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Chapter 1

Introduction

Within hospital health care, most of the costs and revenues appear in and around the Opera-
tion Rooms (ORs) [15, 3]. Therefore, optimizing the inpatient care process is highly prioritized
by hospitals (as it often includes surgeries in an OR), but might also be challenging due to
conflicting priorities and the availability of the required resources such as doctors, ORs and
expensive equipment.
An important part of optimizing the inpatient care process is to manage the available capacity,
for example by creating collaboration between the hospital’s ORs and the hospital’s clinical
wards. Patients arrive on the clinical wards to receive or to rehabilitate from surgery on a
scheduled basis because of the use of a Master Surgical Schedule by the hospital and on a non-
scheduled basis because of emergencies. The Master Surgical Schedule divides the OR capacity
among the different specialties that require usage of the OR and results in a roster for patients
to receive surgery. So, an important relation exists between the used Master Surgical Schedule
and the clinical wards receiving the patients because of it [4, 9]. However, the development of
such a Master Surgical Schedule usually does not incorporate the relationship certain schedul-
ing decisions have on the clinical wards [2, 20].

In its current state, ChipSoft’s health care information software does not include tools for
hospitals to incorporate the relationship between the ORs and the clinical wards in the Mas-
ter Surgical Scheduling development process. This is considered a lack by ChipSoft and they
therefore strive to implement these tools in their software in the near future.
To do so, these (and other capacity related) tools are to be developed within the ”Capacity
Management” project so ChipSoft’s software can act as a decision support tool for capacity
related problems within hospitals in general. This research internship is part of this project and
its main goal is to design and implement a model that extracts and exposes the relationship
between the ORs and the hospital’s clinical wards.

This research is structured as follows: this chapter gives an preliminary overview of the per-
formed work, including the company, the department and the internship process followed to
perform this research. The second chapter describes the clinical process and the context of this
research. Chapter 3 describes the problem statement, including the predefined deliverables and
chapter 4 states the model used. The datasets definitions and the data analysis is described
in chapter 5. The implementation of the model, which describes an example tool developed to
use the model in practice, is stated in chapter 6.
Chapter 7 states the results obtained by the model’s implementation and its usage, whereas
chapter 8 discusses the work performed in this research and states the interpretation of the
results. The conclusion finalizes this report in chapter 9, followed by the appendices and the
bibliography.
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1.1 ChipSoft B.V.

In the year 1986, surgeon Gerrit Mulder realizes that instead of spending most of his time on
improving patients’ health, he spends most of his time on administrative tasks. His son Hans
Mulder decided to design a computer program that performed the surgeon’s administrative
tasks automatically, which saved his father a lot of time. When the program turned out to be
useful to his father, Gerrit and Hans Mulder founded ChipSoft B.V. [6]
Gerrit Mulder’s colleagues in the health care field got word of the software program that auto-
mated administrative tasks and were also interested in ChipSoft’s first product. This growth of
clientele also expanded ChipSoft’s software goals, as other divisions of the health care business
(besides surgeons) were also interested in automatizing certain administrative processes, such
as appointment scheduling. Multiple different subsystems were developed to support health
care divisions like ORs, radiology departments and emergency departments.
The collection of subsystem requests kept growing over time, which resulted in one complete
and integrated software information system in 1994, called CS-EZIS.Net (ChipSoft - Elektron-
isch Zorg Informatie Systeem).

As of today, the software does not only assist in administrative tasks, but also assists in many
logistic tasks, such as medicine prescriptions and OR scheduling. There are currently over 58
health care institutes using some form of ChipSoft’s software, ranging from independent clin-
ics to academic hospitals. ChipSoft offers a fully integrated solution based on state-of-the-art
Microsoft technology and many of ChipSoft’s customers have been rewarded with a ’stage 6’
EMRAM by HIMSS Analytics Europe (HAE), which classifies a hospital’s progress on EMR
(Electronic Medical Record) versus other health care organizations around Europe and across
the world [10]. An important factor of ChipSoft’s success is its ISO 13485 certification. This
certificate ensures that the complete software solution is CE marked as a class IIb device in
compliance with the Medical Device Directive 93/42/EEC [11].

The latest version of the software (called HiX) contains many different subsystems that are
all integrated into one information system. The included components are shown in Figure 1.1.
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Figure 1.1: HiX Components

Datawarehouse Department
This research was performed at the Datawarehouse Department of ChipSoft B.V. The depart-
ment mainly focuses on the subjects ”Statistics and reporting” and ”Decision support and
intelligence” from Figure 1.1. Approximately 30 employees work every day to improve and de-
velop new content to enrich the Datawarehouse module that HiX offers, which has completely
been renewed during the past year in an intensive development period. The newly designed
Datawarehouse module uses up-to-date techniques and contains new content to satisfy hospitals
in their information needs.
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1.2 Internship Research Outline

This research project was divided into multiple steps and this chapter is dedicated to explain
its process.
Figure 1.2 states general steps included in the research process, of which some will be clarified
in this chapter and others will be individually discussed in different chapters.

Figure 1.2: Research Process

As Figure 1.2 shows, the steps included in this research can be divided into three different
phases. Each phase has its own main goal: the first phase’s goal is to obtain knowledge and
requirements (the input), the second phase’s goal is to process the obtained knowledge and
requirements into a suitable model and its implementation (the process) and the third phase’s
goal is to interpret the designed implementation and its results (the output).

As shown in Figure 1.2, the research started off with knowledge gathering and requirement
engineering in the first phase. This was needed to align theoretical research with a practical
application within ChipSoft’s software packages, as well as aligning the research with existing
health care processes in hospitals. As a result of this first step, the research’s preliminary
goals were translated into inputs (requirements, knowledge) and outputs (deliverables, result
formats).
Afterwards, in phase 2, a model was selected for the predictive part of the research that suited
the research’s purpose and allowed the requested output requirements to be obtained. Next,
the required datasets were obtained from ChipSoft’s customers (hospitals) and analyzed using
extensive data analysis. Once the required data analysis was performed, the model was pro-
grammed into an application in the model implementation step.
In phase 3, the model’s implementation was used to gather, analyze, visualize and describe the
results to conclude this research. The research steps in phase 1 will be briefly explained in this
chapter, whereas the steps in phase 2 and 3 are described in different chapters.

1.2.1 Phase 1: Knowledge Gathering

Before the research framework was drawn, extensive knowledge needed to be gathered regarding
the research’s context (health care processes) and the capacity management project in general.
Also, since the research should align with ChipSoft’s software and the capacity management
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project, not only the general health care processes needed to be understood, but also the way
ChipSoft has implemented these processes in its software. This resulted in a list of knowledge
to be gathered that included (among others):

• The general inpatient care process and ChipSoft’s implementation of this care process

• General OR Scheduling protocols used by ChipSoft

• The data structures used by ChipSoft to save the data

To obtain this knowledge, different methods were used, such as: interviewing colleagues from
different departments, studying literature and previous research. Also, the two years of work
experience already gained at ChipSoft was an important source of knowledge.

1.2.2 Phase 1: Requirement Engineering

This research evolves around analyzing the downstream effect the ORs have on the occupancy
on the clinical wards, but before any model could be applied or any data could be analyzed,
the input and output requirements for this research were discussed and clarified with all cor-
responding parties. Besides studying literature, many discussions and meetings took place in
the requirement engineering process. The involved parties included:

• Vrije Universiteit supervisor

• Vrije Universiteit Exam committee

• ChipSoft’s Datawarehouse management team

• ChipSoft’s Inpatient Care Process consultants

• ChipSoft’s Capacity Management consultants

Each of the involved parties listed above was responsible for a certain part of the requirements.
The VU (Vrije Universiteit) mainly checked the research on scientific value and whether or not
the research was considered within reach, whereas the ChipSoft Datawarehouse management
team mainly verified the research’s added practical value to the company and how this added
value could be obtained (output requirements). ChipSoft’s Inpatient Care Process and Capac-
ity Management consultants assisted in obtaining the care process and the capacity related
requirements respectively.

1.2.3 Phase 2

Once the requirements, health care process knowledge and ChipSoft’s software knowledge was
obtained, a suitable model was selected to perform the occupancy prediction part of this re-
search. The selected model is discussed in chapter 4. The Data Analysis step and the Model
Implementation step are discussed in chapters 5.1 and 6 respectively.

1.2.4 Phase 3

The final phase of this research consists of multiple steps regarding the different results obtained
from the implementation of the model. These steps are explained in chapters 7 and 9.
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Chapter 2

Process description

This section is devoted to giving insights in the general clinical care process as well as describing
ChipSoft’s implementation of this process in their software. The clinical care process is in
general defined as the period between a patient’s admission to the hospital and a patient’s
discharge from the hospital. This period can include many different care services, such as
surgeries, screenings and observations.

2.1 Admission Priorities

A lot of different reasons (diagnosis) exist why a patient requires a hospital admission and its
corresponding care process might be significantly different per reason and per patient. For hos-
pitals, a big distinction between the required care process for a patient can be made by labeling
an admission with a so-called admission priority. The admission priority denotes the urgency
of an admission, which is registered using a binary indicator ”emergency yes/no”. Emergency
admissions have priority over elective (scheduled, non-emergency) admissions and therefore fol-
low a different care process. The main difference in care processes between the emergency and
the elective admissions is the horizon in which the care services need to be provided. Elective
patients receive their care on a scheduled basis, which can range from a few days until months
between the date of scheduling and the actual admission date, whereas emergency patients
need to be served as soon as possible and therefore are also often called the non-scheduled
patient stream. Instead of using the term ’priority’ for the admission, ’origination’ is also used
to denote the distinction between elective and emergency admissions.

2.2 Admission Categories

Another indicator to distinguish admissions is the admission category. The admission category
denotes in general what kind of care/cure is offered to a patient and also where the services
are offered. Currently, four different admission categories exist within ChipSoft’s software: the
inpatient, the day treatment, the outpatient and the observation category. Each of the cate-
gories has a different default care process, which will be briefly described below. The default
care process for the inpatient admission category will be described in more detail in section 2.3
as it will be the main focus of this research.

Inpatient Category
The inpatient category contains the admissions that are considered clinical (receiving some
form of cure services) and occupy a hospital bed for at least one night. It is possible that these
admissions receive a surgery in one of the hospital’s ORs and are usually admitted in one of
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the hospital’s clinical wards.
Day Treatment Category
The day treatment category contains the admissions that are considered clinical and possibly
receive a surgery in one of the hospital’s ORs. These patients are admitted and discharged on
the same day and therefore never occupy a bed during the night. The day treatment patients
are usually admitted in one of the hospital’s day treatment wards.
Outpatient Category
The outpatient category contains patients that are neither clinical nor receive any surgery in
one of the hospital’s ORs. Patients in the outpatient category are treated outside of the clinical
departments of a hospital.
Observation Category
The observation category contains only patients that are admitted for observation purposes,
as its name reveals. Patients in this category will not receive any treatment, but will only be
observed for a certain period of time.

An important note to make is that each admission can only be assigned one category and
one admission priority, if some event arises that makes the admission belong to a different
category, the hospital needs to change the admission’s category.
In the next sections, the default inpatient care process is described for the inpatient category

2.3 Inpatient Care Process

Many of the hospital’s health care services require patients to remain in the hospital for a
certain period. The process from the moment of admittance of a patient in the hospital until
the moment of discharge from the hospital is called the inpatient care process (for inpatient
admissions). In general, patients that will receive a surgery which requires a rehabilitation
period with at least one night will follow such an inpatient care process. Patients receiving
surgery and rehabilitating for at least one night are the main subject of this research and this
section will describe the inpatient care process in parts and ends with a summarizing process
picture.

2.3.1 Preoperative period

For elective patients, the admission to the hospital is the result of a scheduled surgery. This
means the admission usually starts on the day of surgery or a few days before and starts the
inpatient care process. The period before surgery, called the preoperative period, might differ
in length between admissions and surgeries based on many different patient and situational
aspects. For instance, some surgeries require preoperative screenings to be done, which increases
the duration of the preoperative period.
For emergency patients, the admission and the surgery are not chronologically related, as the
admission and the surgery are both unscheduled. Emergency patients need to be admitted
as soon as possible and if they require a surgery, that surgery will also be performed as soon
as possible. However, when compared to the elective patients, the priority might not lie in
giving surgery to the patient, but in stabilizing and observation first. This means that the
unstructured time horizon and the unscheduled characteristics of emergency patients might
result in a different pre-operative length of stay distribution when compared to the elective
patients. This possible difference in distribution is addressed in the data-analysis section of
this research.
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2.3.2 Postoperative period

After surgery, most patients require a rehabilitation period to recover before being discharged
from the hospital. Besides rehabilitation, some surgeries require the patients to stay in the
hospital for observation reasons after performing the surgery (such as transplants). The length
of the postoperative period is assumed to be less affected by the distinction between elective and
non-elective patients, but mostly depends on patient aspects and the intensity of the surgery.
This assumption will be tested in the data-analysis section of this research.

2.3.3 Length of Stay

When combining the preoperative, the perioperative (the surgical time) and the postoperative
period, the length of stay of a patient is obtained. This length of stay denotes the full duration
of a patient’s admission in the hospital. The length of stay is often abbreviated as LoS and
denoted in hours or days.

2.3.4 Clinical wards

Hospital beds are generally divided among the different hospital wards. The wards on which
clinical patients (having admission categories ’day treatment’ or ’inpatient’) are hospitalized are
called the clinical wards. These clinical wards differ from each other on aspects like specialty
(types of patients it serves), size, severity (ICU, medium care) and age of the patients. Also,
many hospitals use specific clinical wards with adjusted working hours for the day treatment
patients, as they will not remain hospitalized during the nights.
Preferably, the patient’s pre- and postoperative periods take place on the same clinical ward and
therefore the bed assigned for the preoperative period will remain reserved for the postoperative
period during surgery. Although preferred, it is not always possible for a patient to remain on
the same clinical ward for the full admission duration. In many cases, patients need to be
transferred to different wards (from/to ICU, different specialty etc.) during their admission.
Hospitals using ChipSoft’s software trace a patients whereabouts in the hospital and register the
possible changes happening in a patient’s placement (using admission periods). This tracing
is not only necessary for logistic reasons, it also has financial consequences as the financial
compensation for nursing days can differ per ward (a nursing day on the ICU is more expensive
than a nursing day on a medium care ward).

Figure 2.1 gives a general overview of an admission process for inpatient admissions with
their respective origination (elective or non-elective), their admission divided into multiple
admission periods as well as their destination at the moment of discharge.
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Figure 2.1: General Admission Process

2.4 Surgical Scheduling

This section describes the standard procedure offered in ChipSoft’s software to support hospitals
in scheduling surgeries and their corresponding admissions, meaning it is applicable for elective
patients only. Surgeries are scheduled based on the availability of hospital resources (ORs,
surgeons, etc.) and their corresponding admissions are the result of the scheduled surgeries and
therefore scheduled afterward.

2.4.1 Master Surgical Schedule

Each year, hospitals formulate strategic goals, usually represented by OR time, for each of the
different aggregate levels (such as specialties) that use the ORs. The OR time denotes the
total amount of time the aggregate level has an OR at its disposal. This (yearly) total amount
of OR time for a certain aggregate level is transformed into a repeating weekly or two-weekly
tactical schedule that divides the total available OR time among all the aggregate levels. The
distribution of the amount of OR time for a certain aggregate level in the tactical schedule is
done with respect to the hospital’s strategic goals. This tactical schedule is called the Master
Surgical Schedule (MSS). There are many different ways to design a suitable MSS and make a
decision on which aggregate level the OR time is distributed [7].
For example, consider a weekly Master Surgical Schedule representing three specialties as the
aggregate level: Cardiology, Orthopaedics and Urology. If Cardiology requires 200 hours of
OR time per year, Orthopaedics requires 400 hours and Urology requires 300 total hours per
year, the MSS should represent these proportions accordingly. So, a fair distribution would be
200/52, 400/52 and 300/52 hours of weekly OR time for Cardiology, Orthopaedics and Urology
respectively.

2.4.2 Sessions

Within ChipSoft’s software, the periodic amount of OR time used for each aggregate level,
of which specialty is the most common, is divided into multiple surgical time slots, called
sessions. For instance, OR i, i ∈ {1...I}, is operational between 08:00-16:00 and should provide
the specialties Cardiology, Orthopaedics and Urology with 3, 3 and 2 hours of surgical time
respectively on day q, q ∈ {1, 2, .., Q}. This would result in one 3-hour session for Cardiology,
one 3-hour session for Orthopaedics and one 2-hour session for Gynecology on day q. By
structuring the surgeries from the different specialties into one session of sequenced surgeries,
there is no potential OR time lost on changing personnel and equipment between the different
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specialties.
After the MSS is finalized and sessions are designed and allocated to the specialties accordingly,
the MSS is applied to a certain time horizon so surgeries can be scheduled by assigning them
to a certain session on a certain date. When a surgery is scheduled, the required admission
process for the patient is also scheduled and the patient is notified regarding the date set for
the surgery. For example, consider a weekly repeating MSS that allocates surgical specialties
SSi, i ∈ 1, 2..., 7 to sessions into a tactical surgical schedule using 5 ORs. An example for such
an allocation in a tactical surgical schedule is shown in Figure 2.2.

Figure 2.2: Example weekly tactical surgical schedule for 7 specialties and 5 ORs
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Chapter 3

Problem Statement

The hospital health care is currently in need of efficiency improvements because of different
reasons such as market changes, labor shortages, different costing calculation introduced in the
Netherlands, an increase in health expenditures and long waiting lists [8, 21, 14].
An important and essential subject of efficiency improvement is nurse capacity management as
it accounts for a large part of the hospital’s budgets [22]. By preventing overstaffing, hospitals
can achieve cost efficiency in their nurse capacity management and reduce unnecessary use of
their budgets. However, appropriate staffing levels are required to provide the quality of care
hospitals strive to provide and understaffing the clinical wards might result in a decrease of
the quality of care [12, 16]. Obviously, another important reason to prevent understaffing is
the increased pressure on the nurses in the understaffed wards, which might lead to stress and
burnouts among the nurses [1].
To be able to adjust the staffing capacity on the care demand, which can be expressed as the
number of hospitalized patients, hospitals need to be able to predict and estimate the care
demand. An important influence on the number of hospitalized patients are the scheduled and
unscheduled surgeries performed in the hospital. So, as stated in the introduction, there exists
an important relation between the hospitals performed surgeries and the number of patients
occupying a bed on the clinical wards [2, 20, 18].

This relation between ORs and the clinical wards receiving the patients after or before surgery
is non-negligible when developing a Master Surgical Schedule (MSS), because the MSS deter-
mines which specialty performs surgery when and therefore determines the patient stream into
the clinical wards because of the ORs. This leads to the research question of this internship:

”Is it possible to design and implement a predictive analysis model
based on the downstream relationship between the ORs and the clin-
ical wards to support hospitals in making nursing capacity related
decisions?”

3.1 Deliverables

The deliverables of this research include a framework that allows hospitals to analyze the
downstream relationship between the ORs and the clinical ward occupancies in a realistic
environment with emergency and elective admissions. To do so, the framework should include
the extraction of important occupancy related performance indicators as well as include a model
to predict ward occupancies based on the MSS. The result of the research is to be given in a
report, which also includes the Datawarehouse possibilities and requirements for ChipSoft to
use the framework.
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Chapter 4

Predictive Model

In this section, the model used to predict the occupancy at the hospital’s wards is described
in general, its implementation and application will be described in chapter 6. The basis of the
predictive model is built by considering a timeline horizon as shown in Figure 4.1.

Figure 4.1: Prediction Timeline

In Figure 4.1, the orange line represents some number of occupied beds (vertical axis) at a
certain time (horizontal axis). The moment of predicting is important, as it is assumed that
all information regarding occupied beds is known when the prediction is made and the time
difference between the moment of predicting and the predicted period is of influence to the
predicted values. This moment of predicting is called tp and, as Figure 4.1 shows, the predicted
period starts on ts and ends on te.
The predicted number of occupied beds at a certain time tn, n ∈ (s, s+ 1, ..., e), is assumed to
be the result of three different sources with respect to the moment of predicting, tp:

1. The remainder of the patients hospitalized at the moment of prediction (tp).

2. The arriving elective patients as a result of the MSS sessions between tp and tn.

3. The arriving emergency patients between tp and tn.

For the first patient source, the probability that a patient hospitalized at tp is still hospitalized
at tn depends on the patient’s remaining length of stay, which obviously is uncertain and there-
fore estimated. This first source of patients is referred to as the ’known’ patient group, as they
are already present at the time of predicting (tp) and the number of occupied beds at tp by
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this first group is therefore known. Also, since the patients in this group are already present,
the number of occupied beds as a result of this first group will only decrease over time from tp
onward.
For the second patient source, the probability that a patient occupies a bed at tn depends on
two things: firstly, the patient needs to be admitted because of an MSS session between tp and
tn and secondly, the patient needs to be still occupying a bed at time tn. This second group
is referred to as the ’semi-known’ group, as the hospital knows that some number of patients
will arrive due to the execution of surgical sessions from the MSS between tp and tn, but do
not know the exact number of patients as a result of the performed or to be performed MSS
sessions.
The third source of patients, the emergency arrivals, occupy a bed at time tn with a probability
that depends on two things: firstly, an emergency admission needs to happen between tp and
tn and secondly, the admitted emergency patient needs to be still occupying a bed at time tn.
Although hospitals expect some number of emergency arrivals in certain time intervals, this
patient source is considered the ’unknown’ group as they are completely unscheduled.

Each of the three sources is responsible for a certain fraction of the total number of occu-
pied beds at the predicted time tn. The next sections describe the model’s prediction method
for each of the different sources.

4.1 Patient Source 1: Remaining Patients

It is possible that patients hospitalized at tp remain hospitalized until tn. This means they are
still occupying a bed at tn and are therefore responsible for a fraction of the total number of
occupied beds at tn.
Whether or not a patient remains hospitalized between tp and tn depends on the patient’s
remaining length of stay and, which is obviously not fully certain.
In order to estimate the number of remaining present patients at the predicted time tn, the
present patients at time tp are separated into two groups: the present emergency patients and
the present elective patients, both having their own length of stay characteristics calculated.
These length of stay characteristics are used to calculate the expected remaining length of stay
for the patients in the first patient source. The estimated remaining number of patients that
are still present at time tn is therefore calculated differently for both groups and described in
the following sections.

4.1.1 Remaining Elective Patients

The elective patients from patient source 1 received surgery in one of the ORs based on a MSS
session and are in the postsurgical phase of their admission. Because of the repetitive use of the
sessions in a MSS, it is possible to analyze the historically realized length of stay characteristics
for patients that received surgery in each of the MSS sessions.
These length of stay characteristics of the MSS sessions are used to estimate the remaining
length of stay for the elective patients present at tp resulting from the corresponding sessions.
Denote Ap = {number of elective patients present at tp} , who are the result of S different MSS
sessions performed before tp. Then, for each session s, s ∈ (1, 2, ..., S), the number of present
patients at tp as a result of that session is denoted by As,p.
The probability that a present patient from session s is still hospitalized at tn is calculated
using the session’s length of stay characteristics. To do so, denote:

Ls = Length of stay of a patient from session s
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So, since it is known that the patient is present at tp and therefore arrived at some time ta,
ta ≤ tp, the probability of a patient present at tp to be still hospitalized at tn is a conditional
probability denoted as:

P (Ls ≥ tn − ta | Ls ≥ tp − ta)
,where ta ≤ tp

(4.1)

In order to calculate the probability shown in (4.1) for patients resulting from session s, the
empirical cumulative distribution function of the length of stay (Ls) for session s is used. This
empirical cumulative distribution function for the length of stay is obtained for each session
s and this cumulative distribution function is used to express the expected length of stay of
patient’s resulting from this session s.
Namely, given a cumulative probability distribution FLs = P (Ls < l), its conditional probability
P (Ls < l|Ls < y), l ≤ y, can be rewritten as:

P (Ls < l)

P (Ls < y)
(4.2)

The required probability for patients from session s to be still hospitalized at tn, given they
were present at tp, can be deducted from (4.2). However, instead of calculating the conditional
probability FLs = P (Ls < tn − ta|Ls < tp − ta), the probability P (Ls ≥ tn − ta | Ls ≥ tp − ta)
is calculated which is denoted as:

P (Ls ≥ tn − ta)
P (L ≥ tp − ta)

=
1− P (Ls < tn − ta)
1− P (Ls < tp − ta

(4.3)

The value of (4.3) is calculated by dividing the number of historical occurrences where Ls >=
tn − ta by the number of occurrences where Ls >= tp − ta:∑Cs

c=1 1{Lc≥tn−ta}∑Cs

c=1 1{Lc≥tp−ta}
(4.4)

Where Cs represents the number of patients that received surgery in session s before tp and Lc

the length of stay of patient c.
The calculation of (4.4) can also be expressed graphically, which is done in Figure 4.2. The
probability from (4.4) can be interpreted as the number of historical patients with a length of
stay in the striped part of the grey area, divided by the total number of historical patients with
a length of stay in the grey area. In Figure 4.2 for example, the fraction of people in the grey
area equals approximately 20%, of which approximately 7% lies within the striped part of the
grey area. This would result in a value for (4.4) of 0.07

0.20
= 0.35.
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Figure 4.2: Cumulative Distribution Function

By using the probability of (4.4), it is possible to estimate the number of patients present
at tn, given they are present at tp, by calculating:

Sp∑
s=1

As,p∑
a=1

P (Ls ≥ tn − ta | Ls ≥ tp − ta) (4.5)

Where Sp denotes the total number of different sessions the patients present at tp result
from, As,p the total number of present patients at tp as a result of session s and P (Ls ≥ tn− ta |
Ls ≥ tp − ta) the probability stated in (4.4).

4.1.2 Remaining Emergency Patients

The calculation of the expected remaining emergency patients is also done based on the length
of stay characteristics of the patients. However, instead of calculating the length of stay char-
acteristics for a session, the length of stay characteristics are calculated for the different time
intervals the patients arrived in.
For each possible time interval i ∈ I, which means a certain repetitive time horizon is divided
into I time intervals, the median length of stay is calculated for patients that arrived in the
interval. For example, I could represent each day of the week (I = 7). This median length of
stay for time interval i is assumed to deterministic for emergency arrivals that occur in future
intervals of i. Denote Ep the number of emergency patients present at tp, of which each patient
arrived in one of the I time intervals, therefore Ei,p denotes the total number of emergency
patients present at tp as a result of time interval i.
Since each patient in Ei,p arrived before tp and the length of stay for interval i is assumed to be
deterministic, the remaining length of stay of the patient is the difference between the median
length of stay for emergency patients that arrived in time interval i and the patient’s current
length of stay tp − ta.
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For each patient in Ei,p, the probability of still being hospitalized at tn is defined as: 1 if the
patients remaining length of stay at tp is bigger than tn − tp and 0 elsewhere. Therefore, the
expected number of remaining present emergency patients at tn is denoted by:

Ip∑
i=1

Ei,p∑
a=1

1{Lr
i≥tn−tp} (4.6)

Where Ip denotes the total amount of time intervals before tp of which patients are still present,
Ei,p the total number of present emergency patients at tp as a result of time interval i, Lr

i the
remaining length of stay for patients that arrived in time interval i.

4.1.3 Combined Remaining Patients

The total predicted number of patients still hospitalized at ts, given they were hospitalized at
tp, is obtained by combining (4.4) and (4.6):

Sp∑
s=1

As,p∑
a=1

P (Ls ≥ tn − ta | Ls ≥ tp − ta) +

Ip∑
i=1

Ei,p∑
e=1

1{Lr
i≥tn−tp} (4.7)

Where:

· Sp denotes the total number of different sessions of which patients are present at tp

· As,p denotes the total number of elective patients present at tp as a result of session s

· P (Ls ≥ tn − ta | Ls ≥ tp − ta) the probability calculated as stated in formula 4.4 for
session s

· Ip denotes the total number of different time intervals of which patients are still present
at tp

· Ei,p denotes the total number emergency patients present at tp that have arrived in time
interval i

· Lr
i denotes the remaining length of stay at tp for emergency patients that arrived in time

interval i

4.2 Patient Source 2: Elective Patients

The patient included in patient source 2 are separated into two different groups: the group
of patients that is present at tn because of preoperative reasons and the group that is present
because of postoperative reasons.
The method of prediction for both patient groups is, besides some different input parameters,
equal. This section will describe the method for the postoperative patient group and states the
changes to be made to obtain the calculation for the preoperative patient group.
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4.2.1 Prediction Postoperative Patients

The postoperative patient group from patient source 2 includes patients that are present at
tn, but not present at tp. These patients received some form of surgery as a result of an MSS
session between tp and tn (because they are present at tn for postoperative reasons).
It is assumed that the hospital does not know the exact number of patients that will receive
surgery in a session between tp and tn, let alone know whether or not the patients will still be
rehabilitating at tn. The prediction of the rehabilitating number of patients at tn is done by
analyzing the currently active Master Surgical Schedule and its corresponding session charac-
teristics.
To do so, denote Sn− the total number of sessions that will be performed between tp and tn.
Then for each session s ∈ (1, 2, ..., Sn−) a certain number of N elective patients will receive
surgery and enter one of the hospital’s clinical wards for rehabilitation afterward.
Considering the fact that the prediction is made at tp and N is unknown for the sessions at
that time, each possible N is expected to occur in a session s with a probability based on the
historical analysis of the number of surgeries performed session s. Namely, the probability for
s to contain n patients is denoted by:

Ps(N = n) =
# performed sessions s having n patients

# performed sessions s
(4.8)

Each patient x, x ∈ (1, 2, .., n) for a session s, is still hospitalized for rehabilitation at tn with a
probability based on the empirical cumulative distribution function of the postsurgical length
of stay for session s. This means:

Ps(L
post ≥ tn − tse) = 1− Ps(L

post < tn − tse) (4.9)

Where tse denotes the end time of session s and Lpost the postsurgical length of stay for patients
resulting from session s. Probability (4.9) can be graphically described as the probability of L
to reach the grey part of Figure 4.3.

20



Figure 4.3: Cumulative Distribution Function P (L < l) and tp = t0

After obtaining the probability for a patient from session s to be still hospitalized at tn,
this probability needs to be translated to a probability that describes the chance of k patients
to be still hospitalized at tn as a result of this specific session s. To do so, assume that session
s contains n patients and each of those patients has a probability as denoted in formula (4.9)
to be still present at tn, the probability of k patients to be still present at tn as a result of this
session s is then described by:

Ps(K = k) =

(
n

k

)
(1− Ps(L

post < tn − tse)kPs(L
post < tn − tse)n−k (4.10)

Combining (4.10) with (4.8), which describes the probability of session s containing n patients,
for all sessions in Sn− results in a formula that calculates the expected number of elective
patients present at tn for postsurgical reasons:

Sn−∑
s=1

(
nmax∑
n=1

Ps(N = n)
n∑

k=1

k

(
n

k

)
(1− Ps(L

post < tn − tse)kPs(L
post < tn − tse)n−k

)
(4.11)

Where:

· Sn− denotes the collection of sessions to be performed between tp and tn

· nmax denotes the maximum number of surgeries ever performed in session s

· Ps(N = n) denotes the probability of session s to contain n patients (surgeries) as stated
in formula 4.8

· 1 − Ps(L
post < tn − tse) denotes the probability that the postsurgical length of stay of a

patient from session s is longer than tn − tse, as stated in formula (4.9)
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4.2.2 Prediction Preoperative Patients

The method described in section 4.2.1 can be used for the prediction of the number of preop-
erative patients present at one of the clinical wards at tn with minimal adjustments. Instead
of calculating the probability of a patient to be still present at tn because of a rehabilitation
period after receiving surgery in a session, the probability of already being present at tn for a
session occurring after tn is calculated. To do so, an empirical cumulative distribution of the
preoperative length of stay is extracted from the historical data for every session s.
Also, the selection of sessions Sn− that will occur between tp and tn is changed to the selection of
sessions Sn+ occurring after tn but before te (te being the end of the predicted period). applying
these changes to (4.11) results in a formula to calculate the expected number of preoperative
patients in one of the hospital’s clinical wards at tn:

Sn+∑
s=1

(
nmax∑
n=1

Ps(N = n)
n∑

k=1

k

(
n

k

)
(1− Ps(L

pre < tse − tn)kPs(L
pre < tse − tn)n−k

)
(4.12)

Where Sn+ denotes the sessions that will occur after tn but before tse (tn <= tse <= te) and
P (Lpre < tse − tn) the probability of the pre-operative length of stay of a patient for session s
to be smaller than tse − tn, comparable with the probability stated in formula (4.9).

The sum of (4.11) and (4.12) will represent the expected number of elective patients present
at tn as a result of the MSS.

4.3 Patient Source 3: Emergency Patients

The method used to calculate the expected number of emergency patients present at tn, given
they are not present at tp, is based upon a Poisson arrival process. This arrival process is
historically shown to suit the emergency arrivals process in a hospital well and will be assumed
applicable [23].
In this research, a time-dependent arrival rate λ(i) is used for each time interval i. Also, the
length of stay for emergency patients is time-dependent, meaning emergency arrivals can have
a different expected length of stay based on the time interval of arrival.
This research considers the expected length of stay for emergency patients from a certain time
interval i to be the length a hospital should reserve a bed for the patient. Therefore, the length
of stay is assumed to be deterministic for the practical purposes of this research. Considering
the Poisson arrival process and the deterministic length of stay, the number of emergency
patients present at time tn, given they were not present at tp, can be described by:

In−∑
i=0

λ(i)1{Li≥tn−ti} (4.13)

Where In− denotes the number of time intervals between tp and tn, λ(i) the arrival rate of the
corresponding time interval and ti the start time of time interval i. The indicator 1{Lt>=ti}
determines whether or not the arrivals in time interval i, having a deterministic length of stay
Li, are still present at tn (by having a Li larger than tn − ti).
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4.4 Combined Patient Sources

Denote X(tn) the number of present patients at time tn. Then, when considering a time horizon
in which a prediction for the number of present patients at tn is made at tp, the formulas (4.7),
(4.11), (4.12) and (4.13) can be combined into one model to predict X(tn):

X(tn) =

Sp∑
s=1

As,p∑
a=1

P (Ls ≥ tn − ta | Ls ≥ tp − ta) +

Ip∑
i=1

Ei,p∑
e=1

1{Lr
i≥tn−tp}

+
Sn−∑
s=1

(
nmax∑
n=1

Ps(N = n)
n∑

k=1

k

(
n

k

)
(1− Ps(L

post < tn − tse)kPs(L
post < tn − tse)n−k

)

+

Sn+∑
s=1

(
nmax∑
n=1

Ps(N = n)
n∑

k=1

k

(
n

k

)
(1− Ps(L

pre < tse − tn)kPs(L
pre < tse − tn)n−k

)

+

In−∑
i=0

λ(i)1{Li≥tn−ti}

(4.14)
This model contains all three patient sources with their calculations as defined in formula’s:
(4.7), (4.11), (4.12) and (4.13).

Confidence Interval
The formula stated in (4.14) calculates the expected number of occupied beds at time tn. Be-
cause of X(tn) being an expectation, it is very likely that the actual measured value is not
exactly equal to the value predicted for X(tn). Therefore, a confidence interval around X(tn)
is simulated with a higher probability of containing the actual measured value compared to the
probability of the actual measured value being exactly equal to X(tn). The implementation of
this simulation method is further clarified in section 6.1.2.
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Chapter 5

Data

5.1 Data Selection

The data required to apply the model is extracted for two different hospitals, which use Chip-
Soft’s software and therefore have the data stored in their databases. This chapter describes the
used fields from the extracted datasets and states the performed data analysis, which includes
the extraction of the input parameters for the model.
From the hospitals’ databases, the production data regarding surgeries and their corresponding
admissions as well as the data regarding the Master Surgical Schedules is extracted into two
different datasets. The first dataset contains the surgery registrations with the required details
and the second dataset contains the performed sessions of the MSS used over time. The next
subsections describe both datasets in more detail.

5.1.1 Surgery dataset

The surgery dataset contains the required details regarding surgeries and their corresponding
admissions registered in the database since 2014. It counts 12,959 surgeries in total and contains,
besides the directly extracted data fields from the database, some details that are calculated for
this research’s purpose. Table 5.1 shows the directly extracted fields as well as the calculated
fields that were used from the dataset. The column ’calculated or extracted’ denotes whether
a field is directly extracted from the database or calculated based on the extracted fields. A
complete list of fields included in the dataset can be found in appendix A.

Surgery Dataset
Field Calculated\Extracted Description
SESSIE Extracted Session name
PLANNR Extracted Unique admission number
START Extracted Start time of the session
STOP Extracted End time of the session
OPERATIENR Extracted Unique surgery number
DATUM Extracted Date of the session
admissionDateTime Calculated Combines date and time of admission
surgeryDateTime Calculated Combines date and time of surgery
dischargeDateTime Calculated Combines date and time of discharge
STATUS Extracted Admission status
SPECIALISM Extracted Admission specialty
SPOED Extracted Admission priority
SESSIENR Extracted Unique session number
AFDELING Extracted Admission ward
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STATUS Extracted Surgery status
ANNUDAT Extracted Admission cancelling date
CATEGORIE Extracted Admission main category
CATEGORIE Extracted Admission sub-category
losPreSurgery Calculated Length of Stay before surgery (hours)
losPostSurgery Calculated Length of Stay after surgery (hours)
LoS Calculated Total length of stay (hours)

Table 5.1: Admission Dataset

In the surgery dataset, the field ’OPERATIENR’ contains a unique key for each different
surgery in the dataset, meaning 12,959 different values for the ’OPERATIENR’ field exist in
the dataset.
The calculated fields ’losPreSurgery’ and ’losPostSurgery’ are calculated differently for surgeries
with a registered ’SESSIE’ (which denotes the session in which the patient received surgery)
field and surgeries without a registered ’SESSIE’ field. For surgeries with a registered session,
the length of stay before surgery (’losPreSurgery’) is calculated by measuring the time difference
between the admission datetime and the end of the session in which the patient received surgery.
For surgeries without a registered session, this field denotes the time difference between the
admission datetime and the actual surgery datetime, since no session end datetime exists.
The same difference holds for the field ’losPostSurgery’, which denotes the length of stay of a
patient after receiving surgery; for surgeries with a session this field denotes the time difference
between the end of the session and the discharge datetime, whereas for surgeries without a
registered session it denotes the time difference between surgery and the discharge datetime.
The calculated field ’LoS’ is the total time difference between the admission datetime and the
discharge datetime.

5.1.2 Roster Dataset

The roster dataset contains data regarding the performed MSS sessions since 2014. It contains
5,596 performed sessions with their corresponding details. Table 5.2 states the fields included
in the roster dataset. All fields included in the roster dataset are directly extracted from the
database.

Roster Dataset
Field Description
weekday Day of session date
SESSIE Session name
DATUM Date of the session
dayInMonth Day number in month of session date
Year Year of session date
Month Month number of session date
START Start time of the session (in minutes after 00:00)
STOP End time of the session (in minutes after 00:00)
SESSIENR Unique session number
duration Length of session (in minutes)

Table 5.2: Roster Dataset

In the roster dataset, the field ’SESSIENR’ contains a unique key for each execution of a
session on a certain date, meaning 5,596 different values for the field ’SESSIENR’ exist.
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5.2 Data Analysis

To allow occupancy forecasting as described in the Problem Statement from section 3, data
analysis has to be performed to obtain the model’s input parameters. Besides the extraction
of the input parameters, this section also describes the data exploration performed to gain
some feeling regarding the data. In the first subsection, this data exploration is described by
calculating basic session and admission characteristics, whereas the second subsection describes
the extraction of the model’s input parameters.
The data analysis shown in this section is performed on the datasets extracted from hospital
A’s database.

5.2.1 Session and Admission Characteristics

By analyzing the performed sessions and admissions contained in the datasets, some first in-
sights can be obtained regarding the hospital’s usage of sessions and their corresponding ad-
missions, this section describes the analysis of important session and admission characteristics
used in this research.

Session Usage
The roster dataset contains a total of 4,592 performed sessions with at least one surgery (which
counts for a patient) since 2014. These 4,592 performed sessions consist of 86 unique sessions
(sessions are repeated in an MSS), of which the most frequently used session is performed 610
times.
The surgery dataset contains 12,959 surgeries and it is important to know the number of surg-
eries performed in certain sessions, as it is assumed that every surgery results in a patient
entering one of the hospital’s clinical wards for rehabilitation. Although most of the surgeries
are registered to a performed session, 1,828 surgeries lack a registered session and thus cannot
be included in the session usage analysis. The remaining 11,131 surgeries are divided among
the 86 unique sessions.
The possible number of surgeries performed in an individual session depends, among others,
on the total duration of that session and the duration of the surgeries, therefore the average
number of surgeries performed in a session is not a good statistic when comparing the 86 unique
sessions. However, to be able to compare the sessions based on performed surgeries, the number
of surgeries performed per hour is calculated for the 86 unique sessions and Figure 5.1 shows
the distribution of this surgeries-per-hour calculation.
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Figure 5.1: Histogram: average number of surgeries per hour among the 86 unique sessions

The histogram from Figure 5.1 counts the number of unique sessions having a certain average
amount of surgeries per hour. It becomes clear that most sessions perform roughly between
0.15 and 0.8 surgeries per hour on average. When only analyzing sessions that have been per-
formed for at least 20 times since 2014 (which accounts for ≈ 94% of all performed sessions
divided among 27 unique sessions) the average number of surgeries performed in the sessions
lies between 0.15 and 0.7, without any exceptions.

Length of Stay
Besides the number of patients as a result of the sessions, the length of stay of the patients is
also an important characteristic as it denotes the duration a clinical bed will be occupied by
the patient. The length of stay for patients is calculated as described in section 5.1.1.
When analyzing all 12,959 surgeries and their corresponding admissions, the mean length of
stay is 106 hours with a minimum of 0 and a maximum of 2,248 hours. The median of the
length of stay is equal to 51, which is less than half of the mean length of stay and the length
of stay is therefore expected to be a nonsymmetrical distribution with a positive skew.
The distribution of the length of stay is shown in the upper graph of the histogram shown
in Figure 5.2. The graph at the bottom of Figure 5.2 shows the length of stay distribution
for the surgeries with a length of stay below the 0.95-quantile. Both the upper and the lower
histograms also show their corresponding means and medians.
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Figure 5.2: distribution of the length of stay for admissions corresponding to all sessions (upper) and admissions
corresponding to sessions with at least 20 occurrences (lower)

The expectation of a positively skewed (and thus nonsymmetric) length of stay distribution
is endorsed by Figure 5.2. It clearly shows a big difference in means and medians, as well as
the right tails of the occurrences. Also, the bottom picture in figure 5.3 show a high num-
ber of occurrences around every 24 hours and a low amount of occurrences in between. A
possible explanation for this is the limited availability (very few in nighttime) of surgeons to
discharge a patient or the usage of ”discharge-rounds” at certain times during the day. In these
”discharge-rounds”, surgeons walk through the clinical wards to check if patients are ready to
be discharged from the hospital. These ”discharge-rounds” are usually done at specific times
during the working days on a daily repetitive basis.

Length of Stay related to Sessions
To allow modeling of patients entering the clinical wards as a result of performing certain ses-
sions, length of stay characteristics are required on a session based level.
Between the 86 unique sessions performed since 2014, the mean of the length of stay ranges
from 9 hours to 628 hours, whereas the median of the length of stay ranges between 9 hours
and 521 hours. When, however, only taking the sessions into account that have been performed
20 times or more since 2014, the mean and median of the length of stay ranges from 27 to 259
and 23 to 153 hours respectively. The means and medians of the lengths of stay from patients
as a result of these (20 times or more performed) sessions are shown in Figure 5.3.
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Figure 5.3: Means and Medians of lengths of stay for sessions performed at least 20 times since 2014

Figure 5.3 clearly shows a big difference between the mean and the median for the stated
sessions. Therefore, when modeling the expected length of stay for patients as a result of
performing a certain session, using its average (mean) length of stay or its median length of
stay makes a significant difference in the prediction process and is sometimes considered wrong
[17]. For this reason, the model used in this research uses the empirical cumulative distribution
functions of the sessions as described in chapter 4.

Length of Stay related to Priorities
As discussed in sections 2.3.1 and 2.3.2, the priority of an admission (elective/emergency) might
influence its pre- and postsurgical length of stay because of differences in the care process be-
tween the different priorities. For both the presurgical and the postsurgical length of stay
an empirical cumulative distribution is extracted from the dataset for each of the priorities.
Also, the distribution of the lengths of stay are shown for the admissions within the lower
0.95-quantile is calculated. These empirical cumulative distributions of the lengths of stay are
shown in Figure 5.4.

Figure 5.4 clearly shows a big difference in the shapes of the distributions shown in the
top left and bottom left graphs, which represent the presurgical length of stay distributions
for the emergency and the elective patients. Although the top right and bottom right graphs
also show some difference between the values in the distributions shown, their shapes are more
or less equal. Therefore, the expected difference stated in sections 2.3.1 and 2.3.2 regarding
the presurgical length of stay distribution between the emergency and the elective patients is
emphasized by Figure 5.4.
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Figure 5.4: Presurgical Length of Stay distribution (cumulative) for: emergency/elective patients (top left) and
emergency/elective patients in the lower 0.95-quantile (bottom left). Postsurgical Length of Stay distribution
(cumulative) for: emergency/elective patients (top right) and emergency/elective patients in the lower 0.95-
quantile (right)

5.2.2 Parameter Extraction

The model used in this research requires multiple input parameters related to the sessions
(for elective patients) and time intervals (for emergency patients) to be able to calculate the
expected number of occupied beds. This section describes the extraction of these parameters
from the datasets.

Empirical Distributions
The model requires the empirical distribution of the length of stay for patients that enter the
clinical wards as a result of performing a session. This empirical distribution is calculated for
each of the unique sessions and Figure 5.5 shows an example of this empirical distribution of
the lengths of stay for sessions 16 and 50. Also, since previous data analysis of the lengths of
stay showed a heavy positively skewed distribution, the empirical distributions of the lengths
of stay within the 0.95-quantile for both sessions are included in Figure 5.5 for comparison.
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Figure 5.5: Empirical distribution of the length of stay for session 16 (1) and session 50 (2) and their corre-
sponding empirical distributions of the length of stay within the 95%-quantile (3) and (4)

Figure 5.5 shows the lengths of stay distribution for the different sessions on the x-axis and
the percentage of patients having a length of stay equal to or less than the x-axis value on the
y-axis. The skewed characteristic of the length of stay is endorsed by graphs (1) and (2) from
Figure 5.5 as both graphs clearly show a minority of the patients having a significantly longer
length of stay, which means they also have a significant influence on the mean length of stay
for that session.
Graphs (3) and (4) state the empirical length of stay for sessions 16 and 50 respectively when
only surgeries with a length of stay within the 95%-quantile are taken into account. These
graphs show a more equally distributed length of stay among the included surgeries.

Emergency Arrivals
To simulate the expected number of occupied beds as a result of emergency arrivals, the ex-
pected number of emergency arrivals in a certain time interval is required. The model used in
this research uses a different expected number of emergency arrivals based on time intervals
separated by weekday and the part of the day. The weekdays obviously range from Monday
until Sunday whereas the part of the day is denoted:

PartofDay =


”Morning” if 06:00 <= Admission Time < 14:00
”Afternoon” if 14:00 <= Admission Time < 22:00
”Night” if 22:00 <= Admission Time < 06:00

(5.1)

For each combination of the weekday and the part of the day, the average number of emergency
arrivals is calculated based on the historical data. The result is shown in Table 5.3.

Emergency Length of Stay
Besides the number of emergency arrivals occurring in a certain time interval, the expected
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Part of Day
Morning Afternoon Night

W
e
e
k
d
a
y

Monday 1.29 1.71 0.45
Tuesday 1.12 1.58 0.51

Wednesday 1.09 1.43 0.42
Thursday 0.95 1.27 0.45

Friday 0.90 1.40 0.67
Saturday 0.91 1.48 0.45
Sunday 0.98 1.20 0.52

Table 5.3: Number of emergency arrivals per part of day per weekday

length of stay is also required to simulate the emergency occupation. The median length of
stay for emergency patients is calculated for each time interval (comparable with the Emer-
gency Arrivals) and can be found in table 5.4

Part of Day
Morning Afternoon Night

W
e
e
k
d
a
y

Monday 67 70 62
Tuesday 58 93 67

Wednesday 71 65 81
Thursday 43 84 111

Friday 68 60 98
Saturday 52 67 98
Sunday 66 97 69

Table 5.4: Length of Stay (hours) for emergency arrivals per part of day per weekday
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Chapter 6

Model Implementation

The goal of this research is not only to develop a model to analyze and predict bed occupancy
as a result of elective and emergency patients receiving surgery in the hospital’s ORs, but also
address possibilities to implement such a predictive model in ChipSoft’s software. The purpose
of this chapter is twofold. Firstly, state the developed application that uses the research’s
model in a practical and easily applicable manner to obtain the simulation/prediction results.
Secondly, describe the possibilities for ChipSoft to use the used predictive model and application
to enrich their software package, which is done by describing the most important processes an
implementation of this research would require.

6.1 Developed Application

Multiple actions performed in this research are programmed into an application using the
Python programming language [19]. The application only requires the datasets as described in
5.1 as input and will the predict the number of occupied beds during and based on the period to
predict. This subsection will describe the application’s input, processes and outputs in general,
as well as the assumptions or generalizations made to the model for practical reasons.

6.1.1 Input

Besides the datasets from section 5.1, the application requires some parameters to be set be-
forehand, namely:

· The moment of prediction (tp) in datetime format, required as input for the model de-
scribed in section 4.

· The starting moment of the predicted period (ts) in datetime format, required as input
for the model and to calculate the end moment of the predicted period (te).

· The length of the predicted period in days, will be added to ts to obtain te.

· The starting moment of the realization period (trs) in datetime format, determines the
moment from which the realization (true measured values) will be calculated and com-
pared to the predicted values.

· The start date for the data analysis (tdata) in datetime format, only data registered after
this parameter will be analyzed in the data analysis process.
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The input parameters listed above will result in a timeline as shown in Figure 6.1, on which
the model is applied and simulation is performed.

Figure 6.1: Prediction Timeline

The starting moment of the realization period (trs) is not shown in figure 6.1, as it is kept equal
to the starting moment of the simulated period (ts) throughout the rest of this research.
Using the timeline shown in Figure 4.1, a series of processes is executed in the program in order
to obtain a prediction of the number of occupied beds during the predicted period.

6.1.2 Processes

Reading the MSS
After the input parameters are set, the program starts with the first sub-process of the predic-
tion process, namely reading and storing the Master Surgical Schedule used in the predicted
period. To do so, the unique sessions used in the predicted period are extracted from the roster
dataset (5.1.2) and stored in the program’s memory, with their corresponding details such as
session name, session date, session start time and the end time of the session.

An important note to make is that sessions can be slightly adjusted within the MSS on an
incidental basis. For example, when a surgeon is only available until 12.00, whereas the original
session in the MSS ends at 15.00, hospitals can adjust this planned session to the 12.00 end
time without having to create a new session.
Since the (postsurgical) length of stay of elective patients is calculated based on the end times
of their sessions and we assume the discharge moments during the day to be limited and not
affected by the end times of the sessions, it is assumed that the end time of a session is of
importance on the (postsurgical) length of stay of patients.

To take this possible postsurgical length of stay difference into account in the implementa-
tion, a generalization is made for the end time of the sessions: each session (unique by name) is
stored twice, once with an end time classified as ”Morning” (end time before 12.30) and once
with end time classified as ”Afternoon” (end time after 12.30), this way the distinction in end
time is taken into account in the calculation, but small changes in the end time should not
result in a different session stored. Further calculated characteristics are stored for both the
”Morning” version and the ”Afternoon” version of a unique session.

Data Analysis for Session Characteristics
Once all required sessions are stored in the program’s memory, the sessions used in the pre-
dicted period need their corresponding characteristics to be calculated based on data analysis
performed on the ’Data Analysis Period’ part of the surgery dataset (section 5.1.1). Since the
prediction will be made for the predicted period and the prediction is done at time tp, it is
obvious that data registered after tp is not allowed to be used in the data analysis, as it did not
exist when the prediction was made at tp. Also, the extraction of the parameters is only done
based on the elective patients included in the surgery dataset, as it will only be used to predict
the elective patients occupying a bed within the predicted period.
From this ’Data Analysis Period’ subset of the surgery dataset, the empirical cumulative dis-
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tribution for both the preoperative and the postoperative period is extracted for each session
in twofold: once for the session with a ”Morning” classified end time and once for the ”After-
noon” classified end time. So, for each session, four different cumulative distributions are stored:
preoperative length of stay for sessions with a ”Morning” end time, post-operative length of
stay for sessions with a ”Morning” end time, preoperative length of stay for sessions with an
”Afternoon” end time and postoperative length of stay for sessions with an ”Afternoon” end
time. Again, it is important that this extraction of the length of stay characteristics for the
pre- and postoperative periods for a session is only based on the elective surgeries, because the
length of stay distributions for both periods are significantly different between the elective and
emergency patients (the preoperative periods in particular, see section 5.2.1).

Besides the lengths of stay distributions, the model described in chapter 4 also requires the
number of operations in the sessions to be extracted from the dataset. This number of op-
erations in a session is assumed to be equal to the number of patients entering the hospital
to receive surgery in the session at some point. Obviously, since the length of a session also
influences the number of surgeries performed, the number of surgeries distribution is calculated
for each session for the ”Morning” end time version as well as the ”Afternoon” end time version.

Data Analysis for Emergency Characteristics
In order for the program to use the model and include emergency arrival simulation, the model
requires the emergency parameters to be estimated based on historical data. The required
emergency parameters are calculated and stored per unique time interval. In this research, the
intervals are implemented as stated in section 5.2.2: three different parts of the day for each
different weekday, resulting in 21 different time intervals. For each of the time intervals, the
average number of arrived emergency patients and their corresponding median length of stay
is calculated and stored.

Prediction Process
Once all the required parameters for the model described in chapter 4 have been extracted and
stored in the program, formula 4.14 can be implemented and calculated by parts.
Instead of predicting a single moment tn as described in the model, the program predicts mul-
tiple tn values in one run. In fact, each hour between the start moment of the predicted period
(ts) and the end moment of the predicted period (te, obtained by adding the number of pre-
dicted days from the parameter input to ts), is considered a value for tn. For example, when
the start moment of the predicted period is 01-10-2015 00:00 and the program is set to predict
2 days (48 hours), the end moment of the predicted period will be 03-10-2015 00:00 and tn will
be set to each different hour between those dates.
Then, for each value of tn, the value for formula 4.14 is calculated in multiple steps, which will
be described shortly.

First, all the active admissions (elective and emergency) at tp are extracted from the surgery
dataset and separated into a list of elective admissions and a list of emergency admissions. The
predicted number of remaining elective patients present at tn is calculated by using formula
4.5, with Sp being the collection of different sessions (different based on name and ”Morning”
or ”Afternoon” end time) active elective admissions at tp result from and As,p the collection
of active elective patients at tp for session s ∈ (1, 2, ..., Sp). The fraction from formula 4.5 can
be calculated by using the cumulative distribution functions stored in the program for each
different session s. The obtained value for formula 4.5 is stored in the program. The remaining
emergency admissions based at tn, given the obtained list of active emergency admissions at tp,
is calculated using formula 4.6. The value used for Ip is the collection of different time intervals
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the emergency arrivals originate from and Ei,p is the collection of active admissions at tp for
time interval i.
Once both the values for formula 4.5 and 4.6 have been obtained, they are stored as the number
of remaining present patients at the predicted time tn.

Next, the value for formulas 4.11 and 4.12 are calculated using the stored characteristics for
the sessions to be executed between tp and tn (Ssk

n−) for 4.11 and the stored characteristics for
the sessions to be executed between tn and te (Ssk

n+) for formula 4.12. Both the summation over
the possible number of surgeries for the different sessions and the parameters for the binomial
distribution part can be deducted from the stored values obtained in the data analysis part
of the program. The values for 4.11 and 4.12 together form the predicted number of elective
patients present at tn.

Finally, the predicted number of emergency patients present at tn is calculated using formula
4.13. With In− being the different time intervals occurring between tp and tn and λ(i) being
the expected number of arriving emergency patients for interval i, as stored in the program as
a result of the data analysis steps.

The combined values of the three steps above represent the value for formula 4.14 for the pre-
dicted moment tn. Once these steps have been performed for each tn, a prediction of the number
of occupied beds is obtained for every hour in the predicted period, X(tn), tn ∈ (ts, ts+1, ..., te).

Simulation Process
Instead of only calculation the predicted value X(tn), the program simulates confidence inter-
vals around each value for X(tn) within the predicted period based on formulas 4.5, 4.11, 4.12
and 4.13. This section will describe the simulation performed for each of the formulas.
The simulation for the remaining elective patients (formula 4.5) is performed as:

1. Each patient in As,p is still present at tn with a probability p as deducted from the stored
session characteristics.

2. Simulate 10,000 random samples for each patient a in As,p, with probability pa to be
present, resulting in (â1, ..., â10000) values for patient a (with âi is 1 with probability pa
and 0 with probability 1− pa).

3. The expected simulated number of present patients based on As,p is then given by vector

~a:
∑As,p

a=1 ai for i ∈ (1, 2, ..., 10000). The obtained vector ~a is stored in the program.

To simulate prediction values for the collection of sessions Ssk
n− (formula 4.11), the following

steps are followed:

1. Draw 100 samples from the number of surgeries distribution for session s ∈ Ssk
n− and store

as (x1, x2, ..., x100).

2. For each xi ∈ (x1, x2, ..., x100), draw 100 samples from the binomial distribution, us-
ing the parameters n = xi and p = 1 − P (Lpost

s < tn − tse), the probability for a pa-
tient resulting from session s to have a postsurgical length of stay longer than tn − tse
(with tse being the end time for session s). This probability can be extracted from
the cumulative distribution functions obtained in the data analysis part of the pro-
gram. The results of this second simulation are stored for each xi, to obtain xi,j ∈
(x1,1, x1,2, ..., x1,100, x2,1, x2,2, ..., x2,100, ..., x100,100). So, a collection of 10,000 simulations is
obtained for each session s and stored as vector ~xs.
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3. The combined simulation for the elective postsurgical patients present at tn is represented

by the vector ~x :
∑Ssk

n−
s=1 ~xs for each i, j ∈ (1, 2, ..., 100). Meaning the value in vector ~x

on coordinate (i,j) is the sum of the corresponding values on the same coordinate in the
individual session vectors ~xs.

The same method of simulation is performed for the collection of sessions Ssk
n+, with small

adjustments to calculate the elective presurgical instead of the postsurgical patients present at
tn. So, for the collection of sessions Ssk

n+:

1. Draw 100 samples from the number of surgeries distribution for session s ∈ Ssk
n+ and store

as (y1, y2, ..., y100).

2. For each yi ∈ (y1, y2, ..., y100), draw 100 samples from the binomial distribution, using
the parameters n = yi and p = 1 − P (Lpre

s < tn − tse). This probability can also
be extracted from the cumulative distribution functions obtained in the data analysis
part of the program. The results of this second simulation are stored for each yi, to
obtain yi,j ∈ (y1,1, y1,2, ..., y1,100, y2,1, y2,2, ..., y2,100, ..., y100,100). So, a collection of 10,000
simulations is obtained for each session s and stored as ~ys.

3. The combined simulation for the elective pre-surgical patients present at tn is represented

by the vector ~y :
∑Ssk

n+

s=1 ~ys for each i, j ∈ (1, 2, ..., 100).

A different method is used to simulate the predicted number of emergency patients present at
tp. Namely, for the collection of intervals between tp and tn, In−:

1. Since a deterministic length of stay is used for the different intervals i, the value of
λIn =

∑In−
i=0 λ(i)1{Li>=tn−ti} (with ti being the start moment of interval i), can be used as

a Poisson input parameter for simulation at time tn. The parameter λ(i) can be extracted
from the program as it was calculated in the data analysis part, the same holds for the
length of stay for interval i, Li.

2. Use λIn to simulate 10,000 samples of a random Poisson distribution with parameter λIn.
These results are saved in a vector with 10,000 values ~z = (z1,1, z1,2, ..., z100,100)

After obtaining the four simulation results ~a, ~x, ~y and ~z for the predicted moment tn, they
are combined to obtain 10,000 simulated values for X(tn): ~X(tn) = ai,j + xi,j + yi,j + zi,j for

i, j ∈ (1, 2, ..., 100). The values in ~X(tn) are sorted and percentiles can be extracted to act
as the confidence lower or upper bounds, with a default extraction of the 0.05-quantile as the
lower interval bound and the 0.95-quantile as the upper interval bound.

6.1.3 Output

Once all the predicted and simulated values are obtained, the prediction is scored versus the
real measured values, which can be obtained from the surgery dataset. To score the prediction
done for the predicted period the precision statistic is used, which is defined as the fraction
of real measured values being smaller than the upper quantile extracted from the simulation
and higher than the lower quantile extracted. For example, when predicting 48 different values
(hours) within the predicted period and the real measured occupation value lies within the
lower and upper bound 40 times, the precision would be 40/48 ≈ 0.83.
Besides the scoring result of the prediction, the program also visualizes the prediction made
versus the actual measured values for the predicted period. An example of this output is shown
in Figure 6.2.
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Figure 6.2: Example of Result Visualization

The horizontal axis of Figure 6.2 states the predicted moment (tn) within the predicted
period with time labels every 8 hours, whereas the vertical axis states the number of occupied
beds for the predicted moment. The grey line represents the predicted value by formula 4.14
and the grey dotted lines represent the upper and lower quantiles extracted from the simulated
values ( ~X(tn)) as explained in the previous section.
The figure also shows the program’s input parameters in the legend, which in this example
figure were set to: the date of predicting (tp)=2015-10-03, the predicted period (ts to ts) =
05-10-2015 00:00 until 10-10-2015 00:00, meaning the prediction was done 2 days in advance of
the start of the predicted period. The precision-score of this example is shown below the date
of predicting; 1.0, meaning all realized values for tn lie within the upper and lower boundaries
of the predicted confidence interval.
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Chapter 7

Results

This chapter describes the results obtained by running the program for different parameter
settings as well as the results obtained when using the program to analyze ”what-if” scenarios.
For each analysis, the results of the program are presented visually and by using the precision
scoring function, both described in section 6. Since the datasets were extracted from two
different hospitals, the results are visually shown for hospital A only, whereas the results of the
precision function are shown for both hospitals A and B.
The first part of this chapter will show the program’s performance (results) based on different
parameter settings, the second part describes the results for different ”what-if” scenarios.

7.1 Program Results

This section describes multiple program outcomes for different parameter settings. Among
these parameter settings, the moment of predicting, the predicted period and the different
patient sources included are varied and their results are stated.

7.1.1 Varying tp

When varying the moment of predicting, tp, while maintaining the same predicted period, dif-
ferences might occur in the prediction due to the time difference between tp and the predicted
period. This section describes the results obtained while varying the moment of predicting,
while the other input parameters as described in section 6.1.1 were given the values as stated
in table 7.1. In the table, the column ’Type’ denotes the parameter type (’static’ means the
parameter did not change during the simulations and ’variable’ means different results were
gathered by varying the parameter’s value).

Description Parameter Value Type
Moment of prediction tp N/A Variable

Start moment of predicted period ts 2015-10-5 00:00 Static
End moment of predicted period te 2015-10-10 00:00 Static
Data analysis period start date tdata 2014-01-01 00:00 Static
Simulation Lower Quantile α N/A Variable
Simulation Upper Quantile β N/A Variable

Table 7.1: Parameters used in simulation

A simulation was run with the parameter setup as stated in table 7.1 and by varying the pa-
rameters with type ’Variable’. The results of the simulation for different tp and [α; β] values
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are shown for hospital A and B (B between parenthesis) in table 7.2.

[α; β]
[0.050; 0.950] [0.075; 0.925] [0.100; 0.900]

t p
2015-10-05 00:00 1.00 (1.00) 1.00 (1.00) 0.99 (0.97)
2015-10-03 00:00 1.00 (0.93) 1.00 (0.87) 1.00 (0.86)
2015-10-01 00:00 1.00 (0.88) 1.00 (0.76) 1.00 (0.64)
2015-09-29 00:00 1.00 (1.00) 0.98 (0.97) 0.96 (0.86)
2015-09-27 00:00 1.00 (1.00) 0.97 (1.00) 0.97 (1.00)
2015-09-25 00:00 0.99 (1.00) 0.97 (1.00) 0.91 (0.94)
2015-09-20 00:00 0.83 (0.88) 0.76 (0.79) 0.63 (0.76)

Table 7.2: Precision score based on parameters from table 7.1 for hospital A and B (B between parenthesis)

The scores in table 7.2 for hospital A decrease for all [α; β] when the time difference between
the moment of prediction, tp, and the start of the predicted period, ts, increases. For hospital
B, the decreasing of the scores because of increasing the time difference between tp and ts is
much less evident, if existing at all.

As stated in the beginning of this chapter, the results of the simulations are also obtained, as
described in section 6.1.3. For two different parameters tp, while having [α; β] = [0.050; 0.950],
these graphs are shown in Figure 7.1. The visual results of the prediction done for hospital B
for the same two parameter settings are shown in Appendix B.1.

(a) result for tp=2015-10-03 (b) result for tp=2015-09-20

Figure 7.1: Prediction results for hospital A based on parameter input as stated in table 7.1 and different values
for tp.

Figure (a) from Figure 7.1 state a precision score of 1.00 with a prediction performed 2
days before the start of the predicted period. Figure (b) states a precision score of 0.83 with a
prediction performed 15 days before the start of the predicted period. A difference is observed
between the number of occupied beds at ts between figures (a) an (b), whereas both predictions
predict a value below the realized number of occupied beds at the start and the end of the
predicted period.
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7.1.2 Varying the Predicted Period

Instead of simulating different results for the same predicted period as done in previous section,
this section states the program’s performance for different predicted periods, as this might result
in different prediction scores and visual results.
This simulation, the input parameters were set to the values as shown in table 7.3.

Description Parameter Value Type
Moment of prediction tp 4 days before ts Variable
Start moment of predicted period ts N/A Variable
End moment of predicted period te 5 days after ts Variable
Data analysis period start date tdata 2014-01-01 00:00 Static
Simulation Lower Quantile α 0.05 Static
Simulation Upper Quantile β 0.95 Static

Table 7.3: Parameters used in simulation

The scores as a result of the simulation based on the input parameters from table 7.3 are shown
in table 7.4 for hospital A, the scores of hospital B are shown between the parenthesis.

Score

t s

2016-10-03 00:00 0.79 (0.97)
2016-02-01 00:00 0.97 (0.95)
2015-11-23 00:00 0.94 (0.84)
2015-10-21 00:00 0.84 (0.51)
2015-08-10 00:00 0.97 (1.00)
2015-06-01 00:00 0.99 (0.98)
2015-03-23 00:00 0.71 (0.98)

Table 7.4: Precision Scores for Hospital A (and B between parenthesis) for different predicted periods and using
the parameter as stated in table 7.3

The precision scores for hospital A, as shown in table 7.4, range between 0.71 and 0.99 for the
different predicted periods. For hospital B, the scores range from 0.51 and 1.00.
The visual results for hospital A are shown in Figure 7.2 for hospital A, whereas the visual
results for hospital B for the same predicted period is shown in Appendix B.2. Figure 7.2 states
a precision score of 0.97 and 0.99 for the predicted periods in graphs (a) and (b) respectively.
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(a) result for ts=2016-02-01 (b) result for tp=2015-06-01

Figure 7.2: Prediction results for hospital A based on parameter input as stated in 7.3 and two different predicted
periods ts.

7.1.3 Varying Patient Sources

As described in section 4, the prediction method used in this research uses three different
patient sources. Since the prediction formula used for each of the patient sources is different,
the program’s performance is expected to differ based on the sources included in the prediction.
This section presents the obtained simulation results while varying the patient sources and the
moment of prediction, tp. The different patient sources are described in section 4, whereas the
static input parameters that are not changed during the simulation are the same as stated in
table 7.1, with values 0.05 for α and 0.95 for β.

Results for Patient Source 1

When only taking patient source 1 (the remaining patients) into account, the predicted values
for tn in the predicted period are only based on formula 4.7. The results for patient source
1 are shown in table 7.5 for different values of tp for hospital A and hospital B (between the
parenthesis).

Score

t p

2015-10-05 00:00 1.00 (1.00)
2015-10-03 00:00 1.00 (1.00)
2015-10-01 00:00 1.00 (1.00)
2015-09-29 00:00 0.99 (1.00)
2015-09-27 00:00 1.00 (1.00)
2015-09-25 00:00 1.00 (1.00)
2015-09-20 00:00 0.00 (0.55)

Table 7.5: Results for patient source 1 while varying tp for hospital A and B (B between the parenthesis)

Table 7.5 shows that the precision scores for patient source 1 range between 0.00 and 1.00 for
hospital A and between 0.55 and 1.00 for hospital B. Both hospitals having their lowest score
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occurring when the prediction was done 15 days before the start of the predicted period (ts).
The visual results for two different values of tp are also shown graphically in Figure 7.3 for hos-
pital A, the visual results for hospital B for the same input parameters are shown in Appendix
B.3.

(a) result for tp=2015-10-03 (b) result for tp=2015-09-20

Figure 7.3: Prediction results based on patient source 1 and the parameter input as stated in 7.1 for hospital
A, using different values for tp.

Both graphs in Figure 7.3 show a decreasing number of occupied beds over time, with a score
of 1.00 for graph (a) and a score of 0.00 for graph (b). The obtained confidence interval bounds
in graph (a) at ts are ≈ 39 for the lower bound and ≈ 55 for the upper bound, whereas graph
(b) states the values ≈ 3 and ≈ 7 for the lower and upper bounds at ts respectively.

Since patient source 1 consists of two individual calculations, one for the elective priority and
one for the emergency priority, the results are also calculated for each priority individually.
The visual result for the individual simulation is shown using the same input parameters and
tp=2015-09-20 in Figure 7.4 for hospital A, the figure obtained for hospital B using the same
input is shown in Appendix B.4.

43



(a) elective priority only (b) emergency priority only

Figure 7.4: Prediction results based on patient source 1 and parameter input as stated in 7.1 for hospital A.

Graph (a) from Figure 7.4 shows a constant non-changing line of 5 realized occupied number
of beds as a result of the session remainders in the predicted period. The predicted value and
its corresponding confidence interval decrease in value over time, resulting in a score of 0.09.
Graph (b) represents the number of predicted/realized occupied beds based on the remaining
emergency patients. Both the realized and the predicted values decrease over time in the
prediction period, resulting in a score of 0.89.

Results for Patient Source 2

When only considering the elective patients that arrive in the future because of a MSS session,
the prediction is only based upon formulas 4.11 and 4.12. The parameter settings used in this
simulation is stated in table 7.1, using 0.05 and 0.95 for α and β respectively. The precision score
of these simulations are shown in table 7.6 for hospital A and B (B between the parenthesis).

Score

t p

2015-10-05 00:00 1.00 (0.83)
2015-10-03 00:00 1.00 (0.83)
2015-10-01 00:00 1.00 (0.66)
2015-09-29 00:00 1.00 (0.68)
2015-09-27 00:00 1.00 (0.68)
2015-09-25 00:00 1.00 (0.86)
2015-09-20 00:00 1.00 (0.86)

Table 7.6: Results for patient source 1 only and varying tp

Table 7.6 shows that the precision scores for hospital A are 1.00 for all the different values of
tp, whereas the scores for hospital B range between 0.66 and 0.86. The results are also shown
graphically, using the same two values for tp as used in Figure 7.3, in Figure 7.5 for hospital A
and in Appendix B.5 for hospital B.
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(a) result for elective priority only (b) result for emergency priority only

Figure 7.5: Prediction results based on parameter input as stated in 7.1 and different values for tp.

Both graphs (a) and (b) from Figure 7.5 show the same values for the predicted and realized
number of occupied beds for each tn in the predicted period. The simulated upper and lower
bounds of the confidence interval does differ between graphs (a) and (b), however. Graph (a)
as well as graph (b) obtain a precision score of 1.00.

Results for Patient Source 3

Patient source 3 only consists of emergency patients arriving in the future. The predicted values
in this simulation are obtained based on formula 4.13 and parameter settings as stated in table
7.1, using α = 0.05 and β = 0.95. The results for the simulations using variable tp is shown in
table 7.7 for hospital A and B (B between the parenthesis).

Score

t p

2015-10-05 00:00 0.93 (0.91)
2015-10-03 00:00 0.94 (0.91)
2015-10-01 00:00 0.94 (0.91)
2015-09-29 00:00 0.96 (0.91)
2015-09-27 00:00 0.94 (0.91)
2015-09-25 00:00 0.95 (0.91)
2015-09-20 00:00 0.96 (0.91)

Table 7.7: Results for patient source 3 and varying tp for hospital A and B (B between the parenthesis)
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For hospital A, the scores in table 7.7 range between 0.93 and 0.96, whereas the scores for
hospital B are 0.91 for all the tp values. The results are also shown graphically, using the same
two values for tp as used in Figure 7.5, in Figure 7.6 for hospital A and in Appendix B.6 for
hospital B.

(a) result for tp=2015-10-05 00:00 (b) result for tp=2015-09-20 00:00

Figure 7.6: Prediction results based on parameter input as stated in 7.1 and different values for tp.

The precision scores for graphs (a) and (b) from Figure 7.6 are 0.93 and 0.96 respectively. Both
graphs show a prediction without clear confidence interval bounds at the start of the predicted
period (ts).

7.2 Result of what-if scenarios

An important goal of this research internship is to obtain a model and its implementation, to
allow analysis of scenarios regarding different Master Surgical Schedules and session/patient
characteristics. This section shows results of the program’s usage in the following example
scenarios:

· Swapping two days in the MSS

· Opening an extra OR

· Shortening the length of stay

For each of the scenarios listed above, a simulation is run based on the data of hospital A
to obtain the results of the prediction before and after implementing the scenario. This re-
sults in a figure of the simulated week, containing both the situations as before and after the
implementation of the scenario.
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7.2.1 Swapping two days in the MSS

This section describes the result of the program when analyzing a difference in the Master
Surgical Schedule used. Namely, it shows the result of the program obtained when swapping
the sessions of the MSS on Monday and Tuesday in one week of the MSS. This scenario is run
using the parameter setup as stated in table 7.8.
Within the simulated period, both the original MSS and the adjusted MSS by swapping the

Description Parameter Value Type
Moment of prediction tp 2016-03-07 00:00 Static
Start moment of predicted period ts 2016-03-07 00:00 Static
End moment of predicted period te 2016-03-12 00:00 Static
Data analysis period start date tdata 2014-01-01 00:00 Static
Simulation Lower Quantile α 0.05 Static
Simulation Upper Quantile β 0.95 Static

Table 7.8: Results for patient source 1 only and varying tp

sessions on Monday and Tuesday are shown in table 7.9. The four sessions executed in the
original roster on Monday are executed on Tuesday, whereas the nine sessions executed on
Tuesday in the original roster are swapped to the Monday in the adjusted MSS.

Monday Tuesday Wednesday Thursday Friday
SES16 SES17 SES16 SES50 SES8
SES23 SES66 SES23 SES23 SES7
SES19 SES75 SES76 SES36 SES16
SES50 SES44 SES39 SES19 SES19

SES54 SES50 SES16 SES24
SES32 SES9 SES8 SES50
SES16 SES79
SES7 SES50
SES8

→

Monday Tuesday Wednesday Thursday Friday
SES17 SES16 SES16 SES50 SES8
SES66 SES23 SES23 SES23 SES7
SES75 SES19 SES76 SES36 SES16
SES44 SES50 SES39 SES19 SES19
SES54 SES50 SES16 SES24
SES32 SES9 SES8 SES50
SES16 SES79
SES7 SES50
SES8

Table 7.9: Original MSS (left) and the adjusted MSS (right) by swapping the sessions on Monday and Tuesday

Based on the MSS change stated in table 7.9, the results are obtained for the original MSS as
well as the adjusted MSS and shown in one figure.
Figure 7.7 shows the result obtained for both schedules, using the parameter setting as stated
in table 7.8.
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Figure 7.7: Result for the original as well as the adjusted MSS, having the Monday and Tuesday sessions
swapped

Figure 7.7 shows the predicted number of occupied beds as well as the upper and lower
confidence interval bounds for the original and the adjusted MSS. Using the adjusted MSS,
the program predicts a higher number of occupied beds on Monday and Tuesday morning,
whereas the original MSS predicts more occupied beds on Tuesday and Wednesday morning.
The difference between the predicted values is much less significant after 2016-03-09 00:00.
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7.2.2 Opening an extra OR

The second scenario simulated is the scenario in which an extra OR is opened and used in the
MSS. Due to opening an extra OR, it is possible to schedule more surgeries, which obviously is
expected to result in more patients entering the clinical wards for rehabilitation. The parameters
used to run this simulation are stated in table 7.10.

Description Parameter Value Type
Moment of prediction tp 2016-04-11 00:00 Static
Start moment of predicted period ts 2016-04-11 00:00 Static
End moment of predicted period te 2016-04-11 00:00 Static
Data analysis period start date tdata 2014-01-01 00:00 Static
Simulation Lower Quantile α 0.05 Static
Simulation Upper Quantile β 0.95 Static

Table 7.10: Results for patient source 1 only and varying tp

In this example scenario, the extra OR used in the Master Surgical Schedule is assigned an
extra session to be performed each day. Both the original and the adjusted MSS are shown
in table 7.11, in which the extra sessions to be performed in the adjusted MSS have a grey
background color.

Monday Tuesday Wednesday Thursday Friday
SES16 SES17 SES16 SES36 SES7
SES19 SES66 SES23 SES23 SES56
SES23 SES32 SES76 SES53 SES16
SES36 SES44 SES39 SES19 SES19
SES47 SES16 SES50 SES16 SES24
SES50 SES75 SES9 SES50
SES7 SES7 SES79
SES8 SES2

SES54

→

Monday Tuesday Wednesday Thursday Friday
SES16 SES17 SES16 SES36 SES7
SES19 SES66 SES23 SES23 SES56
SES23 SES32 SES76 SES53 SES16
SES36 SES44 SES39 SES19 SES19
SES47 SES16 SES50 SES16 SES24
SES50 SES75 SES39 SES9 SES50
SES7 SES16 SES7 SES79
SES8 SES2 SES19
SES16 SES54

SES16

Table 7.11: Original MSS (left) and the adjusted MSS (right) by using an extra or in the schedule. The grey
cells in the right MSS are the extra performed sessions due to opening an extra OR

As table 7.11 shows, five extra sessions are performed in the predicted week when using the
adjusted MSS. The result of the program’s simulation for both Master Surgical Schedules are
shown in Figure 7.8. It shows clearly a higher expected number of occupied beds during the
predicted period when using the adjusted MSS.
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Figure 7.8: Result for original MSS and the edited MSS, having an extra OR available which is scheduled to
perform one extra session each day
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7.2.3 Shortening the Length of Stay

The final what-if scenario analyzed in this research concerns the length of stay of patients.
Namely, this section shows the results of a scenario in which the length of stay of patients is
decreased by 10%, compared to the original result. The parameter settings used in this scenario
are the same as used in the first what-if scenario analysis, which is stated in table 7.8. Based
on these parameter settings and the original length of stay as well as the adjusted length of
stay, the program’s simulation result is shown in Figure 7.9.

Figure 7.9: Result for original length of stay and the adjusted length of stay, which is decreased 10% compared
to the original value
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Chapter 8

Discussion

This section is dedicated to give an interpretation to the obtained results, discuss the performed
work and address possible improvements to the model and its implementation.

8.1 Interpretation of Results

The interpretation of the results from this research internship is stated in twofold, first the
performance of the designed program (and therefore the model) is discussed based on the first
section of chapter 7, second, the program’s output for the example what-if scenarios is discussed.

8.1.1 Program’s Performance

Considering the results stated in section 7.1, the program’s performance reacts differently on
varying different input parameters, which will be addressed in this section. Also, possible
clarifications of the showed behavior is stated for the predicted scores, but first, the general
performance of the model and its implementation is discussed.

General Performance

The general performance interpretation of the model and its implementation (the developed
program) can be drawn based on the results showed in section 7.1. By varying the predicted
period and maintaining a full simulation (including all patient sources), 7 independent simula-
tion/prediction results are obtained for each hospital. Of these 14 results, the lowest precision
scores obtained are 79% for hospital A and 51% for hospital B. The lowest value for hospital B
is obtained with ts being a Wednesday and tp being a Saturday, the fact that the program tries
to predict a period starting in the middle of the week (and thus not including the Monday and
Tuesday predicted admissions), might be of influence to the score (for hospital A the value was
also low compared to the average score).
Looking at the shown graphs for hospital A and B (in the appendix) for the different predicted
periods, neither the results for hospital A nor the results for hospital B indicate a structural
higher or lower predicted value in comparison to the real measured value. In fact, graph (a)
in Figure 7.2 starts off having a predicted value more or less equal to the real measured value
and ends with a predicted value significantly lower than the real measured value. Graph (b),
however, starts off with a predicted value being significantly higher than the real measured
value, but ends the predicted period with values that are nearly equal to the real measured
value. For hospital B, the graphs using different predicted periods also show a predominantly
lower prediction values for one of the graphs and one predominantly higher prediction values.
Therefore, although most precision scores are reasonably high, it is assumed that the actual
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prediction value of formula 4.14 does not meet the real measured value exactly very often. The
simulation of the confidence interval is therefore a good solution to apply some flexibility to
the prediction value by including possible situations to be obtained. An important reason of
the difference between the predicted values by formula 4.14 and the real measured value is that
the predicted value X(tn) by the prediction formula is a continuous value, whereas the real
measured values are discrete (as are the simulated confidence bounds).

Furthermore, it is important to note the influence of the scoring function on the obtained
results stated in table 7.4. The scoring function is defined as the ratio real measured values
being included in the predicted confidence intervals, which is simulated based on two simulation-
bound parameters: α and β. These two parameters denote the lower and upper bounds of the
possible scenarios (described as a number of occupied beds) obtained through the simulation
for the predicted moment tn. This simulation is obviously based on the historical data, which
means it is based on the historically occurred scenarios. Therefore, it is expected that, when
predicting many different predicted periods and obtaining the precision-score, the obtained av-
erage precision-score is equal to the confidence interval width β−α. This is obviously only the
case under the assumption that the predicted period is comparable to the periods analyzed in
the data analysis part of the program and thus included in the simulation process.

Varying tp

The results of the precision score obtained when varying the time of predicting, but maintaining
the same predicted period, indicate a worse prediction when the time difference between the
making of the prediction and the predicted period is large. Although this holds for hospital A
specifically, hospital B also shows some lower predicted values for predictions made further in
advance.
When looking at the graphs, the predictions made for hospital A and B (see appendix) start off
at ts (the start moment of the predicted period) with a predicted value that is unequal to the
real measured value. This indicates a miscalculation in the value obtained for patient source 1
(the remaining patients). Since formula 4.14, which calculates the predicted value for tn, is only
dependent on tp based on the remaining patients, the influence of tp on the prediction score
can further be interpreted in section 7.1.3. Using the same predicted period, but only including
patient source 1, the graph for tp being 2 days before ts clearly shows a reasonable prediction
compared to the real measured values. However, when tp was set to 15 days in advance of ts,
the precision score obtained equals 0.00 and the graph shows that the error with which the
predicted period starts (≈ 5 beds difference between prediction and realization) is never solved
in the predicted period. This behavior is endorsed by the graphs of hospital B (see appendix),
indicating that a relatively large difference will remain during the predicted period, although
the absolute difference is only small.
When separating the predicted values for patient source 1 into priorities (emergency and elec-
tive), as done in Figure 7.4, it shows that for both hospital A and B the predicted value for
the elective patients barely changes, whereas the predicted value for the emergency patients
roughly follows the shape of the real measured values.

Varying the patient sources

Besides the influence of tp on patient source 1, more interpretation can be made from the
results with respect to the different patient sources. For both hospital A and B holds that the
prediction for patient source 2 closely follows the real measured values, except between 2015-
10-08 08:00 and 2015-10-09 08:00 for hospital B. This might be due to a different discharge
policy in this specific predicted week, as the model predicts patients to remain longer in the
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hospital compared to the realization. Besides the wrongly predicted moments for hospital B,
the absolute difference between the prediction and the realization is ≈ 5 beds at maximum for
both hospitals, which can be interpreted as a good estimation for the elective patients included
in patient source 2.
Patient source 3 uses a deterministic length of stay for each of the time intervals and a time-
dependent arrival rate for the expected arrivals in the time intervals. The predictions (moreover
the simulated confidence bounds) appear to include most of the realizations obtained in the
predicted period, except for a mismatch in values between the simulated bounds and the realized
values at the start and end of the predicted period (ts and te) for both Hospitals.

8.1.2 Results of What-If Scenarios

This research states the outcome of the designed program for three different what-if scenarios
that might occur while designing a Master Surgical Schedule or making capacity related deci-
sions. Although the result of the prediction can not be scored versus the real measured values
(because these are obviously unknown for what-if scenarios), the result of the program before
and after the what-if scenario has been implemented can be interpreted. For the first scenario
(swapping Monday and Tuesday in the MSS for one week), the influence of this change becomes
clear in the predicted number of occupied beds by the program. The prediction without the
what-if scenario states lower values of predicted number of occupied beds for the Monday and
a large increase in prediction on Tuesday, whereas the prediction with the what-if scenario
states a higher value of prediction values on Monday and a smaller increase in the prediction
on Tuesday. Apparently, the sessions performed on Tuesday in the original MSS result in more
rehabilitating patients in the clinical wards than the sessions performed on Monday in the orig-
inal MSS. At the end of the predicted week, no difference in before/after the what-if scenario
implementation is visible. Results, as stated in this example, can act as a decision support tool
for hospitals to decide if changes made to the MSS are expected to be desirable or not.
The second what-if scenario shows the difference in predicted number of occupied beds be-
tween the original MSS and an MSS with an extra OR, which has already comparable sessions
scheduled on its extra OR. The result of the program for the predicted period clearly shows an
increase in predicted number of occupied beds for the MSS with extra OR, as expected. Using
this what-if scenario, hospitals are able to predict the influence of opening an extra OR, when
it is used for performing already existing sessions (as showed in this example).

8.2 Discussion of Work, Possible Improvements and Fur-

ther Research

Towards the model

The model is designed to analyze the influence of an MSS on the clinical wards based on a
number of occupied beds. Because of this, the session characteristics required for the model are
calculated based for each unique session. A unique session is defined unique based on session
name and end time category, with end time category being ”Morning” or ”Afternoon”. It is
possible that clear differences exist between the included performed sessions to calculate the
characteristics for the corresponding unique session they belong to. For example, both per-
formed sessions of SES18 with end times 14.00 and 16.00 are included in the calculation of the
characteristics for ”SES18 - Afternoon”, however, the 2-hour difference in length is obviously
important for the number of performed surgeries (and thus patients). The model might be
improved by using a different definition for a unique session to be used in the prediction model.
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By performing further research towards the optimal definition of a ”unique” session and corre-
sponding characteristics this improvement could be realized.

Another possible improvement to the model is to change the way it includes the emergency
patients. In its current form, the model includes emergency arrivals based on a time-dependent
Poisson arrival process with a time-dependent deterministic length of stay. A lot of research
has already been performed in analyzing the emergency arrivals in hospitals and their outcomes
could be used in the model used in this research to increase its ability to simulate the reality
regarding the emergency arrivals. Examples of different handling of the emergency patients are
used in [5, 14, 13, 4].

As stated in the interpretation of the results section of this chapter, the model tends to strug-
gle with the probability of a patient present at tp to be still present at the predicted moment
tn. To calculate the probability, the model uses the empirical cumulative distribution of the
postsurgical length of stay, but sometimes this distribution does not result in an acceptable
probability. For example, when a patient is the first patient ever from a session to reach a
certain length of stay, the model’s probability for the patient to remain hospitalized is zero,
due to the fact that historically the patient’s length of stay has not been reached a single time.
This property of the model seems counter-intuitive in practice since usually a patient having a
significant long length of stay already is more likely to remain hospitalized for another period.
Research regarding this remaining length of stay and the implementation of its result could
improve the model’s prediction regarding this aspect.

The use of the empirical cumulative distribution function of the length of stay could also be
improved in general. For example, when a session is only performed a few times in the historical
data, the representative value of these historical occurrences can be questioned. Also, because
of the lack of historical occurrences for some sessions, their corresponding probabilities for the
current patient are less likely to describe the situation of the current patient. For example,
when the historical lengths of stay corresponding to a session were 20, 30 and 130 hours, and
a patient currently hospitalized for 40 hours would receive a probability of 1 to stay until 130
hours. Of course, since the MSS are applied for longer periods and on a repetitive basis, the
usage of sessions with very few historical occurrences and patients is expected to only happen
on an incidental basis.

Towards the Developed Program

The implementation of the model is done by developing a computer program that performs
the prediction within a user-defined prediction period. By doing so, the practical value of the
model can be tested and the required adjustments can be added in order to use the model in a
practical manner. Although the obtained results from the simulation examples are reasonable
and the difference between the original and the adjusted situations in the what-if scenarios are
easily recognized using the developed program, improvements still exist to further optimize the
model’s usage.

Using the developed program, a result is obtained in which the expected number of occu-
pied beds is stated for every hour during the predicted period. However, looking at the real
measured values in the graphs, little to no changes occur in the number of occupied beds during
approximately 20:00 o’clock and 06:00 o’clock the next day. This is possibly the case due to
the lack of surgeons to discharge patients as well as the simple fact that discharging patients in
that time frame is undesirable in general. Of course, it is still possible for emergency patients
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to arrive during these hours, so an increase in number of occupied beds during the stated time
frame is visible from time to time. The decision to not discharge patients during the stated time
slot is a decision made by the hospital, the model currently does not take a ”non-discharge time
frame” into account and the implementation of such a time frame could improve the model’s
implementation in reality.

Another improvement to the model would be the inclusion of the actual clinical wards of
the hospital. Currently, the model predicts the total number of occupied beds as a result of
the MSS and the emergency arrivals using the hospital’s ORs. However, the distribution of
this total number of patients among the different clinical wards is not stated. To predict the
distribution of the patient among the clinical wards, more research is required towards the way
the hospitals distribute the patients in different scenarios. It is unlikely and therefore probably
wrong to assume that all patients from a certain session are hospitalized at the same clinical
wards, therefore some form of allocation policy needs to be implemented to distribute patients
among the clinical wards. An example research that addresses an allocation policy to obtain a
predicted value for the clinical wards is [14].
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Chapter 9

Conclusion

This chapter provides conclusions that can be drawn regarding the research question as well as
the research internship in general.

Based on the previous chapters, the research question:

”Is it possible to design and implement a predictive analysis model
based on the downstream relationship between the ORs and the clin-
ical wards to support hospitals in making nursing capacity related
decisions?”

can be answered with yes. The performance of the model’s implementation results in an average
precision score of 88%, obtained by simulating 7 different predicted periods for two completely
different hospitals, which is an acceptable result in answering the research question with ”yes”.
Also, the computer program designed to apply the model is used in three example what-if
scenarios and clearly states the expected differences between the situation before and after the
what-if scenario is implemented, which proves that this research can be used to assist hospitals
in making capacity related decisions, which on its turn endorses answering the research question
with ”yes”.

During this internship research, a model is designed that assists hospitals in analyzing the
downstream relationship between the ORs and the clinical wards. To do so, the model predicts
the expected number of occupied beds at a certain predicted period based on multiple patient
sources that require OR usage. Included in these patient sources are:

• The patient present in one of the clinical wards at the time of predicting

• The patients arriving in one of the clinical wards due to a scheduled OR session to be
performed in the future

• The emergency patients that require OR usage in the future

The prediction of occupied beds based on the first patient source is done using the cumulative
distribution function of the postsurgical length of stay, which is calculated for each unique
session. The prediction of occupied beds based on the second patient source is also done using
the cumulative distribution function of the postsurgical length of stay for the unique sessions,
but extended with a cumulative distribution function of the presurgical length of stay. These
cumulative distribution functions are then combined with the distribution of the number of
patients in the corresponding sessions and a binomial distribution to predict the expected pa-
tients present at the predicted period. In order to calculate the predicted number of occupied
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beds based on the third patient source, a Poisson arrival process is used with a time-dependent
arrival rate, as well as a time-dependent expected length of stay.

Afterwards, the model is implemented in a computer application using the Python program-
ming language. This allows flexible predictions to be made based on user input, such as the
predicted period and the moment of prediction. Instead of predicting the expected number of
occupied beds at one point in time, the application calculates a prediction for each hour in a
user-defined predicted period.
Besides a value for the predicted number of occupied beds in a time horizon, the computer
program calculates a confidence interval for each predicted moment, based on a simulation it
performs. The final step of the computer program is to calculate a precision score, which rep-
resents the fraction of actual measured values within the simulation confidence interval. The
bounds of the confidence intervals are also part of changeable user input. As output, the com-
puter program visualizes the predicted period with its predicted values, the actual measured
values as well as the precision score obtained in the prediction.

The designed computer program is then used for two purposes, first, its performance is tested
versus the real measured value using the precision score to obtain insights in its reliability and
second, its output is used to analyze three different what-if scenario examples known to exist
within hospitals in general.
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Appendix A

Admission datasets

Admission Dataset
Field Calculated\Extracted Description
SESSIE Extracted Session name
OK Extracted OR name used in session
PLANNR Extracted Unique admission number
START Extracted Start time of the session
STOP Extracted End time of the session
OPERATIENR Extracted Unique surgery number
DATUM Extracted Date of the session
DEFOPNDAT Extracted Date of admittance
DEFOPNTIJD Extracted Time of admittance
admissionDateTime Calculated Combines date and time of admission
BT OPERATI Extracted Time of surgery
OPERATIE D Extracted Date of surgery
surgeryDateTime Calculated Combines date and time of surgery
losPreSurgery Calculated Length of Stay before surgery (hours)
DEFONTSLDAT Extracted Date of discharge
DEFONTSLTIJD Extracted Time of discharge
dischargeDateTime Calculated Combines date and time of discharge
losPostSurgery Calculated Length of Stay after surgery (hours)
LoS Calculated Total length of stay (hours)
STATUS Extracted Admission status
SPECIALISM Extracted Admission specialty
CODE Extracted Surgical intervention code
SPOED Extracted Admission priority
BEHCODE Extracted Admission treatment code
SESSIENR Extracted Unique session number
AFDELING Extracted Admission ward
ASASCORE Extracted Risk score of patient before surgery
OKID Extracted Unique surgical intervention number
InterventionAmount Calculated Amount of interventions during surgery
STATUS Extracted Surgery status
ANNUDAT Extracted Admission cancelling date
CATEGORIE Extracted Admission main category
CATEGORIE Extracted Admission sub-category
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Appendix B

Visual Results Hospital B

(a) result for tp=2015-10-03 (b) result for tp=2015-09-20

Figure B.1: Prediction results for hospital A based on parameter input as stated in 7.1 and different values for
tp.

(a) result for ts=2016-02-01 (b) result for tp=2015-06-01

Figure B.2: Prediction results for hospital A based on parameter input as stated in 7.3 and two different
predicted periods ts.
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(a) result for tp=2015-10-03 (b) result for tp=2015-09-20

Figure B.3: Prediction results based on parameter input as stated in 7.1 and different values for tp for hospital
B.

(a) result for elective priority only (b) result for emergency priority only

Figure B.4: Prediction results based on patient source 1 and parameter input as stated in 7.1 for hospital B,
each graph using a different values for tp.
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(a) result for elective priority only (b) result for emergency priority only

Figure B.5: Prediction results based on parameter input as stated in 7.1 and different values for tp.

(a) result for elective priority only (b) result for emergency priority only

Figure B.6: Prediction results based on parameter input as stated in 7.1 and different values for tp for hospital
B.
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