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Abstract

The goal in this thesis is to create a deep learning (DL) logo classifier that is widely

applicable for conferences. We train this classifier prior to a conference for logos of

organisations that will be present. However, DL models typically require many samples

to learn such a classification task, whereas deep meta-learning models can learn different

but related tasks with 1-10 training samples per class. This reduces data collection costs

and increases deployment speed. In this thesis, we investigate if it is possible to build

a scalable DL logo recognition model that is able to learn classification tasks with only

five training samples per class.

Current techniques in the deep meta-learning domain focus primarily on accuracy, al-

though for this AI-driven application, multiple factors play an important role: (i) ro-

bustness of accuracy to different tasks, (ii) robustness to in- and out-domain distribution

unknown-class samples, and (iii) the flexibility to learn new tasks. We show for (i) that

deep metric learning approaches are more robust to tasks with more classes than initial-

isation learning approaches. We show for (ii) that Gaussian prototypical network [1] is

more robust to in- and out-domain distribution unknown-class samples than Reptile [2].

For (iii), we conclude that deep metric-learning approaches are more flexible to learning

new tasks than initialisation and model-based learning approaches.

The conclusions we make start by creating two logo meta-learning datasets, the small-

and large logo dataset. With these datasets, we compare different popular deep meta-

learning models for which Gaussian prototypical networks gives the best performance on

the small logo dataset. We propose a simpler version of Gaussian prototypical networks

that we call Mahalanobis prototypical networks and use the small logo dataset to show

that it performs equally well.

Deep metric-learning approaches, and especially the Mahalanobis prototypical network

model, seems to be the most appropriate technique to use for this conference application

based on accuracy, robustness to in- and out-domain distribution unknown-class sam-

ples, robustness to tasks with more classes, and flexibility. Although our Mahalanobis

prototypical network model is a simpler method than Gaussian prototypical networks,

we show it has comparable performance. Hence, we conclude that the Mahalanobis

prototypical network model is able to learn new logo classification tasks with only five

training samples. We further note that robustness to in- and out-domain distribution

unknown-class samples and robustness to tasks with more classes can be important

metrics for practical deep meta-learning such as logo classification.
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Chapter 1

Introduction

Suppose you are attending a conference and you are there to acquire more information

about, for example, a boat or a car you want to buy, or you are interested to know more

about a certain company. Normally, you would acquire this information by collecting

brochures or business cards or trying to remember as much as possible. However, what

if you only need to take out your mobile phone and take a picture of the company’s

logo. After that, the contact and general information of the company is stored on your

device. There is no hassle of collecting an extensive number of brochures and business

cards in a bag or the need to remember everything.

This idea is a motivation for Mobiquity, an innovative digital consultancy agency, to

create a mobile application that could help attendees make their lives easier without

placing additional objects at a conference, such as QR codes. To do this, one first needs

to train a deep learning (DL) model to classify a picture to a set of predefined logos

from companies that are present at a conference. Training such models requires a large

amount of data. However, Mobiquity is willing to collect only five logo samples per

attended company to make the application scalable.

Since AlexNet won the ImageNet competition in 2012 [4], many DL models have been

created that localise and/or classify logos from images [5–9]. The successes of these DL

models can be attributed to an increase in computation power and data. As such, these

models use on average approximately 400 to 1,000 samples per logo class [5–9]. For the

mobile application, it implies that for a conference with 35 attending companies, we

need to collect and annotate roughly 14,000-350,000 samples, which is far more than the

5 x 35 samples Mobiquity wants to collect. Other conferences have different sponsors

and hence different logos, which impacts scalability and costs even more.

1
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One solution would be to use logo datasets that have been collected by Su et al., Tzk

et al., Joly and Buisson and Romberg et al.. Despite the fact that these datasets do

not specifically match the logos of the organisations at a conference, they could contain

information that can help close the gap of five samples to the required 14,000-350,000

samples.

We conduct research in the field of deep learning to create a model that is able to cope

with these challenges. We also aim to find a DL solution for a practical problem and it

is not sufficient to consider only accuracy:

• The model needs to be flexible; Mobiquity should be able to use it for different

conferences without too much preparation (see Chapter 2).

• The model should be reliable; it should keep engagement with users by having

sufficient accuracy, it should have an acceptable rejection accuracy for in- and out-

domain distribution unknown-class samples and accuracy should not drop sub-

stantially when the number of logo classes at a conference deviate from other

conferences (see Chapter 2).

To achieve this, the main research question is defined as follows:

Is it possible to build a flexible and reliable deep learning logo recognition model that is

able to classify logo classes from pictures with only five training samples per class?

A few directions in DL are specialised in dealing with limited training data, such as

transfer learning and meta-learning. Transfer learning uses a pre-trained DL network

and re-trains it on a new task with a smaller dataset, and meta-learning focuses on

models that are able to learn different but related tasks with only a few (i.e. 1-10)

samples per class.

We primarily focus on solving the problem with techniques from the meta-learning do-

main. However, most of these techniques are not developed with a practical use case in

mind but are trained and tested on small domain-specific datasets. Hence, the focus of

this thesis is on which techniques work best, and more importantly, which techniques

are appropriate considering flexibility and reliability.

1.1 Main contributions

The main contributions of this thesis are:



Chapter 1. Introduction 3

• Most logo datasets are created for detection problems and are not directly appli-

cable for logo classification and meta-learning. We therefore introduce a small-

and large logo classification dataset specifically for meta-learning in, respectively,

Chapters 4 and 5.

• We train the Gaussian prototypical network model on the small logo dataset and

it achieves a significantly higher accuracy than other meta-learning techniques on

different sets of learning tasks, such as Prototypical networks, Relation networks,

MAML, and Reptile. There are surprisingly no other accuracy results of Gaus-

sian prototypical networks available other than the performance on the Omniglot

dataset in the original paper. We present these results in Chapter 4.

• Empirical research of Gaussian prototypical networks shows that the increase in

performance over prototypical network is contributed to the use of the Mahalanobis

distance metric and not by adjusting the prototypes with estimated inverse covari-

ance matrices. We therefore introduce a new, simpler model that only uses the

Mahalanobis distance metric in Chapter 5, which we call Mahalanobis prototypical

networks.

• Current techniques in the meta-learning domain focus primarily on accuracy,

whereas for AI-driven applications, multiple factors play an important role: (i)

robustness of accuracy to different tasks and (ii) robustness to in- and out-domain

distribution unknown-class samples. We show for (i) that deep metric learning

approaches are more robust to tasks with more classes than initialisation learn-

ing approaches in Chapter 4 and (ii) that Gaussian prototypical network is more

robust to in- and out-domain distribution unknown-class samples than Reptile in

Chapter 5.

• In the published paper of Prototypical networks, the accuracy results are obtained

by learning on sets of higher K-way learning tasks than on the set of tasks the

model is tested on, because Snell et al. show that doing this increases accuracy.

We have tried the procedure in Chapter 6 with Gaussian prototypical networks

but do not see an increase in accuracy.

• Finn and Levine have shown that MAML is better able to handle domain shifts

between meta-training and meta-testing compared to recurrent meta-learners, such

as SNAIL, because of within-task learning. We therefore hypothesise that Reptile

is more robust to a difference in the quality of samples (i.e., number of pixels in

an image) between lower qualitative meta-training samples and higher qualitative

meta-testing samples than Gaussian prototypical networks. However, we see in

Chapter 5 that Reptile is not more robust than Gaussian prototypical networks.
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• Most deep metric learning approaches use the support classes independently to

decide if a query (i.e. test sample) belongs to a certain class, which means that

for every task the full set of representations are used during test time. However,

depending on the task, certain dimensions (i.e. features) from the representation

are more important than others. We use a self-attention block that takes the

complete support set at once to learn which dimensions are most relevant for the

task. We use this block together with Prototypical networks, and show that it has

comparable performance to Mahalanobis prototypical networks on the five-shot,

five-way learning task in Appendix C.5.



Chapter 2

Problem definition and research

setup

In this chapter, we investigate properties of the research problem and give definitions that

are used throughout the thesis. The logo recognition model should satisfy requirements

for certain quality metrics to be called a success. We find these quality metrics by

constructing a model journey and we use them to make the research quantifiable by

setting certain requirements per quality metric. Finally, we explain how we setup the

research to find an answer to the main research question.

2.1 Definitions and model journey

Our goal is to create a logo recognition model that is able to learn to classify logo classes

from a conference with five training samples per class. For example, we teach a logo

recognition model to classify 35 distinct logo classes for a conference. We define this as a

learning task t, which is a set that includes the 35 logo classes the model should learn to

classify. There are, however, many different conferences with different numbers of logo

classes and we define a set T that includes all the conferences that exist. Now, a specific

task from set T we define as tj . Further, we can extract subsets from T , such as a set

with learning tasks that have K classes per task. We define this as TK and a specific

task from this set as tKj . Furthermore, the classes in a task tj and tl can be the same

for some of the classes, because different conferences can have the same organisations

present. We therefore define a set L that consist of all distinct classes in T .

We define a model journey that gives insight to what quality metrics we need to focus

on. In Figure 2.1, we show a model journey for which in phase (i) a generic model is

5
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defined that should be able to learn to classify new logo classes with only five training

samples per class. In other words, a generic logo recognition model that is able to learn

every task tj ∈ T with only five training samples per logo class. In phase (ii), the generic

model is prepared for the new task tj with the five training samples that are collected for

every logo class; in phase (iii), the prepared model is deployed in the mobile application

and used by people at conference j. After the usage phase, the generic model can be

improved with new data that are collected either during the conference from phase (iii)

or via other sources. From now on, we refer to the model journey as circle flow.

Generic model 
(i)

Preparation phase
(ii)

Usage phase
(iii)

New conference task

∈ ���

Possibility to update
generic model

Figure 2.1: This circle flow explains the journey that the logo recognition model
follows.

There are a few additional definitions in phases (ii) and (iii). These are as follows for

the preparation phase:

1. Prior to a task tj , a set of samples of logos per company are collected to prepare

the generic model on task tj ; we call this the support set S of tj , which include in

total five training samples per logo class.

2. After the model is prepared, it is deployed and usable within the mobile applica-

tion.

• The specificity of how the model should be deployed and interact with the

mobile application is out of scope of this research.

For the usage phase, we can define the following definitions:
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1. An attendee takes a picture with his or her phone that can either be a logo or not;

we call this picture the query.

• It is assumed that the logo is the largest object in the picture.

• Hence, the attendee performs logo detection and the model is requiring only

to perform logo classification.

2. The query is forwarded to the prepared model and is rejected or accepted to a

specific class in task tj .

3. When the query is accepted for a specific class in task tj , information from a

database is sent back to the mobile application.

• How the interaction works with the database and mobile application is out

of scope of this research.

Furthermore, we define three different groups of queries: (i) in-domain distribution

known-class samples, (ii) in-domain distribution unknown-class samples, and (iii) out-

domain distribution unknown-class samples. Samples from (i) are queries from classes of

task tj the generic model is prepared for; we name this set of queries Qtj . The samples

from (ii) are queries from logo classes the generic model is not prepared for. For example,

samples from the set of classes L \ tj ; we name this set of queries RL\tj . The samples

from (iii) are queries from non-logo classes, such as a picture of a person; we name this

the out-domain rejection (ODR) query set. Moreover, when a generic model is prepared

for task tj it should accept all queries from the set Qtj and reject all queries from the

sets RL\tj and ODR. We show this in a Venn diagram in Figure 2.2.

In this thesis, we talk about accuracy when we compute the performance of a model on

task tj with queries from set Qtj . We assign a query to a class from tj with the lowest

distance or highest probability. Hence, we only measure how well the model is able

to classify with this metric. We incorporate rejection when we talk about a threshold

accuracy. Now the query is assigned to a class only if it is within a defined probability or

distance threshold. This means that accuracy is always greater or equal than threshold

accuracy. Next, we talk about the rejection accuracy when we compute the fraction of

how well a model prepared for task tj is able to reject queries from RL\tj or ODR.

2.2 Quality metrics and requirements

One thing to note is that many models can fit as a generic model in the circle flow of

Figure 2.1, such as a vanilla DL model that is not trained on data yet. However, putting
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Reject

��∖��

Accept

���

Ω

Reject

���

Figure 2.2: This figure shows the set of all possible queries Ω for which a model,
prepared for task tj , should accept only queries Qtj and reject ∀Ω /∈ Qtj .

such models in there requires it to prepare on five samples per class for a task tj . As

discussed in the introduction, we know that five samples per class is not sufficient to

train a DL logo recognition model and to expect high performance.

Quality metrics

To find the right generic model, we define that it should have four quality metrics:

sufficient accuracy, high robustness, flexibility, and high rejection accuracy. The generic

model must have sufficient accuracy after it is prepared on a task tj . Otherwise, it does

not solve the user’s problem. Moreover, we do not want the generic model to have high

accuracy for task tj and low accuracy for task tl. Hence, the accuracy variance across

tasks should be low; we call this robustness. Furthermore, the generic model must be

flexible in terms of it being easy to prepare on any task from T and time to prepare it

should not fluctuate much, because it is then easier to schedule in preparation time and

make the process scalable. The rejection accuracy is important, because people could

take a picture of a logo or non-logo that is not in task tj for which the generic model is

prepared for. These queries should be rejected and not be assigned to any class in tj .

Finally, we talk about a reliable model if the generic model has sufficient accuracy, high

robustness, and high rejection accuracy.

Requirements

In agreement with Mobiquity, we create requirements for the defined quality metrics to

make this research quantifiable. We create these requirements under the assumption
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that the generic model will be mostly used for conferences with 35 logo classes, because

these conferences are most common. Hence, for conferences with 35 distinct logo classes,

a generic model should have at least 90% threshold accuracy, 80% rejection accuracy, a

high robustness compared to the selection of selected models, and a non-expert1 should

be able to prepare the generic model on any task within 6 hours. This means that we

specifically focus on the set of tasks with 35 logo classes or, in other words, at set T 35

to compute the threshold and rejection accuracy. We also focus on sets of tasks in the

range of K ∈ {5, ..., 95} for robustness.

We define quantitative performance metrics for every of the four quality metrics. We use

these performance metrics to evaluate if the generic model is able to match the defined

requirements. We present them here:

• Accuracy

– The average accuracy on a set of tasks TK .

– The threshold accuracy is the average accuracy on a set of tasks TK with the

use of a probability or distance threshold.

• Robustness2

– Variance in accuracies from tasks in set TK . We call this within-robustness.

– Variance in average accuracies between different sets of tasks. For example,

variance between the average accuracy of sets TK and TK+1. We call this

between-robustness.

• Flexibility

– The preparation time of tasks in set TK . We call this within-flexibility.

– The preparation time between sets of tasks. For example, preparation time

between sets TK and TK+1. We call this between-flexibility.

• Rejection accuracy

– Rejection accuracy on setRL\tj , in other words, in-domain distribution unknown-

class samples.

– Rejection accuracy on set ODR, in other words, out-domain distribution

unknown-class samples.

We use the average accuracy because it is often used in the DL and meta-learning

domain. Hence, we can compare our implementation and models to published papers.

1We define a non-expert as someone that has no machine learning and DL experience.
2Note that high robustness is equal to low variance.
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2.3 Research setup

In this section, we explain how we find or create a generic model that has the described

quality metrics and has the potential to match the requirements. First, we define a few

sub-questions that we need to answer the main research questions. Finally, we make a

research setup wherein we explain how we get answers to the sub-questions.

2.3.1 Main- and sub-questions

To answer the main question, ’Is it possible to build a flexible and reliable ”generic”

deep learning logo recognition model that is able to classify logo classes from pictures

with only five training samples per class?’, we need to answer the following questions:

1. What techniques fit in the circle flow and have the potential to be reliable and

flexible? (Chapter 3)

(a) Which of these techniques is most flexible (Chapter 3), has the best accuracy

(Chapter 4), is most robust (Chapter 4), and has the best rejection accuracy?

(Chapter 5)

2. How should we collect data to make a reliable generic model? (Chapter 8)

3. How much data do we need to collect to match the requirements of reliability for

the generic model? (Chapter 8)

2.3.2 Research setup

To find potential techniques that can be reliable and flexible, we first conducted back-

ground and literature research in Chapter 3. We used the techniques that we found

there to acquire performance metrics with a dataset that we constructed in Chapter 4

and Chapter 5. Finally, in Chapter 6, we conducted experiments with the most potential

technique to determine if or how we are able to meet the defined requirements.



Chapter 3

Background and literature

research

Over the years, to achieve good performance on small datasets, many strategies on how

DL can handle small datasets have been developed and researched. In this chapter, we

aim to provide the reader with an overview of this work as well as discuss if techniques

from that work are able to learn from only five samples per class. We conclude the

chapter with a selection of some of the work that seems to be viable with respect to

being flexible and reliable.

3.1 Neural networks

We focus on using DL models in this research, which are large neural networks, and first

aim to provide the reader with background information on what a neural network is,

how we train these models, and what for different neural networks exist.

The goal of a neural network is to approximate some function f∗. For example, in the

spirit of this research, a classifier y = f∗(x) maps an input x (query) to a logo class

y. A neural network function tries to approximate the function f∗ with ŷ = fθ(x) in

Figure 3.1, for which θ are learnable parameters that are tuned to get the best function

approximation.

A feed forward neural network architecture can be described as a directed acyclic graph

and a general structure is shown in Figure 3.2. This structure is an example that

can be used in Figure 3.1 as the sub-function gθ(x) [15]. We can represent gθ(x) by

a composition of functions, g(x) = g(3)(g(2)(g(1)(x))) [15]. These chained functions

represent the different layers in Figure 3.2, as such, layer 1 is g(1) (first hidden layer),

11
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Forward image

y
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�
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�̂ 

Figure 3.1: Structure that represents a classifier with three classes that maps ŷ =
fθ(x) for which a darker green colour means a higher probability for that class.

the second layer is g(2), etc. We talk about DL models if we have multiple layers in a

neural network.

For the function gθ(x), such as in Figure 3.1, the values from the output layer are used

to compute the probability that an input belongs to a class, which we denote as random

variable y. In other words, y is a categorical distribution over the different classes.

Hence, Pθ(y = y|x = x) = gθ(x), where Pθ is parameterised by the neural network

gθ(x). This probability distribution over classes is usually computed with the softmax

function when there are more than two classes and when inputs belong to independent

classes. An input x can then be assigned to a class y ∈ y that has the highest probability

or, in probabilistic notation, ŷ = arg maxy Pθ(y = y|x = x) 1. We show in Equation 3.1

how the softmax function works with the outputs from the neural network structure of

Figure 3.2.

Pθ(y = y|x = x) =
eoy(x)

c=4∑
i=1

eoi(x)

(3.1)

In deep learning, we have a task tj for which we want to find a function that is able to

map ŷ = fθ(x). In line with this research, the task tj is defined as constructing a neural

network classifier that is able to map inputs to a specific number of logo classes, such

as in Figure 3.1, where there are three logo classes. To find the function fθ,tj (x) that

1We will be using P (y = y|x = x) = P (y|x) from now on for brevity.



Chapter 3. Background and literature research 13

�1

�2

�3

�4

Figure 3.2: A neural network structure with two hidden layers and four output nodes
(o1, ..., o4).

approximates f∗tj (x), we use supervised data from task tj to learn the correct parameters

of the neural network function gθ(x).

Data and loss function

Supervised data for task tj is a set of logo pictures and corresponding logo classes, which

we define as dtj = {(xi, yi), i = 1, ..., N} with yi ∈ tj ∀i. For example, for the task in

Figure 3.1 we have logo samples for three classes, Honda, LG and Pepsi. For every of

these three classes we have a number of different samples, as we show in Figure 3.3.

With these supervised data, we can evaluate how well gθ(x) is able to map the input

images xi to the correct labels yi. We do this with a function that is named the loss

function. In classification, the cross-entropy loss function is often used, and we present

this function in Equation 3.2. We maximise it with respect to the parameters θ to find

a function that maps the inputs xi to classes yi as best as possible. This results in

Equation 3.3a, where we maximise the loss with respect to the parameters to find the

optimal parameters θ∗.

L(θ, dtj ) =
∑

(x,y)∈dtj

log(Pθ(y|x)) (3.2)
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Figure 3.3: An example of a supervised dataset that can be used to train a neural
network classifier.

θ∗ = arg max
θ

∑
(x,y)∈dtj

log(Pθ(y|x)) (3.3a)

θ∗ = arg max
θ

Eq∼dtj

 ∑
(x,y)∈q

log(Pθ(y|x))

 (3.3b)

Training a DL model

In deep learning, an algorithm named backpropagation is used to find the parameters

that maximise the function in Equation 3.3a [16]. Commonly, the parameters of deep

learning models are learned with this algorithm using GPUs. Despite the fact that there

has been an increase in computation power and memory capacity on these GPUs, we

often do not have enough memory to store the complete dataset. Therefore, batches

from dataset dtj are taken to use backpropagation and learn the parameters. We do
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this by sampling a batch size b from dtj , which we call the query batch q. This process

changes Equation 3.3a slightly into Equation 3.3b, which intuitively can be read as a

double summation over batches and samples. In Figure 3.4 a process is depicted that

shows how learning the parameters for gθ(x) is executed with batch learning.

Before training a neural network, we can set many different parameters. Such as how

many layers, how many nodes per layer, the size of the batch, and a learning rate

that specifies with what amount the parameters θ are updated every iteration. These

parameters are usually set before training and are called the hyperparameters of the

neural network model.

Performance measure

To make sure the function is not overfitting on the training data, the data dtj are split

into a train- and test set. We use the train set to update the parameters and we use the

test set to evaluate if the model is able to generalise to unseen data.

� = {( , )�� �� }�

�=1 (�)��

Classes

(�|�)��

Forward  query
batch

� ∼ ���

Sample query
batch of size b

log( (�|�))∑
(�,�)∈�

��

Compute loss
of batch

Backpropagate
through function to
update parameters

y

Figure 3.4: Structure that shows the iterative forward- and backward propagation
process to update parameters in a neural network classifier with three classes.

3.1.1 Convolutional neural networks

Figure 3.2 represents a standard feed forward neural network with fully connected layers.

This is not the only neural network structure but there exist many different structures,

such as convolutional and recurrent neural networks. Choosing the right structure de-

pends on the task at hand. In the case of image classification, convolutional neural
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networks (CNNs) have been proven to be very successful. Such as AlexNet, which was

able to get ground breaking results in the 2012 ImageNet competition, and more recently,

the ResNet structure, which was able to get better performance with many convolutional

layers [4, 17]. We use CNNs throughout the thesis so we explain how they work.

Images have a 2D grid structure with strong local dependencies; pixels that are spatially

close often have the same pixel values [18]. Local simple features can be detected with

different configurations of local strong dependencies, such as edges, corners, etc. Spatial

objects can be recognised with a combination of these simple features, such as a win-

dow that is constructed out of two horizontal and vertical edges. Convolutional neural

networks are designed to work with these grid-structured inputs [18]. The advantage

of a domain-designed network is that significantly less data are needed to get the same

performance compared to a standard feed forward neural network [19].

Convolutions

A standard convolutional neural network usually consists of convolutions, pooling schemes,

and non-linear functions; the first two operations are depicted in Figure 3.5. A convo-

lution extracts local features from an input by learning a function (filter) dependent on

θ. This is done by shifting the filter over the grid structure and hence the spatial in-

formation of features stays intact. Multiple convolutions are learned to extract multiple

different features. The output of a convolution is a feature map and we call a collection

of these feature maps a representation.

Figure 3.5: Example of a convolution and pooling operation on an 11 x 11 input grid
structure.
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Pooling layers

The goal of a neural network classifier is to map an input to an output class. An input

of class Nike can be seen as a distribution, because there exist many variations of images

that contain the Nike logo. The goal is thus to correctly classify every image from that

distribution to the right class. Neural networks do this by learning to extract represen-

tations for a class, such that the representations between different classes are linearly

separable [20]. The neural network should aim to be invariant to certain deformations to

minimise the variation of the representations [20]. This depends heavily on the task, but

for classifying logos from images, one can think about invariance to rotation, different

lighting, and translation.

The transformation of a convolved input is mostly equivariant, which means that spa-

tial information is the same or, precisely, Φ(Tx) = TΦ(x), where Φ is the computation

of the convolution and T is the translation [21]. The consequence is that representa-

tions are not invariant to translations and thus contradicts our previous statement that

representations should be invariant. Pooling is introduced to help make CNNs more

representation invariant to translations and other transformations [19]. It does this by

reducing the spatial resolution of the feature maps by only forwarding the maximum

input value of a specified region. An example of a pooling operation is max-pooling,

which we show in Figure 3.5.

ReLU activation function

The third and last operation in a standard convolution layer is the non-linear activation

function. The same as in a standard fully connected neural networks, the outputs of the

feature maps are forwarded in a differential non-linear function. Nowadays, the rectified

linear unit (ReLU) has been the most widely used activation function [22].

3.1.1.1 Convolutional neural network structures

Different CNN architectures exist that combine convolutions, pooling, and fully con-

nected layers. A well-known architecture is the VGG16 CNN, depicted in Figure 3.6

[23]. In this figure, we see that nearly all layers are constructed with convolutions and

pooling functions. The last four layers are fully connected (dense layers). Intuitively, we

can think that the convolution layers construct a function that extracts representations

from the input. The dense layers use the representations to perform the classification.
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Figure 3.6: VGG-16 CNN classification architecture with convolutional (conv), pool-
ing (pool), and fully connected (fc) layers.

Recently, a lot of work has focused on different architectural CNN implementations

[17, 24, 25]. The trend seems to be to make very deep networks and to reduce the

use of pooling operations. Springenberg et al. have shown that pooling operations are

not necessary, and without them, they reach the same or even better performance than

CNNs that do use pooling layers. Springenberg et al. also mention that large CNNs

with enough data are able to learn the invariances without the need for pooling layers.

The ResNet model

A problem with CNNs that are based on the VGG16 architecture is that it is hard to

know a priori how long the network should be to learn the function f∗(x). Another

problem is that very deep networks that are based on the VGG16 structure are unstable

and hard to train, which is called the degradation problem by He et al.. Their solution

is to make a skip connection, such that g(x) = h(x) + x (see Figure 3.7 for a detailed

picture). Multiples of these g(x) CNN blocks can be attached sequentially, with which

you can make very deep CNNs. The network can easily turn off blocks by using only

the skip connection and thus the network can automatically find the right number of

layers for a task tj .

The ResNet model only has two pooling layers at the beginning of the network. All the

other layers consist of convolutions, ReLU activation functions, and batch normalisation.

Batch normalisation normalises layer inputs, which results into faster convergence, acts

as a regulariser, and makes the hyperparameters more robust [27]. The final ResNet

layer is a global average convolution layer.

We can try to use both VGG16 or ResNet in the flow circle from Figure 2.1 as a generic

model. We then learn every task tj from scratch. The problem is that five training

samples per class for a task tj are not enough to get good performance, as we have

discussed in the introduction.



Chapter 3. Background and literature research 19

Convolution layer
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Activation layer
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Figure 3.7: This shows one block of the ResNet architecture. Multiples of these blocks
are stacked to create a ResNet CNN.

3.2 Transfer learning

Not having enough supervised data to train DL classifiers is a problem that occurs often,

because much data is required for these complex function approximators. We can look

to make DL models less complex by reducing the number of layers and neurons per

layer. However, the strength of deep neural networks lies in the automatic generation

of representations from input data [28]. It requires deep networks and a large number

of samples to learn powerful representations. These representations need to capture the

factors of variation in the input data, which is dependent on the task [15]. For example,

the number of wheels attached to an object is an important factor of variation when

one wants to classify between a car and a truck. It is then also important that the

representation can disentangle these factors [15]. As such, the model is able to classify

the input to a car or truck with these factors. Furthermore, translating or rotating a car

does not impact its class definition and thus the presentations should also be insensitive

(invariant) to task dependent transformations, such as translation, scale, and rotation

[29].

Yosinski et al. have shown that convolutional neural networks learn to detect simple

features (i.e., lower-level features) in early layers, such as edges and corners. In later
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layers, a combination of these simple features detect more complex features (i.e., higher-

level features), such as a window. Whenever multiple CNNs are trained on different but

related tasks, it can be that early layers detect on the same simple features, such as the

aforementioned edges and corners. However, the later layers are more specific to the

task and so the complex features deviate more between the CNNs that are trained on

different but related tasks. We call the early layers that detect the same features, and

thus computes the same representations, general layers. Whereas we call the the later

layers, the specific layers.

The general layers can be utilised to pre-process the images and extract useful repre-

sentations. The higher, specific layers are then trained using the pre-processed repre-

sentations. This is called network-based transfer learning, which we refer to as transfer

learning from now on, and is formalised as follows [31]:

Definition 3.1. (Transfer learning). Information of a dataset dt1 that is used to

train a model on task t1 is used to train a model with dataset dt2 on a different task t2,

where dt1 6= dt2 , and/or t1 6= t2. In addition, in most cases, the size of dt1 is much larger

than dt2 .

We can apply this by first creating a generic model. We do this by training (initialising)

a logo CNN classifier on a logo task tj with sufficient data to reach high accuracy. When

we need to make a logo classifier for another task tl, we then freeze most of the early

layers and use the five training samples per class to prepare the generic model for task

tl. We do this, for example, by training only the one or two final layers of the classifier.

This can work because the number of parameters that must be trained is significantly

lower and hence, we need less data to learn task tl. Initially, only a large supervised

dataset must be collected for task tj to create the generic model. However, is training on

only task tj good enough to apply transfer learning on all tasks in T \ {tj} with regards

to reliability?

In Figure 3.8, we show an intuitive illustration of a classifier that learns task t2 with a

large dataset to get high accuracy on task t2 [32]. Every circle represents the optimal

parameters for that task. The solid lines refer to the learning of an initialisation clas-

sifier (generic model) and the dashed lines refer to transfer learning, which we show in

Figure 3.9. We see in Figure 3.9 that the initialised model is able to learn new tasks,

such as t3 and t5, with transfer learning. However, the difficulty to learn a task deviates,

as can be seen by the different distances of the dashed lines. This means that for t5,

more data are needed than for t3 to reach the optimal parameters for that task. Hence,

the performance of transfer learning is dependent on which task we choose to initialise

the model. Meaning that the performance of transfer learning is susceptible to high
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Figure 3.8: A CNN classi-
fier is initialised to learn task
t2 and can be used to ap-
ply transfer learning to learn

other tasks.

Figure 3.9: This graph vi-
sualises how a trained classi-
fier on task t2 can be used
to apply transfer learning on

different tasks.

variation, which is not in line with the requirement that the generic model should be

robust.

This means that we need to find a different solution to make a generic model that

can learn a new task with only five samples per class. Research conducted by Scott

et al. compared meta-learning techniques to standard CNN classification learning and

transfer learning on the ability of learning new tasks with different numbers of training

samples per class. The results show that the used meta-learning techniques are superior

in accuracy to transfer learning and standard CNN classification learning when samples

per class are low (i.e., less than 20 samples per class). Hence, we look if these techniques

are able to function as a generic model and have the potential to meet the requirements

from Chapter 2.

3.3 Meta-learning

People are efficient learners. They only need a few supervised or unsupervised examples

to learn new classes or skills. Fei-Fei et al. and Lake et al. hypothesise that humans

learn new classes and skills quickly on the basis of past experiences. This motivated the

research community and it resulted in the field of deep meta-learning, which we refer to

from now on as meta-learning. We explain in this section what meta-learning is, which

techniques exist in meta-learning, and how it is useful with respect to building a generic

model that can learn new tasks with five training samples per class.
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3.3.1 Introduction to meta-learning

In general, a good performing meta-learning model is capable of adapting or generalising

to new tasks that it has never seen before during training. To do this, an initial (generic)

model is trained with a dataset that contains many different tasks. After that, only a

few samples (often 1-10 samples) are needed per class to prepare the initial model for

a new but related task it has never seen before. We have defined a set of tasks T in

Chapter 2 from which we can sample a task tj . Together with task tj there exist a

dataset dtj ∈ D for which the dataset dtj is a collection of supervised data that belongs

to task tj . We can now formalise meta-learning as follows:

Definition 3.2. (Meta-learning). Information of tasks tj ∈ T with datasets dtj ∈ D
is used to train a model on different unseen tasks t

′
j ∈ T

′
with datasets d

′
tj ∈ D

′
, where

T 6= T
′

and D 6= D
′
. In addition, generally, the size of dtj is 1-10 samples per class.

From Definition 3.2 we can see that transfer learning is a form of meta-learning when the

set of tasks T and T
′

only consist of one task. This also gives away why meta-learning

is better able to learn different tasks, because the initial model is trained on a set of

tasks T .

In Chapter 2, we specified that we are looking for a generic model that is able to learn

every new task tj ∈ T with only five training samples per class. We defined a task as a

collection of logo classes the model should be able to classify correctly. We can see that

these constraints exactly fit Definition 3.2 and will go deeper in meta-learning to see if

and how we can use it for this research.

3.3.1.1 Training a meta-learning model

In meta-learning, it is called few-shot or n-shot learning when there are n training

samples available per class for learning a new task and it is called K-way for the number

of classes that are learned for the new task [36]. For example, the aim of this research

is that we create a reliable and flexible model that can classify 35 logo classes with five

training samples per class. In meta-learning terminology, we call this a five-shot, 35-way

learning task

Vinyals et al. proposed a groundbreaking learning setup designed for meta-learning to

train a meta-learning model that is able to generalise to a distribution of unseen but

related tasks (meta-testing) with only a few samples to learn from, also called episodic

training. The idea is to simulate meta-testing during training (meta-training), which

consequently let the model generalise better to new tasks it has never seen before. Almost
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every meta-learning technique has implemented this training strategy since Vinyals et al.

introduced it.

We define meta-testing as if we deploy the model in the circle flow of Chapter 2. In

meta-testing, we need to prepare the model for a new learning task tj with supervised

logo data from dtj . After learning task tj , we can test with queries from dtj how well

the model has learned task tj . We do this by sampling a support set S and query set

q from dtj . We use the support set S to learn task tj and queries from q to evaluate

how well the model has learned task tj . To simulate this in meta-training, we follow the

steps in Algorithm 1 to sample support set S and query batch q for an n-shot K-way

learning task.

Algorithm 1 Sample S and q for an n-shot K-way learning task

Require: A set of labels L from dataset D = {(xi, yi)} with yi ∈ L ∀i
1: Estimate tK ∼ TK by random sampling a task with K classes (labels) by tK ∼ L
2: Extract dtK = {(xi, yi), i = 1, ..., N} with yi ∈ {1, ...,K} and dtK ⊂ D
3: Random sample a support set S with S

n∼ dtK and S = {S1, ..., SK} for which the
total number of samples in every support class S1, ..., SK is n

4: Random sample a query batch q
m∼ dtK with q = {q1, ..., qK} for which m is the total

number of samples in every query class q1, ..., qK and S ∩ q = ø
5: return Support set S and query batch q

An example of sampled support sets and query batches is visible in Figure 3.10. Every

row is one iteration through Algorithm 1. We sample meta-training tasks from a dataset

D but sample the meta-testing samples from a dataset with different classes from D
′
.

Now, the idea is to use set S to prepare a model for a task tKj and evaluate how well the

model has learned task tKj with set q. We define this as one iteration or one episode.

The difference with normal neural network classifier training is that we iterate through

tasks and forward set S and q to the neural network model. On the contrary, for normal

neural networks classifiers, we focus only on one task and forward a training batch q. This

means that with episodic training a class prediction depends on both S and q, and hence

Pθ(y|x) becomes Pθ(y|x, S). This also changes some formulas we defined in the neural

network section, such as Equation 3.3a and Equation 3.3b. We summarise these changes

between normal neural network training and episodic training in Table 3.1. We also

update Figure 3.4 with Figure 3.11 to show changes that occur with episodic training.

Notice that we replaced gθ(x) with ’A model’. We do this, because, depending on which

meta-learning technique is used, the model changes substantially. Finally, depending on

the technique, there can be small deviations in the episodic learning algorithm.
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Normal classifier learning Episodic learning

Sampling task - tK ∼ TK
Data dtK dtK

Sample batch q ∼ dtK
- S ∼ dtK
- q ∼ dtK

Model loss
∑

(x,y)∈q log(Pθ(y|x))
∑

(x,y)∈q log(Pθ(y|x, S))

Optimisation arg maxθ Eq∼d
tK

[∑
(x,y)∈q log(Pθ(y|x))

]
arg maxθ EtK∼TK

[
ES∼d

tK
,q∼d

tK

[∑
(x,y)∈q log(Pθ(y|x, S))

]]
Table 3.1: This table shows a comparison of formulas between normal neural network

classifier training and episodic meta-learning training.

Support set

 

�

Query batch

 

�

Meta-training

Meta-testing

Training
classes

Held-out
classes

Figure 3.10: Shows the distribution of training and testing datasets for meta-learning.
In this image, the training and testing sets reflect one-shot, three-way learning. In every
episode, one sample of the corresponding class is sampled for the query. This can be
scaled up, which resembles having a larger batch size in standard classification training.

3.3.2 Three directions in meta-learning

Since Vinyals et al. published their paper, many new meta-learning techniques have been

developed that use the episodic training strategy. We need to investigate which of these

techniques is the best fit to the flow circle from Chapter 2. Vinyals gave a presentation

at NIPS 2017 wherein he roughly split the techniques in three different directions, deep

metric learning, initialisation learning, and model-based meta-learning. We will use

these splits to investigate what their strengths and weaknesses are and then we can

better define which of these techniques have the potential to meet the requirements of

the quality metrics.
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Figure 3.11: Structure showing an iterative forward and backward propagation pro-
cess to update parameters in a neural network classifier that uses episodic training.

3.3.2.1 Deep metric learning

Deep metric learning is inspired by the nearest-neighbours algorithms, such as k-NN

classification; k-NN is a non-parametric method and assigns a class membership to a

query input by a plurality vote of its neighbours. In Figure 3.12, we show a two-

dimensional representation space with a five-shot, two-way learning task. By performing

the algorithm with three nearest neighbours, means that we look at the three closest

representations of the query input. A plurality vote is then in favour of support set class

S2 and hence the query is assigned to the red class.

In deep metric learning, the representation of an input query is generated by a neural

network function. The aim is to learn a representation generator that is generic to all

tj ∈ T and generalises to t
′
j ∈ T

′
. We can intuitively think that the neural network

learns to recognise universal logo properties from logo images, such as the colour of the

logo, and represent these in a representation, such that the combination of these universal

properties generates a unique representation for its representative class. Representations

of the same class then cluster together in the representational space and we can apply

a form of k-NN.

A problem with k-NN in Figure 3.12 is that the process is discrete, which results in that

any objective function based on k-NN not being smooth and hence not differentiable

[39]. This means that we cannot use gradient descent to train k-NN with a neural

network end-to-end. Goldberger et al. proposed a solution to make k-NN stochastic,

such that gradient-based optimisation is possible. They do this with the use of the
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softmax function that we described in Equation 3.1. The change is that in Figure 3.12

the distances from the query input to all other support set samples is probabilistic. This

function is reflected in Equation 3.4, with kθ(x, xi) defined as similarity function that

is parametrised by a neural network. To make a classification, we can then sum all the

probabilities that assign to a specific class, which we do in Equation 3.5, and then assign

the query input to the class with the highest probability (i.e. arg maxy Pθ(y|x, S)).

kθ(x, xi) =
e−dθ(x,xi)∑

xj∈S
e−dθ(x,xj)

(3.4)

Query
input

Representation space

k=3

Support �1

Support �2

Figure 3.12: This Figure shows an example of k-NN classification with k=3, a support
set with two classes with for both five examples each and one query input.

Pθ(y|x, S) =
∑

(xi,yi)∈S

kθ(x, xi)yi (3.5)

We define some of the advantages and disadvantages of this method as follows:

• Advantages

– Task tKj can easily be exchanged for another task by changing the support

set, which means strong within-flexibility. No fine-tuning with, for example,

gradient descent is necessary. This also means that we can easily replace
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tKj with, for example, tK+1
j . Thus, this approach has also strong between-

flexibility.

– Memory can easily be increased by adding more samples (n) in the support

set classes.

• Disadvantages

– This method does only across-task learning (universal property learning) and

not within-task learning (fine-tuning on the support set), which might not

work for all datasets or requires large datasets to learn appropriate universal

properties.

– All the representations of the support set and the model need to be stored,

which can have implications if the model is deployed on small devices.

3.3.2.2 Initialisation learning

Initialisation learning is an extreme form of transfer learning, in which, contrary to

transfer learning, an initialisation from tasks tKj ∈ TK is learned. We show an intuitive

image in Figure 3.13, which compared to Figure 3.9, shows the difference between initial-

isation and transfer learning. With initialisation learning, the tasks tKj ∈ TK are used

to learn a parameter initialisation that is close to every optimal parameter manifold of

tasks tKj ∈ TK . Consequently, a small support set with, for example, five samples per

support set class is able to learn different but related tasks.

Figure 3.13: This picture shows intuitively how initialisation optimisation works. An
initialisation is found that is close to all tasks in T , such that with only a few samples

a new task can be learned.

For initialisation learning, we use a classification neural network model gθ(x) that is

able to learn a new task with an optimiser vθv . This optimiser updates the initial
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parameters θ0 to the parameters that lie in the optimal parameter manifold of a task

tKj with a support set S. It does this with the backpropagation algorithm. We show this

optimisation step in Equation 3.6b. The model gθ(x) then uses these updated parameters

to classify queries into the K labels from class tKj , which we show in Equation 3.6a.

Pθ(y|x, S) = gθ(S)(x) (3.6a)

θ(S) = vθv

(
θ0, {∇θ0 log(Pθ0(yi|xi))}(xi,yi)∈S

)
(3.6b)

We define here some advantages and disadvantages of this approach:

• Advantages

– Within-task training; the model specialises on a task tKj with fine-tuning.

This can be beneficial when it needs to generalise to out-domain data.

– This is a model agnostic approach, which means it can be applied to regres-

sion, classification, and reinforcement learning tasks [41]. However, for this

research, it is not beneficial, because we only need to perform classification.

• Disadvantages

– The initialisation needs to be learned from scratch if a new task, for example,

tK+1
j , has more classes than the original initialisation was learned on. Hence,

it has a poor between-flexibility.

– Some gradient steps need to be performed to learn a new task tKj , which

makes this approach less flexible, because this requires some computation

power.

3.3.2.3 Model based learning

Model-based approaches do not make assumptions on Pθ(y|x, S), but focus specifically on

the design of the model gθ to make it work for learning new tasks and hence Pθ(y|x, S) =

gθ(x, S). Referred to as black boxes by Larochelle, the strength of this approach is that

there are no assumptions made and the model is able to learn any function by itself.

However, the downside is that this usually requires substantially more data, because the

models are more complex.

We define the advantages and disadvantages of this approach here:



Chapter 3. Background and literature research 29

• Advantages

– It can be very powerful when there are enough data to learn complex func-

tions.

• Disadvantages

– It is a black-box model and is often large with many parameters.

– In many cases, the network needs to be retrained from scratch when it is

optimised for learning tasks of the form tKj and needs to learn, for example,

a new task tK+1
j . Hence, just as with initialisation learning, there is poor

between-flexibility.

3.3.3 Meta-learning data and models

To be able to train meta-learning techniques, we sample tasks from a set of tasks that

we estimate by sampling K classes from a set of labels L. To be able to sample a diverse

set of tasks, we need a large set of different logo classes in set L and as such we need to

have a dataset with many different logo classes. There are a few datasets available with

a large number of classes. We have summarised these datasets in Table 3.2. However, we

must note that many of those datasets have overlapping classes and samples. As such,

the Logos in the Wild dataset is a collection of images from WebLogo-2M, Logo-NET,

and the FlickrLogos datasets. In addition, some of these datasets are very noisy or a

subset of the data is unsupervised, such as WebLogo-2M and Logo-NET. We thus focus

solely on the Logos in the Wild dataset. One issue, however, is that many classes in

the Logos in the Wild dataset contain less than 10 samples per class, which can make

it hard to train meta-learning models when there are not enough samples for a support

set and query set.

Most datasets from Table 3.2 are focused on logo detection and not on logo classification.

This means that these samples have many (different) logos in their picture with files that

contain bounding box (x and y coordinates that specify the location of the logo in the

image) information. We can extract the logos from the picture by cutting out the region

of interest (ROI) using the bounding box information. The disadvantage is that the

quality of the logo samples (number of pixels) will probably be less than pictures of

logos taken by a mobile phone. Nowadays, the quality of pictures taken by mobile

phones ranges between 8 and 21 megapixels, which is roughly equal to 3,264 x 2,448 and

5,120 x 4,096 pixels. This means that there can be a quality gap between our dataset

used to train the generic model and the input queries the model must handle during

deployment of the conference application.



Chapter 3. Background and literature research 30

Dataset
Number of
logo classes

Number of
images

BelgaLogos [11] 37 10,000

FlickrLogos-32 [12] 32 8,240

FlickrLogos-47 [12] 47 8,240

TopLogo-10 [43] 10 700

Logo-NET [6] 160 73,414

WebLogo-2M [9] 194 1,867,177

Logos in the Wild [10] 871 11,054

Table 3.2: Statistics of available datasets to train logo detection models. The region
of interest can be used to extract supervised logo samples.

Direction Method 5-Way Mini-ImageNet

1-shot 5-shot

Metric
Matching nets [37] 43.6% 55.3%
Prototypical nets [13] 46.61 ± 0.78% 65.77 ± 0.70%
Relation nets [44] 51.38 ± 0.82% 68.20 ± 0.66%

Meta-learn LSTM [45] 43.4 ± 0.77% 60.2 ± 0.71%
Initialisation MAML [41] 48.7 ± 1.84% 63.1 ± 0.92%

Reptile [2] 49.97 ± 0.32% 65.99 ± 0.58%

Model based
Meta-nets [46] 49.21 ± 0.96% -
SNAIL [47] 55.71 ± 0.99% 68.88 ± 0.92%

Table 3.3: Results of popular meta-learning techniques with one-shot and five-shot,
five-way learning task classification accuracies on the mini-ImageNet dataset. Some
scores include a 95% confidence interval. Note that more techniques are published
constantly. Thus, this table does not include all techniques but is a representation of

the most popular techniques of the past four years.

Meta-learning models

Many different meta-learning models exist. We have depicted the most popular models

in Table 3.3 and categorised them in one of the three directions. We see that Relation

nets and SNAIL are the best performing models on the mini-ImageNet [37] dataset.

However, we need to see first if this ranking based on performance stays the same when

we train and test these models on a logo meta-learning dataset. Finally, we use the

following naming conventions in the tables for brevity: network (net) and prototypical

network (protonet).

3.4 Discussion of literature research

We have searched for a technique that is able to learn new tasks tj ∈ T with five training

samples per class. We want this technique to be reliable and flexible enough such that

we can integrate it in the flow circle in Figure 3.2 from the problem definition section.
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We have found that the deep meta-learning domain consists of techniques that have the

potential to match our requirements. With this conclusion, we have partly answered our

first question from Chapter 2:

what technique(s) fit in the circle flow and have the potential to be reliable and flexible.

To answer this question further and the other questions, we need to investigate which

meta-learning techniques are most reliable regarding the problem. We have, however,

recognised that deep metric learning is within- and between-flexible, whereas initiali-

sation and model-based learning approaches have poor between-flexibility. This means

that initialisation and model-based approaches need to relearn a set of tasks from scratch

if they need to prepare on a task that has more or fewer classes than that on which the

current generic model is prepared. This can have a high impact on flexibility, because it

requires an expert to learn a generic model again, which could take more than 6 hours

to accomplish. For this reason, we conclude that deep metric learning approaches are

more flexible than initialisation and model-based learning approaches.

The question remains if deep metric learning actually works on logos, because they are

abstract and made specifically to be different from one another. It can thus be hard

to make a general representation function that depends on universal logo properties. A

recent study conducted by Fehérvári and Appalaraju showed that deep metric learning

can work on logos. However, in this study, the training dataset consist of 169,400

samples, which is large compared to the Logos in the Wild dataset depicted in Table 3.2.

Looking at the sub-question of ’how should we collect data to make a reliable model?’,

there could be a difference in quality between the acquired dataset for training and eval-

uation, and the mobile pictures the model should make inferences on during deployment.

If this is an issue, we need to collect higher qualitative data. Alternatively, it could be

that initialisation-based meta-learning models are better able to handle these quality

differences than models from the other two directions, because initialisation learning

models apply within-task learning. Hence, we introduce an extra quality metric for the

generic model, which we call robustness to quality shift.

We present a comparative overview of our findings in Table 3.4, where we measure on

two different scales. In Table 3.4, we measure on the meta-learning direction scale. How-

ever, when we have individual meta-learning model results, we present the comparative

findings on a model scale. In every row, we compare the direction or models on the basis

of the quality metric or sub-quality metric for which a + means the best in that row, a

± is average, and − the worst. We can see in Table 3.4 that deep metric learning is most

flexible, because we can change the set of learning tasks without re-training the model.

This is not the case for initialisation and model-based learning for which a change of, for
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Quality metric Sub-quality metric Direction

Deep metric
learning

Initialisation
learning

model-based
learning

Accuracy

Rejection
accuracy

Robustness
Within-robustness
Between-robustness
Quality shift robustness

Flexible + +− +−

Table 3.4: Comparative presentation of our findings between the three different meta-
learning methods.

example, five-shot, five-way to five-shot, 10-way learning means that we need to re-train

the generic model from scratch.

We structured this research to answer the other questions and sub-questions of Chap-

ter 2 as follows: (i) we built a small logo meta-learning classification dataset to research

a selection of meta-learning models with respect to accuracy in Chapter 4; (ii) we inves-

tigated within- and between-robustness by finding accuracy metrics on different sets of

learning tasks in Chapter 4; (iii) we made a model selection based on the found accuracy

metrics and robustness in Chapter 4; (iv) we created a large logo dataset that resembles

the use case better in Chapter 5; and (v) we investigated the rejection accuracy and

robustness to quality shifts in Chapter 5.



Chapter 4

Empirical analysis on

meta-learning models

Many meta-learning methods exist with their own pros and cons. We constructed a

taxonomy of these methods that includes three directions in Chapter 3. In this chapter,

we make a strategic selection with the use of the taxonomy to assess which methods are

best applicable to be a generic model in the flow circle defined in Chapter 2. We do this

in the following way: (i) construct a small logo dataset, (ii) use the small logo dataset to

test out different methods from mainly Table 3.2 in Chapter 3, and (iii) make a selection

of the best performing models in each direction based on accuracy, and between- and

within-robustness.

4.1 Data

Generally, two datasets are used to evaluate and compare meta-learning models in the

meta-learning domain, the mini-ImageNet dataset that is used to evaluate the meta-

learning methods in Table 3.2 and the Omniglot [49] dataset that consists of grey scale-

drawn characters from many different languages. We introduce the Omniglot dataset in

this section, because we use it to evaluate if we implemented the meta-learning methods

correctly. Thereafter, we introduce the small logo dataset that we create to test out

which methods in the meta-learning space work well on the logo classification task.

This dataset is relatively small, because we want to iterate quickly through the methods

and save costs. In Chapter 5, we introduce a large logo dataset with which we focus

more on collecting samples that resemble the usage phase of the conference application.

33
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4.1.1 Omniglot dataset

A dataset of characters was collected by Lake et al. to research applications for sets of

one-shot learning tasks. The dataset consists of 50 different alphabets from around the

world and even includes some alphabets from science fiction novels. The 50 alphabets

have 1,623 different characters (i.e. 1,623 classes), in which every character has only 20

examples and for which all characters are drawn by 20 different persons. This means

that only 20 training examples are provided for every character class. The characters

are in greyscale with a size of 105 x 105 pixels. We show some of the characters from

the dataset in Figure 4.1.

Figure 4.1: Two characters from each of eight alphabets.

Omniglot dataset preparation

In meta-learning literature, the Omniglot dataset is normally pre-processed by resizing

the images to 28 x 28 pixels and using rotation to extend the number of classes even

further. The dataset is extended by multiple rotations of 90◦, for which every rotation

generates a different character. In this way, the number of classes is multiplied by 4.

We apply the same pre-processing procedure and use the standard train-test split from

Lake et al. This results in 4,800 different character classes for meta-training and 1,692

character classes for meta-testing. We present more statistics about this dataset in

Table 4.1.

4.1.2 Small logo dataset

We mentioned before that there is much overlap between the datasets from Table 3.2 in

Chapter 3 so we focus only on constructing the small logo dataset from the Logos in the

Wild dataset.

We saw in Chapter 3 that episodic training is applied to learn meta-learning models.

This requires sampling a support set S and query batch q per iteration from a dataset

dtKj
. For example, to mimic five-shot, five-way learning tasks during training, we need
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to sample five logo images per support set class and 25 images in total for the complete

support set. To evaluate and improve the model, we need to sample at least one logo

image per class for batch q. In many published meta-learning papers, such as those by

Nichol et al., Snell et al., Finn et al., and Sung et al., the authors use between 5 and 15

samples per class for batch q. This means that if we want to sample five logo images

per support set class and five logo images per query batch class, we need to sample 10

logo images for each of the five classes per iteration in total. However, the number of

samples per class in the Logos in the Wild dataset is often limited to 10 or fewer images

per class. We therefore decide to use 10 samples per class to not limit the total number

of classes in the small logo dataset too much. This means that we can both sample five

logo images per support set class and per query batch class.

Further, in Figure 4.2, we present how we extract logos from the images of the Logos

in the Wild dataset. There are two interesting observations: (i) the extracted ROIs are

closely bound to the logo and (ii) extracted ROI number 3 is blurred compared to the

other two ROIs.

Observation (i) is a problem, because mobile application users that take a picture of

a logo will have a hard time bounding the logos that tightly. We need to assume that

there will be much more background information in the pictures present during the usage

phase of the conference application. This means that the generic model also needs to

learn how to discard this background information, because this information is redundant

to the task of classifying logos. We want to improve this by making the ROI larger than

the bounding boxes given by the Logos in the Wild dataset. However, we cannot increase

the ROI substantially, because the Logos in the Wild dataset splits logos that consist of

symbols and text. For example, a combined logo of the Pepsi symbol and Pepsi text is

visible in the left picture of Figure 4.2. If we increase the ROI of either the Pepsi symbol

or Pepsi text too much, their ROI will overlap, which could influence the class definition.

We therefore used the standard bounding box information from the Logos in the Wild

dataset as our ROI and focused only on increasing the ROIs during construction of the

large logo dataset in Chapter 5.

Observation (ii) shows a lack of information, because the logo is too small in the original

picture or because of how the picture was taken. We see that in some occasions the

extracted ROIs lack so much information that we are unable to recognise to which logo

the ROI belongs. We deem these ROIs as too noisy and having a lack of information

and remove these samples from the dataset. We conclude visually that a sample image

needs to have at least 625 pixels in total (e.g., 25 x 25 pixels).
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Logo image Extracted ROIs

1 2 3

Figure 4.2: The image on the left is a classic picture that comes from the logo detection
datasets that we use. We extract the ROIs of the logos on the left and present them

on the right. We use the extracted ROIs for logo classification.

Omniglot Mini-ImageNet Small logo

Total meta-train classes 4, 800 60 151
Total meta-test classes 1, 692 40 40
Samples per class 20 600 37∗

Pixel size of images 28 x 28 84 x 84 60 x 60
Total images 129, 840 600, 000 14, 849

Table 4.1: This table shows statistics of standard meta-learning datasets and a derived
dataset by us, which is called the small logo dataset. The ∗ means that we have used

the median as metric.

Small logo dataset preparation

We extracted all ROIs from the pictures of the Logos in the Wild dataset and labelled

them according to the given classes from the Logos in the wild dataset. We filtered the

collected ROIs on the basis of our defined threshold, which means that any ROI below a

total of 625 pixels was removed. We then looked at the number of logo images per class.

The logo classes that have less than 10 ROIs were removed. This resulted in a dataset

with 191 classes that include 14,849 ROIs (logo samples) in total, which is a significant

decrease from the 871 classes that are present in the Logos in the Wild dataset. We split

the 191 classes in a meta-train and meta-test set by, respectively, randomly sampling

151 classes and selecting the 40 leftover classes.

In Figure 4.3, we show the distribution of the number of logo samples per class in

the meta-train set, which has a median of 37 logo samples per class. Note that the

distribution is heavily skewed to the right. We also evaluated the median number of

pixels per logo sample, which is roughly 602 pixels in total. To save costs and iterate

quickly through various methods, we decided to resize all samples to the median size of

602, which we did with bilinear interpolation [50]. As such, every image has a size of 60

x 60 pixels. In Table 4.1 we show comparison statistics of the Omniglot, mini-ImageNet,

and small logo datasets.
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Figure 4.3: This graph shows the class distribution of the meta-train small logo
dataset. The dotted line represents the median and the minimum number of samples

in a class is 10.

4.2 Methods

In this section, we explain how the methods that we use to do our experiments work.

We selected five methods on the basis of their published accuracy results and selected

at least one method on the basis of our defined taxonomy in Table 3.3. We used these

methods to investigate accuracy, and between- and within-robustness on the small logo

dataset.

We used the following best-performing methods from Table 3.3: prototypical nets, rela-

tion nets, MAML, reptile, and SNAIL. For prototypical networks, we added an exten-

sion that is called Gaussian prototypical networks [1]. We also included a deep metric

learning model that has been used by Fehervari and Appalaraju because it shows good

performance on logo samples; we call it the proxy network.

In Chapter 3, we defined that meta-learning methods are trained with episodic training.

This means that we sample every iteration a support set S = {(x1, y1), ..., (xN , yN )} and

batch q = {(x1, y1), ..., (xM , yM )} where each xi ∈ RD is a D-dimensional representation

of an input image, and yi ∈ {1, ...,K} specifies the class. We denote Sk and qk as the

set of logo samples that belong to class k, with k ∈ {1, ...,K}.

For every experiment in this section, we used a backbone network (i.e. neural network

architecture) hθ(x). This network consists of a stack of modules, for which each has

a 3 x 3 convolution with 64 filters followed by batch normalisation, a ReLU function,
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Input image
3 @ 60 x 60

Representation
64 @ 60 x 60

Representation
64 @ 30 x 30

Representation
64 @ 30 x 30

Representation
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64 @ 15 x 15
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64 @ 7 x 7
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64 @ 3 x 3
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Max-pooling
64 @ 2 x 2
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64 @ 3 x 3

Max-pooling
64 @ 2 x 2

Convolution
+ batch + ReLU

64 @ 3 x 3

Max-pooling
64 @ 2 x 2

Representation
1 @ 576 x 1

Figure 4.4: The standard backbone with stride 1 for the convolutions and without a
softmax layer.

and 2 x 2 max-pooling. We stacked four of these modules, which resulted in an output

representation of 64 channels each 3 x 3 in size when we input a logo image of 60 x

60 pixels. This input image has a dimension of 3 x 60 x 60 because of the three RGB

channels, and we refer to this as the D-dimensional input query x. We vectorised the

output channels, which resulted in an E-dimensional representation of 576 dimensions.

We depict this architecture in Figure 4.4.

Depending on the method, the output of the standard backbone was used as a represen-

tation such as in deep metric learning, or the output was stacked with a softmax layer

to compute probabilities per class such as in initialisation learning. We use hθ(x) for

the former and gθ(x) for the latter. Finally, for SNAIL this backbone is also used but is

chained together with another neural network architecture.

4.2.1 Deep metric learning

In Chapter 3, we defined that deep metric learning approaches learn a similarity function

and we described this with Pθ(y|x, S) =
∑

(xi,yi)∈S kθ(x, xi)yi, which gives a distribution

over classes. We use this notation to explain various deep metric learning techniques.

4.2.1.1 Prototypical networks

Prototypical networks learn a representation function hθ : RD → RE that outputs an

E-dimensional representation. It uses this representation function to create prototypes

ck ∈ RE from support set S that represent the centroid of a cluster from class k. We

create these prototypes by computing the mean with representations belonging to Sk.

In Equation 4.1, we show how we compute these prototypes for which |Sk| represents the

number of samples in support set k. Given a distance function, we can then compute

the probability distribution over the classes given a sample x from batch q and support

set S. We show this in Equation 4.2 in which p(S) computes the set of prototypes.
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ck =
1

|Sk|
∑

(xi,yi)∈Sk

hθ(xi) (4.1)

Pθ(y|x, S) =
∑

(ci,ki)∈p(S)

e−d(hθ(x),ci)∑
(c
′
i,k
′
i)∈p(S)

e−d(hθ(x),c
′
i)
ki (4.2a)

p(S) =


 1

|Sk|
∑

(xi,yi)∈Sk

hθ(xi), k


K

k=1

(4.2b)

We show in Figure 4.5 how Prototypical networks make prototypes and computes dis-

tances to these prototypes with a new input x in a two-dimensional representation space

[13]. Snell et al. justify using distance metrics that are a Bregman divergence [52],

such as the Euclidean distance. They show that for the class of Bregman divergence

distance functions, prototypical network is equivalent to performing mixture density on

the support set with an exponential density function. They also empirically show that

the Euclidean distance performs significantly better than the cosine distance. Hence, we

also use the Euclidian distance to calculate the distance of a query to a prototype.

It follows from the equivalence to performing a mixture density on the support set, that

every class k from Prototypical networks can be represented in the representation space

as spherical Gaussian densities with an identity covariance matrix [13]. It must also be

assumed that they have the same variance across every dimension to be able to define

one threshold to reject input queries that do not belong to any class. The question is

if the function hθ(x) is able to meet these assumptions for every logo class. A solution

to soften these assumptions would be to use not only the mean (ck) of a class k and

assume an identity covariance matrix but to estimate a covariance matrix for every

class k. We then only need to assume that clusters are Gaussian densities. Finally,

in Appendix C.1, we conduct an experiment to visually show the spherical Gaussian

densities in representation space with the MNIST dataset [53].

Gaussian prototypical networks

Gaussian prototypical networks try to account for some of the assumptions made in

Prototypical networks, such as having the same variance across dimensions. They do
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Figure 4.5: A two-dimensional representation space of Prototypical networks with a
five-shot, three-way learning task.

this by letting the function hθ(x) not only output representations but also output inde-

pendent inverse covariance matrices. They use these matrices to adjust the prototypes

by computing weighted prototypes and use them to normalise the distances. Intuitively,

we now try to compute how many standard deviations an input x is from a cluster

prototype ck. To output also inverse covariance matrices, the number of channels of

the convolutional layer in the last module from the standard backbone is doubled to

128. This means that an input query x of size 3 x 60 x 60, outputs an 2E-dimensional

representation of size 1152.

Gaussian prototypical networks learn a representation function hθ : RD → R2E that out-

puts an 2E-dimensional representation. However, the first half of this vector [1, ..., E]

represents the inverse variances of the diagonals of an invariance matrix (i.e. inverse of

covariance matrix). The second half (E,...,2E] is the representation of the input. We

define the invariance matrix by hθ(x)1 and the representation by hθ(x)2. Only the in-

verse of the variances are estimated and not the inverse of the correlations, because also

estimating correlations mean that we need to estimate (E)2 values which increases the

parameters of the model substantially. Furthermore, we can represent the inverted vari-

ance vectors of hθ(x)1 to an invariance diagonal matrix, as can be seen in Equation 4.3.

In our equations, we use the vector representation so we use the Hadamard product (◦).

The inverse covariance matrix should be positive definite (PD) to make sure we are

in compliance with the Gaussian density assumption of a PD covariance matrix. This

means that an n x n matrix A is PD if the scalar zTAz is strictly positive for every
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non-zero column vector z ∈ Rn [54]. To be sure that the E-dimensional outputs are

PD, we use a function to transform the dimensions independently. This function needs

to transform a value from R to R>0. For this, we use the softplus function, defined as

log(1+ex), to be sure that the vector values are between (0,∞). We use the function that

gives the best result following Fort’s research, which is the extended softplus function

Tθ(xi) defined in Equation 4.4.

hθ(x)1 =


hθ(x)1

1
...

hθ(x)E1

→

hθ(x)1

1 0
. . .

0 hθ(x)E1

 (4.3)

Tθ(xi) = 1 + log(1 + ehθ(xi)1) (4.4)

Gaussian prototypical networks use the invariance matrices to adjust the means of the

prototypes. The intuition is that for representations the network is unsure about, such

as logos that are heavily blocked by other objects, get less weight to compute the mean

of the prototype. In Equation 4.5, we show how we compute the adjusted prototypes.

ck =

∑
(x,y)∈Sk

Tθ(xi) ◦ hθ(xi)1∑
(x,y)∈Sk

Tθ(xi)
(4.5)

The invariance matrices from every support sample in a class k are also used to compute

one invariance matrix for every class k. We do this by adding all invariance matrices from

the support samples of a class k, defined in Equation 4.6. We then use this invariance

matrix with the Mahalanobis distance function, defined in Equation 4.7, to compute the

distance of an input query xi to support set k.

Σ−1
k =

∑
(xi,yi)∈Sk

Tθ(xi) (4.6)

d(hθ(x)2, ck,Σ
−1
k ) =

√
(hθ(x)2 − ck)TΣ−1

k ◦ (hθ(x)2 − ck) (4.7)
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We can now combine these functions to represent the Gaussian prototypical network as

a probability distribution over classes in Equation 4.8. We learn this network end-to-end

with episodic training.

Pθ(y|x, S) =
∑

(ci,Σ
−1
i ,ki)∈p(S)

e−d(hθ(x)2,ci,Σ
−1
i )∑

(c
′
i,Σ
′
i,k
′
i)∈p(S)

e−d(hθ(x)2,c
′
i,Σ
′
i)
ki (4.8a)

p(S) =




∑
(xi,yi)∈Sk

Tθ(xi) ◦ hθ(xi)1∑
(xi,yi)∈Sk

Tθ(xi)
,
∑

(xi,yi)∈Sk

Tθ(xi), k



K

k=1

(4.8b)

4.2.1.2 Relation networks

Gaussian prototypical networks and vanilla prototypical networks use standard distance

metrics to compute how close a query is to a support set Sk. However, it is not always

straightforward to decide what the best distance metric is. It could even be that all

our defined and known distance metrics can be improved by a generated distance metric

unknown for us. This is exactly what Sung et al. proposed, a neural network that

replaces the distance metric such that it learns the most appropriate distance metric by

itself.

The representation function is hθ1 : RD → RE that outputs an E-dimensional represen-

tation for both samples from the query batch q and the support set S. The Relation

network uses this function to add the representations of the samples from support set S

that belong to class k together. We compute this with ak =
∑

(xi,yi)∈Sk hθ1(xi) for which

ak ∈ RE . The relation function h
′
θ2

: R2E → (0, 1) computes how closely related the

support set representation ak is to an input query x by outputting a score between 0 and

1. The input of the relation function is a concatenation of a query representation hθ1(x)

and support set representation ak, which we denote as ζ(hθ1(x), ak). We use the exact

same relation function that is used by Sung et al. We can now present a function that

computes probabilities over classes that is parameterised by the representation function
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and relation function in Equation 4.9.

Pθ1,θ2(y|x, S) =
∑

(ai,ki)∈A(S)

h
′
θ2(ζ(hθ1(xi), ai))ki (4.9a)

A(S) =


 ∑

(xi,yi)∈Sk

hθ1(xi), k


K

k=1

(4.9b)

In the published paper of Sung et al., they use the mean square error as loss, because

they see this as a regression problem. We use the same loss function.

arg min
θ1,θ2

EtK∼TK

ES∼d
tK
,q∼d

tK

 ∑
(x,y)∈q

∑
k∈K

(Pθ(k|x, S)− 1(y=k))
2

 (4.10)

4.2.1.3 Proxy networks

The focus on deep metric learning is to make representations such that similar images

are close in the representation space and dissimilar images are far apart. The aim is

thus to decrease the within variance of images from the same image class and increase

the between variance of dissimilar images from different classes in representation space.

A challenge in deep metric learning is sampling informative samples for training such

that within variance and between variance is optimised [55–57]. Research by Zhai and

Wu described that similar images in a batch or dissimilar images in a batch that are too

easy to classify do no contribute much to training, because the loss would be near to

zero. This can decrease learning speed, because many iterations are necessary to hope

that sometimes a hard batch is sampled from which the model can learn. The methods

we described previously (Protonets, Gaussian protonets, and Relation nets) counter this

sampling problem by sampling many different classes (i.e., K classes) in one episodic

iteration and use the relation between all the classes with the similarity function from

Equation 3.4 in Chapter 3. This makes the chance of sampling harder samples higher

and therefore the model learns faster and has higher accuracy. However, in reality, the

batch size is constrained to the limit of the GPU memory that is used. Proxy networks

is a method that tries to solve this problem [59].
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In proxy networks, they do not use episodic learning but learn a deep metric model

prior the invention of episodic training. This means that we define a dataset D =

{(xi, yi), i = 1, ..., N} that includes all samples and logo classes for which yi ∈ {1, ...,K}.
Proxy networks learn a one-shot K-way learning task. This means that with the small

logo dataset we learn to do a one-shot, 151-way learning task, because there are 151

logo classes in the small logo training dataset. We represent these classes with proxies

Z = {1, ...,K}.

Proxy networks learn a representation function hθ1 : RD → RE that outputs an E-

dimensional representation for an input xi. Now for every class from Z a representation

is learned that represents that class. Intuitively, you can think about this as learning a

centroid for every class in Z. These representations are learned during backpropagation

and are called proxies. We define a set of proxies by pθ2(Z) = {proxy1, ..., proxyK}θ2 .

Proxy networks uses the same similarity function as is used by prototypical networks

and Gaussian prototypical networks to define a probability that a query belongs to a

class. However, they use all the proxies to compute the probability, which is the strength

of proxy networks, because every iteration of a sample xi is compared to all classes from

the training set. The proxies are initialised and learnable representations in RE for which

D >> E and hence proxies take up significantly less memory compared to images.

We present in Equation 4.11 the proxy probability distribution over the classes. We

learn it with the formula in Equation 4.12. During test time, we do not use the proxies

and use k-NN to assign a query to a class from support set S. We use k-NN as we have

discussed in Chapter 3 and call this proxy k-NN. We also try out a configuration where

we compute a prototype such as in prototypical networks, and we call this proxy cluster

1-NN.

Pθ1,θ2(y|x) =
∑
ki∈Z

e−d(hθ1 (x),pθ2 (ki))∑
k
′
i∈Z

e−d(hθ1 (x),pθ2 (k
′
i))
ki (4.11)

arg max
θ1,θ2

Eq∼D

 ∑
(xi,yi)∈q

log(Pθ1,θ2(y|x))

 (4.12)
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4.2.2 Initialisation learning

Initialisation learning is focused on finding optimal values of the parameters for a func-

tion gθ such that we can learn a new task with a few samples and gradient steps. The

first difference in learning this initialisation compared to deep metric learning is that

multiple tasks are sampled per episodic iteration. The second difference is that we are

not specifically learning representations, but we are using a standard neural network

classifier and use the backbone with a softmax layer. Finally, we use Equation 3.6 from

Chapter 3 to explain the optimisation goal of both MAML and Reptile.

4.2.2.1 MAML

We learn a neural network classifier function gθ0 : RD → (0, 1)K that has a K-dimensional

output with values in the range of (0,1), where K refers to the number of classes. The

goal of MAML is to first fine-tune gθ0 on the support set that comes from a task tKj .

We define this in Equation 4.13, with which we use a support set S to optimise the

parameters θ0 with a few gradient descent steps. We then initialise the function g(x)

with these optimised parameters.

Pθ(y|x, S) = gθ(S)(x) (4.13a)

θ(S) = vθv

(
θ0, {∇θ0 log(Pθ0((yi|xi))}(xi,yi)∈S

)
(4.13b)

We find these parameters θ0 by using meta-learning. However, we do this a bit differently

in initialisation learning than in deep metric learning. We show in Figure 4.6 how one

iteration is computed with MAML. It shows that B independent tasks are sampled from

TK for which in every task we optimise the parameters θ0 independently by the process

defined in Equation 4.13. The query batches q are then used to calculate a summed

loss function over the B fine-tuned models. The last step is to backpropagate over the

parameters θ0 and update them.

We note that we need to take a derivative over a derivative when we backpropagate and

thus we need to compute second derivatives. Following Finn et al., a small change lets

us use a first-order approximation, which means that we only need to take first-order

derivatives with nearly no loss in accuracy. Finn et al. also mentions that this increases

the training speed by 30%. As such, we will use only the first-order approximation.
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Figure 4.6: One episodic training iteration of the MAML model.

4.2.2.2 Reptile

We have seen that MAML uses parallel episodic iterations to learn general parameters

that can be used to learn a new task with a few samples and a few gradient descent steps.

Reptile was published by Nichol et al. as a scalable and faster method than MAML with

comparable accuracy.

We still learn a network classifier function gθ0 : RD → (0, 1)K that is able to fine-tune

gθ0 on a support set from a task tKj and for which the distribution over classes is defined

in Equation 4.13. The difference compared to MAML is that the initial parameters are

updated directly with the derived parameters from the different tasks, which is denoted

as Equation 4.14, with B the number of tasks and ε the learning rate. This means that

there is no second backpropagation iteration over the function and we do not need to

sample a query batch q to evaluate every fine-tuned task. In Figure 4.7, we show one

iteration of learning the classifier with the Reptile algorithm.

θ0 ← θ0 + ε
1

B

B∑
b=1

(θb − θ0) (4.14)

The advantage over MAML is that we do not need to backpropagate for a second time,

which gives an additional training speed increase compared to the first- and second-

order MAML algorithm without a loss of accuracy on the Omniglot and mini-ImageNet
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Figure 4.7: One episodic iteration for the Reptile model.

datasets. Nichol et al. published findings that the hyperparameters of Reptile are robust,

information with which Baklid and Barlaug also agreed.

4.2.3 Model-based learning

In model-based learning, the focus lies explicitly on the function gθ(x, S) that does the

learning of new tasks on its own and outputs a probability distribution over categorical

classes. A popular method is to treat the support set S as a sequential dataset and

use this to train model structures as in Figure 4.8. Here, a recurrent neural network

(RNN) is trained to take in a support set with labels and a query. The output is then

a distribution over classes.

The goal of RNNs is to construct a meaningful representation of past datapoints from

a sequence. However, this also seems to be the bottleneck of RNNs, because they have

trouble passing long-term information through the network [61]. Recent publications

that aim to use attention and causal convolutions (i.e. temporal convolutions) seem to

improve on this problem [62, 63]. Mishra et al. was the first to apply these concepts in

the meta-learning domain with state-of-art results on the Omniglot and mini-ImageNet

dataset with the Simple Neural Attentive Meta-Learner, or SNAIL.
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Figure 4.8: Example of model-based learning with an RNN.

4.3 Experimental setup

We selected seven methods based on accuracy results that are published in papers, on

preferable properties and on the three meta-learning directions. These include all the

discussed methods in this chapter, but we used only first-order MAML to speed up

training, and we tested the Gaussian prototypical networks model only on the small

logo dataset.

We evaluated if the implementation of the models was correct by training and testing

on the Omniglot dataset. Thereafter, we compared these results to the published results

if they were available. When we are close to these published results, we are confident

enough that we had implemented the model correctly and used the model implementa-

tion to test on the small logo dataset. On the contrary, if we were not confident enough,

we did not use the model further.

We trained the implemented models on the constructed small logo dataset to evaluate

how good the accuracy, and between- and within-robustness are. We did this with three

different sets of learning tasks: one-shot, five-way; five-shot, five-way; and five-shot,

20-way. We computed the mean accuracy on the meta-test set with a 95% confidence

interval by sampling 1000 and 500 tasks from the Omniglot and small logo meta-test

sets, respectively. We computed the confidence interval by assuming that the sets of

accuracies are normally distributed, which follows from the central limit theorem [64].

This allowed us to derive a confidence interval with the t-distribution for a set of learning

tasks, because we estimated the mean and variance of a set of accuracies [64]. We used
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Figure 4.9: Learning curve
of Gaussian prototypical net-
works on a five-shot, five-way
learning task. Trained on the

small logo dataset.

Figure 4.10: Learning
curve of Gaussian proto-
typical networks on a five-
shot, 20-way learning task.
Trained on the small logo-

dataset.

Figure 4.11: Learning
curve of Reptile on a five-
shot, five-way learning task.
Trained on the small logo

dataset.

Figure 4.12: Learning
curve of Reptile on a five-
shot, 20-way learning task.
Trained on the small logo-

dataset.

the confidence intervals to evaluate if models are more within-robust and if a model has

significantly more accuracy than other models. We investigated between-robustness by

looking at the mean accuracy fluctuation between the five-shot, five-way and five-shot,

20-way learning tasks. Initially, we trained every model with 100 epochs. However, if

we saw that the learning curve did not flatten at 100 epochs, we retrained the model

with more epochs to see if the model was able to learn more. Finally, we present the

hyperparameters that we used in Appendix A.

4.4 Results

We present the results that we use to evaluate our implementation of the models in Ta-

ble 4.2 and we present the results of the models on the small logo dataset in Table 4.3.

In Figure 4.9, 4.10, 4.11, and 4.12, we show the learning curves of both Gaussian pro-

totypical networks and Reptile on the sets of five-shot, five-way and five-shot, 20-way

learning tasks.
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1-shot 5-way 5-shot 5-way Epochs

Protonet 96.72 ± 0.31% 99.06 ± 0.14% 100

Relation net 96.77 ± 0.29% 98.78 ± 0.15% 100

Proxy cluster 1-NN 94.68 ± 0.42% 91.61 ± 0.39% 100

Proxy k-NN 94.68 ± 0.42% 95.39 ± 0.32% 100

MAML first order 93.02 ± 0.76% 99.04 ± 0.13% 100

Reptile 95.07 ± 0.36% 99.04 ± 0.13% 100

SNAIL 81.50 ± 0.51% 93.54 ± 0.30% 100

SNAIL 93.31 ± 0.31% 97.36 ± 0.20% 500

Table 4.2: Few-shot classification accuracies of the models on the Omniglot dataset.
The confidence interval is calculated by sampling 1000 tasks from the meta-test set.
The bold cells indicate the best performing models within 95% confidence interval in

that column.

1-shot 5-way 5-shot 5-way 5-shot 20-way Epochs

Protonet 70.26 ± 1.11% 87.96 ± 0.68% 76.25 ± 0.42% 100

Gaussian protonet 76.48 ± 0.74% 89.68 ± 0.67% 79.97 ± 0.40% 100

Relation net 74.55 ± 1.09% 87.82 ± 0.70% 80.22 ± 0.39% 100

Proxy k-NN 49.84 ± 1.16% - - 100

MAML first order 69.62 ± 1.23% 82.22 ± 0.65% 62.25 + 0.48% 100

Reptile 74.08 ± 0.79% 88.56 ± 0.70% 66.88 ± 0.50% 100

Table 4.3: Few-shot classification accuracies of the models on the small logo dataset.
The confidence interval is calculated by sampling 500 tasks from the meta-test set. The
bold cells indicate the best performing models within 95% confidence interval in that

column.

4.5 Discussion of empirical analysis

We discuss here the performance results of the models that are trained and tested on

the Omniglot and small logo dataset. Furthermore, we answer two research questions

from Chapter 2 and discuss with which models we continued our research.

4.5.1 Omniglot dataset performance results

We infer from Table 4.2 that proxy cluster 1-NN performs significantly worse on the

five-shot learning task than on the one-shot learning task. We assume this is due to

computing the mean of a support set class, because the mean can be skewed by one or

more representations in the support set class that are outliers. What is interesting is

that this does not seem to be the case with prototypical networks. However, a difference

is that prototypical networks are trained end-to-end, including taking the mean of the

support set classes, which is not the case with proxy networks. Therefore, we decided

to run proxy networks again but with k-NN to see if this works better. We see that this

gives significantly better results. However, the improvement is still minor compared to
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the other methods. This seems to show that episodic learning gives an advantage when

we deal with learning tasks with more than one-shot samples.

We ran SNAIL for both 100 and 500 epochs, because the learning curve showed that

the model could learn more. However, we were still not able to get close to the reported

results in the paper of Mishra et al., and training the SNAIL model is even slower than

MAML and Reptile. We therefore do not use this model further in our research. For the

other models, we were confident about our results compared to the published results, so

we trained these models on the small logo dataset.

4.5.2 Small logo dataset performance results

In Table 4.3, the performance results on the small logo meta-test set are presented, which

also includes Gaussian prototypical networks. We see that Proxy networks with k-NN

have poor performance on the meta-test set and on the meta-train set the accuracy is

approximately 68% on the set of five-shot, five-way learning tasks. We think that a

combination of a skewed meta-train class distribution, as we have seen in Figure 4.3,

and many logo classes that have only 10 logo samples per class contribute to the bad

performance, because it makes it more difficult for the proxies to learn good class repre-

sentations. Further research should be conducted to understand why proxy models do

not perform in this situation.

We see in Table 4.3 that Gaussian prototypical networks significantly beat Prototypical

networks. We also tried the same backbone structure with Prototypical networks to

make sure this is not due to an increase in the number of parameters in the last layer.

For this, we get accuracy results in the confidence interval of the Prototypical networks

model. Hence, Gaussian prototypical networks have significantly better accuracy results.

We also see that Gaussian prototypical networks beat Relation networks on two out of

three of the learning tasks.

When we compare the learning curves of Gaussian prototypical networks for the sets

of five-shot, five-way and five-shot 20-way learning tasks in respectively Figure 4.9 and

Figure 4.10, we see some interesting patterns. For the five-shot, 20-way learning tasks,

every episodic iteration is harder than with a five-way task, because there are more

classes to which an input can be assigned. In addition, a larger batch of images is

sampled and learned on every iteration. We see that this is reflected in the training

accuracy of Figure 4.10 that increases faster and is higher than in Figure 4.9. However,

there is a huge gap between the meta-train and meta-test curve in Figure 4.10, which

shows that more data are needed to train good universal logo representations.



Chapter 4. Empirical analysis on meta-learning models 52

For the initialisation method, we see that Reptile is able to outscore MAML significantly.

However, both models overfit on the set of five-shot, 20-way learning tasks. We see this

in the learning curve of Reptile in Figure 4.12. It shows that Gaussian prototypical

networks and Relation networks have better between robustness. On the other hand,

Reptile performs well within the confidence interval of Gaussian prototypical networks

on the set of five-shot, five-way learning tasks. We see in Figure 4.11 that the train- and

test curves are close to each other and maybe more epochs would have benefited Reptile

in a higher accuracy.

We see in Table 4.3 that the within-robustness is approximately the same for all methods.

This is reflected by the confidence interval for which we cannot say that one method

has considerably tighter confidence intervals in all of the three different sets of learning

tasks.

We present the comparative results in Table 4.4 and we conclude that Gaussian pro-

totypical networks have the highest accuracy or shares this on every different set of

learning tasks and is therefore the best on the accuracy row. For the between robust-

ness, we compared the decrease of accuracy between the five-shot, five-way and five-shot,

20-way set of learning tasks. Here we see that both Gaussian prototypical networks and

Relation networks have a decrease of roughly 8-10% accuracy, whereas there is a 22%

decrease in accuracy for Reptile. We used the results of flexibility for learning new tasks

from Table 3.4 in Chapter 3.

This means we can answer two sub-research questions, which of the selected techniques

have the best accuracy, and are most robust. We conclude from Table 4.4 that Gaussian

prototypical networks have the best accuracy, share the best between-robustness with

Relation networks, and have the same within-robustness as the other models.

quality metrics Sub-quality metrics Method

Protonet
Gaussian
protonet

Relation
net

MAML
first order

Reptile

Accuracy − + ± − ±
Rejection
accuracy

Robustness
between ± + + − −
within + + + + +
Quality shift

Flexible + + + ± ±

Table 4.4: Comparative findings on model scale between various models.
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4.5.3 Chapter discussion

The goal of the research in this chapter is to make a strategic selection of methods from

the three directions. On the basis of accuracy and robustness, we chose one method in

every direction to investigate the other quality metrics further. With this information,

we are better able to recommend a method that will work in the circle flow and that

is able to match the requirements. We did not, however, investigate a model from the

model-based learning direction on the logo dataset, because SNAIL did not perform as

expected. We therefore chose one model from both the deep metric and initialisation

learning direction.

We hypothesised in the previous chapter that deep metric learning can have problems

learning universal logo properties for good logo representations compared to initialisation

learning. However, we have seen that Gaussian prototypical networks especially beat

all other methods with respect to accuracy in all three sets of learning tasks. We also

see that Gaussian prototypical networks reach 90% accuracy on the five-shot, five-way

set of learning tasks. For the threshold accuracy, the requirement is to reach 90% on

a set of five-shot, 35-way learning tasks. Hence, we need to find ways to increase the

accuracy.

A problem we have not investigated yet is the robustness to quality shifts between our

dataset and data on which the model will make inferences on during deployment of the

application. We have seen that the image quality of the small logo dataset has a median

of 602 pixels, which is much lower than mobile phones are able to make nowadays. Finn

and Levine have shown that MAML is better able to handle domain shifts between

meta-training and meta-testing compared to recurrent meta-learners, such as SNAIL.

We think that Reptile is also more robust to quality shifts than deep metric learning.

We have seen that Reptile is more competitive than MAML with respect to accuracy

and thus we will investigate if Reptile is able to handle the quality shifts better. This

means that we proceed our research with Gaussian prototypical networks and Reptile.

Finally, we still need to investigate the rejection accuracy. There is research conducted

by Yang et al. that is strongly in favour of deep metric learning approaches compared

to standard neural network classifiers when the rejection accuracy is an important fac-

tor. We used standard neural network classifiers with MAML and Reptile. Hence, the

question is if this also relates to Gaussian prototypical networks and Reptile.



Chapter 5

Research Gaussian prototypical

networks and Reptile

We have seen from our selection of methods that deep metric learning, and specifically

Gaussian prototypical networks, has high accuracy on the small logo dataset with better-

between robustness than initialisation methods. Gaussian prototypical networks seem

most promising with respect to accuracy on all sets of learning tasks. However, we still

need to investigate the performance on the rejection accuracy and robustness to quality

shifts. We resized the input queries to 60 x 60 pixels; this could remove some features

that are important to classifying the logos correctly, so we also investigate if larger input

queries have a positive effect on accuracy. When we have answers to these questions,

we can answer which direction and method has the most potential to be used as generic

model. With this information, we can then obtain estimates of the accuracy and rejection

accuracy on a large logo dataset that represents the use case of the mobile application

better than the small logo dataset. We do this in the following way: (i) construct

a large logo dataset that better represents the use case than the small logo dataset;

(ii) investigate if deep metric learning has a better rejection accuracy than standard

neural network classifiers by comparing Gaussian prototypical networks with Reptile;

(iii) investigate if Reptile is more robust to quality shifts than Gaussian prototypical

networks; and (iv) research if larger input queries results in a higher accuracy. Finally,

at the end of the chapter, we conduct research into different properties of Gaussian

prototypical networks and try to find ways to improve it.

54
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5.1 Introduction of large logo dataset

In Chapter 4, we introduced the small logo dataset to iterate quickly through various

methods without too many costs. However, this dataset is limited for our next exper-

iments, such as investigating robustness to quality shifts, and the small logo dataset

contains logo samples with tight ROIs that do not reflect the use case, because in reality

more background noise will be present in the picture of a logo. We thus focused on

constructing a large logo dataset that reflects the use case better.

We define three general logo structures: symbols, text, and a symbol-text combination.

In Figure 5.1, we show examples of these three structures. For the small logo dataset,

we used ROIs only from the Logos in the Wild dataset, which splits symbol-text combi-

nations into symbol and text samples. This increases the number of classes but does not

reflect real use cases. Together with the issue of the tight ROIs, we focused on collect-

ing samples with more background information and samples that include symbol-text

combinations.

Figure 5.1: Three examples of a possible logo query.

Large logo dataset collection

The first set of samples we collected manually from the internet. Most of these samples

originate from conferences in the domain of motor bikes, cars, the cloud, gaming, and

logos from buildings. Second, we excluded many classes from the Logos in the Wild

dataset because many classes contain fewer than 10 samples. We added more samples

for those classes such that they have at least 10 samples. Finally, we included logo classes

from the BelgaLogos dataset that do not overlap with the Logos in the Wild dataset.

This means that we collected 18,296 logo samples manually and used 2,354 logo ROIs

from the BelgaLogos dataset. We present the statistics of the large logo dataset in

Table 5.1.
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Omniglot Mini-ImageNet Small logo Large logo

Meta-train classes 4, 800 60 151 642
Meta-test classes 1, 692 40 40 161
Samples per class 20 600 37∗ 23∗

Resized pixel size of images 28 x 28 84 x 84 60 x 60 60 x 60
Total images 129, 840 600, 000 14, 849 35, 499

Table 5.1: Statistics of standard meta-learning datasets and a derived dataset by us,
which are called the small- and large logo dataset. The ∗ means that we have used the

median as metric.

5.2 Investigation of robustness and rejection accuracy

The model should reject input queries when users of the mobile application take pictures

of logos for which the generic model is not prepared for or they make pictures of a

scenery that has nothing to do with logos. We, respectively, named these input queries

in- and out-domain distribution unknown-class samples. We specified this as the samples

from the set RL\tj and set ODR in Chapter 2. We called the rejection accuracy the

proportion of correct rejections of these samples. In this section, we investigate if there

are differences between the Gaussian prototypical networks and Reptile method with

respect to the rejection accuracy.

The motivation to conduct research on the rejection accuracy is that standard neural

network classifiers partition the whole representation space and therefore in- and out-

domain distribution unknown-class samples can be assigned to a class with very high

confidence. We depict what these decision boundaries look like for standard classifica-

tion networks in the right image of Figure 5.2. We see that there is only low confidence

at or close to the white decision boundaries and high confidence in the rest of the repre-

sentation space. Research conducted by Yang et al. showed that deep metric learning is

more robust when distances to cluster are taken into account to define if a query belongs

to a class or not, because this does not partition the whole representation space. We

show this in the left image of Figure 5.2, where the white space represents low confi-

dence scores. Hence, we hypothesise that Gaussian prototypical networks with distance

thresholds have a better rejection accuracy than Reptile to both in- and out-domain

distribution unknown-class samples.

The second investigation we conduct in this section is robustness to quality shifts. The

problem is that our collected logo datasets have different quality samples than will be

used during the usage phase of the mobile application. Finn and Levine conducted

research to see if initialisation learning is more robust to out-of-domain tasks compared

to model-based methods, such as SNAIL. They found that initialisation learning is more

robust to these tasks, because they apply within-task learning. SNAIL does not perform
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Figure 5.2: The decision boundary for two neural network approaches. The left
image represents deep metric learning and the right image represent classification neural
networks with a softmax output layer. The spaces with colour have high confidence for

that colour class. The white spaces represent low confidence for every class.

within-task learning such as deep metric learning approaches. As such, we hypothesise

that Reptile is more robust to quality shifts than Gaussian prototypical networks.

Finally, in the previous chapter, we resized the input queries to 60 x 60 pixels, because

this is the median quality of the small logo dataset. However, it could be that we are

removing important information to classify queries correctly. As such, we research if

resizing the training images to a higher quality than 60 x 60 pixels gives a significant

accuracy increase. We do this research together with the research on robustness to

quality shifts.

5.2.1 Different datasets

To conduct both experiments, we needed different datasets. We have seen in Table 4.3

from Chapter 4 that Reptile is competitive together with Gaussian prototypical networks

on the set of five-shot, five-way learning tasks, so we conducted the experiments with

this learning task. We used two datasets for the rejection accuracy experiment: we

sampled in-domain distribution unknown-class samples from the small logo dataset,

and for the out-domain distribution unknown-class samples, we used the mini-ImageNet

dataset. For the robustness to quality shifts, we constructed two new datasets from the

large logo dataset: a dataset that has high-quality images in the meta-test set and a

dataset that has high-quality images in both the meta-train- and meta-test set. For both

datasets, the meta-test sets are the same. We present the statistics of both datasets in

Table 5.2.
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low and high
datasets

high and high
datasets

meta-train meta-test meta-train meta-test

Samples 14,071 522 9,129 522

Classes 173 40 424 40

Median number
of pixels

59.32 380.72 122.62 380.72

Table 5.2: Datasets for robustness to quality shifts. Low/high and high datasets
refer to, respectively, meta-train and meta-test datasets. The median number of pixels

specifies the quality of the dataset.

5.2.2 Experimental setup

Rejection accuracy

We used both Gaussian prototypical networks and Reptile models that we trained with

the small logo dataset on the set of five-shot, five-way learning tasks in Chapter 4

to investigate performance of the rejection accuracy. To research this performance,

we prepared the model first on a task t5j from the set of five-shot, five-way learning

tasks. We then sampled a query batch q from dt5j
that must be accepted (i.e., in-

domain distribution known-class samples) and sampled a rejection set from the small

logo dataset (i.e., in-domain distribution unknown-class samples) and mini-ImageNet

dataset (i.e., out-domain distribution unknown-class samples) that include samples that

must be rejected. We called the samples that must be accepted the positive samples

and samples that must be rejected negatives samples. We used a receiver operating

characteristic (ROC) curve to see which method is more robust to false positives [66].

In Figure 5.3, we show the procedure to collect positive and negative samples. We used

a model that has learned task t5j that we denote as Hθ. For Gaussian prototypical

networks, this outputs the distances over classes. We replaced this with Pθ(y|xi, S) to

output the probability distribution over classes for both Gaussian prototypical networks

and Reptile. Further, in Figure 5.3, we first sample two distinct tasks t5j and t5k from a

distribution of tasks T 5. We then sampled a support set S and query batch q from task

t5j . We also sampled a rejection set R from the other task t5k. We selected five samples

per class for sets S, q, and R. Thereafter, we used set S to prepare Hθ to learn task

t5j and used batch q to get the distances of every query in batch q to the correct class

y. We defined this with function A(x, y) that uses the minimum distance of a query

to assign it to a class y. When this assigned class was in agreement with the actual

true class, the distance was accepted in the accept set (positive samples). We did this

because we only wanted queries that are predicted correctly by the trained model such

that the threshold is not influenced by misclassifications.
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We used the support set S again to get a set of rejection distances (negative samples).

We input a query from set R in the trained model and assigned it to a class in set

S for which it has the smallest distance. We did this for every query in R and store

the distances in the reject set. We did the exact same procedure for probabilistic sets.

However, we then used the maximum probability to assign a query to a class. We

repeated the procedure in Figure 5.3 250 times, which means that we sampled 250 tasks

and collected a reject set with 7,500 datapoints and an accept set with 7,500 or fewer

datapoints, because this depends on how correctly the model assigns every batch q.

Now we can define the true positive rate (TPr) and false positive rate (FPr)1 for which

both are exactly defined in Equation 5.1. A 100% TPr means that all queries from the

accept set are accepted, and a 0% FPr means that every query from the reject set is

rejected. By varying the threshold, we can inspect with the ROC curve which method

is most robust to false positives.

We performed two investigations, one where we sampled reject sets from the small logo

dataset and one investigation where we sampled the reject set from the mini-ImageNet

dataset. This means that t5k from Figure 2.2 is sampled from a distribution of tasks of

the mini-ImageNet dataset. We still prepared the model on a support set and collected

the accept set from the small logo dataset.

TPr =
#{x|x ∈ accept, x ≤ threshold}

#{x|x ∈ accept}
(5.1a)

FPr =
#{x|x ∈ reject, x ≤ threshold}

#{x|x ∈ reject}
(5.1b)

Robustness to quality shifts and image size

We trained and tested both Gaussian prototypical networks and Reptile on the three

defined meta-train- and meta-test sets to investigate the robustness to quality shifts.

We did this with sets of five-shot, five-way learning tasks. Thereafter, we compared the

results between the different datasets and between both models.

We also trained and tested the Gaussian prototypical and Reptile model on different

image sizes. We did this on three different image sizes: 60 x 60, 96 x 96, and 192 x 192

pixels. We used different backbone architectures to keep the dimensions of the represen-

tations roughly the same, because larger input queries result in larger representations

1Note that the rejection accuracy is 1− FPr.
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Figure 5.3: One iteration of producing positive and negative samples for the ROC
curve.

with the standard CNN backbone. We name these architectures 1,2, and 3 and we

present the exact details about these structures in Appendix B.1. Finally, we also used

the small logo dataset to infer if the choice of architecture has an effect on the accuracy.

5.2.3 Results

In Figure 5.4 and Figure 5.5, the ROC curves of the rejection accuracy experiment are

shown with, respectively, the mini-ImageNet and small logo dataset as reject set. In

Table 5.3 and Table 5.3, results of the quality shift and image size investigation of,

respectively, Gaussian prototypical networks and Reptile are presented.

Quality Architecture 5-shot 5-way accuracy results

Small logo
Low-quality train and

high-quality test
High-quality train

and test

60x60 1 89.68± 0.67% 84.83± 0.77% 90.93± 0.43%

96x96 2 87.97± 0.52% 83.14± 0.57% 89.14± 0.61%

192x192 3 88.66± 0.68% 83.14± 0.83% 89.42± 0.64%

Table 5.3: Robustness results from Gaussian prototypical networks. Every average
accuracy and confidence interval is computed from a set of 500 learning tasks.

Quality Architecture 5-shot 5-way accuracy results

Small logo
Low-quality train and

high-quality test
High-quality train

and test

60x60 1 88.56± 0.70% 85.44± 0.78% 89.66± 0.61%

96x96 2 87.94± 0.73% 84.85± 0.78% 90.13± 0.58%

192x192 3 89.08± 0.70% 85.70± 0.74% 90.67± 0.59%

Table 5.4: Robustness results from Reptile. Every average accuracy and confidence
interval is computed from a set of 500 learning tasks.
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Figure 5.4: ROC curve of positive and nega-
tive samples collected from the mini-ImageNet

dataset.

Figure 5.5: ROC curve of positive and negative
samples collected from the small logo dataset.

5.2.4 Discussion

In Figure 5.4, we can see that the ROC curve with the Gaussian distance has a higher

area under the curve and is more robust to false positives than Gaussian probability

and Reptile. We also see that Gaussian probability is more robust to false positives

than Reptile. This shows that Gaussian prototypical networks are more robust to false

positives from out-domain distribution unknown-class samples, such as samples from

the mini-ImageNet dataset. However, when we look at Figure 5.5, we see a slightly

different trend. Every ROC curve is close together, but we can see that Gaussian distance

performs less than both Reptile and the Gaussian probability. This means that for in-

domain distribution unknown-class samples, Gaussian probability is the most robust to

false positives.

We provide here an intuitive explanation about our previous findings. In Figure 5.6, we

show a probabilistic decision plot of a Prototypical networks model with four prototypes;
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the decision plot for Gaussian prototypical network looks roughly the same. We see

that the uncertainty at the boundaries is wider than with standard classification neural

network models. We speculate that in-domain distribution unknown-class samples will

be represented somewhere close to the low confidence region (i.e., close or in the red

region) and together with the wider uncertainty boundaries it is more robust to false

positives from in-domain distribution unknown-class samples. However, we see that this

model also partitions the whole representation space. We speculate that out-domain

distribution unknown-class samples will be represented more away from the prototypes

where there is a larger space with high confidence. Hence, a crude method, such as

a distance threshold, is better able to reject out-domain distribution unknown-class

samples. Finally, when we compare the robustness in of both figures in Figure 5.5, we

see that the Gaussian distance threshold produces relatively more robustness to false

positives if we give equal importance to in- and out-domain distribution unknown-class

samples.

Figure 5.6: Prototypical networks two-dimensional representation space with a four-
way learning task (i.e., four prototypes) and probabilistic decision boundaries.

We present Table 5.3 and Table 5.4 to research the effect of quality differences between

meta-train- and meta-test sets. At first, we investigate the influence of the different

architectures. We see that for both models the accuracy is approximately 5-6% lower

between the low- and high-quality training sets across the different architectures. This

means that we cannot conclude with certainty that Reptile performs better in this case

and therefore we reject our hypothesis that Reptile is better able to handle shifts in

image quality between meta-train and meta-test datasets. However, we must note that

there is a substantial difference between the two datasets in the number of classes if we
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look at Table 5.2. Whether this has an effect on our conclusion is research that can be

conducted in the future by collecting a larger logo dataset.

For our next experiment, we are interested in seeing if resizing both meta-train and

meta-test set samples have an impact on the accuracy. In the previous chapter, we

took 60 x 60 pixels per image to speed up training and save costs. We are interested in

whether higher image quality is able to increase accuracy. Intuitively, this could be the

case, because more information can be used by the model to make a decision. However,

in Table 5.3, we see that some datasets perform less and others just as good when we

use 192 x 192 pixels and compare it to 60 x 60 pixels. We do see a similar behaviour

in Table 5.4. Hence, we conclude that larger image sizes do not increase the accuracy

significantly for this meta-learning task.

5.3 Deep dive into Gaussian prototypical networks

We have seen that Reptile is not more robust to quality shifts and it does not have

a better rejection accuracy than Gaussian prototypical networks. We therefore focus

on improving Gaussian prototypical networks. On the small logo dataset, we obtain

89% accuracy on the set of five-shot, five-way learning tasks for Gaussian prototypical

networks, and this accuracy decreases substantially with the set of five-shot, 20-way

learning tasks. The requirements state that we have a reliable model when it has 90%

threshold accuracy and an 80% rejection accuracy for a set of five-shot, 35-way learning

tasks. To do this, we need to investigate if there are improvements to be made for Gaus-

sian prototypical networks. We conduct this research as follows: (i) we investigate which

of the two properties of Gaussian Prototypical networks contribute to the performance

increase over vanilla Prototypical networks and (ii) we research if data augmentation is

able to increase performance. Finally, we conducted more experiments and we present

the results of these experiments in Appendix C. They focus on the usage of different loss

functions, fine-tuning with the support set, tuning the extended softplus function, and

using self-attention to find task specific features.

5.3.1 Experimental setup

There are two properties that define Gaussian prototypical networks: the adjustment

of the prototypes with estimated inverse covariance matrices, and using these inverse

covariance matrices in the Mahalanobis distance metric. We have seen that Gaussian

Prototypical networks have significantly better performance than Prototypical networks

on the small logo dataset. We are interested in which of these two properties contribute
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most to this performance increase or if they complement each other. Moreover, we

investigated if data augmentation helps to increase the number of samples in the dataset

and if this improves accuracy significantly.

Model architectures

We conducted research on three different architectures to investigate which properties of

Gaussian prototypical networks is actually contributing to the performance increase we

have seen in Table 4.3 from Chapter 4. We trained the Gaussian prototypical networks

model with only the estimated inverse covariance matrices that we use to adjust the

prototypes, so we used the Euclidean distance metric. We named this model the weighted

prototypical networks. We then trained the Gaussian prototypical networks only with

the Mahalanobis distance metric and did not adjust the prototypes. We named this

model the Mahalanobis prototypical networks.

Data augmentation

We applied data augmentation to see if this has a positive effect on the accuracy. Nor-

mally, data augmentation is applied to increase the initial training dataset or, in other

words, increase the within-class samples, such that test accuracy increases. We previ-

ously talked about the importance of invariant representations in Chapter 3; the repre-

sentation of a class should be as constant as possible, which means that under different

lighting, rotation, zoom, background, etc., the class representations from the neural net-

work function are tightly clustered (i.e., low cluster intra-variance). We applied data

augmentation to improve the invariant nature of representations. We got our inspira-

tion of data augmentation transformations from Chen et al.. They applied random crop,

left-right flip, and colour jitter only in the training phase. We did not apply left-right

transformation (mirroring), because this is not how logos are usually presented, and we

did not include random crop, because this did not improve performance. We did include

random rotation. The exact settings can be found in Appendix A.

For all of the experiments, we used the same hyperparameters that are used in Chapter 4

for the Gaussian prototypical networks on the set of five-shot, 20-way learning tasks,

and we used the small logo dataset for every experiment. Last, we also trained vanilla

Prototypical networks with the backbone architecture of Gaussian prototypical networks

to compare results. We call this network the vanilla+ Prototypical networks.
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5.3.2 Results

In Table 5.5, we show the accuracy results of the different experiments.

Method Augmentation 5-shot 20-way epochs

Vanilla+ protonet
no 76.41 ± 0.44% 100
yes 79.79 ± 0.42% 100

Gaussian protonet
no 79.97 ± 0.40% 100
yes 81.77 ± 0.39% 100

Weighted protonet
no 76.37 ± 0.43% 100
yes 80.16 ± 0.41% 100

Mahalanobis protonet
no 79.74 ± 0.43% 100
yes 81.61 ± 0.37% 100

Table 5.5: Results on the set of five-shot, 20-way learning tasks from the small logo
dataset with and without data augmentation.

5.3.3 Discussion of deep dive

We see in Table 5.5 the results of the experiments. When we only look at the results

without data augmentation, we see that the vanilla+ and the weighted model have the

same accuracy results. This is also the case for the Gaussian and the Mahalanobis

model, but they have significantly higher accuracy. It seems that we can conclude that

using the estimated inverse covariance matrices with the Mahalanobis distance metric

contributes solely to the improvements of Gaussian prototypical networks over vanilla

Prototypical networks.

Our next experiment focused on data augmentation. We see that with data augmen-

tation, the accuracies significantly increase compared to not using data augmentation

for every model architecture. We see that the Mahalanobis and Gaussian prototypi-

cal networks have the same performance with data augmentation, which strengthen our

conclusion that the Mahalanobis distance metric solely contributes to the increase in per-

formance over vanilla Prototypical networks. We therefore introduce the Mahalanobis

prototypical networks, which are a simpler model than Gaussian prototypical networks

but with similar performance. We also conclude that our data augmentation strategy

significantly increases performance.

5.4 Chapter discussion

The goal of this chapter was to create a larger logo dataset that resembles the use case

better, investigate robustness to shifts in quality, to investigate the rejection accuracy
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between Gaussian prototypical networks and Reptile, and research if we can improve

Gaussian prototypical networks.

We increased the small logo dataset from 191 classes to the large logo dataset with 803

logo classes and with a total of 35,499 samples. We specifically focused on collecting

logo samples with more background information compared to the small logo dataset.

However, the quality of the number of pixels per image is still low compared to the

pictures mobile phones are able to make. Thus, there is still a quality shift between the

large logo dataset and pictures that mobile phones can take.

We have seen that Reptile does not significantly offer more robustness to shifts in quality

of images compared to Gaussian prototypical networks. We have seen that training with

a lower quality set and testing on a higher quality set decreases the accuracy of both

networks with approximately 5-6% compared to training and testing on a higher quality

set of samples. We can conclude that it is important to also collect samples that have

comparable image quality to what the conference application will see during deployment.

We can answer the question of ’which of the selected techniques have the best rejection

accuracy’ with the research in this chapter. We have seen that deep metric learning, and

specifically Gaussian prototypical networks, is more robust than Reptile when we use

the distance metric to assign queries to classes. We see this behaviour when we query

samples that must be rejected from out-domain distribution unknown-classes, such as

the mini-ImageNet. However, we do not see the same behaviour when we sample queries

that must be rejected from in-domain distribution unknown-classes. In this case, we see

that using a probabilistic threshold for Gaussian prototypical networks gives the most

robustness against false positives. However, we deem the rejection rate for in- and out-

domain distribution unknown-class samples as equally important, because data-driven

applications, such as the mobile application of this research, will encounter both, in- and

out-domain distribution unknown-class samples, during deployment. Finally, we can

conclude that deep metric learning approaches and specifically Gaussian prototypical

networks are more robust to false positives and have a higher rejection accuracy than

Reptile.

We create Table 5.6 with the collected information from Chapter 4 and this chapter.

We can conclude that Gaussian prototypical networks have a higher accuracy, a better

rejection accuracy, and are more between-robust and more flexible than Reptile. We

investigated Gaussian prototypical networks and we have found that the simpler Ma-

halanobis prototypical networks has similar performance. In the next chapter, we used

the Mahalanobis prototypical networks to see if we can reach the requirements that we

defined in Chapter 2 with the large logo dataset. Finally, we investigated if resizing the

images to a higher quality for training increases accuracy. We found that resizing to 96
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Quality metrics Sub-quality metrics Method

Gaussian Protonet Reptile

Accuracy + ±
Rejection
accuracy

+ −

Robustness
between + −
within + +
Quality shift ± ±

Flexible + ±

Table 5.6: Comparative findings on model scale between Gaussian prototypical net-
works and Reptile.

x 96 or 192 x 192 does not increase accuracy compared to resizing the images to 60 x

60. Hence, we keep resizing the meta-train- and meta-test set samples to 60 x 60 pixels

with bilinear interpolation.
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Empirical analysis of Mahalanobis

prototypical networks

We have seen that Gaussian prototypical networks perform best compared to a few

selected meta-learning methods with respect to accuracy, rejection accuracy, flexibility

and robustness. Thereafter, we introduced a simpler method for Gaussian prototypical

networks called the Mahalanobis prototypical networks. In this chapter, we investigate

if the Mahalanobis prototypical networks are able to meet the requirements we set in

Chapter 2, which are a 90% threshold accuracy and 80% rejection accuracy on a set of

five-shot, 35-way learning tasks.

6.1 Experimental setup

We used the large logo dataset to get performance metrics on the meta-test set. In

this section, we explain how we set up the experiments to estimate these metrics. We

first investigated four different backbone CNN architectures and two different learning

approaches. We then used a validation set to tune a rejection threshold that maximises

the accuracy. We show the statistics of the datasets in Table 6.1. Finally, we estimated

the accuracy, threshold accuracy, and rejection accuracy on the meta-test set.

Meta-train Meta-test

Val meta-train Val meta-test

Samples 24,168 5,219 6,102

Classes 514 128 161

Table 6.1: The statistics of the training, validation and test set of the large logo
dataset. Val is an abbreviation for validation.
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Network architecture

In previous experiments, we constantly used a simple backbone that consists of four

convolution layers. We saw that this backbone is complex enough to learn the small logo

meta-training set well (i.e. the loss goes to zero). However, with the large logo dataset

and including data augmentation, we might need a more complex CNN architecture to

learn a better representation function. Hence, we tested more complex architectures on

the set of five-shot, 35-way learning tasks to see if this produces higher accuracy results.

We trained the models with 200 epochs for every architecture using the same hyperpa-

rameters. First, we trained with the backbone (standard) structure we used throughout

the previous sections. We then trained on an extended backbone (standard plus 2 conv)

that has two extra convolution layers attached at the end with 3 x 3 filters, no max-

pooling layers, the first convolution using 64 channels, and the second using 128 channels.

We talked in Chapter 3 about some of the advantages of the ResNet model with which

we are able to make very deep networks. We tried out the standard ResNet-18 model

without the first layer, and name it ResNet-17 [17]. We excluded this layer because its

function is to decrease the input size of an input image of 224 x 224 pixels. We were

already working with 60 x 60 pixels so did not need to use this layer. Last, we tried out

an adjusted ResNet-18 model. This model is called eResNet and was first introduced

by Yang et al.. The motivation is that the ResNet models have too many parameters

and therefore overfit easily on small training sets. The major difference between the

ResNet-18 and eResNet model is that the eResNet model uses pooling layers to decrease

the size of the representations. In Appendix A, we give a detailed overview of the hyper-

parameters used, and in Appendix B, we give an overview of the ResNet and eResNet

architectures.

Learning approach

Snell et al. mentions that training prototypical networks with higher classes (i.e., higher

’K-way’) than the model will be used for is beneficial, or in other words, gives higher

accuracy. We hypothesise that higher K-way training increases the chance of more

difficult tasks. The consequence is that the model converges faster but is also able to

learn more which results in higher accuracy. We tested this by training the Mahalanobis

prototypical networks on the meta-train set twice but on a set of five-shot, 35-way and

five-shot, 70-way learning tasks. Thereafter, we tested both networks on five-shot, 5-,

20-, 35-, 50-, 65-, 80-, and 90-way learning tasks, which allows us to investigate between-

robustness.
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Threshold research

We used the CNN architecture with the best accuracy from the previous two experiments

to define an optimal distance threshold. We used the same procedure in Chapter 5 to

find this optimal distance threshold. We defined an optimal distance threshold for the

Mahalanobis prototypical networks model with the validation meta-test set of the large

logo dataset. We did this by creating a set of positive distances and a set of negative

distances. The exact procedure is outlined in Figure 5.3 from Chapter 5. We derived

the positive and negative distance sets from a set with 250 five-shot, 35-way learning

tasks. This gave us 43,750 data points for every iteration and the same or less for the

positive distance set. We tuned the distance threshold such that the FPr is 20%. This

is equal to a rejection accuracy of 80%. This means that we maximised the accuracy

such that we met the rejection accuracy requirement.

Performance metrics on the meta-test set

At this stage, we used the model with the highest accuracy from the architecture research

and trained this model on a dataset that is a combination of both the validation meta-

train- and validation meta-test set. We then obtained performance metrics scores on

the meta-test set.

6.2 Results

In Table 6.2, we see the accuracy results of the different architectures on the validation

meta-test set. In Figure 6.1, we show the plot where we trained two models on a set

of five-shot, 35-way and five-shot, 70-way learning tasks from the validation meta-train

set, and tested on different sets of learning tasks from the validation meta-test set. In

Figure 6.2, we show a plot for which one model is trained on the meta-train set and the

other on the validation meta-train set and both are tested on different sets of learning

tasks from the meta-test set. We defined an optimal threshold with the validation meta-

test set of 25.65 with a model trained on the validation meta-train set on a five-shot,

35-way set of tasks. We used this to get the performance statistics in the second-from-

right column in Table 6.3 for the threshold accuracy and rejection accuracy.
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Architecture 5-shot 35-way Epochs

Standard 83.14 ± 0.29% 200

Standard plus 2 conv 79.72 ± 0.31% 200

eResnet 85.75 ± 0.27% 200

Resnet-17 88.02 ± 0.24% 200

Table 6.2: Average accuracy results on the validation meta-test set with different
backone architectures.

Figure 6.1: Two ResNet-17 Mahalanobis prototypical network models, that are
trained on the validation meta-train set with 35- and 70-way tasks, are tested on dif-

ferent sets of five-shot learning tasks from the validation meta-test set.

Figure 6.2: Two ResNet-17 Mahalanobis prototypical network models, that are
trained on the meta-train set and validation meta-train set with sets of five-shot, 35-way

learning tasks, and tested on the meta-test set on different sets of learning tasks.
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Metrics 5-shot 35-way 5-shot 35-way 5-shot 35-way

Training dataset Meta-train Val meta-train Val meta-train

Testing dataset Meta-test Meta-test Meta-test

Data augmentation yes yes no

Accuracy 89.70 ± 0.32% 88.16 ± 0.41% 84.66 ± 0.37%

Threshold accuracy 77.88 ± 3.62% - -

Rejection accuracy 88.21 ± 0.40% - -

Table 6.3: Results of the ResNet-17 Mahalanobis prototypical networks on the large
logo dataset. The left column shows the final results on the meta-test set. The middle
and right column are models trained only in the validation meta-train set and evaluated

on the validation meta-test set.

6.3 Chapter discussion

We see clearly that the ResNet-17 model performs significantly better on the validation

meta-test set in Table 6.2 than the other architectures. We therefore use the ResNet-

17 as backbone for Mahalanobis prototypical networks in the other implementations.

It could be that larger ResNet structures are even better, such as ResNet-34, -50, or

-101. However, the limitation and costs of GPU memory prohibit us from using these

architectures.

Besides training the Mahalanobis model on the set of five-shot, 35-way learning tasks

from the validation meta-train set, we also trained the model on a set of five-shot, 70-

way learning tasks. Thereafter, we tested the models on different sets of learning tasks

from the validation meta-test set. We depict the results from both models in Figure 6.1.

We see that both models have comparable performance. This means that there is no

increase in accuracy by training the Mahalanobis model on higher K-way learning tasks,

and the results from Snell et al. that higher K-way learning increases accuracy is not

applicable in this setup.

From the results of the second left column in Table 6.3, we see that we are able to acquire

an accuracy of 89.70% with the Mahalanobis prototypical networks model on the meta-

test set. Using the distance threshold that we tuned with the validation meta-test set, we

are able to get a threshold accuracy of 78%. We also see that the 95% confidence interval

increases substantially compared to the accuracy metric. This means that the optimal

distance threshold varies substantially per task. Further research can be conducted to

see if more data or estimating the distance threshold per task or class is better. We

probably would have been able to get higher accuracy by performing a hyperparameter

search. However, we did not do this, because of resources and costs. Otherwise, a

Bayesian hyperparameter search would have been our choice [68].
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In Figure 6.2 shows the meta-test set results on different sets of learning tasks for two

models that are trained on either the validation meta-train set or meta-train set. We

first looked at the model trained on the meta-train set. What is interesting is that we

achieve 91.90 ± 0.46% accuracy on the set of five-shot, 20-way learning tasks, which

is 10% higher than the Mahalanobis model we trained and tested with the small logo

dataset with data augmentation in Chapter 5. Hence, our choice of architecture and

increase of data has benefited the accuracy tremendously. Moreover, we see a 4.63%

decrease in accuracy from five-way to 20-way learning tasks, which is more than a

50% improvement of between-robustness compared to Gaussian prototypical networks

in Chapter 4, where we attained a 10% difference. Furthermore, we see that at 95-way

tasks, the model achieves 85.14 ± 0.24%, which is a decrease from five-way to 95-way

of 11.38% accuracy. Hence, the between-robustness is substantially increased. Second,

we look at the effect of the size of training data between both models in Figure 6.2.

We see that the difference in accuracy increases between both models when the models

need to learn higher K-way learning tasks. Hence, the effect of adding 128 classes to the

meta-train set compared to the validation meta-train set makes the model more robust

for higher K-way learning tasks.

In Table 6.3, we also show the difference between three model configurations. We in-

cluded the two right-most columns primarily to investigate the effect of data augmenta-

tion and addition of more classes to the meta-train set. We can view data augmentation

as a form of increasing the sample size in the already-existing classes, which resembles

increasing the within-class samples. Furthermore, we see an increase of 84.66-88.16%

accuracy by applying data augmentation, whereas adding more classes to the validation

meta-train set gives an increase of 88.16-89.60% accuracy. Hence, it seems that increas-

ing within-class samples has a stronger effect on the accuracy than adding more classes

to the large logo dataset.

In the second-from-right column in Table 6.3, we see that the rejection accuracy on the

meta-test set is 88%. This means that the tuned validation threshold does not translate

perfectly to the meta-test set, because we tuned the threshold at 80% rejection accuracy

on the validation meta-test set. We need to conduct further research to see if we can

make this more robust if more data are collected. Despite this, we can conclude that

the Mahalanobis prototypical networks model is able to achieve the rejection-accuracy

quality metric of 80% but is not able to achieve the threshold accuracy of 90%.
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Thesis discussion

In this chapter, we discuss the results obtained so far and reflect back on the quality met-

rics and requirements we formulated in Chapter 2. We defined four quality metrics with

a model journey: accuracy, rejection accuracy, flexibility, and robustness. In agreement

with Mobiquity, we respectively defined the following requirements per quality metric:

at least 90% threshold accuracy, 80% rejection accuracy, a non-expert is able to prepare

the generic model within 6 hours, and the methods should be as robust as possible. We

defined these requirements under the situation that the generic model is prepared for

conferences with 35 logo classes and using 5 training samples per logo class or, in other

words, a five-shot, 35-way learning task.

From our background and literature research, we concluded that meta-learning is the

perfect approach for this research problem. We split the techniques from this domain

into three directions to select the best performing models in every direction according

to literature. We did this to make a better decision of which technique has the potential

to meet the quality metrics and requirements we defined. An absence in our approach

is that we did not research the ’model-based’ direction thoroughly, because our imple-

mentation of SNAIL was not able to meet the performances published in literature.

However, we hypothesise that model-based approaches are not flexible enough to meet

our flexibility requirement, because the models we have observed have the same issue of

poor between-flexibility that initialisation learning approaches also have.

Our empirical and literature research on deep metric learning and initialisation learning

is strongly in favour of deep metric learning. We see that Gaussian prototypical networks

and our introduced Mahalanobis prototypical networks model are performance wise the

best across the selected deep metric learning and initialisation learning models based on

the quality metrics.
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Accuracy

The model improvements, more-complex architecture, data augmentation, and more

training data shows in Figure 6.2 that accuracy increases 12% on the set of five-shot,

20-way learning tasks compared to the results of the Gaussian prototypical networks in

Chapter 4, where we had 79% accuracy on the same set of learning tasks. However, we

only managed to reach a threshold accuracy of 77.88% accuracy on the large logo test

set, which means we have not been able to achieve the threshold requirement of 90%

accuracy. Despite this, we used only 29,387 samples to acquire these results, which in

deep-learning terms is a small dataset.

One extra point of attention is the case of multiple logos for one company. It sometimes

occurs that a company has multiple, visually different logos. We are treating these

logos as different classes and therefore a situation can occur wherein an input is wrongly

classified but is still classified to the correct company. For the mobile application, this is

seen as a correct classification, whereas with our defined performance metrics it is not.

This means that the acquired accuracy results could be a bit pessimistic compared to

the true performance results.

Another point of attention that we have noticed during the collection of the large logo

dataset is that logos from the same conferences often share the same properties, or in

other words, there are logos that look alike. This means that the task of classifying logos

to the correct companies at a conference could be harder than the tasks we randomly

sampled from our dataset. This means that the accuracy results could reflect more

optimistic results than we have stated for the conference application.

Rejection accuracy

We hypothesised that deep metric learning is more robust to false positives and there-

fore has a higher rejection accuracy than standard softmax neural network classification

models. We proved this hypothesis empirically for Gaussian prototypical networks ver-

sus Reptile. We see this in Chapter 5, where Gaussian prototypical networks are more

robust to false positives than Reptile and it consequently has a higher rejection accuracy.

Interestingly, there is nearly no research of robustness to false positives and rejection

accuracies in the meta-learning domain, although this property can be of utmost impor-

tance for AI-driven applications.

We have also shown that the distance threshold for Gaussian prototypical networks is

more robust to false positives for out-domain distribution unknown-class samples, such
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as images from the mini-ImageNet dataset. However, it seems like a crude method,

because for in-domain distribution unknown-class samples, the distance threshold does

not perform as equally well. We still use the distance threshold, because we show with

the ROC curves that the relative improvement in rejection accuracy compared to in-

and out-domain distribution unknown-class samples is in favour of the latter.

Robustness

We came across three properties of robustness: within-robustness, between-robustness,

and quality-shift robustness. We have empirically shown that all of our selected meta-

learning models have roughly the same within-robustness using the 95% confidence in-

tervals in Chapter 4. For the between-robustness, we have empirically shown that deep

metric learning approaches are more robust than initialisation learning approaches in

Chapter 4. Moreover, we see in Figure 6.2 that the performance on the set of five-shot,

five-way to five-shot, 95-way learning tasks decreases from 96.52% to 85.14% accuracy.

When we compare the accuracy results to the Gaussian prototypical networks results

on the set of five-shot, 20-way learning tasks in Chapter 4, we see that our final im-

plementation has higher accuracy results on the set of five-shot, 95-way learning tasks.

Hence, the collection of more data, usage of data augmentation, introduction of the

Mahalanobis prototypical networks, and usage of the ResNet-17 model has made the

final model substantially more between-robust.

We have observed that most of the samples in the small and large logo dataset do not

have the same quality as images that can be taken by a mobile phone. The hypothesis

that we formed on the basis of Finn and Levine’s work is that Reptile is more robust to

learn new tasks with out-domain distribution known-class samples. This would mean

that we could prepare Reptile with a support set that exist of out-domain distribution

known-class samples and is able to learn to classify these samples well. However, we

were unable to agree with our hypothesis, because Reptile did not show more robustness

to shifts in quality of images than Gaussian prototypical networks. We saw a constant

decrease in performance of 5-6% accuracy with different qualitative datasets for Reptile

and Gaussian prototypical networks, showing that Reptile and Gaussian prototypical

networks share the same robustness to quality shifts. It should be noted that there are

some differences between the datasets that can have an influence on our results, such

as the number of classes. Future research could focus on collecting a larger dataset

from which more equal datasets can be sampled. Furthermore, the issue of robustness

to quality shifts can also have an impact to our performance results, because we have

not been able to test on a dataset that exactly matches input queries that occur during
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deployment of the conference application. We expect that there will be a decrease in

performance because of our research in robustness to quality shifts. However, we do not

know exactly how influential this will be.

Flexibility

Flexibility is important to make the application more scalable. We found in Chapter 2

that deep metric learning has the best between-flexibility and shares the same perfor-

mance with the other techniques on the within-flexibility quality metric. We hypothesise

that deep metric learning is flexible enough to meet the requirements to prepare a generic

model for any task within 6 hours by a non-expert. We have not conducted a formalised

research to test this out, but from our training runs, we are confident that deep metric

learning methods, such as Mahalanobis prototypical networks, have enough within- and

between-flexibility to be within the proposed requirements.

7.0.1 Future research

The first item for future work originates from the shortcoming of the threshold accuracy.

We have seen from Table 6.3 that increasing the within-class samples with data aug-

mentation gives an accuracy increase of 3.5% and adding 128 additional classes increases

accuracy by 1.5%. Collecting more within-class samples seems to be more beneficial than

collecting more classes at this stage. Research by Fehervari and Appalaraju with a deep

metric learning model on classification of tight ROI samples showed a 97.16% accuracy

on a set of five-shot, 49-way learning tasks with a dataset of 242 logos and 700 tight

ROI samples per logo, which is 169,400 samples in total. This shows the importance

of within-class samples and shows that increasing our dataset with more within-class

samples from 38,000 to, for example, 380,000 samples provides a great deal of potential

for higher performance. Further research could be conducted on what the effect is of

more data on the threshold accuracy.

Second, we noticed a negative impact on accuracy by the absence of high qualitative

training images that reflect the input queries during deployment of the application.

Therefore, future research should not only be aiming to increase the large logo dataset

with more within-class samples but also focus on collecting qualitative data that repre-

sents the input queries during deployment of the application.

Last but not least, we have not been able to conduct precise research on the flexibility

of the Mahalanobis prototypical networks approach. We hypothesise from our acquired
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experience during this research that deep metric learning approaches are capable of

preparing any learning task within 6 hours by a non-expert. However, an official research

could be designed in the future to investigate if our hypothesis is correct. A way to do

this is, for example, by creating a demo with Amazon Web Services1.

1https://aws.amazon.com

https://aws.amazon.com
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Conclusion

The goal of this thesis is to answer the following main research question: Is it possible

to build a flexible and reliable ’generic’ deep learning logo recognition model that is able

to classify logo classes from pictures with only five training samples? We have stated

the following requirements for the terms reliable and flexible under the assumption that

the generic model is mostly prepared for conferences with 35 logos from organisations

that will be present: at least 90% threshold accuracy, 80% rejection accuracy, as robust

as possible, and a non-expert is able to prepare the generic model within 6 hours.

We investigated the research question by breaking it down into three sub-questions: (i)

what technique(s) fit in the circle flow and have potential to be reliable and flexible, (ii)

how should we collect data to make the generic model reliable, and (iii) how much data

do we need to collect to match the requirements of reliability for the generic model. We

answer these sub-questions first in the next three paragraphs before we answer the main

research question.

We observed from the literature that meta-learning techniques have the most potential

to fit in the circle flow that we defined in Chapter 2 and to meet the requirements of

flexibility and reliability. However, many different techniques exist in the meta-learning

domain and accuracy is often the only quality metric that is used, although multiple fac-

tors play an important role in AI-driven applications, such as rejection accuracy, within-

and between-robustness, and within- and between-flexibility. We therefore looked at

these quality metrics to decide which techniques in the meta-learning domain are a

good fit by constructing a small and large logo meta-learning dataset. We concluded

that, from our selected techniques, deep metric learning and especially Gaussian pro-

totypical networks have better accuracy, between-robustness, rejection accuracy, and

between-flexibility. Moreover, we empirically showed that the improvement in Gaussian

prototypical networks accuracy over prototypical networks is attributed to the use of
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the Mahalanobis distance metric. Hence, we introduce the Mahalanobis prototypical

networks and we trained and tested it on the large logo dataset to investigate its po-

tential. This resulted in a 77.88% threshold accuracy and 88.21% rejection accuracy on

a set of five-shot, 35-way learning tasks from the large logo test set. This shows that

the Mahalanobis prototypical network model has a higher rejection accuracy than the

required 80%, has the best robustness or shares this with the other selected techniques,

and is hypothetically flexible enough to learn logo classification tasks within 6 hours.

We created a small logo meta-learning classification dataset from using already existing

logo datasets. These datasets are purposely built for logo detection and we observed that

extracting ROIs that match the use case of the conference application is hard, such as

having enough background information, within-class samples, and classes. We therefore

created a large logo dataset in which we succeeded to increase the total number of classes

from 191 to 803 and we introduced many samples with more background information.

We recognised, however, that there is a quality shift between the large logo data samples

and query images that will be processed during deployment of the conference applica-

tion, which can negatively impact the performance of the model. Furthermore, we see

that the large logo dataset especially benefits from having more within-class samples,

whereas increasing the number of classes also has a positive but less of an impact on the

performance metrics. Hence, increasing our created large logo dataset to improve relia-

bility of the generic model further, one should focus on adding highly qualitative samples

that resemble images from mobile phones and collecting more within-class samples.

The large logo dataset consists of only 35,499 samples from which we trained the final

Mahalanobis model with 29,387 samples. We have not been able to reach the 90%

threshold accuracy, although we have reached this with a score of 89.70 ± 0.32% for

the accuracy metric. The question is, how much more data needs to be collected to

reach the requirement of 90%? We have argued that our large logo dataset is still small

in comparison with standard deep learning datasets, such as the Omniglot and mini-

ImageNet datasets that contain, respectively, 129,840 and 600,000 samples. We already

obtain good results with the large logo dataset and conclude that there is potential

to reach the 90% threshold accuracy when a magnitude more within-class samples is

collected for the large logo dataset.

On the basis of the above answers and research, we have seen that deep metric learning

approaches and especially the Mahalanobis prototypical network model can match every

defined requirement and performs well on the defined quality metrics. We can therefore

conclude that it is possible to make a flexible and reliable generic model that is able to

learn different logo classification tasks with only five training samples per class.



Appendix A

Hyperparameter settings

For every implementation in the training stage where we conducted n-shot, K-way

learning, we used the meta-train set to select n support samples for each class K, and

we sampled n query samples per iteration for each class K. We used the same sample-

collection procedure for the meta-test set during testing.

A.1 Deep metric learning

The hyperparameters for every deep metric learning model are shown in Table A.1, and

they are the same for the Omniglot and both logo datasets. Moreover, for every model,

we used the Adam optimiser [69] with standard beta hyperparameters (i.e., β1 = 0.9 and

β2 = 0.999), and used a discrete learning rate (LR) adjustment protocol. This means

that we adjusted the learning rate every 20 epochs by a half.

Model Hyperparameters

Distance LR Loss function Batch size

Protonet Euclidian 0.001 Cross-entropy -

Gaussian protonet Mahalanobis 0.001 Cross-entropy -

Mahalanobis protonet Mahalanobis 0.001 Cross-entropy -

Relation network Euclidian 0.001 Mean squared error -

Proxy network Euclidian 0.001 Cross-entropy 32

Table A.1: Hyperparameter settings of deep metric learning models used throughout
the research.
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A.2 Initialisation learning

MAML

We used for all implementations of MAML the first-order approximation, and the Adam

optimiser for the outer step (meta-step) with β1 = 0.9 and β2 = 0.999. We used stochas-

tic gradient descent for the inner step. The hyperparameters are shown in Table A.2.

Moreover, we used the same hyperparameters across learning tasks for both Omniglot

and logo datasets with one exception. For Omniglot, we used the hyperparameters of

the one-shot, five-way column from Table A.2 on both one-shot, five-way and five-shot,

five-way learning tasks. Finally, we used the same learning rate scheduler for the outer

LR with the same settings which we used for deep metric learning.

Hyperparameters 1-shot 5-way 5-shot 5-way 5-shot 20-way

Adam LR 0.001 0.001 0.001
Inner iterations 1 5 5
Inner LR 0.4 0.01 0.01
Meta-batch size 32 8 3

Test inner iterations 3 10 10

Table A.2: Hyperparameter settings for MAML that are used throughout the re-
search.

Reptile

In Table A.3, we show the hyperparemeters of Reptile. We used the same hyperparam-

eters per n-shot, K-way learning task for training with the Omniglot and logo datasets.

We linearly annealed the outer step LR to zero, just as is published by Nichol et al..

Furthermore, we used the same beta hyperparameters for the Adam optimiser across

all learning tasks and datasets with β1 = 0 and β2 = 0.999. Finally, we only used the

Adam optimiser for the inner step.

Hyperparameters 1-shot 5-way 5-shot 5-way 5-shot 20-way

Adam LR 0.001 0.001 0.001
Inner batch size 10 10 20
Inner iterations 5 5 10
Train shots 9 9 9
Outer step LR 1 1 1
Meta-batch size 5 5 5

Test inner iterations 50 50 50
Test inner batch size 5 5 10

Table A.3: Hyperparameter settings of Reptile used throughout the research. Train
shots refer to the number of samples per support set class.
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A.3 Model based learning

SNAIL

We used the Adam optimiser with standard beta hyperparameters to learn the param-

eters together with a LR of 0.001. For training, we used a training batch size of 32, and

for testing, we used a batch size of 25. Finally, we did not use a step scheduler to adjust

the learning rates.

A.4 Data augmentation

For every training procedure, we resized the logo images to 60 x 60 pixels with bilinear

interpolation. We also normalised every logo image before forwarding it into the model

to a range between [−1, 1].

Data augmentation settings

When we used data augmentation, we added jittering and random rotation. For image

jittering, we used the exact same settings and code from this link, which is code that

was used by Chen et al.. For random rotation, we rotated the images randomly between

±20◦.

https://github.com/wyharveychen/CloserLookFewShot
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Backbone architectures

B.1 Research of robustness to quality shifts and image size

We used three different CNN architectures during the research of robustness to quality

shifts and image size. We explain in this section the architectural design of architecture

1, 2, and 3.

We used a standard CNN backbone that consists of four modules throughout the re-

search. We explained the structure of it in Chapter 4 and it consists of four stacked

modules, for which each has a 3 x 3 convolution with 64 filters, and one padding. We

abbreviate this as follows: 4 x module[3], and padding=0. Now, we show the three

different architectures in Table B.1.

Architecture Design

Standard 4 x module[3], padding=1
1 4 x module[3], padding=1
2 1 x module[7] + 3 x module[3], padding=0
3 1 x module[7] + 4 x module[3], padding=0

Table B.1: Architectural design of three different models, and the standard backbone
model.

B.2 The ResNet architecture

We used the ResNet-17 architecture as backbone in Chapter 6. We adjusted the ResNet-

18 architecture from He et al. to fit the logo sizes of 60 x 60 pixels better. This means

that we excluded the first layer only and so we created a ResNet-17 model. We show

the architecture in Table B.2. A block consists of two convolution layers, for which both
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convolution layers are followed by batch normalisation. Thereafter, it follows with a

ReLU activation function in the activation layer. In Figure 3.7, we show how a block is

precisely sorted with these layers.

Layer Filter size Channels

Block 1 and 2 3 x 3 64
Block 3 and 4 3 x 3 128
Block 5 and 6 3 x 3 256
Block 7 and 8 3 x 3 512
Average pool 7 x 7 512

Table B.2: Architecture of the ResNet model that we used.

B.3 The eResNet architecture

The major difference between ResNet and eResNet is the use of max-pooling. This

minimises the number of parameters to prevent overfitting. We used the exact same

structure that Zheng et al. proposed.
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Additional experiments

In this appendix, we explain and show results of additional experiments we conducted.

C.1 Looking at the representation space with MNIST

Prototypical networks maps task depended classes to a mixture of spherical Gaussians in

an n-dimensional space or, it tries to do this. We use MNIST to represent its classes in

a two-dimensional representation space with Prototypical networks. There is a peculiar

observation when we look at the standard backbone structure that is used throughout

this thesis, and is constantly used in the meta-learning domain. A module of this

backbone consist of a convolution, batch normalisation, ReLU and max-pooling. The

ReLU function maps every input to a positive quadrant in representation space, which

can influence the structure of the Gaussian densities the model tries to create. There

is some debate about the ordering of these layers by Mishkin et al., Ioffe and Szegedy.

Kruspe moves the batch normalisation layer to the end of every module hoping this

improves the Gaussian representations. Hence, we conduct an experiment to assess the

behaviour of Prototypical networks and of different backbone architectures.

Experimental setup

We used the MNIST dataset that consist of 10 number classes ranging from 1-10. We

trained a prototypical network model with three different backbones on the five-shot, 10-

way learning task with 100 epochs. Every backbone maps the output to a 2-dimensional

representation. As such, we can investigate the class representations from the MNIST

test set. We do this by sampling 1,000 samples randomly. Furthermore, we used the

standard train- and test-set split from MNIST that consist of grey-scale samples that
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(a) (b)

(c)

Figure C.1: The three different representation spaces of backbone one, two, and three
from 1,000 randomly sampled MNIST test set samples.

have 28 x 28 pixels. Moreover, the first backbone is the standard backbone but with the

last layer only having two output channels, the second backbone is almost the same but

moves the batch normalisation layer to the end of every module, the third backbone is the

same as the standard backbone including a linear layer at the end with a 2-dimensional

output. Finally, we used the same Prototypical networks hyperparameters presented in

Appendix A.

Results

We show three figures wherein we show randomly sampled representations from the 10

classes of the MNIST test set. In Figure C.1a, we show the representation space of the

first backbone which reached a train accuracy of 99.7%, and a test accuracy of 97.5%.

In Figure C.1b, we show the representation space of the second backbone which reached

a train accuracy of 99.8%, and test accuracy of 97.7%. Last, In Figure C.1c, we present

the representation space of the third backbone which reached a train accuracy of 99.7%,

and test accuracy of 98.7%.
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Discussion

We aim to see how Prototypical networks behaves in the representations space with

different backbones. We also hypothesised that the order of layers in the standard

backbone module can have an impact on the assumption of Gaussian densities. In

Figure C.1a, we see the representation of the 10 MNIST classes in representation space.

We observe that the classes are represented in a positive quadrant which influences

the shape of certain classes at the edge dramatically. We conclude visually that these

classes are not Gaussian shapes, whereas we conclude that the other classes do represent

Gaussian shapes. Furthermore, we look if switching the order has an impact on the

shapes of the representations. In Figure C.1b, we show the representation space for

which we used a backbone that has the batch normalisation layer at the end of every

module. We see that this change does not improve the Gaussian behaviour of certain

classes, and we can even argue that it looks worse than the standard backbone. It seems

that batch normalisation has only shifted and squeezed the representations, which is

actually the intended purpose of batch normalisation. Finally, in Figure C.1c, we see

an improvement compared to the other two backbones. We visually conclude that every

class is represented as a Gaussian density. It also seems that the intra-class variance

is lower compared to the other two backbones, although the backbone we used is more

complex by adding a linear layer, which can have an impact on creating better invariant

representations.

Using the discussion in the previous paragraph, we can conclude that adding a linear

layer at the end of the backbone improves the assumption of Gaussian densities for

Prototypical networks. We can also conclude that re-ordering batch normalisation to

the end of every module does not have any impact compared to the Gaussian shapes

of the standard backbone. However, if we compare accuracy results between the three

backbones, we do not see much fluctuation. This could be due to using an easy computer

vision task, such as MNIST. Hence, further research should be conducted to see what the

effect is on harder tasks, such as the logo classification task in this thesis. However, we

keep using the standard backbone in this thesis, because it is used by the meta-learning

community, so we, and the community, are able to compare performance results between

various techniques.
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C.2 Using different loss functions to decrease intra-class

variance and increase inter-class variance

One of the first deep metric learning model was introduced by Koch et al. and uses a

siamese CNN structure to do one-shot, two-way learning. They used a standard sigmoid

output function with the cross-entropy loss (i.e., the softmax loss). However, Wen et al.

mentioned the importance of discriminative representations (i.e., low intra-class variation

and high inter-class variation.) and they proposed the center loss. In Equation C.1, we

show this loss for which d is the Euclidian distance, and it is jointly constructed with the

softmax loss. The W ’s and b’s are trainable weights. The c in the center loss computes a

within-class representation mean, such as we calculate with Prototypical networks (see

Chapter 4 for more details). The λ is a hyperparemeter that can be tuned to balance

the softmax and center loss. In Figure C.2, we show the comparative behaviour of the

joint supervision of the softmax and center loss using different λ’s. We clearly see that

the intra-class variance is decreasing when λ is increased to 0.1.

1

mK

[
−
mK∑
i=1

log

(
eW

T
yi
hθ(xi)+byi∑K

k=1 e
WT
k hθ(xi)+bk

)
+
λ

2

mK∑
i=1

d(hθ(xi)− cyi)

]
(C.1)

Figure C.2: Representation space of a network trained on MNIST with the joint
supervision of softmax and center loss. Different λ’s are used to show the effect, and

the white dots represent cyi . Figure from Wen et al..
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For Prototypical networks, we have the loss function defined in Equation C.2. We

rewrite this loss with some basic algebra into two parts in Equation C.2. Interestingly,

the first part is exactly the center loss function. Furthermore, a thought experiment

indicates that minimising this loss decreases the intra-class variance by the first part, and

consequently increases inter-class variance by the second part. Thus, this loss function

that we used throughout the experiments in the various deep metric learning models

seems to be a good choice. However, over the years, many loss functions are introduced

in deep metric learning, such as the triplet loss [56]. We use some of them together with

Gaussian prototypical networks to see if we are able to get even better results. We do

not go into detail of every loss function but we refer to literature instead.

− 1

mK

mK∑
i=1

log

(
e−d(hθ(xi),cyi )∑K
k=1 e

−d(hθ(xi),ck)

)
=

1

mK

mK∑
i=1

[
d(hθ(xi), cyi) + log

(
K∑
k=1

e−d(hθ(xi),ck)

)]
(C.2)

Experimental setup

We used Gaussian prototypical networks and three different loss functions: triplet loss,

mixture loss [70], and max mixture loss [70]. We added the triplet loss to the standard

Prototypical network loss. The mixture loss function was introduced to be a better

function than the standard prototypical network loss function.

We tested the three different loss configurations with Gaussian prototypical networks

on the sets of five-shot, five-way and five-shot, 20-way learning tasks. We derived these

tasks from the small logo dataset. We used the standard hyperparameters for Gaussian

prototypical networks defined in Appendix A. Finally, we computed a 95% confidence

interval by sampling 500 tasks for both learning sets.

Results

We show the results of the different configurations on the small logo test set in Table C.1.

Discussion

In Table C.1, the different results are presented. We see that adding the triplet loss

gives worse results than standard Gaussian prototypical networks. For both mixture
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Loss function 5-shot 5-way 5-shot 20-way

Standard 89.68 ± 0.67% 79.97 ± 0.40%

Triplet 87.77 ± 0.75% -

Mixture 89.80 ± 0.64% 79.49 ± 0.42%

Max mixture 90.30 ± 0.63% 79.35 ± 0.42%

Table C.1: Accury results of the different loss function configurations. Every config-
uration is trained with 100 epochs.

losses, we see comparable performance. This means that we have not found evidence

that the mixture loss provides better performance than the standard loss. Thus, none of

the investigated losses actually improves performance. Hence, we kept using the original

loss in all of our experiments.

C.3 Fine-tuning with the support set

In Chapter 3, we discussed that initialisation learning performs within-task learning,

and deep metric learning does not do this. However, there is literature were they do

within-task learning with the support set, which is called fine-tuning. Vinyals et al.

use the support set to tune the parameters of a deep metric learning backbone with a

few gradient steps. They did not, however, see a significant increase but another study,

conducted by Zheng et al., had a significant increase on the mini-ImageNet dataset with

9% accuracy on the set of five-shot, 20-way learning tasks. They say that most of this

increase is contributed to using the eResNet model (see Appendix B.3) but they do not

specifically explain how they used fine-tuning. We used the standard backbone to see if

we can also get a significant increase in accuracy on the small logo dataset.

Experimental setup

Zheng et al. used the prototypical networks model as a foundation for their research.

We used Gaussian prototypical networks for our research together with the eResNet

backbone. They are, however, not completely clear how they fine-tuned the model.

What is clear, is that they used the support set S to perform one gradient step to tune

the backbone parameters.

In our experiment, we trained prototypical networks on the small logo dataset with the

same hyperparameters in Appendix A. When we tested the model, we first fine-tuned

the backbone. We did this by using the support set S to create the centroids per class

K, and then we also used the support set S as query batch. We then performed gradient
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descent with one or three steps to update the parameters in the backbone. Thereafter,

we used the centroids and the normal query batch to get evaluation metrics for the task.

We used a few different configurations such as freezing a few layers, which means that

these layers are not updated by fine-tuning. We also changed the learning rate of the

fine-tuning a bit to see if this has effect. Finally, we tested this approach on the set of

five-shot, five-way learning tasks.

Results

In Table C.2, we show the results of different configurations from the fine-tuning exper-

iment.

Settings Learning rate 5-shot 5-way

Freeze zero layers 0.001 89.91 ± 0.61%

Freeze zero layers 0.0001 89.70 ± 0.70%

Freeze all but last
two layers

0.001 86.69 ± 0.77%

Freeze zero layers and
three gradient steps

0.001 89.70 ± 0.67%

Table C.2: Fine-tuning results on the small logo dataset with prototypical networks
and standard backbone.

Discussion

In Table C.2, we see the results of fine-tuning with the standard backbone. Comparing

to the Gaussian prototypical networks results without fine-tuning, we see that none of

the configurations have a significant increase in accuracy. Hence, we can conclude that

fine-tuning with our approach does not work. However, we did not use the eResNet

backbone, and it could be that we perform the fine-tuning differently than by Zheng

et al.. Thus, future research should be conducted to see if results will be different using

the eResNet backbone.

C.4 Different settings for the softplus function

Fort proposes to use the softplus function to ensure a PD matrix for the Mahalanobis

distance metric. They specifically propose to use the function S = 1 + softplus(x) to

limit the domain to S > 1 and thus guaranteeing that the data points can only be less

important. However, in the sense of a PD matrix that maps the inverse variance, the
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domain should be S > 0, which can be achieved by only using the softplus function.

Another way is to use trainable parameters, such as S = offset + scale∗ softplus(x/div).

Hence, in this experiment, we tried out different implementation of the softplus function

for Mahalanobis prototypical networks.

Experimental setup

We used the Mahalanobis prototypical networks model with the same hyperparameters

in Appendix A to train with different configurations of the softplus function. We saw in

Appendix C.1 that the ReLU function maps every output from the representation into

a positive quadrant, and thus it is not necessary to use the softplus function to get a

PD matrix. Hence, we replace the softplus function with x + ε, for which ε = 1e − 10.

To still make sure that data points are only less important, we can replace the softplus

function with 1 + x, and this is the second configuration we tried. Finally, we used the

trainable softplus function. We initialised the trainable parameters with 1.0 and trained

it end-to-end with the Mahalanobis prototypical networks.

We trained the model on the set of five-shot, 20-way learning tasks from the small logo

dataset. We used data augmentation for training, which is the same data augmentation

and settings we used in Chapter 5.

Results

In Table C.3 the results of the experiments are shown.

Function 5-shot 20-way Epochs

Trainable 80.14 ± 0.38% 100

x+ ε 80.91 ± 0.41% 100

1 + x 81.79 ± 0.41% 100

Table C.3: Different softplus function configuration experiment results with Maha-
lanobis prototypical networks. The confidence intervals are computed from 500 tasks

from the small logo dataset.

Discussion

The Mahalanobis prototypical networks model on the set of five-shot, 20-way learning

tasks achieved an accuracy of 81.60%, with data augmentation and the standard softplus

function. In Table C.3, we see that only the 1+x function has comparable results within

the confidence interval. Curiously, the trainable function has the worst results. It should,

however, be able to converge to a least the 1+x function. It could be that longer training
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is required. However, we do not see any improvement compared to the standard softplus

function, and thus we kept using it throughout the experiments.

C.5 Using self-attention to find task specific features

The Mahalanobis and Gaussian prototypical networks construct an inverse variance ma-

trix by adding support set representations from class K. This seems to be working well,

although Oreshkin et al. show that scaling the Euclidian distance metric by a learnable

parameter increases the performance of Prototypical networks significantly. This raises

the question if Mahalanobis and Gaussian prototypical networks are truly estimating an

inverse covariance matrix for every class density or, only learn a constant set of parame-

ters that scale the distance metric. We conducted an experiment to estimate the inverse

covariance matrices from the support set representations directly. This gave some chal-

lenges, such as values that approaches infinity after taking the inverse of the matrix,

because some values lay close to zero. Another idea was to create a neural network

function that computes the inverse covariance matrices by taking in the complete set of

support set representations.

The published work by Li et al. is another way of thinking that inspired us. Most

deep metric learning approaches use the support set classes independently to decide if

a query belongs to a certain class. However, depending on the task, certain dimensions

(features) from representations are more important than others. For example, a car can

be represented by the following features: number of wheels, number of doors, colour,

and shape. When a meta-learning model must prepare on a task in which it should

distinguish between a Mercedes or Toyota, the dimension that specifies the number of

wheels does not add any additional information for the task at hand, because both cars

have four wheels. However, when it must distinguish between a truck and a car, the

number of wheels dimension does add additional information for the task, because a

truck has more than four wheels. Hence, in Li et al., they proposed an additional neural

network function that finds important dimensions using CNNs.

We propose a neural network function that finds important dimensions and computes

a covariance matrix that can be used in the Mahalanobis distance metric. We name

this function the covariance function, and use it together with prototypical networks.

The main idea is to use self-attention and feed forward neural networks to, respectively,

mask non-relevant dimensions and compute the variances per dimension.
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Method

In Chapter 3 and Chapter 4, we defined that meta-learning methods are trained with

episodic training. This means that we sample every iteration a support set S = {(x1, y1), ..., (xN , yN )}
and batch q = {(x1, y1), ..., (xM , yM )} where each xi ∈ RD is a D-dimensional represen-

tation of an input image, and yi ∈ {1, ...,K} specifies the class. We denote Sk and qk as

the set of logo samples that belong to class k, with k ∈ {1, ...,K}. We denote n, from

n-shot, as the number of samples in every set Sk.

Prototypical networks learn a representation function hθ : RD → RE that outputs an

E-dimensional representation. It uses this representation function to create prototypes

ck ∈ RE from support set S that represent the centroid of a cluster from class k. More

information about prototypical networks can be found in Chapter 4.

For a n-shot, K-way learning task, we have a support set S : (nK, 3, d1, d1) to prepare

the task, in which d1 is the dimension of the input image with 3 ∗ d1 ∗ d1 = D and three

represent the RGB dimensions. The nK value represents the total number of samples.

We put the support set through function gθ, and get the representation set R : (nK, d2),

in which d2 is an E-dimensional vector for all samples. We use the representation set to

compute both the masks, and covariance matrix with the covariance function.

Self-attention [63] creates three vectors from an input vector: the query (q), key (k),

and value (v). These are created by forwarding the input vector in three distinct feed

forward neural networks. The key and query are used to see what dimension is relevant

by computing a dot product or, element-wise multiplication. These scores per dimension

are forwarded into a softmax function to get relevant scores between (0, 1). These scores

are then multiplied by the value vector to give relevancy to certain dimensions.

We use feed forward neural networks to compute vectors q, k, and v. For the within-

mask function, the input and output should be n-dimensional vectors so an output layer

with n nodes. For the between-mask function, the input and output should be K so

an output layer with K nodes. One or more hidden layers can be used in every neural

network.

In Figure C.3, we show the architecture of the covariance function. First, the repre-

sentations are forwarded into the within-mask function. In Algorithm 2, we show the

procedure. Here it computes the dimensions that are important for the class. Second,

the output from the within-mask function is forwarded to the between-mask function,

for which we show in Appendix 3 how it works. Here it computes the dimensions

that are relevant between the classes, and it outputs a mask per dimension. Third,

the representations are also forwarded into a covariance function covθ5(x), which is
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a feed forward neural network, and outputs inverse covariance matrices per class by

R : (K,n, d2)
covθ5 (x)
−−−−−→ c : (K, d2). The output is element-wise multiplied with the masks

from the output of the between-mask function by c◦f . As such, only relevant dimensions

for the task are selected. Finally, we use the masked inverse covariance matrices in the

Mahalanobis distance metric.
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Figure C.3: Architecture of masked covariance function with Prototypical networks.

Algorithm 2 Within-mask

Require: q1
θ1

(x), k1
θ2

(x), v1
θ3

(x), and S : (nK, 3, d1, d1)
gθ(x)−−−→ R : (nK, d2)

1: Compute R : (nK, d2)
q1θ1

(x),k1θ2
(x),v1θ3

(x)
−−−−−−−−−−−−→ q, k, v : (K,n, d2)

2: Compute element-wise multiplication q ◦ k, and transpose, which gives s : (K, d2, n)

3: Sum across dim=3, which gives ŝ : (K, d2, 1)
4: Compute softmax of ŝ over dim=2 to get masks per class over the dimensions. This

gives f : (K, d2, 1)
5: Compute element-wise multiplication f◦v, and broadcast, which gives R2 : (K, d2, n)

6: return R2

Experimental setup

We used vanilla prototypical networks with the standard backbone and hyperparameters

settings from Appendix A. The difference is that we did not use the Euclidian distance

but the Mahalanobis distance and the covariance function. We trained this model on

the set of five-shot, five-way and five-shot, 20-way learning tasks, with 100 epochs on
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Algorithm 3 Between-mask

Require: q2
θ1

(x), k2
θ2

(x), conv1dθ4(x), and R2 : (K, d2, n)

1: Average over n samples per class with R2 : (K, d2, n)
conv1dθ4 (x)
−−−−−−−→ R3 : (K, d2)

2: Compute R3 : (k, d2)
q2θ1

(x),k2θ2
(x)

−−−−−−−−→ q, k : (k, d2)
3: Compute element-wise multiplication q ◦ k, and transpose, which gives s : (K, d2)
4: Sum across dim=1, which gives ŝ : (d2)
5: Compute softmax of ŝ to get masks between classes. This gives f : (d2)
6: return f : (1, 1, d2)

the small logo dataset. We computed the accuracy and 95% confidence intervals with

500 sets of tasks from the meta-test set.

For the functions q1
θ1

(x), k1
θ2

(x), and v1
θ3

(x), we used feed forward neural networks with

an input size of n nodes, one hidden layer with 10 nodes, and an ouput layer with n

nodes. For the functions q2
θ1

(x) and q2
θ1

(x), we used also feed forward neural networks

with an input size of K, hidden layer with 10 nodes, and an output layer with K nodes.

Furthermore, we used a one-dimensional convolutional layer with filter one, and stride

one for conv1dθ4 . For the covariance layer covθ5(x), we used a feed forward neural

network with n nodes as input, hidden layer with 10 nodes, and an output layer with

one node as output. Finally, for every layer in every network, we used a ReLU layer but

not after the output layer.

Results

In Table C.4, we show the results from the Prototypical networks model with covariance

function. We compare the results with different prototypical networks specifications.

5-shot 5-way 5-shot 20-way

Protonet with
covariance function

89.41 ± 0.66% 77.96 ± 0.41%

Protonet 87.96 ± 0.68% 76.25 ± 0.40%

Gaussian protonet 89.68 ± 0.67% 79.97 ± 0.40%

Mahalanobis protonet - 79.74 ± 0.43%

Table C.4: Few-shot classification accuracies from the different Prototypical network
models. The bold cells indicate the best performing model(s) within 95% confidence

interval in that column.

Discussion

In Table C.4, we see the results of Prototypical networks with the covariance function.

We see that it has comparable performance on the set of five-shot, five-way learning
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tasks, although it performs less on the set of five-shot, 20-way learning tasks compared

to Gaussian and Mahalanobis prototypical networks. The number of parameters that we

used is comparable to Gaussian and Mahalanobis prototypical networks but we do have

poor between-flexibility, because higher K-way learning tasks require to use different

sizes of feed forward neural networks. In the future, we plan to try out different con-

figuration, check if the covariance function behaves as expected, and train on different

datasets, such as mini-ImageNet. We can then see how it compares to state-of-the-art

meta-learning models.
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