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Executive Summary

Predicting the expected workload is a common problem for a lot of industries. For KLM Cargo, the question
of whether the expected workload can be predicted, shows up regularly. Insight in the expected workload at
the day of operation in advance, enables KLM Cargo to adapt and therefore improve the resource planning
for that day. As a result, direct costs (i.e. unnecessary paid salaries when having too many resources)
and indirect costs (i.e. loss in revenues due to cargo that is not processed in time when having insufficient
resources) can be reduced. Therefore the research question answered in this thesis is:

Is it possible to create a reliable forecast of the expected cargo workload
(within an error of 10%), split by freight building?

To answer this question is: Yes! This thesis shows that we can create a forecast with an error of 2-3 %.
This is within the bound of 10% stated by the business. The forecast that has been created, has a forecast
horizon of 10 days ahead and is based on two different data sources: post departure (historical) flight data
and pre departure booking data. The flight data, obtained from the Altea booking system, contains the total
amount of transported cargo per flight and per departure date. The booking data, obtained from the AFLS
cargo system, contains all information related to a booking. A booking can be made only 10 days in advance,
the time at which the booking window opens.

To create a forecast on the historical flight data, two different forecasting techniques have been used:
Autoregressive Moving Average (ARMA) models and Exponential Smoothing (ES) models. To be able to
determine which forecasting model would perform best, single flight forecasts have been made on a period
from the past and a Weighted Absolute Percentage Error (WAPE) measure has been used to measure the
forecast accuracy from those historical forecasts. At the end, those single flight forecasts are aggregated to
create a forecast on total day and freight building level. From the final results, we concluded that this way
of forecasting gives accurate forecasts (with WAPE values below the 5% for the forecasts on freight building
level). Unfortunately, because of missing European flights in the flight data that has been used, the forecast
for freight building 1 could not be made. Furthermore, the booking and flight forecast can not directly
compared with each other, because there is a difference between the total weight of transported cargo. This
discrepancy between the two data sources should be investigated.

The booking forecasts have been created using linear regression models. Two different forecasting ap-
proaches have been examined: a direct approach and an indirect forecasting approach. Because there were
no clear business rules for assigning bookings to a specific freight building, only a forecast split by incoming
and outgoing flights has been made.

The direct approach predicts the expected amount of cargo directly from the sum of booked weights at
a certain day before departure. First results, based on forecasts made on a historical period, showed that
within 2 days before departure a forecast of the expected workload can be made with a WAPE value of
below the 5%.

The indirect approach consists of two steps. First, an estimation is made of how the booking that are
made up to a certain day before departure will materialize at the day of operations. Next, this materializa-
tion value is used to predict the total amount of cargo (weight of bookings that are made plus the weight
of the bookings still to be made) that will arrive at the day of operations. The results showed that overall
performance of this indirect approach performs slightly worse compared to the direct approach.

During this internship we encountered several issues. To cope with those issues, recommendations were
made for further research (see Chapter 9). The recommendations were grouped into different categories:
business, model and data.
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Chapter 1

Introduction

This research was commissioned by the Operations Research (OR) department of Air France KLM (AFKL) in
association with the PRI department of KLM Cargo (in Dutch: Planning, Roostering en Indeling). Looking
at the subject of this master thesis, the research focusses on the AFKL Cargo business at Amsterdam
Schiphol Airport. In order to meet the vision of AFKL - to be more efficient in terms of increasing their
profitability and productivity (by 4% annually) in the coming 5 years - KLM Cargo wants to revise their
resource planning.

Currently, KLM Cargo has the feeling that at the day of operations it is often the case that there are
too many or too few resources available to process the workload. Too many resources implies unnecessary
direct costs (unnecessary paid salaries), whereas a lack of resources will lead to delays (i.e. cargo which is
not processed on time) and late deliveries of shipments, so indirect costs and low service levels. To reduce
these costs, KLM Cargo wants to get more insight in the amount of cargo that has to be processed at the
day of operations. To measure the service level, the Flight as Planned (FAP) index has been introduced.
This KPI measures the percentage of cargo packages that is on time for their original flight plan. The target
for the FAP is 86.3% and for 2015 so far, a FAP has been realized of 86.4% (so just above target).

The aim of the research is to have a forecast of the expected amount of cargo that has to be processed
by Amsterdam Schiphol Airport at the day of operations. Rationale for this is that a better indication of
the expected workload will lead to a reduction in direct costs (unused resources) without increasing indirect
costs (late delivery and low service levels). Therefore, a 10 days ahead forecast will be created to estimate
the expected workload that has to be handled during the day of operations. Because of the huge amount
of data (several gigabytes), the forecasting code has been developed in the programming language Python
in combination with the usage of Spark (open source computing framework for Big Data computing). The
code itself is running on a Hadoop cluster.

To be able to measure the impact of the final solution, resource planners will use the forecast in practice
to see how it performs with respect to the current way of planning resources. This validation process will
be done after this thesis is finished. The reason for this approach of benchmarking is because in practice it
seems to be hard to quantify over/under capacity. This can be due to the fact that people will always work
on something, whether there is too much or not enough work to do.

The outline of the report has been set up in a way that it presents the research that has been done step
by step. First, in the Process description section (see Chapter 2), a general introduction will be given of
Air France KLM Cargo and KLM Cargo in particular. Furthermore, an overview of the current processes at
KLM Cargo will be outlined. Next, the problem that was given by KLM will be described in the Problem
description (see Chapter 3).The Literature review section (see Chapter 4) will focus on literature study on
the subject of this research. This includes, among others, insight in previous research done by former KLM
interns and work that has been done by our Operational Research colleagues from Air France. The final
design of the solution that helps to solve the problem can be found in the Model section (see Chapter 5). In
the Analysis section (see Chapter 6), a description of the data is given and some comprehensive analysis of
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this data. In addition to the report, also the implementation code of this solution will be handed over to the
business. To get insight into the performance of the designed solution, results of the model and resulting
conclusions from those results will be shown in the sections Results (see Chapter 7) and Conclusions (see
Chapter 8), respectively. Finally, some discussion and recommendation for further research will be given in
the section Discussion and Recommendations (see Chapter 9).
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Chapter 2

Process description

In this chapter a brief insight into the Air Cargo market will be given, together with some background
information of Air France KLM and the Cargo division of AFKL including their operating hubs. Further-
more, the current processes of handling cargo and estimating the expected demand will be described. The
descriptions of the processes are based on personal interviews with employees of the KLM Cargo depart-
ment. This chapter is primarily intended for people who have no knowledge about the basic Cargo processes.

2.1 Air Cargo Market

Next to the passenger market there is second market in aviation: the air cargo market. This market comprises
all the transport of air cargo goods carried in an aircraft. Considering the different type of air cargo goods,
three categories can be distinguished: air freight, air express (specialties) and airmail.

2.1.1 Historical overview

The history of the air cargo market shows that air cargo is a growing business. Until 2008, the year that
the global economic crisis started, the total market was more or less steadily growing in terms of freight
tonne-kilometers and volume. Due to this economic crisis the market collapsed at that time, but finally
recovered in 2010 with a growth of more than 19% over the depressing results of 2009. Since 2010 the
air cargo market stagnated till early 2013 (see Figure 2.1). The prolonged period of weak growth can be
attributed to two factors: a weak world economy and slack trade growth. On a positive side, world air cargo
began to grow again in the second quarter of 2013. By July 2014, traffic had grown 4.4% compared to the
first seven months of 2013. Forecasts for even better economic and trade growth should lead to sustained
air cargo traffic growth in 2015 and 2016 (Boeing, 2014).

Figure 2.2 zooms in on the Air France KLM cargo market. Just as in the previous figure, a drop is
observed at the end of 2008. However, when the global market started to recover, the AFKL cargo market
remained (more or less) constant. It took until the second quarter of 2013 until the market recovered to the
level of the beginning of 2008. Though, over the past two years, we can see a downward trend, which we do
not observe considering the world cargo market. This negative trend represents the tough times for KLM
Cargo nowadays.
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Figure 2.1: Freight tonne-kilometers over time (IATA, 2015)

Figure 2.2: Transported cargo weight by Air France KLM over time (Versnel et al., 2015)

4



2.1.2 Cargo booking process

When transporting a package of cargo by air, a reservation of space must be made for this specific flight.
This is called a booking. Typically there are two kinds of bookings:

• Bookings on allotment

• Free sales (spot) bookings

A booking on allotment is a continuous reservation for a certain amount of space at one or more flight-
date combinations. Free sales (spot) bookings are almost the same as allotment bookings, except that they
only apply to a single flight-date combination. Furthermore, allotment bookings are made longer in advance
than free sales bookings. The reason for that is that free sales bookings can only be made after the booking
window of a flight has started, in contrast to allotment bookings. The booking window of a flight is the
time interval in which bookings can be made for a specific flight. Roughly speaking, the start of the booking
window is more or less 10 days before departure.

Although cargo is booked on a flight in advance, customers do not always stick to the booking made.
In other words, the amount of booked cargo is not always equal to the amount of cargo that will show up
(discussed in more detail in Section 4.2.2). This phenomenon makes workload estimation (more) difficult for
airline companies. To prevent that too much/not enough space is available in the aircraft for all bookings,
airlines steer on their cargo capacity (Popescu et al., 2006). This strategy of steering on the capacity is often
based on historical data, which gives insight in the show up rate of the booked amount of cargo.

2.1.3 Cargo transportation process

There is a general pattern in the way how cargo is transported from origin to destination. Often, the flow of
a shipment starts with an agent who wants to transport a package of cargo. Most of the time, the package
will be picked up by a cargo carrier and loaded into a truck. The truck will then transport the package to the
airport where the package will be loaded into an aircraft for air transportation. When the package arrives
at its destination airport, the package is offloaded from the aircraft and again loaded into a truck of a cargo
carrier who finally delivers the package to its final destination. The whole flow as described above can be
presented graphically (see Figure 2.3).

Figure 2.3: General cargo flow
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2.2 Air France KLM Cargo

In May 2004, Koninklijke Luchtvaart Maatschappij (KLM) joined forces with Air France (AF) and together
they became the largest European airline group. The combined network of both airlines ensured that
nowadays Air France KLM carries more than 77 million passengers per year to more than 240 destinations
in 103 countries. Although both airlines are one group now, each of the airlines retained their own identity,
trade name and brand. Looking at the joined AFKL group, there are three core businesses that can be
distinguished (AFKL, 2015a):

• Passenger Business

• Engineering & Maintenance

• Cargo

Looking at the Cargo business, Air France KLM Cargo is part of the Air France-KLM-Martinair Cargo
group. This is the dedicated air cargo business of the AIR FRANCE KLM Group, generating a combined
turnover of three billion euros yearly.

Historically, Air France Cargo, KLM Cargo and Martinair Cargo have always been at the forefront of
transporting and handling a variety of cargo. Building on this experience, Air France-KLM-Martinair Cargo
offers a wide range of air transport services in the market, providing seamless connections throughout the
world, with more than 250 destinations in 116 countries. Looking at the mission of Air France-KLM-Martinair
Cargo, the main focus is on becoming customers’ preferred carrier.

2.2.1 Dual Hubs

Although KLM and Air France are part of the same group, both airlines run their own operations at their
own mains hub: Amsterdam-Schiphol (KLM) and Paris-Charles de Gaulle (Air France). The two hubs
function in tandem, and by combining both networks, Air France KLM is better able to meet the desires
of the customers. The main cargo activities at Paris-Charles de Gaulle take place in Gare n1 Extra Large
(G1XL). The G1XL airfreight terminal is one of a kind in terms of its high-tech facilities and flexibility
in serving customers. It forms the beating heart of the company’s global cargo network. All the cargo
activities at Amsterdam Schiphol Airport take place at the Schiphol Cargo Hub. The hub consists of three
freight buildings which offers numerous facilities for handling the customers’ special products. These facilities
include an Animal Hotel for ‘live’ animals, a Conditioning Competence Centre for conditioning and cooling
of shipments and a vault for valuables (AFKL, 2015b).

2.2.2 Air France KLM fleet

To be able to realize the mission of Air France-KLM-Martinair Cargo, the process of handling and transport-
ing of cargo has to be well designed. Therefore, Air France-KLM-Martinair uses different types of aircrafts
and trucks. First of all, there is the regular Passenger aircraft PAX, where the lower deck (so called ‘belly’)
is filled with freight and the main deck is filled with passengers. Then there is the combined aircraft, where
the main deck is filled with passengers as well as with freight (in the back) and also the lower deck is filled
with freight. Finally, KLM has a few full-freighter aircrafts that are totally filled with freight (main and
lower deck). In Figure 2.4 (Wever, 2011) a representation of each of the different aircraft types is shown.
The Air France KLM fleet itself is described in more detail in Table 2.1.

In contrast with the passenger and combined aircrafts, only the management of the full-freighter is in
control of the KLM Cargo department. The management of the PAX aircrafts and the combined aircrafts are
in the hands of the KLM Passage department. This means that the Cargo Network department, except for
the network of the full-freighters, fully depends on the decisions made on Passenger Network side. Looking
at the network design of carriers that only transport cargo, this is a big disadvantage. Such carriers use an
opportunity driven approach to design their network. This means that those carriers enable themselves to

6



Figure 2.4: Comparison of the different aircraft types

Aircraft Type
Aircraft Type

Number
Cargo Capacity

(Tonnes)
# KLM Aircrafts # Air France Aircrafts

Full-Freighter Boeing 747 - 400 112 3 -
Boeing 777 - 200 102 - 2

Passenger Airbus 318 - 100 1 - 18
Airbus 319 - 100 1 - 2 - 38
Airbus 320 - 200 1 - 2 - 45
Airbus 321 - 100 1 - 2 - 5
Airbus 321 - 200 1 - 2 - 16
Airbus 330 - 200 10.9 12 15
Airbus 330 - 300 17.4 5 -
Airbus 340 - 300 13.9 - 13
Airbus 380 - 800 10 - 12 - 10
Boeing 737 - 700 1 - 2 18 -
Boeing 737 - 800 1 - 2 25 -
Boeing 737 - 900 1 - 2 5 -
Boeing 747 - 400 12.5 5 4
Boeing 777 - 200 12.7 15 25
Boeing 777 - 300 23.7 10 39

Embraer 190 1 28 10
Fokker 70 1 19 -

Combined Boeing 747 - 400 35 17 -

Table 2.1: Air France-KLM fleet (AFKL, 2015b), (Spotters, 2015)

adapt their cargo network to recent developments (for example when a new potential market arises) in the
air cargo market to increase their revenues.

2.3 KLM Cargo

KLM Cargo manages everything that is related to the air cargo transported via Amsterdam Schiphol Airport.
Besides the actual transport of cargo, also all cargo handling processes are in control of KLM. For instance,
this involves loading and unloading of cargo and the preparation of cargo for further transportation. To
ensure that all cargo processes run smoothly, a good understanding of the general flow of cargo and all the
sub processes (handle, prepare and transport of cargo) is necessary.

To help to smooth the process of handling and transporting cargo, KLM Cargo makes a distinction
between several ‘flows’ of cargo. Roughly speaking, those different flows are characterized by the ingoing
and outgoing transport mode (aircraft or truck). The idea behind this distinction is that each of the different
flows has its own specific cargo handling process. Therefore, at the Amsterdam Schiphol Cargo Hub there
are different freight buildings which all take care of the handling process of a certain flow of cargo. This will
be described in more detail in Section 2.3.1.
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2.3.1 Schiphol Cargo Hub

The cargo hub itself consists of three buildings: freight buildings 1, 2 and 3. As mentioned in the previous
section, each freight building handles its own flow of cargo. Those different ‘types’ of cargo flows are shown
in Figure 2.5. In this figure, also the relation between the different freight buildings is included (based on
(d’Engelbronner, 2012)).

Figure 2.5: Overview of the Schiphol Cargo Hub

Freight building 1, commenced in 1967, takes care of all the cargo that belongs to one of the following
categories: Equation, Mail and Specialties. These categories of cargo include mail, small packages (Equation),
special shipments (for example urgent shipments), pharmacy and ‘live’ animals. The cargo can be delivered
by trucks and aircrafts (both ICA and EUR).

Freight building 2, also known as Europort, became operational in 1982 and is responsible for all incoming
(general) cargo that arrives by aircraft. When the cargo is offloaded from the inbound flight, it has to be
processed for further transportation by truck (transit into Europe) or aircraft (transit to intercontinental
destinations). If the cargo is at its final destination (import), it can be picked up by the owner.

In 1991 the last of the three freight buildings, also known as World Port, opened its doors. This building
handles all of the (general) cargo that is destined for the (outbound) ICA flights. This cargo can be truck
transit cargo from Europe, air transit cargo from intercontinental flights or export from the Netherlands
itself.

Some more details about the freight buildings are summarized in Table 2.2. In this table, the number
of resources only represents the employees who are actually handling the air cargo (so only the ‘executive’
employees).

Freight Building Floor area (m3) Resources (executive employees)
1 34.000 unknown
2

(‘Europort’)
32.000

KLM: 100
Flex: 25

3
(‘World Port’)

34.000
KLM: 180
Flex: 55

Table 2.2: Key figures freight buildings (de Jong, 2015)
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2.4 Cargo handling process

When the cargo arrives at an airport, it often is not at its final destination. Before the cargo can be
transported further it has to be processed. The reason for this is that cargo destined for multiple destinations
is packed together on a transportation device. One of the transportation devices that is used is the Unit Load
Device (ULD), see Section 2.4.1. Because nowadays the workload of freight building 2 has been determined
in terms of ULDs, this transportation device has been described in more detail in Section 2.4.1.

The process of preparing cargo for further transportation is very common. First of all, the cargo has to
be offloaded from the aircraft or truck. After it is offloaded, the cargo is transported to a place at the airport
at which the cargo will be processed. This preparation process consists of two phases: a break down and
build up phase. During the break down phase, cargo destined for multiple destinations, but that has been
stacked onto the same transportation device, will be separated from each other. Next, during the build up
phase, the cargo is collected per destination and built up on a transportation device again. Finally, all the
cargo is transported to the right truck or aircraft for further transportation towards its final destination.

2.4.1 Unit Load Device (ULD)

A unit load device (ULD) is a container or pallet for cargo transportation. Three types of ULDs can be
distinguished. A through unit load device (T-ULD) contains cargo that has the same destination. For this
kind of ULD there is no need to do additional processing at the freight building. More often arriving ULDs
contain cargo for multiple destinations. In that case, some of the shipments have to be loaded into aircraft
A and some into aircraft B. This kind of ULD is called a mixed unit load device (M-ULD). When a ULD is
considered to be a M-ULD, it needs some additional processing to make sure all the cargo will be loaded into
the right aircraft/truck. Third, there is a bijbouwer unit load device (BB ULD), which is actually a variation
on the T-ULD. In fact, a BB ULD is a T-ULD that does have space left for some more shipments with the
same destination. This kind of ULDs can be convenient when some space has to be saved, for example when
some bookings show up with more cargo than their booked amount.

2.4.2 Cargo handling process at the Schiphol Cargo Hub

The general process of handling cargo at the Schiphol Cargo Hub is independent of the freight building
where it has to be processed. However, as mentioned before, freight building 1 takes care of the ‘special’
cargo, where freight buildings 2 and 3 are taking care of the more ‘general’ cargo. The cargo that is handled
by freight building 1, often needs some extra care during the transport and is therefore packed differently
than general cargo. There are multiple reasons why some cargo is transported differently from others, such
as that the cargo must retain at a certain temperature (e.g. donor organs, pharmaceuticals) or that it has
to be transported extra safely (e.g. dangerous goods, chemicals).

When the cargo arrives at Schiphol, different steps have to be taken before the cargo is ready for further
transportation. As stated above freight building 1 has a slightly different process in comparison with the
other two freight buildings. To take care of the ‘special’ cargo that is handled at this freight building, freight
building 1 is equipped with special equipment like climate rooms and animal shelter. Also qualified staff
is available to make sure that all cargo is handled in the right way. Those people are important to have,
because each category of cargo that is part of the ‘special’ cargo has its own procedure to follow. That is
also the reason why freight building 1 has its own logistics, because their processes are significantly different
from the general processes that take place at the freight buildings 2 and 3.

When the cargo arrives at the freight building, first the cargo will be split according to the type of ULD.
All T-ULDs are checked on different aspects: correctness of the ULD construction, the weight and height
of the ULD compared to the specified values and the correctness of the pallet-tag. When one or more of
those aspects does not seem to be correct, the ULD will be transported to the ‘pallet buildup’ process area.
Furthermore, the status of the ULD will be changed to BB ULD. Otherwise, when everything seems to be
correct, the T-ULD will be immediately stored into the PCHS (see section 2.4.3).
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For the M-ULDs another process takes place. Those ULDs are send to the ‘pallet breakdown’ process
area. There the M-ULD will be broken down and all the shipments will be identified for further processing.
Which ULD will be processed at what moment depends on its deadline (the departure time); the closer
to the deadline, the earlier the ULD will be processed. After it has been broken down, the corresponding
shipments are loaded onto a ‘new’ ULD at the ‘pallet buildup’ process area. Then it is stored in the PCHS
until the truck/aircraft is ready for departure.

2.4.3 Pallet Container Handling System (PCHS)

When ULDs do not have to be processed immediately after arrival, they will be stored in the Pallet Con-
tainer Handling System (PCHS). This is a handling system for the fully automated handling of pallets and
containers, from delivery to loading and offers 1,200 storage positions (AFKL, 2015b). From there, these
ULDs are placed in a queue for further transportation.

The moment at which the ULD will be transported to the workplace is determined by the PCHS itself
and is based on a user setting x, denoting the number of hours until the cargo has to be ready for further
transportation, that is deadline oriented. When a ULD has to be ready for transportation to the aircraft
or truck within this x hours, the PCHS will automatically bring this ULD to the work floor. To make sure
that cargo is indeed on time for further transportation, KLM Cargo holds on to a threshold of two hours
before departure at which all the cargo for a specific flight/truck has to be ready. Of course, when multiple
ULDs have to leave within this time interval of x hours, it is not always the case that there is enough space
available on the work floor to store all the ULDs. Therefore, the PCHS makes an ordered list of ULDs
according to the Earliest Deadline First (EDF) principle. The deadline of a ULD is specified as the deadline
of the colli with the earliest deadline that is on that ULD. When there is no ULD to process, the deadline
setting in the PCHS system will be manually adjusted to a larger time interval to guarantee a continuous
work flow at the work floor.

2.5 Workload estimation process

To be certain that all the cargo that arrives at Schiphol Cargo Hub is ready on time for further transportation,
KLM Cargo has to make sure that there are resources available to handle the expected arriving cargo. The
department of Planning, Roostering en Indeling (PRI) creates a resource planning long in advance to cover
the expected workload.

2.5.1 Planning, Rostering and Allocation process

According to the PRI department a proper resource planning tries to find a balance between customer
concerns, business concerns and the concerns of the employees. Moreover, the PRI department emphasizes
that especially in service providing organizations with many employees, like KLM Cargo, a good resource
planning is a (key) success factor. Therefore, the PRI process has been developed which deals with all the
requirements that has to be met during the process of planning, rostering and the allocation of the resources
(such as taking into account collective labor agreements, personal preferences, etcetera).

To come to resource planning that meets all those requirements, the PRI process consists of five steps:
Forecasting, planning, rostering, allocation, evaluating/correcting (de Jong, 2014). Each step has been
performed at a certain moment in time. After the last step, the process starts over again. A graphical
representation of the PRI process is shown in Figure 2.6. This research will focus on the allocation phase.

In the first step, a long term forecast of the expected workload is made. This forecast can actually be
divided in two parts: a strategic and a tactical forecast. The strategic forecast is a long-term forecast (made
1-5 years in advance) intended for getting a high level indication of how your workload will change over a long
period. This forecast is based on looking at possible relationships between industrial trends/development of
macro-economic variables and the workload. The tactical forecast is a more short-term forecast (made <1
year in advance) and is meant to get insight into the expected production for the coming period.
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Figure 2.6: Planning, Roostering en Indeling (PRI) process

For the second step, i.e. planning, the occupancy of resources are determined. For this, the expected
amount of work, coverage choices (over/under capacity, quality, business risk), the new (Cargo) timetable
and the percentage of attendance are taken into account.

After the planning phase, the basic and personal rosters are created (= roster planning). This phase
will take place 3-4 months before the start date of the new roster. Both rosters are based on the occupancy,
rostering rules and comply with the collective labor agreement requirements. The basic roster comprises the
default number of resources needed on a specific work location for each work shift for each weekday. The
personal rosters concern the actual allocation of individuals to work locations at certain shifts through the
week, such that the basic roster is filled. In general, there are three kinds of work shifts, as shown in Table
2.3:

Shift Start End Time interval
Morning 06:00 14:30 06:00 - 14:30
Evening 14:00 22:30 14:00 - 22:30
Night 22:00 06:30 22:00 - 06:30

Table 2.3: Work shifts

When all previous phases are completed, the allocation phase takes place. Although, this process of
allocation differs per freight building, a general outline of the process will now be given. This general
description is based on interviews with KLM Cargo resource/roster planners. Furthermore, this phase of the
PRI process is the part where the research focuses on, since a better workload estimation should lead to a
better allocation of resources. To avoid that there are too many/few resources for the expected amount of
work, there is an alignment of staff. When the day of operation approaches, adjustments to the high-level
planning are made by the resource planner (only for freight building 3) and/or the head operations flow
(HOF) managers. A meeting between the HOFs and the resource planner has been set up each morning to
check the status of the resource planning. During these meetings, adaptations to the resource planning are
made based on new information such as illness of employees and changes in the expectation of the amount of
work that will arrive (provided by RM, see Section 2.5.2). In case of insufficient resources, extra flexworkers
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are hired to handle the expected amount of work. In case of overcapacity there are multiple options, such as
stimulate leave or assign personnel to other work locations (Veldman, 2015). The process of allocation takes
place on the day of operation itself. At this day, the actual assignment of resources to the different activities
(unloading trucks, build up ULDs, break down ULDs,etc.) is done.

The fifth step is that the whole PRI process is been evaluated by looking at all the phases above and see
how the results of those phases correspond with reality. If it turns out that some steps of the process do not
seem to perform well, necessary adaptions are made.

2.5.2 Revenue Management estimation

When the day of operation is approaching, more and more information will be available that gives an
indication of the amount of work that can be expected for the day of operation itself. To make it possible for
the resource planner and HOF to adapt their resource planning to the most recent updates of the expected
amount of work, the Revenue Management (RM) department of KLM Cargo provides them with the current
booking information that is available. However, in general most of the bookings will arrive only a few days
(or even a few hours!) before the day of operation; thus solely looking at the bookings that are already have
been made will not give a proper indication of the real amount of work. Therefore, a comparison between
the current bookings and the booking for a similar day in the past is made, to see how the current booking
behavior for this day is related to the behavior in the past. Based on this comparison, a rough estimation
can be made whether or not the booking behavior is running behind or ahead compared to the booking
behavior as observed in the past. Looking at the aim of this research, the forecast made should make this
rough estimation more accurate.
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Chapter 3

Problem description

3.1 Background

In order to be more efficient, Air France KLM (AFKL) wants to increase their productivity. High level the
objective of AFKL is to increase their productivity with 4% yearly for the coming five years. As a result,
the KLM Cargo division is looking for quick wins that can help to achieve this objective. Within the Cargo
division, the Cargo Operations department is responsible for the handling and further transportation of
arriving cargo at Schiphol airport. To handle all the arriving cargo, KLM employees and flex workers work
together in teams to make sure that all the cargo is processed in time. The ratio of KLM employees and
flexworkers depends on the number of KLM employees that are available during a certain day (on average
20% flex (de Jong, 2015)). When there are too few KLM employees available to handle the estimated work-
load, extra flex workers will be hired. More detailed background information can be found in the previous
chapter (Chapter 2)

Currently, within the department of PRI (Planning, Rostering and Allocation), which creates the rosters
for Cargo Operations employees, there is a feeling that it happens too often that too many/not enough
resources are scheduled on the day of operations with respect to the workload. Obviously, overcapacity of
resources is associated with direct costs (unnecessary paid salaries). The other way around, when there are
not enough resources available, there could be a loss in revenues due to cargo that is not processed in time
and late deliveries of shipments. Looking at the current results of KLM Cargo, around 91.6% of the cargo
is delivered as promised and, even a bit lower, around 86.4% of the cargo is flown as planned (just above
target: 86.3%). The Cargo department thinks that the objective, of increasing productivity, can partially be
achieved by optimizing their resource planning. This planning comprises the number and type of resources
(KLM employees and flexworkers) that is needed to handle the expected cargo workload that arrives at a
certain day of week during a specific work shift.

Looking at the problem of optimizing the resource planning, the problem can be split in two parts: a
forecasting and a planning part. The forecasting part focuses on what will be the expected amount of cargo
that has to be processed at the Schiphol Cargo Hub on the day of operations. The planning part will focus
on this estimated workload with respect to intermediate process steps (what cargo will be processed at what
time). Because no accurate information about the expected workload is available, this research will focus
on the forecasting part. Rationale for this is that a more accurate forecast will lead to a reduction in direct
costs (unused resources) without increasing indirect costs (late delivery and low service levels). With this
more accurate estimation of the expected cargo traffic, the KLM Cargo department is able to estimate more
accurately the resources needed (split into KLM employees and flexworkers).
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Although the 3 freight buildings are working together as one, they are all managed individually. Therefore
an estimation of the workload has to be made for each of them, based on the expected cargo that will be
handled by that specific freight building. The department of PRI furthermore demanded for an estimation
error of less than 10%. This, results in the following research question:

Is it possible to create a reliable forecast of the expected cargo
workload (within an error of 10%), split by freight building?

To accomplish this objective, a 10 days ahead forecast will be made based on different data sources
(related to Section 2.5.1): a short-term forecast based on historical flight data and a very short-term forecast
based on pre-departure booking data.

First of all, a forecast for the short term based on historical flight data has been created. This data
is post departure data and therefore very accurate. The forecast will be created with the use of different
forecasting techniques and are chosen based on previous studies. Rationale for this is that the flows have
their own specific characteristics (for example more random pattern versus a high seasonal pattern) and
therefore the specific techniques could improve the accuracy when predicting different flows.

Secondly, a forecast for the very short term has been created based on booking data. This forecast can
be seen as a more tactical forecast and an expansion on the flight forecast. The booking data that is used,
is pre departure data and therefore can still be modified. This is due to booking updates and cancellations.
A reason to also create a forecast based on booking data is that not only flows show different behavior, but
also on a more detailed level (such as product level or agent level there is different behavior observable when
looking at booking characteristics.

3.2 Deliverables

The final goal of KLM Cargo is to get insight in the amount of cargo that has to be processed at a specific
day and shift. To accomplish this, a forecast is needed on flight and booking level. With these forecasts the
Cargo Operations department should be able to better estimate the number of resources needed to cover the
workload. At the end of the research an implementation in Python of the forecasting techniques has been
given. Next steps, out of the scope of this research, will be to design a tool, where insight is provided in the
expected amount of arriving/departing cargo per time shift (or time interval).
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Chapter 4

Preliminary forecasting studies

In this chapter, three studies in the field of cargo demand forecasting will be discussed. The outcomes of
those studies have been a first inspiration for the solution approach to the problem.

In comparison with the Air Passenger business, where much more research has been done on the subject
of predicting expected number of passengers, there is very little literature available on workload estimation
for Cargo business. Although it seems that the problem is the same for both of the businesses, there are
some important differences. One important difference is the uncertainty of Air Cargo supply. The volatility
of the air cargo market is very high. This means that the air cargo demand is highly sensitive for changes
in external factors, such as bad weather conditions (which can result in bad harvest) and consumer trust.
Compared to the number of seats on a flight, the available cargo capacity of a flight is uncertain and cannot
be determined in advance (Huang and Hsu, 2005). This is, among others, due to the fact that for AFKL cargo
business is most of the time subordinate (except for the full freighter aircrafts) to the passenger business
(as mentioned before in Section 2.2.2). Therefore, the available cargo capacity depends on the (expected)
number of sold seat tickets. Furthermore, the expected workload for cargo business is two dimensional; as
well weight as volume has to be taken into account. In addition to this multi-dimensionality property, also
the cargo booking process is an extra difficulty because of the uncertain actual amount of cargo that will
show up for transportation (see Section 2.1.2).

Looking at the problem of predicting the expected workload, it seems that this is a common problem
for a lot of industries. For KLM Cargo, the question of how the expected workload can be predicted more
accurately shows up regularly. To tackle the problem of estimating the amount of cargo that will arrive at
the Amsterdam Schiphol Cargo Hub, some previous studies have been carried out. The conclusions of those
studies are used as a starting point. The methods that will be used for the rest of this research will be
described from a theoretical point of view in Model (see Chapter 5).

Three studies, all related to forecasting cargo demand, have been investigated. Regarding the fore-
cast level of each study, the three studies can be subdivided into two groups: forecast on booking level
((d’Engelbronner, 2012) and (Benfatma and Garcia, 2014)) versus flight level ((Garcia, 2014)).
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4.1 Forecast on flight level

Until 2014, Air France did not have any kind of forecast to support the Revenue Management Cargo depart-
ment on the monitoring of flights. Therefore, they wanted to have a forecast of the daily demand at flight
level. At the AFKL Operations Research department, multiple demand forecasting tools were developed.

A long-term (12 months ahead) forecast was created based on monthly air freight data by Versnel.
Multiple forecast methods were tested:

• Autoregressive Moving Average (ARMA) model: single time series model

• Vector Autoregressive Model (VAR) model: a forecasting model which takes into account multiple
time series (competitor effects)

• Factor-Augmented Vector Autoregressive Model (FAVAR) model: forecasting model which takes into
account both competitor effects and effects related to economic variables

To determine which method performs best for different flows, all methods were tested on the last 12
months and the best method was selected to forecast. The results of this forecasting study have been
implemented in an internal KLM tool called CADEAU (Versnel et al., 2015). Although the results of this
study were very promising, the outcomes have not been used for this research because of the difference in
forecast horizons.

In addition to the long-term forecast, Garcia created a short-term (14 days ahead) forecast of this daily
demand and volume at flight level. Different forecasting models were compared to find the best model:

• Exponential Smoothing (Holt-Winters) model

• Autoregressive Integrated Moving Average (ARIMA) model

• Robust Calendar model: recent trend adjusted for calendar effects (day of week, special events,
freighters)

• Volatile DoW model: recent trend adjusted for day of week effects

First results showed that the Robust Calendar Based model performed best, with an average error rate
of 45% (at day level). However, Garcia also observed that the accuracy of the forecast on flight level was
affected by capacity changes of a flight due to aircraft type and schedule changes. To be able to take care
of this capacity effect and schedule changes, a new forecast was created based on cargo load factor. The
cargo load factor represents the percentage of the available cargo space in an aircraft that is used (also RM
Cargo steers on load factor). In the end, the forecasted load factor is translated into a forecasted weight and
volume by multiplying this forecasted load factor with the capacity of the aircraft. From the outcomes of this
new forecasting approach, Garcia concluded that an exponential smoothing model performed best (Garcia,
2014). Looking at the accuracy of the forecast, the average error rate at day level dropped by almost 20% in
comparison with the first results to 26% on average. Furthermore, almost 40% of the forecasted flows had
an average error rate lower than 15% after.

Since, during his forecasting study, Garcia concluded that exponential smoothing models performed best,
those models have been used for this research. Furthermore, from the long-term demand forecast, the ARMA
model has been selected because this was the only single time series model (and for this research we do not
take into account relations between multiple time series or exogenous effects).
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4.2 Forecast on booking level

Creating a forecast on booking level is interesting to examine. The main reason for this, is that booking data
contains detailed pre-departure information about the cargo that belongs to that booking. The booking data
comprises all the characteristics of bookings that causes workload at the airport terminals such as: weight,
volume, number of packages, ULD type, etcetera. In comparison to the historical flight data, which does
not contain such detailed information about the transported cargo, those characteristics could improve the
accuracy of the forecast.

4.2.1 Aggregated booking forecast

d’Engelbronner did research on creating a forecast based on booking data. He showed that forecasting the
total final weight of a single booking and even of all bookings per single flight is inaccurate. Therefore, he
proposed to make a forecast on day level by aggregating all the bookings per day. When looking at the
different types of forecasts (as mentioned in Figure 2.6), this type of forecast can be seen as a short-term
forecast. Based on current bookings made, an estimation of the expected materialization of those bookings
can be determined. To improve the accuracy of the forecast, different forecasting techniques were examined
by d’Engelbronner to forecast the total weight of all bookings:

• Time series models: predict total weight based on historical manifest data

– Moving Average

– Simple exponential smoothing

• Regression models: predict total weight based on booking levels per Days Before Departure (DBD)

– Simple Regression

– Multiple Regression

• Hybrid models: combine Time Series and Regression models

– Classical pick-up model

– Advanced pick-up model

Next, d’Engelbronner did an analysis on the forecast performance to see which technique performs best.
We compared the overall forecasting accuracy of the different techniques regarding the forecasts errors
made at all DBD in the booking window. From the outcome of this analysis, d’EngelBronner showed
that the overall error rate (looking at the Mean Absolute Percentage Error (MAPE)) was the lowest for
the simple regression model. Hence, the conclusion was that creating a simple regression model per DBD,
looking at the aggregated booking and manifest (observed values) data, is the most adequate for providing
accurate and reliable predictions of air cargo demand per day.
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4.2.2 Single booking forecast

In the aviation industry, airlines steer on their capacity. This strategy is based on the assumption that
bookings arrive with an amount of cargo that differs from the booked value. Looking at the realization of a
booking k, Bk, and its booked weight wk and volume vk, there are four different scenarios possible for the
final weight wfk and volume vfk:

• No-show: wfk and vfk are equal to 0. This can be due to cancellations or a booking that does not
show-up on time for the flight departure.

• Low-show: 0 <wfk <wk or 0 <vfk <vk. The actual booking has less weight/volume than booked.

• Show: wfk = wk, vfk = vk.

• High-show: wk <wfk or vk <vfk. The booking shows up with more weight/volume than booked.

Because there is no direct information available in advance about how a booking will materialize, steer-
ing on flight capacities is often very hard. Therefore, French colleagues (Benfatma and Garcia) from the
OR department at Air France, developed a method that forecasts the materialization of a single booking:
Opportunity Assessment (OA).

To be able to do proper steering on the capacity of an aircraft, KLM Cargo wants to know what will be
the amount of freight, intended for that specific aircraft, expected to arrive at the day of departure. In fact,
a prediction is needed of the show up rate of the booked cargo. This show up rate gives an indication about
the percentage of the booked weight/volume that shows up when the booking arrives at the warehouse. The
assumption behind forecasting such a show up rate is that a booking exhibits some characteristics which
tells something about how the booking arrives at the warehouse (Benfatma and Garcia, 2014).

Benfatma and Garcia found out that the agentURN, a unique id corresponding to the agent who creates
the booking, is an important indicator which provides information about the materialization of a booking.
The reason for the importance of this feature could be explained by the particular booking behavior that an
agent often has. This booking behavior could help to give a first indication of how a booking will materialize.
As an example, consider agent X, who always shows up with a booking which has a higher weight value
than the initial booked weight. When this is the case, KLM Cargo could take into account this high-show
and better steer on the remaining capacity for the flight corresponding to that booking. To detect such
relationships between booking characteristics and the no-show rate of a booking, Benfatma and Garcia
developed a decision tree algorithm (trained on 400 days of historical booking data). With the help of this
decision tree, the show up rate of all incoming bookings are forecasted. The resulting forecast are calculated
by calculating the show up part of the booking and subtracting this from the original booked value. In the
end, those materialization forecasts of all bookings will help the RM Cargo Department to better steer on
flight capacity.
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Chapter 5

Model

In this chapter the forecasting models that have been used for this internship are described from a technical
point of view. Furthermore, the solution approach to the problem is presented. This solution consists of two
parts: a forecast on flight and on booking data.

5.1 Forecast on flight data

To create a proper forecast, different forecasting techniques have been used and compared with each other.
Furthermore, we looked at forecasts on different levels (booking, flight) and different scopes (forecasts per
flight, day). From the experience of (Garcia, 2014) we have chosen to look at exponential smoothing models
for forecasting on flight level. In addition, an Autoregressive Moving Average (ARMA) model has been
added to the list of forecasting models to investigate. To create a proper forecast with both forecasting
methods, the forecasted time series has been deseasonalised and made stationary upfront (see Section 5.1.2).
In the end, the forecasts will be corrected for the flight schedule (based on OAG, see Section 6.1.1). The
reason for this is that when a flight is not scheduled for a certain date, no forecast has to be made of the
expected amount of cargo that will arrive and therefore the ‘forecast’ can be set to zero.

When performing the forecast, there are multiple settings that can influence the predicted values for the
future. Therefore, multiple combinations of different settings will be used to see what would be the best
combination of settings for a specific flight. Such a combination of settings is called a scenario and consists
of the following parameters:

• Last date: the last date that may occur in the time series to forecast

• Amount of history: the number of months that will be taken into account (looking back from the last
date in the time series). By default 3, 6, 9 and 12 months will be considered.

• Initial guess values for parameters: initial guess values (by default 0.3, 0.5 and 0.8) for the exponential
smoothing models to start with when searching for optimal parameter settings.

• Forecast error KPI: the key performance indicator which will be used to maximize the accuracy of the
forecast when searching for the best parameter settings for the exponential smoothing models. The
KPIs that are implemented are MAPE, WAPE, RMSD and SMPE (see Section 5.1.1).
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5.1.1 Exponential smoothing

Exponential smoothing is a technique to produce a smoothed time series. The original work was done by
Robert Goodell Brown (1956) and expanded by Charles C. Holt (1957). The technique tries to forecast
the future by weighting past observations using exponentially decreasing weights. Furthermore, those ex-
ponential smoothing models make no assumptions about any correlation between consecutive observations
of the time series (Coghlan, 2010). To take into account the different dynamics that might be present in
the data, such as trend and seasonality effects, different variants of the exponential smoothing are used. In
general, these variants can be divided into three categories: single, double and triple exponential smoothing
(Gardner, 1985). Because of the many variants of the exponential smoothing methods, only the ones with
additive trend and additive seasonal components are described in this section. In Appendix B a complete
list of all standard exponential smoothing methods can be found.

Single Exponential Smoothing
The single exponential smoothing method is a method that is suitable for time series which do not have a
trend or seasonal component. This method attaches more weight to more recent observations when those
observations have a higher predictive value in comparison with observations from the distant past.

Looking at the formula of the single exponential smoothing method, the m steps ahead forecast can be
mathematically formulated as:

St = αXt + (1− α)St−1

X̂t(m) = St

0 ≤ α ≤ 1,

where St is the smoothed level of the series (estimation of the next value X in the time series), Xt the
observed value at time t, X̂t(m) the m steps ahead forecast and α a smoothing parameter.

The smoothing parameter α controls the rate at which the weight decreases. The general expression for
the decrease of the weight at a certain time t can be derived from the formula of the single exponential
smoothing method by using successive substitution:

St = αXt + (1− α)St−1

= αXt + (1− α)(αXt−1 + (1− α)St−2)

= αXt + α(1− α)Xt−1 + (1− α)2(αXt−2 + (1− α)St−3)

= αXt + α(1− α)Xt−1 + α(1− α)2Xt−2 + ...+ α(1− α)nXt−n + ...+ (1− α)tX0

=
t−1∑
i=0

α(1− α)iXt−i + (1− α)tX0

From this last equation the following formula for the weights for each observation at time t-i can be
obtained: α * (1 - α)i. It is obvious that this is an exponential function (hence the name of the method).

The smoothing parameter α can take a value between 0 and 1, values closer to 1 will attach more weight
to more recent observations. When the value of α is closer to 0, more weight is assigned to less recent
observations. To show the impact of the value of the smoothing parameter α on the weights for a certain
time t, an example is given in Table 5.1 (Hyndman and Athanasopoulos, 2014).

Double Exponential Smoothing
The single exponential smoothing method is suitable for time series without a trend (and seasonal) compo-
nent. When there is a trend in the data, this trend must be taken into account in the forecast. Therefore,
Holt (Kalekar, 2004) extended the simple exponential smoothing method to allow forecasting of time series
with a trend. The concept behind the model is to introduce a term that takes into account the possibility
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Observation α=0.2 α=0.4 α=0.6 α=0.8
yt 0.2 0.4 0.6 0.8

yt−1 0.16 0.24 0.24 0.16
yt−2 0.128 0.144 0.096 0.032
yt−3 0.1024 0.0864 0.0384 0.0064
yt−4 (0.2)(0.8)4 (0.4)(0.6)4 (0.6)(0.4)4 (0.8)(0.2)4

yt−5 (0.2)(0.8)5 (0.4)(0.6)5 (0.6)(0.4)5 (0.8)(0.2)5

Table 5.1: Impact of smoothing parameter α on the weights of the different observations yt−i.

that a series could contain a trend. This term is the smoothing parameter for the trend, known as the
parameter γ, and is also updated with the help of exponential smoothing. In addition to a regular trend
component, also exponential smoothing models have been used with a so called damped trend. This damped
trend is used to prevent over forecasting, when a constant/exponential (increasing/decreasing) trend is esti-
mated indefinitely into the future. To prevent the resulting forecast to ‘explode’, because of an indefinitely
increasing or decreasing estimated trend, the trend will be damped/weakened (hence the name of the specific
trend component). Especially when the forecast horizon becomes very long, a damped trend can prevent
the model from over forecasting and improve the forecast accuracy (SBRANA, 2012). Looking at the math-
ematical representation, the m steps ahead forecast at time t (X̂t(m)) for the double exponential smoothing
method (with additive trend) is given by:

St = αXt + (1− α)(St−1 + Tt−1)

Tt = γ(St − St−1) + (1− γ)Tt−1

X̂t(m) = St +mTt

0 ≤ α ≤ 1

0 ≤ γ ≤ 1,

where St − St−1 is the trend and Tt is the smoothed additive trend at the end of period t.

Triple Exponential Smoothing
Triple exponential smoothing methods are able to handle data which has both a trend as well as a seasonal
component, where the double exponential smoothing was just able to detect a trend component. Seasonality
is defined to be the tendency of time-series data to exhibit behavior that repeats itself every L periods. ”The
term season is used to represent the period of time before behavior begins to repeat itself” (Kalekar, 2004).
L is therefore the season length in periods. There are two types of seasonality: additive and multiplicative.
”The additive method is preferred when the seasonal variations are roughly constant through the series,
while the multiplicative method is preferred when the seasonal variations are changing proportional to the
level of the series” (Hyndman and Athanasopoulos, 2014). An example of additive seasonality is when every
Tuesday 100 tonnes of cargo more than on Wednesday is transported. In this case the seasonality is additive
in nature and can be represented as an absolute amount. Looking at the same example if an airline transports
10% of cargo more, the seasonality is multiplicative in nature and can be represented as a constant factor.
In order to enable the triple exponential smoothing method to detect seasonal patterns, a rule of thumb is
used which requires that at least two full seasonal cycles have to be present in the data.

Looking at the formula of the triple exponential smoothing method (with additive trend and additive
seasonal component), the m steps ahead forecast (X̂t(m)) is given by:

St = α(Xt − It−p) + (1− α)(St−1 + Tt−1)

Tt = γ(St − St−1) + (1− γ)Tt−1

It = δ(Xt − St) + (1− δ)It−p
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X̂t(m) = St +mTt + It−p+m

0 ≤ α ≤ 1

0 ≤ γ ≤ 1

0 ≤ δ ≤ 1,

where It is the smoothed seasonal index at the end of period t. This smoothed seasonal index is, among oth-
ers, estimated by the smoothing parameter for seasonal indices δ and the number of periods in the seasonal
cycle p.

Parameter estimation
When forecasting with exponential smoothing methods, one should keep in mind that the accuracy of the
forecast can be tremendously improved by choosing the ‘right’ values for all the parameters. Therefore, an
optimization method has been implemented to find the ‘optimal’ values for the different smoothing param-
eters α, γ and δ (depending on the exponential smoothing method that is used). To be able to interpret
the estimated values for all the different parameters, first the impact of the different possible values for each
parameter will be discussed.

As mentioned before, the smoothing parameter α will attach more weight to more recent observations
when its value gets closer to 1. When the value of α is closer to 0, more weight is given to observations from
the more distant past. The trend smoothing parameter γ affects the trend component of the exponential
smoothing model. When the value of this parameter γ is equal to 0, then the trend component is constant
for all values of the time series. If the parameter value is getting closer to 1, then the trend component will
be modified at every step by the corresponding forecast error. Roughly speaking, considering the value of
the seasonal smoothing parameter δ, a similar effect as with the trend smoothing parameter can be observed.
When the value of the parameter δ gets closer to 0, the seasonal component for a certain point in time will be
identical to the predicted value for the same time observation during the previous seasonal cycle(s). When
the value of δ is equal to 1, then the seasonal component is modified at every step by the corresponding
forecast error (Zahedi, 2008).

To optimize the parameter values for the exponential smoothing models, an optimization method is used
that consists of a function solver and a Key Performance Indicator (KPI) which tries to find a value for the
parameters such that the value of this KPI is minimized. To see whether the use of different KPIs will result
in better forecasts, several KPIs are tested: Mean Absolute Percentage Error (MAPE), Weighted Absolute
Percentage Error (WAPE), Root Mean Square Deviation (RMSD) and the Symmetric Mean Percentage
Error (SMPE) (variant of the SMAPE). All of these are formulated below. Within these formulas, yt is the
observed value at time t, St the forecasted (smoothed) value at time t and n the number of observations.

MAPE =
1

n

n∑
t=1

|yt − St
yt

|

WAPE =

∑n
t=1 |yt − St|∑n

t=1 yt

RMSD =

√∑n
t=1(St − yt)2

n

SMPE =

∑n
t=1 St − yt∑n
t=1 yt + St

Depending on the exponential smoothing method and the KPI that are used, the optimal value(s) for
the parameter(s) will be determined. Therefore, a function solver tries to minimize the error between the
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observed value yt and the smoothed value St by tuning the parameter values within the allowed interval
(only values between 0 and 1 are allowed). The resulting minimization problem can be formulated as:

Minimize KPI
s.t. 0 ≤ α ≤ 1

0 ≤ γ ≤ 1
0 ≤ δ ≤ 1

To solve this minimization function, a Sequential Least SQuares Programming (SLSQP) solver with a
step size of 0.05 used for the numerical approximation from the Scipy package of Python has been used.

5.1.2 Autoregressive Moving Average (ARMA)

An Autoregressive Moving Average (ARMA) time series model is used to forecast a single time series and
consists of two parts: an autoregressive and a moving average part.

An autoregressive (AR) model expresses a time series as a linear function of its past values. As an input
for these kind of models, the only parameter to provide is the number of lagged past values p that are
included. Looking at the formula of an autoregressive model of order p, i.e. an AR(p) model, this can be
generally formulated (by recursive substitution) as:

Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + εt, εt ∼ WN(0, σ2
ε ),

where Xt is the value of the observation of the time series at time t, φp the autoregressive coefficient of lag
p and εt the error term at time t. The term WN stands for a white noise distribution (whose characteristics
will not be discussed in this research).

The second part, the moving average (MA) model, is a variant of an ARMA model in which the time
series is regarded as a moving average (unevenly weighted) of a random shock series εt. The only input
parameter for moving average models is the number of the time lag q on the error terms (also called the
residuals) (Meko, 2009). Considering a moving average model of order q, a MA(q) model, the model can be
generally formulated as:

Xt = εt + Θ1εt−1 + ...+ Θqεt−q, εt ∼ WN(0, σ2
ε ),

where Xt is the value of the observation of the time series at time t, Θq the moving average coefficient on
lag q and εt the error term at time t.

From the models above, a combined model can be created by combining the lagged terms (on the time
series itself (AR) and on the error terms or residuals (MA)). The resulting model is called the Autoregressive
Moving Average (ARMA) model. The generic formula of an ARMA(p,q) model can be formulated as:

Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + εt + Θεt−1 + ...+ Θqεt−q, εt ∼ WN(0, σ2
ε ),

, where φ1,...,φp, Θ1,..., Θq are the autoregressive and the moving average coefficients of lag 1, ..., p and
1, ..., q respectively.

23



Stationarity
Many time series show trends and/or seasonal behavior. This trend and seasonality components affect the
value of the time series at different moments. This means that the mean and variance of the time series are
time dependent. In other words, the joint probability function of the time series process changes over time.
Time series that showing such behavior are called non-stationairy.

Most time series models, including ARMA models, assumes that this property is not in the time series
that will be forecasted (Coghlan, 2010). In other words, those time series models assumes the input time
series to be a stationary process. Looking at the definition, a time series process is said to be (weakly)
stationary if the first and second moment are time invariant (Stigler, 2014):

E(Xt) = µ,∀t

V ar(Xt) = γ0 <∞,∀t

Cov(Xt, Xt−k) = γk,∀t,∀k

To check those conditions, a so called ‘unit root’ test can be used (which will not be explained in this
report, for more info see (Hyndman and Athanasopoulos, 2014)). This kind of test is designed for determining
whether a time series is stationary or not. In this research the Augmented Dickey Fuller test is used with
a 5% significance threshold. When the outcome of the test shows that the time series is non-stationary (so
one of the conditions above does not hold), the stationary condition often is enforced by differencing the
time series. The differenced series is the change between consecutive observations in the original series, and
can be written as (Hyndman and Athanasopoulos, 2014):

X ′t = Xt −Xt−1,

where Xt is the observed value at time t and X’t the differenced value at time t.
After the time series is differenced, once again the stationary conditions have to be checked to see whether

the resulting time series is a stationary process. If this is not the case, then the time series has to be differ-
enced once again etcetera.

Model estimation
When forecasting with ARMA models, first the time series should be stationary. When this is the case,
the parameters p and q of the ARMA(p,q) model have to be estimated. To do this, two measures, called
Information Criterion (IC), are used: the Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC). Those information criteria can give an indication of the goodness-of-fit of the model with
respect to the data. When looking at the output of both information criteria, the model with the lowest AIC
or BIC will be chosen. Both criteria charge a penalty for the use of too many parameters p. The measures
are defined as:

AIC(p) = n log σ̂2
p + 2p

BIC(p) = n log σ̂2
p + p log n,

where n is the sample size, p the total number of parameters estimated and σ̂2
p = RSS/(n − p) (where

RSS is the residual sum of squares). The residuals, σ̂p, are calculated by taking the difference between the
observed value at time t and the fitted value. Then, to calculate the RSS, the sum of the squared residuals
will be calculated:

∑
ε̂2t . When looking at those both criteria, these goodness-of-fit criteria are ‘like’ the R̂2

or minimum σ̂2-type criterion (Maddala, 1992).
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5.1.3 Decomposition of the time series

Although the ARMA and exponential smoothing models can detect trend and seasonality (only exponential
smoothing models), also a decomposition method has been considered to see whether this could improve
the forecasts. For the seasonality component that is detected, a weekly pattern is considered. For ARMA
models, this method can help to improve the forecast, because of the method itself is not designed for
detecting seasonality patterns. Considering the exponential smoothing models, the decomposition method
does not fully take over the detection of a seasonal component. Since the decomposition method, as we use it,
only detects weekly seasonality, (seasonal) exponential smoothing models could still be useful for detecting
month or year seasonality.

The decomposition method, hence the name of the method, decomposes the time series into three com-
ponents: trend, seasonality and an error component. An example of such a decomposition of a time series
can be found in Figure 5.1. The motivation for the use of this decomposition method is that experience from
Bokern and Mulder, this method estimates the seasonal effect well (Bokern and Mulder, 2015).

First the trend of the time series will be determined by taking a moving average over the time series.
This moving average considers a symmetric window with the length of the predefined frequency of the data.
The frequency of the data, that is used for this research, is equal to 7 (daily data). So the moving average
at a certain day x, will be the average of the values at times x− 3, x− 2,..., x+ 2, x+ 3.

After the trend component of the time series has been determined, it will be removed from the time
series. Next, from the resulting time series the seasonal component will be determined. This will be done
by taking an average for each specific time unit in the frequency period of the data over all periods. For
example, considering the Monday, the value of the seasonal component for the Mondays will be the average
over all Monday values.

Finally, the error component is determined. For this the determined trend and seasonal component will
be subtracted from the original ‘raw’ time series. The resulting series is considered to be the error component.

Figure 5.1: Decomposition of the time series of Flight KL0409 Amsterdam (Netherlands) - Almaty (Kaza-
khstan)
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5.1.4 Forecast run design

To be able to determine what set of parameters performs best for a particular flight, a scenario analysis will be
performed. In fact, during this analysis a grid search is performed over all possible scenarios (all combinations
of predefined parameter values). Considering the parameters last date and amount of history, forecasts of
different moments in time can be created by cutting off the time series. The initial guess parameter gives
a start solution for searching for the optimal parameter settings when estimating an exponential smoothing
model. Taking different initial guess values for those exponential smoothing parameters, can prevent the
model ending up in a local optimum. Finally, looking at different forecast error key performance indicators
might give different forecasting results, hence each of those methods determines the accuracy of the forecast
in another way. It turns out that it is not the case that a particular forecasting method will always perform
better than another, when comparing forecasts for different flights.

To be able to determine in advance the set of starting parameter values that performs best for a specific
flight at a specific moment in time, all (user defined) scenarios will be used to forecast the past 10 days.
Next, the WAPE KPI is used to score the different methods. Therefore, the forecast for the past 10 days
are compared with the actual flown cargo of the last 10 days. In that way, the ‘best’ performing forecasting
model and scenario combination can be determined for each individual flight. Those ‘best’ settings will then
be used to forecast the cargo workload for the coming 10 days.

Considering the implementation of the forecast run, the forecasting code has been developed on an
Hadoop cluster in combination with the use of Spark (open source engine for processing big data) and the
programming language Python. To be more specific, the generic forecasting component has been developed
in Python and the Hadoop cluster and Spark are used to do the actual computation. This computation of
the forecasts for all single flights has been done in parallel. In this way, the computation power of the cluster
will be fully exploit and the run time will be much lower.

5.2 Forecast on booking data

In addition to the forecast based on historical flight data, also a forecast based on booking data has been
created. The advantage of using booking data compared to the historical flight data is that booking data
contains actual and more detailed information about the workload that can be expected at the day of
operations. To create such a forecast, a simple linear regression model (see Section 5.2.1) has been used to
estimate the final weight that will be delivered at the Schiphol Cargo Hub of all bookings made up to a
specific Days Before Departure (DBD) x. In other words, the model tries to estimate the materialization of
the bookings at DBD 0. To estimate this materialization of all bookings made up to a certain DBD x (called
Bookings at hand), the model searches for a linear relationship between the booked and the actual weights
of the bookings made based on bookings from the past. With the resulting relationship, the materialization
of future bookings will be predicted.

When ‘knowing’ the materialization of bookings at a certain DBD, one should also keep in mind that
there are still bookings to be made. So, in addition to forecasting the final materialization of a booking, also
an estimation has to be made of total weight of future bookings. For this estimation also a linear regression
model will be used. In this case the model tries to find a relationship between the bookings that are made
up to DBD x and the overall total weight of all bookings (also incorporating the bookings that are made
after DBD x ) that will depart at DBD 0.

Next to the booked weight that is in the booking data, a more accurate estimate of the materialization
of the booking is already available before the booking arrives: Opportunity Assessment (OA). This is a tool,
made by Air France colleagues, which predicts the materialization of a booking based on specific booking
characteristics. The underlying forecasting technique is a decision tree algorithm that is trained on one
year of historical booking data. This forecast could help to improve the forecasting accuracy of the booking
forecasts. To see whether this is indeed the case and to see whether OA might be an enrichment to the model,
a comparison is made between the booked weight and the forecasted materialization by OA. However, if it
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turns out that the OA data improves the model, the final booking forecast (for the moment) will still be
based on booking data. This has to do with the limited amount of OA data that is available (only two
months versus almost a year of booking data).

5.2.1 Simple linear regression

A simple linear regression model tries to determine a (linear) relationship between an explanatory or predictor
variable x and an explained or response variable y. This relationship can be formulated as

y = α+ βx+ u,

where u is called an error term, α the intercept and β the slope coefficient of the regression line.

To estimate the regression coefficients α and β, a least squares method is used. This method tries to
minimize the sum of squares between the observed value y and a predicted value x. In other words, the
method of least squares tries to find a value for α̂ and β̂ (estimators for α and β), such that the sum of
squares Q will be minimized. This sum of squares Q is defined as:

Q =
n∑
i=1

(yi − α̂− β̂xi)2,

where n is the number of observations.
In Figure 5.2, an example of a sample of observations and an estimated regression line is given. The

combination of the text above together with this figure provides an easy understanding of how the simple
linear regression method works. Also the different parameters are visually explained in the figure.

Figure 5.2: A sample of observations and an estimated simple linear regression line
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Chapter 6

Data

In this chapter the data that is used will be described. Then the data analysis will be presented, to get more
insights into the data that is used.

6.1 Data Description

For this study we used two main data sources: Flight data and Booking data. The flight data is obtained
from the French part of the Operations Research Department of AFKL. The booking data has been retrieved
from the RM Cargo department of AFKL. The origin and content of both data sources will be described
below.

6.1.1 Flight data

The Flight data contains details about all flights from the beginning of 2010 until September 2015. Looking
at this historical flight data, the data includes fields like: flight number, aircraft type, origin and destination
of the flight and the total amount of cargo (in weight and volume) that has been transported. For all
fields that are in the data, see Appendix A, Table A.1. Because the flight data is post departure data, it
is considered to be accurate. We emphasize that this data source contains ICA flights (transporting cargo
intended for freight building 2 and 3), but no EUR flights transporting cargo intended for freight building 1.

From the flight data source more insight can be retrieved into the cargo demand fluctuations throughout
the different seasons (high and low season) and even throughout the week. Furthermore, the historical flight
data gives information about the expected workload that can be expected in the future. It is obtained from
the RM Cargo department (not directly from a data system). The RM department itself obtains information
about cargo that has been transported from a database system (called Altea). With this information RM
creates a flight data file which incorporates this data enriched with some calculations.

OAG data
Official Airline Guide (OAG) provides up-to-date and highly accurate flight schedule information of more
than 900 airlines all over the world. This information can be used to get insight into the flight schedules of
other carriers. With respect to the forecasting part of this study, flight schedule information provided by
OAG provides high valuable information when creating flight forecasts. For example, when it is known that
a flight X does only fly on Mondays and Wednesdays, cargo demand forecasts created for all other weekdays
can be set to 0. This will lead to an overall improvement of the forecast performance. An overview of all
the data fields that are in the OAG scheduling data files can be found in Appendix A, Table A.2.
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6.1.2 Booking data

The booking data contains all information of the incoming bookings that have been made after December
2014. Booking information contains information about the amount of cargo (in weight and volume), the
origin and destination of the cargo, the product that will be transported, etc. All the fields in the booking
data are summarized in Appendix A, Table A.3. This booking data can be valuable for KLM Cargo helping
them estimating the expected workload at the Schiphol Cargo Hub at a certain day in the near future.
In contrast to flight data, where only historical data is available, booking data also provide the analysts
with ‘actual’ information about future bookings. Furthermore, this booking data contains more detailed
information such as product code and whether a booking has been canceled during the booking period.
Before any analysis on the data has been done, it is important to make clear where the data originates from.
In Figure 6.1 a schematic overview is given about the data warehouse used for bookings.

Figure 6.1: Origin booking data

First of all, there are the two cargo booking tools of AFKL. Air France Cargo bookings are made in
‘Pelican’, the French cargo booking tool. At KLM Cargo there is a similar booking tool called ‘Cargoal’.
Both systems were operating independent from each other until the second half of 2015, when Accenture
Freight & Logistics Software (AFLS) integrated both systems. Ever since, both of the systems feed the
AFLS system with their booking data. Beside feeding AFLS, also a system called ‘CHAIN’ is fed by both
‘Pelican’ as well as ‘Cargoal’. The CHAIN system, is a system used by the Cargo Operations Department
to track all the cargo from the moment the cargo arrives to the moment the cargo departs. In this ‘CHAIN’
system, updates on the cargo bookings will be registered when the actual cargo shipment differs from the
original booking. At the moment, this update information is not available at the AFLS system. This part
of the integration process will be finished in the first half of 2016.

The last remaining data source is the ODS database. This database is updated a couple of times a day
and contains a copy of the AFLS database. The ODS database is also the data source that has been used
for this study. In the future, when CHAIN is fully integrated with the AFLS system, the ODS database will
contain more reliable and up-to-date information. In the end, this will result in a more reliable analysis in
the future.
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6.1.3 Data quality

Considering all data sources that have been used, we should keep in mind the reliability and the completeness
of the data. First of all, the flight and the booking data sources used for the forecasts both have their
advantages and disadvantages. Considering the reliability of data, the flight data is more reliable than the
booking data source. The reason for this is that the flight data source contains post departure data and
therefore this source is more accurate in comparison with the pre departure booking data source (where still
updates on the data can be made). Because the booking data is pre-departure, it is not always the case that
the final materialization of a booking is known. Therefore, the last known booked weight of a booking is
considered to be the final materialization. This is also the value used for scoring the forecast accuracy.

Looking at the completeness of the data, it turns out that the booking data source is more complete.
This can be explained by the fact that the flight data only contains ICA flights and therefore misses all
European flights. Both the reliability as well as the completeness of those data sources should be kept in
mind when looking at the final results.

6.2 Data Analysis

To be able to create a forecast based on the data sources described above, an initial analysis has been done
to get some feeling for the data. For this first analysis only AF, KL and DL flights are considered, because
those are the only carriers whose cargo will be handled by the Schiphol Cargo Hub. Furthermore, differences
among the summer/high season (April to September) and the winter/low season (October to March) have
been considered.

6.2.1 Flight data analysis

In Figures 6.2 and 6.3 a closer look has been taken at the number of flights (that contain cargo) that arrive
and depart from Amsterdam Schiphol Airport and the amount of cargo that has been processed. From this
figure, several conclusions can be drawn.

First, around new year we can observe a drop in the data, considering the total sum of cargo that departs
from AMS. Furthermore, at the 17th of June an outlier in the data can be identified when looking at the
AMS arrival graph. However, in contrast to the cargo weight break at the beginning of 2015, there is no
clear explanation for this second observation. When looking at the number of flights, also an outlier is
noticeable. Since no reasonable explanation could be found from the business perspective regarding those
strange results, those observations can be seen as outliers in the data.

Secondly, looking at the differences between summer and winter season it seems that during summer
season more aircrafts are coming to AMS. A reasonable explanation for this is that during the summer
season more people travel by air due to the summer holidays. We can conclude this from the fact that the
total amount of transported cargo stays more or less the same, where the number of aircrafts increase.

Because no analysis with respect to carrier level can be performed, we looked a bit more into detail
at carrier level. From these results, insights can be obtained into the average number of aircrafts that
arrive/depart from AMS during the different days of the week. Again, we have done this analysis for both
summer as well as the winter season. From the resulting Figure 6.4, the overwhelming amount of KL flights
is something that can be directly concluded. Furthermore, the number of AF flight can more or less be
neglected. The low number of AF aircrafts can be explained by the fact that cargo destined for AMS, will
(almost) always be transported by KL. Moreover, when cargo intended for AMS arrives at CDG, the cargo
will most of the time be trucked to AMS instead of transported by aircraft.

Another interesting observation is the shift of the cargo peaks. Looking at the arrival peaks (Thursdays
and Saturdays) and looking at the departure peaks (more on the Fridays and Sundays) we can notice a
shift of one day. Roughly speaking, this means that the aircrafts that are coming in, leave the day after.
Considering the overall average (blue dotted lines), the average number of aircrafts arriving and departing
from AMS are more or less equal (what we would expect).
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Figure 6.2: Number of aircrafts (AF, KL, DL) and amount of cargo that arrives at Amsterdam Schiphol
Airport

Figure 6.3: Number of aircrafts (AF, KL, DL) and amount of cargo that departs from Amsterdam Schiphol
Airport

Considering the average amount of arriving and departing cargo from Amsterdam Schiphol Airport, an
interesting observation based on Figure 6.5 is the relatively large difference between the incoming and outgo-
ing amount of cargo. This can also be observed by looking at the averages (blue dotted lines) again. Looking
at the amount of cargo that arrives at AMS, there is a slight peak noticeable on Saturday. Considering the
outgoing cargo, the weight of cargo increases throughout the week and most of the cargo leaves AMS during
the weekend. Between summer and winter season, the average amount of cargo transported per week seems
to be higher during summer season. A last interesting thing that can be concluded from this figure is the
difference of the arriving and departing cargo at AMS that has been transported by Delta Air Lines (DL)
(airline which has entered into joint venture with AFKL). Looking at the incoming and outgoing amount

32



Figure 6.4: Average number of arriving and departing aircrafts from Amsterdam Schiphol Airport split by
carrier and season

of cargo transported by DL, the incoming amount of cargo can almost be neglected in comparison with the
outgoing cargo. An explanation for this could be that airlines often transport more cargo to their own hubs.

Figure 6.5: Average amount of arriving and departing cargo (kilograms) from Amsterdam Schiphol Airport
split by carrier and season
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6.2.2 Booking data analysis

Booking data give pre-departure information of the workload that can be expected for a certain departure
date in the near future. From the moment that the booking window for a future date opens, cargo bookings
come in. To get some feeling of how bookings show up at the warehouse, an analysis has been performed
on historical booking data. In this analysis, the latest booking weight update is considered to be the actual
(or manifest) value. First an single booking performance analysis has been performed to see how booking
show up at the day of operations with respect to its booked weight value. Second, there has been looked
at the booking behavior of people; at what days what portion of bookings are made for a specific day of
departure. Finally, also an analysis has been performed on the transit time of the cargo bookings. The
transit time is the time between the arrival of the booking at the warehouse and the time the booking will
leave by flight/truck.

Show up rate
In Figure 6.6 a scatter plot is made of the manifest value of a single booking versus the booked weight value.
Each data point represents a single booking made x days before departure (DBD) for x = 0, 1, 2 and 3. In
this analysis only bookings that were made at least three days before the day of operations were considered,
to make a fair comparison between the different DBDs. In Table 6.1 the results are shown in numbers.

Based on the results that can be obtained from the table, it seems that there is a lot of probability
mass on the diagonal. On this diagonal are all bookings whose booked weight is equal to the actual weight.
From Figure 6.6, we can observe that as the day of operations approaches more data point move to this
diagonal. Therefore, we can conclude that the estimate of the bookings become more accurate, in comparison
with the manifest weight, when the day of operations approaches. This can be due to bookings that are
updated during the booking period (or even canceled). Considering the table we can see that when the
day of operations approaches, the percentage Show increases and both the percentages High and Low shows
decrease. These results emphasize the conclusions based on Figure 6.6.

Figure 6.6: Booked versus Actual weight for 0, 1, 2 and 3 days before departure

To get a more clear overview of the differences between the booked weight and the actual weight of a
booking, we performed an analysis on the weight error. The weight error is defined as the booked weight
minus the actual weight. For this analysis the same data as before is used, so only the bookings that were
made at least 3 days before the day of operations were considered. From all the weight errors, the distri-
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Dmin ShowUpStatus Number of AWB Percentage

0
High Show 1949 0,35 %
Low Show 2974 0,54 %

Show 544701 99,10 %

1
High Show 24113 4,39 %
Low Show 52598 9,57 %

Show 472913 86,04 %

2
High Show 54422 9,90 %
Low Show 115387 20,99 %

Show 379815 69,10 %

3
High Show 72701 13,23 %
Low Show 151483 27,56 %

Show 325440 59,21 %

Table 6.1: Summary show up status bookings

bution can be visualized in a histogram. The error distributions for the different days before departure are
shown in Figure 6.7. Because some huge outliers were present in the data which blew up the histogram,
we left them out of the figure. Within the histogram plots, the distinction between the different show up
statuses (high show, low show, show) are made by coloring them. Furthermore, the average error as well as
the origin are marked by a vertical line. Also the value of the average weight error is stated in the figure.
From those results, one can observe that average weight error value is negative and gets closer to 0 as the
day of operations approaches. This would imply that overall a higher percentage of the bookings will be a
low show, because a negative weight error means that the booked weight is higher than the actual realized
weight. Obviously, this is the same as was observed from Table 6.1. In addition to the average weight error
that decreases when the day of operations approaches, also the shape of the distribution gets more concen-
trated around the perfect weight error of 0. This implies that the booking information gets more accurate
over time (due to updates made on the bookings).

Booking behavior
To get a feeling for the overall booking behavior, a scatter plot has been created (see Figure 6.8) of the
bookings that are made until day of week x for departure day of week y for all departure dates of 1st
of January until 30th September. For example, considering departure day Monday, a scatter plot has been
created of all bookings that are made for that specific Monday at the Tuesday, Wednesday,..., Sunday before.
So looking at a specific data point on the horizontal axis the sum of all bookings made up to a specific booking
day of week is stated (called the Bookings at hand), where on the vertical axis the total final amount of
cargo is stated. This total final amount of cargo includes both the bookings made as well as the bookings
to come.

Looking at the figure, a logical pattern can be recognized. When the day of departure approaches the
bookings at hand gets closer to the total final amount of cargo. Furthermore some ‘outliers’ are observed
which are distanced from the rest of the data, for example the data points at the 1.2M line in the Monday
figure. Zooming in on those points showed that these outliers were all departure dates that occurred in the
first week of January, so the low amount of transported cargo can be an aftereffect of New Year.

However, a more interesting thing that can be observed from the figure is that in general there is a little
gap noticeable between DBD 1 and DBD 2. Except for the departure weekdays Sunday and Monday, where
this effect is not there. This implies that at DBD 1 still a lot of bookings are made for the day of departure.
This could be due to the fact that for departure days during the weekend (Sunday) or right after the weekend
(Monday) bookings will be made before the start of the weekend (so longer in advance).
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Figure 6.7: Weight error distribution for 0, 1, 2 and 3 days before departure

Figure 6.8: Booking behavior per departure day (colored by booking day of week)
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Transit time
When approaching the day of operations, more and more bookings will arrive at the Schiphol Cargo Hub
warehouse. Currently, KLM Cargo has the idea that the cargo that misses their connection arrives just before
the deadline, such that there is not enough time to handle this cargo. With the help of the so called CHAIN
universe, insight can be gained into the transit times of all bookings. This CHAIN universe is a database in
the data warehouse containing data from the CHAIN application, a system that tracks the cargo from the
moment it arrives at the Schiphol Cargo Hub until it leaves the warehouse (see Figure 6.1). Furthermore,
based on this data, a distinction can be made between on time and out of time bookings. The results can
be found in Figure 6.9.

The figure contains all bookings that were handled by the Schiphol Cargo Hub in March 2015 sorted by
the booked day of departure. There are two vertically oriented grey lines plotted. Those lines represent the
5 and 24 hour moments before the departure time of the booking. In general, KLM Cargo uses an ultimate
deadline for a booking to be on time if it arrives at least 5 hours before departure. The 5 hours are necessary
to make sure the cargo will be on time for its connection (think of performing security checks, processing the
cargo and transport and load the cargo into the trucks and aircrafts). Because of the short transit time, the
cargo that arrives at the warehouse less than 24 hours before departure is called Hot cargo. On the opposite,
if transit time is longer than 24 hours, the cargo is called Cold. In terms of planning, when processing what
cargo, Cold cargo could be processed at a later stage compared to Hot cargo which has to be processed as
soon as possible.

Looking at the bookings that are on time, the great majority of those bookings arrive at the warehouse
a day before departure. Due to this late arrivals, the workload will be high for the Cargo Operations
department, because all those bookings have to be processed right away. Only for the Mondays and Sundays,
most of the bookings arrive more than one day in advance. Both conclusions are consistent with the results
we obtained earlier from Figure 6.8. An explanation for the different behavior of the booking arrivals for the
Mondays and Sundays, is that suppliers transporting their goods before the start of the weekend. This can
be due to closed distribution centers of the suppliers during the weekend or more expensive storage costs at
third parties over the weekend. This phenomenon is strengthened by the figures of the Saturday, Sunday and
Monday. On the Saturday a high peak can be observed of bookings arriving within the last 24 hours before
departure. For the Sunday there are a lot of bookings arriving at the last 48 hours and for the Monday a
lot of bookings arriving even longer in advance.

Looking at the out of time bookings, a remarkable thing can be observed. It seems to be that most of the
bookings that arrive too late for their connection, are already in the warehouse (or in the PCHS to be more
precise) more than one day in advance. Based on this conclusion, it would be an interesting thing to see
whether those bookings are out of time because of a shortage of resources or that this is more of a planning
problem. This is out of the research scope of this thesis.
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Figure 6.9: Transit time distribution (colored by hot (arriving ≤24 hours in advance) and cold (arriving ≥24
hours in advance) cargo
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Chapter 7

Results

In this chapter the results from the forecasting models will be described. Furthermore, for the forecast based
on flight level (see Section 7.1), a scenario analysis has been done to see what will be proper settings for
the forecast model. To be able to analyze the performance of the forecast accuracy, a period from the past
(third week of August, 2015) has been forecasted and compared to the actual observations.

For the booking forecast model (see Section 7.2), a comparison has been made of the differences between
the two booking data sources: ODS and OA.

Looking at the results, we should keep in mind the completeness and reliability of both data sources (as
described in Section 6.1.3). Care is required when comparing the final results. Since, at the time of this
research, there were no clear business rules for splitting the total forecast into a forecast per freight building,
there has been chosen (in consultation with the PRI department) to just create a forecast on board point
and off point level.

7.1 Flight forecast

To take a look at the performance of each of the forecasting methods, a forecast run has been performed.
Within this forecast run, a 10-days ahead forecast has been made for all flights that have flown after the
10th of August 2015 (taken into account 12 months of history and using an initial guess value of 0.5 for the
exponential smoothing parameters). From those forecasts a comparison can be made between the different
forecasting methods. The meaning of the method abbreviations can be found in Appendix B.

First, we take a look at an example of a single flight forecast (where just a subset of all forecast techniques
used are plotted). This example is shown in Figure 7.1. From this example figure, it is easy to see at what
days this specific operates. In this case, from the OAG data source, we know that that this flight is not
operating on Mondays, Thursdays and Saturdays. Therefore, the forecast has been corrected to zero for
those days.

Second, from the figure there can be observed that the forecasting methods all have a ‘problem’ with
creating an accurate forecast for the Wednesdays. This could be due to schedule changes throughout the
year (a similar example will be discussed in more detail in Section 7.1.1).

Next, an analysis of the best forecasting method based on the forecast accuracy can be done for all
different flight forecasts. To calculate the forecast accuracy the WAPE has been used. The justification for
using this criterion to score the accuracy of all forecasts, is that it can handle zero values in the actuals
(MAPE cannot), is a relative measure (RMSD says something about the absolute deviation error) and is
also relatively well protected against outliers (SMPE cannot handle outliers in the forecasts that cancel each
others error). Therefore this error KPI will be used for computing the forecast accuracy. Considering the
example, the WAPE value of the best performing forecasting method (exponential smoothing model with a
damped multiplicative trend and no seasonal component) is 21,8%.
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Although, for this example and with those specific parameter settings the forecasts perform well, there
is no guarantee that this will also hold for other flight forecasts. Therefore, a scenario analysis will be done
to see what the impact on the forecast accuracy will be of different sets of parameter settings. This will be
discussed in Section 7.1.2.

Figure 7.1: Flight KL0409 Amsterdam (Netherlands) - Almaty (Kazakhstan)

7.1.1 Raw versus decomposed time series

As mentioned in Chapter 5 (see Section 5.1.3) a time series will always be deseasonalised upfront, by using a
decomposition method. To measure the impact of this deseasonalizing of the time series upfront, an analysis
has been performed between forecasting raw and decomposed time series. As an example, flight KL0884
which flies from Xiamen to Amsterdam has been considered. The results of both forecasts are shown in
Figures 7.2 and 7.3. Between brackets the best forecasting method for the flow has been stated. For this
comparison we used a default scenario: 12 months of history, a guess value of 0.5 and the WAPE as error
KPI.

Considering the operating days of flight KL0884 itself, it seems that this flow shows seasonal behavior.
Therefore, both forecasts are corrected for the non-flying weekdays (Tuesday, Thursday, Saturday and Sun-
day). Looking at the overall forecast of both methods, it seems that the forecast for the Wednesday is most
of the time too low. An analysis on the historical observations of all Wednesdays of the last 12 month shows
that this particular flight only operates on Wednesdays during the summer season (see Figure C.1, Appendix
C).

Looking at the accuracy of the forecasts, just by looking at the figure, it seems that the forecast based
on the decomposed time series performs better. To compare the both approaches, the WAPE values of the
best performing forecasting methods are compared. The results can be found in Table 7.1. In this example,
the forecast is more accurate for the time series that first has been decomposed upfront. Because the same
analysis for other flows with more variation in the amount of transported cargo showed similar results (see
Figures C.2 and C.3, Appendix C), we decided to always decompose the time series upfront.
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Figure 7.2: Raw (M A): Flight KL0884 Xiamen (China) - Amsterdam (Netherlands)

Figure 7.3: Decompose (A M): Flight KL0884 Xiamen (China) - Amsterdam (Netherlands)
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Time series Best method WAPE
Raw M A 20.36%

Decomposed A M 15.2%

Table 7.1: Raw versus decomposed time series

7.1.2 Scenario Analysis

To be able to determine which forecasting technique in combination with what scenario (see Section 5.1)
performs best when forecasting a particular flight, different scenarios and forecasting methods have been
tested on the period of 11 - 20 August, 2015. The resulting forecasts will be scored based on their forecast
accuracy. Finally, the best scenario and forecasting model will be used to forecast the next 10 days. In
Figure 7.4 the best forecast are shown for the for flight KL0597 which flies from Amsterdam (Netherlands)
to Cape Town (South Africa). Furthermore, the actuals for that period are shown in the figure as well. The
top 20 best results from this analysis, colored by error rate brackets of 0.1%, can be found in Table 7.2.

For this particular case, the best forecasting model is an exponential smoothing model with a damped
additive trend and an additive seasonal component, considering 12 months of history, the RMSD as error
KPI to estimate the exponential smoothing parameters starting with an initial guess value of 0.50. The
WAPE corresponding to this best scenario/forecasting method combination can also be obtained from the
table and has a value of 9.76%. Furthermore, the WAPE values of the top 20 best scoring methods are
within a range of 0.5% (the error range runs from 9.76% - 10.18%).

Figure 7.4: ‘Best’ Forecast vs Actuals - Flight KL0597: Amsterdam (Netherlands) - Cape Town (South
Africa)
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Best Method
Amount of

History
Error KPI

Initial guess
value

Error Rate
(WAPE)

DA A 12 RMSD 0.50 9,76%
DA A 9 WAPE 0.30 9,76%
DA A 12 WAPE 0.80 9,81%
A N 12 SMAPE 0.30 9,87%
M N 12 SMAPE 0.30 9,87%
N N 12 SMAPE 0.30 9,87%
A N 12 MAPE 0.80 9,89%
M N 12 MAPE 0.50 9,89%
M N 12 MAPE 0.80 9,89%
N N 12 MAPE 0.30 9,89%
N N 12 MAPE 0.50 9,89%
N N 12 MAPE 0.80 9,89%
A N 12 MAPE 0.30 9,91%
A N 12 MAPE 0.50 9,93%
M N 12 MAPE 0.30 9,93%

DA A 12 RMSD 0.30 9,96%
DA A 12 RMSD 0.80 10,01%
M A 12 RMSD 0.80 10,03%
N N 12 RMSD 0.50 10,17%
N N 12 WAPE 0.30 10,18%

Table 7.2: Scenario analysis KL0597: Amsterdam (Netherlands) - Cape Town (South Africa)
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Case studies
To get a feeling for the impact of using different forecasting methods, we performed some case studies to
see which method would perform best and in which situation. This analysis should give an indication of
which forecast model would perform best for different types of time series (highly seasonal and more variable
time series). Three different cases are identified below. For each case the corresponding time series has been
plotted (orange line represents the realized weight for the forecasting period that has been considered). Also,
a subset of the best forecast methods are plotted against the observed value.

Case 1: ‘new’ flows - DL0230: Boston (United States) - Amsterdam (Netherlands)

Considering the flight history of flight DL0230, we can observe that this flight just started flying from
the beginning of July 2015. Looking at the behavior of the time series, there is no direct seasonal pattern
observable (see Figure 7.5). Therefore we expect that the best performing model will be a model considering
at most 3 months of history and incorporating no seasonal component. From the WAPE values of the differ-
ent forecasting methods, we can conclude that the best performing model is an exponential smoothing model
with a multiplicative trend and (as expected) no seasonal component. The corresponding WAPE value is
34,71% (with a top 20 error range running from 34.71% - 38.09%).

Figure 7.5: Flight DL0230 Boston (United States) - Amsterdam (Netherlands), M N - WAPE of 34.71%
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Case 2: seasonal flow - KL0574 Dar es Salaam (Tanzania) - Amsterdam (Netherlands)

Looking at flight KL0574, the historical flight data contains different patterns during the year. Until March,
the time series shows a kind of random behavior. From March until the second half of June, it seems that a
more seasonal pattern shows up. Towards the end of the time series, the distances between the peaks from
this seasonal pattern are shrinking. An explanation for this could be that the frequency of the flight changes
and more flights have been carried out. Because the pattern, that seems to change during the year, we would
expect that the best performing forecasting method should take into account a small amount of history and a
seasonal component. This expectation has been confirmed by the forecasting figure, in combination with the
WAPE scores, from which can be obtained that an exponential smoothing model with both a multiplicative
trend as well as a multiplicative seasonal component performs best with a WAPE value of 18.85% (with a
top 20 error range running from 18.85% - 38.16%).

Figure 7.6: Flight KL0574 Dar es Salaam (Tanzania) - Amsterdam (Netherlands), M M - WAPE of 18.85%
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Case 3: more variable behaving flow - KL0438 Abu Dhabi (United Arab Emirates) - Amsterdam (Netherlands)

For the last case, flight KL0438 has been considered, a flight that is operated throughout the whole year (see
Figure 7.7). Looking at the time series of the transported cargo weight, this time series has a highly variable
behavior. No real seasonal component can be detected visually. Therefore, we assume that a forecasting
model without seasonal component would perform best. Inspection of the figure also suggests that there is a
rapidly fluctuating, non constant trend. So probably the best performing forecast model does not contain a
trend component. From the computed WAPE values per forecasting method, we can obtain that an ARMA
model fitted by using an Akaike Information Criterion (AIC) (number of AR and MA lags of respectively 4
and 2) and with a non constant trend component performs best (WAPE value of 9.46%). The error range
of the top 20 best performing methods runs from 9.46% - 11.27%. Looking at the amount of history that
has been taken into account by the model, a history of 6 months performs best.

Figure 7.7: Flight KL0438 Abu Dhabi (United Arab Emirates) - Amsterdam (Netherlands), ARMA aic nc
- WAPE of 9.46%
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Case 4: counter example flow - KL0438 Abu Dhabi (United Arab Emirates) - Amsterdam (Netherlands)

From the previous cases, we can not conclude that it is always possible to determine upfront what kind
of model would perform best for the different kinds of time series. It could always be that there are hidden
dynamics in the time series that are better explained by using a completely different kind of forecasting
method as expected. Also, it can happen that the when forecasting ‘new’ data another conclusion about the
best performing forecasting technique can be drawn. To illustrate that it is not always the case that upfront
we can determine what forecast technique will perform best, a counter example has been showed in Figure
7.8. In this example, a highly seasonal flight (from Mexico City to Amsterdam) has been best forecasted
with an ARMA(4,2) model with constant trend (fitted by using an AIC criterion). Furthermore, 12 months
of history were taken into account by this model, while at this period this flight was only operating during
the last 2 months of 2014 and since the beginning of July 2015.

Figure 7.8: Flight KL0687 Amsterdam (Netherlands) - Mexico City (Mexico), ARMA aic c - WAPE of
10.68%
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7.1.3 Aggregated flight forecast

It is obvious that some single flight forecasts are more accurate than others. Aggregating the single flight
forecasts might result in an improvement of the overall forecast accuracy. Considering the full forecasting
scope, looking at all flights that have flown between 11th and 20th of August, first a frequency table can be
made of the overall best performing forecasting methods, see Table 7.3.

Model Specifications Frequency

ARMA
ARMA aic nc 7
ARMA aic c 1
ARMA bic c 1

Exponential Smoothing

M M 53
DA M 19
N M 14

DA N 12
A M 11
M A 10

DA A 9
N N 8
A A 6

DM N 5
N A 4
A N 3

DM M 3
M N 3

DM A 1

Table 7.3: Frequency table of the best performing methods

Considering those results, we can easily conclude that, by far, most of the time an exponential smoothing
model has been used (in 161 out of the 170 cases). Looking at the resulting forecast when aggregating all
single flight forecasts, the total forecast can be obtained (see Figure 7.9) with a WAPE score of only 2.53%.

Figure 7.9: Total day level forecast, WAPE of 2.53%
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The research question of this thesis is to create a forecast per freight building. Thus, the total day
forecast has to be split by dividing the flows in Arrival AMS and Departure AMS flows. The resulting
forecasts for both freight buildings are shown in Figure 7.10, where the Arrival AMS flights are assigned
to freight building 2 and the Departure AMS to freight building 3 (see also Section 2.3.1, Figure 2.5). The
corresponding WAPE values for both freight building forecasts can be found in Table 7.4. As we can observe
from the table, the WAPE for the forecast on day level per freight building are both low, 4% and 2% for
freight buildings 2 and 3, respectively. Looking back at Figures 6.2 and 6.3, a possible explanation for
the difference in forecast accuracy between the freight buildings 2 and 3 can be observed. Looking at the
outgoing cargo (freight building 3) a stronger relationship between transported tonnes of cargo and the total
capacity used (the number of aircrafts) is shown, where incoming cargo (freight building 2) shows a more
or less stable pattern regardless of the capacity used. It could be that the forecasting models that are used
are better able to forecast the amount of outgoing cargo. We conclude that the forecast on flight level could
support the Cargo Operations department estimating the expected workload.

Figure 7.10: Total day level forecast per freight building

Freight Building WAPE
Freight Building 2

(‘Europort’)
4.08%

Freight Building 3
(‘World Port’)

2.09%

Table 7.4: Forecast accuracy per freight building forecast
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7.2 Booking forecast

For the forecast on booking level, first a linear regression model has been estimated for the Bookings at hand
versus the materialization of those bookings. Because from the data analysis (see Figure 6.5) we observed
that there is a significant difference between arriving and departing amount of cargo, this analysis has been
performed for board point (outbound flights containing cargo boarded in Amsterdam) and off point (inbound
flights containing cargo that is offloaded in Amsterdam) to be able to distinguish the incoming and outgoing
cargo flows.

7.2.1 Bookings at hand versus materialization of the bookings

In Figure 7.11 the results of this linear regression for different DBDs (DBD 0 to 3) are shown. An analysis
on all DBDs within the booking window can be found in Appendix C, see Figures C.4 and C.5.

Figure 7.11: Estimated regression line bookings at hand versus materialization, split by board and off point
AMS

Looking at the figure, which contains all booking from the start of 2015, several things can be observed.
First of all, overall there is more outgoing cargo (cargo boarded in Amsterdam) than incoming cargo. Looking
at the slopes (noted as value of b in the figure) as the day of operations approaches, it seems that the slope of
the regression line gets closer to 1 for both board point as off point. This implies that the slope moves to the
slope of the (black) diagonal y(x) = x. On the other hand, the intercept (noted as value of a in the figure)
shows some intriguing behavior: it turns from negative long in advance to positive. The interpretation for
this is that long in advance the model will overestimate the materialization of the bookings at hand. When
the DBD 0 approaches, this overestimation of the model turns into an underestimation. Regarding the
reliability of the estimated regression models, the statistical measure R2 gives an indication of how well the
regression line explains the data. The R2 is defined as:

R2 =
Explained variation

Total variation
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In other words, it gives an indication of how close the data are to the estimated line. The higher the
R2, the better the regression line fits the data. Looking at the R2 values for the different DBDs and for
the different flows (board point and off point AMS), those values seems to be quite high (all above the
90%). Therefore, we can conclude that the corresponding estimated regression lines fit the data very well.
This implies that a couple of days before the day of operations, the materialization of the bookings can be
forecasted quite accurately.

Booking data versus Opportunity Assessment To see whether Opportunity Assessment (OA) could
improve the model, a comparison between the booking error and the OA error has been made. Here, the
error has been defined as the actual materialization of the booking minus the booked weight or the forecasted
weight by OA. In Figure 7.12 the aggregated OA error are plotted against the aggregated booking error for
different DBD. Also, the (black) diagonal and the (red) estimated regression lines are plotted in the figure.
On the horizontal axis we can see the error on booked weight as forecast, and on the vertical axis the error
when using OA as forecast. A first thing that can be observed from the figure, is that a lot of negative errors
implying that overall the sum of the booked weights is higher than the sum of the actual materialization (so
in general people are overbooking). When looking at the Figure we should keep in mind that only data for
the months August and September are presented, due to limited availability of OA data.

Looking at the (red) regression lines, we can interpret these as follows: given a certain error you would
make using the booked weight as forecast, you can compute the error you would make using the OA forecast
as forecast. Since the slope of all red lines are always decreasing, moving to the horizontal axis where the
OA error is zero, it means that in general you are improving. This can also be concluded from the slope
of the estimated regression lines, which is lower than the slope of the diagonal. Interesting however is to
look at the intercept (see first numbers in the formulas of the estimated regression models in the figure):
the interpretation for it is the error you will make using the OA forecast, when the error on booked weight
as forecast is zero. The intercept is increasing from being negative long time before departure, to becoming
positive as the day of departure approaches. Overall we can conclude, based on this analysis, that the OA
model probably could improve the model. However, because of the limited amount of OA data, for now the
decision has been made to use the booking data as input for the booking forecast model.

7.2.2 Bookings at hand versus Materialization of all Bookings

When having the forecast of the materialization of the bookings at hand for a certain DBD x, there still is
a missing part of bookings that will be made after DBD x. That’s why also an estimation is required of the
weight of the remaining bookings. To create a forecast of the final weight of all bookings that will depart at
the day of operations (hereafter called ‘the total forecast’ ), two different approaches have been examined: a
direct and an indirect forecasting approach.

The direct forecasting approach directly creates the total forecast, using a linear regression model based
on the booked weight of the bookings at hand and the materialization of all bookings (so of the bookings at
hand plus the bookings which will be made after DBD x ). Next to the direct approach, where we estimate
the materialization of the bookings at hand as well as the materialization of the remaining bookings at
once, also an approach has been examined that first estimates the materialization of the bookings at hand
and then uses that prediction to estimate the materialization remaining bookings. This, so called, indirect
forecasting approach consists of two steps. During the first step an estimation of the materialization of the
bookings at hand is made as described in Section 7.2.1. In the second step a linear regression model based
on the materialization of the bookings at hand and the materialization of all bookings will be used to create
the total forecast.

Direct forecasting approach The direct forecasting approach creates the total forecast directly from
the booked weight of the bookings at hand at a particular DBD. This has been done by creating a linear
regression model based on the booked weight of the bookings at hand versus the actual weight of all bookings
at the day of operations. The resulting models per DBD can be found in Figure 7.13. Furthermore, a split
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Figure 7.12: Booking error versus Opportunity Assessment (OA) error

has been made between board point AMS and off point AMS, the left and right figure respectively. The
figures for all DBDs can be found in Appendix C (Figures C.6 and C.7).

First of all, it seems that, for each DBD the data points can be separated in two ‘clouds’. For example
when looking at DBD 3 in the off point AMS figure, there could be observed one cloud of points with an
actual total weight of less than 250,0k and one with actual total weight values higher than 250,0k. Some
further analysis showed that those ‘clouds’ belong to different product categories. An example of the product
differentiation within the data can be found in the Appendix (Figure C.8). However, because the product
differentiation is out of the scope of this research, we will not take into account the differences between
regression lines for different products.

Secondly, looking at the development of the estimated regression lines as the day of departure approaches,
the slope (noted as b in the figure) of the estimated regression models turns to the slope of the diagonal
(which is of course equal to 1). This implies that as the day of departure approaches the bookings at hand
gets closer to the total bookings. So, long in advance the portion of remaining bookings will be greater than
shortly before the day of operations. This will result in a steeper regression line for DBDs long in advance,
because an estimation has to be made of this large portion of remaining bookings. Looking at the intercept
(noted as a in the figure), the same behavior can observed as before when looking at the bookings at hand
versus the materialization of those bookings at hand: it goes from negative long in advance to positive as
the departure day gets closer.

Finally, considering the R2 of the linear regression models, the R2 values increases for both board point
AMS and off point AMS as the day of operations approaches. We can also observe that the R2 values for
board point AMS are higher than for off point AMS. Therefore, we can conclude that the models for board
point AMS fit the data slightly better.
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Figure 7.13: Estimated regression line bookings at hand versus total materialization (bookings made plus
bookings to come), split by board and off point AMS

Now we have the estimated linear regression models for the different DBDs and different flows (arrival
and departure), the total forecast can be created. Therefore, the sum of the booked weights of the bookings
at hand will be substituted into the equation of the estimated regression line. The results of the total forecast
can be found in Figure 7.14 and Table 7.5. From the resulting figures, we can observe that the forecasts
created for board point AMS are more accurate in comparison with the off point AMS forecasts. This is to
be expected, because of the higher R2 values for the board point regression models. Although, the off point
forecasts are getting worse when considering DBDs longer in advance, the overall performance (combine the
both forecasts) seem to perform well. Therefore, depending on the degree of uncertainty that we would
accept, the model could be used for forecasting the expected workload.
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Figure 7.14: Direct forecasting approach

Days Before
Departure (DBD)

Board point AMS
WAPE

Off point AMS
WAPE

Overall
WAPE

0 0.43% 3.28% 1.09%
1 2.14% 6.45% 2.21%
2 3.42% 14.35% 4.36%
3 5.14% 19.18% 8.11%

Table 7.5: Performance direct forecasting approach

Indirect forecasting approach For the indirect forecasting approach we first predict how the bookings
at hand will materialize at the day of operations (according to the method as described in 7.2.1). When we
have a prediction for the materialization of the bookings at hand, we have to estimate what the weight of
the remaining bookings to come will be. For this, linear regression models are created for the different DBDs
and flows (board point AMS and off point AMS). The resulting models are shown in Figure 7.15 (all models
can be found in Figure C.9 and C.10 in Appendix C). From those figures, we can conclude several things.
The slope of the estimated models decreases as the day of operations approaches, this implies that during
the booking period more bookings come in and we can predict more accurately the final amount of cargo
that will arrive (hence the R2 values are high (above the 90%) and also increases as the day of operations
approaches). Also, as seen before in the direct forecasting approach, the goodness-of-fit of the models for
board point AMS is better compared to the off point models. Therefore, we would expect that the board
point AMS forecasts will be more accurate.
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Figure 7.15: Estimated regression line materialization bookings at hand versus materialization of all bookings,
split by board and off point AMS

Now we have the models to predict the materialization of all bookings based on the materialization of
the bookings at hand, we can create the total forecast. Again, we showed the total forecasts for the board
point AMS and the off point AMS in one figure (see Figure 7.16 and Table 7.6). From those results, we
can conclude similar things as for the direct model. Comparing both approaches shows that for board point
AMS the indirect forecasting approach performs better, while for the off point AMS the direct forecasting
approach shows better results. When looking at the performance of both approaches of the overall forecast,
the direct model performs best considering DBD 1, 2 and 3. Only for DBD 0 the indirect approach seems
to be more accurate. Considering the aim of this research, a more accurate forecast shortly before the day
of operations is more preferred (at DBD 0, no changes can be made to the resource planning).
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Figure 7.16: Indirect forecasting approach

Days Before
Departure (DBD)

Board point AMS
WAPE

Off point AMS
WAPE

Overall
WAPE

0 0.83% 1.77% 0.46%
1 1.75% 8.19% 3.15%
2 3.41% 15.1% 4.76%
3 4.8% 19.83% 8.24%

Table 7.6: Performance indirect forecasting approach
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Chapter 8

Conclusions

This chapter provides the conclusions that can be drawn from this research.

The final results of this research provide an answer to the research question of this thesis:

Is it possible to create a reliable forecast of the expected cargo workload
(within an error of 10%), split by freight building?

The answer to this question is: Yes, it is possible to create a forecast with an error less than 10%. For
this, two approaches have been followed: one based on historical post-departure flight data and one on pre-
departure booking data. Both approaches resulted in reliable forecasts that are consistent with each other
with respect to the different freight buildings. To be able to measure the quality of the forecast results, a
specific time period in the past has been forecasted, i.e. August 11 until August 20, 2015. The forecasted
weights are compared with the actual values to measure the accuracy.

For the forecasting part based on historical flight data, we first created single flight forecasts. Next we
split the single flight forecasts in incoming (freight building 2) and outgoing (freight building 3) flights.
Finally we aggregated these forecasts and aggregated them. The resulting forecasts are shown in Figure
8.1. Those results show that it is indeed possible to create a reliable forecast per freight building based
on historical flight data. Looking at the final forecasts for freight buildings 2 and 3, the accuracy of these
forecasts were measured in terms of WAPE. This WAPE key performance indicator, weighs the forecast
errors with respect to the level of actuals. Considering the WAPE values of those forecasts, the accuracy for
freight buildings 1 and 2 was 4.08% and 2.09% respectively. For freight building 1, it was not possible to
create a forecast, because of the missing European flight data in the data source that was used.
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Figure 8.1: Total day level forecast per freight building

Looking at the forecasts based on pre departure booking data, two different approaches were examined:
the direct and indirect forecasting approach. The direct approach uses the booked weight of the Bookings
at hand to estimate the materialization of these bookings at hand as well as the materialization of the
remaining bookings at once. On the other hand, the indirect approach first estimates the materialization
of the bookings at hand and then uses that prediction to estimate the materialization remaining bookings.
The final results were, in consultation with the business, split by incoming (off point AMS) and outgoing
(boardpoint AMS) flights, because there were no clear business rules for splitting the total forecasts into
freight building forecasts. Comparing the both approaches (direct and indirect) shows that for board point
AMS the indirect forecasting approach performs better, while for the off point AMS the direct forecasting
approach shows better results. Considering the overall performance of the forecasts created with the different
approaches, the direct approach seems to perform slightly better in terms of accuracy (WAPE) for the 1,2
and 3 days before departure forecasts. Only for the DBD 0 forecast the indirect approach performs better.
Because, the aim of the research is to be able to adapt the resource planning before the day of operations,
we should use the forecasts created by using the direct approach to estimate the expected cargo workload.
The resulting forecasts and corresponding forecast accuracy values can be found in Table 8.1 and Figure 8.2.

Days Before
Departure (DBD)

Board point AMS
WAPE

Off point AMS
WAPE

Overall
WAPE

0 0.43% 3.28% 1.09%
1 2.14% 6.45% 2.21%
2 3.42% 14.35% 4.36%
3 5.14% 19.18% 8.11%

Table 8.1: Performance direct forecasting approach
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Figure 8.2: Direct forecasting approach

Comparing both forecasts (flight forecast versus booking forecast), it seems that accuracy of both forecasts
is more or less equal shortly before the day of operations. Longer in advance, the forecast based on historical
flight data is more accurate, but this is obviously due to the low number of booking that is made long in
advance. Looking at the shape of both forecasts, the same behavior is observed.
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Chapter 9

Discussion and Recommendation

This chapter provides discussion about the work that has been performed and some recommendations for
further research.

9.1 Business recommendations

Measuring over and undercapacity To be able to measure the impact of implementing a solution
(like using the results from this research), the feeling KLM Cargo has of having over/undercapacity should
be quantified. Therefore, we would suggest the KLM Cargo division to measure the productivity of the
employees, for example, by counting the number of processed ULDs or processed amount of cargo weight
per time unit. With this information a ‘standard’ workpackage could be created, for example by creating a
kind of Pareto curve where on the x-axis the amount of processed cargo (e.g. in terms of ULD) per resource
per hour is stated and on the y-axis the service level of the cargo that has been processed on time. From
such a figure, in combination with the final forecasted expected workload, then an indication of the number
of resources needed can be determined.

Determine clear business rules for freight building split At the time of this research, we were
not able to make a forecast per freight building, because there were no clear business rules for making this
split. We recommend KLM Cargo to determine/create clear sets of business rules for this. This could be
done by looking, for example, to the possibility of assigning specific product codes, flight numbers, flights
from/to particular origin/destinations to the different freight buildings.

9.2 Data recommendations

Better registration of booking data Currently, the Commercial Product Code column in the ODS
booking data files often contains the value ‘Dummy Product Code’. People from the RM Cargo department
mentioned that this is not a real existing product code, but a kind of default value when there is no product
information available about the booking. Having more accurate product information of the booking upfront,
might result in an improvement of the forecast accuracy.

Completion of the historical flight data Looking at the historical flight data that has been used,
we found out that the European flights were missing. Because the majority of those flights contain cargo
that has to be processed by freight building 1, the forecast for this freight building can not be made.

Flight versus booking data At the time of this research, we encountered that there was a difference
between the flight and booking data source. First of all, it turns out that the flight data source does
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not contain European flight (EUR) flights. However, according to the business, this does not explain the
significant difference in total tonnes of cargo that has been transported. From a second analysis, it turns
out that the sum of all actuals on week level was much higher (around 50%) in comparison to the flight data
and the weekly Cargo reports of the KLM Cargo division. Therefore, the origin, possible pre-process steps
and precise content of the both data sources that have been provided should be made clear.

9.3 Model recommendations

Add Opportunity Assessment (OA) data to the booking forecast model From the comparison
of the booking data (ODS) and the OA data, we concluded that the performance of the booking forecast
model could be improved by using the OA forecast. However, because of the small amount of OA data (only
2 months) at the time of this research, we have chosen to restrict to the ODS booking data for the moment.
When a larger amount of OA data is available, this data should be added to the model.

Extend the booking forecast model When estimating the linear regression models for the booking
forecast, we only created separate models for incoming (off point AMS) and outgoing (board point AMS)
flights. As we concluded from the Figures 7.13 and C.8, it might be interesting to see whether creating sep-
arate models for different feature splits (for example by product category, high/low season, a combination of
different features, etcetera) could improve the accuracy of the model. Therefore, a linear regression model
or decision tree model incorporating all features that might be interesting could be examined, to see what
features are significant for the model.

Forecast on cargo load factor From the preliminary forecasting studies that have been reviewed,
forecasting load factor instead of demand has several advantages, such as (partially) taking out the effect of
aircraft capacity and schedule changes. During the forecasting process, a time series has been constructed
based on the carrier, flight number, origin and destination information. However, it is known that some
flights are performed with multiple aircraft types, and therefore different capacities, through the years. Due
to this aircraft capacity changes, the constructed time series might show a very variable behavior which can
be difficult to forecast. Therefore, it has to be (carefully) examined whether flights with different aircraft
capacities can be better forecasted when considering the load factor.

Hierarchical forecasting From the literature, we found a forecasting methodology known as ‘Hierar-
chical forecasting’. This way of forecasting combines forecasts of different levels (top-down and bottom-up
approaches) in an optimal way. Hyndman, the founder of this way of forecasting, shows that a combination
of forecasts can improve the accuracy of the forecast, because at different forecasting levels, the different
dynamics of the time series that is forecasted are taken into account.

Flow characteristics From the flight forecasts, not only best forecast per flight is obtained, but also
the best performing method with corresponding scenario settings. When many forecast runs have been per-
formed, an analysis could be done to keep track of the characteristics of a particular flight. In other words,
looking at the best performing method of each forecast run per single flight, could give some information of
the characteristics of this flight. If it turns out that flights with the same kind of characteristics are better
forecasted with specific kind of models (with a specific trend/seasonality component), then upfront one could
choose to use this method (or set of methods) to forecast those flights.

Forecast stability The forecasts created for this internship, were only made for one period (11 - 20
August, 2015). To see whether for other moments in time the forecast has the same forecast accuracy, more
forecasts have to be made. When there are more forecasts available, also an analysis can be performed to see
how, for a particular departure date, the forecast accuracy changes over time. For example, for departure
date 1 December, an analysis on the accuracy of the 10, 9,..., 1 days ahead forecasts for this departure date
can be performed.
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Abbreviations

AF Air France.
AFKL Air France KLM.
AFLS Accenture Freight & Logistics Software.
AIC Akaike Information Criterion.
ARIMA Autoregressive Integrated Moving Average.
ARMA Autoregressive Moving Average.
AWB Airway Bill.

BB ULD ’Bijbouwer’ Unit Load Device.
BIC Bayesian Information Criterion.

CDG Charles de Gaulle.

DBD Days Before Departure.
DL Delta Air Lines.
DoW Day of Week.

EDF Earliest Deadline First.
ES Exponential Smoothing.
EUR European flight.

FAP Flight as Planned.
FAVAR Factor-Augmented Vector Autoregressive Model.
FTK Freight Tonne-Kilometers.

G1XL Gare n1 Extra Large.

HOF head operations flow.

IC Information Criterion.
ICA Intercontinental flight.

KL KLM.
KLM Koninklijke Luchtvaart Maatschappij.
KPI Key Performance Indicator.

M-ULD Mixed Unit Load Device.
MAPE Mean Absolute Percentage Error.
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OA Opportunity Assessment.
OAG Official Airline Guide.
OR Operations Research.

PAX Passenger.
PCHS Pallet Container Handling System.
PRI Planning, Roostering en Indeling.

RM Revenue Management.
RMSD Root Mean Square Deviation.
RTK Revenue Tonne-Kilometers.

SLSQP Sequential Least SQuares Programming.
SMAPE Symmetric Mean Absolute Percentage Error.
SMPE Symmetric Mean Percentage Error.

T-ULD Through Unit Load Device.

ULD Unit Load Device.

VAR Vector Autoregressive Model.

WAPE Weighted Absolute Percentage Error.
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List of Terms

Airway Bill A receipt of the contract of carriage, issued by an airline.
Altea Product of Amadeus (company which develops software for the

travel sector) to support the planning and loading of Passenger
Flights.

Bijbouwer unit load device A T-ULD that does have space left for some more shipments with
the same destination.

Booking Request for reservation of space on a flight for a specific date, which
is (or has to be) confirmed by the airline.

Booking behavior Describes how the bookings coming in over time during the entire
booking window.

Bookings at hand All bookings made up to a certain day. For example, the bookings
at hand for DBD 3 are the bookings that have been made on DBD
3, 4, 5,....

Capacity The total amount of volume/weight that an aircraft can carry.
Cargo load factor Percentage of the available cargo space in an aircraft, that is used.
Code share An marketing arrangement between airlines, which enables the op-

tion for an airline to sell tickets for a flight which is operated by
another airline.

Colli Package.
Coordinated Universal Time The basis for civil time today. This time standard is based on the

combination of atomic clocks with the Earth’s rotation. Therefore
it is highly precise.

Europort Freight Building 2 at Amsterdam Schiphol Cargo Hub. Takes care
of the handling of all cargo destined for trucks.

Freight tonne-kilometers A measure of how much freight business an airline gets. One FTK
is one metric tonne of revenue load carried one kilometer.

Hub Airline hubs are airports that an airline uses as a transfer point to
get passengers and freight to their intended destination.

Inbound Incoming. Inbound flights on AMS are flights which arriving at
Amsterdam Schiphol.

Manifest Transport document which includes detailed information about the
shipment.
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Mixed unit load device A ULD that does have to be broken down or build-up.

Outbound Outgoing. Outbound flights from AMS are flights which are leaving
from Amsterdam Schiphol.

Pallet and container handling system A handling system for the fully automated handling of ready for
carriage pallets and containers, from delivery to loading. PCHS
offers 1200 storage positions.

Passage Department of KLM which manages everything that has to do with
passenger flights.

Show up rate The percentage of the booked amount of cargo that will show up
at the day of departure.

Through unit load device A ULD that does not have to be broken down or build-up.
Traffic restriction code An marketing arrangement between airlines, which enables the op-

tion for an airline to sell tickets for a flight which is operated by
another airline.

Unit load device A container or pallet for the transportation of cargo.

Workload The number of employees needed to handle the arriving and de-
parting cargo.

World Port Freight Building 3 at Amsterdam Schiphol Cargo Hub. Takes care
of the handling of all cargo destined for ICA flights.
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Appendix A

Data

In this appendix a description is given of the different data sources that have been used.

A.1 Flight data

Column Name Description
AircraftGroupCode Aircraft Group Code
Arrival Arrival city code
AWBVolAllo AWB volume allotment bookings
AWBVolFreeSale AWB volume free sales bookings
AWBWgtAllo AWB weight allotment bookings
AWBWgtFreeSale AWB weight free sales bookings
Departure Departure city code
DepartureDate Date of departure
FlightNumber Flight Number

FlightNumberSuffix
Additional character that is added to the flight number when the flight
deviates from its original flight plan

FlightPrefix Carrier code
InvActualMain Inventory cargo weight on main deck
InvActualVolume Inventory weight of cargo
InvActualWeight Inventory aircraft type
InvAcType Inventory aircraft type
InvMainCapacity Inventory weight capacity on main deck
InvVolumeCapacity Inventory volume capacity
InvWeightCapacity Inventory weight capacity
OpsActualCTR Number of containers
OpsActualLDPositions Number of filled ULD positions on the lower deck
OpsActualMain Weight of all the main deck cargo
OpsActualMDPositions Number of filled ULD positions on the main deck
OpsActualULDPositions Total number of filled ULD positions
OpsActualVolume Cargo volume in m3
OpsActualWeight Cargo weight in kg
OpsAcType Operating aircraft type
OpsCTRConfig Total number of container positions
OpsEICPalletsWeight Express cargo pallet weight in kg
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OpsLDConfig Total number of ULD positions on the lower deck
OpsMailWeight Mail weight in kg
OpsMainCapacity Weight capacity of the main deck
OpsMDConfig Total number of ULD positions on the main deck
OpsULDConfig Total number of ULD positions
OpsVolumeCapacity Volume capacity of the aircraft
OpsWeightCapacity Total weight capacity of the aircraft
Route Flight route
SchAcType Scheduled aircraft type
SchVolumeCapacity Scheduled volume capacity
SchWeightCapacity Scheduled weight capacity

Table A.1: Description of the flight data
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A.2 OAG data

Column Name Description
*Car Carrier code
Arr Arrival city code
Arrtm Arrival UTC time
ArrtmLT Arrival local time
Cnty Arr Arrival country code
Cnty Dep Departure country code
Dep Departure city code
Deptm Departure Coordinated Universal Time time
DeptmLT Departure local time
Flt Flight number
Freq Flight frequency (day numbers)
Legnr Leg number
OpCar Operating carrier
OpFlt Operating flight number
Seat Number of seats
Traf Traffic restriction code
Type Aircraft type

Table A.2: Description of the OAG data

71



A.3 Booking data

Column Name Description

AddlSCb
Additional shipment contribution, part of the revenue that can be
contributed to the leg

AgentURN Unique agent id
AircraftSubType Aircraft sub type
Alloted Indicator if the booking was allotted
AllotmentReference Allotment booking reference
AllotmentReleased Indicator if the allotment booking already released
AllotmentType Allotment type
Arrival Leg arrival city code
ArrivalCountry Leg arrival country code
AWBNumber AWB number
AWBPrefix AWB prefix (carrier oriented)
BoardPoint Board point city code
BoardPointCountry Board point country code
BookingChannel Booking channel
BookingKey Booking key
BookingVersion Booking version
BucketID Bucket id
CancelIndicator Indicator whether the booking is canceled
CargoReceiptFlag Indicator if the cargo is already in the warehouse
CommercialProductCode Commercial product code
CommodityCode Commodity code
CommodityDescription Commodity description
Departure Leg departure city code
DepartureCountry Leg departure country code
DepartureGMTOffset Time difference between arrival and departure station
Destination Destination city code
DestinationCountry Destination country code
Dmin Days before departure
FlightLegSequenceNumber Leg number
FlightNumber Flight number
FlightPrefix Carrier code
LastUpdateDateTime Last update date time booking
LegDepartureDate Leg departure date
LegDepartureTime Leg departure local time
LegPieces Number of pieces of which the booking consists
LegStatus Leg Status
LegVolume Cargo volume in m3
LegWeight Cargo weight in kg
OffPoint Off point city code
OffPointCountry Off point country code
Origin Origin city code
OriginCountry Origin country code

PartShipmentSuffix
Additional character that is added to the booking when the flight plan
of the booking deviates from its original flight plan

ProductCode Product code

72



SCb Shipment contribution
SHC Special handling codes
ShipperURN Unique shipper id

Table A.3: Description of the booking data
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Appendix B

Models

Below a table can be found where all standard exponential smoothing methods and their corresponding
formulas are stated. Furthermore a list of definitions is given.

Figure B.1: Exponential Smoothing Methods: list of definitions (Gardner, 1985)
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Figure B.2: Exponential Smoothing Methods (Gardner, 1985)
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Appendix C

Results

In this appendix additional figures can be found.

C.1 Raw versus Decompose

Figure C.1: Flight KL0884 Xiamen (China) - Amsterdam (Netherlands): Frequency change Wednesdays
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Figure C.2: Raw: Flight DL0230 Boston (United States) - Amsterdam (Netherlands), WAPE of 51.09%

Figure C.3: Decompose: Flight DL0230 Boston (United States) - Amsterdam (Netherlands), WAPE of
45.06%
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C.2 Bookings at hand versus materialization

Figure C.4: Bookings at hand (Board point AMS) versus materialization for all DBDs in booking window
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Figure C.5: Bookings at hand (Off point AMS) versus materialization for all DBDs in booking window
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C.3 Bookings at hand versus total materialization

Figure C.6: Bookings at hand (Board point AMS) versus total materialization (bookings at hand plus
bookings to come) for all DBDs in booking window

Figure C.7: Bookings at hand (Off point AMS) versus total materialization (bookings at hand plus bookings
to come) for all DBDs in booking window
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Figure C.8: Example of the product differentiation within bookings at hand versus total materialization
(bookings made plus bookings to come) for DBD 2
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C.4 Materialization of bookings at hand versus total materializa-
tion

Figure C.9: Materialization of the bookings at hand (Board point AMS) versus total materialization (book-
ings at hand plus bookings to come) for all DBDs in booking window

Figure C.10: Materialization of the bookings at hand (Off point AMS) versus total materialization (bookings
at hand plus bookings to come) for all DBDs in booking window
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