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Abstract

Intrusion prevention systems are the second line of defence in computer security. These systems
aim at detecting malicious activities by monitoring computer and/or network traffic. At the heart
of these systems are the intrusion detection systems, which aim at detecting malicious activities.
Nowadays, there is a preference for detection systems aiming at known intrusions. This is a result
of a study gap that exists on finding previously unknown intrusions.

Anomaly detection is the task of finding observations that does not confirm to a certain normal or
expected behaviour. One advantage of this technique is that it is able to find new intrusions. In
the field of anomaly detection, there is a growing interest in anomaly detection techniques using
the underlying graph-structure in the dataset. Only considering the communication behaviour
between two devices might bypass correlations between other hosts. Finding deviating network
changes could indicate that the network is under attack.

This research focusses on developing an intrusion detection system that utilizes a graph-based
approach in combination with an anomaly detection algorithm from the Machine Learning field.
Connection data are transformed to anomaly scores and these scores are used as edge weights
between hosts. The edges indicate the likeliness of the behaviour seen over the network. By track-
ing the changing dynamic of the network with these edge weights, deviating network changes are
flagged.

Several contributions to the cybersecurity field are presented in this thesis. First of all, new and
improved labelling schemes are constructed for two of the three selected datasets. The datasets se-
lected in this research are the CIC-IDS-2017, the ISCX-IDS-2012 and the UNSW-NB15. Secondly,
in these datasets it is tested if indeed anomalous traffic is different from normal traffic by applying
multiple supervised learning techniques on the dataset. Thirdly, anomaly detection techniques,
such as principle component analysis and isolation forest, are applied on connection level to study
the performance of these methods on connection level. Lastly, four unweighted and four weighted
distance metrics between graphs are compared on whether or not they capture malicious network
change. In the weighted metrics, anomaly scores of the anomaly detectors are used as edge weights.

The results of this study show that on connection level the supervised learning techniques are
able to distinguish normal behaviour from malicious behaviour when more protocols are used to
detect intrusions. Furthermore, detecting malicious network change in the UNSW-NB15 dataset
by using the weighted Umeyama distance or the unweighted MCSVD had a F1 score of at least
0.95 for the HTTP and UDP datasets.
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Chapter 1

Introduction

On 27 June 2017, one of the most devastating cyberattacks, called NotPetya, infected thousands
of PCs around the world. This malware primarily targeted digital systems in Ukraine, but the
cyberattack escalated beyond this target and infected countless machines all around the world.
The name of this cyberattack originates from the resemblance to the ransomware Petya (2016),
which is the Russian translation of malware. Petya was a piece of code which denied access to a
computer by encrypting the system until a ransom was paid. Unlike Petya, any ransom payment
was pointless in the NotPetya malware, as the computer’s contents were still shattered beyond
repair. The cyberattack was able to spread rapidly over the Internet due to a vulnerability in
a widely used accounting software. In Ukraine, the malware infected at least four hospitals, six
power companies, two airports, more than 22 Ukrainian banks, ATMs, card payment systems and
almost every federal agency. The global damage by NotPetya is estimated to be more than 10
billion US dollars in total (Greenberg, 2018).

Figure 1.1: Ransom note displayed by a computer infected with NotPetya (cbronline, n.d.)

The NotPetya cyberattack shows the potential disastrous consequences when software contains
vulnerabilities which can be misabused by attackers. When security measures fail to detect the
exploitation of these vulnerabilities, attackers are clear to execute harmful activities without de-
tection. Unfortunately, defenders have a disadvantage over attackers as a defender must defend all
parts of a computer system, while an attacker only has to find one exploitable weak part to exploit
(Howard & Leblanc, 2002). Another disadvantage for the defender is that cyberattacks have be-
come profitable, easily accessible and that there is a low risk in getting prosecuted (NCTV, 2018).
In summary, cybersecurity and cybercrime are dynamical fields where attacker and defender try
to outsmart each other and security measures should be up-to-date. Therefore, it is necessary to
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further develop security systems to detect and prevent these attacks or intrusions from happening.

To prevent attacks from happening, researchers in computersecurity have developed multiple lines
of defence. Firewalls are often referred to as the first line of defence (David, 2017; Sisco, 2018). A
firewall determines with a set of rules which traffic is rejected and which is not. These rules can,
however, be circumvented by the attacker, as was seen in the NotPetya attack where trusted soft-
ware was misused. For that reason, computer security researchers have proposed another line of
defence: an Intrusion Prevention System (IPS) (Xinyou Zhang, Chengzhong Li, & Wenbin Zheng,
2004). This system aims at detecting malicious activities by monitoring computer and/or network
traffic. When such activities are detected, the IPS attempts to block or stop these intrusions.
Within IPS, an Intrusion Detection System (IDS) is performing the task of detecting cyberattacks
(Axelsson, 2000; Denning, 1987).1 While intrusion prevention is the end goal, detecting intrusions
is the heart of preventing them.

The two main intrusion detection methods in IDS are signature detection and anomaly detection
(Axelsson, 2000). In signature detection, intrusions are detected by using precise descriptions of
known malicious activities, while anomaly detection systems utilize a notion of normal activities
and flag behaviour which deviates from this notion. Anomaly detectors are more useful for finding
previously unknown attacks. In contrast, signature detectors are better for detecting known in-
trusions. These methods have been extensively studied over the last years, but there is a striking
imbalance in their deployments. There is a general preference for using signature detectors over
anomaly detectors. One major challenge which limited anomaly detectors to be used in practice
is a lack of up-to-date evaluation datasets (Sommer & Paxson, 2010). Often used intrusion detec-
tion datasets, such as the KDD99 dataset and its successor NSL-KDD, are outdated and heavily
criticized to be used for accurate evaluation (Thomas, Sharma, & Balakrishnan, 2008). Over the
years, the research community responded to this lack by proposing new datasets for intrusion
detection.

Another development in the field of anomaly detection is growing interest in creating new anomaly
detection methods for datasets with an underlying network structure (Akoglu, Tong, & Koutra,
2015). Data objects might have interdependencies which can be taken into account by using a
graph approach. A graph approach is a powerful means to show relational dependencies between
objects, which is not taken into account while assuming that all data points are independent
(Akoglu et al., 2015). In the intrusion detection setting, monitoring hosts individually might for
example bypass communication behaviour correlations between the hosts. Therefore, tracking the
changing nature of the network traffic could show malicious activities.

Problem Statement

While anomaly detection methods using a graph-based approach have great potential, they have
not been applied on the latest developed intrusion detection datasets. These datasets are primarily
connection-oriented and the anomaly detection techniques which have been applied on them are
mainly machine learning algorithms. Machine learning algorithms are very popular nowadays and
have proven to be very accurate in many practical applications. These two approaches are studied
separately, but applying a combination of these methods on the latest intrusion detection datasets
has not been done before. Therefore, it could be of scientific and practical interest to study the
performance of machine learning anomaly detectors in combination with a graph-based detector.

1In contrast to other literature, we see the task of detecting intrusions as a part of the task of preventing an
intrusion. Therefore, we see IDS as part of IPS and not as two non-overlapping systems.
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Scope of this Research

The aim of this research is to develop an intrusion detection algorithm which utilizes a graph-based
approach in combination with a machine learning algorithm. This implies that we are working
with network intrusion detection systems. The goal is to translate connection-level behaviour
to anomaly scores using machine learning. These anomaly scores are used as edge weights for
the graph-based anomaly detector. These scores indicate the likeliness of traffic seen between
two hosts. The connection-level behaviour is transformed into anomaly scores by using two algo-
rithms: Principal component analysis and Isolation Forest. One assumption which is tested before
applying these models is: “Malicious behaviour differ from normal behaviour”. Checking this as-
sumption is essential when applying anomaly detection techniques as intrusion detection system.
To test this assumption, several supervised learning techniques are used to observe whether these
models are able to distinguish malicious from normal traffic. After translating to anomaly scores,
the graph-based anomaly detector logs the change of the network over time and tries to detect
abnormal changes in the network which could indicate malicious behaviour seen on the network.
Several distance metrics are studied to determine which metric is most suitable to detect abnormal
change on the network.

Where most researches only apply developed detector(s) to one dataset, we are interested in
applying the detector to several datasets to study the performance of our detector on different
networks. The datasets of interest are the CIC-IDS-2017, the ISCX-IDS-2012 and the UNSW-
NB15. To make the evaluations of the method between the datasets comparable, a tool named
Zeek is used to extract information from the provided raw Internet traffic to create protocol spe-
cific datasets. Zeek logs events observed on the network, the transport and the application layer
and stores all gathered data in predefined protocol specific log files. Instead of limiting to the
events observed on the network layer, information on specific protocol usages are also used for the
task of intrusion detection in this research.

Structure of the Thesis

The thesis is structured as follows. Chapter 2 provides some of the relevant basics of computer
networking which is useful to help understanding the information sent between devices. Chapter 3
discusses characteristics of intrusion detection systems and provides advantages and disadvantages
of different intrusion detection methods and technologies. It helps the reader to put the proposed
method in the framework of all available intrusion detection techniques. Chapter 4 states relevant
studies that show the state of the art on anomaly detection in cybersecurity to make comparisons
with this research. Chapter 5 states the experimental setups of the three selected datasets. Sev-
eral inherent problems with the provided datasets are discussed and some solutions are given to
overcome these problems. The raw Internet traffic are translated with Zeek into protocol specific
log files. As the features are not directly applicable for machine learning algorithms, Chapter 6
shows how the generated log files are prepared for machine learning purposes. Chapter 7 shows
an analysis of the datasets and describes important aspects of the data. In Chapter 8, the used
methods to test the assumption that malicious traffic is indeed different than normal traffic, the
algorithms to transform connection-level behaviour in anomaly scores and the graph distances
metrics that show the change of the network are described. Chapter 9 shows the results the ap-
plied methods on the discussed datasets. Finally, Chapter 10 gives the discussion and conclusion
of this research.
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Chapter 2

Computer Networking

The Internet is one of the largest and most complex systems ever created by mankind. It connects
approximately 48% of the world’s population (ITU, 2017) with more than 17 billion devices (Leuth,
2018). These statistics show the enormous scale of this system, but what are the underlying
principles that make this system work? Before diving in the intrusion detection methods, it is useful
to know some fundamental principles in computer networking as they can help understanding
the information sent between devices. This chapter is used as a comprehensive overview on the
principles and structures of computer networking and states relevant terminology which is used
throughout this thesis.

2.1 Preliminaries

The internet is a system of interconnected computer networks which connects devices all over the
world. The term computer network seems outdated as not only desktop PCs are connected to
this system, but also other devices, such as smartphones, tablets and televisions. These devices
are called hosts or end systems. There are two paradigms in which hosts can communicate: the
client-server architecture and the peer-to-peer (P2P) architecture. These paradigms are important
to distinguish as they have different characteristics in the flow of information between hosts. In
the client-server architecture, a server provides services requested by one or more clients, such
as sending web pages. In the P2P architecture, information between hosts is transferred without
the use of a dedicated server. Hosts are both client and server in this framework. The blockchain
technology is one example of P2P communication (Kurose & Ross, 2012).

Hosts are connected by a network of communication links and packet switches. Information is sent
from one host to another via these links, which are either wireless or wired. Computer networks
can be seen as a network of highways and roads over which information is sent from one place to
another. This network is used by many independent trucks which carry packets containing parts
of the sent data. Packet switches, often routers and link-layer switches, are devices which forward
packets to the ultimate destination. According to Tanenbaum and Wetherall (2011), there are
two network characteristics which can be used to distinguish networks: transmission technology
and scale. In transmission technology, packets are sent either using unicasting, in which there is
exactly one sender and exactly one receiver, and broadcasting (or multicasting), where packets are
sent to all receivers in the network but only the intended receiver will respond. As the distance
between hosts differ, different transmission technologies (e.g. physical media) are required to send
packets. Figure 2.1 shows the scale sizes of different networks. The scale of the network determines
the range of hosts which are directly connected to the network. Local Area Networks (LAN) is
the network scale of interest in this thesis as this is the cover range of most intrusion detection
systems.
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Figure 2.1: Network ranges (Tanenbaum & Wetherall, 2011)

2.2 Network Architecture

Hosts are able to communicate with each other by sending packets travelling through one or mul-
tiple networks. Communication between end systems is governed by protocols. To understand
the notion of a protocol, consider the following human analogy. Two humans are introduced to
each other. Do they kiss each other on the cheek? Do they give each other a hand? When both
parties are not willing to do the same, communication will be difficult, if not stopped. Only when
both parties agree on the communication conditions they can start sharing information. In a more
formal way, a protocol is defined as: “... the format and order of messages exchanged between two
or more communicating entities, as well as the actions taken on the transmission and/or receipt
of a message or other event” (Kurose & Ross, 2012).

As there are many protocols defined for internet communication, network designers have structured
these protocols in stacked layers. The idea behind the stacked system is that each of these layers
provide a service to the layer on top of it. Figure 2.2 illustrates the communication of two hosts
using five layers of protocols. At the bottom, the physical medium is the layer in which the actual
communication occurs. Each layer on top is used by a protocol which provides services to protocols
in the layer above it. In the interface level, the operations and services which are available to the
upper layer can be observed.

Figure 2.2: Layers, protocols and interfaces (Tanenbaum & Wetherall, 2011)

Layers can offer two types of services to the layers on top of them: connection-oriented and connec-
tionless. The connection-oriented service has similarities with the telephone system. Connections
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need to be established before they can be used and when the service is no longer required, the
connections are terminated. In contrast, a connectionless service is modelled as the postal system.
Each message has a destination address and will be routed through the system to this destination
without the requirement of establishing a connection.

Services can be characterized by their reliability. They are either reliable or unreliable. Using a
reliable service implies that data will arrive in the intended format at its destination. Furthermore,
in a reliable service, the receiver will inform the sender that the messages are properly received.
In contrast, in an unreliable service there is no guarantee that data will actually arrive. A reliable
connection-oriented service seems optimal, but there are situations in which this is not desirable.
Table 2.1 gives several examples in which other service characteristics are more suitable. While
downloading a movie, it is important that each part of the movie is correctly sent to the receiver.
In contrast, when making a video call over the internet, such as a Skype video conversation, getting
the latest data is more relevant. With real-time applications real-time information is required. In
these situations, one does not want to get data that was sent some time ago. Some applications
do not require connections to be established as the establishment of a connection takes time and
getting the latest information is more important than receiving it in a reliable manner.

Table 2.1: Types of services requirements

Service Data Delivery Guarantee Example
Connection-oriented Reliable Movie downloading
Connection-oriented Unreliable Voice over IP
Connectionless Reliable Text messaging
Connectionless Unreliable Junk mails

2.3 Reference Models

As discussed in Section 2.2, the network architecture can be structured in layers. Researchers have
proposed several models to structure layers and assign protocols to these layers. These models
are the so-called reference models of the internet. Table 2.2 illustrates some of the proposed
models and their proposed layer scheme. The Open Systems Interconnection (OSI) model (Day
& Zimmermann, 1983) is one of the first steps in the standardization of protocols (Tanenbaum &
Wetherall, 2011). This model distinguishes seven layers in which the protocols can be assigned.
The TCP/IP stack has only four layers as it combines the session, presentation and application
layer in one layer and it does not include the physical layer. Two other reference models have
been proposed by Tanenbaum and Wetherall (2011) and Kurose and Ross (2012). While these
two reference models look similar, the creators define different purposes to the layers.

Table 2.2: Reference models and their differences

Layer OSI Model TCP/IP model Tanenbaum Kurose
7 Application
6 Presentation
5 Session Application Application
4 Transport Application Transport Transport
3 Network Transport internet Network
2 Data link internet Link Link
1 Physical Link Physical Physical

In this research, the network layer, transport layer and application layer are of interest for the task
of intrusion detection. Therefore, we will only discuss these layers in the following sections. For
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the physical layer and data link layer it is relevant to know that these layers provide the service of
sending bits/frames from one host to the other. Finding intrusions on these layers is beyond the
scope of this thesis.

2.3.1 Network Layer

The network layer is in between the data link layer and the transport layer. This layer provides
services to the transport layer. The main function in this layer is routing packets from source to
destination. This layer must know the topology of the network (links and routers) in order to
send packets through the network in such a way that packets reach their final destination. In the
network layer, each internet host or entity is identified with a network layer address.

internet Protocol

The main protocol in the network layer is the internet Protocol (IP). This protocol allows appli-
cations to carry out point-to-point communications. Nowadays, there are two versions available
and in use: IP version 4 (IPv4) (Postel, 1981a) and IP version 6 (IPv6) (Deering & Hinden, 1998).
The difference between these two versions is that the IPv4 address has a fixed size of 32 bits, while
IPv6 addresses are 128 bits long. The IPv4 32-bit addresses are often represented as four digits
separated by dots. So for example 1.2.3.1 corresponds to 00000001 00000010 00000011 00000001
in binary representation. With this representation, there are in total 232 different unique addresses
possible, which is around 4.3 billion devices. In this network address, the first three integers are
the subnetwork identifiers, while the last integer is the host identifier.

As the number of devices outpaced the number of available IPv4 addresses, there were not enough
addresses to uniquely identify all devices. Therefore, a new addressing system was required which
could uniquely identify more hosts. IPv6 is the IP version in which this became possible. In this
version, entities are identified with 128 bits. One IPv6 address consists of eight groups of four
hexadecimal digits. These groups are separated by colons. A hexadecimal is a positional system
in which numbers are represented using base 16. Each sequence of four bits identify the numbers
0 until 9 and A until F. Thus, the first two groups of a IPv6 address 2001:0db8 is a representation
of a sequence of eight times four bits: 0010 0000 0000 0001 0000 1101 1011 1000.

Figure 2.3: IPv4 packet header (Postel, 1981a)

Each IP packet consists of two parts: a packet header and its payload. Figure 2.3 shows the packet
header of an IPv4 packet. The header of a packet is the metadata of the traffic being transferred
over a network. These headers provide information concerning the communicating hosts which
can be used as sensor data for the intrusion detector. Important headers are the Source Address
and Destination Address which state the IP addresses of the communication hosts. The Protocol
section indicates which transport layer protocol is used. In Version, the IP version in usage is
stated, which is either 4 or 6. In the Total Length header section, the length of the IP packet
(header and payload) is stated. The only difference between the packet headers of an IPv4 packet
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and an IPv6 packet is the bit space of the addresses header.

2.3.2 Transport Layer

The two main protocols for sending data from one host to another in the transport layer are the
User Datagram Protocol (UDP) and the Transmission Control Protocol (TCP). The difference
between these protocols is that the former is connectionless, while the latter is connection-oriented.

User Datagram Protocol

UDP provides an unreliable connectionless transport service (Bonaventure et al., 2011). This
protocol provides a way for applications to send data without the requirement of establishing a
connection. Figure 2.4 shows the four headers of a UDP header. The Source/Destination Port
identifies the ports used in the communication between two hosts. Each hosts has 65, 535 ports on
which it can receive application specific information. With the use of ports, multiple applications
can communicate at the same time. This is the main benefit of the UDP service over connec-
tionless network layer service. The Length section shows the length of the UDP packet in bits.
One application protocol which uses UDP is DNS, which will be discussed later. The Checksum
section is a code used to protect data integrity.

Figure 2.4: UDP header (Postel, 1980)

Transmission Control Protocol

In contrast to UDP, TCP provides a reliable connection-oriented transport service. This protocol
is used by many applications because of the delivery guarantee. In this protocol, connections are
established before connections can be used. Hosts confirm received packets by replying to each
received packet with a packet containing an ACK (nowledgement) flag. To keep the order of the
packets in place, each packet is identified with a Sequence Number.

A TCP connection is established with a three-way handshake. Figure 2.5 illustrates this hand-
shake. Suppose host 1 wants to establish a TCP connection with host 2. The first action of host
1 is to send a packet containing a SYN (chronize) flag to host 2. The receiving host 2 will, in
case it is willing to communicate, reply to this connection attempt with a SYN flag and an ACK
flag by which it confirms that the SYN message from host 1 is received. When this acknowledge-
ment is received by host 1, the connection is established and both hosts can send data to each other.

TCP connections can be terminated in two different ways. The first one is a graceful connection
release, while the second is a more abrupt release. In the graceful way, the host will send a FIN (al)
flag at the end of transmitting all data. This flag indicates that the final data packet has been
sent and the host wants to terminate the connection. If the receiving host of this flag also wants
to close the connection, it can send a FIN flag and the connection is closed. The abrupt connec-
tion release is simple and can be performed by one host sending a segment with the RST (reset) flag.

Figure 2.6 shows the section of a TCP header. Similar to UDP, TCP uses ports to allow multiple
applications to send packets from source to destination. The Sequence Number, Acknowledgment
Number, Window and Checksum are important for sending data in a reliable manner. This

14



Figure 2.5: TCP three-way handshake (Tanenbaum & Wetherall, 2011)

information can be used to prevent congestion over the network. The performance of protocols is
however not the scope of this research. In between the reserved part and the Window part are
the flags which can be turned on or off. The URG(ent) and PSH (push) flag can be used to send
missed data or send data that is urgent.

Figure 2.6: TCP header (Postel, 1981b)

2.3.3 Application Layer

On top of the layer stack in the reference model is the application layer. This is the most visible
layer for users in computer networks in the sense that users can interact with applications in this
layer. We will describe the protocols in this layer that are used in this research to detect intru-
sions. The protocols of our interest are: Domain Name System protocol, File Transfer Protocol,
HyperText Transfer Protocol, Secucre Socket Layer and Secure Shell.

Domain Name System

In theory and in practice, resources could be reached by their IP addresses. But remembering
these addresses by heart is not human-friendly. Furthermore, when (Web) servers or hosts change
to a different IP address, all other hosts should be notified to this change. To overcome this issue,
high-level, readable names were introduced to disconnect machine names from machine addresses.
Automatically mapping these higher-level names with actual IP addresses is a service which is pro-
vided by the Domain Name System (DNS) protocol. The DNS itself is a hierarchical distributed
database with many so called nameservers containing parts of the database.

Mockapetris (1987) recommends that all domain names should be structured according to the so-
called Backus-Naur form. This is a technique to describe the syntax of a language, or in this case,
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the syntax of domain names. The specified grammar states that a domain name must be read
from left to right and sub-domains are separated by the dot character. For example, www.nos.nl
corresponds to the domain www inside the domain nos that belongs to the nl top-level domain.
Figure 2.7 illustrates the zones for which an nameserver provides the service of the DNS proto-
col. At the highest node of the hierarchy are the top-level domains and the root nameservers.
These top-level domains can be recognized by the e.g. .com, .org and .nl suffix at the end of a uni-
form resource locator (URL), one higher-level naming scheme. Domain names are often included in
a URL, but it is just one piece of the entire URL. The resolver then maps names into IP addresses.

Figure 2.7: DNS nameserver zones (Tanenbaum & Wetherall, 2011)

The DNS protocol consists of hosts sending DNS messages to these resolvers. A DNS message
consists of five parts, which can be seen in Figure 2.8a. The message starts with a Header, followed
by the Question for the nameserver or resolver. The Answer section is empty in the request, but
will be used in the response message. In the Authority section, information can be provided by
servers with a certain authority over some domain. In the last section, Additional information can
be placed by the resolver or server that was not requested in the question.

Figure 2.8b shows the information stored in the DNS message Header. The ID is a random value
chosen by the client. By this value, the server can store the question and it responds to the
question. The QR flag is 0 for DNS queries and 1 in DNS answers. The Opcode is the type of
query. AA is a bit that is set when the response has authority for the domain name. The TC bit
specifies that this message was truncated due to length greater than permitted on the transmission
channel. RD is set when the client requires the name server to pursue the query recursively. In
the RA bit, the server responds whether this was supported or not. The Z bit is reserved for
future usage. The RCODE is the response code of the server and has supported values between
0 and 5 according to Mockapetris (1987). The last four sections specify the number of entries in
the question, answer, authority records and additional records section, respectively.

The header section of a DNS message is followed up by the query section. Figure 2.9a shows the
format of this query section. QNAME is the domain name represented as a sequence of labels.
The QTYPE is a code that specifies the type of the query, while QCLASS specifies the class of
the query. Figure 2.9b shows the format of the Answer, Authority and Additional sections. In
the resource records, the NAME section specifies the domain name to which this resource record
pertains. The TYPE field defines the meaning of the data in the RDATA field, while CLASS
specifies the class of this data. The TTL is a integer that determines the time interval in which
the resource record may be cached. When this is 0, the resource record should not be cached.
RDLENGTH defines the length of the RDATA field, which is a variable length string of bytes
that describes the resource.
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(a) Message format (b) Message header

Figure 2.8: DNS meta information message and header sections (Mockapetris, 1987)

(a) Query format

(b) Resource record format

Figure 2.9: DNS query and resource records format (Mockapetris, 1987)

File Transfer Protocol

The internet was in the beginning primarily used for remote terminal access with e-mail and file
transfer. The File Transfer Protocol (FTP) is one of the protocols which provides the service of
sending a file from a server to a client. In this context, a file can be an arbitrary object (docu-
ment, spreadsheet, etc.). Sending a file across the internet is a complicated task, as computers are
heterogeneous, in the sense that each computer system only supports some file representations,
type information naming and access (Bonaventure et al., 2011).

In a FTP interaction, the client establishes a TCP connection to a FTP server and sends a series
of requests to which the server responds. The server does not send data responses on the same
connection as the client sends requests. Each time the server needs to download/upload a file,
the server opens a new connection. The original connection is called a control connection over
which commands are sent between the server and the client. The new connections that the server
establishes with the client are the data connections. Before a client makes a request for a file, it
first allocates a protocol port on the local operating system and sends this port number to the
server to use as a connection port. In Figure 2.10, a schematic overview of the FTP interaction
is given. It shows how server and user communicate using two different connections: one for data
transfer and one for sending commands or receiving replies. In this figure, the PI is the protocol
interpreter and the DTP is the data transfer process.

HyperText Transfer Protocol

At the heart of the World Wide Web is the HyperText Transfer Protocol (HTTP), an application-
layer protocol that defines how Web clients request pages from Web servers and how servers
transfer these pages to clients. HTTP consists of two programs: one for the client, who makes a
requests, and one for the server, who responds to the request. The client side in HTTP is imple-
mented in Web browsers, such as internet Explorer. HTTP typically utilizes TCP as underlying
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Figure 2.10: FTP model (Postel & Reynolds, 1985)

transport protocol.

The first documented HTTP version, version 0.9, was very limited in the sense that only one
method was available for the client and the server could only send hypertexts. The HTTP proto-
col versions that are nowadays mainly used in practice are the HTTP 1.0 and HTTP 1.1 versions.
These versions support more methods for clients and the response objects are not limited to simple
hyper texts anymore. The difference between these versions is that the 1.1 has the option to keep
TCP connections alive. In version 1.0, TCP connections are closed after the response of the server.
The latest version, 2.0, aims at outperforming 1.1 by using ordered, bidirectional streams over one
TCP connection (Grigorik, 2013). As 2.0 are not considered relevant for this research, only the
semantics of the 1.0 and 1.1 versions are discussed.

In HTTP communication, clients and servers communicate by sending text messages. Figure 2.11
illustrates the format of both messages. In a request, the header starts with a request line, followed
by request headers. In the response message, the header starts with a status line, followed by the
response headers.

Figure 2.11: HTTP message format (Hock-Chuan, 2009)

A request message will start with a request line in the message header. This header has the
following syntax:

method URI HTTP-version - Request Line

The request method defines what method the client wants to perform on the resource defined in the
uniform resource identifier (URI ). Table 2.3 gives a list of some methods and their descriptions.
In the request message, the client will end the request line with a HTTP-version indicating which
HTTP version the client wants to use.

Files can be reached by their URI, which is a unique string of characters. These URIs follow
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Table 2.3: Subset of HTTP request methods (Tanenbaum & Wetherall, 2011)

Method Description
GET Read a Web page
HEAD Read a Web page’s header
POST Append to a Web page
PUT Store a Web page
DELETE Remove the Web page
TRACE Echo the incoming request
CONNECT Connection through a proxy
OPTIONS Query options for a page

a predefined set of syntax rules. The URI generic syntax consists of a hierarchical sequence of
components referred as the scheme, authority, path, query and fragment (Berners-Lee, Fielding,
& Masinter, 2005). A URI example is given in Figure 2.12 with all components given. These
components are delimited by a set of special characters, namely: ?, :,#, /, [, ],@, !, $,& . We call
these character “reserved” as their usage is limited to the purpose of separating components.

Figure 2.12: URI example (Berners-Lee et al., 2005)

In the status line of a response message, the HTTP version is given, a status code and a reason
phrase:

HTTP-version status-code reason-phrase - Status Line

The HTTP-version is the version in which the server responds and accepts. The status-code is a
3-digit number that reflects the outcome of the request. The status-codes can be grouped by their
first digit, as can be seen in Table 2.4. The reason-phrase gives an explanation of the status code.

Table 2.4: HTTP status codes (Tanenbaum & Wetherall, 2011)

Status code Description Example
1xx Informational 100: server agrees to handle client request
2xx Successful 200: request succeeded
3xx Redirection 301: page moved
4xx Client error 404: page not found
5xx Server error 500: internal server error
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2.4 Security in Network Communication

Suppose two hosts want to communicate over the internet without intruders sniffing in their data.
One solution to prevent sniffing is by encrypting the transferred data. Hosts can encrypt sensitive
data in such way that sniffers cannot understand the messages sent. Before encrypted data can be
sent, both hosts must share keys which can be used to decrypt the message. With this technique,
data can remain confidential. The Secure Socket Layer and the Secure Shell both provide the
service of securing communication.

2.4.1 Transport Layer Security/ Secure Socket Layer

On top of the TCP transport layer is the Secure Socket Layer (SSL), which provides the service of
encrypting TCP connections. The SSL is the predecessor of the Transport Layer Security (TLS).
This service is often used to secure information that is sent over the internet, such as transactions.
In practice, HTTPS is basically HTTP combined with SSL security. SSL data transmission are
often sent on port 443. In the establishment of a TCP connection with SSL protection between
host A and host B, four keys are generated with cryptographic algorithms to encrypt and decrypt
the data:

• EA = session encryption key for data sent from A to B

• MA = session MAC key for data sent from A to B

• EB = session encryption key for data sent from B to A

• MB = session MAC key for data sent from B to A

The Message Authentication Code (MAC) key is used to keep the data integrity intact, while the
encryption key is used to keep the confidentiality of the data intact. When data is sent from host
B to A, Figure 2.13 shows that the data is encrypted as well as the MAC. In front of the data
are the record Type, Version of the SSL protocol in use and Length of the packet. Available SSL
versions are 1.0, 2.0 and 3.0.

Figure 2.13: SSL record (Kurose & Ross, 2012)

2.4.2 Secure Shell

Secure Shell (SSH) is the predecessor of Telnet and provides the service of operating network
services over a secure line. Applications often used here are remote command-login, login and
remote command execution. SSH connections mainly run over port 22. SSH is similar to SSL
as they both use the same cryptographic algorithms. The difference is that SSL uses digital
certificates while SSH does not.
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Chapter 3

Intrusion Detection Systems

An Intrusion Detection System (IDS) is the “burglar alarm” in the field of computer security
(Axelsson, 2000). One of the first IDS was created by Denning (1987). Since then, many IDS have
been proposed in literature. To put the developed methods in perspective, This chapter provides
the description of different IDS technologies and methods. The advantages and disadvantages of
each of those concepts are given.

3.1 Intrusion Detection/Prevention Systems

Scarfone and Mell (2007) define the task of intrusion detection as “ ... the process of monitoring
the events occurring in a computer system or network and analyzing them for signs of possible
incidents, which are violations or imminent threats of violation of computer security policies,
acceptable use policies, or standard security practices”. An IDS is software that automates the
process of intrusion detection on a computer or network system. The difference between an IDS
and an Intrusion Prevention System (IPS) is that an IPS is assigned with both the task of detecting
intrusions and preventing them. The IDS can therefore be seen as part of an IPS. Since we are
interested in the crucial step of detecting intrusions, we will focus on the capabilities of IDS
systems.

3.2 Detection Technologies

The two main IDS technologies are host-based and network-based intrusion detection (Axelsson,
2000). In this research we develop a network-based IDS, but it is still relevant to compare the
host-based IDS with network-based variant IDS and name the advantages and disadvantages of
both types of technologies.

3.2.1 Host-Based Intrusion Detection

A host-based Intrusion Detection System (HIDS) is integrated in a single host and looks for sus-
picious events in that machine. The detection software installed on the host is called an agent. In
practice, these agents are often deployed at critical hosts such as publicly accessible servers and
servers containing sensitive information. Figure 3.1 illustrates a HIDS deployment architecture.
Here, IDS systems are labelled as IDPS, as the authors combined IDS and IPS into IDPS. Hosts
have an IDS or IPS agent installed on its operating system. Other typical devices that can be
found in a network, such as a router, a switch and a firewall, are also shown in this example.
These devices are not part of the IDS, but it can be observed how the system is integrated in a
network consisting of all standard components.
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Figure 3.1: Host-based detection architecture (Scarfone & Mell, 2007)

One advantage of having an HIDS is that it can analyse the activities within encrypted network
communication as it is the endpoint of the communication. As the HIDS is installed on the host
and can obtain the keys of the corresponding host, it can decrypt messages and analyse these
packets. The decrypted information is then used as input for the intrusion detector. Furthermore,
as the HIDS is able to identify the host characteristics and configurations, deviating behaviour
can better be detected. Scarfone and Mell (2007) identify the following drawbacks in HIDS:

• As each host has an HIDS installed, considerable hosts resources are used, such as memory
processor and disk storage.

• Identification of intrusions are not performed real-time as alert data is sent in batches to
management servers to prevent overhead in the network.

• HIDS can be in conflict with existing security controls on the host.

3.2.2 Network-Based Intrusion Detection

A network-based Intrusion Detection System (NIDS) monitors network traffic for particular net-
work segments or devices to identify suspicious activity on the network, transport and application
protocol level. These systems are often implemented at the edge between networks. The sensors
of a network-based IDS are either deployed inline or passive. Figure 3.2 gives an example archi-
tecture of both deployment techniques. An inline sensor is deployed in such way that network
traffic is monitored by passing it through the sensor. These sensors are typically placed as network
firewalls or other network security devices. In contrast, a passive sensor is placed in such way that
the real internet traffic is copied and this copied traffic is used by the IDS as input data.

A NIDS can collect all sorts of data regarding hosts characteristics such as the operating system
and the application usages. Furthermore, network characteristics can be taken into account. There
are, however, some limitations for these kinds of systems (Scarfone & Mell, 2007):

• The method cannot detect attacks within encrypted network traffic by packet analysis.

• When the network is in high load conditions, full packet analysis cannot be executed due to
overhead.

• Network-based detectors/sensors are vulnerable systems as they are susceptible to various
types of attacks, mostly involving large volumes of traffic.

22



(a) Inline placement (b) Passive placement

Figure 3.2: Network-Based IDS sensor architecture (Scarfone & Mell, 2007)

3.3 Detection Methodologies

This section describes the IDS methodologies. The major methods are the signature-based detec-
tion and anomaly detection methods. Another method which is not studied often is the stateful
protocol analysis. As the stateful protocol analysis approach is similar to the approach used in this
research, it is relevant to describe. This section will give a description of all three methodologies
and state an overview of several advantages and disadvantages of the three methods.

3.3.1 Signature-Based Intrusion Detection

When known threats are identifiable by a set of patterns, these patterns form the signature of
this attack. These signatures can be used to stop threats which comply to these patterns. One
example of a signature is an attacker who tries to log in with a default username such as “admin”
or “root” and a default password. In signature-based detection, also known as misuse detection or
knowledge-based detection, observed events are compared with a list of these so-called signatures.

Figure 3.3 gives the scheme describing how intrusions are detected using a signature-based method.
When events resemble a signature, the detection method gives an alert. It is extremely effective
in detecting known threats. The drawbacks of this method are (Liao, Richard Lin, Lin, & Tung,
2013):

• It lacks effectiveness in detecting previously unknown threats and variants of known attacks.

• It is time consuming to maintain knowledge and keeping the signature list up to date (Debar,
Dacier, & Wespi, 1999).

• It does not track and understand complex communication because it only looks at infor-
mation “on the fly” without looking at previous information. The system is in some sense
memoryless as it only tries to identify patterns which could indicate malicious events.

Signature-based intrusion detection systems are often combined with honeypots. A honeypot is a
defensive tool to trap attackers by fooling the attacker thinking they are attacking a real system
while it is actually a decoy. It is possible to find new attacks and gather new rules to automatically
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detect some of the new attacks (Yon Tang & Shigang Chen, 2005). One issue with honeypots is
that when attackers know that a network has honeypots, they will avoid these honeypots in next
attacks.

Figure 3.3: Signature-based detection architecture (Mudzingwa & Agrawal, 2012)

3.3.2 Anomaly-Based Intrusion Detection

In anomaly-based detection, also known as behaviour-based detection, events are compared with
each other to identify which instances are significantly different. One major assumption in
anomaly-based detection is that intrusions behave differently than normal behaviour. These intru-
sions are considered outliers or anomalies. Figure 3.4 illustrates the architecture of anomaly-based
detection. The method learns profiles which represent activities generated by normal users on a
network. These profiles are developed by monitoring network characteristics over a period of time.
Activities that differ from the expected behaviour might indicate that they are malicious.

Figure 3.4: Anomaly-based detection architecture (Mudzingwa & Agrawal, 2012)

One major advantage of this method is the ability to identify previously unknown attacks. Profiles
are generated by training over a period of time. These profiles can be either static, but can also
be dynamic over time. As the system changes over time, the corresponding profiles should change
over time. The drawbacks of this methods are (Scarfone & Mell, 2007):
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• Creating profiles which represent normal behaviour is challenging by the complexity of reality.
User behaviour is very diverse so constructing profiles can be difficult.

• Alerts are hard to validate as the number of events causing the alert is hard to analyse by
the complexity of the model or the events.

3.3.3 Stateful Protocol Analysis

A third method in Intrusion Detection Systems is stateful protocol analysis, or “deep packet in-
spection”. Stateful protocol analysis is the process of comparing predefined profiles of generally
accepted definitions of benign protocol activity against observed events on the network. In con-
trast to the previous methods, stateful protocol analysis relies on vendor-developed profiles that
determine acceptable and unacceptable protocol events. The term ‘stateful’ indicates that the IDS
should track the state of all protocol levels (network, transport, application). For example, for a
TCP-connection to be established, the connection starts in an unestablished state. If the connec-
tion is established with the normal three-way handshake, then the state changes to an established
connection state. When the three-way handshake is not performed correctly, this is observed by
the method. By monitoring commands, unexpected sequences of commands can be detected.

Figure 3.5: Stateful Protocol Analysis Architecture (Mudzingwa & Agrawal, 2012)

Figure 3.5 shows the general architecture of the stateful protocol analysis. Behaviour is compared
with the expected behaviour observed in the protocol. If the behaviour deviates from the ac-
cepted behaviour, the IDS alerts the user. There are, however, some drawbacks with this method
(Scarfone & Mell, 2007):

• The analysis is very resource-intensive by state tracking in many sessions and the complexity
of the task.

• The method cannot detect attacks that do not violate the standards of the accepted protocol
behavior.

• The protocol model used by the IDS might conflict with implemented protocols.

As stateful protocol analysis did not succeed to be integrated and adapted in IDSs because of the
discussed drawbacks, most research mainly concentrates on anomaly-based and signature-based
methodologies (Mudzingwa & Agrawal, 2012). In this research, protocol specified information
is taken into account for the construction the anomaly detector. However, we do not take the
state of the protocol in consideration but we use features describing if the protocols are actually
vendor-defined utilized. Therefore, the constructed features utilizes the idea of stateful protocol
analysis. To be more precise, Chapter 6 will show which features are created for the different
protocols.
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Chapter 4

Literature Review

Anomaly or outlier detection is the study of finding patterns in data which do not conform to
expected or normal behaviour. The first work which combined multiple outlier detection tech-
niques from different fields is given in Chandola, Banerjee, and Kumar (2007). Later on, the same
authors Chandola, Banerjee, and Kumar (2009) provide an overview of anomaly detection tech-
niques in multiple application. Applications in which anomaly detection is applied are intrusion
detection, fraud detection, fault detection, medical informatics, image preprocessing and sensor
networks. The authors define six techniques in which anomaly detection can be applied (e.g.
classification, clustering, and nearest neighbour based). Nowadays, anomaly detection algorithms
are combined with Deep Learning techniques, such as auto encoders and convolutional neural
networks (Chalapathy & Chawla, 2019). Furthermore, real-time anomaly detection is of interest
in the literature, especially for big data datasets (Habeeb et al., 2019).

One of the most recent anomaly detection application in cybersecurity is given in Klein, Bhulai,
Hoogendoorn, Van Der Mei, and Hinfelaar (2018). Unsupervised techniques are applied on a par-
tially labelled dataset. As the data is partially labelled, it is hard to measure whether the results
are valid. This dataset is however not publicly available in contrast to the datasets that are used
in this research. Our research has however a lot of similarities in the approach manner.

Akoglu et al. (2015) provide a general, comprehensive and structured overview of the state-of-
the-art methods for anomaly detection in data represented as graphs. The authors distinguish
four types of anomalous behaviour which can be measured in graphs: anomalous vertices, edges
subgraphs and/or event and change detection. In the last part, change in the dynamic changing
network is detected, which is also of interest in this research. To detect these anomalous types,
Akoglu et al. (2015) determine five methods: community detection, compression, matrix/tensor
decomposition, distance metrics and probabilistic models. In this research, the focus is on finding
suitable distance metrics to identify malicious network changes.

Pincombe (2005) uses ten different distance metrics on TCP/IP traffic to identify differences be-
tween sequential networks. These distances are used as time series to fit an ARMA model. This
model makes a prediction of the value for the next distance. When the calculated residual, which
is the difference between the expected and the real value exceeds an certain threshold, the change
is flagged as anomaly. Gaston, Kraetzl, and Wallis (2006) present the idea of detecting abnormal
change in the network time series by using the graph diameter as distance metric between sequen-
tial graphs. Papadimitriou, Dasdan, and Garcia-Molina (2010) propose five similarity schemes
to determine the similarity between two graphs. The Signature Similarity scheme is a very good
measure for detecting skipped rows, missing connected sub-graphs and missing random vertices.
Berlingerio, Koutra, Eliassi-Rad, and Faloutsos (2012) propose the NetSimile algorithm which
calculates similarities by extracting structural features for each graph and comparing these fea-
tures between graphs by the Canberra Distance. The structural features are consisting of node
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information such as the number of neighbours, clustering coefficients and information regarding
Egonets (Akoglu, McGlohon, & Faloutsos, 2010). Koutra, Vogelstein, and Faloutsos (2013) state
that their algorithm DeltaCon is a principled, intuitive, and scalable. The Fast Belief Propogation
is used to compute node affinities, where most other studies use Pagerank, personalized Random
Walks with Restarts (RWR) or lazy RWR. The pairwise node affinity scores are computed for
each graph and the differences between them are calculated using the Matusita distance.

Le, Jeong, Roman, and Hong (2011) used traffic dispersion graphs to model network traffic over
time. There are two metrics to describe the graphs: static metrics and dynamic metrics. To cal-
culate the distance between two consecutive graphs, the joint degree distribution is calculated for
both graphs and afterwards the euclidean distances is taken between these JDD’s. This method
is validated using the POSTECH and CAIDA dataset containing DDoS attacks.
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Chapter 5

Data

This chapter discusses the three datasets used in this research. First, the challenges in creating
intrusion detection datasets are given. These challenges give an intuition why the perfect intrusion
detection dataset does not yet exist. Researchers have tried to generate various intrusion detection
datasets and three of them were selected for this research: the ISCX-IDS-2012, CIC-IDS-2017 and
the UNSW-NB15 dataset. A detailed description is given on how the datasets were composed.
For the ISCX-IDS-2012 and the CIC-IDS-2017 dataset, some inherent issues will be stated. At
last, the data extraction will show how raw internet traffic is transformed into protocol specific
log files.

5.1 Intrusion Detection Datasets

A major challenge in anomaly-based intrusion detection is the lack of appropriate publicly avail-
able datasets for evaluating and comparing intrusion detection systems. This gap is caused by the
nature of the data: inspecting network traffic can expose sensitive information, including confi-
dential or personal communication (Sommer & Paxson, 2010). Besides that, publicly sharing raw
internet traffic might violate privacy laws. To overcome this problem, researchers have studied two
possible solutions: simulation and anonymization. The advantage of using simulation a network
traffic generator is that it is free of privacy or sensitivity concerns. Unfortunately, as real internet
traffic is very complex, simulating realistic traffic is extremely difficult (Floyd & Paxson, 2001).
Anonymizing internet traffic has gained little traction as fear exists that sensitive information can
still leak, as can be seen in (Coull, Wright, Monrose, Collins, & Reiter, 2007).

Most intrusion detection systems are tested on two public available datasets: DARPA and the
KDD Cup dataset derived from the DARPA dataset (Sommer & Paxson, 2010). These datasets
are, however, two decades old and are not adequate for benchmarking current practice. This is
because network behaviour has evolved and attacks are different than twenty years ago. Therefore,
the community responded by creating multiple new datasets in the last years. Ring, Wunderlich,
Scheuring, Landes, and Hotho (2019) provide an overview of all network-based intrusion detec-
tion datasets from 1998 until 2017. In total, 34 different datasets were investigated and a short
description for each dataset is given. In the view of the authors, a perfect network-based dataset
should i) have up-to-date and a broad range of attacks, ii) have correctly labelled traffic, iii) be
publicly available, iv) contain real network traffic and v) span over a long period.

To ensure reproducibility, intrusion detection methods should be tested with at least one publicly
available dataset. It is even better to use several public datasets to avoid overfitting to a certain
dataset. By recommendation of Ring et al. (2019), the selected datasets were the ISCX-IDS-2012
(Shiravi, Shiravi, Tavallaee, & Ghorbani, 2012), the CIC-IDS-2017 (Bhuyan, Bhattacharyya, &
Kalita, 2015) and the UNSW-NB15 (Moustafa & Slay, 2015) dataset for IDS evaluation. The next
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sections describe how the data is generated and how normal and malicious traffic is generated for
all datasets.

5.2 ISCX-IDS-2012

Shiravi et al. (2012) suggest to move away from static and one-time intrusion detection datasets,
because internet networks are not stationary but dynamically evolving. Instead, the authors sug-
gest that datasets should be dynamically generated with up-to-date intrusions and latest network
behaviour. These datasets should be modifiable, extensible and reproducible to ensure that the
network traffic composition reflects recent network developments. In this view, the authors com-
posed a systematic approach to generate such datasets by simulating network traffic to generate
frequently new datasets rather than one-time dataset per study. This traffic is generated by using
the notion of so-called profiles. A profile contains an abstract representation of network events
and behaviour. To be more precise, internet events generated by real users are abstracted in pro-
files. These profiles are used by computer agents to mimic user’s behaviour to simulate internet
traffic. By using the abstract version of user’s behaviour, the behaviour does not depend on the
structure of the network. The dataset which is generated using this approach by the authors is
the ISCX-IDS-2012.

5.2.1 Experimental Design

The ISCX-IDS-2012 dataset was generated by continuously simulating internet traffic for exactly
one week starting from Friday 11 June until Friday 18 June 2010. internet traffic is generated
by using two types of profiles to compose benign and malicious traffic. On the one hand, attack
profiles attempt to represent attack scenarios, while on the other hand the benign profiles are
used to generate benign internet activities. There are four attack scenarios constructed, for which
different attacks are used. The scenarios and attacks can be found in Table 5.1.

Table 5.1: ISCX-IDS-2012 attack scenarios

Scenario Day Description Attacks

1 Sunday 13 June
Infiltrating the
network from the inside

Infiltrations, backdoors,
portscans, exploits

2 Monday 14 June
HTTP denial of
service attack

Portscans, exploits,
DDoS slowloris

3 Tuesday 15 June
DDoS using
an IRC Botnet

Backdoor, DDoS Botnet

4 Thursday 17 June Brute Force SSH
SSH Brute Force,
exfiltration

The β-profiles are composed by abstracting internet behaviour of the Canadian Institute for Cy-
bersecurity (CIC) users. The following protocols were used to profile user’s activity: HTTP, FTP,
SSH and e-mail protocols. The DNS protocol is indirectly used for mapping hosts with their
corresponding IP addresses. Figure 5.1 shows the testbed architecture of the experiment. 21 in-
terconnected workstations are divided over four distinct sub-networks. The fifth LAN consists of
three servers that provide web, email, DNS and other services. A sixth LAN is set up to conduct
monitoring and maintenance of workstations and servers. A set of servers is used for monitoring
and capturing the network traffic. Hosts have multiple IP addresses (IPv4 private, IPv4 public
and IPv6). A mapping of these addresses and the corresponding host can be found in Appendix
A.1. This address mapping can be used to map network traffic to the designated host.
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Figure 5.1: ISCX-IDS-2012 testbed network architecture (Shiravi et al., 2012)

5.2.2 Inherent Problems

Unfortunately, there are some issues with the ISCX-IDS-2012 data. First of all, the dataset pro-
vided by the authors is not directly usable for applying machine learning methods. With several
categorical features, some machine learning algorithms cannot directly be applied. This implies
that this dataset cannot be used as a benchmark for all machine-learning techniques. Secondly,
the authors did not provide a labelling scheme to manually check the connections. In the dataset,
connections are either benign or malicious, so it is not verifiable which attack is occurring when
connections are malicious. On the basis of the attacks descriptions in Shiravi et al. (2012), a new
labelling scheme was created for the ISCX-IDS-2012 dataset, which can be found in Appendix
A.2. The original dataset provided by the authors was used to acquire and to confirm the time
stamps, hosts (IP addresses and ports) and attacks.

When comparing the meta-data of the attacks in the paper and the meta-data of the attacks in
the dataset, there appears a striking difference. Some connections which are labelled as malicious
are not mentioned in the paper. On Sunday 13 June for example, 314 connections are labelled
as attacks, but are not acknowledged in the paper. Other malicious classified connections which
are not discussed in Shiravi et al. (2012) can be found in Table 5.2. The ∗ symbol indicates that
multiple ports are used.

Table 5.2: ISCX-IDS-2012 connections labelled as malicious without documentation

Start End Orig Address Resp Address Orig Port Resp Port
14-6 18:26 14-6 21:26 192.168.3.117 131.202.241.200 2070 80
14-6 21:17 14-6 21:17 217.140.88.36 192.168.5.122 17316 22
14-6 22:43 14-6 22:44 200.153.221.172 192.168.5.122 46216 22
15-6 02:58 15-6 02:58 212.77.187.249 192.168.5.122 * 22
15-6 21:36 15-6 23:38 217.76.44.243 192.168.5.122 * 22
15-6 11:16 15-6 11:16 141.64.8.215 192.168.5.122 * 22
17-6 15:09 17-6 15:13 58.211.72.43 192.168.5.122 * 22
17-6 16:32 17-6 16:36 131.202.243.90 192.168.5.122 * 21
17-6 21:35 17-6 22:00 131.202.243.90 192.168.5.122 34446 22
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5.3 CIC-IDS-2017

The CIC-IDS-2017 dataset is one of the most recent generated network intrusion detection datasets.
Sharafaldin, Habibi Lashkari, and Ghorbani (2018) state that the dataset covers all necessary cri-
teria which are required for a network-based intrusion detection dataset. One such criterion is
that network intrusion detection datasets should contain up-to-date attacks. The authors use a
wide variety of popular attacks, such as denial of service attacks and port scans. The provided
dataset was constructed using CICFlowMeter, a Java developed program by the authors, that
derives bidirectional flows from raw internet traffic into 80 statistical features. The authors pri-
oritize generating realistic background traffic when creating an intrusion detection dataset. To
this end, the authors also use benign profiles similar to Shiravi et al. (2012). This system profiles
the abstract behaviour of human interactions and generates realistic normal background traffic
by using these profiles. In the CIC-IDS-2017 dataset, 25 different B-Profiles are used based on
HTTP, HTTPS, FTP, SSH and email protocols.

5.3.1 Experimental Design

The capturing period of the network traffic consists of five work days. The experiment started on
Monday 3 July 2017 and ended on Friday 7 July 2017. Raw internet traffic was daily captured
from 9 a.m. until 5 p.m. The first day of the experiment only contains normal traffic, while the
other days of the experiment contain both benign and malicious traffic. The attacks can be found
in Table 5.3.

Table 5.3: CIC-IDS-2017 attack scheme

Day Attacks
Tuesday 4 July Patator - FTP, Patator - SSH

Wednesday 5 July
DoS Slowloris, DoS SlowHTTPTest,
DoS Hulk, DoS Goldeneye, Heartbleed

Thursday 6 July
Web Attack Brute Force, Web Attack XSS,
Web Attack SQL Injection, Infiltrations, Portscans

Friday 7 July Botnet Ares, Port Scans, DDoS LOIC

The testbed architecture is divided into two networks. Figure 5.2 shows these two networks. On
the left side, there is the victim network, which consists of all usual components of a normal
network. Similar to the ISCX-IDS-2012, there are several servers which provide services to the
workstations in the victim network. On the right side, there is an attack network with four op-
erating systems. These are the workstations from which attacks were executed. Sharafaldin et
al. (2018) only provide IPv4 addresses of the testbed architecture, but we gathered additional
information about the victim network addresses such as the IPv6 and the MAC addresses. This
information can be used to link IP addresses with their corresponding host machine. These asso-
ciations can be found in Appendix B.1.

5.3.2 Inherent Problems

The CIC-IDS-2017 dataset is the successor of the ISCX-IDS-2012 dataset. The authors provide
more meta-data about the experiment and have improved some issues of the ISCX-IDS-2012
dataset. While some problems were solved, there are still some issues with the new dataset. These
issues can be divided in two parts: feature problems and labelling issues.

The CIC-IDS-2017 dataset was constructed by generating bidirectional flows using the CICFlowMe-
ter1 tool on the captured raw network traffic. The program is coded in such way that TCP connec-

1The CICFlowMeter version was downloaded in May 2019.
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Figure 5.2: CIC-IDS-2017 testbed network architecture (Sharafaldin et al., 2018)

tions are closed when a packet with a FIN flag is received. Figure 5.3 shows the code comments in
the CICFlowMeter which indicate TCP connections are stored after the first FIN flag. However,
TCP communication does not necessarily stop at the first FIN flag. The receiver of the data can
still send packets to acknowledge that the packet with the FIN flag has arrived. CICFlowMeter
unintentionally splits TCP communication in two flows, where the last part could only consists of
the receiver acknowledging that the FIN flag has arrived. This results in many TCP connections
divided in two bidirectional flows and thus many redundant data instances.

Figure 5.3: CICFlowMeter comments on ending TCP connections (Lashkari, 2019)

The creators of the CICFlowMeter state that 83 statistical features are generated, but not all of
these features are relevant. For example, some features do not differ from their default value zero.
In the code of the CICFlowMeter, it appears that these features were not updated when executing
the program. Furthermore, there seems to be a mistake in flag counts in TCP segments. Only
the flags in the first packet of a flow are counted. Flags in later packets were ignored for unknown
reason to us. At last, some of the features are exactly same, but have different descriptions, such
as total fpackets and total FWwd Packet which both count the number of forwarded packets. This
results in strong correlation in the independent variables, which is undesirable when applying
anomaly detection algorithms.

To check the labelling scheme of the CIC-IDS-2017 dataset, the provided meta-data2 of the attacks
were compared with the meta-data of the attacks in the provided dataset. Apparently, there are
some inconsistencies with the labelling scheme as well as some of the labels generated for the
connections. There are some cases in which connections were labelled as malicious while they
are actually benign and vice versa. Another issue in the published CIC-IDS-2017 is that the
connections are only labelled in one direction. Connections from the attacker were labelled as
malicious, but the connections from the victim to the attacker are labelled benign. Furthermore,
the start times and end times of the attacks seem inaccurate as some of the attacks actually start
earlier or later than stated in the scheme. Table 5.4 gives an overview of connections which seem
to be labelled incorrectly labelled. To overcome these labelling issues, we provide an improved
labelling scheme, which can be found in Appendix B.2.3

2https://www.unb.ca/cic/datasets/ids-2017.html
3In correspondence with the authors, they excluded attacks as it would “... affect results on the learning system”.
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Table 5.4: CIC-IDS-2017 list of discovered labelling issues

Day Problem Description

Tuesday
Observation: One connection using port 80 is labelled as FTP attack
Remark: FTP attack is on port 21
Amendment label: BENIGN

Wednesday
Observation: Several connections around 14:24 have the label DDoS Slowloris
Remark: DDoS Slowloris was in the morning
Amendment label: BENIGN

Thursday

Observation: The infiltration attack on network host 25 is labelled BENIGN
Amendment label: Infiltration
Observation: Portscans from host 192.168.10.8 to other hosts are BENIGN
Amendment label: Portscan

Friday
Observation: Connections from 6.6.13.28 and 57.7.235.158 are Botnet attacks
Remark: Botnet attack do not come from these IP addresses
Amendment label: BENIGN

5.4 UNSW-NB15

The last dataset used for this research is UNSW-NB15 (Moustafa & Slay, 2015). This dataset is
a combination of real traffic and attack activities in the network traffic. Here, normal traffic is
generated using the IXIA PerfectStorm tool to create both kinds of traffic. Rather than creating
profiles of several users, the authors use the IXIA tools to simulate a flow of normal traffic.
The dataset was created by capturing two days: 16 hours on 22 January 2015 and 15 hours on
17 February 2015. In these days, both normal and malicious traffic traces were generated by
the PerfectStorm tool. The following attacks were constantly executed during the simulation:
Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode and Worms. On
the first day of the simulation, one attack per second was generated, while on the second day of the
experiment 10 attacks per second were executed. Figure 5.4 shows the testbed of the experiment.
Three virtual servers were used to generate traffic. Servers 1 and 3 were configured to generate
normal behaviour, while server 2 generated normal and malicious activities.

Figure 5.4: UNSW-NB15 testbed network architecture (Moustafa & Slay, 2015)

It seems rather optimistic to exclude attack so that the performance of learning systems increases as only obvious
attacks will be learned.
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5.5 Data Extraction

We acquired the raw internet traffic in .pcap or .pcapng form from each dataset. The latter format
is the new generation (ng) pcap form. There were some broken packets in the raw internet traffic,
so the tool pcapfix (version 1.1.4) is used to fix these packets. Afterwards, Zeek4 (formerly BRO)
is executed on the pcap files to generate log files for each specific protocol. Zeek is an open-source
network traffic analyser which stores protocol specific information in separate files. Packets are
read in an event engine and protocol specific log files are created where the events are stored in.
For this research, the following log files and their according protocols are considered: conn.log
(TCP,UDP), dns.log, ftp.log, ssh.log, ssl.log and http.log.

Figure 5.5: Data extraction steps

4https://www.zeek.org/
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Chapter 6

Feature Engineering

The network traffic analyser Zeek is used to transform raw network traffic into log files. Each
of these files describe the usage of a certain protocol observed on the network. For example,
the http.log file consists of records which shows the HTTP header fields used in a session. This
chapter describes how these protocol log files are prepared for machine learning purposes. First,
the session features are discussed which uniquely identify each connection. Afterwards, for each
of the considered protocols, it is shown how features are composed.

6.1 Connection Identification

Packets streams are divided in connections by the event engine of Zeek. Table 6.1 shows the
identification features describing a single connection. Each connection is assigned with a random
unique identifier to distinguish connections from another. The id features show the IP addresses
and ports of the communicating hosts. The originator (orig) of the connection is the host who
sends the first packet to the responding (resp) host. The timestamp ts feature indicate the moment
of the first packet. The duration of a connection can be calculated by looking at the time between
the first and the last packet in a connection.

Table 6.1: Zeek generated identification features

Feature Description Type
uid Unique identifier of the connection String
id.* h IPv4 or IPv6 address of endpoint * String
id.* p Port used in endpoint * String
ts Timestamp of the first packet Timestamp
ts Timestamp of the last packet Timestamp
duration Duration of the connection Deltatime

*={orig,resp}

6.2 Network and Transport Layer

The conn.log file consists of data concerning the transport layer protocols TCP and UDP. Zeek
also logs the ICMP data, but this protocol is not studied in this research. The log file is divided
in two parts: one describing all TCP information and one describing only UDP. This main reason
behind this division is the different characterizations of the protocols, as is discussed in in Chapter
2. For UDP, “connections” can be interpreted as sequences of packets going from originator to
responder with their corresponding ports. As there are overlapping features between the protocols

35



concerning bytes and packets transmitted, these features are discussed first in the context of the
IP layer. Afterwards, the features that only concern TCP or UDP are discussed.

6.2.1 IP

On IP level, Zeek observes the number of bytes and packets transmitted send over the network.
Table 6.2 shows the standard Zeek features concerning these units of information and two new
created features. Firstly, the feature ∗ bpp is a summary statistic which calculates the average
bytes per packet. Secondly, the PCR feature calculates the Producer Consumer Ratio which
measures a normalized indication of the information transfer between two hosts. When the ratio
is close to one, it is a pure push (e.g. FTP upload), while if the ratio is close to minus one, it is
likely a pure pull (e.g. HTTP download) (Bullar & Gerth, 2014).

Table 6.2: IP layer features

Feature Description Type
* bytes Bytes send by endpoint * Integer
* pkts Packets send by endpoint * Integer

* bpp ∗ bytes
∗ packets Float

PCR orig bytes−resp bytes
orig bytes+resp bytes Float

*={orig,resp}

6.2.2 TCP

Recall from Chapter 2 that TCP connections should be established before they can be used. TCP
connections are different from UDP as the connection are reliable and connection-oriented. The
network layer is, however, not reliable so it occurs that sometimes packets are dropped. When
this happens, packets need to be retransmitted. A feature generated by Zeek is the missing bytes
feature, which counts the number bytes dropped. This feature might indicate congestion which
could indicate malicious behaviour seen on the network. While this feature is useful for the TCP
protocol, this feature is meaningless in UDP.

The connection-oriented character of TCP is logged by Zeek using two features: conn state and
history. The first feature describes the state of the connection at the end of the connection while
the latter feature shows the flags observed in the packets transferred in the connection. These
two features are depended as flags observed on the wire determine the state of a connection. In
the Zeek documentation of the conn.log1, descriptions are given for each state in the conn state.
We believe that recording the events seen in the establishment of a connection separately from
the termination might be more appropriate rather than looking at the state of a connection at
the end of a connection. Primary reason for this preference is the fact that TCP connections can
still be open by keep-alives and later be closed. Misuse could be better detected by observing the
behaviour in the establishment and the behaviour of the hosts in the termination of the connec-
tion. Therefore, new features are proposed to describe the establishment behaviour between hosts
and the termination of the connection. Table 6.3 shows the features which indicate how TCP
connections are established. Each of these features describe a situation which could occur in the
establishment of a connection. The feature WEIRD combines all other situations which do not
belong to the first six cases. Where Table 6.3 describes the opening of a connection, Table 6.4
shows the cases on how TCP connections can be terminated, or remain open. This set of features
replaces the Zeek generated conn state and history features.

1https://docs.zeek.org/en/current/scripts/base/protocols/conn/main.zeek.html
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Table 6.3: TCP connection establishment features

Feature Description
S0 No SYN packet observed
S1 Only a packet with a SYN flag is observed
S2 Originator sends SYN, responder reacts with SYN-ACK, but no final ACK
S3 The connection is normally established according to the three-way handshake
REJ1 Originator sends SYN packet but replied with a RST packet by the receiver
REJ2O SYN and SYN-ACK are exchanged, but followed by RST send by originator
REJ2R SYN and SYN-ACK are exchanged, but followed by RST send by responder
WEIRD A SYN packet is observed, but none of the above cases were observed

Table 6.4: TCP connection termination features

Feature Description
OPEN A connection is established, but no FIN or RST flag is observed
TERM Connection gracefully terminated by originator and receiver
CLSO Originator sends a FIN flag but receiver did not respond with FIN or RST
CLSR Receiver sends FIN flag but originator did not respond with FIN or RST
RSTR Receiver abruptly ends connection with a RST flag
RSTO Originator abruptly ends connection with a RST flag

Another feature logged in the conn.log file is the service describing which application uses the
connection. The port number of the responding host often identify the protocol in usage, e.g.
HTTP port 80, FTP port 21, SSH port 22. For the TCP layer, the following services are recorded
in the three datasets: HTTP, FTP, SSL, SSH, POP3, SMTP, IMAP, ICR, RFC, DCE/RPC and
KRB. For each of these protocols, a binary feature is created indicating whether these protocols
are used.

6.2.3 UDP

UDP is an unreliable connectionless protocol. Where history and conn state are relevant for TCP
connections, in UDP they are meaningless. As hosts are either sending data or they do not, the
features history and conn state are replaced with features shown in Table 6.5. Just as in the
TCP features, the feature service is one-hot-encoded for next protocols: DNS, KRB and DHCP.
The last feature engineering step in the UDP connection dataset is the transformation of the
orig ip bytes and resp ip bytes. The minimum size of an IP packet with an empty datagram is
28 bytes for IPv4 (20 bytes IPv4 and 8 bytes UDP) and 48 for IPv6 (40 bytes IPv6 and 8 UDP).
As almost in all cases, seen by data analysis, UDP datagrams are empty, two variables are created
which indicate whether there is at least one packet in the connection with payload. Therefore, the
IP bytes features are replaced with the new features stated in Table 6.5.

Table 6.5: UDP Layer Extracted Features

Feature Description Type
∗ active Endpoint * sends at least one packet Binary
∗ min size Endpoint * sends at least one UDP datagram containing payload Binary

*={orig,resp}
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6.3 Application Layer

6.3.1 DNS

In the DNS protocol, clients request address translation from URI to IP addresses or vice versa. As
has been shown in Chapter 2, the DNS information exchange consists of a question and an answer.
Therefore, to create usable features, we distinguish the creation in three parts: first analysing the
DNS header section, then then question section and at last the answer section. In the header
section, the AA, RA, RD and TC (Chapter 2) can be used as boolean features indicating whether
these flags are used. The trans id only identifies the query to use the answer again when the
query reoccurred. As this is random, this is ignored. With rcode name and rcode being the same,
only rcode will be used and is one-hot-encoded using the values from Mockapetris (1987). The
question that a host requires an answer to has a qclass and qtype. These are one-hot-encoded
using the recommended values in Mockapetris (1987) and Cheung (2020).

Table 6.6: DNS client and server reply codes

Feature * Description Type
qclass * 0,1,3,4,254,255 Query class * by client Integer
qtype * 1,2,5,6,12,15,16,20,28 Query type * by client Integer
rcode * 0,1,2,3,4,5,6 Reply code * by DNS server Integer

A DNS server responds the question in the answer section. As there could be multiple addresses in
one query, the feature answers n counts the number of IP addresses answered by the DNS server.
Each answer has a Time To Live (TTL) for which the maximum, mean and minimum values are
calculated. When there is no answer, these values will be 0. As hosts can send multiple queries
at the same time, the DNS protocol connections are aggregated to prevent double occurrences of
the same query in the same connection.

6.3.2 HTTP

The http.log file consist of all HTTP messages exchanged between clients and servers. The content
of these messages are described in Chapter 2. First, the request line in the request message consists
of the method, version and URI. Table 6.7 shows the created features for the method and version.
Fielding and Reschke (2014) and Dusseault and Snell (2010) are used as values for the one-hot
encoding of method∗. The considered HTTP versions are deployed versions in practice.

Table 6.7: HTTP method and version features

Feature * Description Type

method *
{GET,HEAD,POST,
PUT,DELETE,CONNECT,
OPTIONS,TRACE,PATCH}

Method * in HTTP request line Binary

version * {0.9,1.0,1.1,2.0} HTTP version * in usage Binary

Table 6.8 shows these features constructed for the URI of the resource identifiers, the host and
the referrer. Chapter 2 shows that a URI consist of several components. For each component, the
length of this component is counted, the number of unique characters and the number of reserved
characters in these components are counted. Table 6.9 shows the composed features from the
server reply. The reply message of the server consists of the status line and a section of headers.
The status line states the status msg, which is a three digit code. To be able to one-hot encode
this status message, only the first digit is considered relevant as the other two digits give more
explanation conditioned on the first digit.
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Table 6.8: HTTP URI features

Feature Description Type
* ** len Length of the ** part of the * Integer
* ** unique char Unique characters in the ** part of the * Integer
* ** res char n Reserved characters in the ** part of the * Integer

*={uri,host,referrer}, ** ={netloc,path,params,query,fragment}

Table 6.9: HTTP reply message features

Feature * Description Type

** mime types *
{applicatio, audio,
example,font,image,
model,text,video}

Endpoint ** sends mime type * Binary

*xx code {1,2,3,4,5,6} Server responds with status line code *xx Binary

** ={orig,resp}

6.3.3 FTP

FTP can be used for remote login between client and server to transfer files. Between the client and
the server is a data connection and a command connection. Table 6.10 shows the features extracted
from the ftp.log file. It would be expected that these features are binary, but as the commands
are grouped per connection, they are made integer. Each connection has a starting command and
a finishing command. The feature command shows how often commands are executed over an
connection. The mime is the type of file that is being transferred over the connection. The reply
codes are the responses from the server. These reply codes can be grouped in series (1xx, 2xx, ...)
and for each of these series a features can represent the number of times these series are seen on
the network.

Table 6.10: FTP created and extracted features

Feature * Description Type

command ∗

{ABOR, CWD, DELE,
LIST, MDTM, MKD,
NLST, PASS, PASV,
PORT, PWD, QUID,
RETR, RMD, RNFR,
RNTO, SITE, SIZE,
STOR, TYPE, USER}

Number of times
command * is executed in
a connection

Integer

mime type ∗
{application, audio,
example, font, image,
model, text, video}

Number of times mime type *
is send in one connection

Integer

reply code d1 ∗ {1, 2, 3, 4, 5, 6} Number of reply code
of the first digit is *

Integer

reply code d2 ∗ {0, 1, 2, 3, 4, 5} Number of reply code
of the second digit is *

Integer
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6.4 Secure Layer Protocols

The last section of this chapter describes the features representing SSL and SSH usage. Zeek
logs for these protocols information concerning cryptographic algorithms, but these features are
not taken into account in this study. Primarily reason for this choice is to prevent having many
zero-entires by one-hot encoding those categorical features. Nevertheless, there are other features
which can be used for machine learning purposes.

6.4.1 SSL

The ssl.log file consists of SSL protocol usage. Table 6.11 shows the created and default features
extracted from default Zeek features. The version ∗ and next protocol ∗ are one-hot encoded
features by using the values of these default features as new features. The second column ∗
indicates which values where used for the one-hot encoding. These are the values observed in the
three datasets. The server concerning features are extracted by counting some meta-date of the
server name. The last three features established, resumed and alert are default Zeek features.

Table 6.11: SSL created and extracted features

Feature * Description Type

version ∗
SSLv2, SSLv3,
TLSv10, TLSv11,
TLSv12, TLSv13

Indicates which SSL/TLS version is used Binary

next protocol ∗ http/1.1, h2 Indicates what the next protocol is Binary
server name dot Number of dots in the server name Integer
server name dash Number of dashes in the server name Integer
server name len Character length of the server name Integer
server name unq Number of unique characters Integer
established Indicates whether the SSH is established Binary
resumed Indicates whether the connection is resumed Binary
alert Indicates whether there occurred an alert Binary

6.4.2 SSH

Table 6.12 shows the features created from the ssh.log file. As the SSH protocol is mainly used
for remote login, relevant features include the number of authentication attempts and whether au-
thentication is successful. The version features indicate whether SSH version 1 or 2 is used. Other
Zeek generated features are combined by counting the number of missing values per connection.
Therefore, the lacking values are summarized in the missing values counter.

Table 6.12: SSH created and extracted features

Feature Description Type
auth attempts Number of authentication attempts Integer
auth success Authentication result (1 Accepted, 0 Failed) Binary
ssh version 1 Indicates whether SSH version 1 is used Binary
ssh version 2 Indicates whether SSH version 2 is used Binary
missing values Counts the number of missing values Integer
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Chapter 7

Feature Analysis

Where Chapter 6 describes the features constructed for this research, this Chapter provides an
analysis of the whole dataset. The focus of this chapter is directed on meta-data, class distributions
and the relationships between features. First, some facts including number of instances and
features about the prepared dataset are given. Second, the class distributions of the datasets are
stated to put the occurrences of malicious traffic in proportion with normal traffic. At last, some
correlations are calculated to give insight in the dependency between features.

7.1 Meta-data on Selected Datasets

After creating some new features described in Chapter 6, there is one protocol specific dataset for
each day of each experiment. To work toward having only one protocol dataset for each of the
three selected studies, the daily internet traffic datasets are aggregated over the days. This step
resulted eventually in 21 different datasets; each describing one protocol for each study. Table 7.1
shows the number of connections, or so to say instances, and the total number of features. The
number of features here describe the number of explanatory variables used to predict the class
feature. It can be observed that each dataset has different number of instances for the considered
protocols. In the UNSW-NB15 dataset, the number of SSL connections is for example redundant
while the HTTP usage in ISCX-IDS-2012 has exploded. As HTTP utilizes the TCP protocol as
underlying transport layer protocol, it is expected that when HTTP usage increases the number
of TCP connections also grow. The periods in which these datasets are captured can be read in
Chapter 5.

Table 7.1: Number of instances and features for each dataset

Protocol CIC-IDS-2017 ISCX-IDS-2012 UNSW-NB15 Features
TCP 1,074,723 2,021,661 1,491,982 41
UDP 1,043,725 642,827 566,072 17
DNS 1,071,911 878,273 405,072 45
HTTP 534,042 8,837,111 377,705 90
SSL 332,982 47,467 182 19
SSH 8,254 11,933 50,542 7
FTP 2,476 1,673 46,630 50
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7.2 Class Analysis

Where Table 7.1 shows the number of connections for each protocol, Table 7.2 shows the intrusion
ratio for each protocol. The intrusion ratio is defined as the number of malicious instances divided
by the total number of instances. The bold intrusion ratio’s indicate that these intrusion ratios
are unrealistic high. In practice, it would be unreal if, for example, 50% of all traffic is malicious.
Therefore, the bold intrusion ratio’s are randomly down sampled to an intrusion ratio of 5% for
the anomaly detection algorithms, which seems more realistic. To prevent excluding attacks, the
downsampling is performed with the restriction that there has to be at least one instance for each
attack. As the first question in the introduction is to check whether malicious activities are indeed
different, the datasets before the downsampling are used for the supervised learning techniques.
In the next sections, a class analysis is shown for the three datasets.

Table 7.2: Intrusion ratio per dataset

Protocol CIC-IDS-2017 ISCX-IDS-2012 UNSW-NB15
TCP 50% 3.74% 3.61%
UDP 0.05% 0.0012% 2.31%
DNS 0.01% 0.0009% 4.34%
HTTP 51.65% 44.12% 6.74%
SSL 0.0003% 0% 92.86%
SSH 37.02% 42.14% 0.04%
FTP 0.32% 0.24% 2.68%

7.2.1 CIC-IDS-2017

Before taking a look at the class distributions, it is interesting to see the attack scheme of the
datasets. Figure 7.5 shows the attack scheme of the CIC-IDS-2017 dataset. During five sequential
days, five hours of network traffic were captured and during these days as set of attacks were
executed. The first day of the experiment consists of only normal traffic, but other days consist of
both normal and malicious traffic. The port scan is the only attack performed during two days.

Figure 7.1: CIC-IDS-2017 TCP layer attack scheme

The previous figure has shown the periods in which the attacks were performed seen on the TCP
dataset of the CIC-IDS-2017 experiment. Figure 7.2 shows the class distribution of the normal
and the set of malicious classes of this dataset. The intrusion ratio is approximately 50%. The
CIC-IDS-2017 dataset published by Sharafaldin et al. (2018) consists of both TCP and UDP con-
nections. In this research, TCP and UDP connections are separated, so the class distributions are
different. Obviously, port scans, DoS and DDoS attacks create many connections by their inherent
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characteristics. DoS and DDoS attacks aim at flooding hosts with large numbers of connections
and port scans need to check many ports to check if a port is open. In contrast, smaller attacks,
such as the heartbleed, requires less connections.

Figure 7.2: CIC-IDS-2017 TCP layer class distribution

Figure 7.3 shows the class distribution of the HTTP layer. In the attack scheme of the CIC-IDS-
2017 it can be observed that most HTTP attacks are executed on the third day of the experiment.
The HTTP class distribution is similar to the TCP class distribution as most attacks occur using
HTTP which of course uses TCP. A major difference between HTTP and TCP classes lies in the
distribution of the port scan attack. In the TCP layer is the port scan a dominant class, but this
does not hold for the HTTP dataset. The port scan attack focuses on multiple ports and not
necessarily HTTP, which usually uses port 80.

Figure 7.3: CIC-IDS-2017 HTTP layer class distribution

Port scan attacks can be observed on multiple protocol layers. This attack is the only attack
observed on the DNS, FTP and UDP with only 3165, 8 and 3165 instances respectively. When
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looking at the experiment description of the CIC-IDS-2017, it would be expected that there are
also occurrences of the Patator - FTP attack in the FTP protocol. That is however not the case
and it is unclear why this is the case. On the SSL protocol there is only one connection with the
Heartbleed attack. Other instances are benign for this protocol. The last protocol is the SSH
protocol. Figure 7.4 shows the class distribution of the SSH protocol, where both the Patator -
SSH and the port scan attack are logged.

Figure 7.4: CIC-IDS-2017 SSH layer class distribution

7.2.2 ISCX-IDS-2012

The ISCX-IDS-2012 has a different attack scheme with different attacks compared to the CIC-
IDS-2017 dataset. Figure 7.5 gives a schematic view of the attack moments. Most attacks occur
in a small interval of time, while one attack (the so-called backdoor) remains open until the end
of the experiment. With this backdoor, the attackers have the ability to send commands to the
program which was installed during the infiltration attack. Using these commands, the attacker
could perform several attacks on different hosts.

Figure 7.5: ISCX-IDS-2012 TCP layer attack scheme

Figure 7.6 shows the class distribution of benign traffic and each attack separately for the TCP
layer. It can be observed that almost all traffic is normal and a small amount is malicious. This
class distribution seems to be a better representation of reality in which only a small part of the
network traffic is actually malicious. When looking at the attacks, the attacks with the highest
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number of connections are the DDoS attacks and port scans.

Figure 7.6: ISCX-IDS-2012 TCP class distribution

In the ISCX-IDS-2012 dataset, the HTTP dataset protocol contains more than eight million
connections. With this large number of connections and the large number of features, the HTTP
file is split in two parts to make computation possible. The first dataset contains the chronological
first 4.5 million connections, while the second part contains around 4.3 million. Figure 7.7 shows
the type distribution of the two HTTP datasets. The intrusion ratio is unrealistically high as more
than 40% of the instances are malicious.

(a) Part 1

(b) Part 2

Figure 7.7: ISCX-IDS-2012 HTTP layer class distribution

Similar to the CIC-IDS-2017 dataset, the ISCX-IDS-2012 dataset UDP, DNS and FTP only contain
port scan attacks. For these protocols, there are only 8, 8 and 4 port scan instances respectively.
The SSL protocol is ignored as there are no malicious activities in this dataset. Figure 7.8 shows
the distribution of the attacks on SSH protocol. As has been said, there are some unknown attacks
which cannot be identified based on the description of the attacks in the paper of the ISCX-IDS-
2012 dataset. The exfiltration attack is the attack where data is extracted from the victim host
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after performing the SSH Brute Force attack.

Figure 7.8: ISCX-IDS-2012 SSH class distribution

7.2.3 UNSW-NB15

In contrast to the datasets, we observe that in attack scheme of the UNSW-NB15 dataset, shown
in Figure 7.9, are not limited to a certain moment of the day. All attacks are performed the
entire experiment. This is of course an unrealistic scenario as networks are not always constantly
engaged by attackers. Still, this dataset is usefull as attacks can be observed on multiple protocols
rather than one single protocol, which is discussed next.

Figure 7.9: UNSW-NB15 TCP layer attack scheme 18 Februari

Table 7.3 shows the class distributions of all classes for each protocol. Similar to the ISCX-IDS-
2017 dataset, the intrusion ratio seems realistic. However, most attack connections are not a DDoS
or Portscans, but exploits, fuzzers or fuzzers. In contrast to previous datasets, attacks are more
distributed over multiple layers rather than a few. Portscan attacks was the only class in previous
datasets which transcend several attacks. The SSL protocol does not resemble realistic internet
traffic, as almost all instances are malicious. There are only 13 normal instances, so this protocol
is not considered relevant for further analysis.
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Table 7.3: UNSW-NB15 class distribution all protocols

Class TCP UDP DNS HTTP FTP SSH SSL
Analysis 434 0 0 428 0 0 0
Backdoor 315 34 0 229 0 0 0
Benign 1,438,143 552,995 387,512 352,249 45,380 50,522 13
DoS 3,153 412 151 2,004 26 0 21
Exploits 24,757 607 385 17,149 1,036 14 66
Fuzzers 14,393 5,430 3,362 1,337 183 0 0
Generic 3,061 1,000 13,615 2,087 5 6 82
Shellcode 750 761 0 0 0 0 0
Reconnaissance 6,827 4,82 47 2,087 0 0 0
Worms 149 21 0 149 0 0 0

7.3 Feature Analysis

This section highlights feature statistics for all datasets. It shows where the datasets differ in
normal protocol usages and some correlations between the features. For this analysis, only the
normal traffic is considered to describe the differences.

7.3.1 TCP

The first protocol for feature analysis are the TCP datasets. Figure 7.10 shows the TCP connection
and termination features for the three datasets. It can be observed that in the UNSW-NB15 almost
all connections are correctly opened and closed. The correctly establishment and termination of
TCP connections ratio is less for the other two datasets. In the ISCX-IDS-2012 dataset, most
connections are only closed by the originator but not replied by the responder. Furthermore,
hosts do often not reply to establishment attempts from originators in this dataset.

Figure 7.10: TCP connection establishment and termination features

Each experiment has own protocol usage schemes. Figure 7.11 shows which services are used
using the TCP protocols.UNSW-NB15 uses a broad variety of protocols, even more than Zeek has
regristed. Most normal behaviour in the ISCX-IDS-2012 is HTTP traffic. The CIC-IDS-2017 is
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primarily used for SSL protocols usage rather than HTTP which indicates that HTTPS is used
over HTTP.

Figure 7.11: TCP service features

Figure 7.12 shows the boxplots of the PCR and the durations of the TCP connection. Excluded
from these figures are the points outside of the whiskers. A reason for this choice is that there are
many points that are outliers so showing these points would make the box plot unclear. It can be
observed that the ISCX-IDS-2012 dataset has a lower PCR ratio, which means that there are more
pull requests than push requests. This is inline with the observation that most TCP traffic uses
HTTP in the ISCX-IDS-2012. When looking at the duration of connections, TCP connections are
much longer for the CIC-IDS-2017 dataset. This is inline with the fact that in this dataset most
TCP traffic uses SSL as application layer protocol.

Figure 7.12: TCP PCR and duration features
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7.3.2 UDP

The following protocol which is analysed is UDP. Figure 7.20 show the Spearman correlation
between the features of UDP. It can be seen that the bytes and packets features are heavily
monotonic correlated. This makes sense as more bytes to send require more packets. When
looking at the service features, it is expected that these are not correlated as they are one-hot
encoded.

Figure 7.13: CIC-IDS-2017 UDP Spearman correlations

The differences between UDP and TCP can be shown by looking at the difference in duration.
Figure 7.14 shows the PCR and duration (in miliseconds) of UDP connections. Comparing the
durations of UDP and TCP connection show that UDP connection periods are almost redundant.
The PCR is very similar between UDP and TCP.

Figure 7.14: UDP PCR and duration features
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7.3.3 HTTP

If clients want web pages from web servers, the client can send for example HTTP request to web
servers. Clients and servers have to agree upon the used HTTP protocol before the request can be
replied. This negotiation can be performed in the request line of the request message. Figure 7.15
shows which HTTP versions were used in the three experiments. As HTTP 1.1 has keep-alives, it
is expected that the experiments dominantly use the HTTP 1.1 version.

Figure 7.15: HTTP server reply codes

After a HTTP request is send, the server will reply with a status code to the client. Figure 7.16
shows which reply codes occur most in the normal traffic behaviour. In most cases, the server
replies that the request is OK and the web page can be send to the client. In the UNSW-NB15
however, there are many client errors. As can be observed, by the simulation of internet traffic,
many client errors can be made.

Figure 7.16: HTTP version usage
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7.3.4 DNS

The DNS protocol can be analyzed by looking at the DNS header section, the question section
and the answers provided by the DNS (name)server. Figure 7.17 shows the flags used in the heaer
section. The RA and RD flags are almost always turned on for all DNS queries. In addition, the
TCP usages and the rejected DNS queries are given, which are almost 0 for normal traffic.

Figure 7.17: DNS flag

The query section consists of the query type and the query class. Figure 7.19 shows the query
classes usages and Figure 7.19 gives the query type usages. The query classes are dominantly of
class 1. Other classes do not occur that often. A similar analysis can be applied on the qtype of
the DNS requests. Only qtype 28 is often searched, which is the IPv6 address lookup.

Figure 7.18: DNS qclass
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Figure 7.19: DNS qtype

7.3.5 FTP

When looking at the Spearman rank correlations between the FTP features given in Figure 7.20,
there are some positive monotonic relationships observable and some negative monotonic rela-
tionships. It is expected that there are some expected reactions from the server when certain
commands are executed by the client. This implies that there are some positive or negative rela-
tionships between the constructed features. These existing relationships do not necessarily mean
that the dataset is unusable, but it is of course something to take into account when interpreting
the results on the datasets considering this protocol.

Figure 7.20: CIC-IDS-2017 FTP Spearman correlations
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7.3.6 SSL

The next protocol is the SSL protocol. Figure 7.21 shows whether hosts where able to establish
ssl connections, whether alerts occurred and whether SSL connections where resumed afterwards.
For the ISCX-IDS-2012 dataset it is more clear that SSL connections where more used compared
to the other datasets. The number of alerts is redundant for normal traffic.

Figure 7.21: SSL specific features

In the establishment of a SSL connection, the hosts need to agree on the version in use. Figure
7.22 shows the versions used over the different experiments. The ISCX-IDS-2012 is only using
TLS version 1.0, while the UNSW-NB15 uses that version and the SSLv3 as SSL version. In the
CIC-IDS-2017 the improved TLS version 1.2 is consistenly used to create a secure line. Important
to notice that only 13 connections actually use the SSL protocol in the UNSW-NB15 experiment.

Figure 7.22: SSL version features
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7.3.7 SSH

The last protocol which is discussed in this chapter is the SSH protocol. Figure 7.23 shows the
binary features of the SSH datasets. It can be observed that for all three experiments there is
a preference for using the SSH version 2 above the version 1. While for the CIC-IDS-2017 the
authentication is almost always successful, for the UNSW-NB15 this is never the case. It is more
likely that almost all authentication trials are successful when only looking at normal traffic.

Figure 7.23: SSH binary features

The previous figure has shown that almost none of the UNSW-NB15 normal traffic authentication
trials were successful. Figure 7.24 shows the number of remote login trials on the SSH protocols.
It is unlikely that each SSH remote login is successful in the first attempt. However, in the CIC-
IDS-2017 the number of attempts is always 1 or 0. This unlikely in practice. In contrast, the
UNSW-NB15 dataset has authentication attempts with more than 100 trials. Neither this is likely
when considering normal internet traffic.

Figure 7.24: SSH authentication attempts
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Chapter 8

Methodology

This chapter discusses the methods used to conduct this research. In the first part of this chapter,
an overview of the mathematical notation is given. Besides that, the important distributions that
are used in this chapter will be stated. In the second part of this chapter, we will start with the
supervised learning methods to detect intrusions by using the actual labels. With these methods, it
can be checked if indeed machine learning techniques are able to distinguish intrusions from normal
traffic. Afterwards, the anomaly detection techniques are described. These methods assume that
the underlying labels of the connections are unknown. At last, the graph-based methods are stated
which will be used to detect anomalous timestamps in dynamic changing networks.

8.1 Mathematical Notation

Before diving in the methods, some mathematical notation should be clear for the reader to
understand what we mean with certain variables. As different fields have different mathematical
notation, it is good to have variable definitions. When we use capitalized variables, such as X we
mean matrices while with small letters we mean vectors or constants.

• X : matrix with response variables in the columns

• xi : i-th observation where i ∈ {1, 2, ...n}

• xj : j-th feature where j ∈ {1, 2, ...,m}

• xij : the ith entry of the matrix of the jth feature

• y : response variable with label k ∈ C = {C1, C2, ..., CK}

• ŷ : prediction of an arbitrary instance

• ŷi : prediction of instance i

• s : anomaly scores vector

• si : anomaly score instance i
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8.2 Distributions

In this chapter, two statistical distributions are used. The first distribution is the binomial distri-
bution. This is a sum of Bernoulli variables in the sense that suppose Xi ∼ Bern(p) for i = 1, ..., n,
then it follows that X = X1 +X2 + ...+Xn is binomial distributed with parameters n and p. The
probability function of this variable is given by:

P(X = k) =

(
n

k

)
pk(1− p)n−k

The expectation of this binomial distribution is given by E(X) = np and its variance is σ2(X) =
np(1−p). The second distribution which is used in this section is the hypergeometric distribution.
In this distribution, we randomly draw d samples from a population of size n containing P positives
and n − P negatives. The hypergeometric distribution describes the probability on drawing k
positive samples from this distribution. Its probability is given by X ∼ h(d, P, n):

P(X = k) =

(
P
k

)(
n−P
d−k

)(
n
d

)
8.3 Supervised Learning Algorithms

The assumption that malicious traffic is indeed different from normal traffic needs to be veri-
fied. Several considered supervised learning algorithms are described in this chapter to check this
assumption. These algorithms can be used to learn the characteristics of the attacks.

8.3.1 Gaussian Naive Bayes

The Naive Bayes classifier is build upon Bayes theorem for conditional probabilities (Aggarwal,
2015a). The model is called “naive” in the sense that it assumes that the features are independent.
The naive Bayes model belongs to the probabilistic classifiers. Say X is an observation with an
unknown class label. Let Hi be the hypothesis which indicates that instance X belongs to class
Ci. Then the posterior probability P (Hi | X) indicates the probability that this hypothesis holds
given this observed observation X. Bayes theorem states that this posterior probability can be
calculated using the following formula.

Posterior = P(Hi | X) =
P(X | Hi) ·P(Hi)

P(X)
=

Likelihood · Prior

Evidence

In a classification problem, we are interested in finding this posterior probability P(yi = Ck | xi)
that determines the probability that observation i belongs to class Ck given data instance xi.
Using Bayes theorem, this would result in finding the following probabilities.

P(yi = Ck | xi) =
P(xi|yi = Ck) ·P(yi = Ck)

P(xi)
∝ P(xi | yi = Ck) ·P(yi = Ck)

As can be observed, the evidence is excluded from the equation as this evidence is the same
for each class. Therefore, finding this probability is reduced to finding the likelihood and the
prior probability. Finding the prior probability that data instance i belongs to class Ck can be
derived a priori. In the naive Bayes model, the likelihood is calculated by assuming all features
are conditional independent. By this assumption, the likelihood function can be derived by taking
the product of all individual probabilities.

P(xi | yi = Ck) =

m∏
j=1

P(xij |yi = Ck)
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To determine these individual probabilities, an underlying distribution of the feature values is
required. These are the so called event models of the naive Bayes classifier. There are commonly
three distributions often used as event models: Bernoulli, multinomial and Gaussian. In the
Bernoulli event model, the feature is required to be Bernoulli distributed. The multinomial model
requires feature to represent frequencies. In the Gaussian event model, the features are assumed
to be normally distributed. For the Gaussian model, the individual probabilities can be calculated
using the following formula.

P(xij |yi = Ck) =
1√

2πσ2
j,k

exp

(
− (xij − µj,k)2

2 · σ2
j,k

)

Here, the parameters σj,k and µj,k are estimated using the maximum likelihood estimator for each
feature j and each class k.

µj,k =

∑n
i=1 xi,j · 1yi=Ck∑n

i=1 1yi=Ck

, σ2
j,k =

∑n
i=1(xi,j − µk)2 · 1yi=Ck∑n

i=1 1yi=Ck

After computing the posterior probability of each class for an data instance i, the remaining
question is how to predict this instance. The naive Bayes model makes use of the maximum a
posteriori (MAP) decision rule to determine which class will be predicted. The MAP decision rule
indicates that the class with the highest posteriori probability is used to predict data instance i.
The following objective is used to predict this instance.

ŷi = arg max
Ck

P(yi = Ck)
m∏
j=1

P(xi,j | yi = Ck)

While this model is very intuitive, the conditional independence assumptions the model is almost
never valid. In most situations there are dependencies between features which are ignored by
the model. Nevertheless, the model is often used in NLP settings. Furthermore, in the Gaussian
event model the underlying assumption is that the features are Gaussian distributed. As this does
not have to be the case, the model can under perform. Furthermore, for the Bernoulli and the
multinomial the model does not work well with categorical data that is not observed in training
the model.

8.3.2 Nearest Neighbour

A second algorithm is the nearest neighbour algorithm (Murty & Devi, 2011). In contrast to
other classifiers, training the model is not performed in the training phase, but in the testing
phase. These classifiers are so called lazy learners. The rationale behind the lazy learner is that
similar instances have similar class labels. In the K nearest neighbours classifiers, the labels of the
K nearest instances of an testing instance are used to predict the label of that testing instance.
Let us first define the distance between two instances i and l as d(xi, xo). Then for example the
Minkowski distance of order q between these instances is defined as:

d(xi, xo) = (
m∑
j=1

| xi,j − xo,j |q)
1
q

Here, when q is 2, then we are working with the Euclidean distance. This algorithm is instances
based in the sense that the instances are compared with each other and the nearest K neighbours
from one instance are used to predict the label of an instance. Define Ai as the set of train-
ing instances which are closest to test instance i. Then when each instance has an equal weight
the prediction becomes the following. The easiest method is brute force. This requires however
O(ntest · ntrain ·m)

After finding the Ai, we can make a prediction for each sample.
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ŷi = arg max
Ck

n∑
i=1

1yi=Ck∧i∈Ai

Another option is to weight each sample with the distance between the points:

ŷi = arg max
Ck

n∑
i=1

1

d(xi, xî)
· 1yi=Ck∧i∈Ai

This algorithm does not require fitting as there are not parameters to tune. The algorithm is
expensive in time in the testing part as instances are compared with the trained data in order to
make a prediction. When the nearest neighbours are found, based on the majority vote the labels
are predicted.

8.3.3 Decision Tree Classifier

A decision tree is a tree classifier in which the classification process is executed by dividing obser-
vations in a tree structured manner. In this tree, each node represents a test on a attribute and
each branch represent the outcome of that test.

The decision tree algorithm works by choosing an feature and splitting the observations on the
basis of some decision rule. This procedure is performed in a top-down approach in such way that
each internal node can be split in two branches. There are two criteria to split the observations:
on their Gini index or the Entropy. The Gini index is a criterion to minimize the probability of
misclassification, while entropy is a way to measure impurity. The following equations show how
these criterion can be calculated. Here, Pj is the probability on class j.

Gini = 1−
∑
j

p2j , Entropy = −
∑
j

pj log2pj

We split on the feature that results in the largest information gain (IG). the information gain is
defined as:

IG(Dp) = I(Dp)− Nleft

Np
I(Dleft)−

Nright

Np
I(Dright)

where I is either the entropy, Gini index or classification error.
Table 8.1 shows other parameters for the the decision tree classifier. Each parameter determines
limitations on the tree size.

Table 8.1: Parameters decision tree

Parameter Description
max depth The maximum depth of the tree
min samples split The minimum number of samples required to split an internal node
min samples leaf The minimum number of samples required to be at a leaf node
max features The number of features to consider when looking at the best split
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8.3.4 Adaboost Classifier

Adaboost is a boosting technique to combine weak learners into a strong classifier. These weak
learners are classifiers that perform poorly on a classification task. Each of the weak learners are
trained on a random subset of the total training set. AdaBoost assigns a weight to each training
example which determines the probability that each example should appear in the training set.
After .... increases the weight of misclassifying example so that these become a larger part of the
training set such that the next classifier performs better.

Boosting is the process of combining weak learners into a strong learners (Freund & Schapire,
1997). With weak learners we mean a classifiers which is inaccurate in predicting the correct
classes. Adaboost initializes a weight vector which defines the probability being chosen for learning
a weak learner.

Figure 8.1: Illustration of the Adaboost classifier Wang et al. (2015)

8.3.5 Random Forest Classifier

A random forest classifier combines multiple classification trees by sampling instances from one
dataset (Breiman, 2001). By sampling instances with or without replacement from the original
dataset, sub-samples are constructed for which new trees are build. The random forest classifier
therefore is an ensembled classifier in the sense that it combines multiple classifiers in one. There
are several procedures to construct the sub-samples for one tree. It can be performed with or
without replacement. When chosen with replacement, this means that samples are bootstrapped.
Suppose that trees are trained on a sub-sample which is constructed without replacement and we
sample the same number of instances as in the original dataset, the original dataset is constructed.
This means that the

Suppose that we want to train one tree on a sub-sample. Then the decision tree classifier is trained
on the dataset. There are some choices that can be made in the construction of the tree. For
example, not all features are required to be taken into account for making a split. This can be
limited. To make a prediction, each sample is predicted by each tree. Each tree has the same
weight so the end prediction is done by the majority vote scheme. Figure 8.2 gives an visual
illustration how prediction are made. Each tree votes for an certain class and based on majority
vote the final prediction is made. As each tree is different, each tree have different nodes and thus
have different branches.
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Figure 8.2: Random Forest Example (Will Koehrsen, 2017)

8.4 Anomaly Detection Techniques

In this section, the anomaly detection algorithm are discussed which are used to determine the
anomaly scores for the connections. First, the principle component analysis is described and
afterwards the isolation forest. These algorithms do not use the actual labels of the connection to
determine the anomaly scores.

8.4.1 Principal Component Analysis

Using principle component analysis(PCA) as an anomaly detection technique is proposed in Shyu,
Chen, Sarinnapakorn, and Chang (2003). Observing that intrusion detection datasets are often
high dimensional in nature and the goal of PCA is to reduce dimensionality makes PCA a desirable
method. PCA is concerned with explaining the variance-covariance structure by linearly trans-
forming datasets into a new dataset. This transformed dataset consisting of principle components
has three important properties, a) the components are uncorrelated, the first component has the
highest variance, b) the second component has the second highest variance, and so on, and c) the
total variation of all principle components is equal to the total variation in the original dataset. In
the approach of Shyu et al. (2003), anomaly scores can be calculated by constructing a hyperplane
which captures most of the variance in the data and calculating the difference between instances
and this hyperplane.

To construct the hyperplane, the covariance matrix should be calculated which indicates the
variances and covariances between the response variables. Suppose we have the a mean-centered
dataset X. This mean-centred dataset is the original dataset where each feature is mean-centred.
Then the variance-covariance matrix can be calculated as follows.

Σ =
XTX

n

On the diagonal of this matrix are the variances of the features while on the other places are the
covariances. A property of this Σ matrix is that it is square (m ·m), symmetric and positive semi-
definite. With these properties, the matrix can be diagonalized in the following way (Aggarwal,
2015b).

Σ = PDPT

The matrix P consists of the orthonormal eigenvectors of Σ and D is a diagonal matrix containing
the non-negative eigenvalues. The same trick can be applied on the correlation matrix R where
all features are standardized.
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D =


λ1 0 0 ... 0
0 λ2 0 ... 0
0 0 λ3 ... 0
... ... ... ... ...
0 0 0 ... λm

 , P = [e1, e2, ..., em]

The eigenvectors and eigenvalues, (λ1, e1), (λ2, e2), ..., (λm, em), are sorted in such way that λ1 ≥
λ2 ≥ ...λm. By this, it is certain that the first component explains most variance. Now it holds
that

∑m
j=1 λj = p when the correlation matrix is used instead of the covariance matrix. To get

the transformed dataset, the original dataset X can be multiplied with the matrix P .

X ′ = XP

Each row of this new transformed matrix consists of the principle component values for the instance
of that row. Define vi,j as the j-tj principle component value of the i-th instance. Then the anomaly
score for an instance can be calculated by:

si =

m∑
j=1

v2i,j
λj

It is possible that all principle components can be used. But, it is also possible to only look at
the anomaly scores of the principle components with the highest variance or the lowest variance.
The developed method in (Shyu et al., 2003) looks at the anomaly scores determined by looking
at a model with the highest explained variances in combination with a model with the lowest
explained principle components. In the model with the highest variances, the top 50% of the
explained variance are used while for the lowest principle components an eigenvalue of at most 0.2
is used. In the machine learning setting, the eigenvalues and eigenvectors can be learned using
the training data. These values can later be applied on the test data to extract the transformed
dataset with less principle components if required.

8.4.2 Isolation Forest

A second method which is considered as anomaly detection technique is Isolation Forest (iForest)
(Liu, Ting, & Zhou, 2008). In contrast to other model-base approaches in anomaly detection,
iForest explicitly isolates anomalies instead of profiling normal behaviour. This method is an
ensemble method as it utilizes a set of Isolation Trees (iTree) where each tree tries to isolate
instances. Isolation in this context means that instances are separated from all other instances.
Each iTree isolates instances by randomly dividing the data space until all instances are isolated.

Partitioning the instances is performed using a proper binary tree where each node is either an
external node with no child or an internal node with two daughter nodes. In each internal node,
a test is performed on a random attribute using a random split value to divide the instances in
the two daughter nodes. This random attribute is chosen from a set of attributes for which the
instances values are different. In an external node, there is either i) only one instance, which
means the instance is isolated, ii) all instances have the same values so there is no attribute to
split the instances on or iii) the maximum tree height is reached (Liu et al., 2008).

As anomalies are considered to be “few and different”, it is expected that the path between the
anomaly instances in the nodes of the iTree and the root of the iTree are shorter than the paths
to normal instances. Figure 8.3 illustrates how iForest isolates two instances xi and xo in a two
dimensional space. Each line represents the split value on which the data space is divided. As can
be observed, xi requires more splits to be isolated compared to xo. This means that the path of
the normal instance xi is longer than the path to anomaly instance xo.
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(a) Isolating xi (b) Isolating x0

Figure 8.3: Isolation Forest in Action (Liu et al., 2008)

Now that is shown how instances are isolated in an iTree, let us look at how the anomaly scores are
determined. The anomaly scores depend on the path length of the instances in the iTree. Suppose
h(x) is the path length of a point x in the tree. Then this path length is the minimum number
of edges x traverses from the root node to the node x. Then the anomaly score of instance x is
given by:

s(x, n) = 2−
E(h(x))

c(n)

Here, n is the number of instances, E(h(x)) is the expected path length, which is the average h(x)
of an collection of iTrees. By using more iTrees, the expected h(x) is more certain. c(n) is the
average path length of unsuccessful search in a binary search tree.

c(n) = 2 ·H(n− 1)− 2 · n− 1

n

The H(i) is the harmonic number and can be approximated by ln(i) + 0.5772156649. Figure
8.4 shows the relationship between the expected path length and the anomaly score. When the
expected path length is close to 0, it is definitely an anomaly and get a score of 1. When the path
length is close to the number of instances, then is almost certainly normal behaviour.

Figure 8.4: Expected path length and anomaly score relationship (Liu et al., 2008)
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8.5 Graph Based Anomaly Detection Techniques

In this last section, we describe the techniques for anomaly detection in graph-structured datasets.
When merely looking on connection level, the communication dependencies between hosts is for-
gotten. Rather than looking at connections, we can also look at the connections from a network
perspective. There are many metrics to compare two graphs. Graph distance metrics can be dis-
tinguished in two types of metrics: weighted and unweighted. In unweighted metrics, link usage is
binary, while in weighted metrics each link has an certain weight. Firstly, some graph definitions
are given for mathematical formality. Afterwards, four considered unweighted graph metrics and
four weighed graph metrics are given.

8.5.1 Definitions

Let us define a set of Edges E and a set of nodes N for graph G. Furthermore, let us define Gt

as the graph on timestamp t where t ∈ {0, 1, ..., T}. This means that we have a series of graphs
which evolve over time. By looking at the change over time, we can compute the change of the
network over time. In a graph G, E is the set of edges in that graph and V is the set of nodes.
wG

E(u, v) is the weight of the edge between nodes u and v.

Maximum Common Sub-graph

The maximum common sub-graph (MCS) is the fully connected graph with the most number of
edges between two graphs. This graph can be constructed by combining two graphs into one single
graph and determine the strongly connected sub-graphs with the most edges.

8.5.2 Unweighted Graph Distance Metrics

Vertex/Edge Overlap (VEO)
Two graph are similar is they share similar edges and nodes. In the Vertex/Edge Overlap dis-
tance, the Jaccard index is computed to measure these similarities between two graphs. The
intersection of edges and nodes is weighted by the total number of edges and nodes of both graphs
(Papadimitriou et al., 2010).

dV EO(G,H) = 1− 2 · | VG ∩ VH | + | EG ∩ EH |
| VG | + | VH | + | EG | + | EH |

Network Editing Distance (NED)
The Network or Graph Editing Distance between two graphs is calculated by evaluating the
number of edit operations required to transform graph G to graph H (Showbridge, Kraetzl, &
Ray, 1999).

dNED(G,H) =| VG | + | VH | −2· | VG ∪ VH | + | EG | + | EH | −2· | EG ∪ EH |

MCS Edge Distance (MCSED)
The MCS edge distance is calculating by first finding the similarity between two graphs. This
similarity is calculated by counting the number of edges in the MCS and dividing this number by
the maximum number of edges in both graphs. This similarity is then subtracted to get a distance
metric (Pincombe, 2005).

dMCSED(G,H) = 1− | mcs(EG, EH) |
max(| EG |, | EH |)
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MCS Vertex Distance (MCSVD)
This measure is similar to the MCSED but instead of looking at the edges the vertices are compared
(Pincombe, 2005).

dMCSVD(G,H) = 1− | mcs(VG, VH) |
max(| VG |, | VH |)

8.5.3 Weighted Graph Distance Metrics

In the following metrics, the weights of the graphs are taken into account. The idea is to use
the anomaly scores of the connections which as assigned by the anomaly detection algorithms as
weighted for the weighted graph distance metrics.

Weighted Distance (WD)
In the weighted distance metric, the sums of the absolute weight difference is taken divided by
the maximum of the maximum of those weights. This sum is then divided by the total number of
edges in the intersection of the compared graphs (Pincombe, 2005).

dWD(G,H) =

∑
u,v∈V

|wG
E (u,v)−wH

E (u,v)|
max(wG

E (u,v),wH
E (u,v))

| EG ∪ EH |

MCS Weighted Distance (MCSWD)
In the MCS weighted distance, the weighted distance is taken, but only the edges of the MCS are
considered (Pincombe, 2005).

Umeyama Distance (UD)
The Umeyama distance is defined as the sum of squares of the difference in the edge weights
(Dickinson & Kraetzl, 2003).

dUD(G,H) =
∑

u,v∈V

(
wG

E(u, v)− wH
E (u, v)

)2
Entropy Distance (ED)
Instead of taking the default weights, weights can be scaled by taking all weights in the network
in consideration (Gupta, Gao, Aggarwal, & Han, 2014). In the Entropy distance, the weights are
scaled by the sum of the weights over the graph in the following way.

ŵG
E(u, v) =

wG
E(u, v)∑

u,v∈V w
G
E(u, v)

The Entropy of a graph can than be calculated using the following formula.

E(G) =
∑

u,v∈V
ŵG

E(u, v) · ln(ŵG
E(u, v))

Given the calculated Entropies for two graphs. The distance between the graphs can be calculated
by taking the difference between the difference of the graphs.

dED(G,H) =| E(G)− E(H) |
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8.6 Evaluation Methodologies

There are several validation methodologies to evaluate classifiers. Aggarwal (2015a) state that
a dataset should be divided in three part: a model building part, a model selection part by
parameter tuning and a testing part. This division is illustrated in Figure 8.5. There should be a
clear distinction between model selection and model evaluation to avoid having too positive biased
evaluations. As such, there are two considered dataset division techniques in this research. These
are the holdout method and the cross-validation validation methods.

Figure 8.5: Train test split for parameter tuning and evaluation (Aggarwal, 2015a)

8.6.1 Holdout Method

In the holdout validation method, the dataset is randomly split in two sets. One of this dataset
is used as training dataset while the other is the test dataset. The largest dataset is used as
training dataset while the smaller one is used as test dataset. To get an confidence interval of the
performance of the model, this procedure can be performed multiple times when non-deterministic
models are used. A stratified approach can be used to preserve that training data class distribution
and test class distribution are (almost) equivalent (Charte, Rivera Rivas, Del Jesus, & Herrera,
2016).

8.6.2 Cross-Validation

Another validation technique is cross-validation. In this technique, the data is divided in parts and
each part is used to test the model. In this research the interest is in the K-fold cross validation,
illustrated in Figure 8.6. Each fold is used once as test dataset and K-1 used as training data for
the model to train on.

Figure 8.6: K-fold cross-validation (Ren et al., 2019)

For the supervised learning techniques, each fold gets a prediction and when all observations have
a prediction, the outcomes of these predictions can be turned into the confusion matrix, which we
will discuss in the next section. By computing this Cross-validation techniques multiple times, an
estimation can be computed.
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In the anomaly detectors, K-Fold can also be applied. Each instances gets an anomaly score as it
is tested by in the test set. In the end, all instances can get sorted by their anomaly scores and
it can be observed how good the model performs. By doing multiple runs with different folds, a
good estimation can be made on the anomaly score of an instance given by an anomaly detector.
So suppose each instance gets an anomaly score in a fold. We can take the average anomaly score
as score to evaluate the model.

ŝi =

∑L
i=0 si
L

8.7 Evaluation Metrics

In practice, classifiers are assigned to make predictions on whether connections are malicious
or not. We require metrics to measure whether the predictions are correct. In machine learning,
precision and recall are often used metrics to measure the quality and quantity of the classification.
Another metric that is often used for anomaly detection is the F1 score, which is the harmonic
mean of the precision and recall. As datasets in intrusion detection are imbalanced with intrusions
underrepresented, the F1 metric is primarily focussed on labelling these intrusions correctly rather
than focussing on normal connections. In this section, the calculation of these metrics in the binary
classification and the multi class classification problem are shown. It is shown how these metrics
are calculated. Furthermore, to put these metrics in perspective, we discuss two approaches by Jan
Klein and Joris Pries to construct baseline to compare the actual classifiers with. In the approach
of Jan Klein, each instances is predicted with a Bernoulli distribution in the binary classification
problem and a categorical distribution in the multi class classification problem. On the other
hand, Joris Pries randomly assigns a predefined set of labels to a dataset.

8.7.1 Binary Classification

In a binary classification problem, each instance has either a ground truth positive (+) or negative
(−) label. The goal of this problem is to accurately predict these instances with their correspond-
ing ground truth label. In this binary case, each instance is evaluated by a classifier and gets
either a positive (P ) or a negative (N) predicted label. These predictions are summarized in a
confusion matrix. This is a special contingency matrix as there are only two classes: positives and
negatives.

Suppose there are n instances for which the ground truth labels are known. From these instances,
P instances are positive and N are negative such that n = P + N . Now, the predictions of a
classifier can be stored in the confusion matrix shown in Table 8.2. In the rows of the matrix are
the actual labels while the columns show the predictions. Each value in this matrix is the count
of the number of instances with the actual class given in the row name and the prediction given
by the column name.

Table 8.2: Confusion matrix binary classification

Actual\Predicted Negative (N) Positive (P ) Total
Negative (−) True Negative (TN) False Positive (FP) N
Positive (+) False Negative (FN) True Positive (TP) P

In this confusion matrix, the False Positives value is the number of Type 1 errors, while the False
Negatives value is the number of Type 2 errors. There is a natural trade-off between these types
of errors. Making less Type 1 errors implies making more Type 2 errors. Related to these kind of
errors are the Recall and Precision evaluation metrics. These evaluation metrics are often used to
evaluate classifiers in the field of Information Retrieval.
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Binary Metrics

The precision is an evaluation metric which shows the fraction of labelled positives which turn
out the be actually positive.

Precision =
TP

TP + FP

In contrast, the recall is defined as the percentage of ground truth positives which are labelled
positive.

Recall =
TP

TP + FN
=
TP

P

As these measure are opposite, there exists a trade-off between them. This trade-off is however
not necessarily monotonic. Therefore, taking the average of these metrics is not an appropriate
choice. A better metric to summarize these metrics is the F1 measure, which takes the harmonic
mean of these measures.

F1 = 2 · precision · recall

precision + recall
=

2 · TP
2 · TP + FP + FN

=
2 · TP

TP + FP + P

One critical note on the F1 measure is that is ignores the performance of predicting the negative
classes correctly (Powers, 2011). In the field of cybersecurity, there is more interest in detecting
intrusions rather than predicting whether traffic is non-malicious, so this critical note does not
apply in this setting.

Within the binary F1 score, there is a bias in predicting positives correctly as the number of true
negatives (TN), which is the number of correctly labeled negative observations, is no factor in
this metric. The F1 is bounded between 0 and 1, where 1 is the highest score and 0 the lowest.
However, there is not a fixed threshold of the score for which the model can be perceived as good
or bad. Therefore, we require simple models that can serve as a threshold, or baseline, so that
we can compare the outcome of other models with the performance of this model. There are two
simple models which are used as baseline: coin flip and random select.

Baseline Binomial

Jan Klein proposes a simple baseline to which we will compare our results with for the binary
classification problem is a coin flip classifier. For each observation, a random coin will be tossed
with probability θ on throwing heads (class 1) and probability 1− θ on tails (class 0). This means
that we have TP ∼ B(P, θ) and FP ∼ B(N, θ).

E(Recall) = E

(
TP

P

)
=
E(TP )

P
=
θ · P
P

= θ

The expected recall depends on the θ parameter. The expected precision of a random flip coin
can be expressed as follows.

E(Precision) = E(
TP

TP + FP
) = E(

TP

Z
) =

n∑
z=1

min{z,P}∑
x=0

x

z
PX,Z(X = x, Z = z)

With TP + FP = Z ∼ Bin(n, θ). If we now use Bayes theorem.

=
n∑

z=1

min{z,P}∑
x=0

x

z
PX,Z(X = x|Z = z)PZ(Z = z) =

n∑
z=1

1

z
PZ(Z = z)

min{z,P}∑
x=0

x·PX,Z(X = x|Z = z)
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The conditional probability PX,Z(X = x|Z = z) is the hypergeometric distribution with popu-
lation size n, z draws from with P are positive and finding the probability on x successes. This
implies that the latter summation is the expected value of the hypergeometric distribution.

=
n∑

z=1

1

z
PZ(Z = z) · z · P

n
=
P

n

n∑
z=1

PZ(Z = z) =
P

n
(1−PZ(Z = 0)) =

P

n
(1− (1− θ)n)

Using this formula, the highest expected precision can be obtained when θ is 1. The expected F1

score can also be obtained for this classifer. Again using TP +FP = Z ∼ Bin(n, θ) and the Bayes
Theorem, the same trick is applied.

E(F1) = E(
2 · TP

2 · TP + FP + FN
) = 2 ·E(

TP

Z + P
) = 2 ·

n∑
z=0

min{z,P}∑
x=0

x

z + P
·PX,Z(X = x, Z = z)

= 2·
n∑

z=0

min{z,P}∑
x=0

x

z + P
PX,Z(X = x|Z = z)P (Z = z) = 2·

n∑
z=0

P(Z = z)

z + P

min{z,P}∑
x=0

x·PX,Z(X = x|Z = z)

= 2 ·
n∑

z=0

1

z + P
·P(Z = z) · z · P

n
= 2 · P

n
·

n∑
z=0

z

z + P
·P(Z = z)

Now, we are interested in finding the optimal score. Let us take a look at some inequalities. The
following inequality holds as x

x+a is a increasing function in x for x ≥ 0.

E(F1) = 2·P
n
·

n∑
z=0

z

z + P
·P(Z = z) ≤ 2·P

n
·

n∑
z=0

n

n+ P
·P(Z = z) = 2·P

n
· n

n+ P
·

n∑
z=0

P(Z = z) =
2 · P
P + n

It can be observed this can be attained when θ = 1. Now that is identified that the highest F1

score can be attained when everything is labelled with a positive label, the optimal expected F1

score is determined. If we label everything with a positive label, then the recall becomes 1 and
the precision becomes P

P+n . This results in a maximum attained F1 score of 2·P
P+n when θ = 1.

Baseline Hypergeometric

A second baseline, inspired by the top k selection of Joris Pries (N.D.), is randomly labelling d
instances as positive and n− d as negative. This approach implies that the number of positives is
always d = TP + FP and that TP ∼ h(n, P, d). From the hypergeometric distribution, it holds
that E(TP ) = dP

n . We can now calculate the expected Recall, Precision and F1 score for this
classifier.

E(Recall) =
E(TP )

P
=
P · d
P · n

=
d

n

E(Precision) = E(
TP

TP + FP
) = E(

TP

d
) =

E(TP )

d
=
d · P
d · n

=

{
0, if d = 0
P
n , else

E(F1) = E(
2 · TP

TP + FP + P
) = E(

2 · TP
d+ P

) =
2 ·E(TP )

d+ P
=

2 · d · P
n · (d+ P )

Where it is clear how to optimize the expected recall and precision, this is not clear for the
expected F1 score. If the difference operator is strictly greater than 0, it holds that the expected
F1 score can be maximized by setting d = n. The forward difference operator is given by: ∆f :
k → f(k + 1)− f(k).
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∆E (F1) =
2 · (k + 1) · P
n · (k + 1 + P )

− 2 · k · P
n · (k + P )

=
2 · P
n

(
k + 1

k + 1 + P
− k

k + P
)

=
2 · P
n

(
k2 + k + k · P + P − k2 − k − P · k

(k + 1 + P )(k + P )
) =

2 · P
n

(
P

(k + 1 + P )(k + P )
) ≥ 0

As the forward difference operator is always positive, it can be concluded that the function is
increasing in d so d should be maximized. At most, d = n. This means that all instances are pre-
dicted with a positive label, which implies a maximum expected F1 scores for the hypergeometric
distribution is 2·P

n+P .

8.7.2 Multiclass Classification

Now, let us take a look at the multiclass classification problem. Suppose we have L classes to
predict. This means that our confusion matrix M is of shape (L · L). Let us define Mij as the
number of observations with actual label i and predicted with label j. Table 8.3 shows how the

Table 8.3: Contingency matrix multiclass classification

Actual\Predicted 1 2 ... L Total
1 M11 M12 ... M1L P1

2 M21 M22 ... M2L P2

... ... ... ... ... ...
L ML1 ML2 ... MLL PL

Now, for each label L, the positives in this case are all instances with actual label L, while the
negative instances are all instances that do not have this label. From the contingency matrix, the
True Positives for class i are the instances where the predictions for class i are indeed of label i.

TPi = Mii

The False Negatives for label i are all instances that have actual label i but do not have this
prediction.

FNi = Pi − TPi =
c∑

j=1

Mij −Mii

For the False Positives, all instances with prediction i can be summed and the True Positives can
be subtracted.

FPi =
c∑

j=1

Mji −Mii

At last, the True Negatives in this case are the other instances that are not False Positive, False
Negative or True Positive.

TNi = Ni − FPi = n− Pi − FPi = n−
c∑

j=1

Mij −
c∑

j=1

Mji −Mii

Now, suppose we want to determine the Recall, Precision and F1 score for each class separately,
then the class specific TP, FP, FN and TN can be used.
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Micro
As we have a multiclass model, it can be interesting to look at the performance of the model
by combining the f1 scores of each class. Therefore, there are three approaches available for
determining the model score: the micro score, the macro score and the weighted score. The
following function shows how the micro score of the model can be determined:

Recallmicro =

∑C
c=1 TPc∑C
c=1 Pc

=

∑C
c=1 TPc

n

Macro

The macro score is defined as:

metricmacro =
1

L

L∑
l=1

metricl

Weighted

The weighted score is defined as:

metricweighted =
L∑

l=1

Pl

n
metricl
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Chapter 9

Results

In this chapter, the results of the applied methods are discussed. In the first part, the results of
the supervised learning techniques are shown. This section is used to determine whether attacks
differ from normal behaviour. In the second part, the results of the anomaly detection techniques
are given. At last, the results of detecting abnormal changes in the graphs are shown.

9.1 Supervised Learning

Before anomaly detection techniques can be applied, it is useful to check whether attacks indeed
differ from normal traffic. Therefore, supervised learning techniques are applied in which the
algorithms try to learn the characteristics of the different classes. Before the results of each
dataset is discussed, the experimental setup is described which clarifies the steps taken in before
applying the methods.

9.1.1 Experiment Setup

To acquire the results of the supervised learning algorithm, all datasets are randomly split in a
train and a test set. For this research, a 80/20 train/test ratio with the holdout method is applied.
As it is important to have a test set which is a representation of the train dataset, the test dataset
is constructed using a stratified approach. This means that the class distributions between the
train and test are approximately equivalent.

The datasets which are used in the supervised learning part should at least have one malicious
instance and consist of at least 1000 instances. If there are no malicious classes, the supervised
learning algorithm only has one class so there is no division to be learned. The 1000 instances
requirement is selected as it is a convenient choice. This requirements imply that in the ISCX-
IDS-2012 the SSL is ignored by only having normal instances and the SSL of the UNSW-NB15
dataset also as it only contains 182 instances.

The supervised learning algorithm are applied in both a multiclass fashion with all classes as well
as a binary case. In the multiclass approach, the normal and each malicious class are used as input
data, while in the binary approach only one class is considered in combination with normal traffic.
The results in this section are the results of the model evaluation part. The following abbreviations
are used for the models: Gaussian Naive Bayes (GBN), Decision Tree (DT), K-Neirest Neighbor
algorithm with K neighbours considered (K-NN), Adaboost classifier with X estimators (ADA X)
and Random Forest Classifier with X estimators (RF X). The binary baseline is determined by
2·P
n+P , which is the optimal baseline for the binomial and hypergeometric classifier determined in
Chapter 8.
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9.1.2 CIC-IDS-2017

The supervised learning algorithms are first applied on the CIC-IDS-2017 protocol datasets. There
are multiple attacks recorded for the protocols TCP, HTTP and SSH, while for the other considered
protocols there is only one attack class. For the first three protocols, the multiclass approach is
applied by training the mentioned algorithms on the training dataset and testing on the test set.
Tables 9.1 and 9.2 show the macro and weighted F1 scores of each classifier algorithm. Highlighted
in bold are the scores of the best performing models for each protocol. It can be observed that the
weighted F1 baseline scores are higher compared to the macro F1. The is caused by the largest
class (normal traffic) which dominates the performance of the weighted F1 score. Furthermore, it
can be observed that the Gaussian Naive Bayes model does not necessarily perform better than the
baseline. Other models perform relatively similar, but they all perform extremely better than the
baseline. For SSH, it can be seen that the performance is the same for many different models. As
it turns out, the models make exactly the same prediction for the observations and have therefore
the same performance.

Table 9.1: CIC-IDS-2017 macro F1 score

Model TCP HTTP SSH
Baseline 0.06250 0.09091 0.33333
GNB 0.13445 0.11826 0.80454
1-NN 0.77049 0.94063 0.96462
DT 0.76089 0.97024 0.96462
RF 5 0.73704 0.98029 0.96462
RF 10 0.73777 0.97214 0.96462
RF 100 0.73726 0.97027 0.96462
ADA 5 0.77707 0.97043 0.96462
ADA 10 0.77768 0.96517 0.96462

Table 9.2: CIC-IDS-2017 weighted F1 score

Model TCP HTTP SSH
Baseline 0.32983 0.35438 0.52677
GNB 0.10671 0.20723 0.98255
1-NN 0.97387 0.99346 0.99452
DT 0.98560 0.99829 0.99452
RF 5 0.98587 0.99844 0.99452
RF 10 0.98599 0.99841 0.99452
RF 100 0.98588 0.99839 0.99452
ADA 5 0.98571 0.99835 0.99452
ADA 10 0.98446 0.99718 0.99452

Now that the multiclass F1 scores are discussed, the performance of these classifiers can be evalu-
ated by looking at the performance of each of the classes. Table 9.3 shows the binary F1 for each
class in the TCP dataset of the CIC-IDS-2017 dataset. The baseline scores in this table gives an
indication on the relative occurrence of that class. The higher the baseline, the more samples in
the dataset have that corresponding ground-truth label. So, as the normal class dominates the
internet traffic, most connections are normal and thus the baseline is higher. Excluded from this
performance table is the hearthbleed attack. As there is only one connection with this label, it is
either in the training dataset or in the test data. Therefore, it is either trained but not tested or
tested and not trained. The models outperform the baseline on most attacks. For some attacks
the scores are even 1.0. The DDoS LOIC has for all models a 1.0 score and this indicates that
the connections used during this attack are completely different from all other connections. For
the FTP-Patator, only the decision tree classifier is able to make fully correct predictions. The
other three models have classified one FTP-connection as normal traffic of 798 connections. A
similar observation can be made with the SSH-Patator and Infiltration Cool Disk MAC where all
classifiers are almost always able to predict these attacks correctly. For the Web Attack - SQL
Injectionm, it can be observed that the nearest neighbour is the only model which can correctly
predict these malicious activities while other models fail to make correct predictions. However,
there are some attacks for which the classifiers are not able to make accurate predictions: Web
Attack - Brute Force, Web Attack - XSS and In filtration Dropbox download. Eventhough the
performance is higher than the baselines for these attacks, a higher F1 score is desirable.
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Table 9.3: CIC-IDS-2017 TCP F1 score per attack best models

Class Baseline 1-NN DT RF 100 ADA 10
BENIGN 0.66671 0.99016 0.99135 0.9916 0.99028
Botnet ARES 0.0092 0.95541 0.95848 0.95848 0.95947
DDos LOIC 0.16351 1.0 1.0 1.0 1.0
DoS Goldeneye 0.0143 0.97607 0.98032 0.98446 0.98508
DoS Hulk 0.26402 0.95708 0.98557 0.98559 0.98557
DoS SlowHTTPtest 0.02946 0.33932 0.74683 0.75069 0.74951
DoS Slowloris 0.00723 0.74208 0.74425 0.75662 0.74437
FTP-Patator 0.0074 0.99937 1.0 0.99937 0.99937
Infiltration Cool disk MAC 5e-05 1.0 1.0 1.0 1.0
Infiltration Dropbox download 4e-05 0.0 0.0 0.0 0.0
Portscan 0.36064 0.99107 0.99403 0.99413 0.99094
SSH-Patator 0.00553 0.99749 1.0 1.0 1.0
Web Attack - Brute Force 0.00254 0.26343 0.26435 0.26527 0.26178
Web Attack - SQL Injection 2e-05 1.0 0.4 0.0 0.66667
Web Attack - XSS 0.00126 0.11636 0.10909 0.10989 0.10989

As some of the F1 performances of the classifiers are not satisfiable for some attacks, the feature
importances of a model could explain why the performance is far from optimal. Figure 9.1 show the
feature importance of the decision tree per class for the TCP protocol. These feature importances
are created by creating one decision tree for each class where only the connections of that class are
used and the normal traffic to train the model. It can be observed that indeed the FTP-Patator
requires service FTP and the SSH-Patator uses SSH services, which is not surprising. What is
unexpected is that the Web Attacks heavily depend on the duration of a connection, which is
problematic when normal connections have similar duration as these Web attacks.

Figure 9.1: CIC-IDS-2017 TCP feature importance decision tree
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While most attacks are distinguishable from other attacks and normal traffic on TCP layer, there
were some attacks for which it is not the case. Maybe the features on this layer are not explanatory
for these attacks. Looking also at features on application layer might help finding these attacks.
In the labelling scheme of the CIC-IDS-2017 dataset can be observed that most attacks in the
CIC-IDS-2017 dataset use the HTTP protocol. Therefore, the considered classifiers are applied
on the HTTP layer dataset. Table 9.4 shows the F1 score performance of the classifiers on this
dataset. It can be observed that the performance on this dataset is almost perfect on this dataset.
Attacks which could not be distinguished on the TCP layer can be distinguished on HTTP level.
The only attack which is hard to detect is the Portscan attack. However, portscans target multiple
ports so it is not expected that this attack is identifiable only looking on the HTTP layer features.

Table 9.4: CICIDS2012 HTTP F1 score per attack best models

Class Baseline 1-NN DT RF 10 ADA 10
BENIGN 0.6518 0.99967 0.99971 0.9998 0.99976
Botnet ARES 0.00275 0.9932 1.0 1.0 1.0
DDos LOIC 0.30389 0.98406 0.99688 0.99688 0.99688
DoS Goldeneye 0.02919 0.98601 0.99271 0.99428 0.95485
DoS Hulk 0.45777 0.98987 0.99791 0.99799 0.9959
DoS SlowHTTPtest 0.00529 0.98936 0.98932 0.98932 0.99109
DoS Slowloris 0.00837 0.99001 0.99443 0.99443 0.99443
Portscan 0.00077 0.76923 0.71875 0.73529 0.69841
Web Attack - Brute Force 0.02701 0.99387 0.99386 0.99523 0.99522
Web Attack - SQL Injection 4e-05 0.66667 1.0 1.0 1.0
Web Attack - XSS 0.00681 0.98503 0.98904 0.99037 0.99037

Similar to the TCP layer, the feature importances can be investigated to determine which features
influence the predictions of the observations. The features importances of the decision tree trained
on the training dataset of the HTTP can be observed in Figure 9.2.

Figure 9.2: CIC-IDS-2017 HTTP feature importance decision tree

The D(D)oS attacks are heavily influenced by single features. For the DoS SlowHTTPtest, the fea-
ture method other has a feature importance of 0.86. As it turns out, the DoS SlowHTTPtest uses
a method called “FAKEVERB” which almost uniquely identifies the the SlowHTTPtest attack.
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For the DoS Goldeneye and the DoS Hulk the response body len turns out to be extremely impor-
tant. A value of 11321 is used 95.5% of all training instances for the DoS Goldeneye and 99.5% for
all training instances for the DoS Hulk. For the DDoS LOIC the feature host path unique char
only consisted of 1 character namely the dash symbol.

The SSH protocol dataset consists of normal traffic and two attacks: port scans and the SSH-
Patator. For the SSH-Patator attack in the SSH dataset, the F1 scores for each classifier is above
0.97. The baseline for this attack here is 0.533. The other attack in the SSH dataset is the portscan
attack. This attack is not only recorded for the SSH protocol but also the only attack in the DNS,
UDP and FTP protocols. As this attack is recorded over multiple datasets, the classifiers are
applied on all protocols of the CIC-IDS-2017 datasets to investigate in which this portscan can
best be detected. To make fair comparisons, only the normal traffic and the portscans connections
are used in a binary classification problem. Table 9.5 shows the F1 scores of some classifiers applied
on all datasets. On the TCP layer, the F1 score is highest, which is expected as portscans are not
targeted on one single port. Portscans are however not detectable on the FTP protocol.

Table 9.5: F1 scores binary classification port scan attack vs normal

Model TCP UDP HTTP DNS FTP SSH
Baseline 0.46805 0.00097 0.00159 0.0002 0.00803 0.02985
1-NN 0.99072 0.96154 0.88889 0.89474 0.0 0.90323
DT 0.99404 0.94175 0.85714 0.9 0.0 0.90323
RF 100 0.99413 0.96117 0.92105 0.87805 0.0 0.90323
ADA 5 0.99403 0.96078 0.89744 0.9 0.0 0.90323

9.1.3 ISCX-IDS-2012

The second dataset which is used in this research is the ISCX-IDS-2012. In the datasets of
the ISCX-IDS-2012 experiment, there are only two protocols for which multiple attack types are
recorded in the datasets: TCP and SSH. These protocols are used for the multiclass classification
problem to determine whether the attacks which occur in the dataset are indeed different from
normal traffic. Tables 9.6 and 9.7 show the macro and weighted F1 performance of the different
classifiers on the test-dataset of these protocols. Interesting to note in the performances of the
classifiers on the SSH protocol is that the tree based classifiers perform equivalently for the macro
and the weighted case. In the SSH protocol, there are connections with the actual label “unknown”
as discussed in chapter 5. As none of the 18 connections with actual label “unknown” are predicted
with this label in all models, the F1 score of this class is 0. As the F1 score of this class is 0, the
macro F1 score dramatically decreases as there are only 4 classes in the SSH protocol. There is
also one connection with actual label exfiltration and this is also incorrectly predicted.

Table 9.6: ISCX-IDS-2012 macro F1 score

Model TCP SSH
Baseline 0.09091 0.25
GNB 0.17818 0.40119
1-NN 0.74804 0.30429
DT 0.78108 0.45952
RF 5 0.68949 0.45952
RF 10 0.78035 0.45952
RF 100 0.77749 0.45952
ADA 5 0.78415 0.45952
ADA 10 0.78382 0.45952

Table 9.7: ISCX-IDS-2012 weighted F1 score

Model TCP SSH
Baseline 0.92719 0.50567
GNB 0.0186 0.77602
1-NN 0.99251 0.63345
DT 0.99274 0.91339
RF 5 0.99295 0.91339
RF 10 0.99298 0.91339
RF 100 0.99295 0.91339
ADA 5 0.99282 0.91339
ADA 10 0.99272 0.91339
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As the previous two tables only show the general performance of the classifiers over all classes,
Table 9.8 show the F1 performance for the models per class. As can be observed, the backdoor and
unknown attacks are outperforming the baseline, but are still not accurately predicted correctly
in most cases. Similar to the CIC-IDS-2017, the DDoS Slowloris attack in this dataset has a F1

score which is of the same performance level. The same can be said about the performance of the
SSH Brute Force attack, which has similarities with the SSH-Patator. The performance of the
classifiers on the portscan class is lesser than the performance in the CIC-IDS-2017, but there are
less connections in this dataset with this label.

Table 9.8: ISCX-IDS-2012 TCP F1 score per class

Class Baseline 1-NN DT RF 100 ADA 5
BENIGN 0.98096 0.99607 0.99619 0.99629 0.99623
Backdoor 0.00095 0.30612 0.28772 0.2973 0.28671
DDoS Botnet 0.03854 0.95333 0.95562 0.96052 0.95748
DDoS Slowloris 0.00648 0.79277 0.7926 0.79405 0.79405
Exfiltration 0.0 0.66667 1.0 1.0 1.0
Exploit 5e-05 0.66667 0.69565 0.64 0.72727
Portscan 0.02265 0.84885 0.85564 0.85569 0.85543
SQL Password 3e-05 0.66667 0.66667 0.66667 0.66667
SSH Brute Force 0.00488 0.99798 0.99899 0.99899 0.99899
Unknown 9e-05 0.33333 0.34286 0.34286 0.34286
Vulnerable SMB 0.0 1.0 1.0 1.0 1.0

In the ISCX-IDS-2012, the port scan attacks are only recorded on the TCP, UDP and DNS
protocol. Table 9.9 shows the F1 scores of the binary classification problem on datasets with only
normal traffic and the port scan attacks. The TCP protocol is the only protocol where these kinds
of attacks can be accurately detected. Table 9.10 show that the performance of the classifiers for
the DDoS Botnet is similar between TCP and HTTP.

Table 9.9: ISCX-IDS-2012 F1 score portscan

Model TCP UDP DNS
Baseline 0.02325 3e-05 2e-05
GNB 0.03175 5e-05 0.00012
KNN 1 0.67871 0.0 0.0
DT 0.85521 0.0 0.0
RF 5 0.85564 0.0 0.0
RF 10 0.85564 0.0 0.0
RF 100 0.85569 0.0 0.0
ADA 5 0.85561 0.5 0.0
ADA 10 0.85583 0.5 0.0

Table 9.10: ISCX-IDS-2012
F1 score DDoS Botnet

Model TCP HTTP
Baseline 0.03922 0.62764
GNB 0.58635 0.80198
KNN 1 0.9534 N.F.a

DT 0.95553 0.9556
RF 5 0.95864 0.9556
RF 10 0.95926 0.9556
RF 100 0.96038 0.9556
ADA 5 0.95657 0.95505
ADA 10 0.95678 0.95535

aN.F. = Not feasible. As the train dataset
contains around 7.2 million connections and
the test dataset 1.8 million, the total number
of comparisons is 12.96 · 1012.
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9.1.4 UNSW-NB15

The last dataset for which the supervised learning classifiers are applied is the UNSW-NB15. The
classifiers are applied on all protocols except the SSL dataset. Table 9.11 and Table 9.12 show
the macro and weighted F1 scores for the multiclass classification problems. As each protocol
contains multiple classes, each dataset requires a multiclass classification algorithm. It can be
observed in the macro F1 scores that the classifiers outperform the baselines. The interesting part
is that the GBN model is the best classifier on the FTP protocol. In other cases the GNB model
is outperformed by the other models.

Table 9.11: UNSW-NB15 macro F1 score

Model TCP UDP HTTP DNS FTP SSH
Baseline 0.1 0.11111 0.11111 0.16667 0.2 0.33333
GNB 0.11923 0.34653 0.20262 0.04464 0.74121 0.70764
KNN 1 0.631 0.70029 0.75081 0.80111 0.57373 0.79995
DT 0.60598 0.69511 0.77838 0.86671 0.67716 0.79995
RF 5 0.64567 0.6896 0.78005 0.87543 0.70897 0.79995
RF 10 0.63618 0.70558 0.79104 0.88638 0.70897 0.79995
RF 100 0.64798 0.71302 0.78609 0.88844 0.67716 0.79995
ADA 5 0.62701 0.67308 0.78358 0.83015 0.67716 0.79995
ADA 10 0.62739 0.67031 0.78461 0.82505 0.67716 0.79995

The weighted F1 scores of the baselines are important to note in Table 9.12. As can be seen
in Chapter 7, the attack classes instances combined are very rare. The normal traffic is very
dominant in the datasets of the UNSW-NB15. As a result, in the weighted F1 score is primarily
influenced by the dominant class in the dataset, which is in most cases normal traffic. As a result,
the baselines of the protocols are very close to one. Therefore, a weighted F1 score of almost 1
cannot be interpret as good without looking at the baselines of the datasets. Still, the classifiers,
except the GNB, do outperform the baseline is almost all scenarios.

Table 9.12: UNSW-NB15 weighted F1 score

Model TCP UDP HTTP DNS FTP SSH
Baseline 0.92953 0.95451 0.87192 0.91638 0.94761 0.99921
GNB 0.60578 0.97771 0.13004 0.00037 0.99471 0.99766
KNN 1 0.98325 0.98643 0.98449 0.99574 0.99109 0.99967
DT 0.98321 0.98622 0.9867 0.99846 0.99478 0.99967
RF 5 0.98486 0.98645 0.98815 0.99855 0.99486 0.99967
RF 10 0.98504 0.98667 0.98887 0.99859 0.99486 0.99967
RF 100 0.98547 0.98669 0.98909 0.99859 0.99478 0.99967
ADA 5 0.98363 0.98606 0.98769 0.99839 0.99478 0.99967
ADA 10 0.98375 0.986 0.98804 0.99841 0.99478 0.99967

As most attacks occur in more than one protocol layer, it is interesting to see on which protocol
layer attacks can best be detected. Table 9.13 shows the F1 score for each attack on each protocol
layer for the random forest model with 100 estimators. Missing values here means that no F1

score could be computed because the attacks did not occur on that layer. Interesting to see here
is that there is not one specific protocol for which all attacks can be detected but that the highest
scores can be detected on several protocols. The only attack which is not detected is the analysis
attack.
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Table 9.13: RF 100 F1 protocol performance

Class TCP UDP HTTP DNS FTP SSH
Analysis 0.09174 - 0.01818 - - -
BENIGN 0.99432 0.99489 0.99665 0.99934 0.99724 0.99985
Backdoor 0.66667 1.0 0.94382 - - -
DoS 0.5 0.56376 0.5976 0.69231 0.72727 -
Exploits 0.85754 0.61157 0.93484 0.77707 0.9484 0.4
Fuzzers 0.59453 0.35532 0.75039 0.98177 0.71287 -
Generic 0.87901 0.6683 0.95788 0.99125 0.0 1.0
Reconnaissance 0.81802 0.97065 0.92627 0.88889 - -
Shellcode 0.46254 0.58599 - - - -
Worms 0.61538 0.66667 0.94915 - - -

9.2 Anomaly Detection

The second section of this chapter consists of the results of applying unsupervised learning al-
gorithms on the datasets. These algorithms do not use the labels as opposed to the supervised
learning algorithms. In the first part of this section, the experimental setup is given which de-
scribes how the datasets are prepared before applying anomaly detection techniques. Furthermore,
it is shown how the anomaly scores are determined for each instance. Afterwards, the results of
the PCA and Isolation Forest methods are discussed for each dataset.

9.2.1 Experiment Setup

While class balance is useful for supervised learning techniques, class imbalance is occurring in
anomaly detection datasets. When looking at the intrusion ratio in Table 7.2, there are some
protocols for which the intrusion ratio is relatively large when considering malicious connections
as anomalies. Therefore, for the protocols in which more than 5% of the connections are malicious,
the malicious connections are downsampled with the restriction that there is at least one connection
of each attack kind. This downsampling results in the following intrusion ratio, which can be see
in Table 9.14. The 5% values indicate that these protocols are downsampled, which thus involves
five protocols over the tree datasets.

Table 9.14: Percentage Malicious Activity Anomaly Detection

Protocol CIC-IDS-2017 ISCX-IDS-2012 UNSW-NB15
TCP 5.00% 3.74% 3.61%
UDP 0.05% 0.0012% 2.31%
DNS 0.01% 0.0009% 4.34%
HTTP 5.00% 5.00% 5.00%
SSL 0.0003% 0% -
SSH 5.00% 5.00% 0.04%
FTP 0.32% 0.24% 2.68%

To evaluate the anomaly detection techniques, the 10-fold cross validation technique is applied on
the datasets. This implies that each instances gets one anomaly score. This approach is performed
five times with different folds so that each instance in the end has five anomaly scores. Th end
anomaly score of an instance is calculated by taking the mean of these five anomaly scores. With
this approach, the anomaly scores are not dependent on only one model but multiple to get an
good estimate of the anomaly score of the instance. The following abbreviations are used for the
anomaly detection models: PCA with X% of the principle components with the highest explained
variance (PCA X) and isolation forest with X estimators (IForest X).
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9.2.2 CIC-IDS-2017

The first datasets for which the anomaly detection algorithms are applied is the CIC-IDS-2017
dataset. Figure 9.3 shows the progress of the evaluation metrics for the PCA model using 50% of
the principle components applied on the TCP dataset. Each instance obtains an anomaly score
and this list of instances are descending ordered by their anomaly scores. The threshold level
(θ) determines that X% of the highest anomaly scores are labelled as malicious while the lowest
1-X% is labelled as normal. By increasing this threshold, the evaluation metrics change. There
are several interesting moments which are interesting to evaluate. First, what is the F1 score when
the anomaly ratio is the threshold. At this point, the recall is equal to the precision, which is
thus means that it is the F1 score. Secondly, what is the the maximum attained F1 score on the
anomaly scores. At last, it might be interesting to see at what threshold level all anomalies are
predicted with the malicious label. This indicates at which level all traffic below the threshold is
normal.

Figure 9.3: Evaluation metrics per theshold level CIC-IDS-2017 TCP PCA 0.5

Anomaly ratio malicious threshold

Table 9.15 below gives the F1 scores for the considered models when the threshold equals the
intrusion ratio. It can be observed that only the models applied on the SSH and UDP proto-
cols outperform the baseline in some cases. For the other protocols the performance is 0 as all
malicious labelled traffic is actually normal. On TCP, only the isolation forest with 5 estimators
outperformed the baseline. The models performed on the SSH protocol actually worked great
comparing the results with the baseline.

Table 9.15: CIC-IDS-2017 F1 score when θ = P
n

Model TCP UDP DNS HTTP FTP SSH SSL
Baseline 0.09524 0.00097 0.0002 0.09523 0.00644 0.09506 1e-05
IForest 5 0.00396 0.0 0.0 0.00486 0.0 0.53846 0.0
IForest 10 0.01209 0.0 0.0 0.00383 0.0 0.53846 0.0
PCA 0.1 0.03125 0.00397 0.0 0.02061 0.0 0.8022 0.0
PCA 0.5 0.03079 0.00397 0.0 0.02061 0.0 0.8022 0.0
PCA 0.9 0.03079 0.00397 0.0 0.02061 0.0 0.8022 0.0

The F1 score in Table 9.15 show the preformance of the models by comparing normal and a
combination of all attack classes. It might be interesting to see which attacks in this set of attack
classes were detected using this threshold level. Figure 9.4 shows in percentage what part of
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which class is predicted as malicious and which is predicted normal given the intrusion ratio as
threshold level for the isolation forest model with 5 estimators. It can be observe that using this
threshold level results in being able to detect the heartbleed attack. While in the supervised
learning techniques it was not possible to detect this attack as there is only one instance, this
model is able to detect this attack using this threshold level. For many other attacks only a small
part of the attacks are detected for this protocol.

Figure 9.4: CIC-IDS-2017 TCP IForest 5 normal and malicious prediction per class

Figure 9.5 shows the boxplots of the anomaly scores for each class. It can be observed that
the heartbleed attack is in the top of the anomaly scores. Attack such as the Web Attack Brute
Force, the FTP and SSH patator have relatively lower anomaly scores compared to other malicious
classes. This explains why some of the attacks are not detected seen in Figure 9.15.

Figure 9.5: CIC-IDS-2017 TCP IForest 5 anomaly scores boxplot
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Highest obtained F1 score

Instead of looking at the F1 score at the anomaly ratio threshold, it can be interesting to see what
the highest attainable performance is. Table 9.16 states the highest attained F1 scores. This is,
of course, a very optimal score as the user has to know the threshold for which this F1 score can
be obtained.

Table 9.16: CIC-IDS-2017 highest obtained F1 score

Model TCP UDP DNS HTTP FTP SSH SSL
Baseline 0.09524 0.00097 0.0002 0.09523 0.00644 0.09506 1e-05
IForest 5 0.36796 0.02643 0.00117 0.09569 0.00665 0.81073 0.00042
IForest 10 0.3576 0.03537 0.00115 0.09609 0.00681 0.81073 0.00041
PCA 0.1 0.45154 0.07227 0.00548 0.16293 0.01794 0.90084 0.00016
PCA 0.5 0.4519 0.05664 0.00599 0.12201 0.01794 0.90084 0.00017
PCA 0.9 0.45347 0.06185 0.00547 0.12274 0.01072 0.89562 0.00016

Similar to the threshold level anomaly ratio, the attacks self can be evaluated on whether indeed
the attacks are found when using the maximum F1 score anomaly detection threshold level. Figure
9.6 shows the results at this threshold level. As the threshold level is higher than the previous
case, more benign traffic is labelled as malicious. Therefore, the recall has increased. For all the
other attacks we can see a significant increase in anomaly detection accuracy. The attacks which
are hard to detect on the TCP supervised learning techniques are the web attacks. Similar here,
they cannot be found in the TCP dataset.

Figure 9.6: CIC-IDS-2017 TCP IForest 5 highest attained F1 performance per class
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Optimal recall threshold

The third performance indicator is the threshold level for which the recall is optimal. This indicator
shows the threshold level for which the recall is 100%, or TP = P. Table 9.17 shows the threshold
levels for which the the recall level is 100% for the five different models. So, in the TCP protocol
for the PCA model with 50% components used all malicious connections are in the highest 50%
anomaly scores. For the HTTP protocol, it turns out that the median of the DoS Hulk attack is
around 0.38 for Isolation Forest model with 10 estimators and the median BENIGN is 0.41. The
DoS Hulk consists of 7,882 observations, which are almost all connections.

Table 9.17: CIC-IDS-2017 optimal recall threshold

Model TCP UDP DNS HTTP FTP SSH SSL
Anomaly Ratio 5.0% 0.048% 0.01% 5.0% 0.323% 4.99% ≈0.0%
IForest 5 83.316% 65.512% 39.841% 99.994% 98.667% 73.149% 1.434%
IForest 10 66.549% 53.632% 19.153% 99.936% 94.548% 44.544% 1.464%
PCA 0.1 53.978% 28.005% 4.042% 93.924% 96.769% 91.939% 3.737%
PCA 0.5 50.879% 96.128% 4.505% 96.623% 96.769% 96.582% 3.636%
PCA 0.9 53.241% 48.177% 4.306% 97.246% 88.651% 64.504% 3.649%

9.2.3 ISCX-IDS-2012

The second experiment for which the unsupervised learning techniques are applied is the ISCX-
IDS-2012. Similar to the CIC-IDS-2017 experiment, the performance of the models are measured
at the F1 score at the anomaly ratio, the maximum performance and the moment when the recall
is optimal.

Threshold anomaly ratio

Table 9.18 shows the performance of the models when the intrusion ratio is used as threshold level.
For the UDP, DNS and FTP protocols, the models perform worse than the baseline. This means
that all connections which are labelled with the malicious label are actually benign and therefore
the F1 score is 0. For the TCP and the SSH protocol the baselines are outperformed. On the
TCP layer, the PCA model outperforms the IForest model, while for the SSH protocol it is the
other way around.

Table 9.18: ISCX-IDS-2012 F1 score when θ = P
n

Model TCP UDP DNS HTTP FTP SSH
Baseline 0.07204 2e-05 2e-05 0.09524 0.00477 0.09514
IForest 5 0.00937 0.0 0.0 4e-05 0.0 0.25069
IForest 10 0.08342 0.0 0.0 4e-05 0.0 0.25069
PCA 0.1 0.20554 0.0 0.0 0.01188 0.0 0.00275
PCA 0.5 0.20492 0.0 0.0 0.01184 0.0 0.00275
PCA 0.9 0.20515 0.0 0.0 0.01187 0.0 0.0

Similar to the CIC-IDS-2017 dataset, it is interesting to see which attacks are detected using
this threshold. Figure 9.7 shows the percentages being predicted with an anomalous label for the
upper threshold of 3.73%, which is the intrusion ratio. As can be observed, the exfiltration and
infiltration connections are actually predicted with the correct label, while almost all unknown
connections are also predicted correctly. The vulnerable SMB attack however is not detected at
all when using this threshold.
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Figure 9.7: ISCX-IDS-2012 TCP PCA 0.1 performance per class

Highest F1 score

Table 9.19 shows the performance of the models when looking at the highest attained F1 score.
These are optimistic in the sense that the user should know that the threshold should be set at
this level. In comparison with the previous scores, the UDP, DNS and FTP gain little by changing
the threshold level. The performance of the TCP and SSH layer have increase by almost 50% for
both protocols.

Table 9.19: ISCX-IDS-2012 Highest attained F1 score per model

Model TCP UDP DNS HTTP FTP SSH
Baseline 0.07204 2e-05 2e-05 0.09524 0.00477 0.09514
IForest 5 0.33199 0.0002 0.0005 0.11497 0.08511 0.4454
IForest 10 0.34683 0.00033 0.00159 0.11164 0.05839 0.4454
PCA 0.1 0.2838 0.00108 0.00193 0.14994 0.19512 0.0952
PCA 0.5 0.28277 0.00108 0.00192 0.15944 0.19512 0.0952
PCA 0.9 0.28216 0.00108 0.00192 0.15722 0.00836 0.0952

Figure 9.8 on the next page shows the anomaly normal prediction per class when the threshold
is the highest attained F1 score. In contrast with the previous figure, almost all attacks are
completely detected. However, 14% of the normal traffic is predicted malicious to attain this F1

score of 0.34.
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Figure 9.8: ISCX-IDS-2012 TCP IForest 5 anomaly normal prediction per class

Optimal recall threshold

In this last part of this dataset, the optimal recall threshold is determined for each dataset. Table
9.20 shows the threshold levels for which the recall is 1.0. It can be observed that for the TCP
and HTTP protocols there are some anomalous connections with low anomaly scores, which imply
that the threshold should be high to be able to detect these connections. In contrast, the DNS
and FTP quickly have a recall of 1.0 at a low threshold level of 0.948 and 2.212 respectively for
the PCA 0.5 model.

Table 9.20: ISCX-IDS-2012 optimal recall threshold per dataset

Model TCP UDP DNS HTTP FTP SSH
Anomaly Ratio 3.737% 0.001% 0.001% 5.0% 0.239% 4.994%
IForest 10 70.826% 28.591% 1.146% 99.994% 7.95% 71.67%
IForest 5 89.64% 23.918% 3.643% 99.996% 5.38% 49.34%
PCA 0.1 99.731% 63.873% 0.945% 99.881% 2.212% 99.931%
PCA 0.5 99.993% 68.041% 0.948% 98.726% 2.212% 99.931%
PCA 0.9 99.243% 65.626% 0.948% 99.414% 90.855% 99.931%
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9.2.4 UNSW-NB15

The last dataset which is used for the anomaly detection algorithm is the UNSW-NB15. For this
dataset, only the HTTP protocol is downsampled. Again, like previous datasets, the F1 score
at the intrusion ratio is calculated, the highest attained F1 score and the optimal recall point is
determined.

Threshold anomaly ratio

Table 9.21 shows the results of the models on the UNSW-NB15 dataset using the thresholdlevel
θ = P

n . It can be observed that the models perform much better on the HTTP, FTP and UDP
protocols compared to the previous datasets. The PCA model outperforms the isolation forest
models in almost all cases.

Table 9.21: UNSW-NB15 threshold anomaly ratio F1 score

Model TCP UDP DNS HTTP FTP SSH
Baseline 0.06966 0.04516 0.0831 0.09524 0.05221 0.00079
IForest 5 0.05804 0.23293 0.2086 0.37467 0.5896 0.1
IForest 10 0.04005 0.31437 0.20484 0.53509 0.5736 0.05
PCA 0.1 0.06601 0.45591 0.19687 0.52867 0.6272 0.05
PCA 0.5 0.06583 0.48933 0.19863 0.54561 0.6384 0.05
PCA 0.9 0.06586 0.46685 0.1959 0.54404 0.6392 0.05

Figure 9.9 shows the performance of the model on the FTP application layer. It can be seen that
the DoS, Fuzzers and Generic are totally found when using the anomaly ratio as anomaly score.
Only the exploits are not entiry obtained. As 45% of 1,036 are not labelled as malicious, this
indicates that this number is the amount of connections which are labelled as malicious but are
actually normal traffic.

Figure 9.9: UNSW-NB15 FTP PCA 0.9 performance at anomaly ratio threshold
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When taking a loot at the HTTP performance, it can be observed that again the fuzzers are almost
all detected. Also the backdoor and worm attacks are identified. However, the analysis attack is
barely detected.

Figure 9.10: UNSW-NB15 HTTP PCA 0.5 performance at anomaly ratio threshold

Highest F1 score

In the next situation, the highest attained F1 scores are analysed. Table 9.22 shows these F1

scores for the UNSW-NB15 dataset. It can be observed that the performance of the UDP and
FTP dataset is reasonable high. In contrast to previous datasets, the models do not perform great
on the SSH protocol.

Table 9.22: UNSW-NB15 highest F1 score

Model TCP UDP DNS HTTP FTP SSH
Baseline 0.06966 0.04516 0.0831 0.09524 0.05221 0.00079
IForest 5 0.12235 0.36282 0.6179 0.43925 0.76666 0.11321
IForest 10 0.11804 0.47286 0.63272 0.54095 0.76923 0.14035
PCA 0.1 0.15911 0.73387 0.70637 0.54415 0.82243 0.17167
PCA 0.5 0.14223 0.73662 0.70638 0.5637 0.8315 0.17167
PCA 0.9 0.13317 0.73677 0.70558 0.55152 0.82763 0.17167

When looking at the performance of the models on the DNS protocols between Table 9.21 and Table
9.22, there is an great difference in F1 score. When looking at the normal malicious predictions
in Figure 9.11 at the threshold level with the highest attained F1 score, it can be observed that
almost all attacks are detected, except for some DoS connections. Only 3.8% of the normal traffic
is labelled malicious in this situation.
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Figure 9.11: UNSW-NB15 DNS PCA 0.5 prediction per class

Optimal recall threshold

The last result which is given for the anomaly detection algorithms is the optimal recall threshold
for the UNSW-NB15 dataset. Table 9.23 shows the threshold levels for which the recall is opti-
mal. The UDP, DNS, FTP and SSH seem to require a low threshold level to attain this recall
performance level. Eventhough for the SSH PCA models the recall is already 1 at 0.421% of all
instances, the highest attained F1 score seen in Table 9.22 is only 0.17167. The low F1 score does
not tell that 99.5% of the lowest anomaly scores were actually normal instances, while this stastic
does tell so.

Table 9.23: UNSW-NB15 optimal recall thresholds

Model TCP UDP DNS HTTP FTP SSH
Anomaly Ratio 3.609% 2.31% 4.335% 5.0% 2.681% 0.04%
IForest 5 99.879% 13.311% 10.149% 99.337% 6.157% 6.046%
IForest 10 88.77% 8.865% 9.545% 41.826% 4.583% 6.025%
PCA 0.1 94.796% 69.833% 8.029% 100.0% 3.982% 0.421%
PCA 0.5 100.0% 100.0% 8.032% 53.574% 3.77% 0.421%
PCA 0.9 100.0% 100.0% 8.034% 53.583% 3.847% 0.421%
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9.3 Graph Level

In the last part of this research, we take a look at the graph-level performance. First the exper-
imental setup is discussed, after which the results of the models are discussed. In this section,
only the results for the CIC-IDS-2017 and the UNSW-NB15 are discussed. The results for the
ISCX-IDS-2012 can be found in Appendix C.

9.3.1 Experimental Setup

Intrusion data is high dimensional. The methods considered in this research only use one weight
value in the edges. Therefore, the connection data is transformed to an anomaly score, which
describes the likeliness of the behaviour seen in the communication between the hosts. In the
previous section, connection features where transformed to anomaly scores in an unsupervised
learning manner. These anomaly scores are now used as weights for the links between the edges.

The dataset now consists of two communicating hosts with data as start-time (and possibly an
ending-time, e.g. TCP connections) and an anomaly score indicating the likeliness of the be-
haviour. To construct graph Gt, only the connections at a certain t are considered. Let t0 be the
first connection of the day and tT the last time moment. It holds that t ∈ {t0, t0+δ, t0+2·δ, ..., tT }
When connections in a certain protocol dataset have an starting time and an ending time, the
data for connection t is extracted as follows.

Xt = {xi|t ≤ xi,ts ∩ xi,ts < t+ δ}

There are protocols without the ending time feature. For these protocols the connections are
extracted in the following way.

Xt = {xi|t ≤ xi,ts ∩ xi,ts < t+ δ}

Of course it is possible to have multiple connections between two hosts at the same time. There-
fore, we compute the maximum value for each duplicate connection. This results then in Gt.
Each graph has either a normal or malicious label. This label is constructed by looking at the
connections in Xt and look if one of the connections has a malicious label. If this is the case, then
the graph is considered malicious, while is all connections are normal, the graph is considered
normal. In this research, the time unit δ is taken 2 min after considering several options such as
5 seconds, 1 minute, 2 minutes, 10 minutes and 60 minutes.

This resulted in new datasets with the intrusion ratio’s given in Table 9.24. This table shows how
many network changes are labelled as malicious in relative perspective with the total number of
changes of the network. The UNSW-NB15 has relatively many changes in the network with many
malicious changes.

Table 9.24: Graph-based datasets intrusion ratio statistics

Dataset TCP UDP DNS HTTP FTP SSH SSL
CIC-IDS-2017 0.32734 0.02167 0.018 0.09393 0.00333 0.03394 0.00041
ISCX-IDS-2012 0.08929 0.0003 0.0001 0.00474 0.0003 0.00491 0.0
UNSW-NB15 0.54257 0.54632 0.35453 0.54023 0.40636 0.01366 0.17486

In the following sections, the results for the applied distance metrics are given for the CIC-IDS-2017
dataset and the UNSW-NB15 dataset.
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9.3.2 CIC-IDS-2017

To get results for the CIC-IDS-2017, the network change with the highest distances are labelled
as malicious and the others are labelled normal. The intrusion ratio is used as a threshold to
differentiate between the normal network change and the possibly malicious. Table 9.25 shows the
results for the unweighted metrics. The TCP dataset is the dataset in which the NED distance is
best able to capture the malicious network changes in the highest distance metrics.

Table 9.25: CIC-IDS-2017 unweighted edges methods F1 score

Metric TCP UDP DNS HTTP FTP SSH SSL
MCSED 0.2757 0.0 0.04167 0.04762 0.0 0.0 0.0
MCSVD 0.30607 0.0 0.04167 0.03968 0.0 0.0 0.0
NED 0.37617 0.0 0.04167 0.15873 0.125 0.10638 0.0
VEO 0.31075 0.03333 0.04167 0.01587 0.0 0.0 0.0

Table 9.26 shows the results for the weighted edges distance metrics. It can be observed that
the weighted versions outperform the unweighted metrics in all protocols. Interesting is that in
the SSH protocol the F1 score is even 0.76596. On the TCP level, only a slight improvement is
achieved with the Umeyama distance with IForest 5 anomaly scores as edge weights.

Table 9.26: CIC-IDS-2017 edge weighted methods F1 score

Metric Weight TCP UDP DNS HTTP FTP SSH SSL
ED IForest 10 0.29206 0.03333 0.04167 0.0 0.0 0.0 0.0
ED IForest 5 0.29206 0.03333 0.04167 0.0 0.0 0.0 0.0
ED PCA 0.1 0.29206 0.03333 0.04167 0.0 0.0 0.0 0.0
ED PCA 0.5 0.29206 0.03333 0.04167 0.0 0.0 0.0 0.0
ED PCA 0.9 0.29206 0.03333 0.04167 0.0 0.0 0.0 0.0
MCSWD IForest 10 0.34112 0.0 0.0 0.07143 0.0 0.46809 0.0
MCSWD IForest 5 0.36449 0.0 0.0 0.09524 0.0 0.48936 0.0
MCSWD PCA 0.1 0.35748 0.0 0.0 0.13492 0.0 0.19149 0.0
MCSWD PCA 0.5 0.36916 0.0 0.0 0.13492 0.0 0.34043 0.0
MCSWD PCA 0.9 0.36916 0.0 0.0 0.13492 0.0 0.34043 0.0
UD IForest 10 0.38084 0.0 0.04167 0.15873 0.0 0.57447 0.0
UD IForest 5 0.38318 0.03333 0.04167 0.15079 0.125 0.51064 0.0
UD PCA 0.1 0.37383 0.0 0.04167 0.16667 0.0 0.76596 0.0
UD PCA 0.5 0.37617 0.0 0.04167 0.16667 0.0 0.61702 0.0
UD PCA 0.9 0.3785 0.0 0.04167 0.16667 0.125 0.57447 0.0
WD IForest 10 0.29907 0.0 0.04167 0.0 0.0 0.0 0.0
WD IForest 5 0.29907 0.0 0.04167 0.0 0.0 0.0 0.0
WD PCA 0.1 0.30374 0.0 0.04167 0.0 0.0 0.0 0.0
WD PCA 0.5 0.30374 0.0 0.04167 0.0 0.0 0.0 0.0
WD PCA 0.9 0.30374 0.0 0.04167 0.0 0.0 0.0 0.0
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9.3.3 UNSW-NB15

This section gives the results of the graph-based approach on the UNSW-NB15 dataset. Table
9.27 shows the results for the unweighted distance metrics. It is clearly that the scores of these
metrics are already high for all protocols except the SSH protocol. The MCSVD seems to be the
best metric for this dataset.

Table 9.27: UNSW-NB15 unweighted F1 score

Metric TCP UDP DNS HTTP FTP SSH SSL
MCSED 0.96139 0.96287 0.53053 0.95745 0.61231 0.0 0.53125
MCSVD 0.96264 0.96782 0.92176 0.9587 0.68719 0.0 0.53125
NED 0.85554 0.95792 0.44275 0.9224 0.64559 0.0 0.58594
VEO 0.82441 0.93564 0.42557 0.69086 0.52246 0.0 0.49219

At last, the results for the weighted distance metrics are found in Table 9.28. Clearly, the Umeyama
distance metrics seem to outperform other distance metrics in all protocol datasets. Still the
unweighted MCSVD seem to outperform the weighted metrics for most protocols, such as TCP,
DNS, HTTP and FTP.

Table 9.28: UNSW-NB15 edge weighted F1 scores

Metric Weight TCP UDP DNS HTTP FTP SSH SSL
WD PCA 0.1 0.74346 0.87748 0.35305 0.73467 0.41764 0.0 0.53125
WD PCA 0.5 0.78082 0.87995 0.35687 0.72966 0.42097 0.0 0.53125
WD PCA 0.9 0.78829 0.88366 0.35496 0.72716 0.43428 0.0 0.53125
WD IForest 5 0.78829 0.86386 0.35115 0.74844 0.41098 0.0 0.53125
WD IForest 10 0.78829 0.86757 0.34351 0.7184 0.41431 0.0 0.53125
ED PCA 0.1 0.6538 0.23391 0.09924 0.53442 0.12313 0.0 0.19531
ED PCA 0.5 0.63885 0.23391 0.27099 0.53442 0.1198 0.0 0.19531
ED PCA 0.9 0.63885 0.23391 0.27481 0.53442 0.1198 0.0 0.19531
ED IForest 5 0.64259 0.23391 0.19084 0.53942 0.12146 0.0 0.19531
ED IForest 10 0.64882 0.23391 0.2729 0.53692 0.12146 0.0 0.19531
MCSWD PCA 0.1 0.45205 0.4802 0.31679 0.57947 0.38769 0.0 0.20312
MCSWD PCA 0.5 0.44956 0.47525 0.28244 0.55444 0.37438 0.0 0.20312
MCSWD PCA 0.9 0.44956 0.47772 0.28626 0.55319 0.38935 0.0 0.20312
MCSWD IForest 5 0.47447 0.54084 0.29389 0.54318 0.38103 0.0 0.20312
MCSWD IForest 10 0.48319 0.52847 0.2958 0.49061 0.37438 0.0 0.20312
UD PCA 0.1 0.73724 0.9604 0.53053 0.95369 0.61398 0.0 0.60156
UD PCA 0.5 0.79452 0.96782 0.51718 0.94994 0.56739 0.0 0.63281
UD PCA 0.9 0.80199 0.96535 0.45038 0.94618 0.54576 0.0 0.60938
UD IForest 5 0.82565 0.95916 0.41031 0.94243 0.53245 0.0 0.60938
UD IForest 10 0.82192 0.96535 0.43702 0.94493 0.53744 0.0 0.60938
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Chapter 10

Discussion and Conclusion

In this first part of this research, the assumption that malicious traffic is indeed different from nor-
mal traffic is checked by applying supervised learning techniques. Multiple data sources describing
not merely the transport layer usage but also application layer protocols helped the machine learn-
ing techniques distinguishing attacks from normal traffic. One example which shows this are the
web attacks in the CIC-IDS-2017 dataset. The F1 performance for these attacks are boosted by
using the HTTP dataset over the TCP dataset.

One main contribution in this research are the new and improved labeling schemes for the ISCX-
IDS-2012 and the CIC-IDS-2017 dataset. These labelling schemes can be used instead of the
published labelling schemes for more accurately labelling the connections of the dataset. Improv-
ing labelling schemes helps the research community as the data is better labelled.

In the second part of this research, the unsupervised learning techniques are applied on the same
datasets to see whether assigning anomaly scores to connections can help detecting malicious traf-
fic in an anomaly detection manner. Unfortunately, the unsupervised learning techniques which
are applied did not result in F1 scores outperforming the benchmark in many cases. This mo-
tivates the idea of using the graph-structure of the data to also take host correlations into account.

In the last part of this research, we have applied several graph distance metrics to look at the
change of the network over time to detect the moments in which attacks occur. Unfortunately, for
the CIC-IDS-2017 and the ISCX-IDS-2012 dataset the results were poorly in many cases. How-
ever, the performance of the models on the USNW-NB15 dataset has outperformed the baselines
with an F1 score of 0.96785 for the Umeyama distance with PCA 0.5 as edge weights for the UDP
protocol and a F1 score of 0.95369 for the same distance metric with PCA 0.1 as edge weights
for the HTTP dataset. However, the unweighted MCSVD metric outperformed the Umeyama
distance metrics for the TCP, DNS, HTTP and FTP datasets. The structure of the network has
a great influence on the distances measuring the network change.

Future work

As the title of this research already indicates, this research is not a closed book. There are many
methods in graph-based intrusion detection and only a small part of research within this field is
studied in this research. In this research, the change of the network is labelled as malicious, but
there are also methods in which nodes are labelled as malicious, edges or sub-graphs. Applying
other graph-based methods on the latest intrusion detection dataset can determine which methods
are promising and which are not.
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Appendix A

ISCX-IDS-2012 Meta Data

Table A.1: ISCX-IDS-2012 Network Addresses

IPv4 Private MAC Addresses ARP Addresses
192.168.1.101 00:11:25:bb:1f:cf Ibm bb:1f:cf
192.168.1.102 00:11:25:bb:ce:a1 Ibm bb:ce:a1
192.168.1.103 00:11:25:bb:ce:df Ibm bb:ce:df
192.168.1.104 00:11:25:b9:ac:22 Ibm b9:ac:22
192.168.1.105 00:11:25:5f:9b:4f Ibm 5f:9b:4f
192.168.2.106 00:11:25:b9:a7:ed Ibm b9:a7:ed
192.168.2.107 00:11:25:bb:d2:6f Ibm bb:d2:6f
192.168.2.108 00:02:55:bf:75:a9 Ibm bf:75:a9
192.168.2.109 00:09:6b:03:e8:a4 Ibm 03:e8:a4
192.168.2.110 00:09:6b:e9:a9:00 Ibm e9:a9:00
192.168.2.111 00:09:6b:8b:63:8e Ibm 8b:63:8e
192.168.2.112 00:09:6b:e9:cf:6b Ibm e9:cf:6b
192.168.2.113 00:09:6b:e9:d0:88 Ibm e9:d0:88
192.168.3.114 00:0d:60:96:ac:5e Ibm 96:ac:5e
192.168.3.115 00:0d:60:96:ac:f7 Ibm 96:ac:f7
192.168.3.116 00:0d:60:96:ad:25 Ibm 96:ad:25
192.168.3.117 00:09:6b:d8:7f:9a Ibm d8:7f:9a
192.168.4.118 00:0d:60:96:ac:f6 Ibm 96:ac:f6
192.168.4.119 00:02:55:7f:70:de Ibm 7f:70:de
192.168.4.120 00:11:25:bb:cf:0f Ibm bb:cf:0f
192.168.4.121 00:0d:60:96:ae:5c Ibm 96:ae:5c
192.168.5.122 00:22:19:20:7b:d3 Dell 20:7b:d3
192.168.5.123 00:09:6b:d8:f2:c8 Ibm d8:f2:c8
192.168.5.124 00:01:02:72:ab:55 3Com 72:ab:55
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Table A.2: ISCX-IDS-2012 Improved Labeling Scheme

Day Start End Orig IP Resp IP Orig Port Resp Port Label
13-6 15:32 15:32 131.202.243.90 192.168.5.122 5096 25 Infiltration
13-6 16:11 21:00 192.168.1.105 131.202.243.90 54073 5555 Infiltration
13-6 16:50 21:02 192.168.2.112 131.202.243.90 3542 5555 Infiltration
13-6 16:37 16:39 192.168.1.105 192.168.1. Portscan
13-6 16:42 16:44 192.168.1.105 192.168.2. Portscan
13-6 16:50 18:31 192.168.1.105 192.168.2.112 445 Exploit
13-6 16:58 16:59 192.168.2.112 192.168.5. Portscan
13-6 17:03 18:31 192.168.1.105 192.168.2.112 4444 Exploit
(13-18)-6 20:59 00:08 192.168.2.112 131.202.243.84 5555 Backdoor
13-6 22:43 22:50 142.167.88.44 192.168.5.122 SQL Password
14-6 17:19 17:20 192.168.1.112 192.168.3. 52707 Portscan
14-6 17:19 17:20 192.168.1.112 192.168.3. 52708 443 Portscan
14-6 17:19 17:20 192.168.1.112 192.168.3. 143 Portscan
14-6 17:21 17:22 192.168.2.112 192.168.2.113 445 Vulnerable SMB
14-6 17:21 17:37 192.168.2.112 192.168.2.113 4444 Exploit
14-6 17:28 17:36 192.168.2.113 192.168.5.122 80 DDoS slowloris
14-6 17:39 17:50 192.168.2.112 192.168.3.115 445 Vulnerable SMB
14-6 17:39 17:50 192.168.2.112 192.168.3.115 4444 Exploit
14-6 17:43 17:49 192.168.3.115 192.168.5.122 80 DDoS slowloris
14-6 17:52 18:00 192.168.2.112 192.168.3.117 445 Vulnerable SMB
14-6 17:52 18:00 192.168.2.112 192.168.3.117 4444 Exploit
14-6 18:03 18:14 192.168.2.112 192.168.2.106 445 Vulnerable SMB
14-6 18:03 18:14 192.168.2.112 192.168.2.106 4444 Exploit
14-6 18:07 18:14 192.168.2.106 192.168.5.122 80 DDoS slowloris
14-6 18:15 18:26 192.168.2.112 192.168.1.101 445 Vulnerable SMB
14-6 18:15 18:26 192.168.2.112 192.168.1.101 4444 Exploit
14-6 18:19 18:26 192.168.1.101 192.168.5.122 80 DDoS slowloris
15-6 15:27 17:06 192.168.1.105 192.168.2.112 6667 Backdoor
15-6 15:33 17:06 192.168.2.109 192.168.2.112 6667 Backdoor
15-6 15:37 17:06 192.168.4.118 192.168.2.112 6667 Backdoor
15-6 15:41 17:06 192.168.2.113 192.168.2.112 6667 Backdoor
15-6 15:51 17:06 192.168.1.103 192.168.2.112 6667 Backdoor
15-6 15:53 17:06 192.168.2.110 192.168.2.112 6667 Backdoor
15-6 15:59 17:06 192.168.4.120 192.168.2.112 6667 Backdoor
15-6 16:04 17:07 192.168.1.103 192.168.5.122 80 DDoS Botnet
15-6 16:04 17:07 192.168.1.105 192.168.2.122 80 DDoS Botnet
15-6 16:04 17:07 192.168.2.109 192.168.5.122 80 DDoS Botnet
15-6 16:04 17:07 192.168.2.110 192.168.5.122 80 DDoS Botnet
15-6 16:04 17:07 192.168.2.113 192.168.5.122 80 DDoS Botnet
15-6 16:04 17:07 192.168.4.118 192.168.5.122 80 DDoS Botnet
15-6 16:04 17:07 192.168.4.120 192.168.5.122 80 DDoS Botnet
17-6 14:25 15:01 131.202.243.90 192.168.5.122 22 SSH Brute Force
17-6 15:02 17:12 131.202.243.90 192.168.5.122 9930 22 Exfiltration
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Appendix B

CIC-IDS-2017 Meta Data

Table B.1: CIC-IDS-2017 Network Addresses

IPv4 Private IPv4 Public IPv6 MAC Addresses
172.16.0.1 205.174.165.80
192.168.10.1
192.168.10.3 fe80::3109:ba1d:7470:7dd
192.168.10.5
192.168.10.8 fe80::6d07:ea13:6f73:ed41
192.168.10.9
192.168.10.12 fe80::8cc1:7756:5ffc:823f
192.168.10.14 fe80::3c60:fc97:3f94:ac8f
192.168.10.15 fe80::f470:cd16:3cf6:bd7b
192.168.10.16 fe80::cd08:22a7:a40f:3d73
192.168.10.17 fe80::223:aeff:fe9b:9567 00:23:ae:9b:95:67
192.168.10.19 fe80::223:aeff:fe9b:adb3 00:23:ae:9b:ad:b3
192.168.10.25 00:25:00:a8:c4:60
192.168.10.50 205.174.165.68 fe80::3e30:c3c4:d72f:ae4c
192.168.10.51 205.174.165.66 fe80::baac:6fff:fe36:ba8 b8:ac:6f:36:0b:a8
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Table B.2: CIC-IDS-2017 Improved Labeling Scheme

Day Start End Orig IP Resp IP Orig Port Resp Port Label
4-7 09:16 10:21 172.16.0.1 192.168.10.50 21 Patator - FTP
4-7 14:08 15:12 172.16.0.1 192.168.10.50 22 Patator - SSH
5-7 09:47 10:12 172.16.0.1 192.168.10.50 80 DoS Slowloris
5-7 10:14 10:38 172.16.0.1 192.168.10.50 80 DoS SlowHTTPTest
5-7 10:42 11:08 172.16.0.1 192.168.10.50 80 DoS Hulk
5-7 11:09 11:21 172.16.0.1 192.168.10.50 80 DoS Goldeneye
5-7 15:11 15:33 172.16.0.1 192.168.10.51 444 Heartbleed
6-7 09:14 10:01 172.16.0.1 192.168.10.50 80 Web Attack - Brute Force
6-7 10:14 10:36 172.16.0.1 192.168.10.50 80 Web Attack - XSS
6-7 10:39 10:43 172.16.0.1 192.168.10.50 80 Web Attack - Sql Injection
6-7 14:18 14:43 205.174.165.73 192.168.10.8 444 Infiltration - Dropbox download
6-7 14:18 14:43 192.168.10.8 192.168.10.5 Portscan
6-7 14:52 15:05 205.174.165.73 192.168.10.25 444 Infiltration - Cool disk - MAC
6-7 15:03 15:46 205.174.165.73 192.168.10.8 444 Infiltration - Dropbox download
6-7 15:03 15:46 192.168.10.8 192.168.10. Portscan
7-7 10:04 17:03 205.174.165.73 192.168.10.5 8080 Botnet Ares
7-7 10:04 17:03 205.174.165.73 192.168.10.8 8080 Botnet Ares
7-7 10:04 17:03 205.174.165.73 192.168.10.9 8080 Botnet Ares
7-7 10:04 17:03 205.174.165.73 192.168.10.14 8080 Botnet Ares
7-7 10:04 17:03 205.174.165.73 192.168.10.15 8080 Botnet Ares
7-7 13:01 15:24 172.16.0.1 192.168.10.50 Port Scan
7-7 15:55 16:17 172.16.0.1 192.168.10.50 80 DDoS LOIC
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Appendix C

ISCX-IDS-2012 Results Graph
data

Table C.1: ISCX-IDS-2012

Metric TCP UDP DNS HTTP FTP SSH
MCSED 0.17889 0.0 0.0 0.0 0.0 0.0
MCSVD 0.18222 0.0 0.0 0.0 0.0 0.0
NED 0.04 0.0 0.0 0.0 0.0 0.0
VEO 0.08 0.0 0.0 0.0 0.0 0.0

Table C.2: ISCX-IDS-2012 table

Metric Weight TCP UDP DNS HTTP FTP SSH
WD PCA 0.1 0.10556 0.0 0.0 0.0 0.0 0.0
WD PCA 0.5 0.10667 0.0 0.0 0.0 0.0 0.0
WD PCA 0.9 0.10333 0.0 0.0 0.0 0.0 0.0
WD IForest 5 0.10222 0.0 0.0 0.0 0.0 0.0
WD IForest 10 0.10444 0.0 0.0 0.0 0.0 0.0
ED PCA 0.1 0.11333 0.0 0.0 0.0 0.0 0.0
ED PCA 0.5 0.11556 0.0 0.0 0.0 0.0 0.0
ED PCA 0.9 0.11333 0.0 0.0 0.0 0.0 0.0
ED IForest 5 0.11889 0.0 0.0 0.0 0.0 0.0
ED IForest 10 0.11778 0.0 0.0 0.0 0.0 0.0
MCSWD PCA 0.1 0.12778 0.0 0.0 0.0 0.0 0.04255
MCSWD PCA 0.5 0.14 0.0 0.0 0.0 0.0 0.04255
MCSWD PCA 0.9 0.13778 0.0 0.0 0.0 0.0 0.10638
MCSWD IForest 5 0.11667 0.0 0.0 0.0 0.0 0.12766
MCSWD IForest 10 0.12 0.0 0.0 0.0 0.0 0.12766
UD PCA 0.1 0.04556 0.0 0.0 0.0 0.0 0.0
UD PCA 0.5 0.04444 0.0 0.0 0.0 0.0 0.0
UD PCA 0.9 0.04333 0.0 0.0 0.0 0.0 0.0
UD IForest 5 0.03889 0.0 0.0 0.0 0.0 0.0
UD IForest 10 0.04111 0.0 0.0 0.0 0.0 0.0
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