heerlen of two models showing the frequency of unanimous
pixel-wise predictions.

6.6 building-wise evaluation

As explained Section 6.4.2, pixel-wise evaluation metrics are biased with respect to building
size. Therefore, the pixel-wise segmentation results from the ResU-net are vectorized. The
pixel mask predictions are first binarized using a threshold of 0.5. When using TTA, the eight
unique binary prediction masks per image are averaged pixel-wise resulting in the discrete
set of possible probabilities of {0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1}. Here another
cut-off threshold is used of 0.2, meaning that the pixel has to be classified as positive in at
least two of the eight predictions. The resulting binary masks are vectorized into prediction
vectors. These steps have been performed for two sets of predictions. The first set is the
set of predictions on Heerlen by the 10 cm model discussed in Section 6.4. The second set
is a set of predictions on Amersfoort by a model trained with the exact same settings but
excluding all Amersfoort data from the training and validation set. This reduces the size of
the training set from 374 km2 with 80 km2 to 294 km2 and reduces the number of buildings
in the ground truth by 100,350. Table 6.8 shows that the model trained without Amersfoort
shows a significantly larger gap between the training loss and validation loss, a potential
indication of overfitting.

78 resu-net

Model Train loss Validation loss

Including Amersfoort 0.2699 0.3418

Excluding Amersfoort 0.1700 0.4076

Table 6.8: The 10 cm model as described in Section 6.4 which included Amersfoort in its dataset
compared with a model which is trained identically but excludes Amersfoort.

The building-wise evaluation is performed based on an Intersection over Union between
the ground truth and prediction vectors. A single prediction vector might contain multiple
connected buildings in the ground truth. Consequently the decision has been made that for a
prediction to be classified as a correct detection, the Intersection over Union with the ground
truth has to be larger than zero, i.e. only a minimal overlap of one pixel is required. Any
other IoU threshold would yield an unfair evaluation on prediction vectors spanning multiple
buildings. Table 6.9 shows the evaluation of the predictions using this performance metric.

Initial results on Amersfoort and Heerlen

Amersfoort Heerlen

Total buildings in ground truth 100,350 82,773

Total predictions 82,231 57,611

Precision 0.524 0.579

Recall 0.911 0.939

Table 6.9: Initial building-wise precision and recall on Amersfoort and Heerlen.

Inspection of the results reveals that many predictions are smaller than 5 m2: 45,301 predic-
tions for Amersfoort are below 5 m2 and 23,391 predictions for Heerlen. Figure 6.10 shows the
precision of the predictions at various prediction sizes. The precision for predictions below 5

m2 is 0.295 and 0.237 for Amersfoort and Heerlen respectively. Based on this information, all
prediction vectors with an area smaller than 5 m2 are discarded. The effects of introducing
this minimum detection size threshold are shown in Table 6.10. A breakdown of recall given
various building sizes is presented in Figure 6.13, showing that the ResU-net is not robust
with regards to building size. Visual samples of the vectorized predictions are given in Fig-
ure 6.11 for Amersfoort and Figure 6.12 for Heerlen. The same samples including ground
truth are provided in Appendices B.7 and B.8.

Figure 6.10: Precision of predictions on Amersfoort and Heerlen for various prediction vector area
ranges.

6.6 building-wise evaluation 79

Figure 6.11: Vectorized predictions on Amersfoort. An orange outline indicates the prediction over-
laps at least one building in the ground truth, red indicates no overlap.

Figure 6.12: Vectorized predictions on Heerlen. An orange outline indicates the prediction overlaps
at least one building in the ground truth, red indicates no overlap.

80 resu-net

Figure 6.13: Recall of predictions on Amersfoort and Heerlen for various building area ranges.

Results on Amersfoort and Heerlen (prediction > 5 m2)

Amersfoort Heerlen

Total predictions 36,929 (-45,302) 32,3320 (-23,391)
Precision 0.806 (+0.2817) 0.816 (+0.2374)
Recall 0.884 (-0.0270) 0.922 (-0.0157)

Table 6.10: Building-wise precision and recall on Amersfoort and Heerlen using a minimum predic-
tion size of 5 m2. In brackets the comparison to the non-thresholded predictions.

6.6.1 Building-wise results per sub-datasource

As described in Chapter 4, the ground truth in these experiments is an aggregate of two main
cadastral databases for buildings (BAG and BGT) and manually detected buildings. Readar
offers a service where it reports all buildings visible on aerial imagery that are currently not
listed in any cadastral database. This building detection on aerial imagery is currently per-
formed manually. To provide more detailed insights for the comparison between manual map-
ping and the ResU-net model, the performance is broken down based on the sub-datasources
of the ground truth. Figure 6.14 presents a detailed overview on recall for Heerlen per sub-
datasource and Table 6.11 provides the overall figures for both Amersfoort and Heerlen.

Figure 6.14: Recall of predictions larger than 5 m2 on Heerlen per sub-datasource for various area
ranges, with on the right axis the number of buildings in each sub-domain.

6.6 building-wise evaluation 81

Recall
Data source Amersfoort Heerlen

Manual mapped 0.680 0.740

BGT 0.649 0.757

BAG 0.905 0.950

BGT + BAG 0.895 0.946

Manual Mapped + BGT + BAG 0.884 0.922

Table 6.11: Overall recall of predictions larger than 5 m2 on Amersfoort and Heerlen per sub-
datasource.

6.6.2 Evaluation of incorrect predictions

Experience tells that the aggregated ground truth is still not completely accurate. Therefore, a
visual inspection is made of the predictions classified as “incorrect” based on the used ground
truth. Figure 6.15 shows the results of a visual inspection on 283 of these false positives of
Amersfoort and 300 false positives of Heerlen. Roughly 3 and 34 percent of all false posi-
tives respectively have been reclassified as buildings in the manual validation process. These
buildings initially classified as false positives are the newly detected buildings currently not
present in the ground truth. Given the use case of Readar, these newly detected buildings
embody the added value of the model. The precision and recall have been recalculated by
interpolating these results to all false positive predictions in Table 6.12. Figure 6.16 shows a
breakdown of the interpolated classification results of the predictions.

Figure 6.15: Manual reclassification of false positive predictions of Amersfoort and Heerlen. The cat-
egory miscellaneous structures includes pylons, windmills, industrial structures, shelter
at bus stops, etc.

82 resu-net

Interpolated precision and recall based on manual reclassification results

Amersfoort Heerlen

False positives 7162 6277

Interpolated newly detected buildings 2387 (30% of 7162) 2134 (34% of 6277)
Interpolated precision 0.864 (+0.058) 0.879 (+0.063)
Interpolated recall 0.887 (+0.003) 0.924 (+0.002)

Table 6.12: Interpolated precision and recall of Amersfoort and Heerlen based on manual reclassifica-
tion of false positives. In brackets the comparison to the results based on the used ground
truth.

Figure 6.16: Interpolated classification results of the predictions on Amersfoort and Heerlen.

6.7 conclusion

The ResU-net architecture was implemented with the intention of outperforming Mask R-
CNN on the area of building geometry robustness, enabling the ResU-net to achieve satisfac-
tory performance in densely populated areas. ResU-net obtained a 0.81 score on precision
and 0.86 on recall (pixel-wise) on the Dutch city of Heerlen, translating to a 0.81 score on pre-
cision and 0.92 on recall (building-wise). Manual reclassification of a subset of false positives
results in an interpolated 0.88 precision score (building-wise). These results combined with
the robustness experiments give the impression that the ResU-net architecture is more robust
than Mask R-CNN with respect to building geometry.

6.7.1 Robustness evaluation

The ResU-net architecture shows mediocre geographical robustness when training and testing
on different geographical locations without retraining. The performance of a model on the
transfer validation sets varies greatly between epochs during the training process, as shown
by the introduction of transfer validation sets.

6.7 conclusion 83

Empirical verdict on robustness:

• ResU-net is not robust with respect to geographical location. When trained on the
crowdAI dataset assumedly located in North America, it obtains an Intersection over
Union validation score of 0.867 and test scores of 0.440 on the city of Lusaka in Zambia
and 0.432 on the Readar test set (various locations in the Netherlands). Trained on
the crowdAI dataset, it also yields meagre scores of 0.269 precision and 0.296 recall
(building-wise) on the Zambian city of Mongu.

• ResU-net as an architecture is robust with respect to image resolution. It has been
trained twice: on 10 cm resolution imagery and the same imagery downsampled to 30

cm. The two models obtained Intersection over Union test scores of 0.722 and 0.752

respectively using identical hyperparameter settings. When the model trained on 30 cm
is applied on 10 cm test imagery the test IoU drops to 0.483. The model trained on 10

cm applied to 30 cm yields a 0.201 IoU, indicating that a trained ResU-net model is not
robust with respect to resolution.

• ResU-net is partially robust with respect to building geometry. Visually, it seems to
be robust to varying building aspect ratios and shapes. It is not robust to building size
as the likelihood of detection increases from 52% for buildings up to 5 m2 to above 99%
for buildings above 50 m2. When binarizing the predictions using a threshold of 0.5,
up to 6.99 percent of all pixels could obtain a different classification when a different
orientation of the image is used. This indicates that the ResU-net is not robust with
respect to orientation.

6.7.2 Task evaluation

The ResU-net architecture was implemented due to performance limitations of the object
detection architecture Mask R-CNN. These performance limitations are caused by sensitivity
of Mask R-CNN’s object detection algorithm to three main components of building geometry:
Orientation, aspect ratio and size. The pixel-wise segmentation approach of the ResU-net
removes these limitations. This improves the robustness with respect to object orientation
and aspect ratio as intended. An additional benefit of the segmentation approach of the ResU-
net architecture is that its reduced complexity requires fewer hyperparameters to fine-tune.
For example, the ResU-net also does not require any hyperparameter tuning to the expected
building size distribution, image resolution or their interaction. Overall, the experiments with
the ResU-net verify that the segmentation task suits the challenge of robust building detection
on aerial imagery well.

7 C O N C L U S I O N

In this chapter the objectives and research questions posed for this internship will briefly be
reiterated. The performance and robustness of the Mask R-CNN and ResU-net models will be
compared and evaluation in relation with the intended use cases of the 510 team of the NLRC

and Readar. Finally, some open questions and topics for further research will be addressed.

7.1 objective and research questions

The objective of this internship was to investigate the potential of Deep Learning for building
detection on aerial imagery. The practical objective was stated as follows:

The development of a robust Deep Learning model capable of worldwide build-
ing detection on aerial imagery

As a result of a literature review, the Mask R-CNN model architecture has been implemented
to perform the object detection and instance segmentation tasks and the ResU-net model ar-
chitecture has been implemented to perform the image segmentation task. The robustness
of Mask R-CNN and ResU-net has been evaluated with respect to three characteristics of the
input data: Geographical location, image resolution and building geometry. The following
research questions have been (partially) answered:

1. What is the robustness of a Mask R-CNN model with respect to the geographical loca-
tion of the input data?

Mask R-CNN is robust with respect to geographical location, as a model trained on
an North American dataset can successfully detect buildings on imagery of locations
in Africa, South America and Europe. On ∼ 29, 000 buildings in Mongu, Zambia, the
model obtained a building-wise precision of ∼0.98 and a recall of ∼0.60.

2. What is the robustness of a Mask R-CNN model with respect to the resolution of aerial
imagery?

Mask R-CNN is not robust with respect to image resolution, but only because the
model is sensitive to the interaction between the anchor scales hyperparameter, image
resolution and building size distribution. Due to the influence of this interaction, no un-
biased assessment could be made on the image resolution robustness of Mask R-CNN.

7.1 objective and research questions 85

3. What is the robustness of a Mask R-CNN model with respect to building geometry?

Mask R-CNN is not robust with respect to building geometry. Not only is the model
sensitive to the building size distribution, but dealing with a large variety in building
shapes and orientations also appears to be challenging when the model is limited to
three anchor ratios.

4. What is the robustness of a U-net model with respect to the geographical location of the
input data?

ResU-net is not robust with respect to geographical location. When trained on the
crowdAI dataset assumedly located in North America, it obtains an Intersection over
Union validation score of 0.867 and test scores of 0.440 on the city of Lusaka in Zam-
bia and 0.432 on the Readar test set (various locations in the Netherlands). Trained
on the crowdAI dataset, it also yields meagre scores of 0.269 precision and 0.296 recall
(building-wise) on the Zambian city of Mongu.

5. What is the robustness of a U-net model with respect to the resolution of aerial imagery?

ResU-net as an architecture is robust with respect to image resolution. It has been
trained twice: on 10 cm resolution imagery and the same imagery downsampled to 30

cm. The two models obtained Intersection over Union test scores of 0.722 and 0.752

respectively using identical hyperparameter settings. When the model trained on 30 cm
is applied on 10 cm test imagery the test IoU score drops to 0.483. The model trained
on 10 cm applied to 30 cm yields a 0.201 IoU, indicating that a trained ResU-net model
is not robust with respect to resolution.

6. What is the robustness of a U-net model with respect to building geometry?

ResU-net is partially robust with respect to building geometry. Visually, it seems to
be robust to varying building aspect ratios and shapes. It is not robust to building size
as the likelihood of detection increases from 52% for buildings up to 5 m2 to above 99%
for buildings above 50 m2. When binarizing the predictions using a threshold of 0.5,
up to 6.99 percent of all pixels could obtain a different classification when a different
orientation of the image is used. This indicates that the ResU-net is not robust with
respect to orientation.

86 conclusion

Empirical robustness assessment of Mask R-CNN and ResU-net

Robustness aspect Mask R-CNN ResU-net

Geographical location Yes No
Image resolution No Yes (individual model: No)
Building geometry No Partial

Size No No
Shape No Yes
Orientation No Partial

Table 7.1: Overview of empirical robustness assessment of Mask R-CNN and ResU-net.

7.2 comparison mask r-cnn and resu-net

A comparison of the robustness assessment of Mask R-CNN and ResU-net is shown in Ta-
ble 7.1. The main conclusions are highlighted below.

The Mask R-CNN model seems to be more geographically robust than the ResU-net model
but it is unclear why. Using a similar experimental setup, a Mask R-CNN model obtained a
0.98 precision and 0.60 recall (building-wise) against 0.27 precision and 0.30 recall of a ResU-
net model. This difference could potentially be explained by the mechanisms of the RPN of
Mask R-CNN but further research is required for improved understanding on the underly-
ing cause. Transfer validation sets showed that the performance of the ResU-net on external
datasets is relatively unstable during the training process.

No unbiased assessment could be made of the robustness of Mask R-CNN with respect
to input image resolution. A strong correlation was found between model performance and
the interaction between image resolution, building size distribution and the anchor size hy-
perparameter. The ResU-net also shows a correlation between model performance and the
interaction between image resolution and building size distribution. However, the ResU-net
model is hyperparameter-free with regards to image resolution or building size, allowing it
to be trained on any resolution without requiring hyperparameter tuning.

An important conclusion is that the Region Proposal Network module of Mask R-CNN uses
hyperparameters which indirectly describe the expected range of building sizes and building
aspect ratios. The specificity imposed by these hyperparameters makes the Mask R-CNN
model less robust with regards to building geometry as its performance suffers on buildings
which deviate from the expected ranges. The ResU-net architecture does not contain these
self-imposed limitations due to the difference in nature between the object detection task and
the image segmentation task.

7.2 comparison mask r-cnn and resu-net 87

7.2.1 Use case 510

For the 510 data team of the NLRC the benefit of an automated building detection model is the
greatest in poorly mapped areas in which the Red Cross is active. This mainly encompasses
rural areas in the developing world. This means that a key aspect for the 510 team of the
NLRC in the potential deployment of an automated building detection model is its geograph-
ical robustness. The Mask R-CNN model trained on the crowdAI dataset has shown to be
geographically robust with promising results in areas of interest for the 510 team of the NLRC

and Missing Maps. The Mask R-CNN model outperforms the ResU-net model which was
trained on the same dataset. The geographical robustness makes the Mask R-CNN model
the most suitable building detection model for the 510 team of the two implemented in this
internship.

7.2.2 Use case Readar

For Readar, the key aspect is strong performance on imagery of Western Europe. This in-
cludes both rural and urban environments. To integrate an automated building detection
model into their commercial mapping services, high precision and high recall are required.
The ResU-net model is relatively robust to varying building sizes, shapes and orientations,
in contrast to the Mask R-CNN model. This is a significant advantage over Mask R-CNN in
densely populated areas. Results show that the performance of Mask R-CNN is unsatisfactory
in Western European urban environments but that ResU-net copes well in Dutch cities. This
robustness with respect to building geometry makes the ResU-net the most suitable building
detection architecture for Readar of the two implemented in this internship.

7.2.3 Discussion

The main potentially solvable issues observed in this internship are related to the sensitivity
of Mask R-CNN towards building geometry. The building orientation issue could possibly
be solved by changing the Mask R-CNN architecture. The underlying reason of inefficient
bounding boxes is not the orientation of the building itself, but the horizontal and vertical
orientation of the bounding box. Changing the backbone of Mask R-CNN into a rotation-
invariant CNN with rotating bounding boxes as proposed in [43] might solve this problem.

A more thorough approach which solves both the orientation and building size sensitivity
issues of Mask R-CNN, would be to change the RoIAlign layer. The RoIAlign layer resizes
each proposal to predefined square dimensions. Swapping this basic transformation for a
more advanced, spatial transformation network similar to Spatial Transformer Networks [29]
could potentially solve both the orientation and building size issues of Mask R-CNN. Adding
a spatial transformation network to the ResU-net as an architectural enhancement is likely to
improve its orientation robustness and potentially also its image resolution robustness.

One other discrepancy that remains unexplained in this internship is the difference in ob-
served geographical robustness between Mask R-CNN and ResU-net. Potentially the RPN

of Mask R-CNN introduces a bias towards making positive detections by generating a fixed
number of proposals regardless of the activation values in the feature map generated by the
backbone. Further research is required to further investigate this issue.

8 R E C O M M E N DAT I O N S

8.1 general recommendations

One recurring theme in this internship was the quality of available data. Issues included
geographic misalignment between imagery and ground truth labels and temporal gaps be-
tween the collection of imagery and ground truth labels. In some cases a varying quality
of ground truth labels prevented accurate quantitative analysis on the performance of the
Machine Learning models. A lack of meta-data on origin of the ground truth labels caused
issues with solving alignment issues between imagery and the ground truth labels, mainly
with the Bing Maps imagery and OpenStreetMap data.

8.2 recommendations to 510 and missing maps

The main recommendation to the Missing Maps initiative is to improve the administration of
the active background source that is being used to map buildings. As long as this meta-data is
not well-maintained, it remains a challenge to properly align the mapping results of multiple
volunteers onto one imagery source.

For the 510 data team, the availability of resources to experiment with Deep Learning is a
key aspect to initiate successful development and deployment of such Deep Learning models.
For this, a strategic investment in both substantial computing power and a reliable source
of aerial or high-resolution satellite imagery is required. This would allow the 510 team to
further explore the capabilities of Deep Learning for building detection and related remote
sensing tasks. This internship merely showcased one potential use case of Deep Learning for
remote sensing. Besides this showcase, it must be stressed that the potential benefit of Deep
Learning methods for the 510 data team is not limited to only the building detection task.
The potential benefits of Deep Learning methods are most likely attainable for many other
remote sensing tasks as the Machine Learning field keeps rapidly evolving and expanding.

For the Red Cross in general, it will be important to maintain warm relations with influen-
tial and resourceful stakeholders. For example, the Microsoft Bing Maps team has created a
model that was used to detect buildings in the entire United States of America and Canada
[48]. The Microsoft Bing Maps team has a large capacity in human, computational and data re-
sources allowing them to handle deploy projects on a large scale. Although there are obvious
disadvantages when relying on external partners for data compared to in-house projects, the
additional resources can significantly increase project scales and increase deployment speed.

8.3 recommendations to readar 89

8.3 recommendations to readar

The main recommendation is to use the ResU-net model for building detection. The model
in its current form still has room for improvement, so one of the main recommendations is to
improve the model using the following steps:

• Increase the size of the training set.
More training data is available, and using additional data to train the model would in-
crease the quality of the predictions.

• Add the height data as a fourth input channel.
The assumption is that using height data would improve the quality of the predictions.
Creating a nDSM (normalized Digital Surface Model) using private in-house techniques
based on the imagery that is used as input would provide even more accurate data
which would likely increase the quality of the models predictions even further.

• Figure out how the 3-channel pretrained weights from ImageNet or previous well-
performing models can be used as initialization for the new model with 4 input chan-
nels.
Using the weights file that is pretrained on ImageNet improves the convergence speed
of the training process. These pretrained weights are normally used for 3-channel input,
whereas a 4-channel input is desired for the addition of height information.

• Change encoder backbone from ResNet-50 to ResNet-101.
The ResNet-101 model has more layers which results in a deeper understanding of the
image and therefore increased performance. The ResNet model with 101 layers also
has a layer receptive field compared to the ResNet-50 model which should increase the
model’s accuracy on relatively large buildings. The downside of the ResNet-101 model
is that the batch size during training has to be decreased because of increased memory
requirements. This will have a negative impact on performance.

• Use more GPUs to increase the batch size during training.
Using more GPUs will yield small performance increases in terms of speed. However,
the main benefit of using multiple GPUs is that a larger batch size can be used during the
training process. The larger batch size will lead to weight updates that closer represent
the data distribution and it increases the benefits of batch normalization. This results in
improved convergence and will thus yield a better performing model.

B I B L I O G R A P H Y

Abdulla, W. (2017). Mask r-cnn for object detection and instance segmentation on keras and
tensorflow. https://github.com/matterport/Mask RCNN.

Chaurasia, A. and Culurciello, E. (2017). Linknet: Exploiting encoder representations for
efficient semantic segmentation. In 2017 IEEE Visual Communications and Image Processing
(VCIP), pages 1–4. IEEE.

Chen, Q., Wang, L., Wu, Y., Wu, G., Guo, Z., and Waslander, S. L. (2019). Aerial imagery for
roof segmentation: A large-scale dataset towards automatic mapping of buildings. ISPRS
Journal of Photogrammetry and Remote Sensing, 147:42–55.

Cireşan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2010). Deep, big, simple
neural nets for handwritten digit recognition. Neural computation, 22(12):3207–3220.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2015). Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289.

Dertat, A. (2018). Applied deep learning - part 4: Convolutional neural
networks. https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-

neural-networks-584bc134c1e2. Accessed: 2018-09-19.

Dormehl, L. (2018). What is an artificial neural network. https://www.digitaltrends.com/cool-

tech/what-is-an-artificial-neural-network/. Accessed: 2018-09-23.

dstl (2017). Kaggle challenge: Dstl satellite imagery feature detection. https://www.kaggle.

com/c/dstl-satellite-imagery-feature-detection. Accessed: 2018-09-29.

Facebook (2018). Deepglobe - satellite image understanding challenge. https://www.

deepglobe.org/. Accessed: 2018-09-29.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mecha-
nism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–
202.

Gao, H. (2017). Faster r-cnn explained. https://medium.com/@smallfishbigsea/faster-r-cnn-

explained-864d4fb7e3f8. Accessed: 2018-09-20.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial intelli-
gence and statistics, pages 249–256.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks. In Pro-
ceedings of the fourteenth international conference on artificial intelligence and statistics, pages
315–323.

Golovanov, S., Neuromation, O., Kurbanov, R., Artamonov, A., Davydow, A., and Nikolenko,
S. (2018). Building detection from satellite imagery using a composite loss function. In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pages 219–2193. IEEE.

https://github.com/matterport/Mask_RCNN
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/
https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.deepglobe.org/
https://www.deepglobe.org/
https://medium.com/@smallfishbigsea/faster-r-cnn-explained-864d4fb7e3f8
https://medium.com/@smallfishbigsea/faster-r-cnn-explained-864d4fb7e3f8

BIBLIOGRAPHY 91

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., and Seung, H. S. (2000).
Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit.
Nature, 405(6789):947.

Hamaguchi, R. and Hikosaka, S. (2018). Building detection from satellite imagery using
ensemble of size-specific detectors. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pages 223–2234. IEEE.

He, K., Girshick, R., and Dollár, P. (2018). Rethinking imagenet pre-training. arXiv preprint
arXiv:1811.08883.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE
international conference on computer vision, pages 2961–2969.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE international con-
ference on computer vision, pages 1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity mappings in deep residual networks.
In European conference on computer vision, pages 630–645. Springer.

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 7132–7141.

Hui, J. (2018). Image segmentation with mask r-cnn. https://medium.com/@jonathan hui/

image-segmentation-with-mask-r-cnn-ebe6d793272. Accessed: 2018-09-25.

Humanity and Inclusion (2018). Crowdai - mapping challenge. https://www.crowdai.org/

challenges/mapping-challenge. Accessed: 2018-09-29.

Iglovikov, V., Mushinskiy, S., and Osin, V. (2017). Satellite imagery feature detection
using deep convolutional neural network: A kaggle competition. arXiv preprint
arXiv:1706.06169.

Iglovikov, V., Seferbekov, S., Buslaev, A., and Shvets, A. (2018). Ternausnetv2: Fully convolu-
tional network for instance segmentation. arXiv preprint arXiv:1806.00844.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Jaderberg, M., Simonyan, K., Zisserman, A., et al. (2015). Spatial transformer networks. In
Advances in neural information processing systems, pages 2017–2025.

Karpathy, A. (2018a). Stanford university cs231n: convolutional neural networks for visual
recognition. http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecture11.pdf . Accessed:
2018-09-22.

Karpathy, A. (2018b). Stanford university cs231n: convolutional neural networks for visual
recognition. http://cs231n.github.io/convolutional-networks/#pool. Accessed: 2018-09-
21.

https://medium.com/@jonathan_hui/image-segmentation-with-mask-r-cnn-ebe6d793272
https://medium.com/@jonathan_hui/image-segmentation-with-mask-r-cnn-ebe6d793272
https://www.crowdai.org/challenges/mapping-challenge
https://www.crowdai.org/challenges/mapping-challenge
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
http://cs231n.github.io/convolutional-networks/#pool

92 BIBLIOGRAPHY

Karpathy, A. (2018c). Stanford university cs231n: convolutional neural networks for visual
recognition. http://cs231n.github.io/neural-networks-3/#sgd. Accessed: 2018-09-21.

Karpathy, A. (2018d). Stanford university cs231n: convolutional neural networks for visual
recognition. URL: http://cs231n. stanford. edu/syllabus. html.

Kashyapa, R. (2018). Historic error rates for the imagenet competition. http://qualitastech.

com/artificial-intelligence-manufacturing. Accessed: 2018-09-22.

Kersbergen, D. (2018). Automated building damage classification using remotely sensed data:
Case study: Hurricane damage on st. maarten.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D.
(1989). Backpropagation applied to handwritten zip code recognition. Neural computation,
1(4):541–551.

Lesiv, M., See, L., Laso Bayas, J., Sturn, T., Schepaschenko, D., Karner, M., Moorthy, I., McCal-
lum, I., and Fritz, S. (2018). Characterizing the spatial and temporal availability of very
high resolution satellite imagery in google earth and microsoft bing maps as a source of
reference data. Land, 7(4):118.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017a). Feature
pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2117–2125.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017b). Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision, pages 2980–
2988.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick,
C. L. (2014). Microsoft coco: Common objects in context. In European conference on com-
puter vision, pages 740–755. Springer.

Liu, D. (2017). A practical guide to relu. https://medium.com/tinymind/a-practical-guide-to-

relu-b83ca804f1f7. Accessed: 2018-09-23.

Liu, L., Pan, Z., and Lei, B. (2017). Learning a rotation invariant detector with rotatable
bounding box. arXiv preprint arXiv:1711.09405.

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3431–3440.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, volume 30, page 3.

Maggiori, E., Tarabalka, Y., Charpiat, G., and Alliez, P. (2017). Can semantic labeling methods
generalize to any city? the inria aerial image labeling benchmark. In IEEE International
Geoscience and Remote Sensing Symposium (IGARSS). IEEE.

http://cs231n.github.io/neural-networks-3/#sgd
http://qualitastech.com/artificial-intelligence-manufacturing
http://qualitastech.com/artificial-intelligence-manufacturing
https://medium.com/tinymind/a-practical-guide-to-relu-b83ca804f1f7
https://medium.com/tinymind/a-practical-guide-to-relu-b83ca804f1f7

BIBLIOGRAPHY 93

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133.

Microsoft Bing Maps Team (2017). Microsoft releases 12 million canadian building foot-
prints as open data. https://blogs.bing.com/maps/2019-03/microsoft-releases-12-million-

canadian-building-footprints-as-open-data. Accessed: 2019-03-13.

Mnih, V. and Hinton, G. E. (2010). Learning to detect roads in high-resolution aerial images.
In European Conference on Computer Vision, pages 210–223. Springer.

Ohleyer, S. (2018). Building segmentation on satellite images. Web: https://project. inria. fr/aeri-
alimagelabeling/files/2018/01/fp ohleyer c ompressed. pdf.

Planet.com (2017). Kaggle challenge: Understanding the amazon from space. https://www.

kaggle.com/c/planet-understanding-the-amazon-from-space. Accessed: 2018-09-30.

Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomed-
ical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252.

Seferbekov, S. (2019). Kaggle challenge: Data science bowl - [ods.ai] topcoders, 1st place
solution. https://www.kaggle.com/c/data-science-bowl-2018/discussion/54741. Accessed:
2018-09-28.

SpaceNet (2019). Spacenet building footprint extraction challenge. https://spacenetchallenge.

github.io. Accessed: 2018-09-27.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9.

Wikimedia Commons (2018). Sigmoid function - wikipedia, the free encyclopedia. https:

//en.wikipedia.org/wiki/Sigmoid function. Accessed: 2018-09-22.

Xie, M., Jean, N., Burke, M., Lobell, D., and Ermon, S. (2016). Transfer learning from deep fea-
tures for remote sensing and poverty mapping. In Thirtieth AAAI Conference on Artificial
Intelligence.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual transformations
for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1492–1500.

Yak (2019). Crowdai - yak’s mapping challenge summary, 2nd place solution. https://www.

crowdai.org/topics/yak-s-mapping-challenge-summary/discussion. Accessed: 2018-09-29.

Yakubovskiy, P. (2017). Segmentation models. https://github.com/qubvel/segmentation

models.

https://blogs.bing.com/maps/2019-03/microsoft-releases-12-million-canadian-building-footprints-as-open-data
https://blogs.bing.com/maps/2019-03/microsoft-releases-12-million-canadian-building-footprints-as-open-data
https://www.kaggle.com/c/planet-understanding-the-amazon-from-space
https://www.kaggle.com/c/planet-understanding-the-amazon-from-space
https://www.kaggle.com/c/data-science-bowl-2018/discussion/54741
https://spacenetchallenge.github.io
https://spacenetchallenge.github.io
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Sigmoid_function
https://www.crowdai.org/topics/yak-s-mapping-challenge-summary/discussion
https://www.crowdai.org/topics/yak-s-mapping-challenge-summary/discussion
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models

94 BIBLIOGRAPHY

Yang, H. L., Yuan, J., Lunga, D., Laverdiere, M., Rose, A., and Bhaduri, B. (2018). Building
extraction at scale using convolutional neural network: Mapping of the united states.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(8):2600–
2614.

Yuan, J. (2018). Learning building extraction in aerial scenes with convolutional networks.
IEEE transactions on pattern analysis and machine intelligence, 40(11):2793–2798.

Yuan, J., Yang, H.-H. L., Omitaomu, O. A., and Bhaduri, B. L. (2016). Large-scale solar
panel mapping from aerial images using deep convolutional networks. In 2016 IEEE
International Conference on Big Data (Big Data), pages 2703–2708. IEEE.

Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional networks.
In European conference on computer vision, pages 818–833. Springer.

Zhang, A., Liu, X., Gros, A., and Tiecke, T. (2017). Building detection from satellite images on
a global scale. arXiv preprint arXiv:1707.08952.

Zhao, K., Kang, J., Jung, J., and Sohn, G. (2018). Building extraction from satellite images
using mask r-cnn with building boundary regularization. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 242–2424. IEEE.

A A P P E N D I X : T E C H N I C A L S E T U P

a.1 dataset locations and sizes

In “Rijksdriehoekscoördinaten” (EPSG 28991), geometries defined using bounding boxes:

• Amersfoort, 80 km2, [151000, 470000, 159000, 460000]

• Arnhem, 110 km2, [186000, 446000, 197000, 436000]

• Breda, 81 km2, [106400, 404000, 118000, 397000]

• Maastricht, 42 km2, [173700, 320400, 182000, 315300]

• Molenwaard, 61 km2, [111300, 436000, 122400, 430500]

• Heerlen, 88 km2, [190738, 327572, 199400, 317400]

In “WSG84” (EPSG 4326), geometries defined using ESRI geometries:

• Malawi, Nsanje, 201 tiles, 1.2 km2

Point(-16.9203123, 35.2645404).buffer(0.005)

• Zambia, Zambezi, 3679 tiles, 20 km2

Point(-13.5436715, 23.1118652).buffer(0.023)

• Zambia, Kalabo, 749 tiles, 4.2 km2

Point(-14.994510, 22.684117).buffer(0.01)

• Zambia, Mongu, 11,273 tiles, 67 km2, 29k buildings
Point(-15.273368, 23.151050).buffer(0.04)

• Peru, Iquitos, 880 tiles, 5 km2

Polygon([(-3.732905, -73.264316),(-3.732905, -73.258759),(-3.735253, -73.258759),(-3.735253,
-73.264316),(-3.732905, -73.264316)])

• Zambia, LusakaNorth, 3360 tiles, 21 km2, 42k buildings
Polygon([[-15.348487, 28.277491],[-15.348487, 28.334464],[-15.374740, 28.334464],[-15.374740,
28.277491],[-15.348487, 28.277491]])

• Zambia, LusakaWest, 3168 tiles, 14 km2, 40k buildings
Polygon([[-15.374740, 28.334464],[-15.374740, 28.224526],[-15.453267, 28.224526],[-15.453267,
28.334464],[-15.374740, 28.334464]])

95

96 appendix: technical setup

a.2 technical environment

All computations are run on Amazon’s EC2 cloud computing services. One Amazon EC2

p3.2xlarge instance was used, which has a NVIDIA Tesla V100 GPU with 16 GB GPU memory
and eight virtual CPUs with 61 GB RAM available. An Amazon Machine Image (AMI) from
NVIDIA was used as base image, the NVIDIA Volta Deep Learning AMI. Version 18.09.01

of the AMI was used for the experiments. The AMI contains Ubuntu 16.04 LTS as operat-
ing system, Docker, and Nvidia-docker. NVIDIA maintains several Docker images in the
NVIDIA GPU Cloud with various Deep Learning software packages installed. Version 18.09

of the Docker image containing Tensorflow 1.12 and Python 3.5 was selected. The customized
Docker image contained additional Python packages including Keras (a high-level Machine
Learning framework on top of Tensorflow), PostGIS (database software for geospatial data),
GDAL (geospatial data processing software), OpenCV (image processing software) amongst
others.

a.3 hyperparameters mask r-cnn 97

a.3 hyperparameters mask r-cnn

c l a s s Config (object) :
NUMBER OF GPUs t o use . For CPU t r a i n i n g , use 1

GPU COUNT = 1

D e f a u l t v a l u e

IMAGES PER GPU = 5

#Out−o f−memory e r r o r s o c c u r r e d a t l a r g e r b a t c h s i z e s

Backbone network a r c h i t e c t u r e
BACKBONE = ” resnet101 ”
D e f a u l t v a l u e

The s t r i d e s o f e a c h l a y e r o f t h e FPN Pyramid . These v a l u e s
a r e b a s e d on a Resne t101 b a c k b o n e .
BACKBONE STRIDES = [4 , 8 , 16 , 32 , 64]
D e f a u l t v a l u e

Number o f c l a s s i f i c a t i o n c l a s s e s (i n c l u d i n g background)
NUM CLASSES = 2

T e c h n i c a l amendment
#Two c l a s s e s : B u i l d i n g and background / no b u i l d i n g

Length o f s q u a r e anchor s i d e in p i x e l s
RPN ANCHOR SCALES = (8 , 16 , 32 , 64 , 128 , 256)
D e f a u l t was (32 , 64 , 128 , 256 , 5 1 2) .
O p t i m i z a t i o n amendment .
#AP@IoU0 . 5 i n c r e a s e d by 0 .101

R a t i o s o f a n c h o r s a t e a c h c e l l (width / h e i g h t)
A v a l u e o f 1 r e p r e s e n t s a s q u a r e anchor , and 0 .5 i s a wide anchor
RPN ANCHOR RATIOS = [0 . 5 , 1 , 2]
D e f a u l t v a l u e .
#The o p t i o n s [0 . 6 , 1 , 1 . 6 7] , [0 . 4 , 1 , 2 . 5] , [0 . 3 3 , 1 , 3] and
[0 . 2 5 , 1 , 4] have been t e s t e d as w e l l but d i d not y i e l d improvements .
Anchor s t r i d e
I f 1 th en a n c h o r s a r e c r e a t e d f o r e a c h c e l l in t h e b a c k b o n e f e a t u r e map .
RPN ANCHOR STRIDE = 1

D e f a u l t v a l u e

Non−max s u p p r e s s i o n t h r e s h o l d t o f i l t e r RPN p r o p o s a l s .
RPN NMS THRESHOLD = 0 . 7

D e f a u l t v a l u e . E x t e n s i v e t e s t i n g has be en p e r f o r m e d f o r v a l u e s in t h e
range o f 0 .1 t o 0 . 9 , where h i g h e r v a l u e s p e r f o r m b e t t e r in d e n s e
urban r e g i o n s c o n t a i n i n g many c o n n e c t e d b u i l d i n g s .

How many a n c h o r s p e r image t o use f o r RPN t r a i n i n g

98 appendix: technical setup

RPN TRAIN ANCHORS PER IMAGE = 256

D e f a u l t v a l u e

ROIs k e p t a f t e r non−maximum s u p r e s s i o n (t r a i n i n g and i n f e r e n c e)
POST NMS ROIS TRAINING = 2000

D e f a u l t v a l u e

POST NMS ROIS INFERENCE = 2500

D e f a u l t was 1000
O p t i m i z a t i o n amendment
#AP@IoU0 .5 i n c r e a s e d by 0 .091 f rom 0 .690 t o 0 .781

I f e n a b l e d , r e s i z e s i n s t a n c e masks t o a s m a l l e r s i z e t o r e d u c e
memory l o a d . Recommended when us ing high−r e s o l u t i o n images .
USE MINI MASK = True
D e f a u l t v a l u e

MINI MASK SHAPE = (5 6 , 56) # (h e i g h t , width) o f t h e mini−mask
D e f a u l t was (28 , 28)
O p t i m i z a t i o n amendment
#Unknown p e r f o r m a n c e i n c r e a s e a s t h i s was changed b e f o r e t h e f i r s t run .

Input image r e s i z i n g
s q u a r e : R e s i z e and pad with z e r o s t o g e t a s q u a r e image
o f s i z e [max dim , max dim] .
IMAGE RESIZE MODE = ” square ”
D e f a u l t v a l u e

IMAGE MIN DIM = 320

IMAGE MAX DIM = 320

T e c h n i c a l amendment
Values have changed t o 320 as t h a t was t h e f i r s t m u l t i p l e o f 32
a b o v e t h e o r i g i n a l 300 p i x e l image s i z e

Image mean (RGB)
MEAN PIXEL = np . array ([7 7 . 7 , 8 9 . 6 , 1 0 1 . 3]) #Mean o f crowdAI t r a i n s e t
D e f a u l t was [1 2 3 . 7 , 116 .8 , 1 0 3 . 9] , t h e mean v a l u e s o f ImageNet
O p t i m i z a t i o n amendment
#Unknown p e r f o r m a n c e i n c r e a s e a s t h i s was changed b e f o r e t h e f i r s t run .

Number o f ROIs p e r image t o f e e d t o c l a s s i f i e r / mask h e a d s
TRAIN ROIS PER IMAGE = 200

D e f a u l t v a l u e

P e r c e n t o f p o s i t i v e ROIs used t o t r a i n c l a s s i f i e r / mask h e a d s
ROI POSITIVE RATIO = 0 . 3 3

D e f a u l t v a l u e

P o o l e d ROIs

a.3 hyperparameters mask r-cnn 99

POOL SIZE = 7

D e f a u l t v a l u e

MASK POOL SIZE = 14

D e f a u l t v a l u e

Shape o f o u t pu t mask
MASK SHAPE = [2 8 , 28]
D e f a u l t v a l u e

Maximum number o f ground t r u t h i n s t a n c e s t o use in one image
MAX GT INSTANCES = 100

D e f a u l t v a l u e

Bounding box r e f i n e m e n t s t a n d a r d d e v i a t i o n f o r RPN and f i n a l d e t e c t i o n s .
RPN BBOX STD DEV = np . array ([0 . 1 , 0 . 1 , 0 . 2 5 , 0 . 2 5])
D e f a u l t was [0 . 1 , 0 . 1 , 0 .2 , 0 . 2]
O p t i m i z a t i o n amendment
#AP@IoU0 .5 i n c r e a s e d by 0 .001

BBOX STD DEV = np . array ([0 . 1 , 0 . 1 , 0 . 2 5 , 0 . 2 5])
D e f a u l t was [0 . 1 , 0 . 1 , 0 .2 , 0 . 2]
O p t i m i z a t i o n amendment
#AP@IoU0 .5 i n c r e a s e d by 0 .001

Max number o f f i n a l d e t e c t i o n s
DETECTION MAX INSTANCES = 100

D e f a u l t v a l u e

Minimum p r o b a b i l i t y v a l u e t o a c c e p t a d e t e c t e d i n s t a n c e
ROIs be low t h i s t h r e s h o l d a r e s k i p p e d
DETECTION MIN CONFIDENCE = 0 . 7

D e f a u l t v a l u e

Non−maximum s u p p r e s s i o n t h r e s h o l d f o r d e t e c t i o n
DETECTION NMS THRESHOLD = 0 . 7

D e f a u l t v a l u e .
In t e rms o f AP@IoU0 . 5 , i t o u t p e r f o r m s a v a l u e o f 0 .8 by 0 .008 ,
0 .75 by 0 .002 and 0 .65 by 0 .007

#######################################
TRAIN PARAMETERS
#######################################
Number o f t r a i n i n g s t e p s p e r e p o c h
STEPS PER EPOCH = 1000

D e f a u l t v a l u e

Number o f v a l i d a t i o n s t e p s t o run a t t h e end o f e v e r y t r a i n i n g e p o c h .
VALIDATION STEPS = 50

100 appendix: technical setup

D e f a u l t v a l u e

LEARNING RATE = 0 .0001

D e f a u l t was 0 .001
O p t i m i z a t i o n amendment
T r a i n i n g f o r an a d d i t i o n a l 5 e p o c h s a t a l e a r n i n g r a t e o f 0 .0001
i n s t e a d o f t h e d e f a u l t v a l u e 0 .001 i n c r e a s e d t h e AP@IoU0 . 5 with 0 .010

LEARNING MOMENTUM = 0 . 9

D e f a u l t v a l u e

Weight d e c a y r e g u l a r i z a t i o n
WEIGHT DECAY = 0 .0001

D e f a u l t v a l u e

Use RPN ROIs or e x t e r n a l l y g e n e r a t e d ROIs f o r t r a i n i n g
USE RPN ROIS = True
D e f a u l t v a l u e

Tra in or f r e e z e b a t c h n o r m a l i z a t i o n l a y e r s
None : Tra in BN l a y e r s . Th i s i s t h e normal mode
F a l s e : F r e e z e BN l a y e r s . Good when us ing a s m a l l b a t c h s i z e
True : (dont use) . S e t l a y e r in t r a i n i n g mode even when i n f e r e n c i n g
TRAIN BN = Fal se # D e f a u l t i n g t o F a l s e s i n c e b a t c h s i z e i s o f t e n s m a l l
D e f a u l t v a l u e

G r a d i e n t norm c l i p p i n g
GRADIENT CLIP NORM = 5 . 0

D e f a u l t v a l u e

a.4 hyperparameters resu-net 101

a.4 hyperparameters resu-net

c l a s s Config (object) :
NUMBER OF GPUs t o use . For CPU t r a i n i n g , use 1
GPU COUNT = 1

CPU COUNT = 8

#One o f r e s n e t34 , r e s n e t 5 0 or r e s n e t101
BACKBONE = ’ resne t50 ’

Number o f images t o t r a i n with on e a c h GPU.
IMAGES PER GPU = 10

#With F a l s e t h e d e f a u l t ImageNet p r e t r a i n e d w e i g h t s a r e used i n s t e a d
USE PRETRAINED MODEL = True
i f USE PRETRAINED MODEL :

MODEL NAME = ”10cm 18nov1”
e lse :

MODEL NAME = None # ImageNet w e i g h t s

I n i t i a l l e a r n i n g r a t e
LEARNING RATE = 0 . 1

LEARNING MOMENTUM = 0 . 8

Weight d e c a y / L2 r e g u l a r i z a t i o n
WEIGHT DECAY = 1 . 5

STEPS PER EPOCH = 500

VALIDATION STEPS = 500

GRADIENT CLIP NORM = 5 . 0

#The number o f e p o c h s w i t h o u t improvement a f t e r which
t h e l e a r n i n g r a t e i s l o w e r e d
REDUCE LR ON PLATEAU PATIENCE = 3

#The f a c t o r wi th which t h e l e a r n i n g r a t e i s m u l t i p l i e d
once t h e model p l a t e a u s
REDUCE LR ON PLATEAU FACTOR = 0 . 3

L ea r n i n g r a t e won ’ t r e d u c e d be low t h i s number
MIN LEARNING RATE = 1e−12

T r a i n i n g w i l l be s t o p p e d once no improvement has be en

102 appendix: technical setup

s e e n a f t e r t h i s number o f s u b s e q u e n t e p o c h s
EARLY STOPPING PATIENCE = 10

MAX EPOCHS = 1000

USE TRAIN AUGMENTATIONS = True

USE BATCH NORM = IMAGES PER GPU > 5

S e l e c t how many e p o c h s t h e f i r s t s t a g e o f t r a i n i n g
s h o u l d l a s t b e f o r e t r a i n i n g on t h e f u l l model s h o u l d s t a r t
PRETRAIN DECODER EPOCHS = 0

B A P P E N D I X : V I S U A L S A M P L E S

b.1 crowdai imagery

Figure B.1: Three sample images from the crowdAI dataset.

103

104 appendix: visual samples

b.2 mask r-cnn on zambia

Figure B.2: Left: Samples from imagery of Zambia at 30 cm resolution. Right: TTA predictions of
Mask R-CNN on imagery upsampled by a factor of 2.5. Top row: A 307.2 by 307.2 meter
sample from Kalabo. Middle row: A 307.2 by 307.2 meter sample from Lusaka. Bottom
row: A 230.4 by 230.4 meter sample from Zambezi.

b.3 osm and mask r-cnn on zambia, mongu 105

b.3 osm and mask r-cnn on zambia, mongu

Figure B.3: Sample of Bing Maps satellite imagery at 30 cm resolution of Mongu, Zambia (QGIS
schreenshot).

Figure B.4: Sample of vectorized TTA Mask R-CNN predictions on Mongu, Zambia (QGIS screenshot).

106 appendix: visual samples

Figure B.5: Sample of OpenStreetMap labels on Mongu, Zambia (QGIS screenshot).

Figure B.6: Sample of vectorized TTA Mask R-CNN predictions (orange outlines) and OpenStreetMap
labels (blue outlines) on Mongu, Zambia (QGIS screenshot).

b.4 mask r-cnn on the netherlands, amersfoort, 10cm 107

b.4 mask r-cnn on the netherlands, amersfoort, 10cm

Figure B.7: TTA predictions of Mask R-CNN tested and plotted on native 10 cm resolution imagery
of Amersfoort, The Netherlands.

108 appendix: visual samples

b.5 resu-net on the netherlands, heerlen, 10 and 30 cm

Figure B.8: Sample imagery at 10 cm resolution of Heerlen, the Netherlands.

b.5 resu-net on the netherlands, heerlen, 10 and 30 cm 109

Figure B.9: TTA predictions of ResU-net resolution robustness experiment 1: Trained on 30 cm resolu-
tion imagery, tested on 30 cm resolution imagery of Heerlen, The Netherlands. Plotted on
10 cm imagery.

110 appendix: visual samples

Figure B.10: TTA predictions of ResU-net resolution robustness experiment 2: Trained on 10 cm reso-
lution imagery, tested on 10 cm resolution imagery of Heerlen, The Netherlands. Plotted
on 10 cm imagery.

b.5 resu-net on the netherlands, heerlen, 10 and 30 cm 111

Figure B.11: TTA predictions of ResU-net resolution robustness experiment 3: Trained on 10 cm reso-
lution imagery, tested on 10 cm resolution imagery of Heerlen, The Netherlands. Plotted
on 10 cm imagery.

112 appendix: visual samples

Figure B.12: TTA predictions of ResU-net resolution robustness experiment 3: Trained on 10 cm reso-
lution imagery, tested on 30 cm resolution imagery of Heerlen, The Netherlands. Plotted
on 10 cm imagery.

b.6 resu-net on the netherlands, heerlen, 30 cm 113

b.6 resu-net on the netherlands, heerlen, 30 cm

Figure B.13: Sample predictions of Heerlen by ResU-net. Black indicates all negative predictions,
white indicates all positive predictions. Left: Predictions of a model trained with orienta-
tion augmentations. Right: Predictions of a model trained without orientation augmen-
tations.

114 appendix: visual samples

b.7 vectorized resu-net on the netherlands, amersfoort,
10 cm

Figure B.14: Vectorized sample predictions on Amersfoort by ResU-net. An orange outline indicates
the prediction overlaps at least one building in the ground truth, red indicates no overlap.
Blue outlines are buildings in the BAG or BGT database, yellow outlines are manually
mapped buildings (QGIS screenshot).

b.8 vectorized resu-net on the netherlands, heerlen, 10 cm 115

b.8 vectorized resu-net on the netherlands, heerlen, 10
cm

Figure B.15: Vectorized sample predictions on Heerlen by ResU-net. Vectorized sample predictions
on Heerlen by ResU-net. An orange outline indicates the prediction overlaps at least one
building in the ground truth, red indicates no overlap. Blue outlines are buildings in the
BAG or BGT database (QGIS screenshot).

Illustration: Predictions of a (Res)U-net model on Amersfoort, the Netherlands

	1 Introduction
	1.1 Background
	1.2 Use Cases
	1.3 Objective
	1.4 Research questions
	1.5 Problem Analysis
	1.6 Report structure

	2 Literature Review
	2.1 Computer Vision in general
	2.2 Convolutional Neural Networks
	2.3 Applications
	2.4 Computer Vision for building detection on aerial imagery
	2.5 Model selection and research question refinement

	3 Machine Learning
	3.1 Chapter Overview
	3.2 Artificial Neural Networks
	3.3 Convolutional Neural Networks
	3.4 Model Training
	3.5 Datasets
	3.6 Loss functions
	3.7 Performance metrics
	3.8 Training optimization
	3.9 Architectures: ResU-net, U-net and Mask R-CNN

	4 Data
	4.1 Chapter overview
	4.2 crowdAI
	4.3 Bing Maps & OpenStreetMap
	4.4 Readar
	4.5 Conclusion

	5 Mask R-CNN
	5.1 Chapter overview
	5.2 Implementation
	5.3 Geographical robustness
	5.4 Malawi
	5.5 Zambia
	5.6 Peru
	5.7 The Netherlands
	5.8 Review of transfer learning intentions
	5.9 Conclusion

	6 ResU-net
	6.1 Chapter overview
	6.2 Implementation
	6.3 Geographical robustness
	6.4 Resolution robustness
	6.5 Building geometry robustness
	6.6 Building-wise evaluation
	6.7 Conclusion

	7 Conclusion
	7.1 Objective and research questions
	7.2 Comparison Mask R-CNN and ResU-net

	8 Recommendations
	8.1 General recommendations
	8.2 Recommendations to 510 and Missing Maps
	8.3 Recommendations to Readar

	A Appendix: Technical setup
	A.1 Dataset locations and sizes
	A.2 Technical environment
	A.3 Hyperparameters Mask R-CNN
	A.4 Hyperparameters ResU-net

	B Appendix: Visual samples
	B.1 crowdAI imagery
	B.2 Mask R-CNN on Zambia
	B.3 OSM and Mask R-CNN on Zambia, Mongu
	B.4 Mask R-CNN on the Netherlands, Amersfoort, 10cm
	B.5 ResU-net on the Netherlands, Heerlen, 10 and 30 cm
	B.6 ResU-net on the Netherlands, Heerlen, 30 cm
	B.7 Vectorized ResU-net on the Netherlands, Amersfoort, 10 cm
	B.8 Vectorized ResU-net on the Netherlands, Heerlen, 10 cm

