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1 Introduction

1.1 About the CWI

Founded in 1946, CWI is the national research center for Mathematics and Com-
puter Science in the Netherlands. More than 170 full professors have come from
CWI, of whom 120 still are active. CWI’s strength is the discovery and develop-
ment of new ideas, and the transfer of knowledge to academia and to Dutch and
European industry. This results in importance for our economy, from payment
systems and cryptography to telecommunication and the stock market, from
public transport and internet to water management and meteorology. With its
55 permanent research staff, 40 postdocs and 65 PhD students, CWI lies at the
heart of European research in mathematics and computer science. Researchers
at CWI are able to fully concentrate their efforts on their scientific work, and
to build an international network of peers. More than half of the permanent
research staff maintains close contact with universities as part-time professors.
The personal and institutional research networks strengthen CWI’s positions
and serve as a magnet for attracting talent. CWI researchers come from more
than 25 countries world-wide. A source of pride: CWI was a birthplace of the
world-wide internet. Cwi.nl was the first national domain name ever issued any-
where. CWI helped develop the wing of the Fokker Friendship - chosen as the
most beautiful Dutch design of the 20th century. The popular language Python
was invented at CWI, the language in which Google was developed. CWI ap-
plied combinatorial algorithms to the scheduling of the Dutch railway system.
XML-databases were build to the needs of the Netherlands Forensic Institute
and 3D visualization techniques to better detect cancer tumors.
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1.2 Summary

Today, we have a large number of wireless access networks at our disposal,
ranging from hot-spot based local-area networks (e.g., Wireless LAN, WiMAX)
to wide-area mobile networks, such as UMTS and HSDPA. This opens up the
opportunity to enhance the user-perceived performance by using multiple access
networks simultaneously, and to make applications more robust against the
ever-changing circumstances in wireless access networks. The objective of this
internship was to find optimal dynamical strategies for concurrent access in
wireless LANs and to determine the impact of burstiness of the arriving traffic
on the optimal strategies. These dynamical strategies are based on the observed
number of flows which are the observed number of file transmissions on the
wireless nodes. For this purpose MDPs (Markov Decision Processes) have been
formulated. The MDPs can contain more states than the observable number of
flows. Therefore a partial observation approach have been developed based that
conditions the non observable states on the observed number of flows. For the
partial observation problem also Bayesian dynamic programming models have
been developed. These models use information states that represents the actual
belief on the real state of the nodes. The information states have been combined
with the full state observable MDP strategy. Further a simple decision heuristic
has been developed that is based on the known result of the conditional sojourn
time in a single PS (Processor Sharing) node. Finally all the strategies have
been implemented in OPNET, a realistic network simulation environment, and
the performance in terms of expected sojourn time has been compared. In this
comparison the decision heuristic based on conditional sojourn time performs
very well.
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1.3 Motivation for Concurrent Access

Today, we have a large number of wireless access networks at our disposal,
ranging from hot-spot based local-area networks (e.g., Wireless LAN, WiMAX)
to wide-area mobile networks, such as UMTS and HSDPA. As a consequence,
country-wide coverage is provided by multiple overlapping networks, especially
in densely populated areas such as the Randstad area in the Netherlands. This
opens up the opportunity to enhance the user-perceived performance by using
multiple access networks simultaneously, and to make applications more robust
against the ever-changing circumstances in wireless access networks. A new
technology that enables the simultaneous use of concurrent networks is called
Concurrent Access (CA). This creates a tremendous potential for application
performance improvement. This performance inprovement can be realized in
terms of

• Speed, when the bandwidth of two or more networks is combined a through-
put can be realized higher than the maximum bandwidth of the separate
networks. The improvement can be noticed in throughput but also in
terms of access time. When multiple networks are used for a request the
network with the fastest response can be used in order to archieve lower
access times.

• Reliability, when two or more networks are used for downloading a con-
nection loss does not nesessary stop the download. This can be compared
with a download manager. A download manager uses multiple servers
for downloading a file. If one of these servers does not repond anymore
the download can still be completed using the other servers. The multi-
ple download servers used in the download manager correspond multiple
connections used with CA.

Figure 1 illustrates the use of multiple technologies for concurrent access.

3
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Figure 1: Concurrent access over multiple wireless technologies.

In Figure 1 the white clouds represent a variety of wireless technologies.
The blue cloud represents a network that contains an application server from
which files are requested. The terminal (displayed as a notebook computer) has
concurrent access to the IP network with multiple connections. The concurrent
access can be applied on connections using different wireless technologies or
multiple connections that are using the same technology. In Figure 1 the UMTS-
HSPDA connections to node A and node B are in the same wireless technology.
The application of concurrent access is not limited to civil use. In Figure 2 it is
applied in a military context.
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Figure 2: Military application of concurrent access.

In the military context concurrent access delivers an additional advantage:

• Security, when tactical information is transferred it is crucial that no hos-
tile party can intercept this information. Using concurrent access the
information can be split over multiple connections. With multiple con-
nections over different wireless communication networks the hostile party
has to intercept more communication networks.

1.4 How does Concurrent Access work?

Concurrent access does deliver a lot of advantages in terms of speed, reliability
and security. If a device is equipped with multiple antennas, some intelligence
has to be developed for enabling the advantages of concurrent access. Figure 3
provides a schematic overview of how concurrent access can be applied.
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Figure 3: How concurrent access works.

The application server typically contains webpages (HTTP) or files (FTP)
that will be requested by clients. Concurrent access enables performance im-
provements that will reduce the access time and file transfer time. In perfor-
mance model terms the file transfer time is modelled by the sojourn time. This
is the time between the moment of which a file is requested and the moment
the file transfer is completed. The orange cloud contains the distribution node.
The distribution node implements a concurrent access strategy that optimize
the performance for all concurrent access clients. In Figure 1 the different wire-
less technologies are connected to the IP network. All the routers and operator
antennas that connect the wireless technologies to the IP network will be de-
noted by a wireless node or node. In the concurrent access setting two types of
clients have to be distinguished:

• Foreground traffic which consists of clients that have multiple antennas
and use multiple wireless connections simultaneously,

• Background traffic which consists of clients that only use one wireless
connection.

The aim of this thesis is to develop strategies that will optimize the performance
for foreground traffic. Concurrent access strategies can be divided in two classes:

• Server selection

• Job split
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A server selection strategy will select for each requested file a wireless node
for transfer. The node will not be changed during transfer. Figure 4 provides a
schematic overview for the application of server selection for two wireless nodes:

rR

background traffic
node 1

background traffic
node 2

foreground traffic

node 1

node 2

reception of
requested files

Figure 4: Static server selection. R denotes the server selection strategy that is
used.

Server selection can be applied statically or dynamically. With a static server
selection strategy R for each foreground file request a node is selected for the
file transfer independent of the state of the system. Examples of static server
selection policies are

• Round Robin (RR),

• Random server selection.

With Round Robin the server selection is applied using a fixed sequence, for
example 1, 2, 1, 2 (the numbers correspond to the selected node number). With
random server selection upon arrival a node is selected stochastically. The se-
lection probabilities pi are determined by the selected probability distribution
over the nodes.
Dynamic server selection is a server selection strategy based on dynamic obser-
vations. This can be the file size or the number of flows on the nodes. If there
are two nodes with n1 and n2 the number of flows on server 1 and server 2, the
strategy will be a function R (n1, n2) with for each combination of n1 and n2

an optimal decision.
A job split strategy will split a requested file over multiple networks. For job
split the optimal strategy comprises the optimal splitting of files. Figure 5 pro-
vides a schematic overview for concurrent access using job split for two nodes.
In this figure the arrows are joined together because the splitted files have to
be recombined at the terminal. In the two node case the splitting strategy can
be identified using a splitting factor α. Ideally this should be done such that
latency due to reassembly is avoided.
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Figure 5: Job split.

1.5 Research questions

In the setting that is described in Section 1.4 several questions were formulated.
The research questions are:

What is the impact of burstiness in arrivals on the optimal policies?
Internet traffic does not exactly behave like a Poisson process. Internet traffic
arrives in bursts. This is for example caused by correlation between files loaded
together on a webpage. Furthermore during a day there are ‘busy hours’ where
lots of traffic is generated for example people that go online during lunch time.

What is the impact of file size distributions on the optimal policies?
In the most simple traffic models file sizes are modeled by an exponential distri-
bution. For internet traffic file sizes are much ’more variable‘ than exponentially
distributed files. Therefore it is important to find out the impact of filesize dis-
tribution on finding optimal policies.

What is the impact of partial observability? The optimization models
are formulated on the assumption that only the total number of flows can be
observed and not the type of flow. However for the optimization there is a
difference between foreground flows which are the clients that will use CA and
background flows which are clients that only use one wireless network.

What performance improvement gain can be obtained by taking in
account the history of observations? With the partial observation prob-
lem the sequence of observations (on the number of flows for each node) provides
more information than individual observations. Therefore the use of observa-
tion history can improve the performance of strategies that are based on partial
observability.

How to develop simple heuristics for optimal splitting? Calculation of
optimal policies is in general a time and memory consuming operation. Can
this be simplified using a simple rule that is close to the optimal solution?
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1.6 Approach

For the answer to the research questions the dynamic server selection prob-
lem will be modeled as Markov Desicion Problems (MDPs). These problems
will be formulated for the different combinations of burstiness and different file
size distributions. The MDPs will be solved using backwards recursion. The
resulting policies will be implemented and validated in OPNET, a simulation
environment that incorporates IP and network specific dynamics.

1.7 Structure of the thesis

This thesis addresses dynamic server selection strategies. In Chapter 2 dynamic
server selection is studied using MDPs (Markov Decision Processes). These
MDPs generate optimal decision strategies based on the number of flows on the
wireless nodes for different file size distributions, including Erlang, exponential
and hyper-exponential distributions. The state spaces for the models contain
more dimensions than the number of flows on the nodes. Therefore a partial ob-
servation approach is proposed using a distribution conditioned on the observed
number of flows. In Chapter 3 the partial observation problem of Chapter 2 is
approached by applying Bayesian dynamic programming. In Chapter 4 an al-
gorithm is proposed that can be used for calculating the expected sojourn time
conditioned on the number of flows. Furthermore, a strategy is proposed that is
based on known result on the conditional sojourn time for a single PS node. All
the different decision models have been implemented in a realistic simulation
environment. Chapter 5 presents the results in terms of performance for the dif-
ferent dynamic server selection strategies that are discussed in this thesis. The
resulting strategies of Chapters 2, 3 and 4 were all evaluated together, therefore
these results are combined together in Chapter 5. Figure 6 provides a graphical
overview on how the chapters of this thesis are index related:

Chapter 1

C
h
a
p
te

r
2

C
h
a
p
te

r
3

C
h
a
p
te

r
4

Chapter 5

Figure 6: Relation between chapters.
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2 Dynamic splitting of traffic with MMPP ar-

rivals

In this chapter models are formulated that will generate policies for traffic in-
cluding burstiness arrivals and different file size distributions. These models will
be used for experiments on the impact of burstiness in arrivals and the impact
of file size distributions on the optimal policies.
For the calculation of optimal policies MDP’s will be formulated and solved
using backward recursion. Before MDP’s can be formulated some modelling
assumptions have to be made. The assumptions and their motivation are de-
scribed in Section 2.1. In Section 2.2 a basic (MDP) model is formulated which
optimizes foreground traffic for Poisson arrivals and exponentially distributed
file sizes. The basic MDP model is a template that will be extended with more
complex assumptions including partial observation, different arrival processes
and different file sizes. In Section 2.3 an approach for partial observation, based
on conditioning over the possible observations, is presented. Section 2.4 will
extend the basic MDP model in Section 2.2 applying the partial observation ap-
proach in Section 2.3. In Section 2.5 the partial observation model with Poisson
arrival and exponential file sizes of Section 2.4 will be extended with Erlang and
hyper-exponential file sizes. With the final extension in section 2.6 the partial
observation models of Section 2.4 and Section 2.5 are extended with MMPP
arrivals. For the MMPP models burstiness of traffic is parametrized in a inter-
rupted Poisson process (IPP) with two parameters. Using the MDP models in
Section 2.7 various optimal policies have been calculated for different file sizes
and different burstiness parameters for the MMPP arrivals and the resulting
optimal policies are presented and compared.

2.1 Model assumptions

For the optimization of concurrent access different models are defined. These
models are based on the following assumptions:

Nodes Wireless network nodes can be modeled as PS (processor sharing) nodes.
Modeling network performance using PS based models [2, 12, 7] is applica-
ble to a variety of communication networks, including CDMA 1xEV-DO,
WLAN, and UMTS-HSDPA. In fact, PS models can actually model file
transfers over WLANs accurately [12], hence taking into account the com-
plex dynamics of the file transfer application and its underlying protocol-
stack, including their interactions.

Arrivals The arrivals of download requests are modeled as Poisson processes
and Markov Modulated Poisson Processes. (See Section 2.6).

File sizes The file sizes are modeled in the service time distribution of the PS
nodes.

Observability On each wireless network node only the total number of flows
can be observed. No distinction can be made between the traffic types
(foreground or background).

10



2.2 Basic model

Consider the situation where two connections are available and a file has to
be transferred. Traffic consists of the transfer of files where each transfer in
progress is denoted by a flow. For both nodes the amount of traffic can be
observed (number of flows). The traffic on the nodes consists of clients that
only use one node. This traffic is identified as background traffic. Besides
background traffic there is foreground traffic from users that want to optimize
the transfer speed by using two nodes. This type of traffic is identified as
foreground traffic. The objective is to minimize the expected sojourn time of
the foreground traffic files that have to be transmitted given the total amount of
(foreground + background) flows on both connection-nodes. Figure 4 provides
insight in the process that is being optimized. In this model, one has to decide,
based on the total observed number of flows on each server, which node should
be selected for the file transfer.

The server selection setting can be modeled as a Semi-Markov Decision Pro-
cess (SDMP). In Appendix 8.A.1 more can be found about SDMP’s. The model
is visualized in Figure 7. Here background flow arrivals are modeled as Poisson
processes with arrival rates λ1 and λ2 respectively. The arrival of foreground
files is modeled as a Poisson process with arrival rate λ0. The connection nodes
can be modeled as PS (Processor Sharing) nodes with exponentially distributed
service times (all users that use a connection have to equally share the band-
width with the other users). In this case the service times correspond with
the file size distribution. For now all streams have the same exponentially dis-
tributed file sizes with expected file size 1

µ
Mbit. Each node has a bandwidth

or capacity indicated by Ci Mbps. Furthermore the system has statespace S.
R (s) represents the dynamic policy based on system state s ∈ S.

11
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PS 2
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R (s) traffic
reassembly

Figure 7: Server selection model with:

s ∈ S is the state of the system (# of files),

R (s) is the dynamic policy based on state s,

Ci the capacity on node i,

1
µ

the average file size,

λ0 foreground arrival rate,

λi background arrival rate on node i.

When the amount of foreground traffic is relatively low compared to back-
ground traffic this can have negative impact on the performance of foreground
traffic. Therefore a model should be formulated that takes into account the
distinction between foreground traffic and background traffic. The state space
of this model is S = N0

4 where in s = (b1, f1, b2, f2) ∈ S. In this state space fi

denotes the number of foreground flows in connection node i and bi denotes the
number of foreground flows in connection node i. For each arriving foreground
flow, a connection has be selected for transmission. This selection is modeled
in the action space a ∈ A = {1, 2} with 1,2 the index of the connection node
that should be selected. The idea is to minimize the expected sojourn time for
foreground flows. The expected sojourn time can be derived from the expected
number of flows using Little’s formula:

λE [S] = E [L] (1)

with:

λ the (foreground traffic) arrival rate,

E [S] the expected sojourn time and

E [L] the steady state expected number of foreground flows.

The expected number of flows can be optimized by choosing the reward r (s, a) =
f1 +f2 equal to the number of foreground flows. Now the total expected reward
g corresponds to the expected number of foreground flows in the system. As the
average number of flows should be minimized the value iteration will become

12



a minimization problem. This description can be converted in a MDP which
can be solved using value iteration as described in Appendix 8.A.2. Using the
value iteration definition in Equation (72) from Appendix 8.A.2 the backward
recursion equations can be defined with s ∈ S, t = 0, 1, · · · and τ = 1

γ
:

V(t+1)τ (s) =
f1 + f2

γ
(2a)

+ min
a∈{1,2}

[
λ0

γ
Vtτ (s+ e2a)

]
(2b)

+
∑

i∈{1,2}

[
λi

γ
Vtτ (s+ e2i−1)

]
(2c)

+
∑

i∈{1,2}

[
db,i

µi

γ
CiVtτ

(
[s− e2i−1]

+
)]

(2d)

+
∑

i∈{1,2}

[
df,i

µ0

γ
CiVtτ

(
[s− e2i]

+
)]

(2e)

+
∑

i∈{1,2}

[
(1− db,i)

µi

γ
Ci + (1− df,i)

µ0

γ
Ci

]
Vtτ (s) , (2f)

with

db,i =






bi
bi + fi

if bi + fi > 0

0 otherwise
,

df,i =






fi

bi + fi

if bi + fi > 0

0 otherwise
,

and

γ = λ0 +
∑

i∈{1,2}

[λi + (µi + µ0)Ci] .

In Equation (2):

(2a) corresponds to the number of foreground flows in state s,

(2b) corresponds to the event of a foreground flow arrival transition,

(2c) corresponds to the event of with a background flow arrival transition,

(2d) corresponds to the event of with a background flow completion,

(2e) corresponds to the event of with a foreground flow completion and

(2f) corresponds to the dummy transition.

Furthermore e2i−1 is the unit vector that has zeros on all dimensions except on
the dimension that corresponds to the number of background flows on server

13



i. e2i−1 does the same for foreground traffic. On that position the vector has
value 1. This vector is used in the equations for identifying the transitions of
the Markov Chain. The fractions bi

bi+fi
and fi

bi+fi
are a result of the fact that

the connection nodes are modeled as PS (processor sharing) nodes. Each trans-
fer will receive a fraction 1

bi+fi
of service (the number of flows in a connection

node is the sum of background and foreground type traffic). From this the total
fraction of service to transfer on node i will be bi

bi+fi
for background traffic and

fi

bi+fi
for foreground traffic. As the total expected reward g corresponds to the

expected total number of foreground flows Little’s formula can now be applied
in order to obtain the expected sojourn time:

E [S] =
E [Lf ]

λ0
=

g

λ0
. (3)

In Equation (3):

E {S} is the expected foreground flow sojourn time,

E {Lf} is the expected number of foreground flows,

λ0 is the foreground flow arrival intensity and

g is the long-term average expected reward

(in this case expected number of foreground flows).

In this model the decisions are based on knowledge on both the number of fore-
ground and background transfers in the two connection nodes. This is however
not always the case. Therefore a partial observation approach has to be used.

2.3 Partial observation

In practice only the total number of flows on the connection nodes (i.e., bi + fi

for node i, i = 1, 2) can be observed. Furthermore the MDP models for more
complex file sizes do contain more dimensions than can be observed. This intro-
duces the problem of partial observation. The problem of partial observation is
introduced on the assumption that only the total amount of traffic can be ob-
served and decisions can only be based on observations. For the clear definition
of the partial observation in the models we define an observation space O = N0

2

with (o1, o2) ∈ O with oi the observed total number of flows on connection node
i. The observed states are compound states, the observation is the sum of the
number of flows in the non observable states. In the case of the basic model,
with Poisson arrivals and exponential file sizes, when the distinction between
background and foreground traffic is made in the MDP model the state space
will become S = N0

4 where (b1, f1, b2, f2) = s ∈ S. In the state space fi corre-
sponds to the number of foreground traffic flows on connection-node with index
i ∈ {1, 2} and bi corresponds to the number of background flows on node i.
With this higher dimensional model multiple combinations of states s ∈ S can
correspond to an given observation o ∈ O. For example: with the foreground
optimizing model for the observation (o1, o2) = (2, 2) the system can be in any
of the following states:
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{
(b1, f1, b2, f2) |

b1+f1=2
b2+f2=2

}
=






(0, 2, 0, 2) , (1, 1, 0, 2) , (2, 0, 0, 2) ,
(0, 2, 1, 1) , (1, 1, 1, 1) , (2, 0, 1, 1) ,
(0, 2, 2, 0) , (1, 1, 2, 0) , (2, 0, 2, 0)




 . (4)

Now nine states will all be observed as (2, 2). As a consequence, the decision
should be based on all the possible states that correspond to this observation.
Consider the MDP model in Equation (2). For the partially observable model
R (o) is the policy, the set of actions given the system is observed in o ∈ O.
Rtτ (o) is defined as the policy at time tτ in the value iteration algorithm. For
a given policy Rtτ (o) at epoch tτ the Markov chain given this policy can be
solved. Rtτ (o) is based on the observation o however because o is composed of
possible states s ∈ S, o can be written as a function of s:

o (s) = {o|q′ (o, s) = 1, s ∈ S, o ∈ O} , (5)

where q′(o, s) is the probability of observing o in s:

q′(o, s) = P (o|s, o ∈ O, s ∈ S) . (6)

For the model in this paragraph o (s) is defined by:

o (b1, f1, b2, f2) = (b1 + f1, b2 + f2) . (7)

With this functionRtτ (o) can be written as a policy on s, Rtτ (o|s) = Rtτ (o (s)).
Denote νRtτ

as the time limiting distribution on statespace S for the policy Rtτ

on epoch tτ of the value iteration algorithm. So νRtτ
(s) is the probability dis-

tribution over the complete state space in the value iteration algortihm at epoch
tτ . The distribution νRtτ

at epoch tτ can be found by plugging in the policy at
tτ , Rtτ in the Markov chain. The solution of the Markov chain can be found
using a numerical approch like SOR. When the distribution νRtτ

is found this
distribution can be conditioned on the observation space o ∈ O, in which the
policy is defined.

νRtτ
(s|o) =

{
νRtτ

(s)
P

s

νRtτ
(s)q′(o,s) if

∑
s

νRtτ
(s) q′ (o, s) > 0

0 otherwise.
(8)

Using the policy conditioned on the observation space O a modified MDP can
be solved:

R(t+1)τ (o) = argmax
a∈A

{
∑

s

νRtτ
(s|o) · (9)

[
r (s, a) τ + q (s, a)

∑

s′

p (s, a, s′)Vtτ (s′) + (1− q (s, a))Vtτ (s)

]}
,

a (s) = Rtτ (o (s)) ,

V(t+1)τ (s) = r (s, a (s)) τ + q (s, a (s))
∑

s′

p (s, a, s′)Vtτ (s′) + [1− q (s, a (s))]Vtτ (s) .

Next sections will describe how the partial information approach based on the
conditional distribution νRtτ

(s|o) for three different file size distributions.
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2.4 Poisson arrivals with exponential file sizes

As described in the start of this chapter, only the number of flows on each con-
nection node can be observed. The distribution of background and foreground
transfers cannot be observed. However the framework presented in Section 2.3
can be applied to the fully observable MDP. As described earlier there is an
observation space O = N0

2 with (o1, o2) ∈ O with oi the observed total number
of flows on connection node i. Furthermore the state space will become S = N0

4

where (b1, f1, b2, f2) = s ∈ S. In the state space fi corresponds to the number of
foreground traffic flows on connection-node i ∈ {1, 2} and bi corresponds to the
number of background flows on node i. e2i−1 is the unit vector that has zeros
on all dimensions except on the dimension that corresponds to the number of
backround flows on server i. e2i does the same for foreground traffic. The cost
function is defined by

r (s) = f1 + f2. (10)

The value iteration algorithm will produce a policy Ro which contains all deci-
sions that should be made when o flows are observed on the nodes and is defined
by:

Rtτ (o) = argmin
a∈{1,2}

{
∑

s

νRtτ
(s|o)Vtτ (s+ e2a)

}
,

a (s) = Rtτ (o (s)) ,

V(t+1)τ (s) =
f1 + f2

γ
(11a)

+
λ0

γ
Vtτ

(
s+ e2a(s)

)
(11b)

+
∑

i∈{1,2}

[
λi

γ
Vtτ (s+ e2i−1)

]
(11c)

+
∑

i∈{1,2}

[
db,i

µi

γ
CiVtτ

(
[s− e2i−1]

+
)]

(11d)

+
∑

i∈{1,2}

[
df,i

µ0

γ
CiVtτ

(
[s− e2i]

+
)]

(11e)

+
∑

i∈{1,2}

[
(1− db,i)

µi

γ
Ci + (1− df,i)

µ0

γ
Ci

]
Vtτ (s) , (11f)

(11g)

16



with

db,i =






bi
bi + fi

if bi + fi > 0

0 otherwise
,

df,i =






fi

bi + fi

if bi + fi > 0

0 otherwise
,

and

γ = λ0 +
∑

i∈{1,2}

[λi + (µi + µ0)Ci] ,

with parameters:

λ0 the arrival rate for foreground flows,

λ1 the arrival rate for background traffic on node 1,

λ2 the arrival rate for background traffic on node 2,

µ0 file-size distribution parameter for foreground flows,

µ1 file-size distribution parameter for background flows on node 1,

µ2 file-size distribution parameter for background flows on node 2,

C1 the capacity for node 1,

C2 the capacity for node 2.

The function o maps the number of flows (b1, f1, b2, f2) to the corresponding
observation (o1, o2) of the total number of flows:

o (b1, f1, b2, f2) = (b1 + f1, b2 + f2) .

In Equation (11):

(11a) corresponds to the number of foreground flows in state s,

(11b) corresponds to the event of a foreground flow arrival,

(11c) corresponds to the event of a background flow arrival,

(11d) corresponds to the event of a background flow completion,

(11e) corresponds to the event of a foreground flow completion and

(11f) corresponds to the dummy transition.

Note that for the server selection models, the direct reward r (s, a) and transition
rate for the arrivals of foreground traffic λ0 do not depend on choice a. Therefore
the optimal decision can be directly based on the value function of the state that
will be reached with decision a.
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Usually with value iteration the total average expected reward g can be de-

rived by the limit
V(t+1)τ (s)− Vtτ (s)

τ
→ g. The calculation of νRtτ

enables the

direct calculation of g from the policy:

g =
∑

s∈S

νRtτ
(s) r (s,Rtτ (o (s))) . (12)

2.5 Model extension 1: different file size distributions

The basic model including partial observation with Poisson arrivals and expo-
nential file sizes is defined for now. The exponential distribution has a squared
coefficient of variation that is equal to 1. One of the research questions is about
finding out the impact of the file size distribution. Therefore the model will be
extended with hyper-exponential and Erlang file sizes.

2.5.1 Poisson arrivals with hyper-exponential file sizes

The model with hyper-exponential file sizes is using the hyper-exponential dis-
tribution, with balanced means. A hyper-exponential distribution Hk consists
of k exponential distributions with different rates µi. Each exponential distri-

bution i has a selection probability pi > 0 with
k∑

i=1

pi = 1. In other words

the exponential distributions in the hyper-exponential distributions can be con-
sidered as multiple ‘classes’ with their corresponding selection probabilities pi.
Each exponential distribution will contribute to the expectation of the hyper-

exponential distribution with pi

µi
, E [X ] =

k∑
i=1

pi

µi
([10], 446). For the models the

H2-distribution is used with balanced means. A hyper-exponential distribution
has balanced means when all the ‘class’ contributions to the expectation are
equalized, p1

µ1
= p2

µ2
= · · · = pk

µk
= 1

kµ
. When the expectation and the squared

coefficient of variation are provided for the H2-distribution the selection prob-
abilities pi and the rates µi are fixed ([3], 13):

p1 =
1

2
−

1

2

√
c2 − 1

c2 + 1
, (13)

p2 =
1

2
+

1

2

√
c2 + 1

c2 + 1
,

µ1 = p12µ,

µ2 = p22µ.

The hyper-exponential distribution is only suitable for squared coefficient of
variation c2 ≥ 1. Because the hyper-exponential distribution consists of multiple
independent exponential distributions a multi-dimensional Markov Chain can
be created. The next model is an extension of the exponential MDP where the
extra dimensions for the H2-distribution are added.

Define state space S = N0
8 with

(b1,1, f1,1, b1,2, f1,2, b2,1, f2,1, b2,2, f2,2) ∈ S.
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For the dimensions bi,j and fi,j the index i ∈ {1, 2} is the connection node index
and j ∈ {1, 2} the index for the H2 ‘classes’. e4i+2j−5 is the unit vector that
has zeros on all dimensions except on the dimension that corresponds to the
number of foreground flows on server i and ‘class’ j. e4i+2j−4 does the same for
foreground traffic.
The value iteration equations are defined by:

Rtτ (o) = argmin
a∈{1,2}





∑

s

νRtτ
(s|o)

∑

j∈{1,2}

p0,jVtτ (s+ e4a+2j−4) ,






a (s) = Rtτ (o (s)) ,

V(t+1)τ (s) =
f1,1 + f1,2 + f2,1 + f2,2

γ
(14a)

+
∑

j∈{1,2}

[
λ0

γ
p0,jVtτ

(
x+ e4a(s)+2j−4

)
]

(14b)

+
∑

j∈{1,2}

∑

i∈{1,2}

[
λi

γ
pi,jVtτ (s+ e4i+2j−5)

]
(14c)

+
∑

i,j∈{1,2}

[
db,i,j

µi,j

γ
CiVtτ

(
[s− e4i+2j−5]

+
)
]

(14d)

+
∑

i,j∈{1,2}

[
db,i,j

µ0,j

γ
CiVtτ

(
[s− e4i+2j−4]

+
)
]

(14e)

+
∑

i,j∈{1,2}

[
(1− db,i,j)

µi,j

γ
Ci + (1− df,i,j)

µ0,j

γ
Ci

]
Vtτ (s) , (14f)

with

db,i,j =






bi,j
bi,1 + fi,1 + bi,2 + fi,2

if bi,1 + fi,1 + bi,2 + fi,2 > 0

0 otherwise
,

df,i,j =






fi,j

bi,1 + fi,1 + bi,2 + fi,2
if bi,1 + fi,1 + bi,2 + fi,2 > 0

0 otherwise
,

and

γ =
∑

i∈{0,1,2}

[λi] +
∑

i,j∈{1,2}

[(µ0,j + µi,j)Ci] ,

with parameters:

λ0 the arrival rate for foreground traffic,

λ1 the arrival rate for background traffic on node 1,

λ2 the arrival rate for background traffic on node 2,

c0
2 the squared coefficient of variation for foreground traffic,
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c1
2 the squared coefficient of variation for background traffic on node 1,

c2
2 the squared coefficient of variation for background traffic on node 2,

µ0,j the rates for foreground traffic with H2 type j

µi,j the rates for background traffic on node i with H2 type j

p0,j the probability of an ‘class j’ arrival for foreground traffic,

p1,j the probability of an ‘class j’ arrival for background traffic on node 1,

p2,j the probability of an ‘class j’ arrival for background traffic on node 2.

For this model the mapping from the state space to observation space is de-
scribed by:

o (b1,1, f1,1, b1,2, f1,2, b2,1, f2,1, b2,2, f2,2) = (b1,1 + f1,1 + b1,2 + f2,2, b2,1 + f2,1 + b2,2 + f2,2) .

In Equation (14):

(14a) corresponds to the number of foreground flows in state s,

(14b) corresponds to the event of a foreground flow arrival,

(14c) corresponds to the event of a background flow arrival,

(14d) corresponds to the event of a background flow completion,

(14e) corresponds to the event of a foreground flow completion and

(14f) corresponds to the dummy transition.

In this MDP formulation it can be found that the capacity on the PS nodes is
equally divided over the hyper-exponential ‘classes’ j on node i with

bi,j

bi,1+fi,1+bi,2+fi,2

for background traffic and
fi,j

bi,1+fi,1+bi,2+fi,2
for foreground traffic.

2.5.2 Poisson arrivals with Erlang file sizes

As mentioned in Section 2.5.1 the hyper-exponential distribution is only suitable
for modeling file sizes c2 ≥ 1. For file sizes c2 < 1 the Erlang-distribution can be
used. The Erlang-distribution with k phases Ek is the distribution of the sum
of k independent identical exponential distributions. Each exponential distri-
bution corresponds to a phase that has to be completed. Given the expectation
in terms of processing/service rate 1

µ
the expectation of each phase is equal to

1
kµ

. All phases have an exponential distribution with rate kµ ([10], 442). For

the experiments an Erlang 2 file size distribution is used for c2 = 1
2 < 1. The

Erlang-2 distribution again causes the state space dimensions to double. Each
dimension will be multiplied by two for the two phases of the Erlang-2 distribu-
tion. The phases are independent exponentially distributed which can be fitted
again into a Markov Chain. For optimization with Erlang-2 file sizes a MDP is
formulated with state space S = N0

8 where

(b1,1, f1,1, b1,2, f1,2, b2,1, f2,1, b2,2, f2,2) ∈ S.
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For the dimensions bi,j and fi,j the index i ∈ {1, 2} denotes the connection
node index and j ∈ {1, 2} denotes E2 phase index. e4i+2j−5 and e4i+2j−4 are
unitvectors that identify the dimensions for the number of flows on the ith node
in Erlang phase j. The value iteration equations are defined by:

Rtτ (o) = argmin
a∈{1,2}

{
∑

s

νRtτ
(s|o)Vtτ (s+ e4a−2)

}
,

a (s) = Rtτ (o (s)) ,

V(t+1)τ (s) =
f1,1 + f1,2 + f2,1 + f2,2

γ
(15a)

+
λ0

γ
Vtτ

(
s+ e4a(s)−2

)
(15b)

+
∑

i∈{1,2}

λi

γ
Vtτ (s+ e4i−3) (15c)

+
∑

i∈{1,2}

[
db,i,1

2µi

γ
CiVtτ

(
[s− e, bi,1 + e4i−1]

+
)]

(15d)

+
∑

i∈{1,2}

[
df,i,1

2µ0

γ
CiVtτ

(
[s− e4i−2 + e4i]

+
)]

(15e)

+
∑

i∈{1,2}

[
db,i,2

2µi

γ
CiVtτ

(
[s− e4i−1]

+
)]

(15f)

+
∑

i∈{1,2}

[
df,i,2

2µ0

γ
CiVtτ

(
[s− e4i]

+
)]

(15g)

+
∑

i,j∈{1,2}

[(
(1− db,i,j)

2µi

γ
+ (1− df,i,1)

2µ0

γ

)
Ci

]
Vtτ (s) , (15h)

with

db,i,j =






bi,j
bi,1 + fi,1 + bi,2 + fi,2

if bi,1 + fi,1 + bi,2 + fi,2 > 0

0 otherwise
,

df,i,j =






fi,j

bi,1 + fi,1 + bi,2 + fi,2
if bi,1 + fi,1 + bi,2 + fi,2 > 0

0 otherwise
,

and

γ =
∑

i∈{0,1,2}

[λi] +
∑

i,j∈{1,2}

[(µi + µ0)Ci] ,

with parameters:

λ0 the arrival rate for foreground traffic,

λ1 the arrival rate for background traffic on node 1,
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λ2 the arrival rate for background traffic on node 2,

2µ0 the rate for each Erlang phase for foreground traffic distribution i,

2µ1 the rate for each Erlang phase for background traffic distribution on node
1,

2µ2 the rate for each Erlang phase for background traffic distribution on node
2,

C1 the capacity of node 1,

C2 the capacity of node 2.

The mapping from state space to observation space is defined by:

o (b1,1, f1,1, b1,2, f1,2, b2,1, f2,1, b2,2, f2,2) = (b1,1 + f1,1 + b1,2 + f2,2, b2,1 + f2,1 + b2,2 + f2,2) .

In Equation (15):

(15a) corresponds to the number of foreground flows in state s,

(15b) corresponds to the event of a foreground flow arrival,

(15c) corresponds to the event of a background flow arrival,

(15d) corresponds to the event of transition from Erlang-2 phase ‘1’ to phase
‘2’ for a background flow,

(15e) corresponds to the event of transition from Erlang-2 phase ‘1’ to phase
‘2’ for a foreground flow,

(15f) corresponds to the event of a background flow completion,

(15g) corresponds to the event of a goreground flow completion and

(15h) corresponds to the dummy transition.

The Erlang phase rates 2µi are derived from the original file size parameters

where the expected file size equals
1

µi

for i ∈ {0, 1, 2}. Within this MDP formu-

lation
bi,j

bi,1+bi,1+bi,2+bi,2
,

fi,j

bi,1+bi,1+bi,2+bi,2
is the equal partitioning of capacity on

node i over the 2 phases j for foreground traffic and background traffic. Arrivals
only occur to the first phase therefore the arrival part of the equation becomes

λ0

γ
Vtτ

(
s+ e4a(s)−2

)
+

∑

i∈{1,2}

λi

γ
Vtτ (s+ e4i−3) .

In comparison to the (hyper)-exponential MDP formulations different transi-
tions Vtτ (s− e, bi,1 + e4i−1) and Vtτ (s− e4i−3 + e4i−1) appear. This transi-
tions correspond to the transition of phase 1 to phase 2 in the file size distribu-
tions.
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2.6 Model extension 2: MMPP

In Sections 2.4 and 2.5 MDP models have been formulated under the assumption
of different file size distributions. For modeling burstiness in traffic arrivals
another model extension has to be made. Burstiness can be modeled using
Markov Modulated Poisson Processes (MMPP).

Rationale for using MMPP When a file is requested / downloaded via
HTTP or FTP usually a combination of files is downloaded. For example with
a webpage request also additional images and other content is downloaded. With
FTP when a directory is downloaded a number of files will be downloaded. This
will create a burst of files that should be transferred and after the transfer a
relatively long quiet period will occur. The arrival process can be modeled
more realistically by using MMPP’s. Furthermore busy hours (with higher
traffic arrival intensity) can be modeled more realistically using MMPP. The
advantage of MMPP is that more complex arrival processes can be caught while
stil a Markov chain can be constructed. A disadvantage of MMPP is that the
state space will grow fast when complex arrival processes are modeled.

MMPP definition A Markov Modulated Poisson Process (MMPP) is a multi
state Poisson arrival process where the states correspond with different arrival
rates. Consider a MMPP consisting m arrival rates λ1 · · ·λm. In a MMPP the
arrival rate state is determined by a m state continuous time Markov chain. The
term Markov Modulated is the direct description of the Markov chain behind
the arrival rate in a MMPP [11]. For the Markov chain that determines the
arrival rate for a MMPP a generating matrix can be defined:

Q =





−ω1 ω1,2 · · · ω1,m

ω2,1 −ω2 · · · ω2,m

...
...

. . .
...

ωm,1 ωm,2 · · · −ωm




, (16)

and

ωi =
∑

j 6=i

ωi,j. (17)

For a graphical example consider a three state MMPP with MMPP state k ∈
{1, 2, 3} This Markov chain can be presented graphically as follows:
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Figure 8: Example of a Markov chain for a Markov Modulated Poisson Process.

An interesting case of the example above is the Interrupted Poisson Process
(IPP). In this case m = 2 resulting in the generating matrix:

Q =

[
−ω1 ω1

ω2 −ω2

]
, (18)

and corresponding arrival rate matrix

Λ =

[
λ 0
0 0

]
. (19)

off on λ

ω2

ω1

Figure 9: Interrupted Poisson Process.

In the MMPP cookbook [11] it is written that an IPP is stochastically equiv-
alent to a Hyperexponential renewal process. Details can be found in Appendix
8.B.

2.6.1 Parametrization of burstiness

The models defined in Sections 2.4 and 2.5 will be extended with MMPP arrivals
using a two state embedded Markov-chain for each arrival process. Each MMPP
arrival process consists of a low arrival rate λi,L or high arrival rate λi,L. Given
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the two state MMPP transition matrix,

[
0 ωi,L

ωi,H 0

]
, the average fraction of

time that the arrival process is in a low or high state can be calculated:

pi,L =
ωi,H

ωi,L + ωi,H

, (20)

pi,H =
ωi,L

ωi,L + ωi,H

.

With these probabilities the average arrival intensity λi can be calculated using
the corresponding arrival rates:

λi = λi,Lpi,L + λi,Hpi,H (21)

= λi,L

ωi,L

ωi,L + ωi,H

+ λi,H

ωi,H

ωi,L + ωi,H

.

The rates of the two state MMPP transition matrix do not directly give an
intuitive meaning to the specific MMPP. A better formulation of burstiness can
be given in terms of time characteristics. Time characteristics off an MMPP
arrival process can be formulated in two parameters:

D duty cycle, the fraction of time the arrival process is in high stateD = pi,H .
In other words, the concentratedness of the arrival bursts. The lower the
duty cycle, the more concentrated the arrival bursts are.

T cycle time, the average length if a high low cycle.

The rates for the MMPP embedded Markov chain can be obtained by trans-
forming the parameters D and T in MMPP arrival rates

λi,L =
1

(1−D) T
, (22)

λi,H =
1

(DT )
.

With the time characteristics defined there is still some degree of freedom left
in choosing the MMPP arrival rates λi,L and λi,H . Multiple combinations of
λi,L and λi,H lead to an equal average arrival rate:

λi = (1−D)λi,L +Dλi,H . (23)

In terms of λi,L and λi,H this will become

λi,L =
λ−Dλi,H

1−D
, (24)

λi,H =
λ− (1−D)λi,L

D
.

When λi,L = 0 the MMPP will become an Interrupted Poisson Process and

λi,H =
λ

D
. Now the burstiness can be defined in two parameters D and T .
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Figure 10: Duty cycle D fraction and cycle period T for IPP.

Figure 10 illustrates that the duty cycle actually corresponds to degree of
concentration of the arrivals. In the interval T the expected number of arrivals
remains equal. However when D becomes smaller the arrivals have to occur in
a smaller time interval. As a consequence the arrival rate λH in the on state
of the MMPP process is higher. When the duty cycle equals 100% the MMPP
models are equal to the models with Poisson arrivals.

Transformation from Poisson to MMPP As described in Section 2.2
three arrival processes are modeled with rates λ0, λ1, λ2 with λ0 the arrival
rate of foreground traffic and λ1, λ2 the arrival rates for the traffic on node 1
and 2. For the experiments on the impact of burstiness, the arrival processes
will be extended into a two-state MMPP.

L H

ωH

ωL

The MMPP model above has generating matrix and arrival matrix

Q =

[
−ωL ωL

ωH −ωH

]
, Λ =

[
λL 0
0 λH

]
. (25)

Each of the three arrival processes λ0, λ1, λ2 will be modeled by a two-state
MMPP. Because the three arrival processes are chosen to be independent ar-
rival processes three MMPPs have to be added to the model. The superposition
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of the three MMPPs does result in an eight-state MMPP. The matrices for su-
perposition of the three MMPP’s can be archieved by applying the Kronecker
sum ⊕. The Kronecker sum is defined by

A⊕ B = (A⊗ IB) + (IA ⊗B) (26)

with IA and IB identity matrices that correspond to size to matrices A and B
and ⊗ the Kronecker product.

C ⊗D =





c1,1D c1,2D · · · c1,mD
c2,1D c2,2D · · · c2,mD

...
...

. . .
...

cn,1D cn,2D · · · cn,mD




. (27)

Given the generating matrices Q0, Q1, Q2 and the corresponding rate matrices
Λ0,Λ1,Λ2 the resulting matrices become:

Q = Q0 ⊕Q1 ⊕Q2,

Λ = Λ0 ⊕ Λ1 ⊕ Λ2. (28)

This will become a 2 × 2 × 2 = 8 dimensional state space where k = 0, · · · , 7
identifies the MMPP state. Define ωi,j the rates in the MMPP Markov chains
for arrival process i ∈ {0, 1, 2} and j ∈ {L,H} the arrival process state. Further
define λi,j the corresponding arrival rates for process i in state j. Then the
corresponding matrices will become:

Qi =

[
−ωi,L ωi,L

ωi,H −ωi,H

]
, Λi =

[
λi,L 0
0 λi,H

]
. (29)
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The superposition of the individual generating matrices will produce the gener-
ating matrix:

Q = Q0 ⊕Q1 ⊕Q2 (30)

=





−ω0 ω0,L ω1,L 0 ω2,L 0 0 0
ω0,H −ω1 0 ω1,L 0 ω2,L 0 0
ω1,H 0 −ω2 ω0,L 0 0 ω2,L 0

0 ω1,H ω0,H −ω3 0 0 0 ω2,L

ω2,H 0 0 0 −ω4 ω0,L ω1,L 0
0 ω2,H 0 0 ω0,H −ω5 0 ω1,L

0 0 ω2,H 0 ω1,H 0 −ω6 ω0,L

0 0 0 ω2,H 0 ω1,H ω0,H −ω7





,

where

ω0 = ω0,L + ω1,L + ω2,L,

ω1 = ω0,H + ω1,L + ω2,L,

ω2 = ω0,L + ω1,H + ω2,L,

ω3 = ω0,H + ω1,H + ω2,L,

ω4 = ω0,L + ω1,L + ω2,H ,

ω5 = ω0,H + ω1,L + ω2,H ,

ω6 = ω0,L + ω1,H + ω2,H ,

ω7 = ω0,H + ω1,H + ω2,H .

Note that the transition rates have a nice structure. For the MMPP with arrival
process i = 0 the ‘jumps’ in state space have size 1, for arrival process i = 1
size 2 and for arrival process i = 2 size 4. These jumps can be captured by mi,k

where i is the arrival process for which the MMPP state changes and k is the
current MMPP state:

Table 1: Transition pattern corresponding to MMPP state k.

k m0,k m1,k m2,k

0 +1 +2 +4
1 −1 +2 +4
2 +1 −2 +4
3 −1 −2 +4
4 +1 +2 −4
5 −1 +2 −4
6 +1 −2 −4
7 −1 −2 −4

The rates can not be superposed, because the arrival processes are three
independent arrival processes. Therefore Λ̂i is introduced. Λ̂i corresponds to
the arrival intensity of arrival process i when the superposed Markov chain of
the three arrival processes is in state k.
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Λ̂0 = Λ0 ⊕ 0Q1 ⊕ 0Q2 (31)

= diag
([
λ0,L λ0,H λ0,L λ0,H λ0,L λ0,H λ0,L λ0,H

])
,

Λ̂1 = 0Q0 ⊕ Λ1 ⊕ 0Q2

= diag
([
λ1,L λ1,L λ1,H λ1,H λ1,L λ1,L λ1,H λ1,H

])
,

Λ̂2 = 0Q0 ⊕ 0Q1 ⊕ Λ2

= diag
([
λ2,L λ2,L λ2,L λ2,L λ2,H λ2,H λ2,H λ2,H

])
.

Here, 0Qi
is the zero matrix with the dimensions ofQi and all entries zero. When

formulating MDP’s with MMPP arrivals some functions should be formulated
that identify the transition rates and arrival rates corresponding to MMPP state
k:

Table 2: Rates corresponding to MMPP state k.

k λ0,k λ1,k λ2,k ω0,k ω1,k ω2,k

0 λ0,L λ1,L λ2,L ω0,L ω1,L ω2,L

1 λ0,H λ1,L λ2,L ω0,H ω1,L ω2,L

2 λ0,L λ1,H λ2,L ω0,L ω1,H ω2,L

3 λ0,H λ1,H λ2,L ω0,H ω1,H ω2,L

4 λ0,L λ1,L λ2,H ω0,L ω1,L ω2,H

5 λ0,H λ1,L λ2,H ω0,H ω1,L ω2,H

6 λ0,L λ1,H λ2,H ω0,L ω1,H ω2,H

7 λ0,H λ1,H λ2,H ω0,H ω1,H ω2,H

ωi,k is the transition rate out of MMPP state k for arrival process i,

λi,k is the arrival rate for the arrival process i in MMPP state k.

2.6.2 MMPP arrivals with exponential file sizes

With the MMPP definition in Section 2.6.1 the models described in Section 2
can be extended with MMPP arrivals. The states for MMPP will add an extra
dimension to the state space. Define S ∈ {0, · · · , 7}×N0

4 with (k, b1, f1, b2, f2) ∈
S, where

k is the MMPP state as described in Section 2.6.1,

bi is the number of background flows on node i,

fi is the number of background flows on node i,

mj,k are the possible jumps for arrival process j (foreground and background
arrivals) when the system is in MMPP state k,

o (s) gives the observation that corresponds to Markov chain state s ∈ S.
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The value iteration equations with MMPP arrivals are defined by:

Rtτ (o) = argmin
a∈{1,2}

{
∑

s

νRtτ
(s|o) Vtτ (s+ e2a)

}
,

a (s) = Rtτ (o (s)) ,

V(t+1)τ (s) =
f1 + f2

γ
(32a)

+
λ0,k

γ
Vtτ

(
s+ e2a(s)

)
(32b)

+
∑

i∈{1,2}

[
λi,m

γ
Vtτ (s+ e2i−1)

]
(32c)

+
∑

i∈{1,2}

[
db,i

µi

γ
CiVtτ

(
[s− e2i−1]

+
)]

(32d)

+
∑

i∈{1,2}

[
df,i

µ0

γ
CiVtτ

(
[s− e2i]

+
)]

(32e)

+
∑

i∈{0,1,2}

[
ωi,k

γ
Vtτ (s+mi,k · e0)

]
(32f)

+
∑

i∈{1,2}

[
(1− db,i)

µi

γ
Ci + (1− df,i)

µ0

γ
Ci

]
Vtτ (s) (32g)

+
∑

i∈{0,1,2}

[
ωi,L + ωi,H − ωi,k + λi,L + λi,H − λi,k

γ

]
Vtτ (s) , (32h)

with

db,i =






bi
bi + fi

if bi + fi > 0

0 otherwise
,

df,i =






fi

bi + fi

if bi + fi > 0

0 otherwise
,

and

γ =
∑

i∈{0,1,2}

[λi,L + λi,H + ωi,L + ωi,H ] +
∑

i∈{1,2}

[(µ0 + µi)Ci] ,

with parameters:

e0 the unit vector with value 1 in the MMPP dimension 0 in the other dimen-
sions,

e2i−1 the unit vector with value 1 in background dimension on node i and 0 in
the other dimensions,

30



e2i the unit vector with value 1 in foreground dimension on node i and 0 in the
other dimensions,

λ0,k the arrival rate for foreground traffic when the system is MMPP state k,

λi,k the arrival rate for background traffic when the system is MMPP state k,

ω0,k the foreground traffic arrival intensity change rate when the system is
MMPP state k,

ωi,k the background traffic arrival intensity change rate when the system is
MMPP state k,

µ0 the file size parameter for foreground traffic,

µi the file size parameter for background traffic on node i = 1, 2,

Ci the capacity of node i.

The mapping from state space to observation space is defined by:

o (k, b1, f1, b2, f2) = (b1 + f1, b2 + f2) .

In Equation (32):

(32a) corresponds to the number of foreground flows in state s,

(32b) corresponds to the event of a foreground flow arrival,

(32c) corresponds to the event of a background flow arrival,

(32d) corresponds to the event of a background flow completion,

(32e) corresponds to the event of a foreground flow completion,

(32f) corresponds to the event of a MMPP state transition (the transitions can
be found in Table 1) and

(32g) corresponds to the dummy transitions.

Note that mi,k · e0 corresponds to the possible jumps to other MMPP states
when the system is in MMPP state k. The ωi,k consists of values ωi,L and ωi,H

according to the MMPP state k (see Table 2 in Section 2.6.1). The dummy
transition ωi,L +ωi,H −ωi,k +λi,L +λi,H −λi,k is added such that all rates will
sum up to the uniformization parameter γ.

2.6.3 MMPP arrivals with hyper-exponential file sizes

For the hyper-exponential model define state space S = {0, · · · , 7} × N0
8 with

dimensions (k, b1,1, f1,1, b1,2, f1,2, b2,1, f2,1, b2,2, f2,2 ∈ S) where

k is the MMPP state,

bi,j is the number of background flows on node i for ‘H2 class’ j,

fi,j is the number of background flows on node i for ‘H2 class’ j.
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This model again uses balanced means H2 as defined in equation (13) in Section
2.5.1. i ∈ {0, 1, 2} is the index of the flow arrival type. The value iteration
equations are defined by:

Rtτ (o) = argmin
a∈{1,2}





∑

s

νRtτ
(s|o)

∑

j∈{1,2}

p0,jVtτ (s+ e4a+2j−4)




 ,

a (s) = Rtτ (o (s)) ,

V(t+1)τ (s) =
f1,1 + f1,2 + f2,1 + f2,2

γ
(33a)

+
∑

j∈{1,2}

[
λ0,k

γ
p0,jVtτ

(
s+ e4a(s)+2j−4

)
]

(33b)

+
∑

j∈{1,2}

∑

i∈{1,2}

[
λi,k

γ
pi,jVtτ (s+ e4i+2j−5)

]
(33c)

+
∑

i,j∈{1,2}

[
db,i,j

µi,j

γ
CiVtτ

(
[s− e4i+2j−5]

+
)]

(33d)

+
∑

i,j∈{1,2}

[
df,i,j

µ0,j

γ
CiVtτ

(
[s− e4i+2j−4]

+
)]

(33e)

+
∑

i∈{0,1,2}

[
ωi,k

γ
Vtτ (s+mi,k · e0)

]
(33f)

+
∑

i,j∈{1,2}

[
(1− db,i,j)

µi,j

γ
Ci

]
Vtτ (s) (33g)

+
∑

i,j∈{1,2}

[
(1− df,i,j)

µ0,j

γ
Ci

]
Vtτ (s) (33h)

+
∑

i∈{0,1,2}

[
ωi,L + ωi,H − ωi,k + λi,L + λi,H − λi,k

γ

]
Vtτ (s) , (33i)

with

db,i,j =






bi,j
bi,1 + fi,1 + bi,2 + fi,2

if bi,1 + fi,1 + bi,2 + fi,2 > 0

0 otherwise
,

df,i,j =






fi,j

bi,1 + fi,1 + bi,2 + fi,2
if bi,1 + fi,1 + bi,2 + fi,2 > 0

0 otherwise
,

and

γ =
∑

i∈{0,1,2}

[λi,L + λi,H + ωi,L + ωi,H ] +
∑

i,j∈{1,2}

[(µ0,j + µi,j)Ci] ,
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with parameters:

e0 the vector with value 1 in the MMPP dimension and 0 in the other dimen-
sions,

e4i+2j−5 the unit vector with value 1 in background dimension on node i, H2

‘class’ j and 0 in the other dimensions,

e4i+2j−4 the unit vector with value 1 in foreground dimension on node i, H2

‘class’ j and 0 in the other dimensions,

λ0,k the arrival rate for foreground traffic when the system is MMPP state k,

λi,k the arrival rate for background traffic when the system is MMPP state k,

ω0,k the foreground traffic arrival intensity change rate when the system is
MMPP state k,

ωi,k the background traffic arrival intensity change rate when the system is
MMPP state k,

p0,j the probability that a foreground arrival has ‘H2 class’ j,

pi,j the probability that a background arrival on node i has ‘H2 class’ j,

µ0,j the file size parameter for foreground traffic for ‘H2 class’ j,

µi,j the file size parameter for background traffic on node i = 1, 2 for ‘H2 class’
j,

Ci the capacity of node i.

The mapping from state space to observation space is defined by:

o (k, b1,1, f1,1, b1,2, f1,2, b2,1, f2,1, b2,2, f2,2) = (b1,1 + f1,1 + b1,2 + f2,2, b2,1 + f2,1 + b2,2 + f2,2) .

In equation (33):

(33a) corresponds to the number of foreground flows in state s,

(33b) corresponds to the event of a foreground flow arrival,

(33c) corresponds to the event of a background flow arrival,

(33d) corresponds to the event of a background flow completion,

(33e) corresponds to the event of a foreground flow completion,

(33f) corresponds to the event of a MMPP state transition (the transitions can
be found in Table 1) and

(33g),(33h),(33i) correspond with the dummy transitions.
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2.6.4 MMPP arrivals with Erlang file sizes

Define state space S = {0, · · · , 7} × N0
8 with

(k, b1,1, f1,1, b1,2, f1,2, b2,1, f2,1, b2,2, f2,2) ∈ S.

The number of background flows is denoted by bi,j and the number of foreground
flows is denoted by fi,j . The index i ∈ {1, 2} corresponds to the connection node
index, j ∈ {1, 2} corresponds to the index for the E2 phases and k ∈ {0, · · · , 7}
is the MMPP state. The value iteration equations with MMPP are defined by:

Rtτ (o) = argmin
a∈{1,2}

{
∑

s

νRtτ
(s|o)Vtτ (s+ e4a−2)

}
,

a (s) = Rtτ (o (s)) ,

V(t+1)τ (s) =
f1,1 + f1,2 + f2,1 + f2,2

γ
(34a)

+
λ0,k

γ
Vtτ

(
s+ e4a(s)−2

)
(34b)

+
∑

i∈{1,2}

[
λi,k

γ
Vtτ (s+ e4i−3)

]
(34c)

+
∑

i∈{1,2}

[
db,i,1

2µi

γ
CiVtτ

(
[s− e4i−3 + e4i−1]

+
)]

(34d)

+
∑

i∈{1,2}

[
df,i,1

2µ0

γ
CiVtτ

(
[s− e4i−2 + e4i]

+
)]

(34e)

+
∑

i∈{1,2}

[
db,i,2

2µi

γ
CiVtτ

(
[s− e4i−1]

+
)]

(34f)

+
∑

i∈{1,2}

[
df,i,2

2µ0

γ
CiVtτ

(
[s− e4i]

+
)]

(34g)

+
∑

i∈{0,1,2}

[
ωi,k

γ
Vtτ (s+mi,k · ek)

]
(34h)

+
∑

i,j∈{1,2}

[(
(1− db,i,j)

2µi

γ
+ (1− df,i,j)

2µ0

γ

)
Ci

]
Vtτ (s) (34i)

+
∑

i∈{0,1,2}

[
ωi,L + ωi,H − ωi,k + λi,L + λi,H − λi,k

γ

]
Vtτ (s) , (34j)

34



with

db,i,j =






bi,j
bi,1 + fi,1 + bi,2 + fi,2

if bi,1 + fi,1 + bi,2 + fi,2 > 0

0 otherwise
,

df,i,j =






fi,j

bi,1 + fi,1 + bi,2 + fi,2
if bi,1 + fi,1 + bi,2 + fi,2 > 0

0 otherwise
,

and

γ =
∑

i∈{0,1,2}

[λi,L + λi,H + ωi,L + ωi,H ] +
∑

i,j∈{1,2}

[(2µ0 + 2µi)Ci] ,

with parameters:

e0 the vector with value 1 in the MMPP dimension and 0 in the other dimen-
sions,

e4i+2j−5 the unit vector with value 1 in background dimension on node i, H2

‘class’ j and 0 in the other dimensions,

e4i+2j−4 the unit vector with value 1 in foreground dimension on node i, H2

‘class’ j and 0 in the other dimensions,

λ0,k the arrival rate for foreground traffic when the system is MMPP state k,

λi,k the arrival rate for background traffic when the system is MMPP state k,

ω0,k the foreground traffic arrival intensity change rate when the system is
MMPP state k,

ωi,k the background traffic arrival intensity change rate when the system is
MMPP state k,

µ0 the file size parameter for foreground traffic,

µi the file size parameter for background traffic on node i = 1, 2,

Ci the capacity of node i.

The mapping from state space to observation space is defined by:

o (k, b1,1, f1,1, b1,2, f1,2, b2,1, f2,1, b2,2, f2,2) = (b1,1 + f1,1 + b1,2 + f2,2, b2,1 + f2,1 + b2,2 + f2,2) .

In equation (34):

(34a) corresponds to the number of foreground flows in state s,

(34b) corresponds to the event of a foreground flow arrival,

(34c) corresponds to the event of a background flow arrival,

(34d) corresponds to the event of transition from Erlang-2 phase ‘1’ to phase
‘2’ for a background flow,
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(34e) corresponds to the event of transition from Erlang-2 phase ‘1’ to phase
‘2’ for a foreground flow,

(34f) corresponds to the event of a background flow completion,

(34g) corresponds to the event of a foreground flow completion,

(34h) corresponds to the event of a MMPP state transition (the transitions can
be found in Table 1) and

(34i),(34j) correspond with the dummy transitions.

2.7 Experiments and results

Using the MDP models experiments have been set up that relate to the re-
search questions about burstiness and different file size distributions. Before
the experiments with the previously defined MDP’s are conducted a term will
be introduced for describing the resulting policies.

Switching curve Given two nodes and the number of flows on each node
n1, n2. The policy is a function on the observed number of flows n1, n2. In
the policies for the MDP’s a curve can be observed on which the selection of a
specific node changes to the other node. This curve will be denoted by the term
‘switching curve’.

2.7.1 Poisson arrivals with exponential file sizes

Experiment In the first experiment the model for Poisson arrivals with ex-
ponential file sizes will be examined. Many experiments have been done on
the model for Poisson arrivals and exponential file sizes. One experiment is
included in this thesis to illustrate the impact of λ0 on the optimal policy. The
experiment has parameters:

• λ1 = .3, λ2 = .7,

• µ0 = µ1 = µ2 = 1,

• C1 = C2 = 1.

Here the arrival intensity for background traffic is chossen asymmetrically with
rates λ1 and λ2 for background traffic on node 1 and 2. Furthermore the file
sizes for both foreground and background flows are equal and also the capacities
for both nodes C1 and C2 have been chosen equal. The foreground arrival rate
is varied from low to high intensiy within the following parameter set: λ0 was
chosen {0.01, 0.05, 0.1, 0.2, 0.25} . The idea of this experiment is to find out the
impact of foreground traffic on the policy for nodes with equal capacity but with
different (background) loads.
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Results When λ0 becomes large the MDP gave unexpected results. First the
MDP had difficulties in converging therefore an aperiodicity transformation had
to be applied. Secondly the policy provides decisions that intuitively seem not
to be optimal. In this case the switching curve is for some values on the heaviest
loaded node side, while intuitively it should be on the lowest loaded node side.
Therefore different policies have been examined for a fixed set of parameters
for the Poisson arrival model with exponential file sizes. The choice of fixed
parameters was:

• λ1 = .3, λ2 = .7,

• µ0 = µ1 = µ2 = 1,

• C1 = C2 = 1.

λ0 was chosen {0.01, 0.05, 0.1, 0.2, 0.25} For the different λ0 the MDP came with
policies:

• Red choose node 1

• Green choose node 2

• ↓ n1, # flows node 1

• → n2, # flows node 2
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Figure 11: Policies for different λ0.

Each of these policies has been examined for MDP’s with different λ0 as fore-
ground arrival rate. In Table 3 the row dimension corresponds to the policies
calculated using rate λ0 as foreground flow arrival rate. The column dimen-
sion corresponds to the λ0 used for calculation of the expected sojourn time
while using the policy that was calculated using the λ0 in the corresponding
row dimension. The difference is calculated by taking the policy with the lowest
expected sojourn time E [S|λmin] and dividing the differences for all policies
E [S|λ0]− E [S|λmin] by E [S|λmin]:

E [S|λ0]− E [S|λmin]

E [S|λmin]
× 100%. (35)
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Table 3: Difference in average sojourn time for policies obtained with λ0 from
the row and expected sojourn time calculated using the λ0 in the column, with
equal server capacity.

policy/λ0 0.01 0.05 0.1 0.2 0.25
0.01 0.0000% 0.0187% 0.0987% 0.3626% 0.5566%
0.05 0.0195% 0.0000% 0.0183% 0.1242% 0.2288%
0.1 0.0375% 0.0074% 0.0000% 0.0000% 0.0200%
0.2 0.0486% 0.0209% 0.0144% 0.0005% 0.0000%
0.25 0.0826% 0.0583% 0.0524% 0.0239% 0.0072%

.

We observe that the case λ0 = 0.1, although the switching curve is on the
side of the server with most arrivals, the policy is still optimal. For higher λ0

this is not the case, but the difference in average reward is really small.
Consider again the graphical representation of the policies and that background
traffic node 2 has a higher arrival rate. Another observation that can be made
is that when the foreground arrival rate becomes lower the switching curve
moves to the node with low backtround traffic arrival intensity (node 1). (More
decisions become red where red denotes the decision ‘select node 2’).

2.7.2 Varied burstiness with exponential file sizes

Experiment As described in Section 2.6.1 MMPP will be parameterized on
burstines using a parametrization that is based on duty cycle (% of time on)
D and average cycle period length T . The arrival rate of background flows will
be assumed very low compared to the arrival rate of foreground flows. The
duty cycle will be varied in the set D ∈ {100%, 70%, 50%, 25%, 10%} and the
expected on-off cycle length will be varied in the set T ∈ {2.5, 10, 25}. This will
create for each set-up 5 × 3 = 15 resulting policies for different burstiness in
D and T . In this section six MMPP experiment set-ups are defined that will
examine the impact of burstiness in arrivals. The first four experiment set-ups
do consider:

- Poisson arrivals with rates λ0, λ1, λ2,

- exponential filesizes µ0 = µ1 = µ2 = 1,

- two foreground flow arrival rates λ0 ∈ {0.05, 0.01},

- asymmetric background flow arrival rates λ1 = 0.1, λ2 = 0.5,

- asymmetric capacities for both nodes C1 = 1, C2 = 1.5 and C1 = 1, C2 =
1.5.

Note that the foreground flow arrival rates have been chosen low. The motiva-
tion of this choice can be found in the results of the experiments in 2.7. This
experiments indicated that most impact in asymmetry in foreground flow ar-
rival rates can be found in combination with low foreground flow arrival rates.
For the first four MMPP experiments the node with the highest background
flow arrival rate has always the highest load. Therefore the last two experiment
set-ups are based on a scenario where the node with highest capacity has the
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lowest load. Therefore the following parameters have been changed with respect
to the first four set-ups:

- asymmetric background flow arrival rates λ1 = 0.1, λ2 = 0.2,

- asymmetric capacities for both nodes C1 = 1, C2 = 3 and C1 = 1, C2 = 3.

The six experiment set-ups can be summarized by:

Set-up 1: λ0 = 0.05, λ1 = 0.1, λ2 = 0.5, C1 = 1.5, c2 = 1,

Set-up 2: λ0 = 0.05, λ1 = 0.1, λ2 = 0.5, C1 = 1, c2 = 1.5,

Set-up 3: λ0 = 0.01, λ1 = 0.1, λ2 = 0.5, C1 = 1.5, c2 = 1,

Set-up 4: λ0 = 0.01, λ1 = 0.1, λ2 = 0.5, C1 = 1, c2 = 1.5,

Set-up 5: λ0 = 0.01, λ1 = 0.1, λ2 = 0.2, C1 = 3, C2 = 1,

Set-up 6: λ0 = 0.01, λ1 = 0.1, λ2 = 0.2, C1 = 3, C2 = 1.

Results The MMPP experiments consisted of examining the impact of bursti-
ness on the server selection policy. Because for equal capacity the ‘switch-
ing curve’ remains close to the diagonal n1 = n2 for MMPP the experiments
have been calculated using asymmetric capacities. Consider the model with
MMPP arrivals and exponential file sizes (See Section 2.6.2 equation (32)). For
all experiments the average file sizes have been chosen equal for all arrivals,
µ0 = µ1 = µ2 = 1. For the nodes two combinations of asymmetric capacities
are considered: C1 : C2 = 1 : 1.5 and C1 : C2 = 1.5 : 1. Furthermore, the
arrival rate for background traffic on node 1 is chosen λ1 = 0.1 and λ2 = 0.5 for
node 2. The foreground arrival rate is λ0 = 0.05. As described in Section 2.6.1
burstiness of traffic can be expressed in two terms:

D the duty cycle D is varied in the range {100%, 70%, 50%, 25%, 10%},

T the cycle time is varied in the range {2.5, 10, 25}.

Note that when the duty cycle is 100% the MMPP model is equal to the models
with Poisson arrivals. Figures 12 and 13 contain a graphical representation
of the policies calculated using the MDP models. In these graphs each color
corresponds to a server selection decision:

red select node 1 on foreground file arrival,

green select node 2 on foreground file arrival.

For the impact of burstiness the policies for the bursty arrival processes are com-
pared with the Poisson arrival processes. The differences between the Poisson
and bursty processes are coded with bright colors:

pink denotes for bursty model: select node 1 while for Poisson model: select
node 2,

yellow denotes for bursty model: select node 2 while for Poisson model: select
node 1.
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In short terms: bright expresses that the node selection changed to the other
node.

The policies are represented as two-dimensional images where each dimension
represents the number of flows on a node. The origin with both n1 = 0 and
n2 = 0 is in the top left corner:

↓ := n1 = # flows node 1

→ := n2 = # flows node 2

First the policies are presented with foreground traffic arrival rate λ0 = 0.05.
In Figures 12 and 13, T increases vertically and D decreases horizontally. Thus
the bottom right corner is most bursty.
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Figure 12: Optimal policies for different values of D on the horizontal axis and
T on the vertical axis, with λ0 = 0.05, λ1 = 0.1, λ2 = 0.5, C1 = 1.5, C2 = 1.
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Figure 13: Optimal policies for different values of D on the horizontal axis and
T on the vertical axis, with λ0 = 0.05, λ1 = 0.1, λ2 = 0.5, C1 = 1, C2 = 1.5.

Remember that the arrival rate to node 2 is higher than to node 1. What
can be observed is that for both asymmetrical cases C1 : C2 = 1 : 1.5 and
C1 : C2 = 1 : 1.5 when T grows the ‘switching curve’ moves to the node with
low background arrival rate (green area). For C1 : C2 = 1 : 1.5 the ‘switching
curve’ moves to the server with low with low background arrival rate until D
is decreased to 50%. For C1 : C2 = 1 : 1.5 the ‘switching curve’ moves to
the server with low with low background arrival rate until D is decreased to
25%. This gives the impression that the server becomes to unstable when the
burstiness high in terms of duty cycle. This can be clarified by the fact that for
the model the arrival rate in the burstiness model is inversely proportional to
the duty cycle:

λH =
λ

D

With a duty cycle of 10% the arrival intensity of a burst can be really high:
λH = 10λ.
This raises the question what will happen when the arrival intensity of the
foreground traffic becomes really low. Therefore, the policies have also been
calculated for λ0 = 0.01. The resulting policies can be found in Figures 14 and
15.
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Figure 14: Optimal policies for different values of D on the horizontal axis and
T on the vertical axis, with λ0 = 0.01, λ1 = 0.1, λ2 = 0.5, C1 = 1.5, C2 = 1.
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Figure 15: Optimal policies for different values of D on the horizontal axis and
T on the vertical axis, with λ0 = 0.01, λ1 = 0.1, λ2 = 0.5, C1 = 1, C2 = 1.5.

In Figures 14 and 15 it can be observed that when the duty cycle decreasesD
and the cycle time increases that the ‘switching curve’ will move the node with
lower background traffic arrival intensity. For these parameters the ‘switching
curve’ will move to the lower arrival intensity server until a duty cycle of 10%.
This is lower than the 25% of the case with λ0 = 0.05 and only the case when the
node with high arrival rate λ2 = 5 has the lowest capacity C2 = 1. The difference
between the Poisson arrival policies (on the left) and the bursty arrivals is
larger than for in policies with λ0 = 0.05. Now is is interesting to compare
the difference for the policies for λ0 = 0.05 and λ0 = 0.01. In Figures 16 and
17 the policies for λ0 = 0.05 are displayed as a difference with the policies for
λ0 = 0.01. Here:

red denotes that both for λ0 = 0.05 and λ0 = 0.01 the policies select node 1
for a new foreground arrival,

green denotes that both for λ0 = 0.05 and λ0 = 0.01 the policies select node 2
for a new foreground arrival,

pink denotes that for λ0 = 0.05 the policy selects node 1 but for λ0 = 0.01 the
policy selects node 2,

yellow denotes that for λ0 = 0.05 the policy selects node 2 but for λ0 = 0.01
the policy selects node 1.
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Figure 16: Difference between optimal policies with λ0 = 0.05 and λ0 = 0.01
for different values of D on the horizontal axis and T on the vertical axis and
C1 : C2 = 1.5 : 1.
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Figure 17: Difference between optimal policies with λ0 = 0.05 and λ0 = 0.01
for different values of D on the horizontal axis and T on the vertical axis and
C1 : C2 = 1 : 1.5.

We observe that when λ0 becomes smaller the impact of burstiness on the
optimal policy becomes larger. With λ0 lower the ‘switching curve’ moves to
the server with lowest foreground arrival rate for both C1 : C2 = 1 : 1.5 and
C1 : C2 = 1.5 : 1. The last observation can be explained:

C1 : C2 = 1.5 : 1 : ρ1 = λ1

C1
= 0.1

1.5 = 2
30 , ρ2 = λ2

C2
= 0.5

1 = 15
30 ,

C1 : C2 = 1 : 1.5 : ρ1 = λ1

C1
= 0.1

1 = 3
30 , ρ2 = λ2

C2
= 0.5

1.5 = 10
30 .

The background load for node 2 is always higher and so when traffic becomes
more bursty or the arrival intensity of foreground traffic decreases the ‘switching
curve’ moves to node 2. Of course this brings the question what will happen
with the policies when the server with highest capacity has always the lowest
load. Therefore the following parameters were selected: Server capacities C1 :
C2 = 1 : 3 and C1 : C2 = 3 : 1, foreground traffic arrival rate λ00.01, background
traffic arrival rates λ1 = 0.3 for node 1 and λ1 = 0.6 for node 2. This results in
loads:

C1 : C2 = 3 : 1 : ρ1 = λ1

C1
= 0.3

3 = 1
10 , ρ2 = λ2

C2
= 0.6

1 = 6
10 ,

C1 : C2 = 1 : 3 : ρ1 = λ1

C1
= 0.3

1 = 3
10 , ρ2 = λ2

C2
= 0.6

3 = 2
10 .
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Figure 18: Optimal policies for different values of D on the horizontal axis and
T on the vertical axis, with λ0 = 0.01, λ1 = 0.1, λ2 = 0.2, C1 = 3, C2 = 1.
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Figure 19: Optimal policies for different values of D on the horizontal axis and
T on the vertical axis, with λ0 = 0.01, λ1 = 0.1, λ2 = 0.2, C1 = 1, C2 = 3.

Figures 18 and 19 indeed show that when the burstiness increases the ‘switch-
ing curve’ moves to the server with lowest background load. For Figure 19 this
is hard to observe due to relative small difference in background traffic load
(ρ1 : ρ2 = 3 : 2) but the yellow spots indicate a slight movement of the ’switch-
ing curve’ to node 2 which has in that case the lowest load.

2.7.3 Impact of different file size distributions

Experiment Besides burstiness it is also interesting to know the impact of
the file size distribution on the optimal policy. Therefore the experiment set-ups
will be varied on duty cycle D ∈ {100%, 70%, 50%, 25%, 10%} and different dis-
tributions E2, Exp,H2,c2=2, H2,c2=4, H2,c2=16 sorted on the squared coefficients
of variation c2 ∈ {0.5, 1, 2, 4, 16}. This will generate a grid of 5×5 = 25 policies
in D and c2. In thise experiments T is fixed to T = 10. The two experiment
set-ups do consider:

- MMPP arrivals with rates λ0, λ1, λ2,

- E2, exponentially and H2 distributed filesizes with expectations 1
µ0

=
1
µ1

= 1
µ2

= 1,

- foreground flow arrival rate λ0 = 0.01,

- asymmetric background flow arrival rates λ1 = 0.1, λ2 ∈ {0.5, 0.8},

- symmetric capacities for both nodes C1 = C2 = 1.
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The list of parameters for the two parameter sets can be summarized by:

Set-up 1: λ0 = 0.01, λ1 = 0.1, λ2 = 0.5, C1 = C2 = 1,

Set-up 2: λ0 = 0.01, λ1 = 0.1, λ2 = 0.8, C1 = C2 = 1,

Results Another interesting question is: what is the impact of the filesize dis-
tribution on the optimal policy? Therefore the MDPs also have been examined
with the Erlang and H2-distributions with:

- Erlang squared coefficient of variation c2 = 0.5,

- exponential squared coefficient of variation c2 = 1 and

- hyper-exponential squared coefficients of variation c2 = {2, 4, 16}.

For these experiments the parameters are:

- λ0 = 0.01,

- λ1 = 0.1,

- λ2 = 0.5 for Figure 20 and 0.8 for Figure 21,

- µ0 = µ1 = µ2 = 1,

- C1 = C2 = 1,

- T = 10 (cycle time).

On the columns the c2 is varied c2 = {.5, 1, 2, 4, 16}. On the rows the duty cycle
is varied D = {100%, 70%, 50%, 25%, 10%}.
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Figure 20: Impact of filesize distribution for different values of c2 on the horizon-
tal axis and burstiness values D on the vertical axis, with λ0 = 0.01, λ1 = 0.1,
λ2 = 0.5, C1 = 1, C2 = 1.
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Figure 21: Impact of filesize distribution for different values of c2 on the horizon-
tal axis and burstiness values D on the vertical axis, with λ0 = 0.01, λ1 = 0.1,
λ2 = 0.8, C1 = 1, C2 = 1.

In Figures 20 and 21 can be observed that when the duty cycle is not really
small, D ≥ 50%, the squared coefficient of variation c2 does not really has a
large impact on the policy. The differences do start in Figure 21 with the Er-
lang model with D = 50%. For low D, D < 50% the policies with small c2 on
the bottom left start to change earlier than those with high c2 bottom right.
Although some differences can be observed it is not completely sure what is the
impact of the state space limitation. In theory the state space is infinitly large.
In order to enable computation the state space has to be limited to some large
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number. This limitation should be large enough in order to minimize the prob-
ability the system grows larger than the limited state space. For more accurate
results the limitation should be high. However for the complex models the state
space grows such large that the limits of CPU (speed) and memory of the high
end Personal Computer are reached.

2.7.4 Impact of difference in distribution between flows

Experiment Until now, in the experiments, the squared coefficent of variation
has been chosen equal. The final experiment on MDPs will consider different
squared coefficent of variation c2 for foreground and background flows. In these
experiments the filesize distribution will be limited to the H2-distribution. The
parameters for these experiments are:

- MMPP arrivals with rates λ0, λ1, λ2,

- H2 distributed filesizes with expectations β0 = β1 = β2 = 1,

- foreground flow arrival rate λ0 = 0.01,

- asymmetric background flow arrival rates λ1 = 0.1, λ2 ∈ {0.5, 0.8},

- symmetric capacities for both nodes C1 = C2 = 1,

- asymmetric coefficients of variation c20 = 1, c21, c
2
2 ∈ {1, 2, 4, 16}.

This experiment set-up corresponds to the set-up in 2.7.3 in the way how the
duty cycle D and squared coefficient of variation c2 is varied. The experiment
differs the set of file size distributions. Distributions are now limited to H2.
For foreground flows c2 is varied in the set {1, 2, 4, 16}. Background flows will
have a fixed c21 = c21 = 1. This will generate 5 × 4 = 20 policies varied over the
squared coefficient of variation of foreground flows c20 ∈ {1, 2, 4, 16} and duty
cycle for the arrivals D ∈ {100%, 70%, 50%, 25%, 10%}.

Results Last experiment did compare the policies with for all file size dis-
tribution equal squared coefficient of variation. Consider c2 comparison model
parameters for Figure 21. Now the squared coefficient of variation of the back-
ground traffic is chosen c21 = c22 = 1. In Figure 22 on the columns the foreground
traffic squared coefficient of variation is varied c20 = {1, 2, 4, 16}. On the rows
the duty cycle is varied D = {100%, 70%, 50%, 25%, 10%}. In Figure 22 the
comparison is done with the exponential file sizes for different D. So the com-
parison of the policies is with for each D the exponential file size policies on the
left.

pink denotes that for exponential file sizes the policy selects node 1 but for
other c20 the policy selects node 2,

yellow denotes that for exponential file sizes the policy selects node 2 but for
other c20 the policy selects node 1.
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Figure 22: Impact of filesize distribution for different values of c20 (foreground
flows) on the horizontal axis and burstiness values D on the vertical axis, with
λ0 = 0.01, λ1 = 0.1, λ2 = 0.8, C1 = 1, C2 = 1.
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What can be observed is that when the c20 becomes larger the ‘switching curve’
moves to the node with the lowest arrival rate. This is the same behavior as
earlier observed when the burstiness increases.

2.8 Conclusions

• When burstiness increases (D ↓ or T ↑) the preference for the lowest loaded
node increases. This can be observed as the movement of the ‘switching
curve’ to the direction of the lowest loaded node. This movement is bigger
when the foreground traffic arrival intensity λ0 increases.

• When λ0 decreases the ‘switching curve’ moves to the lowest loaded server.

• The impact of the filesize distribution is small when the squared coeffi-
cient of variation c2 is equal for both background and foreground files.
This should however be examined by applying a larger statespace and
assymmetric server capacities.

• When the squared coefficient of variation of foreground traffic c20 grows
larger, with fixed background squared coefficient of variation c21 = c22 < c20,
the switching curve moves to the lowest loaded node.
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3 Dynamic splitting using Bayesian dynamic pro-

gramming

In the MDP models of Chapter 2, the difference between foreground and back-
ground traffic can not be observed. This is a partial observation problem. In
Section 2.3 a partial observation approach is defined that is based on condition-
ing over the time limiting distribution. Using this approach information that
can be found in the sequence of observations remains unused. This ‘observation
sequence information’ provides a potential for improving the performance for
server selection models under the partial observation assumption.

For example consider the model with Poisson arrivals and exponentially dis-
tributed file sizes in Section 2.4. If in an empty system only foreground files
arrive then we know for sure that all observed flows are foreground traffic.

Bayesian dynamic programming enables the use of information that can be
found in the sequence of observations. In the example we know with probability
1 that the system is in a state with only foreground flows. By using Bayesian
dynamic programmic the information in the sequence of observations can be
used to improve the optimal strategies of Chapter 2. In this chapter first the
framework for Bayesian dynamic programming will be formulated in Section
3.1. The problem of partial observation that was introduced in Section 2.3 will
in Section 3.2 be formulated as a Bayesian dynamic programming problem. A
drawback of Bayesian dynamic programming is the size of the solution (due
to large statespace). Solutions for reducing the size for this Bayesian dynamic
programming problem will be studied in Section 3.3. In Section 3.4 the struc-
ture of transitions between states will be examined using a (simple) simulation
program. To overcome the difficulty of statespace complexity, in Section 3.5
Bayesian information will be combined with the solution of the full observable
MDP defined in Equation eqrefbasic MDP in Section 2.2. The performance
results of the combination of Bayesian information with a fully observable MDP
will be discussed in Chapter 5.

3.1 Framework

For the Bayesian dynamic programming define:

S the state space of the system,

O observation space which contains all observations that can be made,

A the set of possible actions or decisions,

P =

{
u ∈ [0, 1]

|S|
|
∑
s∈S

u (s) = 1

}
the information state or Bayesian belief dis-

tribution on S.

Note that in the Bayesian dynamic programming decisions are based on the
information state (which is in P). When a system is in a state s ∈ S sometimes
it is possible that this can lead to multiple observations. Therefore q (s, o) is
introduced which is the probability of observing o ∈ O when the system is in

54



state s ∈ S. For the server selection models it is always the case that when
the system is in a certain state it can only result in one observation. In fact
for the model with Poisson arrivals and exponential file sizes the observation
corresponding to a given state (b1, f1, b2, f2) ∈ S is defined by Equation (6):

o (b1, f1, b2, f2) = (b1 + f1, b2 + f2) ,

with bi the number of background flows on node i and fi the number of fore-
ground flows on node i. This implies that

q (s, o) = 1 [f1 + b1 = o1 ∧ f2 + b2 = o2]

where 1 is the indicator funcion. With Bayesian dynamic programming the
information state is updated for each observation o ∈ O with:

u (s) u ∈ P , is prior belief the system is in state s,

v (s) v ∈ P , is posterior belief the system is in state s in which the information
obtained from the last observation is embedded.

In the partial information approach state transitions can be defined in three
parts:

1 What transitions can occur from information state u to information state v.
In the information state transition the information about the last action
a ∈ A and observation o ∈ O is added to prior information state u. Infor-
mation state v contains all information about the past including the last
observation and action. v can be calculated using the Bayesian update
rule. This is the actual transition from prior information state u to the
new posterior information state v. The Bayesian update is defined by:

v (s′) = P (s′|u, a, o)

=






∑
s∈S

u (s) p (s, a, s′) q (s′, o)

∑
s∈S

∑
s′∈S

u (s) p (s, a, s′) q (s′, o)
for

∑
s∈S

∑
s′∈S

u (s) p (s, a, s′) q (s′, o) > 0

0 otherwise.
(36)

2 What is the transition probability from information state u to information
state v. For the original fully observable MDP the transition probabilities
are known as p (s, a, s′). From this transition probabilities the information
state transition probabilities p′ (u, a, v) can be derived:

p′ (u, a, v) =
∑

s∈SS

∑

s′∈S

b (s) p (s, a, s′) q (s′, o) . (37)

3 For the classical MDP to each state s ∈ S and decision a ∈ A a reward func-
tion r (s, a) is defined. The information state reward function r′ (u, a) can
be written in terms of r (s, a):

r′ (u, a) =
∑

s∈S

u (s) r (s, a) q (s, o) . (38)
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With the information state transitions and probabilities defined partial infor-
mation can be fit in the MDP value iteration equations:

V(t+1)τ (u) =

max
a∈A

{
r′ (u, a) τ + q′ (u, a)

∑
v∈P

p′ (u, a, v)Vtτ (v) + (1− q′ (u, a))Vtτ (u)

}
,

r′ (u, a) =
∑
s∈S

u (s) r (s, a) q (s, o) ,

p′ (u, a, v) =
∑
s∈S

∑
s′∈S

u (s) p (s, a, s′) q (s′, o) ,

q′ (u, a) =
∑
s∈S

u (s) q′ (s, a) .

(39)
(We refer to [8] for the existence of deterministic generalized Markov policies
for non-stationary Bayesian dynamic decision models.) Because the function q
is already in use, q′ (s, a) is defined the geometric distribution parameter that
enables the backward recursion by adding dummy transitions as described in
Appendix 8.A.2 and τ is the expected time between the recursion steps. (See
Section 8.A.2 for the value iteration definition).

3.2 Bayesian dynamic programming formulation

As described in the start of this chapter the idea is to apply Bayesian dynamic
programming to the Poisson arrivals with exponential file sizes model in Section
2.4. This model has state space (b1, f1, b2, f2) ∈ S with bi the number of back-
ground flows and fi the number of foreground flows on node i = 1, 2. For the
server selection partial information approach the observation space is defined as:

o = (o1, o2, o3) ∈ O = N0
2 × {f, b} .

oi = bi + fi corresponds to the number of flows on node i ∈ {1, 2}. The
observation of the number of flows is not enough. The type of arrival does have
impact on the information state update. For example, when a foreground arrival
occurs, the system has certainly at least 1 foreground flow. With a background
flow arrival the system can have no foreground flows at all. Therefore o3 is
added where o3 = f if the last arrival was foreground or o3 = b if the last arrival
was foreground. For each observation (o1, o2, o3) the information state can be
updated using the Bayesian update. There are six possible observations with
each their own information state update:

(o1, o2)→ (o1 + 1, o2, b) a background flow arrival on node 1,

(o1, o2)→ (o1 + 1, o2, f) a foreground flow arrival routed to node 1,

(o1, o2)→ (o1 − 1, o2) a flow completion on node 1,

(o1, o2)→ (o1, o2 + 1, b) a background flow arrival on node 2,

(o1, o2)→ (o1, o2 + 1, f) a foreground flow arrival routed to node 2,

(o1, o2)→ (o1, o2 − 1) a flow completion on node 2.

An information state is a distribution over the state space. However, the dis-
tribution on node 1 between background and foreground flows does not depend
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on the distribution between background and foreground flows on node 2. For
example when an arrival or completion occurs on node i this will not affect the
belief on the distribution between foreground and background flows on node
2. Therefore the information state u can be split in two information states u1

and u2, one for each node. When for a node i oi flows are observed, the infor-
mation state only needs oi + 1 entries. These are the number of combinations
of foreground and background flows that will add up to oi: b1 + fi. Because
all entries add up to oi the information state distribution for each node ui can
be defined as a probability distribution the number of foreground flows. The
compact information state distribution for node i is now defined as

uioi
∈




v ∈ [0, 1]
oi |

oi∑

j=0

v (j) = 1




 . (40)

Here oi is the observed number of flows that correspond to that distribution.
With the information states defined the Bayesian update rules can be defined.
Define:

vi[oi+1,f ] the resulting information state distribution for node i after a fore-
ground flow arrival,

vi[oi+1,b] the resulting information state distribution for node i after a back-
ground flow arrival,

vi[oi−1] the resulting information state distribution for node i after a flow de-
parture.

Then the update rules are:

v1[o1+1,f ] (i) =

{
0

u1o1
(i− 1)

if
if

i = 0
0 < i ≤ o1 + 1

v1[o1+1,b] (i) =

{
u1o1

(i)
0

if
if

0 ≤ i < o1 + 1
i = o1 + 1

v2[o2+1,f ] (i) =

{
0

u2o2
(i− 1)

if
if

i = 0
0 < i ≤ o2 + 1

v2[o2+1,b] (i) =

{
u2o2

(i)
0

if
if

0 ≤ i < o2 + 1
i = o2 + 1

v1[o1−1] (i) = u1o1
(i+ 1) i+1

o1
+ u1o1

(i) o1−i
o1

,

v2[o2−1] (i) = u2o2
(i+ 1) i+1

o2
+ u2o2

(i) o2−i
o2

.

(41)
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The observation transition probabilities are defined by:

P
(
u1o1

, a, v1[o1+1,o2,f ]

)
=

λ01 (a = 0)

γ
, (42)

P
(
u1o1

, a, v1[o1+1,o2,b]

)
=

λ1

γ
,

P
(
u2o2

, a, v2[o1,o2+1,f ]

)
=

λ01 (a = 1)

γ
,

P
(
u2o2

, a, v2[o1,o2+1,b]

)
=

λ2

γ
,

P
(
u1o1

, a, v1[o1−1,o2]

)
=

µ1

γ
,

P
(
u2o2

, a, v2[o1,o2−1]

)
=

µ2

γ
.

To enable an algorithm finding the optimal policy for the information states,
discretization of the information states has to be applied. For the discretization
scheme the interval [0, 1] is divided in k+1 linear discretization steps identified

by
i

k
, i = 0, · · · , k. From this discretized values a set of probability density

functions, consisting of oi + 1 probabilities, can be generated. The set of dis-
cretized distributions with k+1 discretization steps and oi +1 probabilities will
be denoted by Doi,k. An example for such discretization scheme will provide
some clarification:

k = 2,

oi = 0, 1, 2.

This will generate possible values: {0, .5, 1}. For the different z the set of
discretized information states will be:

D0,2 =
{
1
}
,D1,2 =

{
1 .5 0
0 .5 1

}
,D2,2 =






1 .5 .5 0 0 0
0 .5 0 .5 1 0
0 0 .5 .5 0 1




 .

The posterior distribution v after an information state update will rarely be
a distribution that exactly matches a distribution in the set of discretised dis-
tributions. Therefore the closest matching distribution has to be found. For
comparison the squared error is used. For actual distribution p and the matched
distribution p̂ and the squared error is defined by:

ERR (p, p̂) :=
∑

i

[p (i)− p̂ (i)]2 . (43)

The squared error is minimized over the set of discretized distributions

v̂ = min
p∈Do,k

∑

i

[p (i)− v (i)]2 .

For the implementation one important implementation note can be made. When
all the matching of distributions is executed on-line the algorithm will slow down
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considerably. Therefore the matched information state transitions should be
calculated off line. After implementing the MDP using information states only
small state spaces could be examined (#jobs ≤ 10) due to memory and time
limitations. Not only the solution requires a lot of memory off line, but it also
requires a lot of memory on line.

3.3 State space reduction

When applying a solution based on information states a huge decision table
should be stored on the traffic distribution node. Also the calculation of the
optimal policy consumes lots of memory and CPU time. Therefore, simplifica-
tion of the information state representation can be very useful. Consider the
structure of information state updates.

When an idle server is observed, oi = (0) the number foreground and back-
ground flows can only be zero. The information state for that server will there-
fore be ui0 (0) = 1. Each arrival the type (foreground, background) can be
observed and according to the policy the number of foreground and background
flows can be tracked. This will be the case until a flow will be completed. When
a flow leaves the system the type (foreground or background) can not be ob-
served. The growth of uncertainty after a departure can also be found in the
information state update equations. When foreground flows are admitted the
information state distribution will shift to the right. If background flows arrive,
the shape of the distribution will not change while the number of probabilities
will increase by one. Figure 23 illustrates the event of a foreground flow arrival.
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Figure 23: blue prior distribution, red posterior distribution.

In case of a foreground flow arrival the distribution (information state) will shift
to the right.
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In the example illustrated in Figure 24, for a number of flows the transmission
will be completed.

Change of informationstate after file departures
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Figure 24: blue prior distribution, red posterior distribution.

After a series of departures the shape of a hyper-exponential distribution ap-
pears.

Assume that from an empty system n arrivals occurred and k flows are fore-
ground type. Then the information state will be:

u = (u0, · · · , uk, · · · , un) = (0, · · · , 1, · · · , 0) (44)

where u (k) = 1 and u (i 6= k) = 0. When the next events are only departures
the information state structure will become:

i n n − 1 n − 2 n − 3 n − 4

k − 4 0 0 0 0 1 k(k−1)(k−2)(k−3)
n(n−1)(n−2)(n−3)

k − 3 0 0 0 1 k(k−1)(k−2)
n(n−1)(n−2)

4 k(k−1)(k−2)(n−k)
n(n−1)(n−2)(n−3)

k − 2 0 0 1 k(k−1)
n(n−1)

3 k(k−1)(n−k)
n(n−1)(n−2)

6 k(k−1)(n−k)(n−k−1)
n(n−1)(n−2)(n−3)

k − 1 0 1 k
n

2 k(n−k)
n(n−1)

3 k(n−k)(n−k−1)
n(n−1)(n−2)

4 k(n−k)(n−k−1)(n−k−2)
n(n−1)(n−2)(n−3)

k 1 1 n−k
n

1 (n−k)(n−k−1)
n(n−1)

1 (n−k)(n−k−1)(n−k−2)
n(n−1)(n−2)

1 (n−k)(n−k−1)(n−k−2)(n−k−3)
n(n−1)(n−2)(n−3)

k + 1 0 0 0 0 0

k + 2 0 0 0 0 0

From this development a structure can be recognized. First the scalars that
precede the fractions are binomial coefficients

(
d

i−(k−d)

)
. This be clarified by

the structure of the information state update equations. These have the struc-
ture v (i) = c1u (i)+c2u (i+ 1) where c1 and c2 are the fractions as described in
the information state update equations. These fractions c1 and c2 cause c1u (i)
and c2u (i+ 1) to be equal up to a scalar. The scalar is the scalar as in the
binomial coefficient. The binomial can be calculated in a series of summations:
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1
1 + 1

1 + 2 + 1
1 + 3 + 3 + 1

1 + 4 + 6 + 4 + 1.

This is eqactly what happens in the update equations. Thus when the state is
exactly known (n flows of which k foreground type) the information state after
d departures will become:

ud (i) =

(
d

i− k + d

) k!
i!

(n−k)!
(n−d−i)!

n!
(n−d)!

. (45)

When expanding the binomial coefficient the equation will become

ud (i) =
d!

(i− k + d)! (k − i)!

k!
i!

(n−k)!
(n−d−i)!

n!
(n−d)!

, (46)

which can be rewritten to

bd (i) =

k!
i!(k−i)!

(n−k)!
(n−d−i)!(i−k+d)!

n!
(n−d)!d!

=

(
k

k−i

)(
n−k

d−(k−i)

)
(
n
d

) . (47)

This is equal to the hypergeometric distribution PN,k,n (x) with parameters

- N = n total number of arrived flows after the system has been empty,

- k = k the total number of foreground flows before completion,

- n = d the number of completed flows,

- x = k − i the number of foreground flows that completed since the first
flow completion.

Given Figures 23 and 24 the idea arises that the information state distribu-
tion will remain a peak shaped distribution. With a peak shaped distribution a
distribution with a similar shape like the binomial distribution or the hyperge-
mometric distribution is denoted. This brought the idea for finding a conjugate
distribution for the information states. A conjugate distribution is a distribu-
tion that after a Bayesian information update is applied will remain in the same
distribution family, but with different parameters. More information can be
found in [4]. A well known example is the Bernoulli trial with unknown success

probability p. In that case the prior belief has a Beta (α, β) =
xα−1(1− x)β−1

B(α, β)
distribution with β (α, β) the beta function. The Bernoulli experiment can have
two possible outcomes with each their corresponding Bayesian update:

- In case of a success the posterior distribution will be
xα(1− x)β−1

B(α+ 1, β)
which

is a Beta (α+ 1, β) distribution,
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- In case of a failure the posterior distribution will be
xα−1(1 − x)β

B(α, β + 1)
which

is a Beta (α, β + 1) distribution.

Corresponding to a success or failure either the α parameter or β parameter will
be increased by 1. As mentioned before, if from an empty system a sequence of
arrivals occurs and after the arrival sequence only departures occur, the infor-
mation state distribution will be a hypergeometric distribution. When between
the departures an arrival occurs the information state is not hyper-exponentially
distributed anymore. This is caused by the fact that after a foreground arrival
the distribution will shift to the right. When a foreground arrival occurs there
is at least one foreground job in the system thus the probability there are zero
foreground jobs in the system will become zero.

3.4 Simulation program

To examine the impact of distribution shifts during the information state up-
dates a simulation program was written. This program is based on the solution
of the fully observable MDP model with Poisson arrivals and exponential file
sizes that is described in Section 2.2, Equation (2). For that model the state
space is defined as s = (b1, f1, b2, f2) ∈ S. The resulting policy R is a four
dimensional policy in S:

R (s) = R (b1, f1, b2, f2) . (48)

The simulation program uses the decisions given in R (s) and keeps track of the
information states and the actual number of foreground and background flows.
In Figure 25 a sequence of information states for a node is plotted. In each
bargraph title n is the observed and actual number of flows, f is the actual
number of foreground flows and t is the time. On the horizontal axis the values
correspond to the number of foreground flows. The height corresponds to the
information state probability. In the first bargraph t = 1 the bar for value 2 is
the highest so the system has most likely 2 foreground flows.
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Figure 25: sequence of information states during simulation. The horizontal
axis corresponds to the number of foreground flows, bar height corresponds to
the probability for the corresponding number of flows on the horizontal axis.

As can be observed in the distribution plots, all distributions have a nice
peaked curve shape. This observation generated the idea of fitting hypergeo-
metric distributions to the information states. Finding a closed form for these
fitted information state updates still is a difficult problem.

3.5 Combination of MDP policy with Bayesian informa-

tion states

Another option is combining the (on line calculated) information state distri-
bution information with the (off line calculated) solution of the fully observable
MDP described in Equation (2) in Section 2.2. Let α (o1, o2) be the server selec-
tion decision based on the observed number of flows (o1, o2). Let R (b1, f1, b2, f2)
be the optimal policy for the fully observable MDP. For each of the two nodes
the information state distribution is tracked. From these information states a
mapping has to be made to server selection using the four dimensional policy
from the full observable MDP. For the mapping two variants will be discussed:

Weighted in this variant decisions for all possible states, corresponding to the
observed number of flows, are weighted using the information state prob-
abilities. The result is rounded to the closest decision. For the weighted
version define function h (a) for a ∈ A:

h (a) =

{
−1 for a = 1
1 for a = 2.

(49)
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This will map the decision for server 1 to a negative value and the decision
for server 2 to a positive value. Given the observed number of flows o1
and o2 and information state u the weighted variant will be:

α (o1, o2) =

o1∑

i=0

o2∑

j=0

[h (R (o1 − i, i, o2 − j, j) u1o1
(i)u2o2

(j))] , (50)

a =






server 1 if α (o1, o2) < 0
server 2 if α (o1, o2) > 0

server 1 or 2 otherwise.

Maximum likelyhood in this variant the most likely state is selected from
the information state distribution. From the optimal policy R (s) the ac-
tion corresponding to the most likely states is chosen. In the maximum
likelihood variant the most likely state is selected from the information
states and plugged in the full observable MDP solution.

i = argmax
i

u1o1
(i) ,

j = argmax
j

u2o2
(j) ,

a =






server 1 if R (o1 − i, i, o2 − j, j) < 0
server 2 if R (o1 − i, i, o2 − j, j) > 0

server 1 or 2 otherwise.
(51)

3.6 Results and conclusion

Both the weighted combination and maximum likelyhood variants for combin-
ing information states with the solution of the full observeble MDP have been
formulated and implemented in a realistic simulation environment. More details
about the simulation can be found in Chapter 5. The simulation indicated that
the weighted combination of Bayesian information states with the MDP did
perform considerably worse than the maximum likelihood combination. From
the simulation also the fraction of routed foreground files to each node has been
stored (see Tables 15, 16, 17 in Chapter 5). In these fractions can be observed
that for the weighted variant the fraction is always close to 50% while there this
fraction should go away from 50% when the nodes are asymmetrically loaded
or have different capacities. Somehow the weighting averages out the optimal
decisions of the full observable MDP solution resulting in poor decisions.

64



4 Dynamic splitting heuristic based on condi-

tional sojourn time

Consider the MDPs described in Chapter 2. In this case there are two nodes
where on each node the total number of flows, o1 and o2, can be observed. The
MDPs produce an optimal policy R (o1, o2), on the observed number of flows,
which optimizes the expected number of foreground flows. The policy provides
server selection decisions that will route a new foreground file to a node based
on the observed number of flows o1 and o2. In the MDP policies in Chapter
2 a nice structure can be observed (in Section 2.7). In this chapter a heuristic
will be described that approximate the switching curve for systems with Poisson
arrivals and exponential filesizes. For the optimization of expected sojourn time
intuitively the optimal decisions should be based on the expected sojourn time
for a new flow, conditioned on the observed number of flows. This chapter will
start with a description of a method that enables the numerical calculation of
the expected soujourn time given the observed number of flows and dynamic
decision strategy (For example from a MDP). This will start with the analysed
of a single PS node. In Section 4.1 the PS Markov chain is transformed in a
uniformized Markov chain. The uniformized Markov chain is used to generate
a probability tree conditioned on the inital observed state. Section 4.2 will
present an algorithm that can calculate the expected sojourn time in a PS node
for a new flow given that on arrival a specific number of flows is observed on
that node. Section 4.3 will expand the single PS algorithm of section 4.2 to a
multi-PS system including a policy on the observed number of flows. In Section
4.4 a server selection heuristic is defined, based on the knowledge aquired on
conditional sojourn time in Section 4.2. Finally in Section 4.5 the performance,
in terms of expected sojourn time, is compared for the heuristic in Section 4.4,
join the shortest queue (JSQ) and the MDP (with all foreground and background
flows observable) defined in equation (2) in Section 2.2.

In the MDP models the conditional expected sojourn time can not directly
be derived because the MDPs states correspond with the number of flows on
the PS-nodes. There is no exact expression for transforming the MDP states
into conditional expected sojourn time, given a new transfer starts in state s,
for a given dynamic policy. For the total expected sojourn time Little’s formula
can be applied using the expected number of flows in the system. The condi-
tional sojourn time expectation however, can be derived numerically by using
the properties of the continuous-time Markov chain. For now the problem will
be simplified to a single PS-node.

4.1 Single PS conditional distribution

Consider the PS (processor sharing) continuous time Markov Chain with Poisson
arrivals and exponential service times. This Markov chain has state space S =
N0 and n, n′ ∈ S where n and n′ represent the number of flows in the system.
Further let λ′ (n, n′) be the transition rate from state n to state n′. Figure 26
illustrates the well known PS Markov chain:
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Figure 26: Processor sharing Markov chain.

The Markov chain has transition rates λ′ (n, n+ 1) = λ and λ′ (n, n− 1) =
µ.
This Markov chain can be uniformized by choosing a uniformization rate that
is at least equal to the maximum of the sum of the rates λ′ (n, n′) out of each
state n:

γ ≥ max
n

[
∑

n

λ′ (n, n′)

]
, (52)

see uniformization in Section 8.A.3. For each state a dummy transition is added

λ′ (n, n) = γ −

[
∑

n6=n′

λ′ (n, n′)

]
such that for all states the sum of the rates out

will be equal. The transition rates of the Markov chain can be transformed into
transition probabilities due to the time independence property of the exponen-
tial distribution,

p (n, n′) =
λ′ (n, n′)

γ
. (53)

Now for every transition the expected transition time will be equal for each
state. The expected transition time will be denoted by an epoch with expected

length τ =
1

γ
. Suppose the system is starting in a given state n. Then with the

uniformized Markov chain the probability the system will be in state n′ after t
transition epochs can be calculated as follows:

• Let en be the unit vector with en (n′) = 1 [n = n′],

• let ν0 be the initial probability distribution or knowledge on the number
of flows,

• let P = be the transition matrix with all uniformized transition probabil-
ities.

For now the intitial knowledge ν0 is chosen ν0 = en, so the distribution starts
at the point where the number of flows is exactly known. Let P (n′|ν0, t) be the
probability of observing the system in state n′ after t uniformized transitions,

with expected time
1

γ
, starting with knowledge ν0. With ν0 = en this is the

probability that the system is found with n′ flows while the system was observed
for t epochs, starting with n flows at t = 0. This conditional probability can be
calculated by

P (n′|ν0, t) = en′P tν0. (54)
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The expected time for t epochs is equal to tτ =
t

γ
.

Given the uniformized probabilities, a transition probability tree can be con-
structed, where the depth corresponds to the number of epochs:
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Figure 27: Probabilities after t epochs.

In Figure 27 the nodes correspond to states and the arcs correspond to the
spreading of probability mass.

4.2 Conditional sojourn time algorithm for one PS node

Using the conditional probability in Section 4.1, the distribution on the number
of flows after t epochs starting with ν0 is known. This conditional distribution
can be modified in order to be able to calculate the expected sojourn time
for the given initial knowledge ν0. First note that in a PS node, when there

are k streams, each flow will obtain a fraction
1

k
of the node capacity. When

considering the uniformized Markov chain with departure transition rates µ each

flow will be completed with probability
µ

kγ
. Suppose a new flow arrives at t = 0

with n flows in the system. Then the new flow will be obtain a fraction 1
n+1 of

the capacity. Given the uniformized Markov chain the probability that after a

transition this transition will be a flow completion is equal to λ′(n,n−1)
γ

=
µ

γ
=

µ

γ
. Each flow has an equal probability of completion due to the independence

property of the exponential distribution so the transition probability that a

specific flow will be completed, with a new arrived flow, is equal to
µ

γ (n+ 1)
.

With this transition probability, conditioned on the new arrived flow, a sojourn
time distribution q (t) can be derived. Here q (t) the distribution on the number
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of epochs t before the newly added flow (on t = 0) will be completed. To the
original Markov chain an extra state q′ will be added. This state represents the
situation where the new flow is completed.

0 1 2 N-1 N

q

µ 2
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N+1µ
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N
µ 1
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λλλ

Figure 28: Modified PS (processor sharing) Markov Chain.

For the new flow, a state q′ will be added to S resulting in state space
S′ = {q′,N0}. In this Markov chain the departure transition probabilities (n, n′)
are modified to p′ (n, n′) where:

γ = λ+ µ is the uniformization constant,

p′
(
n, q′

)
=

µ

γ(n+ 1)
is the probability that the new flow will be completed,

p′
(
n, [n− 1]

+
)

=
nµ

γ(n+ 1)
is the probability that another flow will be completed,

p′
(
n, n+ 1

)
=

λ

γ
is the probability that a new flow arrives.

(55)
Note that if the system is observed in state n the newly added flow will transfer
the system in state n+1. Thus n corresponds to the number of flows additional
to the flow added at t = 0. In state n = 0 no concurrent flows for the last added
flow are in transfer. The new transition matrix will be denoted by P ′. For the
modified calculation define:

• en the unit vector with en (n′) = 1 [n = n′],

• ν0 the initial probability distribution or knowledge on the number of flows,

• P ′ = the modified transition matrix with all uniformized transition prob-
abilities.

For the new transition matrix P ′ the conditional distribution given initial knowl-
edge ν0 and epoch t is defined by:

P (n′|ν0, t) = en′P ′tν0. (56)

In this situation a probability tree can be constructed again where q (t) repre-
sents the calculation for the departure probability of the new flow after t epochs.
An example of such a tree is illustrated in Figure 29.
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Figure 29: q (t) represents the calculation for the departure probability of the
new flow after t epochs.

The cumulative sojourn time distribution Q (t) is embedded in the sequence
of conditional distributions P (n′|ν0, t) for t = 0, · · · , T . where T goes to infinity:

Q (t) = P (q′|ν0, t) = en′P ′tν0. (57)

For each epoch q (t) the departure probability of the last added flow p′ (n, q′)
can be calculated by summing up the probabilities that the system has n flows
at time t and the next event is a departure of the flow added at t = 0:

q (t) =
∑

n

[P (q′|ν0, t− 1) · p′ (n, q′)] =
∑

n

[(
en′P ′tν0

) µ

γ (n+ 1)

]
. (58)

As the distribution of q represents the number of epochs before the new flow
is completed and the expected length of an epoch is known, the conditional

expected sojourn time E

[
S
∣∣∣ν0
]

can be expressed in terms of q:

E

[
S
∣∣∣ν0
]

=
1

γ

T∑

t=0

[tq (t)] . (59)

Typically the sojourn time can be conditioned on the number of flows n with
Sn = E

[
S
∣∣n
]
. Therefore for each starting state the starting distribution is de-

fined by:

ν0,n = en. (60)

The calculation of the contitional sojourn time can be transformed in an algo-
rithm:
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Sn ← 0
t← 0
ν0,n ← en

p (n′|n, t)← ν0,n (n′)
transition matrix P ′

while diff > ε do
q (t, n)←

∑
n′

p (n′|n, t)
µ

(n′ + 1)γ

Sn ← Sn +
t

γ
q (t, n)

diff ← max
n
|Sn − S

′
n|

p (n′|n, t)← p (n′|n, t− 1)P ′

S′
n ← Sn

end while

The algorithm will stop when the desired accuracy ε is reached.

4.2.1 Conditional sojourn time a on single PS node

When the algorithm given in last paragraph was implemented and the results
were evaluated, a linear relation was found between conditioned state n and
expected conditional sojourn time Sn

Sn =
n+ 2

2µ− λ
. (61)

This result can also be found in [9], which describes a polynomial relationship
between the n’th moment of the conditioned sojourn time and state n. The first
moment exactly corresponds to the conditional expected sojourn time found
using the algorithm.

4.3 Multi PS node algorithm with server selection policy

For a single PS node without server selection policy the calculation is trivial.
However when the calculation is extended to the multi-PS node case with a dy-
namic server selection policy the exact expression for the conditional expected
sojourn time becomes hard to calculate. Consider the model in Equation (2),
Section 2.2. Now the policy determines the arcs for foreground traffic between
the different states. In the example below there are two nodes where on fore-
ground arrival one node has to be selected.
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Figure 30: Server selection Markov chain.

The black arrows are regular transitions, the red arrows are the case server 2 is
selected, the green arrows are the case server 1 is selected on a new foreground
arrival.

Now a state space S = N0
2 is defined with (n1, n2) ∈ S where n1 corre-

sponds to the number of flows on server 1 and n2 corresponds to the number
of flows on server 2. The modified statepace will become S′ = {q′} ∪ S with q′

the flow completion state. States will be denoted as tuples on the number of
flows [n1, n2] and [q′] for the exit state. From this Markov chain two modified
transition matrices P ′

1 and P ′
2 can be constructed. To this transition matrix the

dynamic policy R (n1, n2) with server selection decisions for given n1 and n2

and selected server a ∈ {1, 2} has to be provided:
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γ = λ0 + λ1 + λ2 + µ1 + µ2,
P ′

1 :=

p′1

([
n1, n2

]
,
[
q′
])

=
µ1

γ (n1 + 1)
,

p′1

([
n1, n2

]
,
[
[n1 − 1]

+
, n2

])
=

n1µ1

γ (n1 + 1)
,

p′1

([
n1, n2

]
,
[
n1 + 1, n2

])
=

λ1 + 1 [R (n1, n2) = 1]λ0

γ
,

p′1

([
n1, n2

]
,
[
n1, [n2 − 1]+

])
=

µ2

γ
,

p′1

([
n1, n2

]
,
[
n1, n2 + 1

])
=

λ2 + 1 [R (n1, n2) = 2]λ0

γ
,

P ′
2 :=

p′2

([
n1, n2

]
,
[
[n1 − 1]

+
, n2

])
=

µ1

γ
,

p′2

([
n1, n2

]
,
[
n1 + 1, n2

])
=

λ1 + 1 [R (n1, n2) = 1]λ0

γ
,

p′2

([
n1, n2

]
,
[
q′
])

=
µ2

γ (n2 + 1)
,

p′2

([
n1, n2

]
,
[
n1, [n2 − 1]+

])
=

n2µ2

γ (n2 + 1)
,

p′2

([
n1, n2

]
,
[
n1, n2 + 1

])
=

λ2 + 1 [R (n1, n2) = 2]λ0

γ
.

From this the sojourn time distribution for both servers can be expressed. De-
fine:

• en1,n2 the unit vector with en1,n2 (n′
1, n

′
2) = 1 [n1 = n′

1 ∧ n2 = n′
2],

• ν0 the initial probability distribution or knowledge on the number of flows,

• P ′
1 and P ′

2 the modified transition matrix with all uniformized transition
probabilities for node 1 and 2,

• Pa

([
q′
]∣∣∣ν0, t

)
= en′

1,n′
2
P ′

a
t
ν0 the probability distribution on the number

of flows given intial knowledge ν0 and epoch t for node a.

For each epoch qa (t) the departure probability of the last added flow p′a (na, q
′
a)

can be calculated by summing up the probabilities system a has na flows at
time t and the next event is a departure of the flow added at t = 0:

q1 (t) =
∑

n1,n2

[
P1

([
q′
]∣∣∣ν0, t− 1

)
· p′1

([
n1, n2

]
,
[
q′
])]

=
∑

n1,n2

[(
en′

1,n′
2
P ′

1
tν0

) µ1

γ (n1 + 1)

]
,

q2 (t) =
∑

n1,n2

[
P2

([
q′
]∣∣∣ν0, t− 1

)
· p′2

([
n1, n2

]
,
[
q′
])]

=
∑

n1,n2

[(
en′

1,n′
2
P ′

2
t
ν0

) µ2

γ (n2 + 1)

]
.

As the distribution of qa represents the number of epochs before the new flow
is completed on node a = 1, 2 and the expected length of an epoch is known,

the conditional expected sojourn time E

[
Sa

∣∣∣ν0
]

can be expressed in terms of qa:

E

[
Sa

∣∣∣ν0
]

=
1

γ

T∑

t=0

[tqa (t)] . (62)
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The expected sojourn time can be conditioned on the number of flows n1, n2 on
both servers for selected server a ∈ {1, 2} with Sa,n1,n2 = E

[
Sa

∣∣n1, n2

]
. There-

fore for each starting state the starting distribution is defined by:

ν0,n1,n2 = en1,n2 . (63)

Now the algorithm will be:

Sa,n1,n2 ← 0
t← 0
ν0,n1,n2 ← en1,n2

pa

(
n′

1, n
′
2

∣∣∣n1, n2, t
)
← ν0,n1,n2 (n′

1, n
′
2)

transition matrices P ′
1, P

′
2

while diff > ε do
qa (t, n1, n2)←

∑
n′

1,n′
2

pa (n′
1, n

′
2|n1, n2, t)

µa

(n′
a + 1) γ

Sa,n1,n2 ← Sa,n1,n2 +
t

γ
qa (t, n1, n2)

diff ← max
n1,n2

∣∣Sa,n1,n2 − S
′
a,n1,n2

∣∣

pa (n′
1, n

′
2|n1, n2, t)← pa (n′

1, n
′
2|n1, n2, t− 1)P ′

a

S′
a,n1,n2

← Sa,n1,n2

end while

The algorithm will produce for each server a = 1, 2 a matrix Sa,n1,n2 on the
(n1, n2) plane with the expected sojourn time conditioned on (n1, n2). These
two matrices can be combined in one conditional sojourn time expression us-
ing the dynamic server selection policy R (n1, n2) that is used in the calculation:

E
[
S
∣∣n1, n2

]
= 1[R (n1, n2) = 1

]
S1,n1,n2 + 1[R (n1, n2) = 2

]
S2,n1,n2 . (64)

4.4 Optimization heuristic based on conditioned sojourn

time

For the algorithm in Section 4.3 a simple server selection policy can be provided
for testing. The policy that is used is the join the shortest queue policy. This
policy will be evaluated in a realistic simulation environment in Chapter 5.
Figure 31 represents the conditional expected sojourn time for the join the
shortes queue policy:
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Figure 31: Back view.

This graph has parameters:

• λ0 = .1

• λ1 = .3

• λ2 = .7

• µ1 = 1

• µ2 = 1

In Figure 31 a pyramid shape can be recognized with a gap over the diagonal.
This gap can be observed in the purple line which corresponds to the expected
sojourn time over the line n1 + n2 = 40. When the three-dimensional graph of
the conditional sojourn time is observed from another perspective in Figure 32,
a kind of pyramid can be recognized with a gap in the intersection of sides.
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Figure 32: Front view.

Consider the virtual sides of the almost pyramid shape in Figure 32. The
expected sojourn time, in this graph, can be observed as the minimum of two
almost flat planes in the n1, n2 surface. If the decision switching curve was
chosen different the gap can be removed. This brought the idea that foreground
sojourn time can be optimized by choosing the switching curve on the intersec-
tion of the conditional sojourn time planes for both servers. For relatively low
foreground traffic the conditional sojourn time planes are close to the actual
planes. Therefore the intersection of those planes can be simplified by calculat-
ing the intersection of the simplified conditional sojourn time planes. Consider
the expression of conditional sojourn time for a single-PS node in Section 4.2.1.
Given the background flows arrival rates for nodes 1 and 2, λ1, λ2 and the ca-
pacities for both nodes µ1 and µ2 for both nodes the conditional sojourn time
can be expressed in the (n1, n2) plane using the single-PS conditional sojourn
time expression. For node a = 1, 2 the plane will be described by:

Sa (n1, n2) =
na + 2

2µa − λa

,

where Sa (n1, n2) is the expression for the sojourn time on node a conditioned on
(n1, n2). The switching curve can now be defined by the solution of the equation:

S1 (n1, n2) = S2 (n1, n2) , (65)

resulting in equation:
n1 + 2

2µ1 − λ1
=

n2 + 2

2µ2 − λ2
. (66)
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Figure 33 illustrates the idea of intersecting conditional sojourn time planes
S1 (n1, n2) and S2 (n1, n2).
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Figure 33: Intersecting E [S] planes.

Multidimensional case The conditional sojourn time server selection regime
can easily be extended to the case with more than two servers. Let a ∈ A be
the set of selectable servers. In that case the optimal selection is defined by:

min
a

{
na + 2

2µa − λa

}
. (67)

with

na the number of flows on server a,

λa the background file arrival rate on server a,

µa the capacity of server a.

4.5 Performance evaluation of the conditional sojourn time

heuristic

It would be interesting to know how the server selection policy based on condi-
tional sojourn time performs compared to other policies. Therefore the expected
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sojourn time is calculated and compared for three different policies

• E [S|CondES] conditional sojourn time policy,

• E [S|JSQ] join the shortest queue,

• E [S|MDP ] full MDP is Equation (2), Section 2.2.

As described in section 2.2 we consider a system with two nodes with on each
node a number of foreground flows fa and background flows ba for a = 1, 2.
The idea is to optimize the expected sojourn time for foreground flows for a
given policy. The policies from E [S|CondES] and E [S|JSQ] are defined on
the total number of flows observed on each server oa = fa + ba. Using the
expression for the total number of flows the full observable model can be used
with these policies. For these policies the Markov chain was solved for different
parameters. For the three policies a continuous time Markov chain can be
solved that incorporates the decisions on foreground flow arrivals. From the
Markov chain solution the expected number of foreground flows was determined
and using Little’s formula the expected sojourn time was calculated. For the
comparison the foreground arrival rate and the file sizes have been chosen fixed:

λ0 = .1,

µ0 = µ1 = µ2 = 1.

The parameter value λ0 = .1 represents the assumption that the amount fore-
ground traffic is small compared to the background traffic. The file size param-
eters are equal for all flows µ0 = µ1 = µ2 = 1 for sake of simplicity and because
the impact of difference in server capacity will be evaluated. For varied back-
ground arrival rates λ1 and λ2 the expected sojourn time was calculated for the
three policies. As the full MDP gives the optimal policy the expected sojourn
time of this policy is used as performance benchmark. The tables contain the
relative difference in expected sojourn time to the full MDP expected sojourn
time. This percentage is calculated by:

E [S|test policy]− E [S|MDP ]

E [S|MDP ]
× 100%. (68)

First the percentages were calculated for equal capacity for both nodes:

Table 4: Equal capacity C1 = C2 = 1, full MDP v.s. CondES.

λ1/λ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.26% 0.51% 0.56% 0.49% 0.35% 0.39% 0.24% 0.86% 0.34%
0.2 0.42% 0.62% 0.59% 0.46% 0.34% 0.40% 1.14% 0.37%
0.3 0.52% 0.66% 0.59% 0.45% 0.34% 0.37% 0.53%
0.4 0.57% 0.66% 0.55% 0.43% 0.64% 0.26%
0.5 0.58% 0.63% 0.51% 0.54% 0.41%
0.6 0.55% 0.56% 0.50% 0.43%
0.7 0.50% 0.48% 0.50%
0.8 0.42% 0.47%
0.9 0.38%
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Table 5: Equal capacity C1 = C2 = 1, full MDP v.s. JSQ.

λ1/λ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.26% 1.89% 3.21% 4.19% 4.79% 4.99% 4.90% 4.24% 2.86%
0.2 0.42% 1.77% 2.82% 3.53% 3.87% 3.86% 3.52% 2.45%
0.3 0.52% 1.62% 2.42% 2.89% 3.01% 2.80% 2.06%
0.4 0.57% 1.44% 2.02% 2.25% 2.17% 1.67%
0.5 0.58% 1.24% 1.59% 1.61% 1.29%
0.6 0.55% 1.01% 1.14% 0.93%
0.7 0.50% 0.75% 0.64%
0.8 0.42% 0.47%
0.9 0.38%

In Tables 4 and 5 it can be observed that the maximal difference to the MDP
for the conditional sojourn time is 1.14% and for JSQ 4.99%. Only the upper
triangle of the tables is displayed here, because all differences are symmetrical
due to the equal server capacity C1 = C2. Tables 6 and 7 contain the relative
difference with unequal ratio of server capacities starting with C1 = 1, C2 = 2:

Table 6: Unequal capacity C1 = 1, C2 = 2, full MDP v.s. CondES.

λ1/λ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.37% 0.28% 0.19% 0.12% 0.08% 0.05% 0.02% 0.01% 0.00%
0.2 0.46% 0.42% 0.29% 0.18% 0.15% 0.07% 0.03% 0.01% 0.00%
0.3 0.32% 0.57% 0.40% 0.25% 0.12% 0.11% 0.06% 0.03% 0.01%
0.4 0.44% 0.54% 0.51% 0.33% 0.18% 0.19% 0.09% 0.06% 0.01%
0.5 0.53% 0.27% 0.65% 0.42% 0.25% 0.10% 0.13% 0.05% 0.02%
0.6 0.61% 0.37% 0.58% 0.51% 0.32% 0.16% 0.18% 0.08% 0.05%
0.7 0.66% 0.45% 0.25% 0.66% 0.39% 0.24% 0.32% 0.11% 0.08%
0.8 0.70% 0.51% 0.34% 0.60% 0.47% 0.28% 0.13% 0.16% 0.05%
0.9 0.85% 0.57% 0.40% 0.25% 0.62% 0.34% 0.21% 0.25% 0.07%

Table 7: Unequal capacity C1 = 1, C2 = 2, full MDP v.s. JSQ.

λ1/λ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 39.53% 39.86% 39.58% 38.54% 36.56% 33.43% 28.75% 22.08% 12.99%
0.2 36.69% 37.26% 37.52% 37.04% 35.61% 32.99% 28.77% 22.40% 13.36%
0.3 33.67% 34.42% 35.20% 35.27% 34.40% 32.31% 28.61% 22.62% 13.70%
0.4 30.56% 31.68% 32.63% 33.25% 32.94% 31.41% 28.26% 22.72% 14.00%
0.5 27.41% 28.85% 29.91% 30.99% 31.25% 30.31% 27.71% 22.71% 14.26%
0.6 24.28% 25.98% 27.36% 28.54% 29.35% 28.99% 26.97% 22.55% 14.48%
0.7 21.21% 23.12% 24.76% 26.00% 27.25% 27.49% 26.10% 22.26% 14.65%
0.8 18.24% 20.28% 22.14% 23.68% 24.99% 25.80% 25.04% 21.82% 14.77%
0.9 15.41% 17.52% 19.53% 21.32% 22.69% 23.95% 23.84% 21.32% 14.84%
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In these tables it can be observed that the difference between the expected
conditional sojourn time policy and the MDP is smaller while this difference
is increased between the JSQ and MDP policy. For unequal capacity the com-
parision with JSQ is not completely fair. Therefore also the JSQ variant is
considered where the switching curve is determined by the ratio of foreground
loads on both servers:

a =






server 1 if n1 < n2
C1

C2

server 2 if n1 > n2
C1

C2
server 1 or 2 otherwise.

(69)

The percentage difference in expected sojourn time for this policy to the MDP
is:

Table 8: Unequal capacity C1 = 1, C2 = 2, full MDP v.s. JSQ adjusted to
foreground load ratio.

λ1/λ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 38.60% 38.50% 37.80% 36.38% 34.10% 30.79% 26.14% 19.81% 11.50%
0.2 35.27% 35.20% 34.83% 33.77% 31.87% 28.97% 24.77% 18.91% 11.05%
0.3 31.85% 31.79% 31.74% 31.04% 29.53% 27.03% 23.32% 17.95% 10.58%
0.4 28.42% 28.58% 28.55% 28.21% 27.09% 25.01% 21.78% 16.93% 10.08%
0.5 25.02% 25.39% 25.33% 25.31% 24.58% 22.93% 20.14% 15.85% 9.54%
0.6 21.72% 22.26% 22.41% 22.35% 22.01% 20.77% 18.42% 14.69% 8.96%
0.7 18.56% 19.24% 19.57% 19.46% 19.40% 18.57% 16.69% 13.45% 8.35%
0.8 15.55% 16.35% 16.83% 16.91% 16.79% 16.35% 14.91% 12.16% 7.69%
0.9 12.75% 13.61% 14.21% 14.47% 14.29% 14.12% 13.11% 10.86% 6.98%

This is slightly better than the original JSQ but considerably worse than the
conditional sojourn time based policy. When the difference of server capacity is
increased to C1 = 1, C2 = 4 the percentage difference in expected sojourn time
between the conditional sojourn time policy and MDP is very close to zero.

Table 9: Unequal capacity C1 = 1, C2 = 4, full MDP v.s. CondES.

λ1/λ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.7 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.8 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.9 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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The difference between JSQ and MDP increased to even larger percentages:

Table 10: Unequal capacity C1 = 1, C2 = 4, full MDP v.s. JSQ.

λ1/λ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 133.11% 128.02% 121.56% 113.43% 103.30% 90.69% 75.02% 55.49% 31.45%
0.2 131.72% 127.26% 121.37% 113.77% 104.08% 91.80% 76.28% 56.68% 32.29%
0.3 130.13% 126.29% 121.01% 113.96% 104.74% 92.82% 77.50% 57.87% 33.13%
0.4 128.33% 125.13% 120.46% 113.99% 105.27% 93.75% 78.68% 59.05% 33.98%
0.5 126.32% 123.76% 119.72% 113.85% 105.68% 94.59% 79.80% 60.21% 34.84%
0.6 124.10% 122.18% 118.79% 113.54% 105.94% 95.33% 80.86% 61.35% 35.72%
0.7 121.66% 120.39% 117.65% 113.04% 106.05% 95.96% 81.86% 62.48% 36.60%
0.8 119.02% 118.38% 116.30% 112.36% 106.00% 96.48% 82.79% 63.59% 37.49%
0.9 116.15% 116.15% 114.74% 111.48% 105.79% 96.87% 83.65% 64.67% 38.40%

The adjusted JSQ does not really perform better:

Table 11: Unequal capacity C1 = 1, C2 = 4, full MDP v.s. JSQ adjusted to
foreground load ratio.

λ1/λ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 131.52% 125.68% 118.56% 109.90% 99.40% 86.67% 71.20% 52.29% 29.43%
0.2 129.25% 123.62% 116.71% 108.28% 98.02% 85.54% 70.32% 51.68% 29.11%
0.3 126.78% 121.37% 114.70% 106.51% 96.50% 84.28% 69.34% 51.00% 28.75%
0.4 124.11% 118.94% 112.51% 104.57% 94.83% 82.90% 68.26% 50.25% 28.36%
0.5 121.24% 116.32% 110.15% 102.48% 93.03% 81.40% 67.09% 49.44% 27.92%
0.6 118.19% 113.52% 107.62% 100.25% 91.10% 79.79% 65.83% 48.56% 27.45%
0.7 114.95% 110.55% 104.93% 97.86% 89.03% 78.07% 64.48% 47.61% 26.95%
0.8 111.53% 107.41% 102.09% 95.33% 86.84% 76.25% 63.05% 46.61% 26.42%
0.9 107.93% 104.10% 99.08% 92.66% 84.53% 74.31% 61.54% 45.55% 25.85%

This brings the question what is the difference between the adjusted JSQ
and CondES? Now lets compare the policies of the corrected JSQ and CondES.
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Figure 34: Comparison of policies.
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Figure 34 shows that the biggest difference lies in the threshold of the Con-
dES policy. This policy first sends all files to the node with highest capacity
until a certain threshold is reached. This brings the conjecture that this thresh-
old behavior is crucial for the performance of server selection policies. This can
be explained by considering the distribution on the number of flows in the sys-
tem. Most likely the system is found with a small number of flows. Therefore
the impact of decisions in that area has a large contribution to the expected
sojourn time.

4.6 Conclusion

In this chapter a server selection heuristic has been developed that is based
on the expression of conditional sojourn time in a single-PS node. The perfor-
mance of the heuristic has been compared to JSQ and the full observable MDP
found in Equation (2), Section 2.2. The full observable MDP is considered as
a benchmark case, because here all information on the number of flows is used
for optimal decisions. The comparison been done for both symmetric and as-
symmetric node capacities. For symmetrical capacity the performance of the
conditional sojourn time heuristic is close to the full MDP solution (in the order
of 1%). When the asymmetry beween server capacity grows the difference in
expected sojourn time of the conditional sojourn time server server selection
and the fully observable MDP becomes really small. This means that using the
conditional sojourn time strategy gives performance that is really close tho the
MDP solution. Now it is not necessary anymore to solve the MDP for obtaining
almost equal performance. It is suitable to apply the conditional sojourn time
split which can be determined on line.
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5 Simulation results in OPNET

In the previous chapters, different server selection strategies are proposed. For
all the server selection strategies it would be interesting to examine the perfor-
mance in terms of expected sojourn time in a more realistic setting. OPNET is
a simulation environment that implements the full range of lower-layer protocol
details [6]. We have implemented a scenario with two wireless LANs.

Foreground clients

connected to node 1 and 2

WLAN node 1 WLAN node 2

Background clients

connected to node 1
Background clients

connected to node 2

Figure 35: WLAN concurrent access simulation setup.

Each of the wireless LANs has clients that only use one access point. These
clients represent the background traffic. There is also a group of clients that
can use both access point simultaneously. These clients represent the foreground
traffic. Both access points are modeled with the IEEE 802.11b standard with a
maximal throughput of 11Mbit. The clients generate requests using a Poisson
distribution. The access points are connected to a FTP server that contains files
which can be requested by the clients. Furthermore the filesize distributions are
drawn from the exponential distribution. For the foreground clients multiple
server selection strategies have been implemented in OPNET:

1. PO MDP, the partial observable MDP from Equation (11) in Section
2.4,

2. Inf state ML, the full observable MDP strategy from Section 2.2 com-
bined with Bayesian information states using the maxmimum likelihood
as described in Chapter 3,

3. Inf state W, the full observable MDP strategy from Equation (11) in
Section 2.4 combined with Bayesian information states using weighting
over the information state distribution as described in Chapter 3,

4. Cond E[S], the conditional sojourn time strategy described in Section
4.4

5. JSQ, Join the Shortest Queue.
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These policies have been simulated using different scenarios comprising both
symmetric and assymmetric node capacities.

Table 12: Simulation scenarios.

Bandwidth WLAN node 1 Bandwidth WLAN node 2
Scenario 1 11Mbit/s 11Mbit/s
Scenario 2 11Mbit/s 5.5Mbit/s
Scenario 3 11Mbit/s 1Mbit/s

For the different scenarios the WLAN transmission rates and file requests
have to be translated in a set of parameters that can be used for calculating
the different server selection strategies that will be tested. We have developed
a model where the properties of the clients and the network can be translated
in file arrival rates λ0, λ1, λ2 and server capacities C1, C2 [5]. For the scenarios
the following set of parameters was used:

Table 13: Simulation parameters.

λ0 λ1 λ2 C1 C2 C1 : C2

Scenario 1 0.298 2.087 0.894 2.982 2.982 1 : 1
Scenario 2 0.298 2.087 0.604 2.982 2.016 1 : 1.48
Scenario 3 0.298 2.087 0.154 2.982 0.515 1 : 1.579

. The effective loads in Table 14 can be obtained by plugging in λ0, λ1, λ2

and C1, C2 from table 13 into the expression ρi,j =
λi

Cj

where i ∈ {0, 1, 2} and

j ∈ {1, 2}.

Table 14: Simulation effective loads.

ρ0 node 1 ρ0 node 2 ρ1 node 1 ρ2 node 2
Scenario 1 0.1 0.1 0.7 0.3
Scenario 2 0.1 0.148 0.7 0.3
Scenario 3 0.1 0.579 0.7 0.3

From the OPNET simulations each scenario did generate for the different
server selection strategies a series containing the foreground sojourn times. From
these sojourn times using the batch means procedure the means and the 95%
confidence interval was determined. The results for the different server selection
strategies are presented in Figures 36, 37 and 38.
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Figure 36: OPNET results for C1 : C2 = 1 : 1.

Table 15: Fraction of foreground files routed to node 1 for C1 : C2 = 1 : 1.

Cond E[S] JSQ PO MDP Inf state ML Inf state W
0.6301 0.8506 NA 0.8618 0.5106

In Figure 36 can be observed that the average sojourn time for foreground
files is close for all strategies except the Inf state W policy. This policy
performs consideraby worse.
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Figure 37: OPNET results for C1 : C2 = 1 : 1.48.
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Table 16: Fraction of foreground files routed to node 1 for C1 : C2 = 1 : 1.48.

Cond E[S] JSQ PO MDP Inf state ML Inf state W
0.6078 0.8379 NA 0.6204 0.4828

In Figure 37 Inf state W policy still performs consideraby worse. For the
JSQ the expected sojourn time is also higher. This difference lies outside the
95% confidence interval of the other (better performing) strategies.
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Figure 38: OPNET results for C1 : C2 = 1 : 5.79.

Table 17: Fraction of foreground files routed to node 1 for C1 : C2 = 1 : 5.79.

Cond E[S] JSQ PO MDP Inf state ML Inf state W
0.0942 0.6675 NA 0.138 0.4932

In Figure 38 both Inf state W and JSQ perform considerably worse. What
can be observed in Tables 15, 16, 17 is that for the best performing strategies
the fraction of foreground files that is routed to node 1 is very low when the
capacity of node 1 is much lower than node 2 while for JSQ and Inf state W
this fracion remains high. In the figures can also be observed that the strategies
Cond E[S], PO MDP and Inf state ML remain in each others 95% confidence
interval bounds. For these policies the three simulation scenarios did not result
in any significant difference in performance. This is also supported by theoretical
difference in performance found in Section 4.5.
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6 Conclusion

This master project was about finding optimal dynamical strategies for concur-
rent access in wireless LANs and to determine the impact of burstiness of the
arriving traffic on the optimal strategies. In chapter 2 MDP models have been
developed that optimize the optimal sojourn time using the observed number of
flows on each wireless node. This involved the application of a partial observa-
tion model based on the conditioned time limiting distribution over the system
for a given dynamic strategy. The models were extended with MMPP (Markov
Modulated Poisson Processes) enabling the research on burstines in the traffic
arrival processes. The experiments indicate that:

• When burstiness increases (D ↓ or T ↑) the preference for the lowest loaded
node increases. This can be observed as the movement of the ‘switching
curve’ to the direction of the lowest loaded node. This movement is bigger
when the foreground traffic arrival intensity λ0 increases.

• When λ0 decreases the ‘switching curve’ moves to the lowest loaded server.

• The impact of the filesize distribution is small when the squared coeffi-
cient of variation c2 is equal for both background and foreground files.
This should however be examined by applying a larger statespace and
assymmetric server capacities.

• When the squared coefficient of variation of foreground traffic c20 grows
larger, with fixed background squared coefficient of variation c21 = c22 < c20,
the switching curve moves to the lowest loaded node.

The partial observation approach in Section 2.3 does not take in account the
path or history of observations until a certain number of flows is reached. The
history of observations provide extra information about the distribution of flows
between foreground traffic and background traffic. Therefore in Chapter 3
Bayesian dynamic programming have been studied. With Bayesian dynamic
programming the statespace is extended to a probability distribution over the
statespace. The distribution is called an information state and represents the
belief on the real system state based on the observation history. Every obser-
vation the distribution is updated. On this distribution a MDP can be defined.
Solving this MDP is complicated. First discretization has to be applied on the
statespace. Even with course discretization, the statespace with Bayesian dy-
namic programming grows very large, even with course discretization. Therefore
a combination of the full observable MDP and the information state distribution
is proposed. Two variants have been considered:

• Weighted, with this variant all decisions of the fully observable MDP so-
lution are weighted on the information state. The decision closest to this
weighted decision is selected.

• Maximum likelihood, with this variant the most likely state is chosen from
the information state distribution. The optimal decision corresponding
tho that state is selected.

In the MDPs the cost function represents the expected number of flows. The
actual optimization objective is however the expected sojourn time. For this
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purpose an algortihm have been developed that can calculate the sojourn time,
conditioned on the number of flows, for dynamic strategy on the number of
flows. For a simple PS queue the expression for the sojourn time conditioned on
the number of flows is known. From this single PS conditional sojourn time ex-
presion a simple decision strategy has been developed: the ‘conditional sojourn
time strategy’. This strategy has been compared against the fully observable
MDP. The expected sojourn time of the ‘conditional sojourn time split’ has
a very small difference to expected sojourn time of the fully observable MDP
strategy.
All the proposed strategies in this thesis has been implemented in OPNET, a
realistic simulation environment that implements the full range of lower-layer
protocol details. For the two combinations of the full observable MDP and the
information state, proposed in Chapter 3, the results indicated that the weighted
variant performed very poor compared to the maximum likelihood variant. The
maximum likelihood variant performed in the range of the partially observable
MDPs and the conditional sojourn time strategy. The conditional sojourn time
split performance is in the range of the best performing strategies together with
the MDP based strategies. A big advantage of the conditional sojourn time
strategy is that this strategy can be calculated on line and no algorithm has to
be applied off line.
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7 Topics for further research

During the development of the different strategies that are described in this
thesis new ideas came for extending these strategies. The time for working
on this thesis was however limited. These ideas can be a start on continuing
research on dynamic server selection strategies for concurrent access. The ideas
involve:

• Impact of difference in burstiness on the policies generated by the MDPs
in Section 2.6. All flows in the experiments in Section 2.7 have equal
burstiness parameters. What if these parameters differ?

• Improve conditional sojourn time heuristic for high foreground load on
networks with symmetrical capacity. In the case of high foreground load
an symmetrical capacity the performance of the conditional sojourn time
heuristic differs from the full observable MDP solution. This is because
the heuristic does not use the foreground arrival rate for the optimization.

• Conditional sojourn heuristic for MMPP arrivals and H2 file size distribu-
tion. The conditional sojourn time heuristic is based on the assumption of
Poisson arrivals and exponential file sizes. This heuristic can be extended
with MMPP arrivals and H2 file size distribution.

• Parameter learning (Q-learning). In practice there are cases where the
actual traffic parameters are not exactly known and have to be measured.
Models can be formulated that will (robustly) adapt the necessary param-
eters automatically.
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8 Appendix

8.A Markov Decision Processes

8.A.1 Semi-Markov Decision Processes

A Semi-Markov Decision Process consists of the combination (S,A, p, r) where

S is the state space,

A is the set of decisions that can be made,

p (s, a, s′) with s, s′ ∈ S and a ∈ A is the transition matrix for the embedded
Markov Chain of the system, and

r (s, a) is the reward or cost for each state and decision.

Furthermore, for each state and decision, the transition times are modeled as
random variables T (s, a) with expectation τ (s, a) = E [T (s, a)]. Let R (s) be
policy, which is a set of decisions a ∈ A for each state s ∈ S. So a policy is a
dynamical decision strategy with decisions that are based on the state space S.
For a given policy R (s) the embedded Markov chain defined by p (s, a, s′) can
be solved. Define πR as the solution for the embedded Markov chain defined by
p (s,R (s) , s′). From the embedded Markov chain the time limiting distribution
νR can be calculated using the expectations of the transition times τ (s, a):

νR (s) =
πR (s) τ (s,R (s))∑

s′∈S

πR (s) τ (s′, R (s′))
. (70)

Define g as the total long term expected reward. Using the time limiting distri-
bution νR, g can be calculated by:

g =
∑

s∈S

νR (s) r (s,R (s)) . (71)

See [1] for more information about continuous-time semi-Markov decision pro-
cesses.

8.A.2 Value iteration

A Semi-Markov Decision Process can be optimized by finding an optimal policy
R∗, which is the set of optimal decisions when the system is in state s, that
minimizes the total long term expected reward g. The optimal policy R∗ can
be obtained by applying backwards recursion. For a backwards recursion algo-
rithm it is necessary that all the expected transition times τ (s, a) are equal.
Then for each iteration the expected epoch or transition length is equal. This
can be done by adding dummy transitions that will not change the state but
will equilize the expected transition times for all states. First note that the
optimal policy depends only on T (s, a) through its expectation τ (s, a), inde-
pendent of the distribution of T (s, a) [1] (see Equation (71)). So T (s, a) can
be any distribution with expectation τ (s, a). Now choose T (s, a) = τG (s, a)
with 0 < τ ≤ τ (s, a) , ∀s ∈ S and G (s, a) a geometric distribution with pa-
rameter q (s, a) = τ

τ(s,a) . Because the epochs are lower than or equal to the
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expected transition time virtual or dummy transitions can occur when the sys-
tem state does not change. The number of dummy transitions before the system
state changes has a geometric distribution. G (s, a) has an expectation that is
equal to E [G (s, a)] = 1

q(s,a) and so E [T (s, a)] = τE [G (s, a)] = τ (s, a). With

T (s, a) = τG (s, a) additional dummy transitions are added with probability
1− q (s, a). For Semi-Markov Decision Processes the backward recursion is de-
fined by [1]:

V(t+1)τ (s) = (72)

max
a∈{1,2}

{
r (s, a) τ + q (s, a)

∑

s′∈S

p (s, a, s′)Vtτ (s′) + (1− q (s, a))Vtτ (s)

}
.

This backwards recursion will further be denoted with the name ‘value iteration’.

8.A.3 Uniformization

A special case is when the distribution of transition times T (s, a) is exponen-
tial with rates λ (s, a, s′) , s, s′ ∈ S. Such a process is called a continuous-time
Markov Decision Process (MDP). Backward recursion for MDPs can be for-
mulated in a different way. Note that that the minimum of two independent
exponentially distributed variables X ∼ exp (λ) , Y ∼ exp (µ) is again exponen-
tially distributed: min {X,Y } ∼ exp (λ+ µ). Using this property for each state
dummy transitions λ (s, a, s) = γ−

∑
s6=s′

[λ (s, a, s′)] can be added in order let the

sum of the rates out of each state equal

γ ≥
∑

s′∈S

λ (s, a, s′) , ∀s ∈ S, a ∈ A. (73)

When in all states the sum of rates out is equal, the expected time until the
next transition τ (s, a) is also equal for all states. The expected time untill the

next transition will be
1

γ
. The concept of making the rates out of states equal is

called uniformization. With the uniformized Markov chain the transition rates

can be transformed in transition probabilities p (x, y) =
λ (x, y)

γ
that can be

used in the backward recursion. Since the rates out are equal, the expected
transition times q (s, a) can be chosen q (s, a) = 1. [1].

8.B IPP as renewal process

In the MMPP cookbook [11] it is written that an IPP is stochastically equivalent
to a Hyperexponential renewal process. The corresponding density function of
the interarrival times is

fH2 (t) = pµ1e
−µ1t + (1− p)µ2e

−µ2t, (74)

p =
λ− µ2

µ1 − µ2
.

Before this transformation can be derived some knowledge about the dis-
tribution of MMPP is needed. The transition probability matrix for a MMPP
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renewal sequence is given in [11]:

F (t) =

t∫

0

e(Q−Λ)uduΛ (75)

=
{
I − e(Q−Λ)t

}
(Λ−Q)

−1
Λ

=
{
I − e(Q−Λ)t

}
F (∞) .

From the transition probability matrix the density can be determined by
differentiating the transition probability matrix:

f (t) =
{
− (Q− Λ) e(Q−Λ)t

}
F (∞) . (76)

This expression contains a matrix exponential which is the Taylor series ex-
pansion for the exponential with matrix algebra. The calculation can be simpli-
fied by using diagonalization. When a matrix A is diagonalized it is decomposed
into PDP−1 where D is the diagonal matrix with eigenvalues and P is the ma-
trix with eigenvectors with the same ordering as the corresponding eigenvalues.

Thus the decomposition will become
[
ψ1 ψ2

] [λ1 0
0 λ2

] [
ψ1 ψ2

]−1
with ψi the

eigenvectors and λi the eigenvalues. The nice property of this diagonalization
is that the matrix exponential can be simplified:

A =PDP−1 (77)

Ak =PDkP−1,

eAt =

∞∑

k=0

(At)
k

k!
= P

∞∑

k=0

(Dt)
k

k!
P−1 = PeDtP−1.

For Q− Λ the diagonalization will become:

PDP−1 = Q− Λ (78)

e(Q−Λ)t = PeDtP−1

det [(Q− Λ)− γI] = λω2 + γ (ω2 + ω1 + λ) + γ2,

µ1 =
1

2

(
ω2 + ω1 + λ−

√
(ω2 + ω1 + λ)− 4ω2λ

)
,

µ2 =
1

2

(
ω2 + ω1 + λ+

√
(ω2 + ω1 + λ)− 4ω2λ

)
,

γ = −µ1 ∨−µ2,

D =

[
−µ1 0
0 −µ2

]
,

eDt =

[
e−µ1t 0

0 e−µ2t

]
,

P =

[
1 1
µ2

µ2−λ
µ1

µ1−λ

]
.
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Now F (∞) will be calculated:

F (∞) = (Λ−Q)
−1

Λ (79)

=
1

λ

[
ω2 ω1

ω2 λ+ ω1

]
·

[
λ 0
0 0

]

=

[
1 0
1 0

]
.

Using the diagonalization f (t) can be expressed in terms of diagonal exponen-
tials:

f (t) =
{
− (Q− Λ) e(Q−Λ)t

}
F (∞) (80)

=
{
−PDP−1PeDtP−1

} [1 0
1 0

]

=
{
−PDeDtP−1

}[1 0
1 0

]
.

Using basic linear algebra operations the transition density matrix can be ob-
tained:

f (t) =
{
−PDeDtP−1

} [1 0
1 0

]
(81)

=

[
p1,1 p1,2

p2,1 p2,2

] [
µ−µ1t

1 0
0 µ2e

−µ2t

]
1

|P |

[
p2,2 −p1,2

−p2, 1 p1,1

] [
1 0
1 0

]

=

[
p1,1 p1,2

p2,1 p2,2

]
1

|P |

[
(p2,2 − p1,2)µ

−µ1t
1 0

(p1,1 − p2,1)µ2e
−µ2t 0

]

=
1

|P |

[
p1,1 (p2,2 − p1,2)µ1e

−µ1t + p1,2 (p1,1 − p2,1)µ
−µ2t
2 0

p2,1 (p2,2 − p1,2)µ1e
−µ1t + p2,2 (p1,1 − p2,1)µ

−µ2t
2 0

]

1

|P |
=

1
µ1(µ2−λ)−µ2(µ1−λ)

(µ1−λ)(µ2−λ)

(82)

=
(µ1 − λ) (µ2 − λ)

λ (µ1 − µ2)
,

p1,1 (p2,2 − p1,2) =
λ

µ1 − λ
, (83)

p1,2 (p1,1 − p2,1) = −
λ

µ2 − λ
,

f1,1 (t) =
(µ1 − λ) (µ2 − λ)

λ (µ1 − µ2)

(
λ

µ1 − λ
µ1e

−µ1t −
λ

µ2 − λ
µ−µ2t

2

)

=

(
µ1 − λ

µ1 − µ2
µ1e

−µ1t +
λ− µ2

µ1 − µ2
µ−µ2t

2

)
.

f1,1 (t) corresponds to the interarrival time because, due to the nature of
IPP only arrivals can occur when the arrival rate is ‘on’.
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8.C Partial observation simulation program

lambda0 = .5;
lambda1 = .3;
lambda2 = .3;
mu1 = 1;
mu2 = 1;
gamma = lambda0 + lambda1 + lambda2 + mu1 + mu2;
time = 0;
alphaMat; %Poisson arrivals exponential file sizes
%full observable MDP solution for given parameters.

x1=0;
z1=0;
z1old=0;
z2old=0;
x2=0;
z2=0;
v1=zeros(1,n+1);%next information state
u1=zeros(1,n+1);%current information state
v1(1) = 1;
u1(1) = 1;
v2=zeros(1,n+1);%next information state
u2=zeros(1,n+1);%current information state
v2(1) = 1;
u2(1) = 1;

tmax = 500000;%#iterations

x=zeros(tmax,2);%sequence of real # foreground flows
z=zeros(tmax,2);%observed # of flows
%sequence of information states on node 1 and 2:
vseq1=zeros(tmax,n+1);
vseq2=zeros(tmax,n+1);

while time < tmax
%only update if observed state changes
if(z1old6=z1 | | z2old6=z2)

x(time + 1,:) = [x1 x2];
z(time + 1,:) = [z1 z2];
z1old = z1;
z2old = z2;
vseq1(time+1,:)=v1;
vseq2(time+1,:)=v2;
time = time + 1;
u1=zeros(1,n+1);
u2=zeros(1,n+1);
for i=0:z1;

u1(i+1) = v1(i+1);
end;
for i=0:z2;

u2(i+1) = v2(i+1);
end;

end

v1=zeros(1,n+1);
v2=zeros(1,n+1);
rnd = rand;
if(rnd < (lambda0 / gamma));

rnd = rand();
if(alphaMat(z1−x1+1,x1+1,z2−x2+1,x2+1) == 0 | | ...
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alphaMat(z1−x1+1,x1+1,z2−x2+1,x2+1) == 1 && rnd < .5);
for i=0:z1;

v1(i+2)=u1(i+1);
end;
for i=0:z2;

v2(i+1)=u2(i+1);
end;
x1 = x1 + 1;
z1 = z1 + 1;

elseif(alphaMat(z1−x1+1,x1+1,z2−x2+1,x2+1) == 2 | | ...
alphaMat(z1−x1+1,x1+1,z2−x2+1,x2+1) == 1 && rnd > .5)

for i=0:z1;
v1(i+1)=u1(i+1);

end;
for i=0:z2;

v2(i+2)=u2(i+1);
end;
x2 = x2 + 1;
z2 = z2 + 1;

end;
elseif(rnd < ((lambda0 + lambda1) / gamma));

for i=0:z1;
v1(i+1)=u1(i+1);

end;
for i=0:z2;

v2(i+1)=u2(i+1);
end;
if(z1 < n);

z1 = z1 + 1;
end;

elseif(rnd < ((lambda0 + lambda1 + mu1) / gamma));
if(z1 > 0);

for i=0:z1−1;
v1(i+1)=u1(i+2)*(i+1)/z1+u1(i+1)*(z1−i)/z1;

end;
z1 = z1 − 1;
rnd = rand();
if(rnd < x1 / (z1 + 1E−12) && x1 > 0);

x1 = x1 − 1;
end;

else
for i=0:z1;

v1(i+1) = u1(i+1);
end;

end;
for i=0:z2;

v2(i+1)=u2(i+1);
end;

elseif(rnd < ((lambda0 + lambda1 + mu1 + lambda2) / gamma));
for i=0:z1;

v1(i+1)=u1(i+1);
end;
for i=0:z2;

v2(i+1)=u2(i+1);
end;
if(z2 < n);

z2 = z2 + 1;
end;

elseif(rnd < ((lambda0 + lambda1 + mu1 + lambda2 + mu2) / gamma));
for i=0:z1;

v1(i+1)=u1(i+1);
end;
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if(z2 > 0);
for i=0:z2−1;

v2(i+1)=u2(i+2)*(i+1)/z2+u2(i+1)*(z2−i)/z2;
end;
z2 = z2 − 1;
rnd = rand();
if(rnd < x2 / (z2 + 1E−12) && x2 > 0);

x2 = x2 − 1;
end;

else
for i=0:z2;

v2(i+1) = u2(i+1);
end;

end;
end;

end;
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