
MSc Thesis

The Parameter Efficiency of Neural Ordinary

Differential Equations

Investigation of a Novel Neural Network Framework

Academic Supervisor:

J. Hulshof

External supervisors:

V. Muhonen

D. Timmers

R. Price

Author:

L.F.D. Bijsterbosch

Date:

March 2020

The Parameter Efficiency of Neural Ordinary Differential Equations

Investigation of a Novel Neural Network framework

Lotte Floor Dirkje Bijsterbosch

Master Thesis

March 2020

Vrije Universiteit Amsterdam

Faculty of Science

Business Analytics

De Boelelaan 1081a

1081 HV Amsterdam

Mobiquity Inc.

Data Analytics Team

Tommaso Albinonistraat 9

1083 HM Amsterdam

Preface

Reading the award winning paper by Chen et al. [6] really sparked my interest in the subject of

neural differential equations, and has been the inspiration for the topic of this project. It has shown

to be a great thesis subject. It has given me the opportunity to combine both theoretical research and

practical models, and the chance to really dive deep into the new technique. Altogether it has been

very rewarding project and challenging at times.

This research project is conducted as part of the MSc Business Analytics. It consists of a half year

of full-time research combined with an internship. The project has been carried out at Mobiquity, and

my colleagues there have have been of great help during the project. Not only did they give me all

the freedom to shape the project to my interest, they also have provided me with all the necessary

equipment, from access to cloud computing services to proper hardware. Even more importantly, a

great team of data scientists who are always open for discussions.

At last I would like to thank the supervisors who have been involved during the project. Joost for

many interesting discussions, his support with regards to the mathematics and his eagerness to learn

about neural networks. And the supervisors from Mobiquity ; Dennis, Vesa and Richard. They have

provided great feedback and support, and their enthusiasm for the project has been a great motivator.

Lotte Bijsterbosch,

March 2020, Amsterdam

II

Summary

Recently a new framework, the ODEnet, a neural network that incorporates an ODEsolver has been

introduced by Chen et al. [6]. The new technique raises many questions, such as the advantages over

existing techniques, and how to implement the model in practice. This research project will address

a couple of aspect of ODEnets, both by diving into the theory and by experimental research. The

objective is to review the claim by Chen et al. that the parameters of an ODEnet are more efficient,

indicating that the ODEnet with less parameters has the same predictive performance as a ResNet.

This claim is reviewed specifically for image classification. To answer this question we also need to

get more insight into the workings of the model, and how to construct a succesful ODEnet architecture.

First, the theory of ODEnets is investigated. We derive the continuous backpropagation technique

proposed by Chen et al. with an alternative method using Lagrange optimization. This creates a clear

connection to traditional backpropagation methods. Investigation into forward propagation leads to

insights in the expected advantages of ODEnets, and why the more efficient parameters are not found

in experimental results. Additionally, it provides areas for future research, such as incorporating a

time dependency in the weight parameters.

The experimental section of the research consists of two parts. Due to the novelty of ODEnets, there

is very little known about how such a network can be constructed successfully. This project addresses

this problem, and looks into different types of layers and activation functions and their effect on the

training time and whether they are likely to cause errors. This information is put into practice while

designing models to research whether the ODEnet has more efficient parameters. Comparing ODEnets

with an equivalent residual network (ResNet) has shows that both have a very similar predictive per-

formance. This indicates that the parameters of an ODEnet are not more efficient. Additionally,

the ODEnet takes much longer to train than a ResNet. Therefore, the ODEnet should not be used

to replace a ResNet. It does, however, have more potential in time-dependent applications, such as

time-series.

III

List of Abbreviations

ODE Ordinary differential equation

IVP Initial value problem

NFE Number of function evaluations

FNFE Number of function evaluations of the forward pass

BNFE Number of function evaluations of backpropagation

ResNet Residual Network

CNN Convolutional neural network

HPO Hyperparameter optimization

groupnorm Group normalization

batchnorm Batch normalization

autodiff Automatic differentiation

IV

Contents

1 Introduction 1

1.1 Structure of Thesis . 3

2 Neural Networks 4

2.1 Architecture of a Classical Neural Network . 4

2.1.1 Activation Functions . 5

2.2 Convolutional Network . 6

2.2.1 Convolutional Layer . 6

2.2.2 Pooling Layer . 7

2.2.3 Normalization . 7

2.2.4 Fully Connected Layer . 8

2.3 Residual Network . 8

3 The ODEnet 10

3.1 Ordinary Differential Equations . 10

3.1.1 Solving Initial Value Problems . 11

3.2 The ODEnet . 12

3.2.1 Literature Review ODEnet . 12

3.2.2 Forward Pass . 14

3.2.3 Theoretical Advantages ODEnet . 15

3.2.4 Augmented ODE . 17

3.3 Architecture Design . 18

4 Backpropagation and the Adjoint Method 19

4.1 Automatic Differentiation . 20

4.2 The Adjoint Method . 21

4.3 Lagrange Optimization . 21

4.4 Backpropagation for ODEnet . 23

4.5 Continuous versus Discrete Backpropagation . 25

4.5.1 Discrete Automatic Differentiation in Practice 26

V

4.5.2 Stability of Continuous Adjoint Method . 26

5 Data 28

5.1 FashionMNIST . 28

5.2 Cifar10 . 29

5.3 Preprocessing . 29

6 Research Method 30

6.1 Limitations Inherent to Model Training . 30

6.2 Training Details . 31

6.2.1 Hyperparameter Optimization . 31

6.2.2 Early Stopping . 31

6.3 Experiment Pipeline . 32

6.3.1 Experiment Logging . 32

7 Design of ODEnet architecture 33

7.1 Training/Underflow Error . 33

7.1.1 Activation Functions . 34

7.1.2 Stride . 35

7.1.3 The Normalization Layer . 35

7.1.4 Variations of the Final Time . 36

7.2 Complexity ODEblock and Fully Connected Layers . 36

7.3 Experiment Models . 37

7.3.1 Simple Architecture . 37

7.3.2 Complex Architecture . 38

8 Results 41

8.1 Simple Architecture . 41

8.1.1 FashionMNIST . 41

8.1.2 Cifar10 . 43

8.2 Complex Architecture . 44

8.2.1 FashionMNIST . 44

8.2.2 Cifar10 . 45

8.3 Different Evaluation Settings . 46

9 Discussion 47

9.1 Interpretation of Results . 47

9.1.1 Analysis of Results . 48

9.2 Future Research . 48

VI

10 Conclusion 50

Bibliography 52

Appendix A Proofs 58

A.1 Proof of Lemma 4.1 . 58

A.2 Proof of Lemma 4.3 . 60

Appendix B Implementation Details 63

B.1 AWS Hardware . 63

B.2 Packages and Libraries . 63

B.3 Experiment Logging . 64

Appendix C Network Architecture 65

C.1 Simple ODE net . 65

C.2 Simple Small ResNet . 66

C.3 Simple Large ResNet . 67

C.4 ODE Complex Network . 68

C.5 ResNet Complex Network . 69

Appendix D Results 70

D.1 FashionMNIST Simple Architectures . 70

D.2 Cifar10 Simple Architectures . 71

D.3 FashionMNIST Complex Architectures . 72

D.4 Cifar10 Complex Architectures . 73

VII

CHAPTER 1

Introduction

The field of machine learning is booming. Every year there are new models and improvements of already

existing techniques. From neural networks that have more than 97% accuracy in face detection tasks

[48, 50] to computer programs beating humans in the game of Go [42]. Another new type of neural

network can be added to this list of notable developments. The ODEnet is an innovative new idea,

inspired by the resemblance between residual networks (ResNet), a type of neural network, and the

Euler method, a way to solve ordinary differential equations (ODE). This similarity has been noted

for a while, but in 2018 Chen et al. [6] have designed the first working model.

There are a lot of questions that remain unanswered now that the ODEnet can be used for practical

problems. In this research we will focus on the question whether the parameters of an ODEnet are

more efficient than that of a ResNet for image classification. In other words, does an ODEnet with less

parameters have the same predictive performance as a ResNet. Additionally, the model itself is studied.

What happens during forward and backpropagation when a black-box ODEsolver is incorporated into

the network? Another important aspect that is addressed is how to construct a successful ODEnet.

The great resemblance between ResNet and the Euler method has been observed by Weinan [51]

and others in the past years [4, 15, 35]. At first this lead to analyzing ResNets with the knowledge

from the field of ODEs. Understanding of what leads to stable ODEs, and how to properly solve them

can be applied to ResNets. This helps in creating stable models that train well. The Euler method is

not the only discretization scheme that can be recognized in a neural network. Other methods, such

as Runge-Kutta or the backward Euler method have also been observed in existing neural network

architectures. This has lead to the development of neural networks with structures based on ODE

methods. This idea is further extended by Chen et al., by creating a ResNet that incorporates a black-

box ODEsolver. When using the Euler method as an ODEsolver, this network is equivalent to a plain

ResNet. But, with the ODEsolver incorporated in the architecture it is possible to use different, better

methods. The adaptive step size solvers actually lead to a neural network with a continuous hidden

dynamics, a big change from a regular neural network. This dynamic depth brings many different

1

advantages with it. First, the number of steps that are computed within the ODEsolver, equivalent to

the network depth, are based on an error tolerance. The ODEsolver will take extra steps if necessary

to stay bellow the threshold. This creates a trade-off between computational cost of the network, and

the desired error tolerance. Second, the hidden state dynamics are treated as a continuous function.

This could entail that the parameters of the different layers that are passed to the ODEsolver are more

’together’, and work more efficiently. Additionally, the continuous nature of the internal dynamics is a

good fit for time-dependent problems. Time dependent variables do not have to be forced into discrete

time brackets, as the continuous nature of the ODEnet is a much better fit.

The main focus of this project is whether ODEnets are more efficient than a ResNet, meaning

that the same accuracy can be achieved with less parameters. Chen et al. [6] showed that ODEnets

can be used as a drop-in replacement for ResNets. With the claimed advantages of dynamic depth

and more efficient parameters, the ODEnet is expected to be an improvement. However, these claims

are not properly supported yet. The statements are mostly based on the theoretical knowledge about

ODEnets, but due to the novelty of the network have not been observed in practice. In order to fill

this gap, we will create an ODEnet to perform image classification. This ODEnet is compared to a

ResNet with a similar structure, so the difference of adding an ODEsolver can be observed.

A second point of interest is how forward and backpropagation is influenced by incorporating a

black-box ODEsolver inside a neural network. We will investigate what computations take place inside

this solver, and how it compares to the usual computations of the forward pass. In order to correctly

analyze the network, it is helpful to dive into the mathematical formulation. This also provides a clear

overview of why certain advantages and disadvantages are expected.

Chen et al. [6] derive an alternative, continuous form of backpropagation for ODEnets. The main

advantage of this technique is that it has constant memory cost, so the amount of computer memory

required is not dependent on the number of computations. In order to clarify what this new method

entails we derive it via an alternative proof using Lagrange optimization. We start from the regular

discrete backpropagation and connect this to the continuous alternative approach proposed by Chen

et al.

Lastly, it is important to know what limitations incorporating an ODEsolver puts on the archi-

tecture of an ODEnet. Theoretically it is possible to incorporate all different types of layers and

activation functions, but does it work in practice? This is currently a big gap in the knowledge about

ODEnets. A few models have been designed, but little is known as to what works and what does

not. This makes the creation of an ODEnet relying heavily on trial and error, and fixing things when

you face problems. We will create multiple ODEnet architectures, and investigate the influence on

computational cost, accuracy and potential errors. These results lead to a couple of recommendations

for designing ODEnets that prevent encountering problems during training.

2

1.1 Structure of Thesis

The structure of the report can be divided in different sections. The first three chapters cover the

background theory. Starting with Chapter 2 about neural networks, which will lay the foundation for

the different model types that will be used throughout the project. This is extended in Chapter 3 to

an ODEnet. The basics about ODEs are covered, and how to construct an ODEnet. It will further

elaborate on the forward pass through an ODEsolver and the whole ODEnet. Then the possible

advantages and applications will be discussed. The next chapter is devoted to backpropagation. Due

to the continuous nature of the ODEnet there are multiple possible techniques for calculating the

gradient, starting from normal automatic differentiation to rewriting the problem completely in terms

of ODEs. These methods will be discussed, as well as which technique is best in the case of ODEnets.

When all the background theory has been covered it is time to go into the experiments. First

the data is discussed, followed by the research method. This chapter includes the procedure and the

limitations of the research. Then Chapter 7 explores the design of an ODEnet, and what architectures

are possible. This is concluded with the models used in the experiments.

The results are reported in Chapter 8 and interpreted. This leads to the discussion in Chapter 9,

and a final chapter with the conclusion. The topics that will be covered include an analysis of the

found results and a future direction for research.

3

CHAPTER 2

Neural Networks

This chapter will focus on three types of neural networks, starting with a traditional model and

expanding this to convolutional and residual networks. The mathematical framework and notation of

neural networks is introduced, which will form the groundwork for creating an ODEnet in the Chapter

3. A more detailed description of the different types of neural networks and layers can be found in in

the Deep Learning textbook by Goodfellow [12].

2.1 Architecture of a Classical Neural Network

A neural network is a model f(x, θ) that maps an input x to an output or category y. The goal is

to find the optimal weight parameters θ such that the mapping function comes as close to the actual

value of y as possible. The structure of the model consists of multiple layers f` that map z(`−1) → z(`).

An example of a network with fully connected layers is in Figure 2.1. This example has an input layer,

multiple hidden layers ` with n` hidden nodes and one output layer z(N). There is a weight for every

connection between two nodes, resulting in a weight matrix θ` for every layer.

...

...
...

...
...

z
(0)
1

z
(0)
2

z
(0)
n0

z
(1)
1

z
(1)
n1

z
(`)
1

z
(`)
n`

z
(N−1)
1

z
(N−1)
nN−1

zN1

zNnN

θ
(1)
1,1

θ
(1)
n0,n1

Input
layer

Hidden
layer

Hidden
layer

Hidden
layer

Ouput
layer

Figure 2.1: Neural network architecture with multiple hidden layers

4

The number of hidden layers and amount of nodes can vary, and define the neural network architec-

ture of f(x, θ). In order to calculate the value of the hidden states z(`) of fully connected layer `, one

performs matrix multiplication of the input z(`−1) by the corresponding weights θ(`) (g` = θ>` z
(`−1)).

This is followed by a non-linear activation function h(x) = σ(x). Every layer consists of such a matrix

multiplication and non-linearity, until one reaches the output layer. The mapping of a single layer `

can be described by the general function f`(z
(`−1), θ`) = h(g`) = σ(θ>` z

(`−1)). A whole neural network

model is described by multiple of these layers. The complete mathematical formulation of mapping

input x = z(0) to the output y = zN though the network is described in Equation 2.1.

z(0) = x

z(1) = f1(z(0), θ1)
...

z(`) = f`(z
(`−1), θ`)

...

y = z(N) = fN (z(N−1), θN)

(2.1)

2.1.1 Activation Functions

Activation functions are used to introduce non-linearity in the model. This is an important part of

the neural network, as it is a requirement for the universal approximation theorem to hold [20, 21,

32]. In a classic neural network there is an activation function σ(x) after the weight multiplication.

In this paper three different functions are used: tanh, ReLU and Softplus (Equation (2.2)). All these

functions can be used in between hidden layers, but the use of ReLU is generally recommended [10, 12].

While this function is not differentiable at 0, empirical research shows this does not cause problems in

practice [10].

Figure 2.2: Three activation functions.

Tanh(x) = tanh(x)

ReLU(x) = max(0, x)

Softplus(x) = ln(1 + ex)

(2.2)

5

2.2 Convolutional Network

A convolutional neural network (CNN) is a type of neural network that is often used for image clas-

sification. The CNN can take multidimensional input, which is ideal when processing an image. An

image has a height and a width dimension, and a third dimension with every pixel described in colour,

most commonly in red, green and blue (RGB). The theory of the CNN has been around since the 90’s

[31], but has gained most of its popularity after the introduction of AlexNet [28], a very successful

implementation of a CNN. AlexNet had such a big increase in performance compared to other models

that it sparked the field of image recognition to mainly develop CNNs for the task. Ever since, models

such as GoogleNet [47] and VGG [43] have built on the same ideas. The main difference between a

CNN and a classic neural network is that while the neural network only has fully connected layers, the

CNN has many different layer types. Usually the CNN has multiple repetitions of a block consisting

of a convolutional layer, pooling, activation function and normalization. The following paragraphs will

provide a description of these layers.

2.2.1 Convolutional Layer

The main feature of the CNN is the convolutional layer. The input to a convolutional layer usually has

several channels C, such as the three colours of an image. Then a 3x3xC feature map, often referred

to as a filter, is passed over the input channels. The filter starts in the topleft corner, and calculates a

new output value by multiplying the input and the filter, and adding everything together. Next, the

filter moves one step to the right and again calculates the output value. The output channel is filled

by passing the filter over the input image. The stride is the number of rows/columns the filter moves

per step, which can be increased in order to reduce the output dimension. An example of such a layer

is in Figure 2.3.

Figure 2.3: Example of a Convolutional layer. There are two filters of 3x3x3 and a stride of 1. This
results in an output layer with two channels of 4x4 [22].

6

Every convolutional layer in the CNN has multiple filters, with each filter mapping a certain feature

to its own output channel. Most commonly each of these output channels has information on a specific

feature, and whether it is present in any location of the input. An example of this is edge detection.

A filter is passed over the image to find whether there is a horizontal edge in the picture. This

information is then passed on to another convolutional layer, where different feature maps gather

different information. All these layers together ensure that in the last output layers of the model a

final prediction can be made.

2.2.2 Pooling Layer

Figure 2.4: Example of max pooling.
The result is a maximum value of the
input group, where every colour in the
output corresponds to the colour in the
input [22].

Pooling layers are used as a way to reduce the computa-

tional cost of the CNN, without adding extra parameters.

By reducing the dimensions of the data, the next layer does

not require as much parameters and computation. Another

important aspect is that pooling makes the model more in-

variant to small changes in the input [12]. For example,

one can see from Figure 2.4 that shifting the location of all

the input values up by one only changes half of the output

points. A small location change in the input data does not

have a big effect on the output of the pooling layer.

There are a few types of pooling, such as maximum or

average (Figure 2.4), in which a group of numbers is reduced

by their maximum or average. This ensures that most information is retained, while greatly decreasing

the dimensions. The most commonly used type of pooling is the max pooling.

2.2.3 Normalization

A difficulty in finding the optimal parameters is that the parameters of previous layers also change

during training. Adding a normalization layer eases the training of a model [23, 52]. The input of a

convolutional layer is first normalized, similar as during the preprocessing of the data. This reduces

the dependency of parameters on the previous layers.

There are several ways to do normalization, such as batch or group normalization. These terms are

abbreviated to batchnorm and groupnorm. In batchnorm the normalization is applied to the whole

batch, meaning the whole batch is used to calculate the mean and standard deviation. The batch

is then transformed to have zero mean and unit variance. Groupnorm is a little more precise, as it

applies normalization to only a couple of input channels, a group. Every group of input channels has

its own calculated mean and standard deviation.

7

2.2.4 Fully Connected Layer

The final layers of the model are one or more fully connected layers. The 3D output from the convo-

lutional layers is flattened into a vector, so it can be fed to the fully connected layer. The final layer

of the model will make the prediction, and has the dimension of the output classes.

2.3 Residual Network

Figure 2.5: A normal and a residual connection [17] [33].

Residual networks (ResNet) are an important extension of CNN models. The most important part

of a ResNet is the residual, or the skip connection. This connection can be added to most neural

network structures, and is often used in combination with a CNN. Traditionally, a neural network tries

to find the correct mapping f(x, θ) to output y by passing input x through several layers. The residual

connection is slightly different. After passing the input x through a layer, the original value of x is

added to the output of the layer (Figure 2.5). The output of the layer is now given by y = f(x, θ) +x.

Here, the function f(x, θ) only estimates the change from x to y. Work by He et al. [17] shows that

this prevents the drop in accuracy that usually comes with very deep models. Therefore, the ResNet

can have many extra hidden layers without loss of performance. The big advantage of this method

is that it adds very little computational costs, while removing restrictions on the depth of a neural

network.

The mathematical formulation of a ResNet is very similar to that of a regular neural network. The

biggest difference is that at every layer, the input x is also added. Figure 2.6 shows a small example

with three residual blocks. The forward pass through such a network is given by Equations (2.3). In

practice ResNets are often combined with a CNN, such as in Figure 2.7, and can have many layers.

The depth of a ResNet can go up to a 100 or even 1000 layers.

8

f1(x, θ1)

f2(x, θ2)

f3(x, θ3)

y

z(0)

z(1)

+ z(0)

z(2)

+ z(1)

z(3)

+ z(2)

Figure 2.6: ResNet with three residual blocks.

z(1) = x+ f1(z(0), θ1)

z(2) = z(1) + f2(z(1), θ2)

z(3) = z(2) + f3(z(2), θ3)

y = z(3)

(2.3)

(a) top half (b) bottom half

Figure 2.7: A full residual network [17].

9

CHAPTER 3

The ODEnet

In this chapter the theory of ODEnets will be introduced. First, ordinary differential equations (ODE)

and how to solve related problems will be investigated in Section 3.1. This will follow the book by

D. Zill [58], to which the reader can refer if they wish to read more about ODEs. The main focus is

the Euler method, which is at the base of the idea to create an ODEnet. The connection between the

Euler method and ResNets has been noted by several works in the literature. Section 3.2.1 dives into

previous research, and reviews the literature on ODEnets.

Next is the structure of an ODEnet. The main difference with a regular neural network is that a

black-box ODEsolver is incorporated into the network. This is a big change, and also alters the forward

pass of data through the network. The exact differences, and what happens within the ODEsolver,

will become clear in Section 3.2.2.

After the introduction of the ODEnet the details of the network will be explored. This includes the

applications and expected advantages, a small extension so the network becomes a universal approx-

imator and how to design the architecture of an ODEnet is covered. This last topic will be covered

more in depth in Chapter 7 where we experiment with different ODEnet architectures.

3.1 Ordinary Differential Equations

An ordinary differential equation is an equation that involves an (unknown) function y and its deriva-

tives [58]. A common question in the field of ODEs is the initial value problem (IVP). Given the

derivative and an initial point y0 (Equation (3.1)), can a solution y(t) be found? Sometimes this

question can be answered analytically and an exact solution can be found, but more often then not

numerical methods are required. Via numerical methods, often referred to as solvers, a solution y(t)

can be estimated by extrapolating with small steps from initial point y0.

10

y(t0) = y0

dy

dt
= f(t, y(t))

(3.1)

3.1.1 Solving Initial Value Problems

The most straightforward way to solve an IVP numerically is with the Euler’s method. The solution

is approximated by taking discrete steps starting from the initial value, calculating the next point as

in Equation (3.2). This process is repeated to extrapolate the whole solution.

yn+1 = yn + hf(yn) (3.2)

Take, for example, the following IVP problem in Equation (3.3). Take stepsize h = 0.1, then the

first point is calculated by y1 = y0 + hf(y0) = 1 + 0.1 · 1 = 1.1. Further values can be found in Table

3.1.

y0 = 1

dy

dt
= y

(3.3)

ystep t Euler result Analytical result
y0 0 1.0 1.0
y1 y(0.1) 1.1 1.105
y2 y(0.2) 1.21 1.2214
y3 y(0.3) 1.331 1.3498
...

...
y40 y(4) 45.259 54.6

Table 3.1: Euler method with stepsize h=0.1.

The function used in this example is the exponential growth function, with y = et as the analytical

solution. Figure 3.1 shows how the error of the numerical solution accumulates as the distance from

y0 increases.

Euler’s method is a very simple method to solve IVP problems. There are many more sophisticated

ways to solve an IVP. An intuitive one is to not update every step with the derivative from the current

point yn, but from the average of yn and yn+1. This is called the midpoint method. The family of

Runge-Kutta methods extend this idea even further. In these methods the derivative is calculated

using the weighted average of k points during one timestep. Higher order Runge-Kutta methods are

11

Figure 3.1: Graph of numerical and the analytical solution.

more precise by using a higher number of points, and therefore have a smaller error.

The techniques mentioned in the last paragraph all have a fixed stepsize, which is set beforehand.

An alternative to this are adaptive stepsize methods, such as Dopri5. A certain error tolerance is set,

and whenever the estimate of the error of a timestep is too high, the step is repeated with a smaller

stepsize. Additionally, if the error is much smaller than the tolerance the step size is increased to save

computation time. The idea is that this solver will be precise with small stepsizes on difficult parts

of the function, and whenever the function is less complex it will use larger steps. This ensures the

solver will remain within the given error tolerance, without making unnecessary calculations.

3.2 The ODEnet

3.2.1 Literature Review ODEnet

The mathematical formulation of a ResNet and the forward Euler method for solving ODEs are closely

connected to one another. The function for a hidden layer in a ResNet is z(`+1) = z` + f(z`, θ), which

bears great resemblance with the Euler method from the previous section (Equation (3.4)). This leads

to the intuition that multiple residual blocks can be seen as multiple updates with the Euler method

[4]. This is illustrated by Figure 3.2, where every timestep is one residual block.

ResNet layer

z(`+1) = z` + f(z`, θ)

Euler Method

y(t+ 1) = yt + f(yt)
(3.4)

There are several neural network architectures that can be described in terms of ODEs. Lu et al.

[35] show how different existing architectures, such as FractalNet [29], RevNet [11] and PolyNet [57] are

consistent with different discretization methods for ODEs. They correspond, respectively, to a Runge-

Kutta method, a forward Euler method and an approximation of a backward Euler method. This

connection is used to create a new model, also based on an existing discretization scheme. Furthermore,

12

Figure 3.2: Dynamical systems view of ResNets as six Euler steps by Chang [4]. ”ResNets equally
discretize the time interval [0, T] using time points T0, T1, . . . , Td, where T0 = 0, Td = T and d is the
total number of blocks.”

Lu et al. already pitch the idea that ODEs are the continuum limit of a neural network, in other

words, a neural network with infinite layers. This insight can be used to analyze neural networks with

mathematical theory.

The theory of ODEs can be applied to design stable, memory efficient neural networks [4, 41]. An

important notion for a neural network is whether it is stable; ensuring that small changes in the input

have small effects on the output, and that training does not become very difficult through exploding or

vanishing gradients. Since ResNets correspond to ODEs, the knowledge of stable differential equations

can be applied to neural networks. This is done by Ruthotto and Haber [15, 41] and Chang [4, 5], who

show how to create stable neural network architectures based on the criteria for a stable ODE. Where

Ruthotto focuses on stability, Chang also extends his work to reversible architectures. This is when the

network can be constructed backwards from the last activations, and allows for more memory-efficient

implementations. They are not able to create a fully reversible architecture, and will need to save a

few checkpoints, but this does create less need for memory.

The work by Chen et al. [6] takes this idea one step further, by replacing parts of a neural network

with an ODEsolver. Instead of having a neural network and viewing it as an ODE, they create a neural

network which incorporates an actual ODEsolver (Figure 3.3). A black-box ODEsolver becomes part

of the network architecture, and depending on the chosen discretization scheme can correspond with

one of the networks mentioned earlier. The ResNet is transformed into an IVP (Equation (3.5)), where

x = z0 is the initial value, and z(t) the value at time t. This value z(t) can be described by Equation

(3.6)1. At the final time T , z(T) is equal to the output. Even though the calculations for forward

and backpropagation are different for an ODEnet, the general structure for training a neural network

stays the same. The training phase still consists of iterations of a forward pass and backpropagation

followed by a weight update.

z0 = x

dz

dt
= f(z(t), t, θ)

(3.5) z(t) = z0 +

∫ t

0

f(z(t), t, θ) dt ∀t ∈ [0, T] (3.6)

1It is important to note that this formula is not a direct solution

13

x

ResNet

y

x

ODEsolver

y

Figure 3.3: Replacing a Resblock with an ODEsolver within a Neural Network.

3.2.2 Forward Pass

Figure 3.4: ODEnet with one
ODEblock followed by a fully
connected layer [7].

We take a look at an ODEnet with a single ODEblock followed by

a fully connected layer (Figure 3.4) to illustrate the forward pass.

The ODEblock consists of one or more layers fode, which are passed

through the ODEsolver. Similarly as before, the fode(x) is a function

for the network architecture, such as in Equation (3.7). This function

can be extended to include convolutions, pooling and other types

of layers. This way, the ODEblock can model all neural network

architectures, such as a regular neural network or CNN.

Fully connected layer f1(x) = θ>x

Activation function f2(x) = σ(x)

Fully connected + activation f(x) = f2(f1(x)) = σ(θ>x)

(3.7)

The value of z(T) is calculated during the forward pass by passing the initial value z0 and the

network function fode(x) to a black-box ODEsolver, such as the Euler, Runge-Kutte or Dopri5 method.

Taking a look at the simplest ODEsolver, the Euler updates, will illustrate what happens within a

black-box ODEsolver. Take timesteps ∆t = 1
3 and T = 1. The outcome z(T) is evaluated in three steps,

where in general the error is lower when the stepsize is smaller (Equation (3.8)). These three steps

are the forward propagation through the ODEsolver, where input z0 is mapped to output y = z(T).

An interesting aspect is that since z(t) is a function of t, its dimensions do not change. Therefore, the

dimension of z(T) is the same as z0. In order to match the desired output dimension a linear layer is

added after the ODEblock.

14

Solved with Euler method (3 steps) :

z(1
3) = z0 + 1

3f(z0)

z(2
3) = z(1

3) + 1
3f(z(1

3))

z(1) = z(2
3) + 1

3f(z(2
3))

(3.8)

The previous example can be extended by adding multiple layers within one ODEblock. One

can imagine a convolutional network where every block exists of a convolution f1, a pooling f2 and

an activation function f3. In this case, fode(x) is the function composition of those three layers.

The ODEblock, and fode(x), can also consists of more than one trainable layer with each their own

parameters θ. Similar to the example in Equation (3.8), the function fode(x) will be evaluated multiple

times dependent on the ODEsolver.

The computational cost of the ODEnet is not only dependent on the layers within fode(x), but

also on how often this function is evaluated. In case of the Euler method this is once per step, but

other methods use more function evaluations during a single forward or backward pass. The number of

function evaluations (NFE) is a good way of estimating the computational cost of an ODEnet, which

is useful for the architecture design. The NFE is also comparable to the number of hidden layers in a

ResNet [6], and forms a good way of comparing the computational cost of the two networks. This is

important for interpreting the results in Chapters 7 and 8.

3.2.3 Theoretical Advantages ODEnet

Replacement for ResNet architectures

There are several applications for ODEnets. The main focus of this project is on replacing residual

blocks by ODEblocks. This ODEnet is used for image classification. There are three potential ad-

vantages of using an ODEnet instead of a ResNet: adaptive step size, less parameters and a trade-off

between accuracy and evaluation time.

The first advantage of an ODEnet is that it is easy to implement different discretization schemes,

since it incoprorates a general ODEsolver in which different methods can be selected. The area of

ODEs and how to solve them has been extensively researched, and more efficient ODEsolvers than the

Euler method have been developed. Using an adaptive step size solver, such as Dopri5, allows us to

monitor the error during the forward pass, and stay below a desired error tolerance. As the model gets

more complex, the solver will take more evaluations to prevent an increase in error. This means that

the cost scales with the complexity of the problem [6]. Contrary to a ResNet, where the complexity

of the model is set beforehand by the number of layers, regardless what is required for solving the

problem.

The second advantage of an ODEnet lies within the parameters. Since the layers within an ODE-

block are continuous instead of discrete, the parameters within this ODEblock are more ’tied together’,

15

and thus expected to be more efficient [6]. If this is the case it would mean that an ODEnet needs less

parameters altogether. Chen et al. test this hypothesis by creating a ResNet with multiple ResBlocks

of 3 layers, and comparing this to an ODEnet with one ODEblock of 3 layers. One ODEblock has

approximately the same parameters as one ResBlock. They claim that such an ODEnet would achieve

the same accuracy as the ResNet, while greatly decreasing the number of parameters required. How-

ever, the experiments in their paper did not have a proper benchmark and thus are not a good proof

of the claim. Therefore, the claim remains unsupported.

Another important aspect related to the parameters is the difference between a step in an ODEsolver

and the ResNet. Taking a close look at the equations of a forward pass (Equation (3.8)), the ODEnet

uses the same f(x, θ) for every update, where a ResNet uses a different fi(x, θi) for every layer (Equation

(2.3) from Section 2.3). In other words, a ResNet has different parameters in every update step.

The third advantage is that the ODEsolver and the tolerance used in the ODEblock can be changed

when implementing the model. The time it takes to run the model can be decreased by setting a higher

error tolerance, or a different ODEsolver. This allows the user of the model to make a trade-off between

accuracy and time, depending on the prioritization in the current situation.

ODEnet for Time-Series

Other applications of ODEnets are related to time-dependent problems. Neural networks have a

discrete set of layers, which is an unfortunate fit to the continuous nature of time. Therefore, a

promising application of ODEnets is for time-series, especially if they are irregularly sampled.

An example is the electronic medical data of a patient. Many different variables such as blood

values and heart rate are measured. All these variables are measured at different time frequencies

and with many missing observations. Usually, to deal with these problems the data is discretized to

enforce discrete time bins. Not only is this impractical, it also causes relevant information about the

time gaps in between measurements to get lost. For ODEnets the discretization is not necessary, and all

important information is retained. Additionally, interpolation between measurements is possible with

ODEnets. Research by Rubanova et al. [40] shows that a model can be created that correctly learns

the latent state of the measurements, and outperform neural networks on inter- and extrapolation

tasks.

Several authors have worked on extensions of an ODEnet, and a logical improvement is to extend

the ODEnet to Stochastic Differential Equations (SDE). This idea can be found in work by several

authors [13, 24, 34, 37, 49]. Liu et al. [34] and Peluchetti and Favaro [37] both use the connection with

SDE to make ODEnets more robust and well-behaved. Liu et al. shows that extending to SDE has

similar effects as incorporating some regularization techniques. Furthermore, Peluchetti and Favaro

use the connection between infinite depth ResNet and the solution to SDE, and show that the resulting

process is well-behaved. Where usually adding more layers to a neural network leads to undesirable

properties, such as the dependency on the input decreasing with depth, this does not happen in the

16

SDE solution.

The idea of SDE is extended by Jia and Benson [24]. Where ODEs are good for continuous

processes over time, they cannot incorporate stochastic events. An example of a continuous process

with stocastic events is the political view of twitter users. This usually changes slowly over time, but

can also change abruptly because of a single tweet. By adding ’jumps’ to the network, a hybrid model

is created. The new model is a general framework for temporal event sequences, that still has the

memory efficiency of ODEnets.

3.2.4 Augmented ODE

Figure 3.5: A vector field with examples of
solutions to an IVP. Every line has a different
initial value, resulting in a different solution
[36].

Figure 3.6: Example of a mapping that an
ODEnet cannot represent. For the mapping
of f(x) = −x the solutions must intersect, in-
dicating this is not possible [7].

Unfortunately, there are functions that ODEnets cannot represent. Recall that an ODEsolver finds

a solution y(t) by extrapolating from starting point y0 with small steps, based on the derivative. An

example of such a system is in Figure 3.5, with different solutions for different starting points.

An indication that a function cannot be represented by ODE flows is that the solutions would have

to intersect. There is no vector field that corresponds to such a function. Intuitively this means that

the derivative at the intersection gives two possible directions, after which it is impossible to know

which option the correct directory is. An example of such a function is f(x) = −x. Then f(1) = −1

and f(−1) = 1. This mapping is shown in Figure 3.6. This is a very simple example of a function that

cannot be represented by an ODEnet, and therefore a clear example that ODEnet is not an universal

approximator.

Fortunately there is a simple solution to this problem. By augmenting the dimensions of the

ODEnet, the problem of intersecting solutions can be solved [7]. Recall that an ODEblock is a mapping

from Rp to Rp. This system is augmented by adding an extra dimension, so that x ∈ Rp+1. This is

done by concatenating a vector of zeros to x. With this increased dimensionality the ODEnet is not

only able to represent the function f(x) = −x, but also all other mappings. Work by Zhang et al. [54]

17

shows that with just one augmented dimension the ODEnet becomes a universal approximator.

Adding one or more extra dimensions does not only ensure the ODEnet is a universal approximator,

it also eases learning and improves generalization. Experiments by Dupont et al. [7] show that an

augmented ODEnet needs less function evaluations than a regular ODEnet with the same number of

parameters. Additionally, the augmented ODE generalizes better on image datasets such as MNIST

and Cifar10.

3.3 Architecture Design

In theory the network architecture can consist of all type of layers, as long as the input and output

dimension of the ODEblock are the same. In practice there are layers and functions that lead to

complex solutions within the ODEblock, which can cause a large increase in the number of function

evaluations required during training. Even worse, an underflow error can be encountered. Chapter 7

will provide more insights in the ODEnet architecture by performing several experiments, and elaborate

more on what layers are possible, and which combinations are likely to cause problems.

18

CHAPTER 4

Backpropagation and the Adjoint Method

This chapter will expand on backpropagation methods for neural networks, and how backpropagation

can be implemented in ODEnets. First, the traditional backpropagation method, reverse automatic

differentiation, will be described. This is then linked to the use of adjoint states. Even though adjoint

methods use different terminology than reverse automatic differentiation, they are essentially the same

technique for calculating gradients.

In Section 4.3 a neural network is translated into a Lagrange optimization problem. The objective

is to minimize the loss, and the network architecture is described by the constraints. Through this

optimization problem all the formulas used in training a neural network, the training equations, can be

derived [30]. This is an alternative way to derive the formulas for forward propagation, backpropagation

and the weight update. Additionally, the equations for backpropagation are defined in terms of adjoint

states.

The ideas from the previous sections are tied together, and used to derive the equations for contin-

uous backpropagation in an ODEnet. Again, the ODEnet is constructed as a Lagrange optimization

problem, but this time with continuous constraints. This results in training equations and adjoint

states that are the continuous counterparts to the traditional discrete methods. The final step will

show that backpropagation, with help of adjoint states, can be done with a single call to an ODEsolver.

This is equivalent to the method described by Chen et al. [6], but derived in an alternative way.

All this leads us to two different backpropagation techniques for ODEnets, the traditional discrete

autodiff or the continuous variation. The final section elaborates on the differences between the two,

and why the use of the continuous version is preferred. However, also the continuous version is not

without disadvantages. The possible stability issue are also discussed, and their implication on ODEnet

models.

19

4.1 Automatic Differentiation

In order to update the weights the gradients of the loss function, the prediction error of the neural

network, need to be calculated. Finding the gradient of a function can be very costly, depending

on the dimensions of the parameters and the output. The conventional method is to use automatic

differentiation (autodiff) [25], which consists of three main steps:

1. Trace the forward pass and construct the computational graph (Figure 4.1)

2. Calculate the derivatives for every node

3. Construct the gradient with backwards accumulation

There are two techniques for calculating the gradient, forward and backward accumulation. The

difference between these two methods is the way in which the Jacobian is constructed. For example,

take a neural network with two hidden layers, f1 and f2, and an output layer f3. The formulation

of y and its derivative are in Equation (4.1)1. Breaking the derivative down with the chain rule

leaves us with two ways to calculate this derivative, shown in Equation (4.2). The difference is the

order in which the derivatives are multiplied. In the forward accumulation the Jacobian is built one

column (parameter) at a time, and with backwards accumulation per row (output). The most efficient

method will depend on the specific problem at hand. When the output dimension is large, forward

accumulation is the best method. On the other hand, when there are many parameters it is better

to use backward accumulation. In a neural network the number of parameters exceeds the output

dimension by a large amount, and backwards accumulation will be much more efficient.

y = f3(f2(f1(x)))

∂y

∂x
=

∂y

∂f3

∂f3
∂f2

∂f2
∂f1

∂f1
∂x

(4.1)

Forward accumulation

Backward accumulation

∂y

∂x
=

∂y

∂f3

(
∂f3
∂f2

(
∂f2
∂f1

∂f1
∂x

))
∂y

∂x
=

((
∂y

∂f3

∂f3
∂f2

)
∂f2
∂f1

)
∂f1
∂x

(4.2)

Before constructing the Jacobian with backward accumulation, the partial derivatives have to

be calculated. For neural networks this is done by tracing the composition of y, and creating a

computational graph (Figure 4.1). The derivative is calculated for every node, after which the complete

derivative of y is constructed by going backwards over the graph.

1We take the derivative with respect to x as an example. The same technique applies for other variables, such as the
weights θ.

20

Figure 4.1: Computational graph for automatic differentiation [25].

4.2 The Adjoint Method

The adjoint method is a different notation for doing reverse autodiff [19], but with the intermediate

states defined as adjoints. The cost of solving for the adjoint state is independent of the number of

parameters [26], and are similar to the initial forward solve [3]. The example from the previous section

is extended by defining adjoint states λ (Equation (4.3)). These are the partial derivatives with respect

to a node/function from the computational graph. Calculating dy
dx in terms of the adjoint states is

equivalent to backwards accumulation (Equation (4.4)), the only difference is that the intermediate

states are specifically defined.

λx =
∂y

∂x
, λ1 =

∂y

∂f1
, λ2 =

∂y

∂f2
, λ3 =

∂y

∂f3
(4.3)

λx = λ1
∂f1
∂x

=

(
λ2
∂f2
∂f1

)
∂f1
∂x

=

((
λ3
∂f3
∂f2

)
∂f2
∂f1

)
∂f1
∂x

λx =
∂y

∂x
=

((
∂y

∂f3

∂f3
∂f2

)
∂f2
∂f1

)
∂f1
∂x

(4.4)

4.3 Lagrange Optimization

The training process of a neural network can be described by an optimization problem with non-linear

constraints, as explained in the paper by LeCun [30]. The objective is to minimize the loss, while

adhering to the architecture of the network. This architecture is captured by a set of constraints,

where every constraint describes the dependency of a layer on the previous one. Altogether this can

be formulated as the following optimization problem:

21

minθ Loss = L(z(N), y)

subject to z(0) = x

z(1) = f1(z(0), θ1)

...

z(N−1) = fN−1(z(N−2), θN−1)

z(N) = fN (z(N−1), θN)

(4.5)

This corresponds to the Lagrangian2:

L(z, θ, λ) = Loss(z(N), y)−
N∑
`=1

λ` (z(`) − f`(z(`−1), θ`)) (4.6)

The stationary point of the Lagrangian, which indicates a local minimum, is obtained by∇L(z, θ, λ) =

0.

∇z`L = −λ` + λ`+1 · ∇z`f`+1(z(`), θ`+1) = 0 (4.7)

∇zNL = −λN +∇zNLoss(zN , y) = 0 (4.8)

∇λ`L = f`(z
(`−1), θ`)− z(`) = 0 (4.9)

This leads to the following equations. The derivatives with respect to z gives us all λ’s defined in

terms of z, and the derivative with respect to λ results in the constraints.

λ` = λ`+1 · ∇z`f`+1(z(`), θ`+1) (4.10)

λN = ∇zNLoss(zN , y) (4.11)

z(`) = f`(z
(`−1), θ`) (4.12)

Next we calculate ∇θ`L(z, θ, λ). Finding θ that minimizes the objective, the loss, is equivalent

to finding θ that minimizes ∇θ`L(z, θ, λ) while satisfying the constraints. Unfortunately, setting

∇θ`L(z, θ, λ) = 0 does not directly give the optimal value for θ. However, it does give a condi-

tion that θ should satisfy. Therefore, steepest descent is used to find the optimal value for θ. This

2λ is the Lagrange multiplier

22

results in the weight update with learning rate α.

∇θ`L = ∇θ`Loss = λ` · ∇θ`f`(z(`−1), θ`) (4.13)

θ ← θ + αλ` · ∇θ`f`(z(`−1), θ`) (4.14)

From the resulting equations the backward pass (4.10) and (4.11), forward pass (4.12) and weight

update (4.14) can be recognized. Similar to the backward pass using reverse autodiff, it is described

by intermediate states λ. In other words, the Lagrange multipliers function as adjoint states.

These results show that by formulating the neural network as an optimization problem, the conven-

tional formulas for training are derived (Equation (4.10) - (4.14)). The optimization problem follows

the network architecture, and allow us to obtain the the weight update rule and adjoint states. The

advantage of this framework is that it allows variations on conventional methods, as it provides a way

to derive backpropagation for these variations.

4.4 Backpropagation for ODEnet

Similarly to a traditional neural network, the gradients of the ODEnet are calculated by backpropa-

gation with the use of adjoint states. There are two options for choosing the adjoint state. First is to

treat the ODEnet as the discrete steps the ODEsolver takes. This discretization requires one to trace

all the computations and store them in memory. Since the number of computations can grow much

larger than in a regular neural network, this is not an efficient way of backpropagating. The second

option is to define the adjoint states in a continuous manner, and solve for this system.

For a traditional neural network the network architecture in the Lagrange optimization is described

by a set of discrete constraints. Given the continuous nature of the ODEnet, the network architecture

can be described by continuous constraints instead. Similarly to the previous section the formulas for

the forward pass, backpropagation and the weight update can be derived by solving the optimization

problem. We describe the constraints in a continuous fashion, and expect that the derived functions

are also continuous. This is supported by the knowledge that the complexity of solving a problem

for its adjoint state is comparable to a regular forward calculation [26]. In the case of an ODEnet,

this means that because the forward pass goes through an ODE, with the help of an adjoint state the

backpropagation should also go through an ODE. The goal is to find this adjoint state. In this section

we will derive these states by a Lagrange optimization problem, similarly to the last section. This is

an alternative derivation to the one given by Chen et al. [6], and we will show that our derivation

leads to the same adjoint states.

23

Lemma 4.1 Formulating the ODEnet as a Lagrange optimization problem

minθ Loss = L(z(t1))

Subject to ż(t) =
dz

dt
= f(z(t), θ, t)

(4.15)

Corresponds to the Lagrangian:

L(z(t), θ, λ) = L (z(t1))−
∫ t1

t0

λ(t)(ż(t)− f(z(t), θ, t)) dt (4.16)

Optimizing the Lagrangian leads to the following gradients of the Loss:

∇θL = −
∫ t0

t1

λ(t)
∂f(z(t), θ, t)

∂θ
dt (4.17)

∇tL = −
∫ t0

t1

λ(t)
∂f(z(t), θ, t)

∂t
dt+ λ(t1)

∂z(t1)

∂t
(4.18)

Both functions derived in Lemma 4.13 are equivalent to the equations by Chen et al. [6]. Equation

(4.17) is equivalent to Equation 51 in their paper, and Equation (4.18) is equivalent to Equation 52.

Corollary 4.2 From Lemma 4.1, it follow that the adjoint state λ(t) is:

λ̇(t) = λ(t)
∂f(z(t), t, θ)

∂z(t)
(4.19)

Lemma 4.3 The gradients of L with respect to θ, t and z can be calculated by solving one single

ODE system backwards in time. Equation (4.20) is the initial value of this system, with ∂L
∂θ = aθ and

∂L
∂t = at, and Equation (4.21) the derivative with respect to time.

3Proof in Appendix A.1

24

Initial Value at (t1):

λ(t1)

aθ(t1)

at(t1)

 =

∇zL(t1)

0

∇zL(t1)∂z(t1)∂t

 (4.20)

Time derivative:

λ̇(t)

ȧθ(t)

ȧt(t)

 =

−λ(t)∂f(z(t),t,θ)∂z(t)

−λ(t)∂f(z(t),t,θ)∂θ

−λ(t)∂f(z(t),t,θ)∂t

 (4.21)

By solving the Lagrange optimization problem for the continuous ODEnet, a continuous equivalent

of backpropagation can be derived. All the adjoint states, and therefore backpropagation, can be

calculated by a single call to an ODEsolver (Lemma 4.34). A big advantage is that contrary to regular

autodiff, there is no need to store a trace of the forward propagation in memory.

4.5 Continuous versus Discrete Backpropagation

As mentioned before, there are two ways of calculating the reverse adjoint during backpropagation for

an ODEnet. First is to discretize the system, and then optimize (DTO), or the other way around, first

optimize and then discretize (OTD). DTO is the equivalent of regular (reverse) autodiff, performed on

the discrete steps within the ODEsolver, and OTD corresponds with the continuous backpropagation

technique. The decision for which method to use is important, as they often lead to different computa-

tional results [44, 55]. The implementation of DTO for an ODEnet is relatively easy and can be done

with information from the forward solve. The downside to this method is that it requires to trace all

computations. In the case of an ODEnet, storing the trace can cost a lot of memory. Therefore, when

using ODE models the OTD method is used [6]. In this technique the intermediate values do not have

to be stored, but can be calculated during the backpropagation.

The paper by Sirkes and Tziperman [44] gives a good overview between the two approaches. In

general they advise to use DTO, as the error is smaller and it is preferable when you only want gra-

dients at the initial time. However, they also acknowledge that none of the two methods is inherently

better. There are cases where the continuous might be preferred, even though the error cannot be

guaranteed. In our case we do not want to impose high memory from the discrete method, so we

choose to go for the continuous OTD approach.

4Proof in Appendix A.2

25

4.5.1 Discrete Automatic Differentiation in Practice

In this section the memory costs of using autodiff for ODEnet will be explored. This section provides

a clear example of why DTO is not recommended for ODEnets. The memory cost of backpropagation

is based on the number of steps from the computational graph that needs to be stored in memory.

From Table 4.1 one can see that even using the relatively simple fixed step method RK4, the steps of

the trace, and thus the memory requirements, are almost 10 times higher than with a ResNet.

The number of function evaluations during the forward pass (FNFE) for adaptive step size solvers

such as Dopri5 is much larger than the examples in Table 4.1. For instance, the smallest FNFE

encountered during our experiments was 16 (Figure D.9), but have also gone up to almost 30 (Figure

8.3a). Even though the exact FNFE when using Dopri5 is not known beforehand, it likely much higher

than the fixed step methods. Therefore, the trace of Dopri5 will be even larger compared to that of a

ResNet. All these steps need to be saved in memory when using autodiff, which is highly inefficient.

ODEsolver Trace steps FNFE
ResNet 16 -
Euler 21 1
Midpoint 34 2
RK4 190 4

Table 4.1: The number of steps saved in the computational graph, and the FNFE per fixed step size
ODEmethod.

To put this into an even more concrete example, the same ODEnet is trained twice under the same

circumstances, but with different backpropagation techniques. Once training with discrete autodiff,

and another training with the continuous adjoint method. For a small network, the memory required

by discrete autodiff is twice as much, and takes up almost all of the GPU memory5. Increasing the

network size leads to memory errors. Using DTO to backpropagate is not only inefficient, but also

impossible without extremely powerful hardware.

4.5.2 Stability of Continuous Adjoint Method

A big point of discussion is whether the adjoint method used by Chen et al. [6] is stable. Several

mathematicians agree that the method cannot be guaranteed to be stable, meaning that there might

be a large error in the gradients. There are examples of systems that are correct with the forward

pass, but have a result that diverges in backpropagation [39].

The value of z(t) is necessary to calculate the gradients ∇θL and ∇tL during backpropagation.

Some of these values are calculated during the forward pass, but when using an adaptive step size solver

the times t at which z(t) is evaluated during the forward pass are likely different from the values z(t)

needed during the backwards pass. Therefore, the values of z(t) need to be calculated separately for the

512GiB

26

specific time t during the backpropagation step. This can be done by calculating z(t) forwards in time

for every function evaluation, greatly increasing either computational or memory costs. Alternatively,

in Chen’s method this is done by calculating the value of z(t) backwards in time consecutively with the

ODEs to find the gradients, so this value z(t) does not need to be saved or calculated. However, solving

z(t) backwards in time can lead to large errors, since there are no reversible adaptive integrators [39].

This is reason for Rackaukas and Gholami et al. [9, 56] to question this method and its accuracy.

The software packages CVODES (sundials) [18], CasADi[8] and FATODE [55] implement a varia-

tion of the adjoint method by Chen et al. [6] that does not require backwards calculation of z(t). The

reverse continuous adjoint method is also implemented, but z(t) is calculated differently to prevent

the errors mentioned in the last paragraph. Instead of solving for z(t) backwards in time, they create

checkpoints for z(t) during the forward solve (Figure 4.2). The z(t) required during backpropagation

can then be calculated by forward solving from kt and backpropagating from kt+1 for a t that is in

between the two checkpoints.

The memory and computational cost required by the checkpointing is higher then the method

proposed by Chen et al. First, the checkpoints themselves need to be saved. The cost of calculating

z(t) is one forward and one backward pass, compared to z(t) being computed in a consecutively with

the gradients while backpropagating.

Figure 4.2: Checkpointing scheme from CVODES [18].

The stability remains an interesting question. Implementing the checkpointing scheme from CVODES

can improve stability, at the cost of more memory and computation. It is important to note that even

though the method by Chen et al. can not be guaranteed to be stable, it might be stable enough to use

in practice. Results from Chen et al., Dupont et al. [7] and this research show that the adjoint method

works in experiment settings. Additionally, Rackauckas et al. [39] agree that in the case the ODEsolver

does not cause large errors, it is the most efficient to use the continuous adjoint as implemented by

Chen et al. Altogether, further research needs to be done into what the limitations are of the ODEnet,

and if there are certain architectures that can prevent stability issues.

27

CHAPTER 5

Data

The data used in this project are two image classification datasets, FashionMNIST and Cifar10. Both of

these datasets are common benchmarks in image classification problems, and provide a clear overview

of whether ODEnets can compare to already existing models based on predictive performance.

5.1 FashionMNIST

Figure 5.1: Images from the FashionM-
NIST dataset [53].

FashionMNIST [53] is a variation of the well-known MNIST

handwritten digits dataset. There has been a lot of progres-

sion in image classification since the introduction of the

original MNIST dataset, with simple models already reach-

ing accuracy of +95%. This makes it difficult to compare

the performance of two models, as the difference between

the accuracy is probably very small. Therefore, the Fash-

ionMNIST variation is used. This dataset is a little more

complicated and makes it easier to see improvements in per-

formance. The images in this dataset are in greyscale, and

consist of different types of clothing. The goal is to classify

the item on the picture into the correct clothing category.

The size of the training set is 60.000, and there are 10.000 images in the test set. Every image has

a dimension of 28x28, and is in greyscale so only has one input channel. It is a balanced dataset, with

10 labels for the different classes of clothing.

28

Figure 5.2: The labels of the FashionMNIST dataset [53].

5.2 Cifar10

Figure 5.3: Images from the Cifar10
dataset [27].

Cifar10 [27] is also an image classification dataset, but

quite a bit more complicated then FashionMNIST. The im-

ages are in colour, and include some background. Good

scores on this classification problem require more sophis-

ticated architectures, whereas FashionMNIST can even be

done by the most simple neural networks. This dataset

is used as an extension of the results for FashionMNIST.

Because the dataset is more complicated, it might show

differences between the different architectures more clearly

than in the simple FashionMNIST dataset. The architec-

tures are tested on both image classification datasets to

strengthen the findings from the first experiments, and to

draw a proper conclusion.

The Cifar10 dataset is slightly smaller than FashionMNIST. It also has 10.000 images in the testset,

but only 50.000 in the train set. Again, there are 10 class labels, with every category evenly represented

(6000 per class). The dimensions of the image are 32x32, with 3 channels for the colours RGB.

5.3 Preprocessing

Only minimal preprocessing is done on both datasets. The data is already split in train and a test set,

so only a validation set needs to be created. This dataset consists of 20% of the images in the training

set. The only preprocessing of the images is normalization of the input. They are all normalized so

that the input is between [-1, 1].

29

CHAPTER 6

Research Method

The goal of this research project is to find out whether ODEnet parameters are more efficient than

ResNets for image classification. In order to test this hypothesis, several models are compared to each

other. The architectures are designed in such a way that the structure of the ODEnet and the ResNet

is equivalent, so the differences in the results can be attributed to the use of an ODEsolver within the

model. There are two categories of models used, the simple and complex architectures. More details

about these models are in Chapter 7.

Chen et al. [6] made the claim that ODEnets are more efficient, and have run experiments to prove

this. However, their methods lack a proper benchmark. They compare a small ODEnet with a ResNet

with more layers and parameters, but lack an experiment which includes a ResNet that is comparable

to the ODEnet. It is known that the ODEnet can get the same accuracy as the bigger ResNet, but it

is unsure whether this larger ResNet is an improvement over its smaller counterpart.

This chapter is divided into three main subjects. Section 6.1 describes the limitations inherent to

the research, and is followed by Section 6.2 with training details. Section 6.3 provides an overview of

the pipeline and logging incorporated in the experiments.

6.1 Limitations Inherent to Model Training

The largest limitation to this research project is time. The training of an ODEnet takes a couple

of hours, even on an AWS instance with a GPU. Especially for the complex ODEnet one run takes

approximately 10-20 hours. This greatly limits the number of experiments that can be run, and has

influenced design choices for the network architectures. Increasing the number of channels and layers

increases the training time even more. Therefore, this project is limited to smaller architectures and

smaller images.

The long training time has also limited the ability to perform hyperparameter optimization (HPO).

For the simple architectures with the FashionMNIST dataset this was still possible, but for the complex

30

architectures it became infeasible due to the time constraint. When running HPO one needs to check

multiple models, usually 20 or 50 different combinations. This would take multiple weeks to run!

To overcome the limitation of long training times a smaller data sample is used in some experiments.

Instead of the whole dataset, only a subset of 10.000 images is used to train the model. This greatly

reduces training time, and allows to train multiple ODEnets and compare the results. This helps the

choice for network architecture, and is a way to test the performance of different hyperparameters

without doing full HPO. Based on the information gained from the smaller sample runs, only a few

experiments with ODEnets on the full training set are required.

Another limitation is that the ODEnet is a very novel technique. This means that not much prior

research on the topic exists, especially concerning stability issues. There are activation functions and

other network structures which cause errors during training, which we will elaborate on in Chapter

7. Detailed specifics about what those architectures are, however, remain unknown. This occasionally

caused delays in the research procedure when creating models. It is practically impossible to predict

beforehand when an underflow error will be encountered, what exactly causes the problem and how

can it be prevented.

6.2 Training Details

6.2.1 Hyperparameter Optimization

HPO tries to find the most optimal hyperparameters to train a model. With Hyperopt [2] a search

space of the hyperparameters is made, and the HPO algorithm searches through this space for the

optimal parameters. It runs several experiments, and chooses its direction within the search space

based on the results. In this project the hyperparameters to optimize are the learning rate, weight

decay, the type of optimizer and the number of augmented dimensions. HPO is performed for all

ResNets, but is only performed on the simple ODEnet architectures due to time constraints.

6.2.2 Early Stopping

During training of the models early stopping is implemented. This is a way to prevent overfitting.

Instead of training a fixed set of epochs, training is stopped when the model does not improve anymore.

In this project it is set up to stop training when the validation loss has not improved for the last 5

epochs.

31

6.3 Experiment Pipeline

We created an experiment pipeline to simplify running many experiments. By setting up a pipeline,

the same framework can be used to train different models. The pipeline consists of 4 parts, and a

main function that ties these parts together into one easy to run experiment. The main function takes

all parameters as input, and then goes through the different processes. First, the data is loaded and

preprocessed. Then, a model is initialized. This model is then trained and as last also evaluated. This

results in a trained model as the output of the main function, together with all the information of the

run. Figure 6.1 shows a schematic representation of the pipeline.

Figure 6.1: Experiment Pipeline

6.3.1 Experiment Logging

To improve the research procedure we have created a framework in which all experiments are automat-

ically logged. Every experiment has a lot of settings, such as the model architecture, hyperparameters

and the libraries that are used. Mistakes in the settings are easily made. For example, using the

wrong version of a library can lead to the use of an outdated function, which changes the results.

Mistakes like this can be prevented with a good experiment set-up where all details of an experiment

are meticulously logged. This prevents losing important information and having to perform the same

experiment again or even drawing wrong conclusions. Additionally, it improves reproducibility. The

exact information that is needed to run an experiment is logged, and can be used to run exactly the

same experiment again.

The experiment framework is created in Python with the use of Sacred [14], MongoDB and Om-

niboard [46]. All information of one experiment run is logged, stored and visualized1. This includes

model configuration, parameters, output and all the source files.

1Screenshots of Omniboard are in Appendix B.3

32

CHAPTER 7

Design of ODEnet architecture

Because there is not much information about the possible architectures of an ODEnet, this needs to

be researched before deciding on what models to use in the experiments. This chapter will elaborate

on what types of layers, activation functions and other design choices lead to successful models. The

biggest hurdle is encountering an underflow error during training, or an increase in the number of

function evaluations. While the latter only increases the training time, the former causes the training

to completely terminate. This section will experiment with different architectures, and investigate the

choices that can be made to prevent these errors during training. These results form the foundation

for the final model architecture. Their details are in Section 7.3.

7.1 Training/Underflow Error

The design of the neural network architecture in combination with an ODEsolver is an important step.

Certain architectures correspond to complex ODEs, which can lead to complications during training

of the model. This either leads to a higher error with a fixed solver, or to a smaller stepsize with an

adaptive solver. The adaptive solver decreases the stepsize in order to stay bellow the desired error

tolerance, which will require more function evaluations per forward pass or backpropagation. Not only

does this increase the NFE and thereby the training time, it can also cause an underflow error. This

fatal error is encountered when the stepsize goes to zero, and the model becomes practically unsolvable.

There are a few easy fixes that prevent a decrease in stepsize, such as increasing the error tolerance

or getting an approximation of the solution with a fixed step solver. But neither option is very

desirable. The better solution is to choose a better architecture for the ODEnet. Unfortunately this

step is far from trivial. As the combination of neural network and ODEsolvers is relatively new, there

is no extensive research to what layers and functions lead to a complex neural network. This section

will explore different architectures, and their influence on the NFE during training.

33

7.1.1 Activation Functions

There are several activation functions to add non-linearity to the ODEnet, and ensure the network

is a universal approximator [20, 32]. Commonly used functions for hidden layers are ReLU, tanh, or

Softplus. Nowadays the general recommendation is to use ReLU, even though it is not differentiable

everywhere [10, 12]. There is no consensus yet on whether all these activation functions work well

within an ODEnet, since research shows conflicting evidence. On one hand, the networks used by

Chen et al. and Dupont et al. [6, 7] incorporate ReLU layers succesfully. On the other hand, Chen et

al. advises users of the torchdiffeq library1 to avoid non-smooth functions such as ReLU. The intuition

is that ReLU might cause underflow error, but this is not supported by any evidence.

In order to have a better understanding of what activation function to use, an ODEnet is created

with ReLU, tanh and Softplus. To speed up training time only a subset of 10.000 samples of the

FashionMNIST dataset is used. The results provide insight in the effect of the activation function on

the number of function evaluations, accuracy and loss.

The first experiment looks into an activation layer right before the ODEblock (Table 7.1). While

the accuracy and loss are mostly unaffected, there is a clear difference between the function evaluations

during backpropagation (BNFE). In general the BNFE increases during the first few epochs, and then

plateaus (Figure 8.2a). The ReLU layer clearly has the highest BNFE, where tanh and no activation

functions only have 27. Since the gain in accuracy is so small, the best choice would be a tanh activation

function, or to skip the layer.

The second question is what activation function to use within an ODEblock (Table 7.2 and Figure

8.2b). Here, the Softplus has the highest BNFE, and the difference between tanh and ReLU is smaller.

Tanh is a little faster, but also a little less accurate. Both are valid options to use as activation

functions within an ODEblock.

Altogether it can be noted that there is a difference between the activation functions, but also that

there is no clear outlier. In general the tanh and ReLU are the better options. Interesting is that even

within the ODEblock the ReLU did not cause any problems, which follows the experimental results

from [6, 7]. This is in contrast with the statement made by Chen et al. Additionally, only the BNFE

increased, but a fatal underflow was never encountered.

Activation function Accuracy Loss
Softplus 86.06 0.3520
ReLU 87.06 0.2920
Tanh 87.04 0.2932
no activation 86.90 0.2953

Table 7.1: Accuracy and Loss for activations
functions before the ODEblock.

Activation Accuracy Loss
Softplus 81.54 0.5343
Tanh 87.1 0.3666
Relu 88.3 0.3369

Table 7.2: Accuracy and Loss for activation
functions within the ODEblock.

1The library created by Chen et al. to implement ODEnets

34

(a) Three different activation functions placed in-
side the ODEblock.

(b) Four different activation functions placed be-
fore the ODEblock.

Figure 7.1: BNFE per epoch

7.1.2 Stride

Figure 7.2: BNFE per Epoch between a
stride of 1 and a stride of 2.

An easy way to speed up training is adding stride to the

convolutional layer. This decreases the width and height di-

mensions of an image, reducing the number of computations

required. However, since the dimensions change this can-

not be done within the ODEblock without adding padding.

Therefore, stride should be implemented before entering the

ODEblock.

Adding a stride of 2 to the model decreases the training

time drastically, now only half of the original time. This is a

major improvement, but there is also a big drawback. With

a stride of 1 the BNFE stays steady during training, but

with a stride of 2 this increases (Figure 7.2). This means

that the network structure is becoming more complex, and more difficult for the ODEsolver to solve.

It also slightly decreases the accuracy of the network. However, the big decrease in training time is

worth the small decrease in accuracy.

7.1.3 The Normalization Layer

An unexpected error occurs when adding a normalization layer to the architecture. While a batchnorm

leads to an underflow error, this does not happen with groupnorm. This means the problem is not with

the normalization layer in itself, but with the difference between batch- and groupnorm. Batchnorm

is more stochastic and inaccurate then group normalization [52]. This difference could be vital to

the ODEnet architecture, as groupnorm is a more robust alternative to batchnorm. Therefore, if an

35

ODEnet has underflow error and a batchnorm layer, exchanging this with a groupnorm is likely to be

an easy fix.

7.1.4 Variations of the Final Time

The models used by Chen et al. all incorporate an ODEsolver with a timescale from [0,1]. This is

equivalent to one layer of the ResNet, but taking multiple steps between 0 and 1. An interesting

alternative that is not investigated by Chen et al. is setting the final time Tn to a different time. This

corresponds more to the structure proposed by Chang [4] depicted in Figure 3.2 from Chapter 3, where

every integer n corresponds to a ResBlock. In an ODEnet the parameters for these blocks will be the

same, so it resembles a repetition of the first block. Experiment results (Table 7.3) show that just

increasing Tn mostly increases the FNFE and backward pass. A higher Tn increases training time, but

there is also a slight decrease in accuracy.

This does raise the question of whether the network could be improved upon with parameters that

are also a function of time. This would result in different parameters θ(t) corresponding to different

blocks at Tn. However, incorporating θ as a function of time is not straightforward, but an interesting

angle for future research.

Tn Accuracy Loss FNFE BNFE
1 88.02 0.3417 26 27
2 87.86 0.3506 32 39
5 86.88 0.3850 38 63
10 85.36 0.4431 50 75-801

Table 7.3: Accuracy and Runtime for different Tn’s (trained on FashionMNIST).
1The BNFE increased from 75 to 80 during training.

7.2 Complexity ODEblock and Fully Connected Layers

It is not the case that every hidden layer with more parameters also has a higher complexity. The

relation between the two is dependent on the type of layer. In general, fully connected layers have

many parameters, but the forward and backward pass do not require many computations. The order

of this layer is O(in · out) and is the same as the number of parameters in the layer. The number of

parameters and complexity of the convolutional layer is dependent on the filter size f , the number of

input channels Cin, the number of output channels Cout and the image dimensions height h and width

w. The convolutional layer has only a couple of parameters (f2 ·Cout+ 1), but the order of complexity

is much larger at O(Cin · Cout · f2 · h · w). As a rule of thumb, the computational time of layers such

as the fully connected layer and pooling is 5-10% compared to convolutional layers [16].

This means that in the ODEnet and ResNet most of the parameters will be in the fully connected

layer, while most of the complexity will come from the blocks of convolutions. Therefore, reducing

36

the number of parameters within the ResNet and ODEnet blocks has a big impact on the overall

complexity. This impact is much larger then reducing the size of the fully connected layer.

7.3 Experiment Models

The insights from the last two sections have lead to two different sets of models to compare. First

is the simple architecture, which only consists of a few layers. The second set of experiments have a

more complex architecture with more and different types of layers. A small ResNet, large ResNet and

an ODEnet are created for the simple architecture. For the complex architectures a ResNet and an

ODEnet are created. The details of these networks are provided in Section 7.3.1 and Section 7.3.2

7.3.1 Simple Architecture

Data input

Conv 1x1

Conv 3x3

Group Norm

ReLU

Fully Connected layer

Output

Block

Figure 7.3: Simple Network
Architecture

The first set of models have a simple architecture, with only one block

of layers. The block consists of a convolutional layer, groupnorm

and is followed by a ReLU activation function (Figure 7.3). Before

entering the block there is a 1x1 convolutional layer to ensure the

dimensions of the input and output of the ODEblock are the same.

After the block there is a fully connected layer that makes the final

classification of the 10 labels. The ODEnet has one ODEblock as

described before, where the convolutional layer has 64 channels and is

augmented with 2 extra dimensions. To match this, one small ResNet

is constructed with one block and 66 channels. In order to compare

both models with a network that has more parameters, an additional

larger ResNet model is designed. This larger model has three blocks,

all with 66 channels. This corresponds computationally with three

updates within the ODEblock, but has 3x as many parameters (Table

7.4). A more detailed description of the architecture can be found in

Appendix C.1, C.2 and C.3.

Model Type Number of Number of Parameters Parameters not in
Channels fully connected layer

FashionMNIST ResNet small 66 169 000 40 100
ResNet large 66 248 000 119 000
ODEnet 64+2 169 000 40 000

Cifar10 ResNet small 258 1 270 000 607 000
ResNet large 258 2 470 000 1 810 000
ODEnet 256+2 1 270 000 607 000

Table 7.4: Number of parameters per simple model.

37

7.3.2 Complex Architecture

The architectures used for the first set of experiments are very simple, and can very easily be extended

with much improvement in accuracy. A more complex ResNet with different number of channels and

pooling layers can achieve a 10% increase in accuracy on Cifar10, with less parameters. Even if the

ODEnet is an improvement in the first round of experiments, it might not be of use if it is not tested

against better performing neural network architectures.

Therefore, instead of fitting a ResNet to an intuitive ODE structure, the second architecture is

designed the other way around. A more complex ResNet model is created, and then an ODEnet to

match its structure. The models consist of three sets of a convolutional layer, max pooling, groupnorm

and a ReLU activation. An overview of the model is in Figure 7.4, a more detailed version is in

Appendix C.4 and C.5.

While it is uncommon to design ResNets with pooling layers, it is necessary in this project to

limit the training time of the models. Pooling is difficult to incorporate a residual connection, since

it reduces the dimensions of the output. Additionally, work by Springenberg and Dosovitskiy [45]

show that pooling layers are not necessary. However, without pooling layers the training time of the

ODEnet would be too large to run the experiments. By adding the pooling layers this time is reduced

significantly.

Data input x

Conv 64 channels

Conv 128 channels

Conv 256 channels

Fully Connected Layers

Output

Block

Figure 7.4: Complex architecture, where every convolution is followed by pooling, groupnorm and
activation.

38

Model Type Number of Parameters Parameters not in
fully connected layer

FashionMNIST Complex Architecture 394 000 353 000
Cifar10 Complex Architecture 413 000 372 000

Table 7.5: Number of parameters per complex model.

Getting Correct Dimensions

Data input x [3, 32, 32]

Upchannel [256, 32, 32]

Unchannel [4, 32, 32]

Convolutional layers

Extra padding [256, 32, 32]

Remove padding [256, 4, 4]

Enter the ODEblock

Exit the ODEblock

Figure 7.5: Framework for ensuring the
correct dimensions. Including the out-
put dimension of every layer with Cifar10
[channels, height, width].

It is not a trivial task to fit any neural network architecture

into an ODEnet. An important point is that the ODEblock

needs to have the same input and output dimensions. This

requirement limits the type of layers that can be used in

a convolutional network, as many types of layers cause a

change in dimensions. Techniques such as pooling, stride

and a convolution to a different number of channels all have

this property. Not only are these layers a way to increase

the accuracy of a model, they are also ways of downsam-

pling the data in order to prevent large architectures. There

are two types of changes in the dimensions. First, the height

and width of the input are reduced by the pooling layers,

and second the number of channels increases with the con-

volutions.

The most difficult change in dimension, the decrease

of image height and width, can be circumvented in the

ResNet. By placing the residual connection before the pool-

ing layer the reduction in dimension does not have to be

incorporated.

Unfortunately, the reduction in dimension cannot be

avoided in the ODEnet. The input and output of the whole ODEblock need to match, so a dif-

ferent technique is required. We add a zero padding to the output of the ODEblock, so it has the same

dimensions as the original input when exiting the ODEblock. Then, before entering the fully connected

layer, the padding is removed again. This ensures that both the restrictions of the ODEblock are met,

while also incorporating the advantages of the pooling layers.

The second change in dimension is relatively simple to implement. There are two common tech-

niques used in ResNets; padding the input with extra zero entries or by adding a 1x1 convolution.

Since the latter introduces extra parameters the first method is implemented in both the ResNet and

the ODEnet. This method is also very similar to incorporating the augmented dimensions. The tech-

nique is incorporated into the ODEnet before entering the ODEblock. Knowing the last layer will

39

have 256 channels, a few zero channels are added to the input image. This augmented image, with the

correct number of channels, is passed to the ODEblock. Here, the first action is to remove the zero

channels. This prevents unnecessary parameters in the next convolution. Now, the dimensions are

correct without changing what would happen to the image itself. As a minor detail, when removing the

dimensions one zero channel is kept. This extra channel is enough to ensure the model is an universal

approximator, as explained in Section 3.2.4.

40

CHAPTER 8

Results

This chapter reports the results from all the different model experiments. Section 8.1 will elaborate on

the results from the simple architectures, and Section 8.2 will focus on the complex architectures. The

last section incorporates the results of setting different tolerances or ODEsolvers during evaluation.

8.1 Simple Architecture

8.1.1 FashionMNIST

(a) Confusion Matrix (b) Classification Report

Figure 8.1: Prediction scores on FashionMNIST for the simple ODEnet.

41

(a) Accuracy during training FashionMNIST with
simple architectures.

(b) Loss during Training FashionMNIST with sim-
ple architectures.

Figure 8.2: Accuracy and Loss for the ODEnet, small and large ResNet.

(a) Simple ODEnet (b) Complex ODEnet

Figure 8.3: NFE per epoch on FashionMNIST.

The ODEnet is able to classify the FashionMNIST data well. From Figure 8.1 it is clear that most

classes are correctly classified, even though it has difficulty with the shirt category. The overall accuracy

is 90% (Table 8.1), and this performance is on par with other simple ResNet models. Additionally,

the training and validation curves are relatively close together (Figure 8.2). This indicates that the

model is not prone to overfitting, and has a smooth learning curve. One downside is that the BNFE

increases halfway through training (Figure 8.3a). This is expected as explained in Section 7.1.2, and

shows that the learned model gets more complex during training.

The predictive results for the three models, ODEnet, small ResNet and the large ResNet are very

similar in all regards. The main difference is that the training loss and accuracy of the small ResNet

is much lower, but the validation curves are comparable to the other networks. This could be an

indication that the model is prone to overfitting.

A very important aspect is that the time to run one epoch for the ODEnet is on average 4 minutes

42

when running on one GPU. Using the same hardware, the small ResNet only takes 17 seconds, and

the large ResNet 24 seconds (Table 8.1).

Model Architecture Dataset Accuracy Loss Average epoch time
ODEnet Simple FashionMNIST 90.36 0.2706 4 min.
small ResNet Simple FashionMNIST 90.56 0.2686 17 sec.
large ResNet Simple FashionMNIST 90.30 0.2695 24 sec.
ODEnet Complex FashionMNIST 90.80 0.2523 18 min.
ResNet Complex FashionMNIST 90.73 0.2552 23 sec.

ODEnet Simple Cifar10 69.80 0.8751 18 min.
small ResNet Simple Cifar10 71.26 0.8254 28 sec.
large ResNet Simple Cifar10 70.95 0.8542 53 sec.
ODEnet Complex Cifar10 75.45 0.7168 20 min.
ResNet Complex Cifar10 77.31 0.6736 28 sec.

Table 8.1: Complete table of test performance for all architectures

8.1.2 Cifar10

(a) Confusion Matrix (b) Classification Report

Figure 8.4: Prediction scores on Cifar10 for the simple ODEnet.

The classification report (Figure 8.4b) of the ODEnet model trained on the Cifar10 dataset shows

that the model does not perform as good as on the FashionMNIST dataset. Since the Cifar10 dataset

is more difficult, this was expected.

The performance of the other two models, small and large ResNet, is largely the same as the

ODEnet. This corroborates the results found in the FashionMNIST experiments. Figures supporting

this are in Appendix D.2. Again the training time of the ODEnet is much longer than that of either

of the ResNets. In this case the ODEnet trains on average 18 minutes per epoch, while the small and

large ResNets take half a minute and a minute respectively.

43

8.2 Complex Architecture

8.2.1 FashionMNIST

(a) Accuracy during training FashionMNIST with
complex architectures.

(b) Accuracy during training FashionMNIST with
complex architectures.

Figure 8.5: Accuracy and Loss for the ODEnet and ResNet.

(a) Confusion Matrix ODEnet (b) Classification report ODEnet

Figure 8.6: Prediction scores on FashionMNIST for the complex ODEnet.

Also for the complex architectures trained on FashionMNIST, the ResNet and ODEnet perform

very similarly. In this case the learning rate and weight decay of the models are the same, which leads

to practically identical learning curves in Figure 8.5. Table 8.1 does show that the ResNet generalizes

slightly better, indicated by the performance on the test set.

Since this is only a simple dataset, the predictive performance of this set of models is only marginaly

better then the more simple architecture (Table 8.1). The training time of both models does increase

compared to the simple architectures. The ODEnet takes 18 minutes per epoch compared to 4 minutes,

and the training time from the ResNet has increased from 17 to 27 seconds.

44

An interesting aspect is that the NFE, both for the forward and backward pass, is consistently

lower during training (Figure 8.3). Where in the simple architecture has a higher start values and

a large increase in BNFE halfway through training, the values of the complex ODEnet remains low.

There is only a slight increase in the FNFE, but the maximum is still lower than the FNFE of the

simple architecture.

8.2.2 Cifar10

(a) Confusion Matrix ODEnet (b) Classification report ODEnet

Figure 8.7: Prediction scores on Cifar10 for the complex ODEnet.

For the Cifar10 dataset there is a clear improvement when using the complex architecture. The

accuracy increases with 5% and the loss drops (Table 8.1). This is also clear from the classification

reports in (Figure 8.4b and 8.7b). The other aspects are similar to the results found earlier. Again,

the ODEnet has a much higher training time than the ResNet, while the performance metrics are very

similar.

A very interesting and unexpected aspect, that does not occur in the other experiments, is that the

FNFE decreases during training (Figure 8.8). This suggests that the problem becomes less complex

during training, and causes the epoch time decrease during training.

Figure 8.8: NFE per epoch on FashionMNIST with complex ODEnet architecture.

45

8.3 Different Evaluation Settings

One of the advantages of using an ODEblock claimed by the authors of Chen et al. [6] is that the

the tolerance can be changed during the evaluation. This idea can be extended by also changing the

ODEsolver. Having a lower tolerance or a simpler ODEsolver can decrease runtime, but also accuracy.

This means there is a trade-off between the two, and dependent on the situation runtime or accuracy

can be prioritized. In order to test this claim, a model is trained with Dopri5, but is evaluated with

different ODEsolver settings. The results in Table 8.2 show that there is indeed a trade-off, and that

the more simple solvers have less FNFE, and thus cost less time. Additionally, the results of these

solvers are not as accurate as the adaptive solvers. However, no difference is observed between the

different tolerances of the adaptive step size.

Cifar10 FashionMNIST

Architecture ODEsolver Tolerance Average FNFE Accuracy Average FNFE Accuracy

Simple Euler 1 83.48 1 37.19

RK4 4 88.90 4 61.79

Dopri5 [0.001] 26 90.36 28.64 69.82

Dopri5 [0.01] 26 90.36 28.64 69.82

Dopri5 [0.1] 26 90.36 28.64 69.82

Complex Euler 1 90.88 1 75.09

RK4 4 90.80 4 75.45

Dopri5 [0.001] 19.06 90.80 16.96 75.45

Dopri5 [0.01] 19.06 90.80 16.96 75.45

Dopri5 [0.1] 19.06 90.80 16.96 75.45

Table 8.2: FNFE and accuracy for different evaluation solvers and tolerances.

46

CHAPTER 9

Discussion

9.1 Interpretation of Results

There are three main reasons why the ODEnet was expected be a good replacement for a ResNet for

image classification: more efficient parameters, cost scaling with complexity, and a trade-off between

cost and accuracy. Unfortunately, these advantages are not found in our experimental setting. The

results from the different experiments all follow the same pattern. There is no big difference between

the predictive performance of the models, but the ODEnet requires a lot more computations, and

thus more time, to get these results. Since the expected advantages cannot be found and the long

training time of the model, the ODEnet is not a good replacement for ResNets when doing image

classification. The following section will elaborate on the results, and provide reasoning as to why the

initial hypothesis was not confirmed.

We extended the experiment by Chen et al. [6] with a proper benchmark in order to review the

claim that the parameters of an ODEnet are more efficient. The results by Chen et al. show that

the accuracy of the large ResNet and the ODEnet are the same. Since the ODEnet has much less

parameters this would indicate that the ODEnet needs less parameters to get the same accuracy as

a ResNet. However, our experiments show that all simple architectures, small-, large ResNet and

ODEnet, have remarkably similar classification scores. The small ResNet with the same number

of parameters as the ODEnet even slightly outperforms both the larger ResNet and the ODEnet.

Additionally, the predictive performances of the complex ResNet and ODEnet are also similar. This

demonstrates that the parameters of an ODEnet are not better than the parameters of a ResNet.

Since the extra parameters in the large ResNet as used by Chen et al. are not necessary to get the

performance, the claim of more efficient parameters is not supported.

A second point of discussion is that the cost of training an ODEnet are very high. This relates to

the other two expected advantages. The observation that the NFE tends to increase during training is

47

a good indication that the cost of the network does scale with the underlying complexity. Additionally,

changing the ODEsolver during evaluation does affect the time it takes to classify the new images.

However, the initial cost of the model are way larger than that of a ResNet. This makes the advantages

of scaling and the trade-off obsolete. The ResNet is already much faster, so even if has more layers

than necessary it is still much better than the ODEnet.

Even though the complex ODEnet was not an improvement over the ResNet, the experiments do

show another important aspect. Namely, that padding the dimension and channels of the input and

output of the ODEblock can be incorporated succesfully. This opens up the possibility for different

network architectures, and eases the limitation of input and output dimensions having to be exactly

the same. The risk of this extra padding was that it could result in a complex system that is difficult

for the ODEsolver, and causes errors or high computational costs. However, the opposite is true. The

experiments show that the complex architectures were able to train on the classification problem, and

even had a lower NFE than the other networks.

9.1.1 Analysis of Results

An important question is why the results are not corresponding with the expected advantages. Not

finding more efficient parameters can be related to a difference noted already in Section 3.2.3. In

every step of the ODEsolver the same parameters are used again. Contrary to multiple ResBlocks

where every ResBlock has its own parameters. Since the ODEnet did not improve on the ResNets,

this points to the notion that repeating an identical block does not improve accuracy. The power of

different blocks lies within the different parameters.

The cost of training an ODEnet are very high because the ODEsolver takes multiple function eval-

uations. The adaptive step size solvers have a minimum of six NFEs [6], which is equivalent to going

through a ResNet six times. However, our results show that the NFE is usually much higher. For

instance, the lowest FNFE encountered in the experiments was 14. When the structure gets more

complex the NFE gets even higher. The large amount of evaluations is the reason the ODEnet is so

much slower than the ResNet.

9.2 Future Research

An interesting direction for future research is to incorporate a time dependency in the weight param-

eters. This would mean that every step within the ODEblock has a different parameter value θ(t), as

the t in every step is different. In the current networks the ODEblock is mostly extra computation,

but with different parameters it is more likely to make an improvement in the performance. However,

48

this is a big change in structure to regular NNs. It is not clear how to create such parameters, and

how the forward pass, backpropagation and weight update would change.

That the ODEnet is not a good alternative for image classification, does not mean the model should

not be used at all. As mentioned in Section 3.2.3, there are other applications for ODEnets. One should

take into account that ODEnets are very slow, but when dealing with time dependent problems there

is no good alternative that deals with the continuous nature of time properly. If hardware or time is

less of a priority, the ODEnet can prove to be a better fit. Think for instance of medical data. Ac-

curacy is of the utmost importance, and way more important than the cost involved in running models.

49

CHAPTER 10

Conclusion

The first aim of this research is to investigate whether ODEnets are have more efficient parameters than

ResNets, in particular of image classification. The results clearly show that this is not the case. The

classification scores of both models are very similar, but the training time of the ODEnet is 10-50 times

as long. This makes the ODEnet a very impractical model, unless one has access to powerful hardware.

The second objective is to provide more details of the forward- and backpropagation when incorpo-

rating an ODEsolver. The first can be examined by looking at the discretization scheme the ODEsolver

uses, which for the Euler method greatly resembles a regular forward pass for a ResNet. This gives

a good overview, and can be extended to the computations that happen when using a more sophisti-

cated ODEsolver. We use this overview to understand why the ODEnet does not perform better than

a ResNet, and to find directions for future research.

The backpropagation method by Chen et al. [6] is the continuous equivalent of reverse autodiff,

the traditional backpropagation technique. We show this connection by first deriving autodiff through

Lagrange optimization, and applying the same derivations on the continuous equivalent. This also

indicates that autodiff can be implemented into an ODEnet.

The stability of the new continuous backpropagation remains an important issue. The implemen-

tation by Chen et al. can encounter stability issues, but should not immediately be dismissed. In

the cases it works, it does save a lot of memory compared to other checkpointing methods as used in

cvodes. The method by Chen et al. has been succesfully implemented in their research, and by others

such as Dupont et al. [7]. This is supported by the results from this project, as stability issues during

backpropagation were not encountered. Therefore, the decision of which backpropagation to use is

dependent on the application and the limitations imposed by the hardware.

In theory all neural network architectures can be incorporated in an ODEblock, as long as the

input and output dimensions are equal. However, in practice some types of layer cause issues. When

50

designing a model it is important to try out different architectures. Our results provide some guidelines.

Try to avoid using batch normalization, and use groupnorm instead. Be aware of ReLU functions. They

do not cause problems within an ODEblock, but should be avoided before the block. Furthermore,

adding stride before the ODEblock is not ideal as it increases the NFE. However, it also reduces the

dimension and therefore the training time. The trade-off between training time and a higher NFE is

dependent on the use case.

Additionally, a method is proposed to incorporate different input and output dimensions. This is

done by padding the image width and height, and padding the channels. This results in a succesful

model, that even has less NFE than the simpler counterpart. By allowing different input and output

dimensions, the ODEblock can incorporate layers such as pooling and convolutions between different

number of channels.

Altogether, the ODEnet has been demystified over the course of this project. It provides much

more insight into what happens, and what to expect when using an ODEnet. Unfortunately, it did

not prove a good alternative for the application used in this research. Nevertheless, the information

gained can be used to further investigate the new model, and expose its full potential.

51

Bibliography

[1] Alexe, Mihai and Sandu, Adrian. “On the discrete adjoints of adaptive time stepping algorithms”.

In: Journal of Computational and Applied Mathematics 233.4 (2009), pp. 1005–1020. doi: 10.

1016/j.cam.2009.08.109.

[2] Bergstra, James, Yamins, Daniel, and Cox, David Daniel. “Making a science of model search:

Hyperparameter optimization in hundreds of dimensions for vision architectures”. In: Proc. of

the 30th International Conference on Machine Learning (2013). url: http://proceedings.

mlr.press/v28/bergstra13.pdf.

[3] Bradley, Andrew M. PDE-constrained optimization and the adjoint method. (2010). url: https:

//cs.stanford.edu/~ambrad/adjoint_tutorial.pdf.

[4] Chang, Bo et al. “Multi-level Residual Networks from Dynamical Systems View”. In: Interna-

tional Conference on Learning Representations. (2018). arXiv: 1710.10348.

[5] Chang, Bo et al. “Reversible Architectures for Arbitrarily Deep Residual Neural Networks”. In:

AAAI Conference on Artificial Intelligence. (2018), pp. 2811–2818. url: https://www.aaai.

org/ocs/index.php/AAAI/AAAI18/paper/view/16517.

[6] Chen, Ricky T. Q. et al. “Neural Ordinary Differential Equations”. In: Advances in Neural

Information Processing Systems 31. Ed. by S. Bengio et al. Curran Associates, Inc., (2018),

pp. 6571–6583. url: http://papers.nips.cc/paper/7892-neural-ordinary-differential-

equations.pdf.

[7] Dupont, Emilien, Doucet, Arnaud, and Teh, Yee Whye. “Augmented Neural ODEs”. In: Advances

in Neural Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc.,

(2019), pp. 3140–3150. url: http://papers.nips.cc/paper/8577- augmented- neural-

odes.pdf.

[8] Forth, Shaun et al. Recent Advances in Algorithmic Differentiation. Springer Publishing Com-

pany, Incorporated, (2012). isbn: 3642300227.

[9] Gholami, Amir, Keutzer, Kurt, and Biros, George. “ANODE: Unconditionally Accurate Memory-

Efficient Gradients for Neural ODEs”. In: 2019 International Joint Conference on Artificial

Intelligence (2019). arXiv: 1902.10298.

52

[10] Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua. “Deep Sparse Rectifier Neural Networks”.

In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statis-

tics. Ed. by Geoffrey Gordon, David Dunson, and Miroslav Dud́ık. Vol. 15. Proceedings of Ma-

chine Learning Research. Fort Lauderdale, FL, USA: PMLR, (2011), pp. 315–323. url: http:

//proceedings.mlr.press/v15/glorot11a/glorot11a.pdf.

[11] Gomez, Aidan N et al. “The Reversible Residual Network: Backpropagation Without Storing

Activations”. In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon et al.

Curran Associates, Inc., (2017), pp. 2214–2224. url: http://papers.nips.cc/paper/6816-

the-reversible-residual-network-backpropagation-without-storing-activations.

pdf.

[12] Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron. Deep Learning. MIT Press, (2016). url:

http://www.deeplearningbook.org.

[13] Grathwohl, Will et al. “FFJORD: Free-form Continuous Dynamics for Scalable Reversible Gen-

erative Models”. In: International Conference on Learning Representations. (2019). arXiv: 1810.

01367.

[14] Greff, Klaus et al. “The Sacred Infrastructure for Computational Research”. In: Proceedings

of the 16th Python in Science Conference. Ed. by Katy Huff et al. (2017), pp. 49 –56. doi:

10.25080/shinma-7f4c6e7-008.

[15] Haber, Eldad and Ruthotto, Lars. “Stable architectures for deep neural networks”. In: Inverse

Problems 34.1 (2017), p. 014004. doi: 10.1088/1361-6420/aa9a90.

[16] He, Kaiming and Sun, Jian. “Convolutional Neural Networks at Constrained Time Cost”. In: The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2015). url: https:

//www.cv-foundation.org/openaccess/content_cvpr_2015/papers/He_Convolutional_

Neural_Networks_2015_CVPR_paper.pdf.

[17] He, Kaiming et al. “Deep Residual Learning for Image Recognition”. In: The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). (2016). arXiv: 1512.03385.

[18] Hindmarsh, Alan C. and Serban, Radu. User Documentation for cvodes v5.0.0 (sundials v5.0.0).

English. Version v5.0.0. Center for Applied Scientific Computing Lawrence Livermore National

Laboratory. 2019.

[19] Homescu, Cristian. “Adjoints and Automatic (Algorithmic) Differentiation in Computational

Finance”. (2011). arXiv: 1107.1831.

[20] Hornik, Kurt. “Approximation capabilities of multilayer feedforward networks”. In: Neural net-

works 4.2 (1991), pp. 251–257. doi: 10.1016/0893-6080(91)90009-T.

53

[21] Hornik, Kurt, Stinchcombe, Maxwell, White, Halbert, et al. “Multilayer feedforward networks

are universal approximators.” In: Neural networks 2.5 (1989), pp. 359–366. doi: 10.1016/0893-

6080(91)90009-T.

[22] indoML. Student Notes: Convolutional Neural Networks (CNN) Introduction. [Online]. (2018).

url: https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-

cnn-introduction/.

[23] Ioffe, Sergey and Szegedy, Christian. “Batch Normalization: Accelerating Deep Network Training

by Reducing Internal Covariate Shift”. In: Proceedings of the 32nd International Conference on

Machine Learning. Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of Machine Learning

Research. Lille, France: PMLR, (2015), pp. 448–456. url: http://proceedings.mlr.press/

v37/ioffe15.pdf.

[24] Jia, Junteng and Benson, Austin R. “Neural Jump Stochastic Differential Equations”. In: Ad-

vances in Neural Information Processing Systems 32. Ed. by H. Wallach et al. Curran Asso-

ciates, Inc., (2019), pp. 9847–9858. url: http://papers.nips.cc/paper/9177-neural-jump-

stochastic-differential-equations.pdf.

[25] Johnson, Matthew James. “Automatic Differentiation”. [Online]. (2017). url: http://videolectures.

net/deeplearning2017_johnson_automatic_differentiation/.

[26] Johnson, Steven G. Notes on Adjoint Methods for 18.335. Introduction to Numerical Methods.

MIT, (2006). url: https://math.mit.edu/~stevenj/18.336/adjoint.pdf.

[27] Krizhevsky, Alex. “Learning multiple layers of features from tiny images”. (2009). url: https:

//www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

[28] Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. “ImageNet Classification with Deep

Convolutional Neural Networks”. In: Advances in Neural Information Processing Systems 25.

Ed. by F. Pereira et al. Curran Associates, Inc., (2012), pp. 1097–1105. url: http://papers.

nips.cc/paper/4824- imagenet- classification- with- deep- convolutional- neural-

networks.pdf.

[29] Larsson, Gustav, Maire, Michael, and Shakhnarovich, Gregory. “FractalNet: Ultra-Deep Neural

Networks without Residuals”. In: CoRR abs/1605.07648 (2016). arXiv: 1605.07648.

[30] LeCun, Yann. “A theoretical framework for back-propagation”. In: Proceedings of the 1988 con-

nectionist models summer school. Ed. by D. Touretzky, G. Hinton, and T. Sejnowski. Vol. 1.

CMU, Pittsburgh, Pa: Morgan Kaufmann. (1988), pp. 21–28. url: http://yann.lecun.com/

exdb/publis/pdf/lecun-88.pdf.

[31] LeCun, Yann et al. “Gradient-Based Learning Applied to Document Recognition”. In: Proceed-

ings of the IEEE. Vol. 86. 11. (1998), pp. 2278–2324. url: http://yann.lecun.com/exdb/

publis/pdf/lecun-01a.pdf.

54

[32] Leshno, Moshe et al. “Multilayer feedforward networks with a nonpolynomial activation function

can approximate any function”. In: Neural networks 6.6 (1993), pp. 861–867. doi: 10.1016/

S0893-6080(05)80131-5.

[33] Li, Sunner. An Interesting Idea toward CNN — Residual. [Online]. (2017). url: https : / /

medium.com/@sunnerli/an-interesting-idea-toward-cnn-residual-4bb54040b9a.

[34] Liu, Xuanqing et al. “Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise”.

(2019). arXiv: 1906.02355.

[35] Lu, Yiping et al. “Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Nu-

merical Differential Equations”. In: Proceedings of the 35th International Conference on Machine

Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning

Research. Stockholmsmässan, Stockholm Sweden: PMLR, (2018), pp. 3276–3285. url: http:

//proceedings.mlr.press/v80/lu18d/lu18d.pdf.

[36] Machine Learning @ Berkeley. Neural Ordinary Differential Equations and Dynamics Mod-

els. [Online]. (2019). url: https : / / medium . com / @ml . at . berkeley / neural - ordinary -

differential-equations-and-dynamics-models-1a4277fbb80.

[37] Peluchetti, Stefano and Favaro, Stefano. “Infinitely deep neural networks as diffusion processes.”

(2019). arXiv: 1905.11065.

[38] Rackauckas, Christopher et al. “A Comparison of Automatic Differentiation and Continuous

Sensitivity Analysis for Derivatives of Differential Equation Solutions”. (2018). arXiv: 1812.

01892.

[39] Rackauckas, Christopher et al. “DiffEqFlux.jl - A Julia Library for Neural Differential Equa-

tions”. (2019). arXiv: 1902.02376.

[40] Rubanova, Yulia, Chen, Tian Qi, and Duvenaud, David K. “Latent Ordinary Differential Equa-

tions for Irregularly-Sampled Time Series”. In: Advances in Neural Information Processing Sys-

tems 32. Ed. by H. Wallach et al. Curran Associates, Inc., (2019), pp. 5320–5330. url: http:

/ / papers . nips . cc / paper / 8773 - latent - ordinary - differential - equations - for -

irregularly-sampled-time-series.pdf.

[41] Ruthotto, Lars and Haber, Eldad. “Deep Neural Networks motivated by Partial Differential

Equations”. In: Journal of Mathematical Imaging and Vision abs/1804.04272 (2019). doi: 10.

1007/s10851-019-00903-1.

[42] Silver, David et al. “Mastering the game of Go without human knowledge”. In: Nature 550 (Oct.

2017), pp. 354–359. doi: 10.1038/nature24270.

[43] Simonyan, Karen and Zisserman, Andrew. “Very Deep Convolutional Networks for Large-Scale

Image Recognition”. (2014). arXiv: 1409.1556.

55

[44] Sirkes, Ziv and Tziperman, Eli. “Finite Difference of Adjoint or Adjoint of Finite Difference?”

In: Monthly Weather Review 125.12 (1997), pp. 3373–3378. doi: 10.1175/1520-0493(1997)

125<3373:FDOAOA>2.0.CO;2.

[45] Springenberg, J.T. et al. “Striving for Simplicity: The All Convolutional Net”. In: ICLR (work-

shop track). (2015). arXiv: 1412.6806.

[46] Subramanian, Vivek Ratnavel. Omniboard. (2018). url: https://github.com/vivekratnavel/

omniboard.

[47] Szegedy, Christian et al. “Going Deeper With Convolutions”. In: The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR). (2015). arXiv: 1409.4842.

[48] Taigman, Yaniv et al. “Deepface: Closing the gap to human-level performance in face verifica-

tion”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. (2014),

pp. 1701–1708. url: https://research.fb.com/publications/deepface-closing-the-gap-

to-human-level-performance-in-face-verification/.

[49] Tzen, Belinda and Raginsky, Maxim. “Neural Stochastic Differential Equations: Deep Latent

Gaussian Models in the Diffusion Limit”. (2019). arXiv: 1905.09883.

[50] Wang, Mei and Deng, Weihong. “Deep Face Recognition: A Survey”. (2018). arXiv: 1804.06655.

[51] Weinan, E. “A proposal on machine learning via dynamical systems”. In: Communications in

Mathematics and Statistics 5.1 (2017), pp. 1–11. doi: 10.1007/s40304-017-0103-z.

[52] Wu, Yuxin and He, Kaiming. “Group Normalization”. In: The European Conference on Computer

Vision (ECCV). (2018). arXiv: 1803.08494.

[53] Xiao, Han, Rasul, Kashif, and Vollgraf, Roland. “Fashion-MNIST: a Novel Image Dataset for

Benchmarking Machine Learning Algorithms”. (2017). arXiv: 1708.07747.

[54] Zhang, Han et al. “Approximation capabilities of neural ordinary differential equations”. (2019).

arXiv: 1907.12998.

[55] Zhang, Hong and Sandu, Adrian. “FATODE: A Library for Forward, Adjoint, and Tangent Linear

Integration of ODEs”. In: SIAM Journal on Scientific Computing 36.5 (2014), pp. C504–C523.

doi: 10.1137/130912335.

[56] Zhang, Tianjun et al. “ANODEV2: A Coupled Neural ODE Framework”. In: Advances in Neural

Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., (2019),

pp. 5151–5161. url: http://papers.nips.cc/paper/8758-anodev2-a-coupled-neural-

ode-framework.pdf.

[57] Zhang, Xingcheng et al. “PolyNet: A Pursuit of Structural Diversity in Very Deep Networks”.

In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2017). arXiv:

1611.05725.

56

[58] Zill, Dennis G. A first Course in Differential Equations with modeling applications. Cengage

Learning. isbn: 78-1-111-82705-2.

57

APPENDIX A

Proofs

A.1 Proof of Lemma 4.1

Lemma 4.1 Formulating the ODEnet as a Lagrange optimization problem

minθ Loss = L(z(t1))

Subject to ż(t) =
dz

dt
= f(z(t), θ, t)

(4.15)

Corresponds to the Lagrangian:

L(z(t), θ, λ) = L (z(t1))−
∫ t1

t0

λ(t)(ż(t)− f(z(t), θ, t)) dt (4.16)

Optimizing the Lagrangian leads to the following gradients of the Loss:

∇θL = −
∫ t0

t1

λ(t)
∂f(z(t), θ, t)

∂θ
dt (4.17)

∇tL = −
∫ t0

t1

λ(t)
∂f(z(t), θ, t)

∂t
dt+ λ(t1)

∂z(t1)

∂t
(4.18)

Proof To optimize L(z(t), θ, λ), the gradients ∇θL and ∇tL need to be calculated and set to zero.

58

First calculate ∇θL.

The first term L(z(t1)) in (4.16) is not directly dependent on θ, thus its derivative is zero.

∇θL = −
∫ t1

t0

λ(t)

(
∂ż

∂θ
−
(
∂f

∂θ
+
∂f

∂z

∂z

∂θ

))
dt (A.1)

Solving integration by parts for ∂ż
∂θ :

∫ t1

t0

λ(t)
∂ż

∂θ
dt = λ(t)

∂z

∂θ

∣∣∣∣t1
t0

−
∫ t1

t0

λ̇(t)
∂z

∂θ
dt

= λ(t1)
∂z(t1)

∂θ
− λ(t0)

∂z(t0)

∂θ
−
∫ t1

t0

λ̇(t)
∂z

∂θ
dt

= λ(t1)
∂z(t1)

∂θ
−
∫ t1

t0

λ̇(t)
∂z

∂θ
dt (A.2)

Plugging (A.2) back for ∂ż
∂θ in the Equation (A.1)

∇θL =

∫ t1

t0

λ(t)
∂f

∂θ
+ λ(t)

∂f

∂z

∂z

∂θ
+ λ̇(t)

∂z

∂θ
dt+ λ(t1)

∂z(t1)

∂θ
(A.3)

Collect all terms with ∂z
∂θ :

∇θL =

∫ t1

t0

λ(t)
∂f

∂θ
+

(
λ(t)

∂f

∂z
+ λ̇(t)

)
∂z

∂θ
dt+ λ(t1)

∂z(t1)

∂θ
(A.4)

The value of λ(t) can be freely set since the Lagrangian is constructed such that the second

term will be zero when the constraints are satisfied [3]. We choose λ(t) such that the following equation

is satisfied:

λ̇(t) = −λ(t)
∂f

∂z
(A.5)

Then (A.5) in (A.4) gives:

∇θL =

∫ t1

t0

λ(t)
∂f

∂θ
dt+ λ(t1)

∂z(t1)

∂θ
(A.6)

Because z(t1) is defined by the constraints, it does not depend on θ, and the last term

λ(t1)∂z(t1)∂θ = 0. Additionally, the weight parameters that minimize L are the same that minimize the

59

Loss:

∇θL = ∇θLoss(z) = −
∫ t0

t1

λ(t)
∂f

∂θ
dt (A.7)

This Equation A.7 is equivalent to Equation 51 of Chen et al.

Now, calculate ∇tL

∇tL = −
∫ t1

t0

λ(t)

(
∂ż

∂t
−
(
∂f

∂t
+
∂f

∂z

∂z

∂t

))
dt (A.8)

Solving integration by parts for ∂ż
∂t :∫ t1

t0

λ(t)
∂ż

∂t
dt = λ(t)

∂z

∂t

∣∣∣∣t1
t0

−
∫ t1

t0

˙λ(t)
∂z

∂t
dt

= λ(t1)
∂z(t1)

∂t
− λ(t0)

∂z(t0)

∂t
−
∫ t1

t0

λ̇(t)
∂z

∂t
dt

= λ(t1)
∂z(t1)

∂t
−
∫ t1

t0

λ̇(t)
∂z

∂t
dt (A.9)

Plugging (A.9) and (A.5) back into Equation (A.8):

∇tL = ∇tLoss(z) = −
∫ t0

t1

λ(t)
∂f

∂t
dt+ λ(t1)

∂z(t1)

∂t
(A.10)

Again, it can be recognized that Equation A.10 is equivalent to Equation 52 by Chen et al.

A.2 Proof of Lemma 4.3

Lemma 4.3 The gradients of L with respect to θ, t and z can be calculated by solving one single

ODE system backwards in time. Equation (4.20) is the initial value of this system, with ∂L
∂θ = aθ and

∂L
∂t = at, and Equation (4.21) the derivative with respect to time.

60

Initial Value at (t1):

λ(t1)

aθ(t1)

at(t1)

 =

∇zL(t1)

0

∇zL(t1)∂z(t1)∂t

 (4.20)

Time derivative:

λ̇(t)

ȧθ(t)

ȧt(t)

 =

−λ(t)∂f(z(t),t,θ)∂z(t)

−λ(t)∂f(z(t),t,θ)∂θ

−λ(t)∂f(z(t),t,θ)∂t

 (4.21)

Proof Define the adjoint state λ(t) = ∇z(t)Loss, similar as to the discrete case (Equation (4.11)).

Now λt1 is the initial state used to calculate the other adjoints by solving an ODE backwards in time

(Equation (A.11)). This results in the initial value problem:

λ̇(t) = −λ(t)
∂f(z(t), t, θ)

∂z
(See Equation (A.5))

λ(t1) = ∇zL(t1)

(A.11)

Additionally, Equation (A.6) can be recognized as the solution to an ODE that is solved backward

in time. Using the same notation as Chen et al., set aθ = dL
dθ = λ(t)dzdθ . Reformulating the equation in

terms of an ODE:

∇θLoss(z) = aθ(t0) = λ(t1)
∂z(t1)

∂θ︸ ︷︷ ︸
Initial value aθ(t1)

−
∫ t0

t1

λ(t)
∂f

∂θ︸ ︷︷ ︸
daθ
dt

dt (A.12)

daθ
dt

= ȧθ(t) = −λ(t)
∂f(z(t), t, θ)

∂θ

aθ(t1) = 0

(A.13)

Similar as the previous case, we can recognize Equation (A.10) as the solution to an ODE. Set

at = dL
dt = λ(t)dzdt , then:

∇tLoss(z) = at(t0) = λ(t1)
∂z(t1)

∂t︸ ︷︷ ︸
Initial value at(t1)

−
∫ t0

t1

λ(t)
∂f

∂t︸ ︷︷ ︸
dat
dt

dt (A.14)

61

dat
dt

= ȧt(t) = −λ(t)
∂f(z(t), t, θ)

∂t

at(t1) = λ(t1)
∂z(t1)

∂t

(A.15)

These results align with the results from Chen et al., and all gradients can be calculated by solving

an ODE system. The gradients with respect to t and θ are also dependent on the current state of

λ(t). The trajectory of λ can be computed simultaneously with aθ and at, by extending the original

ODE system with all gradients (Equation (A.16)) [1, 38, 55]. All the gradients are calculated by this

system, which can now be solved with a single call to the ODEsolver.

Initial Value at (t1):

λ(t1)

aθ(t1)

at(t1)

 =

∇zL(t1)

0

∇zL(t1)∂z(t1)∂t

Time derivative:

λ̇(t)

ȧθ(t)

ȧt(t)

 =

−λ(t)∂f(z(t),t,θ)∂z(t)

−λ(t)∂f(z(t),t,θ)∂θ

−λ(t)∂f(z(t),t,θ)∂t

(A.16)

62

APPENDIX B

Implementation Details

B.1 AWS Hardware

All experiments are run on AWS EC2 instance, a virtual computing environment. This EC2 instance

is linked with an S3 bucket, where all data and experiment logs are stored. The EC2 instance that

was used is a p2.xlarge. This instance has a single GPU1 with 12 GiB memory, 4 CPU’s and a total

memory of 61GiB.

B.2 Packages and Libraries

library version
numpy 1.17.2
torch 0.4.0 (torchvision)
torchdiffeq -
matplotlib 3.1.1
sacred 0.7.5
sklearn 0.21.2
scipy 1.3.1
seaborn 0.9.0
pandas 0.25.1
hyperopt 0.2.1

Table B.1: List of python libraries used an their version.

1High-performance NVIDIA K80 GPU

63

B.3 Experiment Logging

These are screenshots of the experiment logging created with Sacred, Omniboard and MongoDB.

Figure B.1: An example of Omniboard with multiple experiment runs.

Figure B.2: Details of a single experiment run, and the visualization that is available during training.

64

APPENDIX C

Network Architecture

C.1 Simple ODE net

Data input x[3, 32, 32]

Conv 1x1[64, 32, 32]

add augmentation[64+2, 32, 32]

Conv 3x3[64, 32, 32]

Group Norm

ReLU

flatten[4096]

fully connected[10]

Output

Enter the ODEblock

Exit the ODEblock

ODEblock

Figure C.1: Simple ODEnet structure from Chapter 7, including the output dimensions of every hidden
layer.

65

C.2 Simple Small ResNet

Data input x[3, 32, 32]

Conv 3x3[64+2, 32, 32]

Group Norm

ReLU

flatten[4096]

fully connected[10]

Output

+ z(0)

Figure C.2: Small Simple ResNet structure from Chapter 7, including the output dimensions of every
hidden layer.

66

C.3 Simple Large ResNet

Data input x[3, 32, 32]

Conv 3x3[64+2, 32, 32]

Group Norm

ReLU

Conv 3x3[64+2, 32, 32]

Group Norm

ReLU

Conv 3x3[64+2, 32, 32]

Group Norm

ReLU

flatten[4096]

fully connected[10]

Output

+ z(0)

+ z(1)

+ z(2)

Figure C.3: Large Simple ResNet structure from Chapter 7, including the output dimensions of every
hidden layer.

67

C.4 ODE Complex Network

Data input x[3, 32, 32]

Upchannel[256, 32, 32]

Unchannel[4, 32, 32]

Conv 3x3[64, 32, 32]

Max Pool[64, 16, 16]

Group Norm

ReLU

Conv 3x3[128, 16, 16]

Max Pool[128, 8, 8]

Group Norm

ReLU

Conv 3x3[256, 8, 8]

Max Pool[256, 4, 4]

Group Norm

ReLU

extra padding[256, 32, 32]

remove padding[256, 4, 4]

flatten[4096]

fully connected[10]

Output

Enter the ODEblock

Exit the ODEblock

ODEblock

Figure C.4: Complex ODEnet structure from Chapter 7, including the output dimensions of every
hidden layer.

68

C.5 ResNet Complex Network

Data input x[3, 32, 32]

Conv 3x3[64, 32, 32]

Max Pool[64, 16, 16]

Group Norm

ReLU

Conv 3x3[128, 16, 16]

Max Pool[128, 8, 8]

Group Norm

ReLU

Conv 3x3[256, 8, 8]

Max Pool[256, 4, 4]

Group Norm

ReLU

flatten[4096]

fully connected[10]

Output

Enter the ResBlock

+ z(0)

+ z(1)

+ z(2)

Exit the ResBlock

Resblock

Figure C.5: Complex ResNet structure from Chapter 7, including the output dimensions of every
hidden layer.

69

APPENDIX D

Results

D.1 FashionMNIST Simple Architectures

Figure D.1: Average Precision of Precision-
Recall curves.

Figure D.2: Area under Curve of Receiver Op-
erating Characteristics.

70

D.2 Cifar10 Simple Architectures

(a) Accuracy during training Cifar10 with simple
architectures.

(b) Loss during Training Cifar10 with simple ar-
chitectures.

Figure D.3: Accuracy and Loss for the ODEnet, small and large ResNet.

Figure D.4: Average Precision of Precision-
Recall curves.

Figure D.5: Area under Curve of Receiver Op-
erating Characteristics.

Figure D.6: NFE per epoch on Cifar10 with a simple ODEnet architecture.

71

D.3 FashionMNIST Complex Architectures

Figure D.7: Average Precision of Precision-
Recall curves. Figure D.8: Area under Curve of Receiver Operat-

ing Characteristics.

Figure D.9: NFE per epoch on FashionMNIST with a complex ODEnet architecture.

72

D.4 Cifar10 Complex Architectures

(a) Accuracy during training Cifar10 with com-
plex architectures.

(b) Loss during training Cifar10 with complex ar-
chitectures.

Figure D.10: Accuracy and Loss for the ODEnet, small and large ResNet.

Figure D.11: Average Precision of Precision-
Recall curves.

Figure D.12: Area under Curve of Receiver
Operating Characteristics.

73

