vu¥ vz

Bilingual text classification using transformer
models and k-NN

A study of the applicability of transformer models in conjunction with k-Nearest
Neighbor models on the classification of Dutch and English messages from the
customer services of housing corporations.

Robert Brandemann

Master Thesis
Vrije Universiteit Amsterdam

Business Analytics
June 23, 2023

Master thesis

Business Analytics

Bilingual text classification using transformer
models and k-NN

A study of the applicability of transformer models in conjunction with k-Nearest
Neighbor models on the classification of Dutch and English messages from the
customer services of housing corporations.

Robert Brandemann
2713542

VU¥ vz

First supervisor: Supervisor:
Dr. V. Francgois-Lavet Ing. P. F. Heek
Second supervisor: Engineering Lead

Dr. E. N. Belitser

Vrije Universiteit Amsterdam Zig Websoftware
Faculty of Science Botterstraat 51
De Boelelaan 1111 1271 XL Huizen

1081 HV Amsterdam

Executive Summary

This study has been commissioned by the company Zig. Zig is a provider of software for hous-
ing corporations in the Netherlands. These housing corporations tend to get large numbers of
questions from their tenants. A significant part of these questions is sent in via contact forms.
With these forms, the tenant is required to select a subject. This subject relates to a category
which in turn relates to the team of employees that should resolve the question. The assignment
of a message to the correct team is therefore, indirectly, the responsibility of the tenant. This
is not desirable, as tenants are likely to select a ‘miscellaneous’ subject when confronted with a
long list of subjects and are likely to make mistakes when choosing the correct subject. The intent
of this study is to find a method to assign the correct category to the messages automatically,
based purely on the message text in the contact form. As each customer of Zig used different
categories, this study is limited to a single housing corporation, namely [NN T 0 Il
I I DN DN N DN DN N BN . A significant part of '
tenants consists of international SN, hence roughly half of their messages are in English (the
other half is Dutch). Furthermore, the categories are not set in stone and new categories can be
added or existing categories can be modified. The final algorithm should be flexible enough that it
can adapt to these categories. Given the recent success of large language models, the focus of this
research is mainly on similar pre-trained transformer models. The problem and the challenges can
be summarized in the following research question and conditions:

How can the process of categorizing/routing incoming messages at the customer service of hous-
ing corporations be automated with the use of attention-based models, given the bilingualism
of the messages and the variability of categories?

This primary question should lead to an algorithm that complies with the following conditions:

1. The algorithm should be able to utilize the semantic meaning of the messages to assign the
right category.

2. The algorithm should be able to process both Dutch and English messages.

3. The algorithm should be able to adapt to new categories with few data, without exhaustive
retraining of the models.

4. The overarching concept of the algorithm should remain easily explainable to end users with
little to no mathematical knowledge.

This research was done in two phases. The first phase concerns itself primarily with the bilingualism
of the messages (i.e. the second condition) by combining machine translation with different pre-
trained models. In the second phase, the possibility of using k-Nearest Neighbors (k-NN) for
resolving the third condition is investigated. The first and fourth conditions are satisfied by the
model choice. Large pre-trained transformer models are able to utilize the semantic meaning from
text. The transformer models are simple to understand in their intended purpose, as they extract a
numerical representation of this meaning. The process of searching for the £ most similar examples
to obtain a prediction, as is the case for k-NN, is also very intuitive.

For dealing with the second condition in the first phase, four approaches have been investigated.
The main question here is whether it is better to use a large multilingual model which can pro-
cess many more languages than required (e.g. mBERT, which can process 104 languages) or a
monolingual model (e.g. BERT for English and BERTje for Dutch) in conjunction with Machine
Translation. The first approach feeds the messages into a multilingual BERT (mBERT) model
(Model A1). The second approach uses Google Translate to translate all messages into English
and uses BERT (Model A2). The third approach is similar to the second, but the messages are
translated into Dutch and BERTje is used (Model A8). The final approach translates all Dutch
messages into English and vice versa. The Dutch and English version for each message is then
concatenated and used as input for mBERT (Model A4). It was found that no approach performs
significantly better than the others, but Model A3 performed marginally better on the validation
set where the model predicts the right category in 71.2% of the cases (i.e. a validation accuracy of
0.712).

In the second phase, the best model from the first phase, Model A3, has been combined with a
k-Nearest Neighbor algorithm (k-NN). The k-NN is, theoretically, able to adapt to new/modified
categories. Two simple bag-of-words models have been created which only use k-NN. These use
the frequency that each word occurs in a message and the Term Frequency-Inverse Document
Frequency respectively as input for Model B and B2. Model B3 uses the document embedding,
as obtained from the last transformer block of Model A3, as input for the k-NN. Model B4 combines
the predictions of Model A3 and B3. It was found that the validation accuracy is highest when
Model B/ is for 80.5% based on A8 and 19.5% on Model B3 with 30 neighbors. This model is able
to predict 71.6% of the categories in the test set correctly (test accuracy of 0.716). In comparison,
a model that would predict a random category would lead to a accuracy of 0.183 (18.3%) and a
model that only predicts the most common category, namely ‘Financial matters’, would lead to an
accuracy of 0.350 (35.0%).

As Model B/ relies heavily on A3, its performance on new/modified categories will be poor. Future
studies might be able to design a formal experiment to evaluate the performance on new/modified
categories. These might find a ratio between Model A3 and B3 which increases this performance.

In short, the best approach that has been found in this research is to translate all messages into
Dutch. Then BERTje should be used to obtain the document embeddings and the predictions for
categories. A 30-Nearest Neighbors algorithm should be used on document embeddings to obtain
a separate set of predictions for the categories. A weighted average should be taken between these
predictions, where the predictions from BERTje are weighted by 0.805 (80.5%) and the predictions
from the k-NN by 0.195 (19.5%), to obtain the final predictions.

If this automated categorization were implemented, the subject field in the contact forms would
not be the deciding factor for routing the messages to the teams. Hence, the subject field could
be removed or replaced by a free-form text box. This free-form text box would have the benefit
of obtaining a concise summary of the message itself. This summary could then be appended to
the message and used as input for the models that are described in this report, without significant
changes to the architecture. It would be reasonable to assume that the addition of this summary
would improve the performance of the models.

Preface

This thesis has been written in fulfillment of the Master Business Analytics. The research for this
thesis was conducted in the 6 month period from February 2023 to July 2023. The research was
part of an internship at Zig (a company that creates software solutions for housing corporations).

This research concerns itself with the automatic assignment of categories to incoming messages at
the customer services of housing corporations. Several methods of combining machine translation
with pre-trained models are investigated in an effort to find the best way to work with Dutch and
English data at the same time. The automation of the categorization could reduce the amount of
manual labor for housing corporations and the investigation into bilingual text data could be very
informative for future research at Zig. I hope that this study will be valuable to Zig and that it
can be used to improve the satisfaction of Zig’s customers and the tenants.

Firstly, I would like to express my gratitude to the company supervisor, Peter Frans Heek, who
helped me greatly with the organization and planning of the research during our weekly meetings.
Secondly, I want to thank my university supervisor, Dr. Vincent Francois-Lavet, who was able to
provide informative answers to my questions, near immediately after I asked them. His substantive
knowledge was of great help during the project. Finally, I want to thank Dr. Eduart Belitser for
being the second reader of this thesis on behalf of the Vrije Universiteit.

Robert Brandemann, June 23, 2023

Contents

1 Introduction

1.1
1.2
1.3

Business Context
Problem description . .
Report structure

2 Related works

3 Exploratory Data Analysis

4 Methodology

4.1

4.2

Phase A e
4.1.1 Transformer Models
4.1.1.1 BERT e
4.1.1.2 mBERT e
4.1.1.3 BERTje o o oo
4.1.2 Machine Translation
Phase B
4.2.1 Neighborhood Component Analysis.

4.2.2 k-Nearest Neighbo

N

4.3 Evaluation
4.4 Experimental Setup
5 Results
5.1 Phase A
5.1.1 Intermediary results L oL
5.1.2 Overall performance
5.1.3 Performance per category
5.2 Phase B e
5.2.1 Hyperparameter Tuning 0oL
5.2.2 Performance per category o

5.2.3 Adaptability to ne

6 Conclusion

6.1 Further research
6.2 Practical application . .
References
Appendix
A Data quality experiment
B Digital Addenda
C Product / package versies

w/modified categories L.

LW DN = =

N

10
10
12
12
13
13
15
16
16
16

18
18
18
18
20
23
23
24
25

26
27
28

29

1 Introduction

This report has been commissioned by the company Zig. This initial section will provide the
motivation and business context for this study. Section 1.2 will provide a formalized problem
formulation and finally, Section 1.3 will give an overview of the structure of the whole report.

1.1 Business Context

As indicated above, this report has been commissioned by Zig. Zig is an abbreviation and stands
for Zekerheid, Innovatie and Gemak (Security/Assurance, Innovation, and Convenience). Zig
creates digital solutions for Dutch housing corporations since 2001. These housing corporations
mainly focus on the social rental market (monthly rent < €808.06 in 2023). The objective is to
increase the convenience for the employees of the corporations, the house seekers, and the tenants
who use Zig’s products.

The products can be grouped into two major groups based on the rental process. On one hand,
there are the products that help prospective tenants with finding a house and the advertising and
distribution of housing for the corporations (Housing Brokerage Platform). On the other hand
are the products which deal with ‘realized’ tenants, these products allow for easy communication
between the tenants and the housing corporation (Housing Service Platform). This research focuses
on a small part of this second group.

The Housing Service Platform is able to aggregate questions from customers from a plethora of
channels. The vast majority of these questions are textual (e.g. e-mails, or contact forms). A
certain category is assigned to each of the messages. These categories differ for each housing
corporation and could, theoretically, be changed on a whim. An employee/team of the housing
corporation tends to only be able to see a small selection of relevant categories. An accountant
would, for example, only see the messages assigned to the category ‘Financial Matters’, whereas a
service desk employee would be able to see a plethora of categories like ‘Keys’, ‘Report Nuisance’,
and ‘Miscellaneous’. It is not uncommon for housing corporations to create a new category for
specific events that lead to a lot of questions from tenants. For example, several of Zig’s customers
created a new category for COVID-19-related questions in 2021. The acquisition/building of new
housing complexes could also justify the creation of a new category if enough questions come in.
When the flow of questions for such categories subsides, the category can, and often is, disabled
for future use.

When the wrong category is assigned to a certain message, it will likely end up at the wrong
department. The erroneous assignment will therefore often lead to higher service times as the
message would need to be rerouted to the right category. The assignment of categories is cur-
rently handled in three main ways. Firstly, several housing corporations have a plethora of e-mail
addresses, each of which results in the assignment of a certain category (e.g. messages to financial-
matters@corporation.com could get assigned automatically to the category ‘Financial Matters’).
In this first approach, the burden of correctly assigning a category to the message is on the ten-
ant, who has to select the correct e-mail address. The second approach places this burden on
the housing corporation employees. For example, in the case of physical letters, there is no auto-
matic assignment and employees would have to select the correct category themselves. The third
approach is utilized by contact forms and asks the tenant to select a subject from a given list of
possible subjects. These subjects can then be mapped to categories (e.g. contact forms with the
subject ‘Service Costs’ could be assigned the ‘Financial Matters’ category). In practice, the list
of possible subjects is often a subset of all possible categories. Like with the first approach, this
method places the burden of categorization on the tenants.

Placing the categorization burden on employees would require a significant time investment from
the housing corporations. It is likely that placing the burden on the tenants instead would lead to
a higher utilization of the ‘Miscellaneous’ category and more miscategorized messages in general.
This would, in turn, also require a significant, but smaller, time investment from the corporations.
To reduce the amount of time that needs to be spent on anything but helping tenants, one would
want to automate the categorization. The practical objective of this research is to accomplish this
for contact forms specifically. The ideal situation would be to phase out the predefined selection of
selectable subjects and add the option for free-form subjects. This would improve the similitude of

e-mails and contact forms. This research will focus on the free-form text from contact forms. When
free-form subjects are implemented, future research could focus on the inclusion of the subject in
the algorithm using all e-mails and contact forms.

Given that IINIIll, one of Zig's customers, has specifically requested this research, their data will
be used. [NN H I N N DN BN B B O D N B e
55§ & 435 1 37 197 B |
s 7 .. rn.fr 1 r rr 1 1 I I]|
I B . A significant part of IIlll's tenants are international sl hence a large
part of the messages, to and from their service desk, is in English (as opposed to Dutch). Section 3
will expand further upon the multilinguality of the data.

In 2021 and 2022, the data-team of Zig did research into the application of bag-of-words methods
and Recurrent Neural Networks in a near identical context®. This proprietary research indicated
that large models, which utilize the semantic meaning of messages, could perform well. Given
the positive correlation between the model’s capacity to capture the meaning of text and the
performance, it was proposed that further research should investigate the viability of pre-trained
attention-based models. Hence, this research will primarily focus on the application of attention-
based models.

1.2 Problem description

The problem of automatic categorization of text messages could be interpreted as a conventional
supervised text classification problem with additional challenges. These can best be described in
the following research question and conditions:

How can the process of categorizing/routing incoming messages at the customer service of hous-
ing corporations be automated with the use of attention-based models, given the bilingualism
of the messages and the variability of categories?

This primary question should lead to an algorithm that complies with the following conditions:

1. The algorithm should be able to utilize the semantic meaning of the messages to assign the
right category.

2. The algorithm should be able to process both Dutch and English messages.

3. The algorithm should be able to adapt to new categories with few data, without exhaustive
retraining of the models.

4. The overarching concept of the algorithm should remain easily explainable to end users with
little to no mathematical knowledge.

The fourth constraint can mostly be considered as a reaction to the implications of the third
constraint. Given that the problem should be treated as a supervised classification problem, there
should be some correctly labeled messages for each category. This would require some manual
labeling by the employees of the housing corporation. It seems reasonable to assume that an
intuitive overarching understanding of the algorithm would motivate the employees to contribute in
this way. It might also motivate the employees to correct algorithmic mistakes in the categorization,
instead of resolving the message in the wrong category, which would benefit the quality of the data.

This research will explore the viability of applying an attention-based model in conjunction with
Machine Translation and k-Nearest Neighbors in an effort to find a solution to the research question
while complying with the conditions.

[N
4 1 111 11

3The author was a part of this team and participated in this project

1.3 Report structure

This report will first provide a brief overview of the related works in Section 2. The following
section on Exploratory Data Analysis, Section 3, will provide insight into the data that is utilized
for this research. Section 4 on the Methodology, will describe the approaches that have been
applied to the data and the reasoning behind these, in addition to the evaluation methods. The
following section, Section 5, will confer the results of the applied methods, explore the performance
of the methods per category and several common mistakes for the models will be investigated in an
effort to gain more understanding of the workings of large pre-trained models. Finally, the results
will be wrapped up in a concise conclusion and discussion (Section 6). This report will conclude
with several suggestions for further research and a practical recommendation for implementing this
research at Zig.

2 Related works

In the last few years, Large Language Models have entered the realm of public knowledge. This
entry can largely be attributed to the introduction of OpenAl’s chatGPT. The viability of such
large attention-based models was first shown by Vaswani et al. in 2017 (Vaswani et al. 2017)
and later, the research by Devlin et al. with their introduction of BERT (Devlin et al. 2018).
Since these publications, the field of Natural Language Processing has been dominated by large
attention-based models. It has become clear that attention-based models have the potential to
surpass the performance of traditional Recurrent Neural Networks on most tasks. Devlin et al.
have shown that pre-trained models, like BERT, can be very generalizable. By appending, for
example, a simple classifier to the end of a model like BERT and training only this classifier on a
downstream task, one is often able to get outstanding results. Fine-tuning the large pre-trained
models in such a way allows one to utilize the complex understanding of a text that the model
has learned while keeping the computational cost low. A logical reaction to the proven potential
is the large number of variations of these models that have been introduced in the previous years
(Kalyan et al. 2021). The usage of these pre-trained transformer models has become the norm for
most Natural Language Processing applications, like text classification and text generation.

Most research regarding the transfer models assumes that the data is either monolingual or contains
a multitude of languages. Models like BERT, XLNet, and GPT-2 are specifically created for the
English language, while models like BERTje, CamemBERT, and SloBERTa are created for Dutch,
French, and Slovenian respectively. Multilingual models like XLMRoBERta and mBERT are
created using 100 and 104 languages respectively. One can expect a lower performance if one were
to use a large multilingual model on data with a low number of languages than if one were to use
a model that was trained specifically for that smaller set of languages. To utilize the full power of
the model, the fine-tune data should match the pre-train data. No research could be found on a
bilingual model that uses specifically uses both English and Dutch data.

Previous research has shown the viability of Machine Translation as a pre-processing step for
sentiment classification (Araujo et al. 2016; Khare et al. 2018; Poncelas et al. 2020). This research
indicates that the performance of the sentiment classification goes down when Machine Translation
is used, but it does not make the classification unviable. Furthermore, it highlights the potential
benefits of translating the data into a different language which might have a more apt vocabulary,
which in turn makes the sentiment classification easier. A different field of study where Machine
Translation can be utilized is that of cross-lingual learning. This field concerns itself with training
models using models on a language with a large amount of labeled data such that it is applicable
for a different language where labeled data is not or less available. Wan introduces a method for
sentiment classification on Chinese texts while having only labeled English texts (Wan 2009). For
this approach, one combines a Chinese translation of the labeled English texts and an English
translation of the unlabeled Chinese texts. These are then used to train a model in a semi-
supervised manner.

The problem of bilingualism in the data for this research will be tackled by using a multilingual
model (mBERT), by using Machine Translation, and a monolingual model (BERT and BERTje
separately) and, partially inspired by Wan (Wan 2009), by using the concatenation of a Dutch and
English version of each message as the input for a multilingual model (mBERT).

Little research could be found on adjustments to pre-trained models which would allow them to
adjust to new or changing categories. The research that has been done primarily focuses on the
combination of pre-trained models and k-Nearest Neighbors (Kassner and Schiitze 2020; Khan-
delwal et al. 2020). The existing research utilizes the predictions by a pre-trained model and the
predictions from a k-NN algorithm on the ‘embedding’ (as obtained using the pre-trained model)
of text from any relevant corpus. This corpus would generally be the train set. A weighted average
is taken between the predictions of the pre-trained model and the k-NN. Note that the prediction
of the pre-trained model is fixed to the number of possible categories in the train set. The predic-
tions from the k-NN on the other hand are based on the categories that are present in the relevant
corpus. If one were to include the messages with new or modified categories in this corpus, the
combined model would be able to predict these.

A major downside of k-NN models in the field of Natural Language Modelling is the required
assumption that the data is distributed in such a way that semantically similar points lay together

(i.e. that the input space is separable into neighborhoods of the output categories). Kassner and
Schiitze, and Khandelwal et al. utilize a ‘document embedding’ in their k-NN (Kassner and Schiitze
2020; Khandelwal et al. 2020). This document embedding is extracted from a pre-trained model,
but no reason is given to believe the required assumption holds. This research will try to make
the assumption more credible by applying Neighborhood Component Analysis on the embeddings
before the k-NN algorithm is applied. This Neighborhood Component Analysis is a commonly
used supervised method to transform the input space of a k-NN algorithm such that similar points
with the same labels are near each other in the transformed space while providing dimensionality
reduction (Z. Wu et al. 2018; Yang et al. 2012).

3 Exploratory Data Analysis

As mentioned in Section 1.1, the available dataset comes from the housing corporation | N,
a customer of Zig I - I N D N D The dataset
consists of messages from incoming contact forms. These contact forms contain information about
the tenant, a subject, and message. For this project, only the message will be taken into account.
Also described in Section 1.1 is the fact that the subject relates partially to categories and that the
intent is to utilize this research project to phase out the subject. Hence, the subject of the contact
forms is ignored to ensure that the created algorithms could, at least technically, continue working
after the current implementation of the subject has been phased out.

While IIIIEll has a multitude of categories, only nine overarching categories were deemed relevant
to be algorithmically categorized. Table 1 shows the number of messages per category. One might
note that two of the categories, namely ‘General Administration’ and ‘General Renting’, seem very
generic. While these categories encompass a plethora of topics, it is assumed that these are distinct
from the other categories. This assumption is validated by the results in Section 4.1.

Table 1: Absolute and relative frequency of the number of messages that appear in the dataset
per category.

Category Frequency Relative Frequency
Financial matters [] [T4
General Administration I Y
Comment new room [] %
Appointment with the caretaker [] %
General Renting [] Y%
Keys [] Y%
Service costs [] Y%
Nuisance [Y
Acceptance new construction [%
Total 118,445

Figure 1 shows the number of messages per category and language. It is clear that the distribution
of languages is roughly in favor of English, with a notable exception for ‘General Administration’.
I I B B B D B DN B D B BN B b
11 11 1 1 1 1.1 |
i D 1 4+ 5 14 .00 11 1
15 41 1 J]

Figure 1: Number of times each category and language appears in the dataset.

When looking at the length of the messages per category and language, as visualized in Figure 2,
it becomes clear that there is no significant difference in the message lengths between Dutch and
English. This is indeed what one would expect from two Germanic languages. Somewhat notable is
the fact that messages in the category ‘Nuisance’ generally contain more characters than messages
in the other categories. The vast majority of the messages have less than 1,000 characters. Nine of
the messages contain more than 10,000 characters. These nine are valid messages, so there would
be no reason to exclude these. The same holds for the very short messages, these all seem valid
questions/notifications from tenants, so there is no reason to exclude these.

Boxplot of number of characters per message per category and language

H
10,000 -

v °
T .
o
e
© 1,000 -
o Original language
O
S 100 B8 e
o] BN
[}
a
% 10- . . $ i
=4 s ° .] . .
1- ° . . .
.
o0 o g . e .
sﬂ“&o a(e‘a\@ w‘oo‘“\ﬁ‘a‘@(o (@° 9\“‘\“@ vl Saﬁc e‘oﬁ‘
c N\
(\. “‘“e e“‘“ a0C \@) (“(\\ “e‘a el
Ce“e < N\ C“’\((‘ R\ e([
ARG e
e? O
P o0
Category

Figure 2: Boxplot of the number of characters per message for each category and language, using
a logarithmic y-axis.

As indicated in Section 2, each Dutch message has been translated to English using Google Trans-
late and vice versa, such that there is a Dutch and an English version of each message. When
investigating the frequency that words have been used in the English versions of the messages, one
might note that the distribution, as shown in Figure 3a does not quite follow Zipf’s law (Powers
1998). However, it might simply be overzealous to expect the frequency of words to be inversely
proportional to the rank by frequency on every text dataset. The removal of pronouns, deter-
miners, articles, and conjunction results in a more meaningful perspective on the content of the
messages. Figure 3b shows the usage distribution of the resulting set of words.

Top 20 most frequently used English words Top 20 most frequently used English words after removal of stopwords

60000 -

400000

40000 -

N |IIIIIIIIIIII

300000

lmwllllllllllll
. IIIIllll

200000

>
[9)
c
o
=]
o
9]
=4
i

>
9)
c
o
=]
o
9]
4
c

D D >
N N o P ESEF S LS ER S S D PP
s 8 O IR <\°$ > & A 1&\&4 £ EE O Qoe‘ﬂ\ & @
Top 20 Engllsh words Top 20 English words
(a) Before removal of stopwords. (b) After removal of stopwords.

Figure 3: Top 20 most frequently used words in the English messages before and after removal of
stopwords.

To give an indication of how well the models will be able to adapt to new/modified categories, 60
messages from 5 unused categories will be used for an evaluation. None of these categories fall
under the aforementioned 9 most relevant overarching categories. The automatic categorization of
these messages is not relevant, and these messages will only be used to give an impression of the
performance of the model on categories, on which the model has not been trained or fine-tuned. The
performance is highly dependent on the quality of the categories. A vague category which overlaps

with other categories will be hard to identify, Whereas clearly defined category which encompasses
a single topic and which does not overlap with other categories would be relatively easier. The 5
categories are ‘Campus control’, ‘Block heating allowance’, ‘Internal relocation’,; ‘Lease agreement’,
and ‘Subletting’. These categories mostly concern a single topic and are clearly defined and should
therefore give an indication of the performance of the model in near-ideal circumstances.

4 Methodology

As described in Section 1.2, the main objective of this research is to create an algorithm that is able
to categorize both Dutch and English messages, utilizing a pre-trained attention-based model. This
section will describe the different approaches that have been used to accomplish this, in addition
to giving information on the evaluation methods used.

This study can be split into two phases. The first phase concerns itself with the first and second
conditions, as described in Section 1.2. These state that the algorithm should use the semantic
meaning of the messages to assign the right category and that the model should be able to process
both Dutch and English messages. The second phase is primarily focused on the third condi-
tion, which states that the algorithm should be able to adapt to new/modified categories without
exhaustive retraining.

4.1 Phase A

To comply with the first two conditions, as described in Section 1.2, the algorithm should use the
semantic meaning of the text to assign the right category and it should be able to work with both
Dutch and English messages.

To comply with this first condition, large pre-trained transformer models are used. These models
are pre-trained on vast quantities of data and allow one to utilize the semantic meaning of texts
for a plethora of downstream tasks by fine-tuning the model on this task. These models can, in
the conventional case, only be applied to fine-tune data that is similar to the pre-train data. Given
that the messages for this research can be either Dutch or English, the pre-train data should,
ideally, also contain Dutch and English texts. As indicated in Section 2, no pre-trained model for
specifically Dutch and English could be found.

This research will specifically focus on BERT and variants of BERT. Ever since the introduction
of BERT (Devlin et al. 2018), which showed the viability and potential of pre-trained attention-
based transformer models, a plethora of new language models have been created. As the BERT
model could be considered the progenitor of transformer models, a significant part of these models
are variants of BERT. These variants generally utilize the same architecture and methodology as
BERT but pre-train the model on a different dataset. Given the large amount of architecturally
identical variants of BERT, it was deemed most fitting to base this research on BERT and these
variants.

The base variant of BERT is pre-trained on English text. This would make it unable to process
Dutch messages. Four approaches were designed to allow a variant of BERT to process both
Dutch and English messages. The first approach utilized a fine-tuned multilingual BERT model
(mBERT). This variant of BERT has been pre-trained on 104 languages (including Dutch and
English) and is, therefore, able to categorize both Dutch and English messages. As only 2 of the
104 languages are utilized, one might suspect that this variant of BERT would perform worse than
variants which are able to dedicate their entire model to a single language. The second approach
uses Machine Translation to translate all messages into English. These translated messages are
then classified using a regular BERT model. One could, however, reasonably assume that, given
the fact that the messages concern a Dutch housing corporation and houses in Dutch cities, the
semantic meaning is best captured in Dutch. Hence the third approach translates all messages into
Dutch and uses BERTje, a BERT variant that was pre-trained on Dutch text. The reasoning for
the second and third approaches might lead one to suspect a certain semantic value in both the
English and the Dutch text, which is unique to that language. To utilize this, a new approach is
introduced, inspired by (Wan 2009), where all Dutch messages are translated to English and vice
versa, such that a Dutch and English variant of each message is available. The concatenation of
these two variants is then used as input for a multilingual BERT model. In short, the following
four approaches have been designed to manage the bilinguality of the data. These are shown
schematically in Figure 4.

! Categories, ; ! Categories, ; ! Categories, ; ! Categories ;

A 3 a A

1 layer FFN 1 layer FFN 1 layer FFN 1 layer FFN
pre-trained pre-trained pre-trained pre-trained
mBERT BERT BERTje mBERT

A \ \ *

Concatenate
Google Translate Google Translate
= English = Dutch

Google Translate Google Translate
= Dutch = English

! Messages ; ! Messages ; ! Messages ’

(a) Schematic representa- (b) Schematic representa- (c) Schematic representa- (d) Schematic representa-
tion of Model A1 tion of Model A2 tion of Model A3 tion of Model A/

Figure 4: Schematical representation for all four models of the first phase.

4.1.1 Transformer Models

As indicated before, the transformer models that will be used for this research are all variants of
BERT. These variants, BERT, mBERT, and BERTje, all are built using the same architecture
as BERT. The differences between these models can be found in the data that has been used for
pre-training and the specific pre-training tasks. The workings of BERT and the differences will be
further described in the following subsections.

Prediction

Classifier

Transformer Layer 2

Transformer Layer 1

[cLs] | like to draw [SEP]

Figure 5: Schematical representation of the architecture of a BERT model with an appended

multiclass perceptron.
Source: hittps://mccormickml.com/2019/07/22/BERT-fine-tuning/

4.1.1.1 BERT

Pre-training a large language model like BERT or GPT is computationally very expensive. It
is practically unviable for any individual to pre-train such a model. Research has shown that
the output of the pre-trained model is such that the semantics of the input texts can be linearly
separated (Devlin et al. 2018). The conventional way to learn this linear separation for specific
topics (or categories) is to append a simple multiclass perceptron to the first output of the pre-
trained model (as shown in Figure 5) and fit this perceptron to the required dataset using gradient
descent. As Figure 5 shows, in the case of BERT, this first output correlates to the input of a [CLS]

10

token. This is a special token that is added to the beginning of every message. The corresponding
first output is used as the aggregate sequence representation for classification tasks (Devlin et al.
2018). This aggregate sequence representation will from here on out be referred to as the document
embedding.

As described above, four approaches are investigated for parsing the semantic information from the
bilingual messages. These four approaches use three variants of BERT (more specifically BERT
Base). Each of these variants utilizes an identical architecture, but is pre-trained with different
datasets and is pre-trained using different self-supervised tasks. The architecture consists of a
stack of transformer blocks (or encoders). The BERT Base architecture uses 12 of these blocks.
The contents of the transformer blocks are visualized in Figure 6. The primary working parts of
the model are the multi-head attention layers. These are able to utilize the interaction between
the different input tokens. The major benefits of using attention layers, as opposed to recurrent
neural networks, are the fact that there are no recurrent connections and the low amount of non-
linearities. This allows for better parallelization of the computations and helps prevent vanishing
gradients.

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

12X

110M Parameters

Figure 6: Schematical representation of the architecture of a BERT model with contents of the

transformer blocks.
Source: hitps://www.turing.com/kb/how-bert-nlp-optimization-model-works

Multihead Attention

In these models, the input text gets split into separate tokens. In the case of BERT, these tokens
are words, or sub-words if the word is not in the vocabulary of the model. These tokens get one-hot
encoded and combined with a positional encoding to a single vector for each token. The matrix
with these vectors is the input for the initial attention layer and will be denoted as X. Vaswani
et al. (2017) describe attention functions as “mapping a query and a set of key-value pairs to an
output, where the query, keys, values, and output are all vectors. The output is computed as a
weighted sum of the values, where the weight assigned to each value is computed by a compatibility
function of the query with the corresponding key”. In other words, the corresponding output for
each input is calculated using a Query and Key-Value pair. These are calculated from the input
using simple matrix multiplications:

Q=XWwe
K=XWkK
V=XxwV

The weight matrices W&, W and WV will be learned using gradient descent. The attention is
then calculated as follows:

Attention(Q, K, V) = softma (QKT) Vv
ntion(Q, K, V) = softmax
Vi,

11

Here, di stands for the dimensionality of the keys. The actual workings of the attention layer
become clearer when a single output is investigated. The output vector for the i-th token will be
denoted as y;. Similarly, the corresponding query, key, and value will be denoted as ¢;, k;, and v;
respectively. The number of tokens in the input will be denoted by n.

| aik1 qika qikn

n
Y = Z vjsoftmax(z;) ;
j=1
Note that the query of the i-th token gets multiplied with every key and, after the softmax,
multiplied with every value. In other words, softmax(z;); gives an indication of how much attention
should be given to the j-th value when calculating the i-th output. One should also note that no
inherent mechanisms to deal with the sequentiality of the input are present. This should therefore
be represented in the aforementioned position encoding.

To expand this attention layer to a multi-head attention layer one adds additional learnable weight
matrices:

MultiHead(Q, K, V) = Concat(heady, ..., head),)W ©
where head; = Attention(QWiQ, KwWE vw})

K2

Remark that each head now includes 3 additional weight matrices (WiQ, WiK , Wiv), and an extra
weight matrix, WO, gets added to combine the output of the different heads optimally. The
addition of multiple heads allows the model to use separate heads for multiple purposes on the
same ‘level’.

As stated before, in the case of BERT, 12 transformer blocks, which are made with 12-head
attention layers are stacked on top of each other.

Pre-training

The primary differences between the BERT variants are found in the dataset upon which they
are pre-trained and the self-supervised learning (SSL) regiments they followed as pre-training.
BERT was trained using two tasks, namely Next Sentence Prediction (NSP) and Masked Language
Modelling (MLM). With NSP, the model gets fed two sentences from the dataset and has to predict
whether sentence B follows sentence A or not. For this task, 50% of the training examples were
cases where the sentences did follow each other and 50% did not. With MLM, 15% of the tokens
in a sentence get ‘masked’ and the model is supposed to predict which words should go in those
spots. These SSL schemes were applied to the BooksCorpus (800M words) (Zhu et al. 2015) and
English Wikipedia (2,500M words) (Wikimedia Foundation).

4.1.1.2 mBERT

The multilingual version of BERT (mBERT) utilizes an identical pre-training scheme with NSP
and MLM. The only major difference is in the training data. For mBERT this is the collection of
the top 104 languages from Wikipedia.

4.1.1.3 BERTje

Since BERT has been published, it has been found that the pre-training schemes were less than
optimal. Research shows that NSP is ineffective and MLM can be too easy for some sub-words
(Lan et al. 2020; Liu et al. 2019). To improve on this, NSP has been replaced by Sentence
Order Prediction (SOP) where the objective is to discern the order of two consecutive sentences.
Furthermore, the MLM scheme was modified so that entire words get masked instead of single
sub-word. For the train data, five Dutch corpora were combined:

e Books: a collection of contemporary and historical fiction novels (4.4GB)
e TwNC (Ordelman et al. 2007): a Multifaceted Dutch News Corpus (2.4GB)
e SoNaR-500 (Oostdijk et al. 2013): a multi-genre reference corpus (2.2GB)

12

e Web news: all articles of 4 Dutch news websites from January 1, 2015, to October 1, 2019
(1.6GB)

e Wikipedia: the October 2019 dump (1.5GB)

4.1.2 Machine Translation

As indicated at the start of Section 4.1, all messages were translated into Dutch and English such
that both a Dutch and an English version of each message is available. This translation has been
accomplished using Google Translate*. The comparative study by Toral et al. (Toral et al. 2011)
indicates that both Google Translate and Bing Translator® are very capable at translating Dutch
to English. However, it was found that Google Translate performed marginally better in the case
of translating Dutch or German to English, but significantly better when translating Italian to
English. Later research shows that translating English to Dutch with Google Translate results in
a BLEU score (Bilingual Evaluation Understudy) of 84 (Aiken 2019). This, roughly, indicates
that the resulting Dutch translations match the pre-defined ‘correct’ translations for 84% word-
for-word. With this score, Dutch is among the top 6 languages (out of the 50 languages this paper
investigated).

The version of Google Translate that has been utilized for this research uses Google’s Neural
Machine Translation system (GNMT) (Y. Wu et al. 2016). This system can be considered an
improved version of Neural Machine Translation (NMT) (Bahdanau et al. 2016). Major challenges
of NMT like the high computational cost for training and usage, and the difficulty of dealing with
rare words have been addressed by Google. The resulting model consists of a deep LSTM network
with 8 encoder and 8 decoder layers using attention and residual connections. Sub-word units are
utilized to improve the performance when rare words are considered and architectural adjustments
have been made to improve the parallelism of the calculations, which reduces the computational
costs. It is shown that the GNMT system delivers roughly a 60% reduction in translation errors
on several popular language pairs when compared to Google’s earlier models. It should be noted
that none of these ‘popular language pairs’ include the translation of English to or from another
Germanic language. There is, however, little reason to assume a significantly smaller reduction
in translation errors can be achieved when the source and target languages are from the same
language family.

4.2 Phase B

In the second phase of the research, the condition that the models should be able to adapt to
new/modified categories, without needing exhaustive retraining is taken into consideration. To
overcome this variability of categories, while keeping the model explainable (the fourth condition),
it was found that the inclusion of a k-Nearest Neighbor algorithm (k-NN) would be most suited.
This algorithm searches the input-space for the k& messages which are closest and outputs the
category that is most common in this neighborhood. This search happens the moment a new
message needs to be categorized. Hence the data is only evaluated at that moment. Note that, as
the categories are also only evaluated at that moment, the model is able to adapt to any changes
that have been made to the dataset before that moment.

In this second phase, four approaches using k-NN are investigated. These consist of an aggregation
method, Neighborhood Component Analysis (NCA), and the k-NN. The aggregation method could
be any method which translates the text of the message into a numerical vector. In this study, two
bag-of-words methods are used as aggregation methods in addition to the document embeddings,
as obtained from the best-performing model in Phase A (See Section 4.1.1.1). First, the reasoning
behind the usage of NCA will be described, then the different aggregation methods, and the
corresponding models in this research, will be discussed.

The viability of the k-NN algorithm pivots on the assumption that the input-space of the k-NN is
separable in such a way that ‘similar’ points, with the same category, are close together, clustered
in neighborhoods. To ensure the validity of this assumption, the aforementioned Neighborhood
Component Analysis (NCA) is used as a pre-processing step to transform the input-space. NCA is

4https://translate.google.com
Shttps://www.bing.com /translator

13

an algorithm that learns a linear transformation in a supervised fashion to improve the classification
accuracy of a stochastic nearest neighbor rule in the transformed space. I.e. NCA can be used to
transform the input-space into a space that is separable by category using a k-NN algorithm. Hence
all models in this second phase, which all include a k-NN;, also include the NCA as a pre-processing
step.

As indicated above, four approaches using k-NN are investigated. Two of these approaches utilize
a bag-of-words method to transform the text data into numerical data and two approaches utilize
the document embeddings as obtained from the best-performing model in Phase A instead. The
first approach will use the frequency that each word occurs in a message as the input for the NCA,
k-NN combination (Model B1). This approach can be augmented by incorporating the relative
importance of words using the Term Frequency-Inverse Document Frequency statistic (TF-IDF).
This statistic increases proportionally to the frequency with which a word is used in a message
and is offset by the number of messages that contain that word. This counteracts the influence of
inconsequential words which are frequently used, like conjunctions and determiners (Model B2).
The TF-IDF for term ¢ in document (message) d is calculated as follows:

TF(t,d) : = Frequency of term ¢ in document d
df(t) : = Number of documents that contain the term ¢

IDF(t) = log (df(t?—ﬂ)

TF-IDF(t,d) = TF(t,d) - IDF(¢)

Here, n represents the total number of messages in the dataset. Note that neither of these two
methods would be able to learn the semantical meaning of the messages, only the (relative) fre-
quency of each word in a message. Similarly, the sequential nature of text is lost as both approaches
are based on bag-of-words methods.

To remedy the lack of semantic understanding and the inability to utilize the sequential nature
of text in the messages, the k-NN is combined with the best model from the first phase. The
aforementioned document embeddings, which consist of vectors of 768 values for each message,
are used as the input-space for the k-NN. Note that, as the models from phase A use a multiclass
perceptron to separate these document embeddings into the categories, the input-space is assumed
to be linearly separable. Such a linearly separable space is not necessarily separable by a k-NN|
hence NCA is also utilized for the approaches which combine the pre-trained models and the k-NN.

The third approach will directly apply NCA and the k-NN to the document embeddings (Model B3),
as obtained from the best model from the first phase. Whereas the fourth method (Model B4)
combines the predictions from this best model from the first phase (Model A*) and the pre-
dictions from the application of the k-NN to the document embeddings, i.e. Model B3, us-
ing a weighted average. This approach is inspired by the work of Kassner and Schiitze, and
Khandelwal et al. (Kassner and Schiitze 2020; Khandelwal et al. 2020). With the primary
difference being the addition of the NCA. The relative weight for each prediction is managed
using an extra parameter p,_yy. Hence the calculation for this fourth approach is as follows
Ppy(Category = X) = p,_wnPps(Category = X) + (1 — p_wn) Pa~(Category = X).

Note that only the best model from the first phase is used in conjunction with the k-NN. This
choice is based on the assumption that the models from the first phase are independent from those
in the second phase. This assumption is factually incorrect, yet the near identical results for the
models in the first phase (Section 5.1) suggest that no significant dependence is present. These
results indicate that the approaches are interchangeable. Hence only the approach from the first
phase that performs best (Model A*), will be used in conjunction with the last two approaches
from the second phase.

In summary, in the second phase, four approaches are investigated, two of which utilize a simple
bag-of-words method and the other two use the document embeddings, as obtained from the best
model from the first phase. Figure 7 provides a schematical representation for each of these models.
Note that Model B3 and B4 use BERTje and, into Dutch translated, messages. Section 5.1 will
show that this model, Model A3, is indeed the best model from the first phase.

14

Categories

Categories Categories Categories Weighted
average

7

KNN

Py

P4

z

Y

z

z
=

-pz.l

4

1 layer FFN NCA

z
I
>
o z
»1 o
>

pre-trained

BERTe pre-trained

BERTje

Bag-of-words Bag-of-words
Word frequency TF-IDF

Google Translate Google Translate
= Dutch = Dutch

! Messages ; ! Messages ; Messages

(a) Schematic representa- (b) Schematic representa- (c) Schematic representa- (d) Schematic representa-
tion of Model BI tion of Model B2 tion of Model B3 tion of Model B/

o

Figure 7: Schematical representation for all four models of the second phase.

4.2.1 Neighborhood Component Analysis

Neighborhood Component Analysis, or NCA for short, is a supervised algorithm which can learn
a linear transformation that can be used to improve the classification accuracy of a k-NN. NCA
attempts to transform a space such that points with a similar category are are close together in
neighborhoods by maximizing the expected accuracy of a stochastic nearest neighbors algorithm.
When used as a pre-processing step for a k-NN, the k-NN is expected to perform better, as the
input-space is already separated in neighborhoods for the different categories.

For calculating the optimal transformation, the k-NN is modified to a stochastic nearest neighbors
algorithm. In this case, the prediction of a category for a certain point is based on the category a
randomly chosen point. The probability that point ¢ is classified using point j is calculated using
the softmax over the squared Euclidean distances from point 7:

2
e 1Az —Axj]|

Zk#e—l\Ami—Azkuz 1f]7é@
0 ifj =1

Dij =

In this calculation, matrix A represents the linear transformation that is to be learned. The
probability that a certain point ¢ gets classified correctly is then the sum of all p;; where j has the

same category (C;) as point i:
bi = Z Dij

Jj€C;

The idea behind NCA, is to maximize this p; for all points ¢ by modifying the matrix A:

A* = argmax i

Note that the usage of stochastic nearest neighbors leads to a relatively simple objective function
which is differentiable. An iterative solver can then be used to approach the optimal value for A.
The resulting transformation matrix A can be split into separate components, similar to Principal
Component Analysis. These components are ordered by the magnitude of the effect it has on the
maximization. The first component is more beneficial than the second when increasing » >, p;. One
will experience diminishing returns when increasing the number of components one uses.

15

4.2.2 k-Nearest Neighbors

The k-Nearest Neighbors might very well be the easiest algorithm for a layman to understand.
This algorithm takes a message where the category is unknown and compares this to the messages
where the category is known. It finds the k closest matches (generally, by looking at the Euclidean
distance between points). The majority category of this neighborhood will then be the predicted
category for the initial message. A major difference between a k-NN and most other classifiers
is the fact that no real ‘model’ is created. For every prediction that is required, the k nearest
neighbors need to be found from scratch. This is significantly more inefficient than a simple set
of matrix multiplications as for feed-forward networks. While it is possible to determine for each
point in the input space which category is most common in that neighborhood by determining the
decision boundaries, this is not desirable for this research. The fact that the neighbors need to be
recalculated is beneficial if the categories of labeled data changes. Indeed, this is the desire that is
conveyed in the third condition as described in Section 1.2.

4.3 Evaluation

The main metric for evaluating the quality models will be the accuracy. While other metrics like
the recall and precision are informative and will be shown, they are of secondary import for the
stakeholders in this research. The fine-tuning will, however, be done by optimizing the cross-
entropy loss. Optimizing the accuracy could lead to a model where the predicted ‘probability’ for
the correct category is barely larger than the ‘probability’ for the wrong categories. Minimizing
the cross-entropy loss maximizes the ‘probability’ for the correct category. Here, a confident pre-
diction, with a predicted ‘probability’ of 1, would be superior to an unsure prediction, where the
‘probability’ for the correct category is barely larger than that of the other categories. In this case,
one could use the predicted ‘probabilities’ as a measure of the sureness of the model. When the
most likely category for a certain message, is still somewhat unlikely, one could elect to have a
human evaluate that message.

The final evaluation is to be done on a separate test set, containing approximately 20% of all mes-
sages (23,689). Furthermore, an incomprehensive investigation of the differences and similarities
in behavior between the models will be provided.

The results of the models will be compared to four baselines, two of which have been described in
Section 4.2. These models utilize a bag of words method (either the word frequency or TF-IDF)
in conjunction with NCA and k-NN to categorize the messages. In addition to these simplistic
models, a majority classifier and a random classifier will be used as baselines.

To evaluate the performance of the models when new categories are added or existing categories
are modified, five extra categories are used. For each of these categories, 50 labeled messages are
added to the train set and then the model performance is investigated using a further 10 messages.

4.4 Experimental Setup

In summary, one can split this research into two ‘phases’. In the first phase, four different com-
binations of Machine Translation and a pre-trained BERT variant will be used to categorize the
messages:

Al. Messages — mBERT — Category

A2. Messages — Translate to English — BERT — Category

A8. Messages — Translate to Dutch — BERTje — Category

AJ. Messages — (Translate to Dutch + Translate to English) — mBERT — Category

The fine-tuning of these models will be done according to the recommendations by the authors of
the paper on BERT (Devlin et al. 2018) using a train set, consisting of 80% of the data (94,756
messages). Most hyperparameters will remain the same as during the pre-training of the models.
The exceptions are the batch size, the learning rate, and the number of training epochs.

16

Devlin et al. indicate that, while the optimal hyperparameter settings are task-specific, the fol-
lowing range of possible values work well across all tasks:

Batch size: 16, 32
Learning rate (Adam): 5e-5, 3e-5, 2e-5
Number of epochs: 2, 3, 4

Due to the time and computational constraints, only a batch size of 16 was used. Furthermore, all
models were fine-tuned with 3 epochs. The intermediate results of the fine-tuning process did not
give sufficient reason to assume the model would improve significantly if it were allowed to train
for an extra epoch (See also Section 5.1). To find the best learning rate, an exhaustive search was
done and the optimal rate was chosen based on the performance on a validation set of 20% of the
train set (18,951 messages). Devlin et al. do indicate that the influence of hyperparameter tuning
is expected to be little when the train set is large (e.g. 100k+ training examples).

The second phase of this research focuses on the addition of the k-NN to the model. In this phase,
two simplistic models are created and two combinations of the best model from the first phase,
Model A* and a k-NN classifier will be tested:

B1. Messages — Frequency per word used — NCA — k-NN — Clategory
B2. Messages — TF-IDF of each word used -+ NCA — k-NN — Category
B3. Messages — ‘Document embedding’ from Model A* — NCA — k-NN — Category

Predictions from Model A *
B4. MeSSages T3 --csememmoommmememe oo = Weighted
‘Document embedding’ from Model A* — NCA — k-NN

average — Category

This second phase introduces three new parameters: The number of components to be used from
the NCA (c¢), the number of neighbors to consider in the k-NN (k) and the weights to be used in
the weighted average for Model B/ (p,_yy). For the first parameter, it is assumed that the first
100 components, as found by NCA, should be more than sufficient to transform the data such that
the 9 different categories can be identified with a k-NN. Similarly, it is assumed that considering
50 neighbors is most likely more than optimal. Hence the following range for both parameters will
be tested exhaustively:

c: 2,5, 10, 15, ..., 95, 100
ki 1,2, 3,4, .., 49, 50

The assumptions around the maximum values and the step sizes for these ranges are, in part,
inspired by Goldberger et al. 2004 and Kariuki et al. 2022. Model B4 requires an additional
hyperparameter p,_yy = 1 — p,4, for the weighted average. This parameter distributes the power
of both parts. When p,_yy = 0, Model B4 will purely use Model A* and if p,_yy = 1, the model
will only use the k-NN (i.e. Model B3). An exhaustive search will be done to find the optimal
value for this hyperparameter. The step sizes for the three hyperparameters are likely smaller than
necessary. This fine grain was chosen to ensure the grid search was fine enough while remaining
computationally viable. If fewer computational resources were available, one could elect to use a
coarser grain and/or use a randomized grid search instead of an exhaustive search.

The fine-tuning and creation of the models, including the generation of all graphs, for this project,
will be done using Python. To accomplish this, a variety of third-party modules will be used. The
entire list, including the specific versions used, will be provided in Appendix C.

17

5 Results

In this section, the results from the models, as described in the previous section, will be shown and
discussed. The final and intermediary results from the fine-tuning process of the models of Phase
A will be provided. This will be followed by a brief investigation into the differences between these
models and the common mistakes made by the models. Furthermore, several examples will be
given of how the models distribute their attention over each word in a message. In Section 5.2, the
results from phase B will be shown. Here, the performance of the models for each hyperparameter
setting is shown, in addition to the final results of all models. Also included in this section is the
evaluation of the models on new/modified categories.

5.1 Phase A

5.1.1 Intermediary results

When considering the results of a fine-tuned model one should first investigate the fine-tuning
process itself. The intermediary results are often able to provide useful insight into the specific
hyperparameters and the quality of the results. These intermediary results for Model A1 can be
seen in Figure 8a and Figure 8b. These figures show the loss per batch of train data and the loss
and accuracy on the validation set every 1,500 batches. The batches in these graphs encompass
the entirety of the three epochs. The figure clearly shows that the training loss steadily decreases
over time as expected. One can also see the validation loss decreasing, but increasing after batch
18,000. The point where the validation loss is least is the point at which the model is presumed
to perform optimally. This point is marked by a red line in Figure 8b. In the period after this
minimum, the model starts to overfit on the train set. When looking at the validation accuracy,
one can see that the line seems to converge. However, at the point where the validation loss is
lowest, the accuracy is approximately 0.70.

Loss of model A1 during fine-tuning Accuracy of model A1 during fine-tuning
on train and validation set on validation set
g 14 \ 072 i
2 :
> 12 i
a \ Dataset 3 068 !
£ 1 \ — Train 2 ! Datasefc .
S > lidati g ! Validation
¥ e % Validation £ 0864 i
20 i
<] i
Y 06 . . . 0.60 Point with Ioweq‘t validation loss
0 10000 20000 0 10000 20000
Batch number Batch number
(a) Train and validation loss during fine-tuning (b) Validation accuracy during fine-tuning
of Model A1 of Model A1

Figure 8: Intermediary results for Model A1

Similarly for Model A2 in Figure 9a and 9b, one can see the training loss decrease during all 3
epochs, while the validation loss starts to increase after batch 18,000. At this point, the accuracy
is approximately 0.72 for the validation set. The remaining graphs of Figure 9c through 9f show
the intermediate results for Model A3 and A4 respectively. Remarkably, the validation loss is
minimal at batch 18,000 for each of the models. This seems to be coincidental, as the batches are
randomly ordered for each model. At this optimum, the validation accuracy is approximately 0.71
for both Model A8 and A4.

5.1.2 Overall performance

Figure 8, and 9 only show the intermediary results when using a learning rate of 5e-5. While the
other graphs show similar results, a learning rate of 5e-5 resulted in marginally better results. The
results for these four models with all three different learning rates are summarized in Table 2. In
this table, the validation accuracy and macro Fl-score at the optimal timestep are shown. A 95%
confidence interval is added around the accuracy and Fl-score using naive bootstrapping. Note

18

that there is no clear indication that the underlying distribution of these metrics is heavy-tailed,
hence bootstrapping seems like a valid approach (Athreya 1987).

Loss of model A2 during fine-tuning

i g valdstiamg ¢ Accuracy of model A2 during fine-tuning

on validation set

3 12 072 !
B ;
- i
g 1 Dataset > |
£ — Train g 008 i Dataset
S 08 o 3 : Validation
e Validation £ 064 ;
S 06 ;
v 0.60 Point with lowedt validation loss
0 10000 20000 0 10000 20000

Batch number Batch number

(a) Train and validation loss during the fine-tuning
of Model A2

(b) Validation accuracy during the fine-tuning
of Model A2

Loss of model A3 during fine-tuning

O e alstamg ¥ Accuracy of model A3 during fine-tuning

on validation set

=
[}

\ 0.72

AN

-

Dataset
— Train

Validation

Dataset
Validation

o
F]
©

=3
o
S

Point with Ioweét validation loss
10000 20000
Batch number

Cross-entropy loss
o o
o [«-]
Accuracy

o
o
=]

0 10000 20000 0
Batch number

(¢) Train and validation loss during the fine-tuning

of Model A3

Loss of model A4 during fine-tuning
on train and validation Set

(d) Validation accuracy during the fine-tuning
of Model A3

Accuracy of model A4 during fine-tuning
on validation set

14
2 072 1
° f

12
z Dataset 2 oce :
o T c ! Dataset
g ! A e g | Validati

v L] | alidation
¢ =y Validation & 064 :
g oo % I
o 1
v 06 0.60 Point with Ioweét validation loss
0 10000 20000 0 10000 20000

Batch number Batch number

(e) Train and validation loss during the fine-tuning
of Model A4

(f) Validation accuracy during the fine-tuning
of Model A4

Figure 9: Intermediary results for Model A2, A3, and A/

Table 2: Validation accuracy and macro Fl-score for each model in the first phase as obtained
with the three different learning rates

Learning rate | Accuracy Macro F1-score
Model Al 5e-b 0.705+0.006 0.659 £0.010
3e-5 0.673 £0.007 0.609 £ 0.009
2e-5 0.655 +0.007 0.586 £ 0.008
Model A2 5e-5 0.714 £ 0.006 0.651 £ 0.009
3e-5 0.673 £0.007 0.595 £ 0.009
2e-5 0.708 £ 0.006 0.644 £ 0.008
Model A3 5e-b 0.712£0.006 0.670 &+ 0.009
3e-5 0.680 £ 0.006 0.625 £ 0.009
2e-5 0.672 +£0.007 0.612 £ 0.009
Model A4 5e-5 0.7124+0.006 0.660 £ 0.008
3e-5 0.706 £ 0.007 0.653 £ 0.009
2e-5 0.671 £0.007 0.603 £ 0.009
Majority Class - 0.350 £0.009 0.058 £+ 0.001
Random Class - 0.183 £0.006 0.108 £ 0.005

19

As Table 2 shows, all models perform significantly better than the simple baselines yet no model
significantly outperforms the others when considering the validation accuracy. A slight difference
can be seen when comparing the accuracy of Model A1 to the others. Model A1 seems to perform
marginally worse than the other models. Larger differences can be seen when investigating the
Fl-score. Here one can see that Model A8 performs better than the other models. The runner-up
would be Model A4 which performs 0.01 worse. The confidence intervals are relatively small,
which is likely due to the relatively large validation set (18,951 samples), yet it does indicate that
the models have a low variance and are quite robust. As stated before, the higher learning rates
(3e-5 and 2e-5) result in marginally worse results. From this point, only the models that were
obtained using a learning rate of 5e-5 will be considered. Furthermore, given the relatively high
performance of Model A3, the model that translates the messages to Dutch and uses a fine-tuned
BERTje, on both the validation accuracy and the Fl-score, this model will be considered the best
for this phase.

5.1.3 Performance per category

It should be noted that the results are significantly below the hopes and expectations of the author.
To elucidate these dissatisfying results, the performance per category is investigated. Table 3 shows
the validation recall, and precision for each of the categories. Note that the recall could, informally,
be interpreted as an indication of how easy a category is to predict. A low recall could, for example,
indicate that the category is poorly defined or that the model is not complex enough to understand
the category. The precision indicates how valid the prediction for the class is. A low precision
indicates that other categories are often mistaken for this category. One might therefore assume
that categories with a low precision sabotage the performance of the model on the other categories.

Table 3: Validation precision and recall per category for each of the four models with an average
precision and recall for these models combined.

Model A1 Model A2 Model A3 Model A4 Average
Category Precision Recall | Precision Recall | Precision Recall | Precision Recall | Precision Recall Freq.
Accept. new construction 0.987 0.459 0.939 0.468 0.754 0.627 0.883 0.621 0.891 0.544 []
Appoint. with caretaker 0.742 0.523 0.708 0.481 0.643 0.594 0.741 0.440 0.709 0.510 1IN
General Admin. 0.684 0.639 0.579 0.735 0.713 0.726 0.627 0.672 0.651 0.693 N
General Renting 0.704 0.524 0.519 0.607 0.482 0.538 0.506 0.659 0.553 0.582 N
Financial matters 0.676 | 0.957 0.854 0.895 0.926 0.780 0.812 = 0.909 0.817 0.885 N
Comment new room 0.749 ~ 0.454 0.685 = 0.448 0.504 0.771 0.749 = 0.389 0.672 0.516 N
Nuisance 0.690 0.639 0.572 0.694 0.922 0.488 0.606 0.667 0.698 0.622 [|
Service costs 0.873 0.561 0.785 0.586 0.938 0.523 0.701 0.677 0.824 0.587 N
Keys 0.743 0.702 0.684 0.818 0.612 | 0.924 0.681 = 0.835 0.680 0.820 N

When looking at the category ‘Acceptation new construction’ in Table 3, one can see that precision
is high for Model A7 and A2, while the recall is low. This implies that the models predict this
category not often enough, but when they do, they are often correct. Model A8 and A4 have a
lower precision, but a significantly higher recall. This indicates that the category is more often
predicted correctly, but the predictions of this category are also more often incorrect. When looking
closely at Model A1 one can see that the precision for each category is relatively high, while the
recall is low for most categories. Given that the recall for ‘Financial Matters’ and ‘Keys’ is high,
one could conclude that the Model categorizes messages too often as these categories. This would
imply that the model only predicts another category if it is very certain (i.e. a high precision for
the other categories). Remarkably however, the precision for these two exceptional categories, is
not very low. This is likely due to the fact that the categories, and especially ‘Financial matters’
are rather common. While the recall is low for most of the categories for Model A1, there is no
clear sign that any of the categories is truly undesirable. Looking at the overall average gives
an indication of how difficult each category is to learn. Here it becomes clear that the category
‘Financial Matters’ is relatively easy to predict, while ‘General Renting’ is hard. Note that the
recall for each category is far above the expected recall for a randomized model (i.e. the relative
frequency of the category). This indicates that although ‘General Renting’ is hard to predict, the
models are still able to learn some information about this category. Hence, there is no clear reason
to conclude that any of the categories should be left out to improve the results.

Earlier, Model A3 was designated as the best model of the first phase. One can see a remarkably
high precision for the categories ‘Financial Matters’, ‘Nuisance’, and ‘Service costs’ and no tremen-

20

dously low recalls. It is however clear that the model struggles with identifying ‘Nuisances’ and the
predictions for ‘Comment new room’ and ‘General Renting’ are not very trustworthy. Figure 10
shows the confusion matrix as obtained from this model. Here one can see that the diagonal (i.e.
the correct predictions) is quite prevalent. Note that 638 of the ‘Financial Matters’ messages are
categorized as ‘Comment New Room’ and 396 as ‘General Renting’. One could reasonably suspect
that these mistakes are due to the similar nature of the categories. A tenant could, for example,
ask about the financial arrangements regarding a new room. It would not be implausible that the
tenant or an employee would assign either of these categories. It is reasonable to assume that a
certain indeterminable part of the messages can not be ‘correctly’ categorized due to data quality
issues and an overlap between the different categories. Furthermore, 486 of the ‘General Renting’
messages have been predicted to belong to ‘Comment new room’ and 106 to ‘Keys’. Once again,
these mistakes are somewhat explainable by the nature of the categories. Another clear example of
explainable mistakes are the 230 ‘Service costs’ messages that have been categorized as ‘Financial
matters’. One might expect the precision of the generic categories (‘General Administration’ and
‘General Renting’) to be very low as their definition is rather vague. Table 3 indicated that this was
only the case for ‘General Renting’. In 325 cases, ‘Nuisance’ messages are seen as ‘General Admin-
istration’, but this is both understandable and not that significant in comparison to the number
of correct predictions. For ‘General Renting’ on the other hand, 396 ‘Financial matters’ messages
are predicted as being ‘General Renting’. This is approximately 23% of all ‘General Renting’
predictions. Similarly, 164 (= 10%) ‘Service costs’ messages are seen as ‘General Renting’.

Figure 10: Confusion matrix of model A3 on validation data

To get an informal validation of the supposition that a significant part of the mistakes is explainable
by nature of the categories, a randomized selection of 10 mistakes from each of the aforementioned
types of mistakes have been investigated. The summarized results of this informal investigation
can be found in Appendix A. Here it becomes clear that the majority were correctly labeled.
Hence, the model does indeed make many mistakes. The messages in question did however often
contain topics that could reasonably belong to the predicted category. For example, a tenant might
notify the housing corporation that they have found a new room and that the contract should be
terminated. Such a message would belong clearly to the ‘Financial Matters’ category, yet contains
text about a new room, which tends to be associated with the ‘Comment new room’ category.
Furthermore, several messages contain multiple questions. One might ask when they can collect
their keys and ask about their lease in the same message. In that case, there is no clear correct
category.

Table 4 provides three examples from this investigation. This table includes an indication of which
parts of the sentence are most important in predicting the category. This indication is obtained
by calculating the integrated gradient from the output to the input tokens (Sundararajan et al.
2017). These gradients show the influence of an input on the predictions. They are compared to the
gradients of a baseline sentence consisting of only special padding tokens. The integrated gradients

21

display how much the input tokens influence the predictions with respect to a zero measurement.
A word that has a large influence on the output is shown with a darker background in Table 4,
while a word with no influence on the output has a white background.

When looking at the first example in Table 4, it is clear the category is difficult to predict. The
model would need to understand that, although the tenant specifically says that they want to
cancel their contract, the question is about the rent. For the second example, one might conclude
that the true label ‘General Renting’ is not actually correct. Remarkably, the second usage of
the word ‘sleutel’ (‘key’) does not seem to have an effect on the prediction, while the first one
does. Finally for the third example, one can see that the model tends to focus on words which
indicate the recency of an event (‘Onlangs’-‘recently’; ‘Ondertussen’-‘in the meantime’, ‘nieuwe

gevonden’-‘found a new ..., and ‘maand vanaf nuw’-‘month from now’). The model seems to
focus relatively little on the actual request. It is not unlikely that the category ‘Comment new
room’ would contain much more references to the currency of the topic at hand than the category
‘General Renting’.

Table 4: Table containing the Dutch and English texts for three examples of misclassified messages

with the relative importance per word shown by the opacity of the background color.

True label

Predicted label

Dutch text

English text

Financial Matters

General Renting

General Renting

General Renting

Keys

Comment new room

Ik wil graag mijn contract
opzeggen en vraag me af of ik
de huur voor juli en augustus
kan terugkrijgen . Dank je
voor je hulp !

Hallo , ik ben vandaag uit mijn
kamer verhuisd en heb de sleutel
in het deurslot van de conciérge
laten vallen . Ik wist niet dat je de
sleutel in een envelop moest doen
met je kamernummer erop . Ik
heb het huisvestingsbureau
hierover geinformeerd en zij
zeiden dat het geen probleem was
, maar ze wilden dat ik contact
met jullie opnam om het jullie te

laten weten ! Beste wensen

Beste , Onlangs heb ik het
huurcontract van <adress>
opgezegd met de langst
mogelijke opzegtermijn .
Ondertussen heb ik een nieuwe
woning gevonden en zou
daarom graag de einddatum van
het huurcontract wijzigen naar
<date> (precies een maand
vanaf nu) . Met vriendelijke

groet , <name>

22

I would like to cancel
my contract and won-
der if T can get the
rent back for July and
August. Thank you
for your help!

Hello, I moved out of
my room today and
dropped the key in
the door lock of the
concierge. I didn’t
know you had to put
the key in an enve-
lope with your room
number on it. I in-
formed the housing
office about this and
they said no prob-
lem, but they wanted
me to contact you to
let you know! Best
wishes

Best, I recently can-
celed the <address>
rental contract with
the longest possible
notice period. In
the meantime, I have
found a new home
and would therefore
like to change the end
date of the rental con-
tract to <date> (ex-
actly one month from
now). Yours sin-
cerely, <name>

5.2 Phase B

Considering the results from phase A, it is clear that Model A3, the model that translates the
messages to Dutch and uses a fine-tuned BERTje, performs the best overall, but will still make a
significant amount of mistakes. Furthermore, this model is not able to adjust to categories that
get newly created or get modified. In this section, the results of the four models from the second
phase will be discussed. Recall that two of these four models utilize the optimal model from the
first phase. These models, which combine a transformer model with a k-NN, will therefore utilize
Model A35.

5.2.1 Hyperparameter Tuning

Figure 5 shows the validation accuracy for each combination of neighborhood components (for the
NCA) and neighbors (for the k-NN). From the figure, the diminishing returns for the number of
components and the number of neighbors become clear. Very little improvement is made when
increasing either the neighbors or the components from, about 15 neighbors and 50 components.
Recall that Model B1 uses the frequency of each word as the input and B2 the Term Frequency-
Inverse Document Frequency. As expected, one can see that Model B2 performs better than
Model B1. This becomes even clearer when inspecting Table 5. This table shows the validation
accuracy and Fl-score for both models with the optimal combination of the hyperparameters,
the baselines as seen earlier in Section 4.1, and the best model from the first phase, Model A3.
Remarkably, the simplistic k-NN models, which do not use the semantic meaning of the messages
and only look at the frequencies that words are used in, perform only slightly worse than Model A3.
As Model B2 performs significantly better than Model B1, it is clear that utilizing the TF-IDF
helps with the performance.

0 10 20 30 40 50
Number of neighbors Number of neighbors

Validation accuracy of model B1 Validation accuracy of model B2
- per hyperparameter combination Accuracy - per hyperparameter combination Accuracy
£ 100 5 1004 p
3 0 B
2 70 2 70
E & 0.50 £ &0 0.55
o 50 . o 50
5 gg 5 §8 0.50
g 0 045 g 3
£ w0 2 1 045
=) =) — T T T T T
= ! 0.40 = 0 10 20 30 40 50 ! 040

(a) Validation accuracy for Model B for each com- (b) Validation accuracy for Model B2 for each com-
bination of the hyperparameters bination of the hyperparameters

Figure 11: Results for all tested hyperparameters for Model B! and B2

Table 5: Validation accuracy and macro Fl-score for the models from the second phase, when
using optimal hyperparameters, and baselines

Neighbors Components | Accuracy Macro F1-score
Model B1 19 95 0.575 + 0.009 0.442 £0.013
Model B2 23 95 0.631 £ 0.009 0.546 £+ 0.012
Model B3 31 95 0.658 £ 0.008 0.612 £0.011
Model B4 30 90 0.715 £ 0.009 0.663 £ 0.010
Model A3 - - 0.712 + 0.006 0.670 £+ 0.009
Majority Class - - 0.350 £ 0.009 0.058 £ 0.001
Random Class - - 0.183 £ 0.006 0.108 £ 0.005

As for the simple models B! and B2, the optimal hyperparameters were determined for Model B3
and B4. The validation accuracy for each of the combinations is shown in Figure 12. Once again,
one can clearly see diminishing returns for increasing the neighbors and components. Here it seems
that approximately 30 neighbors and 90 components are optimal for both. Recall that Model B/
combines the predictions from the transformer model (A%) and the k-NN (B3) using a weighted

23

average. Figure 13 shows the validation accuracy for all possible values of p,_yy (in steps of 0.001).
Note that when using p,_yy = 0, Model B4 is equivalent to Model A8 and when using p,_xv = 1,
Model B4 is equivalent to Model B3. The graph shows that the validation accuracy is highest
when the predictions are 19.5% based on the k-NN and 80.5% on the transformer model. There is
little difference between the performance of this optimum and Model A8. The major difference is
that Model B/ is, theoretically, able to adapt to new/modified categories. The actual validation
accuracy and Fl-score are shown in Table 5. Note that, while Model B/ performs significantly
better than Model B3, it does not clearly outperform Model A3. Given the fact that Model B/
has the highest validation accuracy, and is theoretically able to adapt to new/modified categories,
it is deemed the best model in this study. This single model has been evaluated on the test set,
which resulted in a test accuracy of 0.716 £ 0.008.

Validation accuracy of model B3 Validation accuracy of model B4
" per hyperparameter combination Accuracy @ per hyperparameter combination Accuracy
4] c 100
§ 19 I 0.700 g g I 0.70
c
g 80 g &
g 0.675 g 0
5 60 g @0 0.65
g 0.650 2o
w40 : 5 40
) o 30
2 20 0.625 F 0.60
g 10 g 10
=l y + . . : 0.600 = - T T T T]
z 0 0 20 30 40 50 z 0 020 30 40 50 0.55
Number of neighbors Number of neighbors

(a) Validation accuracy for Model B3 for each com- (b) Validation accuracy for Model B4 for each com-
bination of the hyperparameters bination of the hyperparameters

Figure 12: Results for all tested hyperparameters for Model B3 and B/

Validation accuracy per value for pnn

Validation accuracy

0.66

0 025 050 075 7
Prnn = 1 — PeerTje

Figure 13: Linegraph of the relation between the hyperparameter p,_yy for Model B4 and the
validation accuracy

5.2.2 Performance per category

Table 6 shows the validation precision and recall for Model A3, B3, and Bj per category. Note
that Model B8 only outperforms Model A8 when considering the precision for ‘General Renting’,
the recall for ‘Financial Matters’, and the recall for ‘Nuisance’. Despite this, Model B/ seems to
improve on the primary weaknesses of Model A3 (e.g. the precision for ‘General Renting’ and the
recall for ‘Nuisance’). This implies that models A3 and B3 have a different understanding of the
same data, both of which are utilized in Model B4.

24

Table 6: Validation precision and recall per category for Model A3, B3 and B/, where the highest
precision and recall per category is highlighted.

Model A8 Model B3 Model B/

Category Precision Recall | Precision Recall | Precision Recall Freq.
Acceptance new construction 0.754 0.627 | 0.592 0.431 0.723 0.585 []

Appointment with the caretaker | 0.643 0.594 | 0.546 0.376 | 0.674 0.497 1R
General Administration 0.713 0.726 | 0.557 0.572 | 0.67 0679 1N
General Renting 0.482 0.538 | 0.558 0.289 | 0.718 0.442 1N
Financial matters 0.926 0.78 0.77 0.879 | 0.806 0.898 1N
Comment new room 0.504 0.771 | 0.476 0.509 | 0.572 0.64 [
Nuisance 0.922 0.488 | 0.676 0.5 0.732 0.602 1N

Service costs 0.938 0.523 | 0.631 0.52 0.73 0.589 1N
Keys 0.612 0.924 | 0.547 0.784 0.625 0824 1R

5.2.3 Adaptability to new/modified categories

To evaluate the adaptability of the model to new/modified categories, the models from the second
phase are applied to previously unseen categories. Five new categories have been chosen with 60
messages each. As stated in Section 4.3, 50 messages will be added to the ‘train set’ (i.e. the input
for the k-NN) and predictions will be made for the remaining 10. The addition of the messages to
the train set represents the manual action from the housing corporation to add existing messages to
the new category. Table 7 shows the results from this experiment. Recall that these categories have
been chosen to be easy to predict. The table, therefore, shows an indication of the adaptability of
the model in a near-ideal situation. Note that Model B4, due to the fact that it relies for 80.5%
on the transformer Model A3, which can not adapt to new categories, performs worst overall.
Model B2 and B3 however, perform quite well. The performance of these models seems close to
the performance on messages with previously known categories (Validation accuracy of 0.631 and
0.658 respectively).

Table 7: Number of correctly predicted categories for unseen categories where only 50 labeled
examples are available

Category Model BI Model B2 Model B8 Model B/
Campus Control 5/10 5/10 6/10 2/10
Block heating allowance | 6/10 7/10 6/10 3/10
Internal relocation 4/10 3/10 5/10 1/10
Lease agreement 5/10 5/10 4/10 2/10
Subletting 5/10 6/10 7/10 4/10

25

6 Conclusion

In this research, the possibilities for the usage of transformer models have been investigated for the
automatic classification of incoming messages at the department for customer service of housing
corporations. Major challenges here are the fact that these messages are either Dutch or En-
glish and that the target categories can, occasionally, change or new categories can be created.
This objective and these challenges have been formulated in the following research question and
conditions:

How can the process of categorizing/routing incoming e-mails at the customer service of housing
corporations be automated with the use of attention-based models, given the bilingualism of
the e-mails and the variability of categories?

This primary question should lead to an algorithm that complies with the following conditions:

1. The algorithm should be able to utilize the semantic meaning of the messages to assign the
right category.

2. The algorithm should be able to process both English and Dutch messages.

3. The algorithm should be able to adapt to new categories with few data, without exhaustive
retraining of the models.

4. The overarching concept of the algorithm should remain easily explainable to end users with
little to no mathematical knowledge.

The first condition regarding the utilization of the semantic meaning of the messages is satisfied
by the usage of attention-based models. For the second condition, regarding the bilinguality of
the data, four approaches have been investigated. Firstly a pre-trained multilingual BERT model,
mBERT, has been fine-tuned on the messages (Model A1). The second approach used Machine
Translation to translate the Dutch messages into English and used BERT to fine-tune the messages
(Model A2). The third approach is similar to the second, but the English messages are translated
into Dutch and a Dutch variant of BERT, BERTje, was fine-tuned (Model A3). Finally, a new
approach was introduced where Machine Translation was used to obtain both a Dutch and an
English version of each message. These versions were concatenated and mBERT was fine-tuned
using these concatenated messages (Model A4). It was found that each of these approaches lead
to similar results which were significantly higher than the Majority Class baseline and a random
classifier. Although the approaches gave very similar results, the third approach (Model A8) was
deemed to perform best with a validation accuracy of 0.712.

The third condition addresses the dynamic nature of categories. Occasionally new categories can
be created and existing categories can be deleted or modified. To allow the models to adapt to
new/modified categories, a k-Nearest Neighbor classifier (k-NN) is used in conjunction with the
fine-tuned transformer model. Four approaches using k-NN have been investigated. Each of the
approaches uses Neighborhood Component Analysis (NCA) to transform the data such that it is
separable using a k-NN. Two of the approaches are simple bag-of-words models which do not use
the transformer models. The first approach (Model B1) uses the frequency that each word is used
in a message as the input for the k-NN. The second approach (Model B2) is similar but uses the
Term Frequency-Inverse Document Frequency (TF-IDF) instead. The third approach (Model B3)
uses the fine-tuned Model A8 to obtain a document embedding, which is then used as the input
for the k-NN. Finally, the fourth approach combines the predictions from Model A3 and B3 using
a weighted average. It was found that the fourth approach BJ lead to the highest validation
accuracy (0.715), but the performance on new categories was abysmal due to the heavy influence
of Model A& in the prediction. The second and third approaches seemed to perform relatively well
on the new categories.

The final condition, regarding the explainability of the models at a conceptual level, is satisfied
by the model choice. Each model consists of up to four ‘modules’> Machine Translation, fine-
tuned transformer model, NCA, and/or k-NN. While the Machine Translation is very complex,
the concept of translating text using software is known to nearly everyone. It is unlikely that
anyone will have never heard of tools like Google Translate or Bing Translator. The exact theory
behind the fine-tuned transformer model is also rather complex. The function of the model is

26

however very simple: To obtain a numerical representation of the semantic meaning of the text.
The basic idea that the semantic meaning can be obtained by utilizing the interaction between
each word in a message is somewhat more complex, but still sufficiently intuitive in the view of the
author. The NCA is best understood when considering its intent. The NCA is used to ensure that
the input is separable by a k-NN, hence it ensures that similar data points are near each other.
The k-NN is one of the most intuitive models. The overarching concept that one categorizes the
messages by looking at the categories of k messages which are semantically most similar will not
likely lead to confusion.

The final answer to the research question, given the research done in this study, is that it is best to
use Machine Translation to translate the messages into Dutch. The Dutch messages should then
be fed into a fine-tuned BERTje to obtain document embeddings and predictions. The document
embeddings should be transformed using NCA (with 95 components) and fed into a k-NN (with 30
neighbors). The predictions from BERTje and the k-NN should then be combined with an 80.5%
reliance on BERTje and 19.5% on k-NN. This model results in the highest validation accuracy
and obtains a test accuracy of 0.716. However, the performance on new categories, as described
in Section 5.2.3, is poor. Future research could set up a more elaborate experiment to test this
performance and modify the p,_yy hyperparameter to modify the respective reliance on the k-NN
and BERTje, to improve this performance.

6.1 Further research

Given the rise of transformer-based chatbots like OpenAI’s ChatGPT and Google’s Bard, one could
wonder whether these generative models could be utilized for other tasks, such as classification.
Recent research into zero-shot learning with ChatGPT has led to promising results. For example,
Kuzman et al. show that zero-shot classification with ChatGPT is able to outperform a fine-tuned
XLM-RoBERTa model (Kuzman et al. 2023). This might lead one to suppose that learning the
meaning of the target categories, using a model such as ChatGPT, could be better than learning
what sort of messages belong to a certain category by fine-tuning a model. It would be interesting
to see if such a model would be able to correctly assign categories to a message, given a description
of each of the categories. The downside of these models is that these models can, realistically, only
be used via the servers of the respective companies. This would mean that the confidentiality of
the messages would be compromised. An experiment such as this should therefore be done on text
that does not contain any personal data. Future research could focus on the anonymization of text
using, for example, Named Entity Recognition (Mamede et al. 2016).

In this research, it was found that a simple k-NN on the Term Frequency-Inverse Document
Frequency performed quite well. It would be reasonable to suppose that a smaller and simpler
model would perform similar to the performance of the best models that were found in this research.
Future studies could investigate the exact workings of the TF-IDF k-NN to see which words are
most important in the determination of the category. This might lead to the creation of a simple
rule-based model which could give more insight into the categories and could, perhaps, be used
as an intermediary solution for the problem this study tried to solve, as it would be trivial to
implement. Furthermore, one could investigate the use of old messages for the k-NN. One could
reasonably suppose that only the most recent year/month or the most recent X messages are
relevant for determining the category of new messages.

In this study, the models were limited to BERT and variants of BERT, since BERT was released,
many larger and better models have been released. One could investigate whether fine-tuning such
models leads to significantly better results. These would however require dedicated hardware or
access to a supercomputer to fine-tune these gigantic models.

Finally, as stated in Section 6, the model that was deemed to perform best in this study, namely
Model B/, performed poorly on new categories due to a high reliance on the transformer model. In
the future, one might investigate how the performance on the new categories can be increased while
decreasing the performance on existing categories minimally. The major challenge here would be
to design a statistically sound metric for evaluating the performance on new categories.

Alternatively, one could also investigate the data quality. As described in Section 5.1.3, many
mistakes that the models make, are explainable. This implies that the categories overlap or are

27

not clearly defined. This would lead to incorrectly labeled data, which is detrimental for the
performance of any model that tries to automate the categorization.

6.2 Practical application

When considering the applicability of this research, one should note that the models that have been
created use the messages, and more importantly the categories of a single housing corporation. This
means that the models that have been added as digital addenda are only able to categorize messages
into these categories. While all the results in this report only relate to the data of this one housing
corporation, there is no reason to assume that a similar model would work significantly worse for
a different housing corporation. The performance is however highly dependent on the quality of
the data. If the corporation uses vague categories which encompass a plethora of topics like the
category ‘Customer service’ or ‘Miscellaneous’, the model will likely perform worse, than if the
corporations used clearly defined, single topic categories.

The problem of vague categories and corporation-specific models could be prevented if all corpora-
tions were to use the same well-defined categories. The standardized categories would however lead
to a loss of agency for the corporations. To prevent this, one could look further into the possibilities
of separating categories from teams. Currently, a team is allowed to see several categories. One
could make the category truly descriptive of the message and add the team, which should resolve
the message, as an extra attribute to the message. To prevent extra work for the employees, one
would need a new model which would assign the correct teams to the messages as one can not
expect tenants to assign the right teams.

Currently, the subject, as described in section 1.1, functions partially as such a descriptive category.
A tenant is now able to choose a specific subject when filling in a contact form, which is then mapped
to a category. The responsibility for correctly labeling the message is therefore on the tenant. This
predefined subject becomes irrelevant when the category can be assigned based on the text in the
message. The author would however not recommend removing the subject altogether. Allowing
the tenant instead to write their own subject, would provide the tenant with more agency and the
model with a summary of the message. The model that accompanies this research does not rely
on the predefined subjects that are currently in use and would keep working if the implementation
of the subjects was removed or changed. If the predefined subjects were to be changed to free-form
text, one could adjust the model to use these by appending the new free-form subjects to the
messages and fine-tuning the model again.

The actual implementation of the model differs per model. Models A1, A2, A8, and A/ only need
a single message as input to return an output. As the models from the second phase (B1, B2, B3,
and B/) search for a number of messages which are most similar to the input message, an extra
set of messages to compare against is required. Models B3 and B4 use document embeddings as
input for the k-Nearest Neighbors algorithm. These embeddings are obtained from the pre-trained
model and consist of a vector of 768 floating-point numbers per message. It is likely most efficient
to calculate and store these embeddings in a database whenever the housing corporation receives
a new message. All models from the first phase and Model B3 and Bj use a large transformer
model. This model is a large collection of matrix multiplications with 110 million parameters.
This requires roughly 1.2GB to store. Given the size of the model, one would likely need a specific
server or service which is able to handle the requests.

Each model and related code is added as a digital addendum. These addenda consist of the
model (in one, or more files), and a file which contains all the code required to use the model
(e.g. model _Al.py) which includes a minimal example for obtaining a prediction. A further and
more inclusive description of these addenda and the list of the required Python modules and their
versions are given in Appendix B and C respectively.

28

References

Aiken, M. (2019). An updated evaluation of google translate accuracy. Studies in Linguistics and
Literature, 3, p253. https://doi.org/10.22158/sll.v3n3p253

Araujo, M., Reis, J., Pereira, A., & Benevenuto, F. (2016). An evaluation of machine translation
for multilingual sentence-level sentiment analysis. Proceedings of the 31st Annual ACM
Symposium on Applied Computing, 1140-1145. https://doi.org/10.1145/2851613.2851817

Athreya, K. B. (1987). Bootstrap of the Mean in the Infinite Variance Case. The Annals of Statis-
tics, 15(2), 724-731. https://doi.org/10.1214/a0s/1176350371

Bahdanau, D., Cho, K., & Bengio, Y. (2016). Neural machine translation by jointly learning to
align and translate.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding.

Goldberger, J., Hinton, G. E., Roweis, S., & Salakhutdinov, R. R. (2004). Neighbourhood compo-
nents analysis. In L. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information
processing systems. MIT Press. https://proceedings.neurips.cc/paper_files / paper /2004 /
file/42{e880812925e¢520249e¢808937738d2-Paper.pdf

Kalyan, K. S., Rajasekharan, A., & Sangeetha, S. (2021). Ammus : A survey of transformer-based
pretrained models in natural language processing.

Kariuki, H., Mwalili, S., & Waititu, A. (2022). Dimensionality reduction of data with neighbour-
hood components analysis. International Journal of Data Science and Analysis, 8, 72-81.
https://doi.org/https://doi.org/10.11648/j.ijdsa.20220803.11

Kassner, N., & Schiitze, H. (2020). BERT-kNN: Adding a kNN search component to pretrained
language models for better QA. Findings of the Association for Computational Linguistics:
EMNLP 2020, 3424-3430. https: //doi.org/10.18653,/v1/2020.findings-emnlp.307

Khandelwal, U., Levy, O., Jurafsky, D., Zettlemoyer, L., & Lewis, M. (2020). Generalization
through memorization: Nearest neighbor language models.

Khare, P., Burel, G., Maynard, D., & Alani, H. (2018). Cross-lingual classification of crisis data.

Kuzman, T., Mozeti¢, 1., & Ljubesié, N. (2023). Chatgpt: Beginning of an end of manual linguistic
data annotation? use case of automatic genre identification.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2020). Albert: A lite bert
for self-supervised learning of language representations.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., &
Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach.

Mamede, N., Baptista, J., & Dias, F. (2016). Automated anonymization of text documents. 2016
IEEE Congress on Ewolutionary Computation (CEC), 1287-1294. https://doi.org/10.
1109/CEC.2016.7743936

Oostdijk, N., Reynaert, M., Hoste, V., & Schuurman, I. (2013). The construction of a 500-million-
word reference corpus of contemporary written dutch. In P. Spyns & J. Odijk (Eds.), FEs-
sential speech and language technology for dutch: Results by the stevin programme (pp. 219-
247). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30910-6-13

Ordelman, R., de Jong, F., Hessen, A., & Hondorp, H. (2007). Twnc: A multifaceted dutch news
corpus. Analytica Chimica Acta - ANAL CHIM ACTA.

Poncelas, A., Lohar, P., Way, A., & Hadley, J. (2020). The impact of indirect machine translation
on sentiment classification.

Powers, D. M. W. (1998). Applications and explanations of Zipf’s law. New Methods in Language
Processing and Computational Natural Language Learning. https://www.aclweb.org/
anthology /W98-1218

Sundararajan, M., Taly, A.,; & Yan, Q. (2017). Axiomatic attribution for deep networks.

Toral, A., Gaspari, F., Naskar, S., & Way, A. (2011). Comparative evaluation of research vs. online
mt systems, 13-20.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polo-
sukhin, I. (2017). Attention is all you need.

Wan, X. (2009). Co-training for cross-lingual sentiment classification. Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP, 235-243. https://aclanthology.org/P09-
1027

Wikimedia Foundation. (n.d.). Wikimedia downloads. https://dumps.wikimedia.org

29

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao,
Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, L., Gouws, S.,
Kato, Y., Kudo, T., Kazawa, H., ... Dean, J. (2016). Google’s neural machine translation
system: Bridging the gap between human and machine translation.

Wu, Z., Efros, A. A., & Yu, S. X. (2018). Improving generalization via scalable neighborhood
component analysis.

Yang, W., Wang, K., & Zuo, W. (2012). Fast neighborhood component analysis. Neurocomputing,
83, 31-37. https://doi.org/https://doi.org/10.1016 /j.neucom.2011.10.021

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., & Fidler, S. (2015).
Aligning books and movies: Towards story-like visual explanations by watching movies
and reading books.

30

Appendix

A Data quality experiment

As stated in Section 5.1.3, an informal experiment has been done to determine the quality of the
data and to gain a better understanding of the reasoning of the model behind the predictions. For
this experiment 10 messages have been selected at random from each of 7 common mistakes model
A8 made, such as predicting ‘Financial Matters’ while the correct category is ‘Service costs’. These
messages have been evaluated by the author. As can be seen in Table 8, in 57 of the 70 cases,
the ‘true’ label was correct. A further 10 messages were assigned a correct category by the model,
while the ‘true’ label was wrong. However, more than half of all cases are situations where the
model is truly wrong and the ‘true’ label is correct.

Table 8: Table with results from informal experiment regarding the quality of the data and the
predictions of model A3.

True Category
Correct Incorrect

Prediction Prediction
True Category Prediction Correct Incorrect | Correct Incorrect
Financial Matters Comment new room 2 8
Financial Matters General Renting 9 1
General Renting Comment new room 1 7 2
General Renting Keys 3 2 4 1
Service costs Financial Matters 7 3
Nuisance General Administration 9 1
Service costs General Renting 5 4 1
Total 18 39 10 3

B Digital Addenda

This report is accompanied by several digital addenda. The Python code required for each model
to run are provided in addition to the files containing the actual models and model-parts. These
models/model-parts are the fine-tuned transformer model, the word frequency and TF-IDF vec-
torization, the NCA transformation, and the k-NN models. Only the Python code is publicly
accessible, the model files are exclusively shared with the host company. The model-specific ad-
denda are separated in different folders for each of the eight models that have been explored in this
study. Each of these are such that each model can be easily utilized in isolation form the other
models.

In addition to these model files, three python-files are included which are used to generate the
models. These three files, model_creation data_preparation.py, model_creation phaseA.py,
and model_creation_phaseB.py, contain the code required to prepare the data, create the models
from the first Phase, and the second Phase respectively.

A final script (rest_api_interface.py) is added as an example for the usage of the models and
to provide an accessible interface for the models in the form of a REST API.

These files are made accessible via GitHub:
https://github.com/RobertBrnn/TransformerKNNTextclassification.

31

C Product / package versies

As indicated in Section 4.4, Python was used for this project. Table 9 provides the versions of the
Operating System, Python, and the Python Modules that were used for this Project. The digital
addenda, as described in Appendix B, also utilizes these specific versions.

Table 9: Table with the used products and the versions of these products

Name Type Version
Windows Operating System Windows 10 Pro 22H2
Python Programming Language | 3.9.12
beautifulsoup4 Python Module 4.11.1
bertviz Python Module 1.4.0
captum Python Module 0.6.0
datasets Python Module 2.10.1
difflib Python Module 20200713
evaluate Python Module 0.4.0
flask Python Module 2.3.2
gensim Python Module 4.3.1
googletrans Python Module 3.1.0a0
matplotlib Python Module 3.5.2
mysql.connector Python Module 8.0.32
pandas Python Module 1.4.2
plotnine Python Module 0.10.1
scikit-learn (sklearn) Python Module 1.2.2
spacy Python Module 3.5.1
tensorboard Python Module 2.11.0
pytorch Python Module 2.0.0
tqdm Python Module 4.63.0
transformers Python Module 4.27.3

32

